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5.2 Erik Koch

1 Atomic configurations

Given their modest size and symmetry, atoms are among the simplest many-electron problems.
On the other hand, they are of outstanding importance as the building blocks of all matter, with
their level structure determining the to a large extent the electronic structure in the condensed
state. Their symmetry, combined with the early availability of high-accuracy spectral data, made
it possible to analyze the electronic structure of atoms and ions already before the Schrödinger
equation was known [1]. Knowing the (non-relativistic) Hamiltonian for an N -electron ion of
charge Z−N (in atomic units, see App. A)

H =
N∑
i=1

(
−1

2
∆i −

Z

|~ri|

)
+
∑
i<j

1

|~ri − ~rj|
(1)

does, however, not mean that we can determine its ground state exactly. To get an impression
of the complexity of the problem presented by a system of many interacting electrons, we may
consider a simple iron atom, Fe, with N = Z = 26 electrons. Its wave-function is a function of
3×26 coordinates. Writing a numerical approximation to it, even on a coarse discretization grid
of 10 grid-points per coordinate would require us to store 1076 amplitudes, for which we would
need a classical memory device containing more atoms than exist in the visible universe—a
practical impossibility. We thus need “approximate practical methods” [2] to deal with the
problem.
The approximate practical approach for dealing with the atomic many-body problem consists of
treating the electron-electron repulsion in two steps. First, equation (1) is solved in the central-
field approximation. This provides us with orbitals ϕn,l,m,σ(~r) = un,l(r)/r Yl,m(ϑ, ϕ)χσ. If
we were to stop at the mean-field level, we might look for unrestricted mean-field solutions
that break the spherical and spin symmetry to lower the mean-field energy. When we continue
the calculation by reintroducing the electron-electron interaction, we stay with the symmetry-
restricted mean-field solutions, as the many-body treatment otherwise would have to restore the
broken symmetries.
Filling the central-field orbitals by the Aufbauprinzip already gives the structure or the periodic
table: orbitals are filled—roughly—with increasing quantum numbers n+l and for given n+l

with increasing principle quantum number n:

1s 2s 3s 4s 5s 6s 7s · · ·

2p 3p 4p 5p 6p · · ·

3d 4d 5d 6d · · ·

4f 5f · · ·

The reordering of the atomic shells relative to the hydrogen levels is a result of the mean-field:
inner electrons screen the nuclear charge, so that electrons further away from the nucleus see
only a small effective charge. Since un,l(r→0) ∼ rl+1 orbitals with higher angular momentum l

have a lower probability of coming close to the nucleus, so their energy tends to go up.
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In the central-field approximation the orbital energy only depends on the quantum numbers n
and l, but not on m and σ. Thus, when a shell (n, l) is filled with less than 2(2l+1) electrons,
there will be many different ways of distributing the electrons over spin-orbitals, all of the same
energy. Thus open shells are highly degenerate.
This degeneracy is lifted when we re-introduce the electron-electron interaction in degenerate
perturbation theory, or, when including more than the degenerate orbitals, in a variational way.
The actual perturbation is the two-body interaction minus the mean-field (double-counting cor-
rection) ∑

i

VMF (~ri) :=

〈
1

2

∑
j 6=i

1

|~ri−~rj|

〉
. (2)

When the mean-field density is close to the true density as, e.g., in a density-functional calcula-
tion, the long-range Hartree potential is already properly included VMF , so that the perturbation
becomes short-ranged—of the order of the exchange-correlation hole. This perturbation arising
from the electron-electron repulsion splits a configuration lN of N electrons in an (n, l)-shell
into multiplet terms. They are characterized by their total orbital momentum L and spin S quan-
tum numbers and are in general still highly degenerate. The total spin is usually given by its
multiplicity 2S+1 so that the multiplet term is written as 2S+1L. When the relativistic spin-orbit
coupling is included in a second step of degenerate perturbation theory, these terms split into
multiplet levels, which are characterized by the additional total angular momentum as 2S+1LJ .
This two-step degenerate perturbation approach is called LS or Russell-Saunders coupling and
works well when the splitting due to spin-orbit coupling is much smaller than that due to the
electron-electron repulsion.
Doing perturbation theory in the opposite order, i.e., calculating the splitting of the open shell
lN under spin-orbit interaction and then doing perturbation theory for the electron-electron re-
pulsion on the degenerate spin-orbit levels is called jj coupling. It is appropriate in extremely
heavy atoms, where the spin-orbit splitting dominates the multiplet splitting. In practice this is
not realized for stable atoms. In heavy atoms the spin-orbit interaction can, however, become
sufficiently strong that LS coupling breaks down and one has to treat electron-electron repul-
sion and spin-orbit coupling on the same footing, i.e., in a single step of degenerate perturbation
theory. This is called intermediate coupling.
In the following we will start by analyzing the two-body electron-electron repulsion that makes
theN -electron atom a many-body problem. We will see that the multiplet terms are almost com-
pletely determined by symmetry—which was instrumental in making the analysis of spectra be-
fore the introduction of the Schrödinger equation possible. We will then turn to the construction
of the electron-electron Hamiltonian bring it into matrix form and investigate its properties, in
particular under an electron-hole transformation. This will involve a number of technical con-
cepts, in particular the addition theorem for spherical harmonics and its implications as well as
Gaunt coefficients, which are explained in separate appendices. Finally, we will briefly discuss
the much simpler one-body spin-orbit interaction and its interplay with the electron-electron
repulsion. For an introduction to multiplets with a focus of different aspects of the theory, see
also the excellent lecture of Robert Eder on multiplets in transition metal ions in [3].
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2 Multiplets

We start by considering the splitting of an open shell of N electrons in orbitals ϕn,l,m,σ of
angular momentum l. There are 2(2l+1) such spin-orbitals and, by the antisymmetry of the
N -electron wave function,

(
2(2l+1)
N

)
degenerate states in the shell lN . The computational ap-

proach of dealing with the electron-electron repulsion is to write Hee

∑
i<j 1/|~ri−~rj| in second

quantization in the N -electron space spanned by the spin-orbitals and diagonalize the result-
ing

(
4l+2
N

)
-dimensional matrix numerically. The techniques for this exact diagonalization are

explained in [4]. As a result we will find a highly degenerate spectrum.

The degeneracies are the consequence of the symmetries of the perturbation: Hee is invariant
under inversions and simultaneous rotations of all electrons, as well as independent of spin. This
means, in particular, that it commutes with the total spin ~S =

∑
i
~Si operator and total orbital

momentum ~L =
∑

i
~Li, where ~Li = ~ri × ~pi. Thus, there will be simultaneous eigenstates of

Hee , ~L, and ~S. The symmetry-based approach to calculating multiplet terms and their energies
is thus based on constructing the eigenstates |L,M ; S,Σ〉 of the total angular momenta, span-
ning the multiplet term 2S+1L. When the terms are unique, the |L,M ; S,Σ〉 are automatically
eigenstates of Hee . When there is more than one term with quantum numbers L and S, Hee

needs only be diagonalized on this small space. Written in multiplet states, Hee is thus block
diagonal, with most blocks being one-dimensional.

Constructing eigenstates of L and S can, however, be quite tedious: the resulting states when
adding more that two angular momenta depend on the order in which the momenta are added,
and the resulting states need to be antisymmetrized. The traditional approach [5–10] proceeds
by constructing the multiplet states for the lN shell from the states for the simpler lN−1-shell
by adding the angular momentum of the additional electron and antisymmetrizing the resulting
function. To ease this task, there are tables of coefficients of fractional parentage [10]:

Fractional parentage coefficients were introduced by Racah [7] to facilitate com-
putation of matrix elements for complicated configurations. They are important
because all antisymmetric states of N electrons can be expressed as linear combi-
nations of the states obtained by angular-momentum coupling one additional elec-
tron to the antisymmetric states of N−1 electrons. The coefficients of these linear
combinations are the fractional parentage coefficients.

The problem simplifies drastically when we work in a formalism that only allows us to express
physical quantities, i.e., when working in second quantization [11]: all states must be antisym-
metric and all operators must be symmetric: total orbital momentum can be represented, while
unphysical operators acting on only a single electron cannot (if such an operator would be phys-
ical, we could use it to distinguish the electron it acts on from the others...). The procedure starts
by identifying the state with maximum M and Σ (i.e., that vanishes under L+ and S+ so that it
is a states with L = M and S = Σ). Using ladder operators L− and S− then produces the other
states of multiplet 2S+1L, after which the procedure is repeated with the remaining states.
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2.1 Constructing multiplet states

The key tools for constructing multiplet state are the ladder operators of total orbital momentum

L̂± =
∑
l,m,σ

√
(l±m+1)(l∓m) c†l,m±1,σ cl,m,σ

and total spin
Ŝ+ =

∑
l,m

c†l,m,↑ cl,m,↓ and Ŝ− =
∑
l,m

c†l,m,↓ cl,m,↑.

In addition we have to fix some order of the orbitals in our basis determinants, which we choose
to be sorted according to their eigenvalues m,σ: operators with spin ↑ to the left of ↓ and, for
given spin, m to the left of m′ when m > m′.

2.1.1 Multiplet terms of p2

To see how multiplets are identified and their states are constructed in practice, we look at the
simple case of two electrons in a p shell. To start, we arrange the

(
6
2

)
= 15 basis determinants

according to their eigenvalues of Lz and Sz:

Σ

1 0 −1

2 p† 1↑p
†
1↓|0〉

1 p†1↑p
†
0↑|0〉

p† 1↑p
†
0↓|0〉

p† 0↑p
†
1↓|0〉

p†1↓p
†
0↓|0〉

M 0 p†1↑p
†
−1↑|0〉

p† 1↑p
†
−1↓|0〉

p† 0↑p
†
0↓|0〉

p†−1↑p
†
1↓|0〉

p†1↓p
†
−1↓|0〉

−1 p†0↑p
†
−1↑|0〉

p† 0↑p
†
−1↓|0〉

p†−1↑p
†
0↓|0〉

p†0↓p
†
−1↓|0〉

−2 p†−1↑p
†
−1↓|0〉

For the states with Σ = 1 both electron spins are up, so that applying S+ produces zero. From
the relation ~J2 = J2

z+Jz+J−J+ for general angular momenta ~J , it then follows that these states
are eigenstates of ~S2 with S = 1. Similarly, when a state vanishes under L+ it is an eigenstate
of ~L2. We can thus identify a state |L,M ; S,Σ〉

|1, 1; 1, 1〉 = p†1↑p
†
0↑|0〉 (3)

from which we can construct more eigenstates |1, 1; 1, Σ〉 by applying S− =
∑

m p
†
m↓pm↑,

using [S−, p
†
mσ] = δσ,↑ p

†
m↓. For example

√
2 |1, 1; 1, 0〉 = S− |1, 1; 1, 1〉 =

(
−p†0↑p

†
1↓ + p†1↑p

†
0↓
)
|0〉,

where in the last term we have brought the operators in the order required by our choice of
basis. Note how the factor on the left just ensures normalization of the state on the right.
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Also using L−, we can construct all nine states |1,M ; 1, Σ〉 of the 3P multiplet term

3P Σ

1 0 −1

1 p†1↑p
†
0↑|0〉 1√

2

(
p† 1↑p

†
0↓ − p

†
0↑p
†
1↓
)
|0〉 p†1↓p

†
0↓|0〉

M 0 p†1↑p
†
−1↑|0〉 1√

2

(
p† 1↑p

†
−1↓ − p

†
−1↑p

†
1↓
)
|0〉 p†1↓p

†
−1↓|0〉

−1 p†0↑p
†
−1↑|0〉 1√

2

(
p† 0↑p

†
−1↓ − p

†
−1↑p

†
0↓
)
|0〉 p†0↓p

†
−1↓|0〉

Similarly, we see that
|2, 2; 0, 0〉 = p†1↑p

†
1↓|0〉 (4)

from which by repeated application of L− =
√

2
∑

σ

(
p†0σp1σ + p†−1σp0σ

)
we can construct all

five states of the 1D term

1D Σ = 0

2 p†1↑p
†
1↓ |0〉

1 1√
2

(
p†1↑p

†
0↓ + p†0↑p

†
1↓
)
|0〉

M 0 1√
6

(
p†1↑p

†
−1↓ + 2p†0↑p

†
0↓ + p†−1↑p

†
1↓
)
|0〉

−1 1√
2

(
p†0↑p

†
−1↓ + p†−1↑p

†
0↓
)
|0〉

−2 p†−1↑p
†
−1↓ |0〉

The remaining state in the 3-dimensional eigenspace M=0, Σ=0 must be a singlet state 1S. We
can construct it by finding the state orthogonal to |1, 0; 1, 0〉 and |2, 0; 0, 0〉:

1S |0, 0; 0, 0〉 =
1√
3

(
−p†1↑p

†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
)
|0〉 . (5)

The procedure is quite remarkable. Simply counting the number of basis determinants with
given M and Σ we could identify states of maximum Lz and Sz eigenvalues and see that p2

splits into 3P , 1D, and 1S. Constructing the multiplet states explicitly then involved merely
ladder-operator algebra. For the 3P and 1D multiplets the starting state |L,L; S, S〉 turned out
to be just a Slater determinant. Only the singlet state had to be constructed by orthogonalizing
to the already constructed states.
The p2-shell is, of course, quite a simple case. Adding two angular momenta is a unique proce-
dure. Already for three angular momenta this is no longer true: Adding two spins gives a triplet
S=1 and one singlet S=0 state. Adding another spin to the triplet gives a quadruplet S=3

2
and

a doublet S=1
2
, adding the third spin to the singlet gives another doublet. While the triplet is

unique, the choice of the basis in the two-doublet space is arbitrary. It is usually resolved by
specifying in which order the spins are added: (~S1+~S2)+~S3 results in doublet states different
from those obtained by adding, e.g., ~S1+(~S2+~S3). For shells of more than two electrons we
might therefore expect that there will be multiplets that appear several times. Because of the
antisymmetry constraint this does, however, not happen in any of the p-shells. The first time we
see multiple multiplets is for d3, which we study next.
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2.1.2 Multiplet states of d3

The d3-shell has considerably more states than p2. We can reduce the discussion from
(
10
3

)
=

120 down to the 35 basis states with M ≥ 0 and Σ ≥ 0, since the space spanned by these
contains all states that vanish under L+ and S+.

Σ

3
2

1
2

5 d†2↑d
†
1↑d
†
2↓|0〉

4 d†2↑d
†
1↑d
†
1↓|0〉 d†2↑d

†
0↑d
†
2↓|0〉

3 d†2↑d
†
1↑d
†
0↑|0〉

d†2↑d
†
1↑d
†
0↓|0〉

d†2↑d
†
0↑d
†
1↓|0〉

d†2↑d
†
−1↑d

†
2↓|0〉

d†1↑d
†
0↑d
†
2↓|0〉

M 2 d†2↑d
†
1↑d
†
−1↑|0〉

d†2↑d
†
1↑d
†
−1↓|0〉

d†2↑d
†
0↑d
†
0↓|0〉

d†2↑d
†
−1↑d

†
1↓|0〉

d†1↑d
†
0↑d
†
1↓|0〉

d†2↑d
†
−2↑d

†
2↓|0〉

d†1↑d
†
−1↑d

†
2↓|0〉

1
d†2↑d

†
1↑d
†
−2↑|0〉

d†2↑d
†
0↑d
†
−1↑|0〉

d†2↑d
†
1↑d
†
−2↓|0〉

d†2↑d
†
0↑d
†
−1↓|0〉

d†2↑d
†
−1↑d

†
0↓|0〉

d†1↑d
†
0↑d
†
0↓|0〉

d†2↑d
†
−2↑d

†
1↓|0〉

d†1↑d
†
−1↑d

†
1↓|0〉

d†1↑d
†
−2↑d

†
2↓|0〉

d†0↑d
†
−1↑d

†
2↓|0〉

0
d†2↑d

†
0↑d
†
−2↑|0〉

d†1↑d
†
0↑d
†
−1↑|0〉

d†2↑d
†
0↑d
†
−2↓|0〉

d†2↑d
†
−1↑d

†
−1↓|0〉

d†1↑d
†
0↑d
†
−1↓|0〉

d†2↑d
†
−2↑d

†
0↓|0〉

d†1↑d
†
−1↑d

†
0↓|0〉

d†1↑d
†
−2↑d

†
1↓|0〉

d†0↑d
†
−1↑d

†
1↓|0〉

d†0↑d
†
−2↑d

†
2↓|0〉

From |3, 3; 3
2
, 3
2
〉 = d†2↑d

†
1↑d
†
0↑|0〉 we can construct the twenty states in 4F .

Using L− =
∑

σ

(
2d†−2σd−1σ +

√
6 d†−1σd0σ +

√
6 d†0σd1σ + 2d†1σd2σ

)
and remembering that L−

on the left-hand side ensures normalization we obtain

|3, 3; 3
2
, 3
2
〉 = d†2↑d

†
1↑d
†
0↑ |0〉

|3, 2; 3
2
, 3
2
〉 = d†2↑d

†
1↑d
†
−1↑ |0〉

|3, 1; 3
2
, 3
2
〉 = 1√

5

(√
3 d†2↑d

†
0↑d
†
−1↑ +

√
2 d†2↑d

†
1↑d
†
−2↑
)
|0〉

|3, 0; 3
2
, 3
2
〉 = 1√

5

(
d†1↑d

†
0↑d
†
−1↑ + 2 d†2↑d

†
0↑d
†
−2↑
)
|0〉

The state |Ψ⊥〉 orthogonal to |3, 1 3
2
, 3
2
〉 in the two-dimensional eigenspace must vanish under

L+, since it is orthogonal also to L−L+|3, 1; 3
2
, 3
2
〉 so that 0 = 〈L+Ψ⊥|3, 2; 3

2
, 3
2
〉. It is thus

|1, 1; 3
2
, 3
2
〉 =

1√
5

(√
2 d†2↑d

†
0↑d
†
−1↑ −

√
3 d†2↑d

†
1↑d
†
−2↑
)
|0〉

from which we can construct the twelve states of 4P .
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Starting from |5, 5; 1
2
, 1
2
〉 = d†2↑d

†
1↑d
†
2↓|0〉 we obtain the twenty-two 2H states, e.g.,

|5, 5; 1
2
, 1
2
〉 = d†2↑d

†
1↑d
†
2↓ |0〉

|5, 4; 1
2
, 1
2
〉 = 1√

5

(√
3 d†2↑d

†
0↑d
†
2↓ +
√

2 d†2↑d
†
1↑d
†
1↓
)
|0〉

|5, 3; 1
2
, 1
2
〉 = 1√

15

(√
2 d†1↑d

†
0↑d
†
2↓ +
√

3 d†2↑d
†
−1↑d

†
2↓ +
√

8 d†2↑d
†
0↑d
†
1↓ +
√

2 d†2↑d
†
1↑d
†
0↓
)
|0〉

...

There remains one state orthogonal to |5, 4; 1
2
, 1
2
〉 in the eigenspace for M=4, Σ=1

2

|4, 4; 1
2
, 1
2
〉 =

1√
5

(√
2 d†2↑d

†
d↑d
†
0↓2−

√
3 d†2↑d

†
1↑d
†
1↓
)
|0〉

from which we can construct the eighteen states in 2G. Similarly, in the four-dimensional
eigenspace of M=3, Σ=1

2
there remains one state orthogonal to the already constructed states

|5, 3; 1
2
, 1
2
〉, |4, 3; 1

2
, 1
2
〉, and |3, 3; 3

2
, 1
2
〉 ∝ S−|3, 3; 3

2
, 3
2
〉

|3, 3; 1
2
, 1
2
〉 =

1√
12

(
2 d†1↑d

†
0↑d
†
2↓ −
√

6 d†2↑d
†
−1↑d

†
2↓ + d†2↑d

†
0↑d
†
1↓ − d

†
2↑d
†
1↑d
†
0↓
)
|0〉

from which we obtain the fourteen 2F states.
In the next step we encounter a new situation: the eigenspace ofM=2,Σ=1

2
is six-dimensional,

but so far we could only construct four states out of it: |5, 2; 1
2
, 1
2
〉, |4, 2; 1

2
, 1
2
〉, |3, 2; 1

2
, 1
2
〉, and

|3, 2; 3
2
, 1
2
〉. Any state out of the remaining two-dimensional orthogonal space will vanish under

L+ and S+, i.e., it will be an eigenfunction of the type |2, 2; 1
2
, 1
2
〉, so that there will be two 2D

multiplets. This ambiguity is, of course, lifted in a natural way by diagonalizing the Hamiltonian
on the two dimensional space and using the resulting energy eigenstates to construct the two
multiplets. If we insist on defining states independently of the Hamiltonian, we need to define a
recipe for lifting the ambiguity. This route has been taken by Racah by introducing the concept
of seniority [8]. Before discussing this, we finish the determination of the multiplets of a d3-
shell by noting that after constructing the two 2D multiplet states, there is still one undetermined
state in the M=1, Σ=1

2
eigenstate, which gives rise to a 2P multiplet.

Thus the 120-fold degenerate d3-shell splits into 4F , 4P , 2H , 2G, 2F , 2×2D, and 2P .

2.1.3 Seniority and Kramers pairs

The key to understanding seniority are the Kramers pair creators

K†l :=
1√

2l+1

l∑
m=−l

(−1)m l†m↑l
†
−m↓ (6)

which create electron-pairs in a singlet state (note the analogy to Cooper pairs), i.e., [~L, K†l ] =

0 = [~S, K†l ]. For the z-components this is straightforward[
Lz, l

†
m↑l
†
−m↓
]

=
[
Lz, l

†
m↑
]
l†−m↓ + l†m↑

[
Lz, l

†
−m↓
]

= (m−m) l†m↑l
†
−m↓ = 0[

Sz, l
†
m↑l
†
−m↓
]

=
[
Sz, l

†
m↑
]
l†−m↓ + l†m↑

[
Sz, l

†
−m↓
]

=
(
1
2
−1

2

)
l†m↑l

†
−m↓ = 0
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For the other components, we use the ladder operators. The principle is most easily seen for the
simple case of l = 1:[
L+, −p†1↑p

†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
]

= −
√

2p†1↑p
†
0↓ +
√

2p†1↑p
†
0↓+
√

2p†0↑p
†
1↓ −
√

2p†0↑p
†
1↓ = 0[

S+, −p†1↑p
†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
]

= −p†1↑p
†
−1↓ + 0− p†−1↑p

†
1↓ = 0

This means that K† adds two electrons to a state without changing its angular momentum. The
simplest example is the singlet state of p2 in equation (5): K†1|0〉 ∝ |0, 0; 0, 0〉. For d3 we can
obtain a 2D state by adding a Kramers pair to a 2D state in d1, e.g.,

|2, 2; 1
2
, 1
2
〉d1 = d†2↑|0〉, (7)

which after normalization gives the state

|2, 2; 1
2
, 1
2
〉1 =

1

2

(
−d†2↑d

†
1↑d
†
−1↓ + d†2↑d

†
0↑d
†
0↓ − d

†
2↑d
†
−1↑d

†
1↓ + d†2↑d

†
−2↑d

†
2↓
)
|0〉. (8)

The corresponding 2D multiplet in d3 is assigned seniority 1 as it originates from the multiplet
in the d1 shell. The second 2D multiplet in d3, which can now be uniquely constructed from the
remaining (orthogonal) state in the eigenspace of M=2, Σ=1

2
, is assigned the seniority 3

|2, 2; 1
2
, 1
2
〉3 = (9)

1√
84

(
3d†2↑d

†
1↑d
†
−1↓−3d†2↑d

†
0↑d
†
0↓−d

†
2↑d
†
−1↑d

†
1↓+5d†2↑d

†
−2↑d

†
2↓+
√

24d†1↑d
†
0↑d
†
−1↓−4d†1↑d

†
−1↑d

†
2↓
)
|0〉.

This approach works for all d shells and the grand-parentage relations can be read off table 1. It
also shows that there are far to few grandparents to define unique multiplets in f systems. The
situation becomes quite involved, quoting [10], page V:

Because more than one multiplet of a given L, S may occur, some further differen-
tiation of the multiplets is required. For this purpose we have followed consistently
the classification scheme of Racah [8] wherein additional quantum numbers, usu-
ally not of physical significance, are introduced by reference to the properties of
certain mathematical groups. Specifically, the groups used are those denoted by
R5 in the case of the configuration dn and by R7 and G2 for the configurations fn.
The so-called seniority quantum number is consistent with this scheme. Even with
these additional quantum numbers, some duplications occur for fn configurations,
which were resolved arbitrarily by Racah in his work on the electrostatic energy of
fn configurations [8].

In practice it is more economical to directly work with energy eigenstates. For this we need, of
course, the representation of the electron-electron interaction in our basis of spherically sym-
metric orbitals. Before turning our attention to the Hamiltonian, however, let us briefly discuss
the particle-hole transformation between configurations lN and l2(2l+1)−N which is apparent
from the table of multiplets.
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s
0,s

2
1S

s
1

2S

p
0,p

6
1S

p
1,p

5
2P

p
2,p

4
1S

1D
3P

p
3

2P
2D

4S

d
0,d

6
1S

d
1,d

9
2D

d
2,d

8
1S

1D
1G

3P
3F

d
3,d

7
2P

2×
2D

2F
2G

2H
4P

4F

d
4,d

6
2×1S

2×
1D

1F
2×
1G

1I
2×
3P

3D
2×
3F

3G
3H

5D

d
5

2S
2P

3×
2D

2×
2F

2×
2G

2H
2I

4P
4D

4F
4G

6S

f
0,f

1
4

1S

f
1,f

1
3

2F

f
2,f

1
2

1S
1D

1G
1I

3P
3F

3H

f
3,f

1
1

2P
2×
2D

2×
2F

2×
2G

2×
2H

2I
2K

2L
4S

4D
4F

4G
4I

f
4,f

1
0

2×1S
4×
1D

1F
4×
1G

2×
1H

3×1I
1K

2×1L
1N

3×
3P

2×
3D

4×
3F

3×
3G

4×
3H

2×3I
2×
3K

3L
3M

5S
5D

5F
5G

5I

f
5,f

9
4×
2P

5×
2D

7×
2F

6×
2G

7×
2H

5×2I
5×
2K

3×2L
2×
2M

2N
2O

4S
2×
4P

3×
4D

4×
4F

4×
4G

3×
4H

3×4I
2×
4K

4L
4M

6P
6F

6H

f
6,f

8
4×1S

1P
6×
1D

4×
1F

8×
1G

4×
1H

7×1I
3×
1K

4×1L
2×
1M

2×
1N

1Q
6×
3P

5×
3D

9×
3F

7×
3G

9×
3H

6×3I
6×
3K

3×3L
3×
3M

3N
3O

5S
5P

3×
5D

2×
5F

3×
5G

2×
5H

2×5I
5K

5L
7F

f
5

2×2S
5×
2P

7×
2D

1
0×
2F

1
0×
2G

9×
2H

9×2I
7×
2K

5×2L
4×
2M

2×
2N

2O
2Q

2×4S
2×
4P

6×
4D

5×
4F

7×
4G

5×
4H

5×4I
3×
4K

3×4L
4M

4N
6P

6D
6F

6G
6H

6I
8S

Table
1:

M
ultipletterm

s
of
l N

shells.The
lastentry

in
each

row
is

the
H

und’s
rule

ground
state.
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2.1.4 Electron-hole symmetry

Because of the Pauli principle,
(
c†
)2

= 0, the state of a filled shell

|n, l〉 :=
−l∏
m=l

c†n,l,m,↑

−l∏
m=l

c†n,l,m,↓|0〉 =:
∏
m,σ

c†n,l,m,σ|0〉 (10)

behaves as vacuum state for the creators c†n,m,l,σ, while the annihilators create holes in the shell,
e.g., s0↑|n, 0〉 = s0↑ s

†
0↑s
†
0↓|0〉 = s†0,↓|0〉 or p1↓|n, 1〉 = −p†1↑p

†
0,↑p

†
−1↑p

†
0,↓p

†
−1↓|0〉, or in general

cn,l,m,σ|n, l〉 = (−1)l−m+1/2−σ
∏
m′,σ′

(
c†n,l,m′,σ′

)1−δm,m′δσ,σ′ |0〉. (11)

Applying a lexicographically ordered product of operators h̃†n,l,m,σ := (−1)l−m+1/2−σcn,l,m,σ
specified by occupation numbers nn,l,m,σ ∈ {0, 1} on |n, l〉 thus simply creates the correspond-
ing holes in the shell ∏

m,σ

(
h̃†n,l,m,σ

)nmσ |n, l〉 =
∏
m,σ

(
c†n,l,m,σ

)1−nmσ |0〉. (12)

For more than half-filling, this is an economical way of representing the 2(2l+1)−N -electron
states as N -hole states. To work in this hole-representation, we also have to express the observ-
ables in the new operators, e.g.,

Lz =
∑

mc†n,l,m,σcn,l,m,σ = −
∑

mh̃†n,l,m,σh̃n,l,m,σ (13)

and likewise for Sz. We can make the operators have the same form in electron- and hole-
representation by defining

h†n,l,−m,−σ := h̃†n,l,m,σ = (−1)l−m+1/2−σcn,l,m,σ (14)

so that

Lz =
∑

mc†n,l,m,σcn,l,m,σ =
∑

mh†n,l,m,σhn,l,m,σ (15)

Sz =
∑

σ c†n,l,m,σcn,l,m,σ =
∑

σ h†n,l,m,σhn,l,m,σ (16)

while

L± =
∑
n,l,m,σ

√
(l±m+1)(l∓m) c†n,l,m±1,σ cn,l,m,σ

=
∑
n,l,m,σ

√
(l±m+1)(l∓m)h†n,l,−m,−σ hn,l,−m∓1,−σ

=
∑

n,l,m′,σ′

√
(l∓m′)(l±m′+1)h†n,l,m′±1,σ′ hn,l,m′,σ′ (17)

and similarly for S±. Thus ~L and ~S operate in the same way on N -electron basis states∏(
c†n,l,m,σ

)nmσ |0〉 as they do on the corresponding N -hole basis
∏(

h†n,l,−m,−σ
)nmσ |n, l〉. We
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can thus translate any N -electron state constructed in the previous sections into an N -hole
state with the same quantum numbers by simply replacing the basis states. The corresponding
2(2l+1)−N -electron state is then obtained from the relation (12), where we have to remember
to invert the ordering of the N -hole operators, which just gives an overall sign of (−1)N−1.
As an example we consider the p2 singlet (5)

|0, 0; 0, 0〉2 =
1√
3

(
−p†1↑p

†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
)
|0〉 .

Replacing p†mσ → h†−m,−σ and |0〉 → |n, 2〉, the corresponding 2-hole/4-electron state is

|0, 0; 0, 0〉4 =
1√
3

(
−h†−1↓h

†
1↑ + h†0↓h

†
0↑ − h

†
1↓h
†
−1↑
)
|n, 2〉

= − 1√
3

(
−p†0↑p

†
−1↑p

†
1↓p
†
0↓ + p†1↑p

†
−1↑p

†
1↓p
†
−1↓ − p

†
1↑p
†
0↑p
†
0↓p
†
−1↓
)
|0〉,

Using the Kramers pair (6) it is easily verified that this is indeed the p4 singlet ∝
(
K†1
)2|0〉.

2.2 Hamiltonian matrix elements

So far we have merely used the symmetries of the Hamiltonian to construct its eigenstates. For
d- and f -shells we saw, however, that certain multiplet terms can appear several times. In these
cases we might use, e.g., seniority to get a unique prescription for constructing the states in those
terms. The seniority states are, however, in general no longer eigenstates of the Hamiltonian.
To proceed further we need to look at the Hamiltonian in more detail.
As we are working in the spherical mean-field basis, the spin-orbitals

ϕn,l,m,σ(~r) =
un,l(r)

r
Yl,m(ϑ, ϕ) χσ (18)

diagonalize Heff = −∇2/2− Z/|~r|+ VMF (r) and we consider the operator

∆H =
∑
i<j

1

|~ri−~rj|
−
∑
i

VMF (|~ri|) (19)

In second quantization the spherical mean-field has matrix elements

〈n, l,m, σ|VMF |n′, l′,m′, σ′〉 = δl,l′ δm,m′ δσ,σ′

∫
dr un,l(r)VMF (r)un′,l(r) . (20)

For an lN -shell spanned byN spin-orbitals with the same quantum numbers n and l the spherical
mean-field is thus proportional to the identity, giving a mere shift of the entire shell. We can
therefore neglect it when we are only interested in the splitting of the shell. The matrix elements
of the electron-electron repulsion are, obviously, more interesting. Abbreviating the quantum
numbers of a spin-orbital as α := nα, lα,mα, σα and using the expansion of the Coulomb



Multiplets and Spin-Orbit 5.13

repulsion in products of spherical harmonics (85) we get〈
α, β

∣∣∣ 1

|~r−~r ′|

∣∣∣γ, δ〉 =

∫
d3r d3r′ ϕα(~r )ϕβ(~r ′)

1

|~r−~r ′|
ϕγ(~r

′)ϕδ(~r ) δσα,σδ δσβ ,σγ

=
∑
k

F
(k)
α,β,γ,δ

4π

2k+1

k∑
µ=−k

〈Yα|Yk,µ Yδ〉 〈YβYk,µ|Yγ〉 δσα,σδ δσβ ,σγ (21)

with the Slater integrals

F
(k)
α,β,γ,δ :=

∫ ∞
0

dr uα(r)uδ(r)

∫ ∞
0

dr′ uβ(r′)uγ(r
′)

min(r, r′)k

max(r, r′)k+1
. (22)

For a shell with fixed n and l they simplify to

F
(k)
n,l :=

∫ ∞
0

dr
∣∣un,l(r)∣∣2( 1

rk+1

∫ r

0

dr′ r′k
∣∣un,l(r′)∣∣2 + rk

∫ ∞
r

dr′
∣∣un,l(r′)∣∣2
r′k+1

)
(23)

with F (0)
n,l > F

(2)
n,l > · · · > 0. In practice the ratios of the Slater integrals turn out to be quite

close to those obtained for hydrogen orbitals, e.g., F (4)
3,2 /F

(2)
3,2 ≈ 15/23. The µ sum-rule for the

Gaunt coefficients (App. D) implies mδ−mα = µ = mβ−mγ , so that also using the l sum-rule
and the notation (94) we can write the electron-electron repulsion in an lN shell as

Hee =
1

2

∑
mσ,m′σ′

∑
k=0,2,...,2l

F
(k)
n,l

k∑
∆m=−k

(−1)∆mc
(k,l,l)
m+∆m,mc

(k,l,l)
m′−∆m,m′ l

†
m+∆m,σ l

†
m′−∆m,σ′ lm′,σ′ lm,σ

(24)
The direct terms, ∆m = 0, have a simple classical interpretation: expanding the charge density
of orbital ϕn,l,m(~r ) using (90) into multipole components, we see that the diagonal matrix
elements of the Hamiltonian U (k)

m.m′ := F
(k)
n,l c

(k,l,l)

m,m c
(k,l,l)
m′,m′ are nothing but electrostatic interaction

energies: k=0 the monopole-monopole interaction, k=2 dipole-dipole, etc. For σ = σ′ there
are additional density-density terms when ∆m = m′−m, with, using (95), matrix elements
J
(k)
m,m′ := F

(k)
n,l

(
c
(k,l,l)
m,m′

)2. The diagonal part of (24) can then be written as

Hdiag =
1

2

∑
m,σ,m′,σ′

∑
k

(
U

(k)
m,m′ − δσ,σ′J

(k)
m,m′

)(
nm′σ′ − δm,m′δσ,σ′

)
nmσ. (25)

Exchange terms appear only for equal spins, and the subtraction of the self interaction is already
ensured by the matrix elements, since U (k)

m,m = J
(k)
m,m.

The k = 0 contribution to Hee is easily evaluated using c(0,l,l)m,m′ = δm,m′

H(k=0)
ee =

F
(0)
n,l

2

∑
m,σ,m′σ′

(
1− δσ,σ′δm,m′

)
nm′σ′nmσ. (26)

We see that any state with N electrons H(0)
ee contributes F (0)

n,l N(N−1)/2 to the energy; i.e., the
monopole-monopole interaction gives the charging energy of the shell but does not contribute
to the splitting.
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Because of the spin-independence of the electron-electron repulsion, Hee is block-diagonal in
the spin-indices. In the ↑↓-sector we have, e.g., for a p-shell, using c(2,1,1)m,m′ from App. D

H
(k=2)
Sz=0 =



p−1↑p−1↓
p−1↑p 0↓
p−1↑p 1↓
p 0↑p−1↓
p 0↑p 0↓
p 0↑p 1↓
p 1↑p−1↓
p 1↑p 0↓
p 1↑p 1↓



†

F
(2)
n,1

52



1

−2 3

1 −3 6

3 −2

−3 4 −3

−2 3

6 −3 1

3 −2

1





p−1↑p−1↓
p−1↑p 0↓
p−1↑p 1↓
p 0↑p−1↓
p 0↑p 0↓
p 0↑p 1↓
p 1↑p−1↓
p 1↑p 0↓
p 1↑p 1↓


(27)

where we have ordered the operators in the same way as in the basis states. In the particular
ordering we chose, terms with ∆m appear on the 2l ∆m-th side diagonal. Note how fixing the
order of the operators (σ=↓ and σ′=↑) not only removes the prefactor 1/2 but also makes the
matrix of coefficients a two-electron matrix H

(k)
↑↓ rather than a tensor in orbital space (App. B).

The average direct interaction is defined via the trace of this (2l+1)2-dimensional sector of the
two-body matrix, which is invariant under basis changes that respect the spin symmetry,

U (k)
avg :=

∑
k

TrH
(k)
↑↓

(2l+1)2
=

1

(2l+1)2

∑
m,m′

U
(k)
m,m′ =

∑
k

F
(k)
n,l

(
Tr c(k,l,l)

2l+1

)2

= F
(0)
n,l δk,0 (28)

where we used (84) in evaluating Tr c(k,l,l) = δk,0. We define the sum Uavg :=
∑

k U
(k)
avg = F

(0)
n,l .

The ↑↑- and ↓↓-sectors have identical matrices H(k)
↑↑ = H

(k)
↓↓ of dimension (2l+1)2l/2, e.g.,

H
(k=2)
Sz=+1 =

p0↑p−1↑p1↑p−1↑
p1↑p 0↑


†

F
(2)
n,1

52

−5

−5

−5


p0↑p−1↑p1↑p−1↑
p1↑p 0↑

 . (29)

Since the matrix elements are spin-independent, these matrices are closely related to H
(k)
↑↓ :

Defining the rectangular matrix M(m̃′>m̃), (m′,m) =
(
δm̃′,m′δm̃,m− δm̃′,mδm̃,m′

)
/
√

2, e.g., for l=1

M :=
1√
2

 0 1 0 −1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 0 0 1 0 −1 0

 (30)

which maps ↑↓-states into the corresponding ordered ↑↑ basis states, we get

H
(k)
↑↑ = MH

(k)
↑↓ M

† = H
(k)
↓↓ . (31)

The average exchange interaction is defined similar to (28) in a basis-independent way via

U (k)
avg−J (k)

avg :=
∑
k

TrH
(k)
↑↑ + TrH

(k)
↓↓

(2l+1)2l
=

1

2l(2l+1)

∑
m,m′

(
U

(k)
m,m′−J

(k)
m,m′

)
(32)
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so that

J (k)
avg =

1

2l(2l+1)

∑
m,m′

J
(k)
m,m′ −

1

2l
U (k)

avg =
1

2l

2l∑
k=2

F
(k)
n,l c

(k,l,l)
0,0 (33)

by using addition theorem (83) and multipole expansion (85) to rewrite the angular integrals

∑
k

∑
m,m′

J
(k)
m,m′ =

∫
d3r d3r′

∣∣un,l(r)∣∣2
r2

∣∣un,l(r′)∣∣2
r′2

∣∣∣∑
m

Yl,m(ϑ, ϕ)Yl,m(ϑ′, ϕ′)︸ ︷︷ ︸√
(2l+1)/4πYl,0(arccos(r̂·r̂′),0)

∣∣∣2 1

|~r − ~r′ |︸ ︷︷ ︸∑
k

rk<

rk+1
>

Pk(r̂·r̂′)

.

The average exchange for the different shells is thus, using the (99) from App. D, given by

Javg =
∑
k

J (k)
avg =



1

5
F

(2)
n,1 p-shell

1

14
F

(2)
n,2 +

1

14
F

(4)
n,2 d-shell

2

45
F

(2)
n,3 +

1

33
F

(4)
n,3 +

50

32·11·13
F

(6)
n,3 f -shell

(34)

2.2.1 Electron-hole symmetry

We have already seen that the eigenstates of the total angular momenta for a shell with N

electrons and N holes are related by the simple transformation (14). Replacing the electron
operators in (24) by the corresponding hole operators, renaming indices m̃ = −m−∆m and
m̃′ = −m′+∆m, and using the symmetries (95) and (96) of the Gaunt coefficients, we obtain

Hee =
1

2

∑
m̃σ̃,m̃′σ̃′

∑
k

F
(k)
n,l

k∑
∆m=−k

(−1)∆mc
(k,l,l)
−m̃,−m̃−∆mc

(k,l,l)
−m̃′,−m̃′+∆mhm̃,σ̃ hm̃′,σ̃′ h

†
m̃′−∆m,σ̃′ h

†
m̃+∆m,σ̃

=
1

2

∑
m̃σ̃,m̃′σ̃′

∑
k

F
(k)
n,l

k∑
∆m=−k

(−1)∆mc
(k,l,l)
m̃+∆m,m̃c

(k,l,l)
m̃′−∆m,m̃′

(
h†m̃+∆m,σ̃ h

†
m̃′−∆m,σ̃′ hm̃′,σ̃′ hm̃,σ̃

+
(
δ∆m,0 − δm̃,m̃−∆m δσ̃,σ̃′

)(
1− nhm̃,σ̃ − nhm̃′,σ̃′

))
. (35)

The two-body part has the same form as when written in electron operators. The additional
terms arising from normal-ordering the hole operators give the difference between the N -
electron and the N -hole states, the superscript on the density operators is a reminder that they
give the hole occupations. These terms involve only diagonal matrix elements such that we can
write them in a concise form using the basis-independent averages (28) and (34), giving the
relation between the energy of a state with N electrons and the conjugate K−N -electron state,
where K = 2(2l+1) is the number of spin-orbitals in the shell:

E(K−N) = E(N) +

(
K−1

2
Uavg −

K−2

4
Javg

)(
(K−N)−N

)
. (36)



5.16 Erik Koch

2.2.2 Racah parameters

For expressing energies in a compact way several conventions have been introduced. Condon
and Shortley (table 16 of [12]) introduced parameters that include the least common prefactors
of the Gaunt matrices (p. 30 in App. D) in the Slater integrals

p-shell: F0 := F
(0)
n,1

F2 := F
(2)
n,1/5

2

d-shell: F0 := F
(0)
n,2

F2 := F
(2)
n,2/7

2

F4 := F
(4)
n,2/(3·7)2

f -shell: F0 := F
(0)
n,3

F2 := F
(2)
n,3/(3·5)2

F4 := F
(4)
n,3/(3·11)2

F6 := F
(6)
n,3

(
5/(3·11·13)

)2
so that, e.g., the diagonal terms in (25)

U
(k)
m,m′/Fk = c

(k,l,l)

m,m c
(k,l,l)
m′,m′ and J

(k)
m,m′/Fk =

(
c
(k,l,l)
m,m′

)2 (37)

in the basis of spherical harmonics become integer matrices (App. D):

p-shell:

U (2) = F2

 1 −2 1

−2 4 −2

1 −2 1

 J (2) = F2

 1 3 6

3 4 3

6 3 1

 (38)

d-shell:

U (2) =F2


4 −2 −4 −2 4

−2 1 2 1 −2

−4 2 4 2 −4

−2 1 2 1 −2

4 −2 −4 −2 4

 J (2) =F2


4 6 4 0 0

6 1 1 6 0

4 1 4 1 4

0 6 1 1 6

0 0 4 6 4



U (4) =F4


1 −4 6 −4 1

−4 16 −24 16 −4

6 −24 36 −24 6

−4 16 −24 16 −4

1 −4 6 −4 1

 J (4) =F4


1 5 15 35 70

5 16 30 40 35

15 30 36 30 15

35 40 30 16 5

70 35 15 5 1



(39)
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f -shell:

U (2)

F2

=



25 0 −15 −20 −15 0 25

0 0 0 0 0 0 0

−15 0 9 12 9 0 −15

−20 0 12 16 12 0 −20

−15 0 9 12 9 0 −15

0 0 0 0 0 0 0

25 0 −15 −20 −15 0 25


J (2)

F2

=



25 25 10 0 0 0 0

25 0 15 20 0 0 0

10 15 9 2 24 0 0

0 20 2 16 2 20 0

0 0 24 2 9 15 10

0 0 0 20 15 0 25

0 0 0 0 10 25 25



U (4)

F4

=



9 −21 3 18 3 −21 9

−21 49 −7 −42 −7 49 −21

3 −7 1 6 1 −7 3

18 −42 6 36 6 −42 18

3 −7 1 6 1 −7 3

−21 49 −7 −42 −7 49 −21

9 −21 3 18 3 −21 9


J (4)

F4

=



9 30 54 63 42 0 0

30 49 32 3 14 70 0

54 32 1 15 40 14 42

63 3 15 36 15 3 63

42 14 40 15 1 32 54

0 70 14 3 32 49 30

0 0 42 63 54 30 9



U (6)

F6

=



1 −6 15 −20 15 −6 1

−6 36 −90 120 −90 36 −6

15−90 225−300 225−90 15

−20 120−300 400−300 120−20

15−90 225−300 225−90 15

−6 36 −90 120 −90 36 −6

1 −6 15 −20 15 −6 1


J (6)

F6

=



1 7 28 84 210 462 924

7 36 105 224 378 504 462

28 105 225 350 420 378 210

84 224 350 400 350 224 84

210 378 420 350 225 105 28

462 504 378 224 105 36 7

924 462 210 84 28 7 1


(40)

In addition, Racah introduced sets of parameters

d-shell: [6], Eq. (77)
A := F0 − 72F4

B := F2− 5 F4

C := 5·7F4

(41)

f -shell [8], Eq. (66)

E0 :=F0 − 2·5F2− 3·11F4− 2·11·13F6

9E1 := 2·5·7F2 + 3·7·11F4 + 2·7·11·13F6

9E2 := F2− 3F4 + 7 F6

3E3 := 5F2 + 2·3F4− 7·13F6

(42)

which are “different from those adopted empirically” in [6], Eq. (96)

A :=F0 − 3·7F4− 22·32·13F6

5B := 5F2 + 2·3F4− 7·13F6

5C := 7F4 + 2·3·7F6

D := 2·3·7·11F6

(43)
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2.2.3 Hund’s rules

Quite remarkably, Friedrich Hund was able formulate rules for determining the multiplet term
of lowest energy even before the many-body Schrödinger equation was known. Using addition
of angular momenta and Pauli principle to analyze spectral data, he found that [1]

1. The lowest term has maximum multiplicity, i.e., maximum total spin S

2. For given multiplicity, the lowest term has largest total orbital momentum L

We can understand these two rules heuristically: 1. Because of the Pauli principle electrons of
the same spin have a lower probability of close encounters, reducing their repulsion due to the
exchange hole. 2. An electron configuration of larger total orbital momentum must have the
electrons contribute in a more coordinated way to the angular momentum, helping them avoid
each other.
Because the Hund’s rule states are defined by maximum S and, given S, maximum L, they
must vanish under application of the ladder operators S+ and L+. Hence at least some states
of the Hund’s rule term must be Slater determinants. They are easily constructed. Using the
occupation number representation in our chosen sorting of the basis

|nl↑, nl−1↑, · · · , n−l↑, nl↓, . . . , n−l↓〉 :=
(
l†l,↑
)nl↑ · · · (l†−l,↑)n−l↑(l†l,↓)nl↓ · · · (l†−l,↓)n−l↓∣∣0〉 (44)

the Hund’s rule determinant with maximum Σ and M for N electrons are given by filling the
orbitals from left to right, i.e., setting the first N occupations to one. For the p-shell this gives
Φp1=|100000〉, Φp2=|110000〉, Φp3=|111000〉, Φp4=|111100〉, and Φp5=|111110〉. The total
spin and angular momentum of the Hund’s term are

SHund(lN) = Ñ/2 , LHund(lN) =
(
(2l+1)−Ñ

)
Ñ/2 with Ñ = (2l+1)−

∣∣(2l+1)−N
∣∣. (45)

To find the energy of Hund’s determinants we only need the diagonal elements of the Hamilto-
nian (25) that are collected in the U and J matrices

EHund = 〈ΦHund |Hee |ΦHund〉 =
∑

mσ<m′σ′:occ

(
Um,m′ − δσ,σ′Jm,m′

)
, (46)

where the sum is over the ordered pairs of occupied orbitals. For shells with less than two
electrons there are obviously no pairs of occupied orbitals, so that the energy vanishes. For
higher fillings we get, using the matrix elements given in Sec. 2.2.2, e.g.,

EHund(p2) = F0 − 5F2 EHund(p3) = 3F0 − 15F2

EHund(d2) = F0 − 8F2 − 9F4 EHund(d3) = 3F0 − 15F2 − 72F4

EHund(d4) = 6F0 − 21F2 − 189F4 EHund(d5) = 10F0 − 35F2 − 315F4

For N > 2l+1 there are also pairs of opposite spin, for which the exchange term does not
contribute. They are most easily calculated using the electron-hole relation (36).
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2.2.4 Moments and spectral variance

The Slater-Condon integrals give no direct measure of the size of the multiplet splitting: with
identical parameters the splitting changes, e.g., substantially with the number of electrons N in
the shell. A measure of the width of the spectrum is its variance 〈E2〉 − 〈E〉2, with the average
defined by 〈

f(E)
〉

:=
1

dimH

∑
n

f(En) , (47)

where dimH =
(
K
N

)
is the dimension of the Hilbert space. Quite remarkably, we can determine

these moments from the representation of the Hamiltonian in terms of a two-body matrix H

with blocks given by, e.g., (27) and (29), obtaining information about the N -electron spectrum
without having to do any many-body calculations.
By the invariance of the trace, the average energy 〈E〉 involves only the diagonal terms in the
N -electron Hamiltonian. For a density-density term nmσnm′σ′ to contribute, the two orbitals
must be occupied. In the Slater determinant basis for N electrons in K = 2(2l+1) spin-orbitals
this fixes two electrons in two orbitals, so that for any m,σ > m′, σ′ there are

(
K−2
N−2

)
such

configurations, hence(
K

N

)
〈E〉 :=

∑
n

En = TrN Hee =

(
K−2

N−2

)
TrH (48)

which simplifies with
(
n
k

)
= n

k

(
n−1
k−1

)
to

〈E〉 =
N(N−1)

K(K−1)
TrH . (49)

Since Uavg and Javg are defined via the traces of the blocks H↑↓ and H↑↑ = H↓↓, we can write

TrH = (2l+1)2Uavg + 2 · (2l+1)2l/2
(
Uavg − Javg

)
= (2l+1)

(
(4l+1)Uavg − 2lJavg

)
, (50)

so that the center of gravity of the multiplet terms of lN is〈
E(lN)

〉
=
N(N−1)

2

(
Uavg −

2l

4l+1
Javg

)
. (51)

To calculate the second moment, we split the N -electron Hamiltonian into its diagonal, and the
parts that create single and double excitations: Hee = Hdiag+Hsingle+Hdouble . To contribute to
the trace of H2

ee calculated in the Slater determinant basis, every excitation must be undone, i.e.,(
K

N

)
〈E2〉 = TrN H

2
diag + TrN H

2
single + TrN H

2
double . (52)

The traces over theN -electron space can, again, be reduced to traces over two-electron matrices
H = Hdiag + Hsingle + Hdouble . A double excitation involves two electrons moving from
occupied to unoccupied orbitals, so that the reduction to TrH2

double involves a combinatorial
factor

(
K−4
N−2

)
TrN H

2
double =

(
K−4

N−2

) ∑
α<β, γ>δ

{α,β}∩{γ,δ}=∅

∣∣H(αβ)(γδ)

∣∣2 =

(
K−4

N−2

)
TrH2

double . (53)
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Single excitations are one-body-like, so it is convenient to define the single-electron part of H
by collecting all the matrix elements contributing to the same excitation α← β, e.g., c†αnγcβ(
H1

)
α,β

:=
∑
α,β<γ

H(αγ)(γβ)−
∑

α<γ<β

H(αγ)(βγ)−
∑

β<γ<α

H(γα)(γβ)+
∑
γ<α,β

H(γα)(βγ) =
∑
γ

H(αγ)(γβ), (54)

where the last sum has no ordering but we know that sorting the indices (αγ) and (γβ) gives
the appropriate signs. For α 6= β, H1 contains all single excitations, so

TrN H
2
single =

(
K−3

N−2

) ∑
α 6=β,γ

∣∣H(αγ)(γβ)

∣∣2 +

(
K−4

N−3

) ∑
α 6=β,γ 6=γ̃

H(αγ)(γβ)H(βγ̃)(γ̃α)

=

(
K−4

N−2

)
TrH2

single +

(
K−4

N−3

) ∑
α 6=β,γ,γ̃

H(αγ)(γβ)H(βγ̃)(γ̃α) (55)

where we used
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
to split the first term and add part of it to the second to

eliminate the constraint γ 6= γ̃. For the diagonal contribution we get three terms, depending on
how many orbitals are involved in the density-density operators

TrNH
2
diag = (56)

=

(
K−2

N−2

)∑
α<β

H2
(αβ)(βα)+

(
K−3

N−3

)∑
α<β;,α̃<β̃

|{α,β}∩{α̃,β̃}|=1

H(αβ)(βα)H(α̃β̃)(β̃α̃)+

(
K−4

N−4

)∑
α<β;,α̃<β̃

|{α,β}∩{α̃,β̃}|=0

H(αβ)(βα)H(α̃β̃)(β̃α̃)

=

(
K−4

N−2

)
TrH2

diag+

(
K−4

N−3

)(
2
∑
α<β

H2
(αβ)(βα)+

∑
α<β;,α̃<β̃

|{α,β}∩{α̃,β̃}|=1

H(αβ)(βα)H(α̃β̃)(β̃α̃)

)
+

(
K−4

N−4

)(
TrHdiag

)2

where the first and second term were split as above. Writing the middle terms as unsorted sums
over orbitals and combining them with the corresponding single-excitation term, we get

TrN H
2 =

(
K−4

N−2

)
TrH2 +

(
K−4

N−3

)
TrH2

1 +

(
K−4

N−4

)(
TrH

)2
, (57)

This expression holds for a general two-body operator [13]. For the electron-electron interac-
tion Hee it simplifies further, since there are no single excitations (they would change the Lz
eigenvalue), so that we obtain for the N -dependence of the splitting

varl(N) :=
〈E2〉 − 〈E〉2

N(N−1)(4l+2−N)(4l+1−N)
(58)

varp(N) =
9

20
F2

2 (59)

vard(N) =
5·13

2

(
F2

9

)2

+
5

8

(
F2

9
− 5F4

)2

(60)

varf (N) = 3·5·7
(
F2

2

11·13
+

5F4
2

22·13
+
(
7F6

)2)
+

5

2

(
11
F2

13
+ 9

F4

13
− 7F6

)2

. (61)
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3 Spin-orbit coupling

We started our discussion with the non-relativistic N -electron Hamiltonian (1). It only operates
on the electron coordinates. In the non-relativistic theory, spin is added to the wave function in
an ad-hoc way. An electron spin is, in fact, required by relativity, and has, through the Pauli
principle, a major effect on the “non-relativistic” electronic structure. Relativistic corrections
to the Hamiltonian, on the other hand, tend to be quite weak, as they scale with powers of the
inverse speed of light, 1/c ≈ 1/137 in atomic units. The most prominent relativistic effect
splitting the levels in an open shell is the coupling of the orbital- with its spin-moment, the
spin-orbit coupling

HSO =
∑
i

ξ(ri) ~Li · ~Si with ξ(r) =
1

2c2 r

dVMF (r)

dr
. (62)

It is a one-body interaction, that is easily diagonalized by a Clebsch-Gordan transformation
from our spin-orbitals ϕn,l,m,σ to orbitals of given total angular momentum ~Ji = ~Li+~Si, giving
two sets of orbitals with total angular momentum quantum numbers j=l±1/2 and µ=− j. . . j:

j†
n,l±1

2
,µ; l;

1
2

:=

√
l∓µ+1

2

2l+1
c†
n,l,µ+

1
2
,↓
±

√
l±µ+1

2

2l+1
c†
l,µ−1

2
,↑
. (63)

In this basis we can easily calculate the variance of the spin-orbit-split spectrum:

varSO
l (N)

N((4l+2)−N)
=

l(l+1)

4(4l+1)

∫ ∞
0

dr |un,l(r)|2 ξ(r). (64)

The variance does, however, not show a simple quadratic dependence on N since, unlike the
Slater integrals, the spin-orbit matrix elements increase strongly within a period. In fact, as-
suming a hydrogen-like system, they scale, for given quantum numbers n and l, as Z4.
For light atoms the splitting is much smaller than the multiplet splitting, so that it can be treated
by perturbation theory, splitting the multiplet terms 2S+1L into multiplet levels 2S+1LJ charac-
terized by their total angular momentum J . By the third of Hund’s rules, the lowest level is the
one with J = |L−S|when the shell is less than half-filled, while it has J = L+S forN > 2l+1

(HSO changes sign under the electron-hole transformation (14)). This two-step perturbation ap-
proach is called LS or Russell-Saunders coupling. The opposite approach, called jj coupling,
of first doing perturbation theory inHSO and then inHee is only of theoretical interest, since the
spin-orbit coupling only becomes dominant for atoms that are so heavy that they are unstable.
Still, as HSO does not commute with ~L and ~S individually, it couples different multiplet terms.
For heavy atoms, where the spin-orbit splitting can become appreciable compared to the multi-
plet splitting, we have to treat Hee and HSO on the same footing, i.e., to diagonalize their sum
on the states of an open shell. This approach is called intermediate coupling. Since the Hamil-
tonian in intermediate coupling has a significantly lower symmetry, the levels can no longer be
(almost) uniquely characterized by angular momentum quantum numbers, so that the approach
is more numerical in nature. Nevertheless, often the Russell-Saunders levels can give a good
indication of the character of the intermediate-coupling levels.
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4 Conclusions

We have seen that the description of even a single atom or ion poses a complex many-body
problem. Atoms are round [14], so the algebra of angular momenta is key to understanding
the structure of their electronic states: Arguments based on angular momenta together with
the Pauli exclusion principle allowed Friedrich Hund to formulate rules for the ground-state
multiplets even before the Schrödinger equation was known.
Starting from the N -electron Schrödinger equation, we saw that switching from a wave func-
tion picture to the representation of many-body states in second quantization provided a crucial
simplification by allowing us to represent only physical states and observables, making the
construction of the multiplet states of the electron-electron interaction a problem of simple op-
erator algebra. Writing the two-body interaction not as a tensor but as a matrix in 2-electron
space makes it easy to perform basis transformations, define basis independent quantities like
Uavg and Javg from its trace, and even calculate the moments of the N -electron Hamiltonian en-
tirely in terms of a small 2-body matrix. Finally we saw how simple it is in second quantization
to relate states with the same number of electrons and holes.
A relativistic effect modifying the multiplet terms originates from the coupling of the orbital
momentum with the electron spin. It is a single-body effect that is usually weak, so that it
can be well described in degenerate perturbation theory on the multiplet terms. This is the
LS- or Russell-Saunders coupling. The opposite procedure of first diagonalizing the spin-orbit
Hamiltonian and then introducing the electron-electron repulsion on the degenerate spin-orbit
terms, called jj coupling, is only of theoretical interest. For heavy atoms the spin-orbit splitting
can, however, become large enough that HSO has to be treated on the same footing as Hee ,
which is the intermediate coupling scheme.
A systematic study of the interaction parameters including practical parametrizations can be
found in [13]. Of particular practical relevance is the analysis of the relative importance of the
electron-electron interaction versus the spin-orbit coupling across the periodic table, based on
the ratio of the variance of the splitting induced by the respective interaction.
Our main interest in atoms is, of course, as the building block of matter. It is quite remarkable
that a large part of their electronic structure survives in the solid, where atomic levels broaden
into bands so that an understanding of the constituent atoms allows us to gain deep insights into
the electronic structure of the resulting material [14].
Putting an atom in a crystal environment, of course does change its level structure. Particularly
interesting is the effect of the potential created by the neighboring ions, which lifts the degener-
acy of the levels in an atomic shell already on the single-electron level. Filling those crystal-field
levels, following the Aufbauprinzip, results in low-spin states, competing with Hund’s first rule,
which favors high spin. A nice discussion of this can be found in [3].
To try out the methods explained in this chapter, you may perform practical calculations at

https://www.cond-mat.de/sims/multiplet/

https://www.cond-mat.de/sims/multiplet/
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A Atomic units

Practical electronic structure calculations are usually done in atomic units, a.u. for short. While
the idea behind the atomic units is remarkably simple, in practice there is often some confusion
when trying to convert to SI units. We therefore give a brief explanation.

The motivation for introducing atomic units is to simplify the equations. For example, in SI
units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (65)

When we implement such an equation in a computer program, we need to enter the numerical
values of all the fundamental constants. We can avoid this by inventing a system of units
in which the numerical values of the electron mass me, the elementary charge e, the Planck-
constant ~, and the dielectric constant 4πε0 are all equal to one. In these units the above equation
can be programmed as

H = −1

2
∇2 − 1

r
. (66)

This immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete the set of
basis units we still need the atomic unit of length, which we call a0, and of time, t0. To find the
values of a0 and t0 we write ~ and 4πε0 (using simple dimensional analysis) in atomic units:
~ = 1mea

2
0/t0 and 4πε0 = 1 t20e

2/(mea
3
0). Solving this system of equations, we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)

2~3/mee
4 ≈ 2.4189 · 10−17 s

1 a.u. charge = e = ≈ 1.6022 · 10−19 C

The atomic unit of length, a0, is the Bohr radius. As the dimension of energy is mass times
length squared divided by time squared, its atomic unit ismea

2
0/t

2
0 = mee

4/(4πε0)
2~2. Because

of its importance the atomic unit of energy has a name, the Hartree. One Hartree is minus twice
the ground-state energy of the hydrogen atom, about 27.211 eV.

It would be tempting to try to set the numerical value of all fundamental constants to unity.
But this must obviously fail, as the system of equations to solve becomes overdetermined when
we try to prescribe the numerical values of constants that are not linearly independent in the
space of basis units. Thus, we cannot, e.g., choose also the speed of light to have value one, as
would be practical for relativistic calculations. Instead, in atomic units it is given by c t0/a0 =

4πε0~c/e2 = 1/α, where α is the fine structure constant. Thus c = α−1 a.u. ≈ 137 a.u.
The Bohr magneton is µB = 1/2 a.u. The Boltzmann constant kB, on the other hand, is
independent of the previous constants. Setting its value to one fixes the unit of temperature to
1 a.u. temperature = mee

4/(4πε0)
2~2kB = Ha/kB ≈ 3.158 · 105 K.
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B Second quantization

The formalism of second quantization for electrons is the generalization of the Dirac formalism
of single-electron quantum mechanics to many-electron system. The key idea is to eliminate
the coordinates of the wave function and absorb them in the representation of the operators
instead. Wave functions are then written in terms of Dirac states using the Dirac delta function:
ϕn(x) = 〈x|n〉. In second quantization, field operators Ψ̂(x) take the role of 〈x|, so that ϕn(x) =

〈0|Ψ̂(x) c†n|0〉, where the orbital is represented by

c†n :=

∫
dxϕn(x) Ψ̂ †(x) , (67)

|0〉 is the zero-electron (vacuum) state defined by

Ψ̂(x)|0〉 = 0 and 〈0|0〉 = 1 , (68)

and the field operators are defined to fulfill the anticommutation relations
(
{a, b} := ab+ ba

)
{
Ψ̂(x), Ψ̂(x′)

}
= 0 and

{
Ψ̂(x), Ψ̂ †(x′)

}
= δ(x−x′) . (69)

From the adjoint of the first anticommutator follows, in particular, that
(
Ψ̂(x)†

)2
= 0, which

is the Pauli exclusion principle in second quantization. These relations define the formalism
completely.
The representation of single-electron functions generalizes to N -electron Slater determinants

Φα1...αN (x1 . . . xN) =
1√
N !

∣∣∣∣∣∣∣
ϕα1(x1) · · · ϕαN (x1)

...
...

ϕα1(xN)· · ·ϕαN (xN)

∣∣∣∣∣∣∣ =
1√
N !

〈
0
∣∣Ψ̂(x1) · · · Ψ̂(xN) c†αN · · · c

†
α1

∣∣0〉.
(70)

Their overlap is∫
dx1 · · · dxN Φα1...αN (x1 . . . xN)Φβ1...βN (x1 . . . xN)

= 〈0|cα1 · · · cαN c
†
βN
· · · c†β1|0〉 =

∣∣∣∣∣∣∣
〈α1|β1〉 · · · 〈α1|βN〉

...
...

〈αN |β1〉· · · 〈αN |βN〉

∣∣∣∣∣∣∣
(71)

so that N -electron Slater determinants constructed from a complete orthonormal set of single-
electron orbitals form an orthonormal basis of the N -electron Hilbert space, when only Slater
determinants with some given ordering of the orbitals, e.g., α1 < α2 < . . . < αN , are chosen.
The key point of (70) is that the second quantized form allows us to split the coordinates form the
orbital content. The latter is the generalization of the Dirac state. Introducing the occupation
number representation with ni ∈ {0, 1} to make the chosen sorting of the orbitals and the
corresponding operators manifest, a Slater state is written as

|n1, n2, . . .〉 :=
∏
i

(
c†ni
)ni |0〉. (72)
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The coordinates are then included in with the operators, giving the operators in second quanti-
zation. For a one-electron observable

∑N
i=1M1(xi) we find (see [4] for the derivations)

M̂1 =

∫
dx Ψ̂ †(x)M(x) Ψ̂(x) , (73)

for a two-electron operator
∑

i<jM2(xi, xj) we get

M̂2 =
1

2

∫
dx

∫
dx′ Ψ̂ †(x)Ψ̂ †(x′)M(x, x′) Ψ̂(x′)Ψ̂(x) . (74)

Quite remarkably, while the operators in first quantization contain an explicit N -dependence,
the form of the same operator in second quantization is independent of the particle number.
This makes second quantization so suitable for working in Fock space, as, e.g., in BCS theory.
Another crucial advantage of working in the second-quantization formalism is that it only allows
us to express physical, i.e., antisymmetric, wave functions and physical operators, i.e., those
that act on all electrons in the same way (e.g., total angular momenta, but not angular momenta
acting on an individual electron, which would violate the indistinguishability of electrons [4]).
Given a complete orthonormal orbital basis {ϕn}, we can invert (67) to write the field-operators
Ψ̂ † as a linear combination of the orbital operators c†n. Inserting this into (73), we get

M̂1 =
∑
αβ

〈α|M1|β〉 c†αcβ (75)

where the 〈α|M |β〉 are the matrix elements of the one-body operator in the orbital basis. Simi-
larly, we obtain

M̂2 =
1

2

∑
αβγδ

〈αβ|M2|γδ〉 c†αc
†
βcγcδ (76)

with the four-index tensor

〈αβ|M2|γδ〉 :=

∫
dx

∫
dx′ ϕα(x)ϕβ(x′)M(x, x′)ϕγ(x

′)ϕδ(x). (77)

Realizing that exchanging the two creation or annihilation operators in (76) connects the same
many-body states, we can collect all four such terms by imposing an ordering on the operators:

M̂2 =
∑

α<β;γ>δ

(
〈αβ|M2|γδ〉 − 〈αβ|M2|δγ〉︸ ︷︷ ︸

=:M(αβ)(γδ)

)
c†αc
†
βcγcδ . (78)

Instead of a tensor, the M(αβ)(γδ) form a matrix in the two-electron-like space spanned by sorted
pairs of operators. This makes them quite convenient to handle. Changes in the orbital basis
like c†α =

∑
n c
†
nUn,α described by a unitary single-electron matrix U are then easily written as

unitary transformation in two-electron space

c†αc
†
β =

∑
n,m

c†nc
†
mUn,αUm,β =

∑
n<m

c†nc
†
m

(
Un,αUm,β − Um,αUn,β

)
(79)

which effects the basis change in the two-electron matrix M(αβ)(γδ).
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C Addition theorem for spherical harmonics

Using the completeness of the spherical harmonics, we can expand any function of a single co-
ordinate f(~r )=

∑
m,l al,m(r)Yl,m(ϑ, ϕ). Similarly, we can expand functions of two coordinates

f(~r, ~r ′) =
∑
l,m

al,m(r, r′, ϑ′, ϕ′)Yl,m(ϑ, ϕ) =
∑
l,m

(∑
l′,m′

a l,m,
l′,m′

(r, r′)Yl′,m′(ϑ
′, ϕ′)

)
Yl,m(ϑ, ϕ).

The expansion simplifies considerably when the function is invariant under simultaneous rota-
tions of ~r and ~r ′, i.e., when

(
~L + ~L′

)
s(~r, ~r ′) = 0. This is, e.g., the case for any function that

depends only on the scalar products of ~r and ~r ′, e.g.,

iLx s(~r·~r ′) =

(
ry

∂

∂rz
−rz

∂

∂ry

)
s(rxrx′+ryry′+rzrz′) = s′(~r·~r ′)

(
ryrz′−rzry′

)
= −iL′xs(~r·~r ′).

Then s(~r, ~r ′) must be an eigenfunction of
(
~L+~L′

)2 with eigenvalue 0. From adding angular
momenta we know that the products may only contain an ltot = 0 contribution when l = l′. In
addition,

(
Lz+L

′
z

)
s(~r, ~r ′) = 0, i.e., m′=−m, so that

s(~r, ~r ′) =
∑
l,m

al,m(r, r′)Yl,−m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) .

Using
(
~L+~L′

)2
= ~L2+ ~L′

2
+2LzL

′
z+L+L

′
−+L−L

′
+ with L±Yl,m =

√
(l±m+1)(l∓m)Yl,m±1

we obtain a homogeneous linear system of equations

0 =
(
~L+ ~L′

)2
s(~r, ~r ′)

=
∑
l,m

(
al,m

(
2l(l+1)−2m2

)
+ al,m−1(l+m)(l−m+ 1) + al,m+1(l−m)(l+m+1)

)
Y ′l,−mYl,m

with the non-trivial solution al,m(r, r′) = (−1)mal(r, r
′). Hence

s(~r, ~r ′) =
∞∑
l=0

al(r, r
′)

l∑
m=−l

(−1)mYl,−m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) (80)

=
∞∑
l=0

al(r, r
′)

l∑
m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) (81)

where (80) is reminiscent of a Kramers pair singlet (6). The expansion coefficients are easily
calculated when choosing coordinates such that ~r ′ = r′ẑ, i.e., ϑ′ = 0

al(r, r
′) =

∫ 2π

0

dϕ

∫ 1

−1
d cosϑYl,0(ϑ, ϕ)

√
4π

2l+1
s(~r, r′ẑ) (82)

For s(~r, ~r ′) = Pl(r̂ · r̂′) we find the addition theorem for spherical harmonics

Pl(r̂·r̂′) =

√
4π

2l+1
Yl,0(arccos(r̂·r̂′), 0) =

4π

2l+1

l∑
m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) . (83)
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Setting r̂′ = r̂, it follows as a corollary that the charge density of closed shells is spherical

l∑
m=−l

∣∣Yl,m(ϑ, ϕ)
∣∣2 =

2l+1

4π
. (84)

For the electron-electron repulsion we obtain the multipole expansion

1

|~r−~r ′|
=

1√
r2−2~r·~r ′+r′2

=
∞∑
l=0

rl<
rl+1
>

Pl(r̂·r̂′) =
∞∑
l=0

rl<
rl+1
>

4π

2l+1

l∑
m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ),

(85)
where the choice r< := min(r, r′) and r> := max(r, r′) makes the power series converge. The
series is obtained from the generating function of the Legendre polynomials

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x) tn . (86)

To convince ourselves that the Pn(x) are indeed the Legendre polynomials, we expand the left-
hand side in powers of t and find P0(x) = 1 and P1(x) = x. Taking the derivative of (86) with
respect to t gives

x− t(
1− 2xt+ t2

)3/2 =
∞∑
n=1

nPn(x) tn−1.

multiplying by 1− 2xt+ t2, inserting (86) on the left-hand side, and comparing coefficients for
n>0, gives the recursion relation for the Legendre polynomials

(n+1)Pn+1(x) = (2n+1)xPn(x)− nPn−1(x) . (87)

Likewise, a plane wave can be expanded into spherical plane waves

ei
~k·~r = 4π

∞∑
l=0

il jl(kr)
l∑

m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ), (88)

using the integral representation of the spherical Bessel functions

al(r, k) = 2π

∫ 1

−1
dxPl(x) eikr x = 4π il jl(kr). (89)
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D Gaunt coefficients

Gaunt coefficients appear when expanding products of spherical harmonics

Yl,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) =
∞∑
k=0

k∑
µ=−k

〈
Yk,µ

∣∣Yl,mYl′,m′〉Yk,µ(ϑ, ϕ) . (90)

Because of the product rule, the angular momentum operators act on the product of the spherical
harmonics the same way as they act on independent angular momenta, e.g.,

L+ Yl,m Yl′,m′ =
(
L+ Yl,m

)
Yl′,m′ + Yl,m

(
L+ Yl′,m′

)
. (91)

Thus, for fixed l, l′, and k, the integrals of three spherical harmonics
〈
Yk,µ

∣∣Yl,mYl′,m′〉 fulfill
the same recursion relation as the Clebsch-Gordan coefficients 〈k, µ; l; l′|l,m; l′,m′〉 (Wigner-
Eckart theorem). In particular, evaluating

〈
Yk,µ

∣∣Lz|Yl,mYl′,m′〉 shows that the integrals vanish
for µ 6= m+m′ and consequently are real. More generally, the products Yl,m Yl′,m′ behaves as
if we were adding two angular momenta l and l′, so that the

〈
Yk,m+m′

∣∣Yl,mYl′,m′〉 vanish for
k < |l−l′| and k > l+l′. The difference to adding angular momenta is that the products of
spherical harmonics are not orthonormal (e.g., 〈Y0,0Y0,0|Yl,mYl,−m〉 = (−1)m/4π), so that the
space spanned by the Yl,mYl′,m′ for fixed l and l′ may be smaller than (2l+1)×(2l′+1). In fact,
from the inversion symmetry Yl,m(π−ϑ, ϕ+π) = (−1)l Yl,m(ϑ, ϕ) of the spherical harmonics
we see by changing the variables of integration that〈

Yk,µ
∣∣Yl,mYl′,m′〉 = (−1)k+l+l

′〈
Yk,µ

∣∣Yl,mYl′,m′〉 (92)

so that the coefficients also vanish when k+l+l′ is odd, and (90) consequently simplifies to

Yl,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) =
∑

k=|l−l′|, |l−l′|+2,..., l+l′

〈
Yk,m+m′

∣∣Yl,mYl′,m′〉Yk,m+m′(ϑ, ϕ) . (93)

Using Yl,m = (−1)m Yl,−m we can write the Gaunt coefficients in a form more convenient for
the use in the electron-electron repulsion part of the Hamiltonian

c
(k,l,l′)
m,m′ :=

√
4π

2k+1

〈
Yl,m

∣∣Yk,m−m′Yl′,m′〉 = (−1)m
′

√
4π

2k+1

〈
Yk,m′−m

∣∣Yl,−mYl′,m′〉 . (94)

They can be readily written as matrices c(k,l,l′) with indices m and m′, where matrix elements
with |m−m′| = |µ| > k (on the µth side-diagonal) vanish so that c(k,l,l′) is a 2k+1-diagonal
(2l+1)× (2l′+1) matrix, in particular c(k=0,l,l′)

m,m′ = δl,l′ δm,m′ . Matrices with exchanged l↔l′ are
related by

c
(k,l,l′)
m,m′ = (−1)m+m′ c

(k,l′,l)
−m′,−m and c

(k,l,l′)
m,m′ = (−1)m−m

′
c
(k,l′,l)
m′,m (95)

where in the last relation we used that the Gaunt coefficients are real. Combining the two
transformations gives the inversion symmetry of each ck,l,l

′ matrix

c
(k,l,l′)
m,m′ = c

(k,l,l′)
−m,−m′ . (96)
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For the special case l′=l eq. (95) give the symmetries of c(k,l,l) under reflection along the anti-
diagonal and the diagonal, respectively.

Using

L±Yl,m =
√

(l±m+1)(l∓m)Yl,m±1 ,

the elements of the matrix c(k,l,l
′) are related via

〈
Yl,m|L± Yk,m−m′∓1Yl′,m′

〉
by√

(l∓m+1)(l±m)c
(k,l,l′)
m∓1,m′=

√
(k±(m−m′)(k∓(m−m′)+1)c

(k,l,l′)
m,m′ +

√
(l′±m′+1)(l′∓m′)c(k,l,l

′)
m,m′±1

(97)
which relates matrix elements according to the patterns for L+ and for L−. With one of
the prefactors vanishing, these relations become simple two-point recursions along the border of
the matrix (m′ = ±l′ for the L+ or m = ±l for the L− formula), as well as along the outermost
side-diagonals (m−m′ = k+1 for L+ or m−m′ = −k−1 for L−).

Filling the matrix c(k,l,l
′) according to (97) starting, e.g., from c

(k,l,l′)
−l,−l′ = 1, using theL+ recursion

to fill the top row and then the L− recursion to fill the subsequent rows from right to left, we get
the matrix of Clebsch-Gordan coefficients

〈k,m+m′; l; l′|l,m; l′,m′〉 = (−1)m
′
c̄
(k,l,l′)
−m,m′

by normalizing any of the (side)diagonals of c to get c̄ (since the µ-th side diagonal holds the
expansion coefficients of |k, µ; l; l′〉).
To obtain the Gaunt matrices, we still need the reduced matrix element. A simple approach for
small values of l and l′ is to use

Yl,0(ϑ, ϕ) =

√
2l+1

4π
Pl(cosϑ)

and calculate c(k,l,l
′)

0,0 by explicit integration over the corresponding Legendre polynomials, e.g.,

c
(k,l,l)
0,0 =

√
4π

2k+1

〈
Yl,0
∣∣Yk,0 Yl,0〉 =

2l+1

2

∫ 1

−1
dxPl(x)2 Pk(x) (98)

Using the recursion relation for the Legendre polynomials (87) with starting points P0(x) = 1

and P1(x) = x, we get by explicit integration over the product of polynomials

l 1 2 3

k 2 2 4 2 4 6

c
(k,l,l)
0,0

2

5

2

7

2

7

22

3 · 5
2

11

22 · 52

3 · 11 · 13

(99)

from which we obtain the Gaunt matrices for p-, d-, and f -shells listed below. There are, of
course, more refined methods that remain fast and accurate also for large angular momenta [13].
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p-shell:

c
(2,1,1)
m,m′ =

1

5

 −1
√

3 −
√

6

−
√

3 2 −
√

3

−
√

6
√

3 −1


d-shell:

c
(2,2,2)
m,m′ =

1

7


−2

√
6 −2 0 0

−
√

6 1 1 −
√

6 0

−2 −1 2 −1 −2

0 −
√

6 1 1 −
√

6

0 0 −2
√

6 −2



c
(4,2,2)
m,m′ =

1

3·7


1 −

√
5

√
15 −

√
35

√
70√

5 −4
√

30 −
√

40
√

35√
15 −

√
30 6 −

√
30

√
15√

35 −
√

40
√

30 −4
√

5√
70 −

√
35

√
15 −

√
5 1


f -shell:

c
(2,3,3)
m,m′ =

1

3·5



−5 5 −
√

10 0 0 0 0

−5 0
√

15 −
√

20 0 0 0

−
√

10 −
√

15 3
√

2 −
√

24 0 0

0 −
√

20 −
√

2 4 −
√

2 −
√

20 0

0 0 −
√

24
√

2 3 −
√

15 −
√

10

0 0 0 −
√

20
√

15 0 −5

0 0 0 0 −
√

10 5 −5



c
(4,3,3)
m,m′ =

1

3·11



3 −
√

30
√

54 −
√

63
√

42 0 0√
30 −7

√
32 −

√
3 −

√
14

√
70 0√

54 −
√

32 1
√

15 −
√

40
√

14
√

42√
63 −

√
3 −

√
15 6 −

√
15 −

√
3

√
63√

42
√

14 −
√

40
√

15 1 −
√

32
√

54

0
√

70 −
√

14 −
√

3
√

32 −7
√

30

0 0
√

42 −
√

63
√

54 −
√

30 3



c
(6,3,3)
m,m′ =

5

3·11·13



−1
√

7 −
√

28
√

84 −
√

210
√

462 −
√

924

−
√

7 6 −
√

105
√

224 −
√

378
√

504 −
√

462

−
√

28
√

105 −15
√

350 −
√

420
√

378 −
√

210

−
√

84
√

224 −
√

350 20 −
√

350
√

224 −
√

84

−
√

210
√

378 −
√

420
√

350 −15
√

105 −
√

28

−
√

462
√

504 −
√

378
√

224 −
√

105 6 −
√

7

−
√

924
√

462 −
√

210
√

84 −
√

28
√

7 −1


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