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9.2 Alexander Lichtenstein

1 Introduction: Reference systems

In this lecture we give an introduction to the theoretical description of strongly correlated mate-
rials based on non-local extensions of the dynamical mean-field theory (DMFT). This scheme
combines the numerically exact DMFT solution of the effective impurity problem with an an-
alytical non-local perturbation scheme. The frequency dependent effective impurity DMFT
problem nowadays can be efficiently solved within the continuous time quantum Monte Carlo
(CT-QMC) scheme [1]. Therefore the perturbation theory needs to be formulated in the ac-
tion path-integral formalism. We give a brief introduction to the path integral over fermionic
Grassmann fields and formulate a general scheme for the expansion around the DMFT solution
using a special dual-space transformation. We discuss here a general way to include nonlocal
correlations beyond the DMFT, based on the generalized Hubbard model [2] and describe the
dual-fermion formalism [3].

Consider the noninteracting, “kinetic” part Ht of the Hubbard model first [4]. This is fixed
by specifying the hopping-matrix elements tij between sites i and j. In the absence of the
local Hubbard-interaction term, Ht is easily diagonalized. For a Hubbard model on a lattice,
diagonalization is achieved by Fourier transformation of the hopping parameters to k-space, and
one has the normal “band structure” for a single-orbital model, particularly the simple εk = tk
with band-width W. If, on the other hand, only the local part of the Hamiltonian is kept, i.e.,
the Hubbard interaction HU with interaction strength U and the local term of Ht is fixed by
the on-site energy ε0, the diagonalization of the Hamiltonian is again trivial and reduces to the
diagonalization of a single “Hubbard atom”.

The great success of the DMFT approach is related to it numerically interpolating between these
two limits [5]. For the Hubbard model on an infinite-dimensional Bethe lattice at half-filling
the DMFT gives the exact description of the Mott-transition [6] between the weak-coupling
(U/W�1) metallic state and the strong-coupling (U/W�1) insulating paramagnetic state [7].
In a nutshell, DMFT maps the correlated Hubbard lattice problem onto the self-consistent solu-
tion of an effective Anderson impurity problem with a single interacting Hubbard atom (inter-
action strength U ) in a non-interacting fermionic bath (which mimics the rest of the crystal).

Now we can think of how to incorporate nonlocal correlations beyond the DMFT: since the
Hubbard and the Anderson-impurity model share the same interaction part, one can think of the
Hubbard model as the impurity model plus a residual term ∝ (tk−∆ν) and treat this perturba-
tively. Since this term is frequency dependent, we need a novel perturbation theory based on the
action formalism. One may view this idea as a generalization of the Kohn-Sham idea in density
functional theory (DFT) [8] of an optimal reference system, but with a crucial difference. Here,
not an interacting homogeneous electron gas, but an effective impurity model, tailored to the
problem of strong correlations, serves as the reference system, see Fig. 1. Since in zeroth or-
der of this perturbative expansion, i.e., on the level of the DMFT problem, we already have an
interacting problem and since the perturbation is momentum and frequency dependent, one is
forced to replace the Hamiltonians by actions within the path-integral formalism. Note that the
fermion path-integral can also be used to formulate the DMFT itself [5,9]. Now, the separation
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Fig. 1: Schematic representation of the reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by fermionic
bath, specified by the hybridization function ∆. (iii) GW+DMFT with a correlated atom in a
fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening of
long-range Coulomb (V ) interactions.

of the local and nonlocal terms is achieved by a Hubbard-Stratonovich transformation applied
to the single-particle (tk−∆ν)-term [3]. This provides us with a new action. Moreover, it is
formally possible to integrate-out the original local degrees of freedom and in this way gener-
ated an effective action in the transformed, so-called dual-fermion representation [3]. Note that
integrating out the local degrees of freedom is not only a formal step but can be achieved in
practice, by solving the impurity problem within the numerically exact CT-QMC method.

The dual action consists of a bare dual propagator (non-local part of the DMFT Green function)
G̃0

k,ν and a local but frequency-dependent effective potential related to scattering processes of
two, three, and more dual particles on the impurity site. The simplest two-particle dual potential
coincides with the fully connected part of the screened impurity interaction vertex γωνν′ , which
can be calculated with the impurity CT-QMC solver as a function of bosonic (ω) and fermionic
(ν, ν ′) Matsubara frequencies. Normally, correlations between three particles on the DMFT
impurity site are much weaker than two-particle correlations and can be ignored. The same ap-
plies to higher-order terms. One can think of the dual-fermion formalism as an expansion in the
order of local multi-particle correlation functions. This means that “bare” interactions between
dual fermions are related with the connected part of the screened impurity vertex. Standard di-
agrammatic techniques can be applied for calculations of the bold dual propagator G̃k,ν , which
allows to obtain the nonlocal self-energy for the original fermions [3] and to describe nonlocal
correlations beyond the DMFT.

The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation. In the dual space, this simply reduces to

∑
k G̃

0
k,ν = 0 and means that, on average
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over the whole Brillouin zone, ∆ν optimally approximates the electron spectrum εk, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by perturbative summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Functional approach

We introduce a general functional approach which will cover the density functional (DFT),
dynamical mean-field, (DMFT) and Baym-Kadanoff (BK) theories [9]. Let us start from the
full many-body Hamiltonian describing electrons moving in the periodic external potential of
ions V (r) with chemical potential µ and interacting via Coulomb law: U(r− r′) = 1/|r− r′|.
We use the atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian
has the form

H=
∑
σ

∫
dr ψ̂†σ(r)

(
−∇

2

2
+V (r)−µ

)
ψ̂σ(r)+

1

2

∑
σσ′

∫
dr

∫
dr′ψ̂†σ(r)ψ̂

†
σ′(r

′)U(r−r′) ψ̂σ′(r′)ψ̂σ(r)

(1)
We can always use a single-particle orthonormal basis set in solids ϕn(r), for example Wannier
orbitals with full set of quantum numbers, e.g., site, orbital and spin index: n = (i,m, σ) and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

ϕn(r) ĉn ψ̂†(r) =
∑
n

ϕ∗n(r) ĉ
†
n. (2)

Going from fermionic operators to the Grassmann variables {c∗n, cn}we can write the functional
integral representation for partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D[c∗, c] e−S , S =

∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2 U1234 c4c3, (3)

where the one- and two-electron matrix elements are defined as

t12 =

∫
drϕ∗1(r)

(
−1

2
∇2 + V (r)− µ

)
ϕ2(r) (4)

U1234 =

∫
dr

∫
dr′ ϕ∗1(r)ϕ

∗
2(r
′)U(r−r′)ϕ3(r)ϕ4(r

′).

and we use the following short definition of the sum∑
1

· · · ≡
∑
im

∫
dτ · · · (5)

The one-electron Green function is defined via a simple non-zero correlation function for fermions

G12 = −
〈
c1c
∗
2

〉
S
= − 1

Z

∫
D[c∗, c] c1c∗2 exp(−S). (6)
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Fig. 2: Representation of the full two-particle Green function in terms of trivial products of
single-particle Green function and the full vertex function Γ.

The main problem of strongly interacting electronic systems are related to the fact that the
higher-order correlation functions do not separate into products of lower order correlation func-
tion. For example the two-particle Green function or generalized susceptibility (X) is defined
in the following form [10]

X1234 =
〈
c1c2c

∗
3c
∗
4

〉
S
=

1

Z

∫
D[c∗, c] c1c2c∗3c∗4 exp(−S), (7)

and can be expressed graphically through the Green functions and the full vertex function Γ1234

[10, 11] (see Fig. 2)

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (8)

In the case of non-interacting electron systems, the high-order correlations X are reduced to
the antisymmetrized product of lower-order correlations G, which correspond to the first two
terms (Hartree- and Fock-like) with the vertex function Γ in Eq. (8) equal to zero. In strongly
correlated electron systems the last part with the vertex is dominant and even diverges close to
the electronic phase transitions.
The Baym-Kadanoff functional [12] gives the one-particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym-Kadanoff) we modify the action by introducing the source term J

S[J ] = S +
∑
12

c∗1J12c2. (9)

The partition function Z, or equivalently the free energy of the system, F, becomes a functional
of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D[c∗, c] e−S′[J ]. (10)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
δF [J ]

δJ21

∣∣∣∣
J=0

. (11)

If we use the definition of the generalized susceptibility as a second variation of the F [J ] func-
tional instead of Z[J ] we will get only the connected part of the X-function, which is repre-
sented by the last term in Eq. (8).
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The Baym-Kadanoff functional can be obtained by the Legendre transform from variable J toG

F [G] = F [J ]− Tr(JG), (12)

We can use the standard decomposition of the free energy F into the single-particle part and the
correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (13)

were Σ12 is the single particle self-energy and Φ[G] is the correlated part of the Baym-Kadanoff
functional and is equal to the sum of all two-particle irreducible diagrams. At the station-
ary point this functional gives the free energy of the system. In practice, Φ[G] is not known
for interacting electron systems, which is similar to the problem in density functional theory.
Moreover, this general functional approach reduces to DFT, if one uses only the diagonal part
in space-time of the Green function, which corresponds to the one-electron density

n1 = G12 δ12 = 〈c∗1c1〉S, (14)

with the Kohn-Sham potential VKS = Vext+VH+Vxc playing the role of the “constrained field”.
Here Vext is the external potential and VH the Hartree potential. In principle the exchange-
correlation potential Vxc is known only for the homogeneous electron gas, therefore in all prac-
tical applications one uses a so-called local density approximation to DFT. In this case the DFT
functional defined as

FDFT [n] = T0[n] + Vext[n] + VH [n] + Vxc[n] (15)

where T0 is kinetic energy of non-interacting systems. Finally, if we define the total electron
density as

n(r) =
∑
i

ϕ∗i (r)ϕi(r)

the local density approximation to the DFT reads

T0[n] + Vext[n] =
∑
i

∫
drϕ∗i (r)

(
−1

2
∇2 + Vext(r)− µ

)
ϕi(r) (16)

VH [n] =
1

2

∫
drn(r)U(r−r′)n(r′) (17)

Vxc[n] =

∫
drn(r)ε(n(r)) (18)

where ε(n) is the exchange-correlation density for the homogeneous electron gas, which can be
calculated within a QMC-scheme [13].
In the DFT scheme we lose information about the non-equal time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function,
and restrict ourselves to only the ground state energy of the many-electron system. Moreover,
we also lose also information about all collective excitations in solids, such as plasmons or
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Fig. 3: Generic Hubbard lattice for correlated lattice fermions with the local Coulomb interac-
tion U and hopping parameters t: m can label different orbitals or lattice sites.

magnons, which can be obtained from a generalized susceptibility or from the second variation
of the free-energy.
One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models
using quantum Monte Carlo (QMC). Unfortunately due to the sign problem in lattice simula-
tions this numerically exact solution of the electronic correlations is not feasible. On the other
hand, one can obtain the solution of a local interacting quantum problem in a general fermionic
bath, using the QMC scheme, which has no sign problem if it is diagonal in spin and orbital
space. Therefore, a reasonable approach to strongly correlated systems is to keep only the local
part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one can
obtain numerically the correlated part of the local functional. In this scheme we only use the
local part of many electron vertex and obtain, in a self-consistent way, an effective functional
of the local Green function. In the following section we discuss the general dual fermion (DF)
transformations [3] which help us to separate the local fluctuations in many-body system and
show a perturbative way to go beyond the DMFT approximations.

3 Dual fermion approach with a general reference system

We start with a general lattice fermion model with the local Hubbard-like interaction vertex U.
Generalization to the multi-orbital case is straightforward [14]. All equations will be written
in matrix form, giving an idea of how to rewrite the dual fermion (DF) formula to the multi-
orbital or multi-site case. The general strategy is related with the formally exact separation of
the local and non-local correlation effects. We introduce auxiliary dual fermionic fields which
will couple local correlated impurities or clusters back to the original lattice [3].
Using the path-integral formalism (Appendix A) the partition function of a general fermionic
lattice system (Fig. 3) can be written in following form as a functional integral over Grassmann
variables [c∗, c]

Z =

∫
D[c∗, c] exp

(
−SL[c∗, c]

)
.

The original lattice action of interacting lattice fermions, similar to Eq. (3), can be written in
Matsubara space as a sum of the lattice one-electron contributions with the Fourier transformed
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Fig. 4: Schematic view on the real-space DMFT reference system.

hopping tk (or energy spectrum in the single-orbital case) and the local interaction part U

SL[c
∗, c] = −

∑
kνσ

c∗kνσ
(
iν+µ−tk

)
ckνσ +

∑
i

∫ β

0

dτ U n∗iτ↑niτ↓ . (19)

In the following, ν = (2n+1)π/β, (ω = 2nπ/β), n = 0,±1, . . . are the fermionic (bosonic)
Matsubara frequencies, β is the inverse temperature, τ ∈ [0, β) the imaginary time, and µ the
chemical potential. The index i labels the lattice sites, m refers to different orbitals, σ is the
spin projection and the k-vectors are quasimomenta. In order to keep the notation simple, it is
useful to introduce the combined index |1〉 ≡ |i,m, σ, τ〉 and assume summation over repeated
indices. Translational invariance is assumed for simplicity in the following, although a real
space formulation is straightforward. The local part of the action, SU , may contain any type of
local multi orbital interaction.
In order to formulate an expansion around the best possible reference action, Fig. 4, a quan-
tum impurity (cluster) problem is introduced by a general frequency-dependent hybridization
function ∆ν and the same local interaction

S∆[c
∗
i , ci] = −

∑
ν ,σ

c∗iνσ
(
iν+µ−∆ν

)
ciνσ +

∑
ν

Un∗iν↑niν↓ , (20)

where ∆ν is the effective hybridization matrix describing the coupling of the impurity to an
auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a
quantum impurity model is that such a reference system can be solved numerically exactly
for an arbitrary hybridization function using the CT-QMC methods [1]. Using the locality of
the hybridization function ∆ν , the lattice action Eq. (19) can be rewritten exactly in terms of
individual impurity models and the effective one-electron coupling (∆ν−tk) between different
impurities, Fig. 5,

SL[c
∗, c] =

∑
i

S∆[c
∗
i , ci]−

∑
kνσ

c∗kνσ
(
∆ν−tk

)
ckνσ . (21)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
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Fig. 5: Schematic view on the non-local DF perturbation beyond a DMFT solution.

the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c∗, c) to
weakly correlated “dual” Grassmann fields (d∗, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix ∆̃kν = (∆ν−tk)

ec
∗
1 ∆̃12 c2 = det ∆̃

∫
D [d∗, d] e−d

∗
1∆̃
−1
12 d2−d∗1c1−c∗1d1 . (22)

We can immediately seen that using this HS-transformation we “localize” the [c∗i , cj] fermions:
while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c∗i , ci].
With this reference system the lattice partition function becomes

Z

Zd
=

∫
D[c∗, c, d∗, d] exp

(
− S[c∗, c, d∗, d]

)
(23)

with Zd = det ∆̃. The lattice action transforms to

S[c∗, c, d∗, d] =
∑
i

Si∆ +
∑
k,ν,σ

d∗kνσ
(
∆ν−tk

)−1
dkνσ . (24)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si∆[c
∗
i , ci, d

∗
i , di] = S∆[c

∗
i , ci] +

∑
ν,σ

(
d∗iνσ ciνσ + c∗iνσ diνσ

)
(25)

For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si∆
decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si∆ for each site i separately. This completes the change of variables

1

Z∆

∫
D[c∗, c] exp

(
−Si∆[, c∗i , ci, d∗i di]

)
= exp

(
−
∑
ν σ

d∗iνσ gνdiνσ − Vi[d∗i di]
)
, (26)
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where Z∆ is the partition function of the impurity action Eq. (20) and gν is the exact impurity
Green function

g12 = −〈c1c∗2〉∆ =
1

Z∆

∫
D[c∗, c] c1c∗2 e−S∆[c∗,c]. (27)

The above equation may be viewed as the defining equation for the dual potential V [d∗, d]. The
choice of matrices in Eq. (22) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (26) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [d∗, d] =
1

4

∑
1234

γ1234 d
∗
1d
∗
2d4d3 , (28)

where for the local vertex the combined index 1 ≡ {mνσ} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. γ is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be very useful choice for CT-QMC calculations of local vertex for multi-orbital case. It is given
then by connected part of the local two-particle correlations function

γ1234 = χ1234 − χ0
1234 (29)

with the two-particle Green function of the local impurity (reference system) being defined as

χ1234 = 〈c1c2c∗3c∗4〉∆ =
1

Z∆

∫
D[c∗, c] c1c2c∗3c∗4 e−S∆[c∗,c] . (30)

The disconnected part of a generalized susceptibility reads

χ0
1234 = g14g23 − g13g24 . (31)

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [1]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d∗, d] = −
∑
k νσ

d∗kνσ G̃
−1
0kν dkνσ +

∑
i

Vi[d
∗
i , di] (32)

while the bare dual Green function is has the form

G̃0
kν =

((
tk−∆ν

)−1 − gν)−1. (33)

This formula involves only the local Green function gν of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital CT-QMC
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy Σ̃:
a line represents the non-local G̃43 and a box is the local γ1234.

formalism. Transformation to the original DF-normalization where both dualGd and real Green
function have the same dimension unit reads

Gd = g G̃ g = GDMFT − g GDMFT =
(
gν+∆ν−tk

)−1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

γσσ
′

1234(τ1, τ2, τ3, τ4) = −〈c1σc∗2σc3σ′c∗4σ′〉∆ + gσ12g
σ′

34 − gσ14gσ32δσσ′ .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (ν, ν ′), and one bosonic, (ω), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

γ
d/m
1234(ν, ν

′, ω) = γ↑↑1234(ν, ν
′, ω)± γ↑↓1234(ν, ν ′, ω).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

Σ̃
(1)i
12 (ν) =

∑
ν′,3,4

γd1234(ν, ν
′, 0) G̃ii

43(ν
′) (35)
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Fig. 7: Schematic representation of the DMFT reference system for correlated lattice models.

We now can use the freedom to chose the hybridization function ∆ν in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function γ1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes G̃loc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function ∆ν (Fig. 7)∑

k

(
g−1ν +∆ν − tk

)−1
= gν . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function ∆ν on the fermionic Matsubara frequencies iνn is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function gν is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk−∆ν |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = −1/4 and cm = −3/4)

Σ̃
(2)ij
12 (ν) =

∑
ν′ω

∑
3-8

∑
α=d,m

cαγ
α,i
1345(ν, ν

′, ω) G̃ij
36(ν + ω)G̃ji

74(ν
′ + ω) G̃ij

58(ν
′) γα,j8762(ν

′, ν, ω).

Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution Σ0 (e.g. the
impurity) and corrections Σ ′, which are related with the dual self-energy Σ̃

Σkν = Σ0
ν +Σ ′kν (37)

Σ ′kν = g−1ν −
(
gν + Σ̃kν

)−1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy Σ̃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃−1kν = G̃−10kν − Σ̃kν , and exact the relation of Appendix B, Eq. (55), we can directly
write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gkν =
((
gν + Σ̃kν

)−1 − ∆̃kν

)−1
. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex γ1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples

As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level ε coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, ε0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ε, but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature β=5 and the Padé analytical
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Fig. 9: Schematic representation of dual-fermion superperturbation test for a two-site model.

continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2×2 plaquette as the reference system (Fig. 11). We used the
2×2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4×4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =


ε tK0+ pL−+ tK−0

tK0− ε tK−0 pL−−

pL+− tK+0 ε tK0−

tK+0 pL++ tK0+ ε


where the functions Kmn

k and Lmnk with [m(n)] = −(1), 0,+(1) are defined as

Kmn
k = 1 + ei(mkx+nky)

Lmnk = 1 + ei(mkx+nky) + eimkx + einky

-4 -2 0 2 4
0.0
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G

Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference
and target Green function for the two-site model.
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ij

Fig. 11: Schematic representation of a plaquette cluster-reference system for the square lattice.

The standard reference system (Fig. 11) corresponds to the Green function, averaged over the
supercell Brillouin zone, which is equivalent to the self-consistent cluster-DMFT scheme [21].
Another possibility for the reference system is related with the k = 0 Green function, which
corresponds to the decoupled lattice of plaquettes with periodic boundary condition

∆0 = tk=0 =


ε 2t 4p 2t

2t ε 2t 4p

4p 2t ε 2t

2t 4p 2t ε

 . (40)

Note that the spectrum of this hopping Hamiltonian Eq. (40) is equal to the original cubic tight-
binding model

εk = 2t
(
cos kx + cos ky

)
+ 4p cos kx cos ky

in the 4 k-points: Γ=(0, 0), X=(π, 0), Y=(0, π) and M=(π, π) which corresponds to the 2×2
grid in the original Brillouin zone. In this sense, we can view the dual fermion perturbation
from the plaquette reference system [21] as a DF-multigrid interpolation from the 2×2 k-mesh
in the original cubic lattice to, e.g., 64×64 k-points (for this case one needs to use the 32×32
mesh in our supercell). This is exactly the task for the present numerical test.
In order to calculate the bare dual Green function we use a slightly modified version of Eq. (33)
(since ∆k = ∆0−tk = 0, for some k-points, e.g. for k = 0)

G̃0
k,ν = ∆k

(
1− gν∆k

)−1
.

With this choice of reference system, one can again stay only with the exact diagonalization
scheme to calculate the dual Green function and the plaquette vertex function. We choose the
strong-coupling parameters with U=W=8, t=− 1, p=0 and the temperature T=1/3 for which
there is a diagrammatic QMC results [18]. In the Fig. 12 we plot the density of states (DOS)
for three different Green functions: ED for the reference plaquette, cluster perturbation (CP)
which corresponds to Eq. (39) with Σ̃kν=0, and the results for the second-order plaquette dual-
fermion. We use Padé-analytical continuation from the Matsubara to the real energy axis [5].
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Fig. 12: Density of states for dual fermion perturbation from plaquette for U=W=8 (DF-
red) in comparison with exact diagonalization for periodic plaquette (ED-blue) and cluster
perturbation theory (CP-green).
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Fig. 13: Real (left) and imaginary (right) part of the self-energy for the DF plaquette scheme in
comparison with diagrammatic-QMC results [18] at the first Matsubara frequency.

We conclude that the DOS for dual fermion theory differs strongly from the results of the simple
perturbation (CP) and the original reference system (ED), and has a broad four-peaks structure,
characteristic for the lattice QMC results [22].

Fig. 13 shows the DF-plaquette second-order lattice self-energy Eq. (38) for the standard k-
dependent path Γ -X-M -Γ in the two-dimensional Brillouin zone, together with numerically
exact lattice diagrammatic QMC [18]. The almost perfect agreement for the real-part of the self-
energy Σ(k, ν=πT ) underlines the strength of the dual-fermion superperturbation technique
starting from a “reasonable” plaquette reference system.

Finally, we plot in Fig. 14 the full Brillouin zone 64×64 k-mesh of the real and imaginary part
of DF-plaquette self-energy periodize to original square lattice, in order to have an impression
of the complex behavior for strongly correlated lattice fermion systems.
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Fig. 14: Full Brillouin zone 64×64 k-mesh for the real (left) and imaginary (right) part of the
DF plaquette self-energy at the first Matsubara frequency.

6 Conclusion: Recent developments

We discussed the path-integral expansion for correlated lattice systems beyond the local DMFT
approximation using transformations to dual variables. We would like to mention other re-
cent developments in this field. Very important generalization of the dual variable approach
are related with the dual-boson approach [23, 2], which properly includes effects of non-local
interactions. This scheme allows the very efficient treatment of charge [24] and spin [25] col-
lective fluctuations, and their effects on electronic spectrum and vice versa. Careful analyses
of the two-particle divergence using dual variables [26] and fast calculations of the polarization
function in correlated solids [27] show the strength of proper path-integral perturbation starting
from the best local approximation. The efficient version of dual perturbation based on partial
bosonization [28] has a strong potential for development of the realistic GW-like scheme with
proper charge- and spin-fluctuations.
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Appendices

A Path-integrals for fermions

We first introduce a formalism of the path integral over fermionic fields [11]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [29]. Due to the Pauli
principle the many-body Hilbert space is spanned by only two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ†i operators
with anticommutation relations

{
ĉi, ĉ

†
j

}
= δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 and ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 . (41)

Moreover, the density operator and the Pauli principle have the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci

ĉi |c〉 = ci |c〉 . (42)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the below and one can rewrite one of equations from Eq. (41)
in the following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the multiplication rules [30]

cicj = −cjci and c2i = 0 . (43)

It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators {

c, ĉ} = {c, ĉ†
}
= 0 .

An arbitrary function of one Grassmann variable can be represented by only the first two Taylor
coefficients

f(c) = f0 + f1c . (44)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑
i ciĉ

†
i |0〉 . (45)

Let us show this for the simple case of one fermionic state

ĉ |c〉 = ĉ
(
1− cĉ†

)
|0〉 = ĉ

(
|0〉 − c |1〉

)
= −ĉc |1〉 = c |0〉 = c |c〉 . (46)
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One can also define a “left” coherent state 〈c| as the left-eigenstates of creation operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .

Note that new eigenvalue c∗i is just another Grassmann number, not the complex conjugate of ci.
The left coherent state can be obtained similar to Eq. (45)

〈c| = 〈0| e−
∑
i ĉic

∗
i .

A general function of two Grassmann variables can, analogously to Eq. (44), be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (47)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with “right-order” of such a derivative and remember the anti-commutation
rules, i.e.,

∂

∂c2
c1c2 = −c1 .

For the case of the general two-variable function in Eq. (47) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(
f01 − f11c∗

)
= −f11 = −

∂

∂c

∂

∂c∗
f(c∗, c).

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists of the following rules [30]∫

1 dc = 0 and
∫
c dc = 1 ,

which just shows that the integration over a Grassmann variable is equivalent to differentiation∫
· · · dc→ ∂

∂c
· · ·

The coherent states are not orthonormal and the overlap of any two such states is equal to

〈c|c〉 = e
∑
i c
∗
i ci

which is easy to see for the case of one particle

〈c|c〉 =
(
〈0| − 〈1| c∗

)(
|0〉 − c |1〉

)
= 1 + c∗c = ec

∗c.

An important property of coherent states is the resolution of unity∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉〈c| = 1̂ =

∫∫
dc∗dc

|c〉 〈c|
〈c|c〉

.
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For simplicity we demonstrate this relation only for one fermion state∫∫
dc∗dc e−c

∗c |c〉〈c| =
∫∫

dc∗dc(1− c∗c)
(
|0〉 − c |1〉

)(
〈0| − 〈1| c∗

)
=

= −
∫∫

dc∗dc c∗c
(
|0〉〈0|+ |1〉〈1|

)
=
∑
n

|n〉〈n| = 1̂ .

Matrix elements of normally ordered operators are very easy to calculate in the coherent basis
by operating with ĉ† on the states to the right and ĉ to the left:

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 . = H(c∗, c) e
∑
i c
∗
i ci (48)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trace-formula” for arbitrary fermionic operators in normal order
(in one-fermion notation)

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗dc e−c

∗c 〈n| c〉〈c| Ô |n〉 =

=

∫∫
dc∗dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉〈n| c〉 =
∫∫

dc∗dc e−c
∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states come from the commutation of the (c∗)
and (c) coherent state in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are ready now to write the partition function for the grand-canonical quantum ensemble with
H = Ĥ − µN̂ and inverse temperature β. One has to use the N -slices Trotter decomposition
for the partition function in [0, β) with imaginary time τn = n∆τ = nβ/N (n = 1, ..., N ), and
insert N times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗dc e−c

∗c
〈
− c
∣∣e−βH∣∣c〉

=

∫
ΠN
n=1dc

∗
ndcn e

−
∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
ndcn e

−∆τ
∑N
n=1[c

∗
n(cn−cn−1)/∆τ+H(c∗n,cn−1)]

In the continuum limit (N →∞)

∆τ
N∑
n=1

· · · →
∫ β

0

dτ · · · , cn−cn−1
∆τ

→ ∂τ and ΠN−1
n=0 dc

∗
ndcn → D [c∗, c]

with antiperiodic boundary conditions for fermionic Grassmann variables in imaginary time
c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)
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we end up in the standard path-integral formulation of the partition function

Z =

∫
D [c∗, c] e−

∫ β
0 dτ [c∗(τ)∂τ c(τ)+H(c∗(τ),c(τ))] . (49)

It is useful to mention the general form of the Gaussian path-integral for a non-interacting
“quadratic” fermionic action, which is equivalent to the Hubbard-Stratonovich transformation
used in the dual-fermion derivation Eq. (22). For an arbitrary matrixMij and Grassmann vectors
J∗i and Ji one can calculate analytically the following integral

Z0 [J
∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj−

∑N
i=1(c∗i Ji+J∗i ci) = detM e

∑N
i,j=1 J

∗
i (M

−1)ijJj . (50)

To prove this relation one need first to change variables in order to eliminate J∗i and Ji and
expand the exponential function (only N -th oder is non-zero)

e−
∑N
i,j=1 c

∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N
.

Finally, different permutations of c∗i and cj and integration over Grassmann variables will give
detM . As a small exercise we will check such integrals for the first two many-particle dimen-
sions. For N=1 it is trivial∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c]

(
− c∗1M11c1

)
=M11 = detM

and for N=2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

=
1

2!

∫
D [c∗c]

(
−c∗1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2

)2
=M11M22−M12M21 = detM.

For a change of variables in the path integral one uses the following transformation with unit
Jacobian: c→ c+M−1J and

c∗Mc+ c∗J + J∗c =
(
c∗ + J∗M−1)M (

c+M−1J
)
− J∗M−1J .

Using the Gaussian path-integral it is very easy to calculate any correlation function for a non-
interaction action (Wick-theorem)

〈
cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J
∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

=M−1
ij

〈cicjc∗kc∗l 〉0 =
1

Z0

δ4Z0 [J
∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

=M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path-integral over
bosonic fields is equal to inverse of the M -matrix determinant [11].
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B Exact relations between Green functions

After appropriate diagrammatic results for the dual self-energy and the dual Green function
have been obtained, they have to be transformed back to the corresponding physical quantities
in terms of real lattice fermions. The fact that dual fermions are introduced through the exact
Hubbard-Stratonovich transformation, Eq. (22), allows to establish exact identities between
dual and lattice Greens function [3, 15].
The relations between the n-particle cumulants of dual and lattice fermions can be established
using the cumulant (linked cluster) technique. To this end one may consider two different,
equivalent representations of the following generating functional

eF [J∗J,L∗L] = Zd
∫
D[c∗c, d∗d] e−S[c∗c,d∗,d]+J∗1 c1+c∗2J2+L∗1d1+d∗2L2 . (51)

Integrating-out the lattice fermions from this functional similar to (26) (this can be done with
the sources J and J∗ set to zero) yields

eF [L∗,L] = Z̃d
∫
D[d∗, d] e−Sd[d

∗,fd+L∗1d1+d
∗
2L2 (52)

with Z̃d = Z/Z̃ . The dual Green function and the two-particle correlator related with non-local
susceptibilities are obtained from (52) by suitable functional derivatives, e.g.,

G̃12 = −
δ2F

δL2δL∗1

∣∣∣∣
L∗=L=0

(53)

where G ⊗ G is the antisymmetrized direct product of Green functions, so that the angular
bracket is the connected part of the dual two-particle Green function. Conversely, integrating
out the dual fermions from Eq. (51) using the HS-transformation, one obtains an alternative
representation, which more clearly reveals the connection of the functional derivatives with
respect to the sources J , J∗, and L, L∗. The result is

F [J∗J, L∗L] = L∗1(∆− t)12L2 (54)

+ ln

∫
D[c∗, c] exp

(
−S[c∗, c] + J∗1 c1 + c∗2J2 + L∗1(∆−t)12c2 + c∗1(∆−t)12L2

)
.

In analogy to (53), the cumulants in terms of lattice fermions are obviously obtained by func-
tional derivative with respect to the sources J and J∗ with L and L∗ set to zero. Applying the
derivatives with respect to L, L∗ to (54) with J = J∗ = 0 and comparing to (53), e.g., yields
the identity

G̃12 = −(∆−t)12 + (∆−t)11′G1′2′(∆−t)2′2. (55)

Solving for G provides the rule how to transform the dual Green function to the physical quan-
tity in terms of lattice fermions.
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