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1 Introduction

Correlated dynamics play a key role in many aspects of our world, ranging from collective be-
havior of swarms of animals, correlations in the fluctuations of share prices at the stock market,
to dynamical processes determining our weather. In physics, correlations in the dynamics of
interacting many-body systems lie at the heart of our understanding of collective dynamical
phenomena. Understanding the role of correlations in quantum systems is both a fundamen-
tal challenge and of high practical relevance for the control of multi-particle quantum systems,
for example in the context of the ongoing efforts to build large-scale quantum computers and
quantum simulators [1, 2]. Whereas most research has been focusing on various types of corre-
lations that can be present in the states of quantum systems, in this lecture, our main focus will
be on correlations that can be present in the dynamics of quantum systems. In particular, we
will be discussing some basics of quantum dynamics in closed and open quantum systems, and
introduce and discuss a general and rigorous method to quantify the amount of correlations in
general dynamics of quantum systems. We will then apply these methods to various physical
examples, such as the correlated decay of excited atoms coupled to the radiation field, and to the
characterization of noise characteristics in real experimental trapped-ion quantum computers.

1.1 Temporal vs spatial correlations

Between what types of correlations in the dynamics of quantum systems can we distinguish?
Quantum systems can display a wide variety of dynamical behaviors, in particular in open
quantum systems, which are systems that are coupled to the surrounding environment. One
interesting feature which has attracted much attention is the presence of memory effects (non-
Markovianity) in the time evolution. Such temporal effects typically arise for strong enough
coupling between the system and its environment, or when the environment is structured [3–5].
Whereas memory effects (or time correlations) can be present in any quantum system exposed to
noise, another extremely relevant feature, which we will focus on in this lecture, are correlations
in the dynamics of different parts of composite, i.e., multi-partite quantum systems. Since
different parties of a partition are often, though not always, identified with different places
in space, we will in the following refer to these correlations between subsystems of a larger
quantum system as spatial correlations.
Spatial correlations in the dynamics give rise to a wide plethora of interesting phenomena, such
as super-radiance [6] and decoherence-free subspaces [7–9], which we will also discuss as part
of this lecture, and other phenomena like super-decoherence [10] and sub-radiance [11].
Moreover, clarifying the role of spatial correlations in the performance of a large variety of
quantum processes is a highly active area of research, e.g. in quantum computing. There,
spatially correlated noise can substantially reduce the parameter regimes and lower the error
thresholds below which errors can be successfully fought off by quantum error correction tech-
niques [12–14]. Other areas of interest are understanding the role of spatial correlations in the
quantum dynamics underlying photosynthesis and excitation transfer [15, 16], and applications
in quantum metrology [17].
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As already mentioned, numerous works have aimed at quantifying up to which extent quantum
dynamics deviates from the Markovian behavior. However, much less attention has been paid
to developing quantifiers of spatial correlations in the dynamics. This may be partially due to
the well-known fact that under many, though not all practical circumstances, dynamical correla-
tions can be detected by studying the time evolution of correlation functions of properly chosen
observables OA and OB, acting respectively on the two parties A and B of a composite system
S of interest. Indeed, any correlation C(OA,OB) = 〈OA ⊗OB〉 − 〈OA〉〈OB〉 detected during
the time evolution of an initial product state, ρ = ρA ⊗ ρB, witnesses the correlated character
of the dynamics. Here, ρA and ρB denote the initial density operators of the two subsystems.
However, it is a priori not easy to guess suitable observables. Furthermore there exist highly
correlated dynamics, which cannot be realized by a combination of local processes and which
do not generate any such correlation, e.g. a swap process between two parties.
Thus, it is important to develop methods which allow one to detect the presence or absence
of spatial correlations in the dynamics, without a priori knowledge of the underlying micro-
scopic dynamics, and which do not require one to resort to adequately chosen “test” observables
and initial “test” quantum states. Such methods should furthermore provide a rigorous ground
to quantitatively compare the amount of spatial correlations in different dynamical processes.
These characteristics are essential for a “good” correlation quantifier that can be used to study
spatial correlations in quantum dynamics from a fundamental point of view, to clarify their role
in physical processes, as well as to measure and quantify spatial correlations in the dynamics of
experimental quantum systems.
In this lecture, we will introduce first basic concepts of correlations in quantum states and
quantum dynamics, and then introduce methods to quantify the degree of correlation in general
quantum dynamics.

1.2 Correlations in quantum states

Before discussing quantum dynamics, let us, however, take a step back and first consider cor-
relations that can be present in quantum states: a famous example of quantum-mechanically
perfectly correlated states are Bell states [12], also called EPR-pairs, named after Einstein,
Podolsky and Rosen [18]. An example is the following state of two qubits A and B

∣∣Φ+
〉
AB

=
1√
2

(
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B

)
=

1√
2

(
|00〉AB + |11〉AB

)
, (1)

where |0〉 and |1〉 denote the computational basis states of each qubit (or spin-1/2 particle).
Here and in the following we will mostly suppress the tensor-product symbol, for simplicity
and compactness of notation. If now, say, the first qubit is measured in the computational
basis, i.e., the state is projected onto either |0〉1 or |1〉1 (the eigenstates of the Pauli matrix
Z = |0〉〈0| − |1〉〈1|), each of the two possible measurement outcomes +1 (for |0〉1) and −1

(for |1〉1) will be obtained with probability 1/2. If the second qubit is also measured, it will
be found with certainty in the same state as the first qubit – the measurement outcomes will
be perfectly correlated. Note that this measurement statistics could also be explained by purely
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classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00〉AB, and with 50% in |11〉AB – the resulting measurement statistics would be the same.
But what happens if the qubits of the Bell state (1) are measured in the X-basis instead, i.e.,
the observable Pauli matrix X = |0〉〈1| + |1〉〈0| is measured? The Bell state can be equally
written as

∣∣Φ+
〉
AB

=
1√
2

(
|00〉AB + |11〉AB

)
=

1√
2

(
|++〉AB + |−−〉AB

)
(2)

with |±〉 =
(
|0〉 ± |1〉

)
/
√

2 denoting the eigenstates of X , X |±〉 = ± |±〉. Thus, the mea-
surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |Φ+〉AB can be written as a product of single-qubit states |ψ1〉A and |ψ2〉B,
|Φ+〉 6= |ψ1〉A ⊗ |ψ2〉B – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ρS describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(ρS)

of the state ρS is defined by
S(ρS) := −TrρS log(ρS) (3)

The density operator ρS can be written in terms of its eigenstates |ψi〉, ρS =
∑

i pi |ψi〉〈ψi|,
with pi ≥ 0 and

∑
i pi = 1. Then the expression for the von Neumann entropy reduces to

S(ρS) = −∑i pi log pi. For the system S in a pure state |ψ〉, ρS = |ψ〉 〈ψ|, and S(ρS) = 0.
The reduced density operators, associated to parts A and B of the composite system, ρS|A and
ρS|B, are obtained by performing the partial trace [12] over the respective complementary parts

ρS|A = TrB(ρS), ρS|B = TrA(ρS). (4)

For the Bell state of Eq. (1), the reduced density operators correspond to the fully mixed state

ρS|A =
1

2

(
|0〉〈0|A + |1〉〈1|A

)
, ρS|A =

1

2

(
|0〉〈0|B + |1〉〈1|B

)
, (5)

and thus the von Neumann entropies evaluate to S(ρS|A) = S(ρS|B) = log 2.
Now, the quantum mutual information of a state ρS is given by

I(ρS) = S(ρS|A) + S(ρS|B)− S(ρS). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(ρS) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ρS = ρS|A ⊗ ρS|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

〈OA⊗OB〉−〈OA〉〈OB〉 signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g.,OA = ZA andOB = ZB is suitable, since 〈ZA〉 = TrA(ZAρS|A) = 0,
and similarly for qubit B, whereas 〈ZA ⊗ ZB〉 = +1. In contrast, for a product state such as
e.g. |0〉A ⊗ |0〉B, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ρS 7→ ES(ρS) =
∑

i

Ki ρSK
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
∑

iK
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ρS 7→ US ρS U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that

〈
exp

[
±i
∫ t

0

B(t′)dt′
]〉

= exp

[
−1

2

〈(∫ t

0

B(t′)dt′
)2
〉]

. (9)
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If one additionally assumes a stationary autocorrelation function of the noise source

〈
B(t+τ)B(t)

〉
=
〈
B(τ)B(0)

〉
, (10)

and furthermore a δ-correlation of the noise, one obtains that

〈
B(τ)B(0)

〉
=
〈
[B(0)]2

〉
δ(τ). (11)

Using these properties, one finds
〈[∫ t

0

B(t′)dt′
]2〉

=
〈
[B(0)]2

〉
t = γt, (12)

where we have defined the dephasing rate γ =
〈
[B(0)]2

〉
.

For an arbitrary initial (pure) state, ρ(0) = |ψ(0)〉〈ψ(0)|, with |ψ(0)〉 = α |0〉 + β |1〉, the state
at time t will be given by an average over the noise realizations

ρ(t) =

∫
|ψ(t)〉〈ψ(t)|P (B) dB = |α|2 |0〉〈0|+ |β|2 |1〉〈1|+ e−

1
2
γt
(
αβ∗ |0〉〈1|+ α∗β |1〉〈0|

)
.

(13)
This allows us to identify this process as the dephasing channel [12]

ES : ρS 7→ (1−p)ρS + pZρSZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
√

1−p1 and K1 =
√
pZ

and the identification p = 1
2
(1 − e− 1

2
γt). Thus, for long times (t → ∞, p → 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA⊗EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0〉〈0|A ⊗ 1B + |1〉〈1|A ⊗XB (15)

which flips the state of the target qubit (B), |0〉 ↔ |1〉, if and only if the control qubit (A) is in
the |1〉 state. For suitably chosen input product states, e.g. |ψ(0)〉 = |+〉1 ⊗ |0〉2, this unitary
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gate creates (maximally) correlated output states such as the Bell state of Eq. (1), therefore the
CNOT gate is clearly a correlated quantum dynamics!
Similarly, spatially homogeneous or global (magnetic) field fluctuations, acting with the same
strength on a register of two or more qubits, described by a Hamiltonian

HG(t) =
1

2
B(t)

∑

k

Zk (16)

result in spatially correlated dephasing dynamics. This dynamics ES on the qubit register can-
not be described by a product of independent dephasing processes, ES 6= ⊗kEk, with Ek acting
on the k-th qubit. It is left as an exercise to work out the generalization of Eq. (14) for this
scenario of correlated dephasing dynamics. Again, working with suitably chosen input states,
e.g. |ψ(0)〉 = ⊗k |+〉k, should allow one to distinguish between spatially correlated and uncor-
related dephasing.
In fact, this idea holds true in general: any correlation C(OA,OB) = 〈OA ⊗OB〉 − 〈OA〉〈OB〉
detected during the time evolution of an initial product state, ρS = ρA ⊗ ρB, witnesses the
correlated character of the dynamics. However, for this to work, one needs to be lucky or have
a priory knowledge about the dynamics and thereby be able to choose suitable observables and
input states, for which correlated dynamics generates non-vanishing correlations in the final
quantum state generated by the dynamics. Furthermore, note that there exist highly correlated
dynamics, which cannot be realized by a combination of local processes, which however do not
generate any such correlation. A simple example is the swap process between two parties. Such
dynamics can either act on internal degrees of freedom, induced, e.g., by the action of a swap
gate acting on two qubits [12], or can correspond to (unwanted) external dynamics, caused,
e.g., by correlated hopping of atoms in an optical lattice [19] or the melting of an ion Coulomb
crystal and subsequent recooling dynamics with a possibly different rearrangement of particles
in trapped-ion architectures [20].

3 Rigorous quantifier for correlations in quantum dynamics

In light of this discussion, let us therefore now discuss a systematic and rigorous method to cap-
ture and quantify spatial correlations in quantum dynamics, not requiring any a-priori knowl-
edge or assumptions about the dynamics taking place on the composite quantum system.

3.1 Choi-Jamiołkowski isomorphism

The central tool of our construction is the Choi-Jamiołkowski isomorphism [21, 22, 12]. This
is a one-to-one correspondence of a given quantum dynamics of a system to an equivalent
representation in the form of a quantum state in an enlarged Hilbert space. As we will see, this
mapping will allow us to use tools developed for the quantification of correlations in quantum
states, as we discussed above in Sec. 1.2, for our purpose of quantifying correlations in the
quantum dynamics taking place in the bi-partite system S = AB. For this mapping, consider a
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|ΦSS′〉 with the auxiliary system S′. This state is just a product of maximally entangled states
between AA′ and BB′, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:
if and only if this process is correlated with respect to A and B, the total system SS′ becomes
correlated with respect to the bipartition AA′|BB′. The degree of correlation of the dynamics
can then be measured by the normalized mutual information, see Eq. (20).

second d2-dimensional bipartite system S′ = A′B′, essentially a “copy” of system S. Next, let
|ΦSS′〉 be the maximally entangled state between S and S′,

|ΦSS′〉 :=
1

d

d2∑

j=1

|jj〉SS′ =
1

d

d∑

k,`=1

|k`〉AB ⊗ |k`〉A′B′ . (17)

Here, |j〉 denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d2-dimensional Hilbert space of S and its “copy” S′. Similarly, |k〉A and |l〉B
denote the canonical basis of the d-dimensional subsystems A, B, and A′, B′. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d4-dimensional
quantum state

ρCJ
S := ES ⊗ 1S′

(
|ΦSS′〉〈ΦSS′|

)
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S′ on S′, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ρCJ

S in
the enlarged d4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

ρCJ
S =

1

2

(
|00〉〈00|SS′ + |11〉〈11|SS′

)
+

1

2
(1−2p)

(
|00〉〈11|SS′ + |11〉〈00|SS′

)
. (19)
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3.2 Construction of a correlation measure

In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a re-
source theoretic approach (see, e.g., [23, 24] where this approach is used in the context of
entanglement theory). The idea is that one may consider correlated dynamics as a resource
to perform whatever task that cannot be implemented solely by (composing) uncorrelated evo-
lutions EA ⊗ EB. Then, suppose that the system S undergoes some dynamics given by the
map ES. Now, consider the (left and right) composition of ES with some uncorrelated maps
LA ⊗ LB and RA ⊗ RB, which act before and after ES, so that the total dynamics is given by
E ′S = (LA ⊗ LB)ES(RA ⊗RB). It is clear that any task that we can do with E ′S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E ′S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1√

2
(|01〉AB + |10〉AB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ρCJ

S , Eq. (18),

Ī(ES) :=
I(ρCJ

S )

4 log d
:=

1

4 log d

(
S
(
ρCJ
S |AA′

)
+ S

(
ρCJ
S |BB′

)
− S

(
ρCJ
S

) )
. (20)

Here, S(·) := −Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ρCJ

S |AA′ := TrBB′(ρCJ
S ) and ρCJ

S |BB′ := TrAA′(ρCJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⊗ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA′|BB′ (no proof given here).

ii) The quantity Ī(ES) ∈ [0, 1]. It is clear that Ī(ES) ≥ 0, moreover it reaches its maximum
value when S(ρCJ

S ) is minimal and S
(
ρCJ
S |AA′

)
+S

(
ρCJ
S |BB′

)
is maximal. Both conditions

are met when ρCJ
S is a maximally entangled state with respect to the bipartition AA′|BB′,

leading to I(ρCJ
S ) = 2 log d2.
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iii) The fundamental law of the resource theory for correlations in quantum dynamics is sat-
isfied, namely that

Ī(ES) ≥ Ī
(
(LA ⊗ LB)ES(RA ⊗RB)

)
, (21)

stating that the amount of correlations of the dynamics ES decreases or at most stays
the same, if the dynamics is composed with uncorrelated dynamics. Stated differently,
if a process is a composition of a correlated and an uncorrelated part, the amount of
correlations in the composition has to be equal or smaller than the amount of correlation
that is inherent to the correlated part. Here, equality in the above inequality is reached for
composition with uncorrelated unitary dynamics, LA(·) = UA(·)U †A, LB(·) = UB(·)U †B,
RA(·) = VA(·)V †A, andRB(·) = VB(·)V †B.

Leaving aside the normalization factor 1/(4 log d), the quantifier (20) can be intuitively under-
stood as the amount of information that is needed to distinguish the actual dynamics ES from
the individual dynamics of its parts ES1 ⊗ ES2 [12]. Namely, the information that is lost when
ES1 ⊗ ES2 is taken as an approximation of ES. The normalized quantity Ī ∈ [0, 1] quantifies this
information relative to the maximum value it can take on all possible processes.
For clarity, we remark that the use of an ancilla system S′ is merely underlying the mathe-
matical construction of the isomorphism. It is not required in an experimental determination
of Ī . Rather than reconstructing the Choi-Jamiołkowski state ρCJ

S from quantum state tomog-
raphy [12] on the enlarged system SS′, one can equivalently determine ρCJ

S by reconstructing
the dynamics ES by means of quantum process tomography on the physical system S alone.
For a system S of N qubits, due to the Choi-Jamiołkowski isomorphism the number of real
parameters to determine, 4N(4N−1), is in both cases the same and grows exponentially with
the number of qubits.

3.3 Maximally correlated quantum dynamics

Before computing Ī for some cases of physical interest it is worth studying which dynamics
achieve the maximum value Īmax = 1. From the resource theory point of view, these dynamics
can be considered as maximally correlated since they cannot be constructed from other maps
by composition with uncorrelated maps [because of Eq. (21)]. One can show the following
property of maximally correlated dynamics:

Theorem 1. If for a map ES the property that Ī(ES) = 1 holds, it must be unitary ES(·) =

US(·)U †S, USU
†
S = 1.

Proof. As aforementioned, the maximum value, Ī(ES) = 1, is reached if and only if ρCJ
S is a

maximally entangled state with respect to the bipartition AA′|BB′, |Ψ(AA′)|(BB′)〉. Then

ES ⊗ 1S′
(
|ΦSS′〉〈ΦSS′ |

)
= |Ψ(AA′)|(BB′)〉〈Ψ(AA′)|(BB′)| (22)

is a pure state. Therefore ES must be unitary as the Choi-Jamiołkowski state is pure if and only
if it represents a unitary map.
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What are examples of maximally correlated dynamics? One example for such dynamics is the
swap operation, exchanging the states of the two parties A and B, US = UA↔B, and thus also
any unitary of the form of (UA ⊗ UB)UA↔B(VA ⊗ VB).

However, not every US that is maximally correlated falls into this class. For example, the
unitary operation of two qubits U ′S = |21〉〈12|+ i

(
|11〉〈21|+ |12〉〈11|+ |22〉〈22|

)
is maximally

correlated, however, it cannot be written as (UA⊗UB)UA↔B(VA⊗ VB), since that would imply
vanishing Ī(U ′SUA↔B) whereas Ī(U ′SUA↔B) = 1/2 6= 0.

What about, e.g., the 2-qubit controlled-NOT (CNOT) gate? Interestingly, operations able to
create highly correlated states such as the CNOT gate achieve a correlation value of 1/2 and thus
do not correspond to maximally correlated dynamics. Note that whereas a CNOT gate creates,
for appropriately chosen two-qubit initial states, maximally entangled states, there are other
states which are left completely uncorrelated under its action. The measure Ī captures, com-
pletely independently of initial states and of whether possibly created correlations are quantum
or classical, the fact that correlated dynamics cannot be realized by purely local dynamics.

This leads to the following question: Among the quantum processes of a given system which
correspond to maximally correlated dynamics, is there one from which any other dynamics can
be obtained – something like the mother of all dynamics?

In some resource theories, such as bipartite entanglement, this is the case: there the maximal
element (e.g. a Bell state in a 2-qubit system) can generate any other element by applying
the operations which fulfill its fundamental law, e.g. LOCC. This is not the case here, i.e.,
maximally correlated evolutions cannot generate any arbitrary dynamics by composition with
uncorrelated operations. Indeed, if Emax

S were able to generate any other dynamics it would,
in particular, be able to generate any unitary evolution US, (LA ⊗ LB)Emax

S (RA ⊗ RB)(·) =

US(·)U †S. However, this would imply that LA⊗LB, Emax
S and (RA⊗RB) are unitary evolutions

as well, so that (UA ⊗ UB)Umax
S (VA ⊗ VB) = US, with Emax

S (·) = Umax
S (·)Umax†

S . Since Ī(ES) is
invariant under the composition of uncorrelated unitaries, this result would imply that for any
correlated unitary US, Ī(US) would take the same value, Ī(Umax

S ), and this is not true, as we
have seen for the examples of the swap operation and the CNOT gate.

4 Quantifying dynamical correlations in physical systems

4.1 Correlated dynamics of atoms in the electromagnetic vacuum

Let us now illustrate the behavior of Ī(ES) for the paradigmatic example of two identical two-
level atoms interacting with the vacuum of the electromagnetic radiation field.

The free Hamiltonian of the atoms of transition frequency ω is

HS =
ω

2

(
Z1 + Z2

)
(23)

with Zj the Pauli-matrix for the j-th atom. In addition, the environmental free Hamiltonian
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corresponds to the modes of the radiation field and is given by

HE =
∑

k

∑

λ=1,2

ωka
†
λ(k)aλ(k), (24)

where k and λ stand for the wave vector and the two polarization degrees of freedom, respec-
tively. We have taken natural units ~ = c = 1. The dispersion relation in free space is ωk = |k|,
and the field operators a†λ(k) and aλ(k) describe the creation and annihilation of photons with
wave vector k and polarization vector eλ. These fulfill k · eλ = 0 and eλ · eλ′ = δλ,λ′ .
The atom-field interaction is described in dipole approximation by the Hamiltonian

HSE = −
∑

j=1,2

[
σ−j d ·E(rj) + σ+

j d
∗ ·E(rj)

]
. (25)

Here, d is the dipole matrix element of the atomic transition, rj denotes the position of the j-th
atom, and the raising and lowering operators σ+

j and σ−j are defined as σ+
j = (σ−j )† = |e〉j j〈g|

for its exited |e〉j and ground |g〉j states. Furthermore, the electric field operator is given (in
Gaussian units)

E(r) = i
∑

k,λ

√
2πωk

V eλ(k)
(
aλ(k)eik·r − a†λ(k)e−ik·r

)
, (26)

where V denotes the quantization volume. Under a series of standard assumptions known as
the Markovian weak-coupling limit [3] the dynamics of the atoms is governed by a Lindblad
master equation of the form

dρS
dt

= L(ρS) = −iω
2

(
Z1 + Z2, ρS

)
+
∑

i,j=1,2

ajk

(
σ−k ρSσ

+
j − 1

2
{σ+

j σ
−
k , ρS}

)
. (27)

After taking the continuum limit ( 1
V
∑

k → 1
(2π)3

∫
d3k) and performing the integrals, the coef-

ficients ajk are given by (see e.g. Sec. 3.7.5 of Ref. [3])

ajk = γ0
(
j0(xjk) + P2(cos θjk)j2(xjk)

)
. (28)

Here, γ0 = 4
3
ω3|d|2, and j0(x) and j2(x) are spherical Bessel functions [26]

j0(x) =
sinx

x
, j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx, (29)

and
P2(cos θ) =

1

2

(
3 cos2 θ − 1

)
(30)

is a Legendre polynomial, with

xjk = ω|rj−rk| and cos2(θjk) =
|d · (rj−rk)|2
|d|2|rj−rk|2

. (31)

Notice that if the distance between atoms r = |r1 − r2|, is much larger than the wavelength
associated with the atomic transition r � 1/ω, we have ajk ' γ0δij and only the diagonal
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Fig. 2: Maximum value of Ī as a function of the distance r for two two-level atoms radiating in
the electromagnetic vacuum. As expected, the amount of correlations in the dynamics decreases
with r. In the inset, Ī is represented as a function of time for different distances r between atoms
(ω = |d|/2 = 1, θ=0). With increasing time, correlations in the dynamics build up, which for
longer times decay to zero, except for the limit vanishing distance r→ 0 between the two atoms.

terms γ0 = 4
3
ω3|d|2 are relevant. Then, the master equation describes two-level atoms inter-

acting with independent environments, and there are no correlations in the emission of photons
by the first and the second atom. In the opposite case, when r � 1/ω, every matrix element
approaches the same value aij ' γ0, in the master equation the atomic transitions can be ap-
proximately described by the collective jump operators J± = σ±1 +σ±2 , and the pair of atoms
becomes equivalent to a four-level system with Hamiltonian ωJz = ω

2
(Z1+Z2) at the mean po-

sition (r1 − r2)/2 interacting with the electromagnetic vacuum. This emission of photons in a
collective way is known as super-radiance. It can be effectively described in terms of collective
angular momentum operators and was first studied in the 1950s by Robert H. Dicke [6].
To quantitatively assess this behavior of uncorrelated/correlated dynamics as a function of the
interatomic distance r, we can numerically compute the measure of correlations Ī according
to Eq. (20). To this end, we consider a maximally entangled state |ΦSS′〉 between two sets S

and S′ of two qubits according to the maximally correlated state as given for the general case
in Eq. (17). Namely, here S is the set of the two physical qubits, i.e., the two two-level atoms
1 and 2, and the “copy” system S′ is made up of two auxiliary qubits 1′ and 2′ as sketched in
Fig. 1. Next, the part S of the maximally entangled state |ΦSS′〉〈ΦSS′ | is evolved according to
the master equation (27) while keeping the part S′ constant, to obtain ρCJ

S (t). This can be done,
for instance, by numerically integrating the master equation dρCJ

S (t)

dt
= L ⊗ 1[ρCJ

S (t)], with the
initial condition ρCJ

S (0) = |ΨSS′〉〈ΨSS′|, where L is for the present example specified in Eq. (27).
Tracing out qubits 2 and 2′ of ρCJ

S (t) yields ρCJ
S (t)|11′ , and similarly tracing out qubits 1 and 1′

yields ρCJ
S (t)|22′ . Finally, this allows one to compute the von Neumann entropies of ρCJ

S (t)|11′ ,
ρCJ
S (t)|22′ and ρCJ

S (t) to calculate Ī(t) according to Eq. (20).
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The results are shown in Fig. 2. Despite the fact that the value of Ī depends on time (the
dynamical map is formally given by ES = etL), the correlation quantifier Ī decreases as r
increases, as expected. Furthermore, the value of Ī approaches zero for long times t (see inset
plot), except in the limiting case of vanishing distance r = 0 between the two atoms. This is
because for r 6= 0 the dynamics becomes uncorrelated in the asymptotic limit, limt→∞ etL =

E ⊗ E . Here, the single-qubit Kraus maps describing the dynamics of the composite two-
atom system are given by E(·) = K1(·)K†1 + K2(·)K†2 with Kraus operators K1 =

(
0 0
1 0

)
and

K2 =
(
0 0
0 1

)
. It can be checked from the form of this map that therefore for long times both

atoms will eventually end up in the product state formed of both atoms in the ground state |g〉.
However, for r = 0, limt→∞ etL is a correlated map. Thus, we obtain perfect agreement between
the rigorous measure of correlations Ī and the physically expected behavior of two distant atoms
undergoing independent decay.

4.2 Noise characterization of an experimental quantum computer

In the following, we will apply the correlation quantifier to a second physical scenario. We
will use it to study the dynamics of spatial correlations of noise processes that are present in a
trapped ion quantum computer, which has been built by our collaborators in the experimental
ion-trap group at Innsbruck, Austria [27], and for which we quantitatively characterized its
spatial noise correlations in a recent joint project [28]. To date, trapped ions are one of most
advanced platforms for quantum information processing, and a highly promising platform to
build reliable and scalable quantum computers. Figure 3 shows the schematic of a linear-ion
trap quantum processor.
Let us briefly describe the experimental platform used to implement the correlation characteri-
zation protocol. Each qubit is encoded in the 4S1/2 and 3D5/2 electronic states of a single 40Ca+

ion of a string of ions trapped in a macroscopic linear Paul trap [27]. Doppler cooling of the ion
crystal is performed on a short-lived cycling transition between the 4S1/2 and the 4P1/2 levels,
as illustrated in Fig. 4. The same transition is used to detect the qubit state via the electron
shelving scheme. Two additional repumping lasers ensure that the ion does not get trapped in a
dark state and enable resetting from the long-lived 3D5/2 state. A more detailed description of
the tool-set and the experimental setup used can be found in [27].
To manipulate the state of the qubit, two different laser beams are used: A global beam ef-
fectively illuminates all ions in the chain with equal power and allows rotations of all qubits
simultaneously. Therefore interactions of the following form are possible:

Rφ(θ) = exp

(
−iθ

2
Sφ

)
, (32)

where Sφ =
∑N

k=0(Xk cosφ+Yk sinφ) withXk and Yk being single-qubit Pauli matrices acting
on qubit k.
To perform local operations on single qubits an addressed beam is available. This tightly fo-
cused beam is steered along the linear ion chain via an electro-optical deflector. By driving the
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Fig. 3: Schematics of a linear-ion-trap quantum computer. A linear Paul trap formed of metal-
lic blades and endcap electrodes (left and right of the trap) is used to apply a combination of
static electric and oscillating radio-frequency fields, to create an confining potential in all three
directions for the charged ions. Ions can be laser-cooled so that they form at sufficiently low
temperatures self-assembled Coulomb crystals, such as shown in the fluoresence picture of a
linear ion crystal. Here, the ion positions are determined by the interplay of mutual Coulomb
repulsion between the ions and external confinement through the trapping fields. A pair of
(meta-)stable electronic states are used to encode one qubit in each of the ions. Tightly fo-
cused and collectively applied laser beams are then used to initialise the register of qubits to a
well-defined initial state at the beginning of a quantum computation, to apply single-qubit gate
operations and to read out the final state at the end of a quantum algorithm by a collecting the
light from state-dependent fluorescence imaging via a CCD camera. Two- or multi-qubit entan-
gling gate operations can be implemented by coupling the electronic dynamics to the collective
vibrational modes (phonons) of the ion crystal, which can thereby act as quantum bus.

To manipulate the state of the qubit two different laser beams are used: A global beam ef-
fectively illuminates all ions in the chain with equal power and allows rotations of all qubits
simultaneously. Therefore interactions of the following form are possible:

R�(✓) = exp

✓
�i
✓

2
S�

◆
, (31)

where S� =
PN

k=0(Xk cos�+Yk sin�) with Xk and Yk being single-qubit Pauli matrices acting
on qubit k.

To perform local operations on single qubits an addressed beam is available. This tightly fo-
cused beam is steered along the linear ion chain via an electro-optical deflector. By driving the

Fig. 3: Schematics of a linear-ion-trap quantum computer. A linear Paul trap formed of metallic
blades and endcap electrodes (at the left and right end of the trap) is used to apply a combi-
nation of static electric and oscillating radio-frequency fields, to create a confining potential
in all three directions for the charged ions. Ions can be laser-cooled so that they form at suf-
ficiently low temperatures self-assembled Coulomb crystals, such as shown in the fluorescence
picture of a linear ion crystal. Here, the ion positions are determined by the interplay of mutual
Coulomb repulsion between the ions and external confinement through the trapping fields. A
pair of (meta-)stable electronic states is used to encode one qubit in each of the ions. Tightly
focused as well as collectively applied laser beams are then be applied to the ions. These can be
used to initialize the register of qubits to a well-defined initial state at the beginning of a quan-
tum computation, to apply single-qubit gate operations and to read out the final state at the end
of a quantum algorithm by collecting the light from state-dependent fluorescence imaging via a
CCD camera. Two- or multi-qubit entangling gate operations can be implemented by coupling
the electronic dynamics to the collective vibrational modes (phonons) of the ion crystal, which
can thereby act as a quantum bus.

qubit transition on resonance or in a detuned way, two types of rotations can be realized:

R
(k)
φ (θ) = exp

(
−iθ

2
(Xk cosφ+ Yk sinφ)

)

and

S(k)
z (θ) = exp

(
−iθ

2
Zk

)
.

This control toolset allows one to prepare the qubits in the required initial state, encode them in
different Zeeman sublevels and perform quantum process tomography. Entangling gates belong
also to the gate set of the quantum processor [27], but are not needed for the noise correlation
characterization protocol and therefore not discussed here.
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Fig. 4: Electronic level scheme of 40Ca+. The green and blue squares and circles indicate dif-
ferent qubit encodings, denoted A and B, respectively. Squares are marking the qubit state |1〉
whereas the state |0〉 is highlighted with circles. The corresponding frequency shifts of the tran-
sitions caused by the magnetic field are −2.80 MHz/G and +3.36 MHz/G for the qubits marked
with green and blue symbols respectively. For configuration 1 described in the enumeration in
the main text for both qubits the encoding marked in green is used. The asymmetry in scenario
2 is introduced by encoding one of the qubits in the states illustrated in blue. For the third
configuration both qubits again use the encoding marked in green and the spontaneous decay
from |0〉 to |1〉 is enhanced. Figure from [28].

Let us now discuss how the temporal development of the spatial correlation estimator Ī can be
used to determine the degree of spatial correlations in a two-qubit register. For this, we perform
full quantum process tomography on qubit registers with varying degree of correlations. The
electronic hyperfine level structure of the 40Ca+ (see Fig. 4) is rich enough to allow the experi-
mentalists to choose and investigate the noise characteristics for qubits encoded in various pairs
of computational basis states. Here, the idea is that the degree of noise correlations between
individual qubits can be tuned by encoding them in Zeeman states with differing magnetic field
susceptibility. As a consequence, different sensitivities to noise from magnetic field fluctuations
is expected. Concretely, there exist multiple possibilities to encode a qubit in the Zeeman levels
of the 4S1/2 and 3D5/2 states as shown in Fig. 4. The susceptibility of the qubits to the magnetic
field ranges from−2.80 MHz/G to +3.36 MHz/G, which allows the experimentalists to tune not
only the coherence time of the individual qubits but also the correlations between qubits, when
magnetic field fluctuations are the dominant source of noise.
Understanding the dephasing dynamics, and in particular noise correlations, in registers con-
taining qubits in different encodings is essential in the context of error mitigation and quantum
error correction: this understanding will be needed to determine the viability of an approach to
build, e.g., functional logical qubits formed of entangled ensembles of physical qubits, which
can be used to fight errors by means of quantum error correction techniques.
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4.3 Experimental determination of spatial dynamical correlations

In the following we will consider dephasing dynamics that is caused by a magnetic field acting
on a string of two ions. The various qubit-states have different susceptibilities to magnetic field
fluctuations, given by the Landé g factors gi of the involved Zeeman substates. The phase that
qubit i accumulates during the time evolution is therefore given by

φi(t) =

∫ t

0

dτB(τ)µbgi

with the time-dependent magnitude of the magnetic field B(τ) and the Bohr magneton µb. The
magnetic field fluctuations can be modeled by multiple random implementations of B(t). The
time evolution for a single implementation can then be expressed as

U(φ1) = exp
(
−iφ1(σ

z
1+gσz2)

)
(33)

with the ratio of the Landé factors g=g2/g1. In order to estimate the dynamics under a dephasing
decay, one needs to average the evolution over many noise realizations with random phases.
In the experiment we investigated the following qubit configurations that implement dephasing
and spontaneous decay dynamics:

1. Configuration 1: For the realization of maximally correlated dephasing dynamics, both
qubits are encoded in the

∣∣4S1/2, mS=−1/2
〉

and
∣∣3D5/2, mS=−5/2

〉
states. This en-

coding is referred to as encoding A hereinafter, and corresponds to the green markers in
Fig. 4. Both qubits have a susceptibility to the magnetic field of −2.80 MHz/G, leading
to identical susceptibility coefficients (g = 1) (see Eq. (33)).

2. Configuration 2: To introduce an asymmetric dephasing dynamics, one qubit is encoded
in A and the second is encoded in the states

∣∣3D1/2, mS=−1/2
〉

and
∣∣3D5/2, mS=−5/2

〉

respectively. This encoding is referred to as encoding B hereinafter, and corresponds
to the blue markers in Fig. 4. Their different susceptibilities to magnetic field noise of
−2.80 MHz/G and +3.36 MHz/G introduce unequal dephasing and therefore are expected
to affect correlations between the qubits, corresponding to the susceptibility coefficients
(g = −0.83).

3. Configuration 3: Uncorrelated dynamics can be engineered in this experimental sys-
tem by introducing spontaneous decay. In this scenario, both qubits are encoded in En-
coding A. A laser pulse resonant with the 3D5/2 ↔ 4P3/2 transition at 854 nm short-
ens the effective lifetime of the exited state by inducing a spontaneous decay to the
4S1/2,mS = −1/2 level via the short-lived 3P3/2,mS = −3/2 level. Since spontaneous
emission of visible photons by the ions at a distance of several micrometers corresponds
to an uncorrelated noise process, as we have seen in Sec. 3, this controllable pump process
implements an uncorrelated noise process that can be modeled as spontaneous decay. The
effective lifetime depends on the laser power and is in our case set to be Tspont = 7(1)µs.
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Fig. 5: Dynamics of the spatial correlation quantifier Ī for different qubit encodings.
Three cases are depicted: Both qubits encoded in |4S1/2, mS=−1/2〉 ↔ |3D5/2, mS=−5/2〉
(blue triangles), one qubit encoded in |4S1/2, mS=−1/2〉 ↔ |3D5/2, mS=−5/2〉 and
|3D1/2, mS=−1/2〉 ↔ |3D5/2, mS=−5/2〉 (green circles) and both qubits subject to uncor-
related dynamics via spontaneous decay (red diamonds). The horizontal axis is normalized to
the coherence time for the first two cases and to the decay time for the third case. Results from
a Monte Carlo based numerical simulations with 500 samples are depicted with shaded areas
in the corresponding color. Figure from [28].

The small quantum register consisting of only two qubits allows one to perform full process
tomography [12] to fully reconstruct the dynamics ES in the two-qubit system. From this, the
correlation measure Ī (see Eq. (20)) can be directly determined. In the present platform, the
amplitude of the magnetic field fluctuations is non-stationary as it depends on the entire lab-
oratory environment, e.g., due to fluctuating currents flowing through wires, which therefore
cannot be controlled accurately. However, the apparatus allows one to engineer a stationary
magnetic field noise as the dominating noise source (a situation where laser and magnetic field
noise have to be taken into account is described in [28]). Thus we could control and tune the
single qubit coherence time. The stationary magnetic field noise is engineered by our experi-
mental colleagues by applying a white-noise current to the coils that generate the magnetic field
at the ions’ positions. The noise amplitude is set such that the coherence time of the qubit en-
coded in

∣∣4S1/2, mS=−1/2
〉

and
∣∣3D5/2, mS=−5/2

〉
is reduced from 59(3) ms to 1.98(7) ms.

The increase of magnetic field noise by a factor of ≈ 30 ensures that laser phase-noise is neg-
ligible on these timescales. From the measured data, a process matrix fully describing ES was
reconstructed using an iterative maximum likelihood method to ensure trace preservation and
positivity of the process matrix.
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The results for the estimated quantifier for spatial correlations as defined in Eq. (20) Ī are shown
in Fig. 5 for the decoherence processes of the different configurations described above. These
processes are described by an exponential decay and show different timescales. To compare
the data from the different configurations we express the free evolution time in units of the
respective decay times τ . The temporal development of Ī is studied for evolution times of up
to 5 times the decoherence time for configurations 1 and 2 and up to 1.6 times the lifetime for
configuration 3, as the differences in the dynamics of different correlation strength are most
pronounced on those timescales.
It can be seen in Fig. 5 that the symmetric configuration (Configuration 1), depicted with blue
triangles and labeled with “sym.”, shows the highest degree of correlations that reaches a steady
state for long evolution times. The correlations converge to a saturation value of 11.2(8) %,
which is in agreement with the theoretical value of 12.5 % (as expected in the limit of perfectly
correlated dephasing) within 2 standard deviations. It is left and suggested as an exercise to
determine this value of Ī = 1/8 for the case of perfectly correlated two-qubit dephasing dy-
namics, as we discussed above in Sec. 2.2 and described by the fluctuating field Hamiltonian
Eq. (16).
Measurements using the asymmetric configuration (Configuration 2), depicted with green
circles and labeled with “asym.”, show similar dynamics to the symmetric setting for times
up to twice the coherence time. For longer evolution times, however, a significant decrease in
correlations is observed.
The third investigated scenario (Configuration 3) implementing engineered uncorrelated dy-
namics by adding spontaneous decay, is depicted with red diamonds. The correlations do not
exceed a value of 3.1(6) % in this case. This is significantly lower than the maximum of Ī for
fully and partially correlated dephasing dynamics.
The blue shaded area in the figure shows simulated results where random phase fluctuations
are acting on a two-qubit system. Whereas there is qualitative agreement between simulations
and measurements, there are still statistically significant deviations, especially in the case of
uncorrelated dynamics, of up to approximately 4σ. We assume that this overestimation of the
spatial correlations in the system dynamics by the quantifier is due to mis-calibration and drifts
of experimental parameters. For instance a mismatch between the actual and the calibrated
Rabi frequency would lead to additional correlated errors during the process tomography. This
effect is most pronounced for Configuration 3, where the dynamics are expected to show no
correlations at all.

4.4 Decoherence-free subspaces and entanglement-based magnetometry

What can one learn from the build-up of strong correlations in the dynamics of qubits, as ob-
served in particular for the symmetric encoding in Fig. 5 in the previous section? And can
one use this information for useful applications? Can these correlations be harnessed to protect
fragile qubit states from decoherence caused by correlated dephasing dynamics? The answer is
yes!
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measure magnetic-field gradients while rejecting common-
mode fluctuations [26–28].
Quantum entanglement can be harnessed to extend

sensing capabilities [29,30]. Entangled Greenberger–
Horne–Zeilinger or NOON states can, in principle, yield
a sensitivity beyond the standard quantum limit [31–33].
However, an increased sensitivity also implies an increased
noise-induced decoherence [34]. Hence, the beneficial
effect of entanglement is generally compromised unless
measurement schemes are designed to reject noise in favor
of the desired signal. With trapped ions, entangled
sensor states of the type ðj↑↓iþ eiφj↓↑iÞ=

ffiffiffi
2

p
have been

employed to measure local magnetic-field gradients [35,36]
as well as the magnetic dipole interaction between the
constituents’ valence electrons [37].
In this article, we present a magnetic gradiometer, where

entangled ions are moved to different locations x1 and x2
along the trap axis of a segmented linear Paul trap. The dc
magnetic-field difference ΔBðx1; x2Þ between the ion
locations can be inferred from the phase accumulation rate
of these sensor states via the linear Zeeman effect

Δωðx1; x2Þdc ≡ _φdc ¼
gμB
ℏ

ΔBðx1; x2Þ: ð1Þ

Since the net magnetic moment of the two constituent ions
vanishes, common-mode noise is rejected such that the
coherence time can exceed 20 s [35,36,38,39]. Combined
with the fine-positioning capabilities offered by trapped
ions, this enables magnetic-field sensing in a parameter
regimewhich could previously not be accessed:We sense dc
field differences at around 300 fT precision and 12 pT=

ffiffiffiffiffiffi
Hz

p

sensitivity, and the spatial resolution is limited by the size of
the ion’s ground-state wave function of about 13 nm.
In Sec. II, we describe the procedure for measuring the

relative phase φ of sensor states, apply it to determine phase
accumulation rates Δωðx1; x2Þ in Sec. III, and discuss the
limitations in Sec. IV. An efficient measurement scheme
utilizing Bayesian frequency estimation is presented in
Sec. V. In Sec. VI, we extend our sensing scheme to infer
both dc and ac magnetic-field differences from the mea-
sured phase accumulation rates. Finally, in Sec. VII, we
compare our results to state-of-the-art magnetic-field meas-
urement techniques and discuss applications of our sensor.

II. EXPERIMENTAL PROCEDURE

We trap two 40Caþ ions in a segmented linear Paul trap
[40], featuring 32 control electrode pairs along the trap
axis x. The distance between the center of neighboring
electrodes is 200 μm. A dc trapping voltage of −6 V leads
to an oscillation frequency of the ions of about 1.5 MHz
along the trap axis, corresponding to a 1σ width of the
ground-state wave function of about 13 nm.
A quantizing magnetic field at an angle of 45° to the trap

axis is created by Sm2Co17 permanent magnets, splitting

the ground-state Zeeman sublevels j↓i≡ jS1=2; mj ¼ − 1
2i

and j↑i≡ jS1=2; mj ¼ þ 1
2i by about 2π × 10.4 MHz. The

trap setup is shielded from ambient magnetic-field fluctua-
tions by a μ-metal magnetic shielding enclosure, yielding a
coherence time of about 300 ms [41] in a Ramsey-type
experiment.
Laser cooling, coherent spin manipulations, and read-out

[42] take place in the laser interaction zone (LIZ) of the trap
(Fig. 1). An experimental cycle starts with Doppler laser
cooling a two-ion crystal on the S1=2 ↔ P1=2 cycling
transition near 397 nm. All collective transverse modes
of vibration of the ion crystal are cooled close to the
motional ground state via resolved sideband cooling on the
stimulated Raman transition between j↑i and j↓i. State
initialization to j↑↑i is achieved via frequency-selective
pumping utilizing the narrow S1=2 ↔ D5=2 quadrupole
transition near 729 nm.
A pair of copropagating laser beams, detuned by 2π ×

300 GHz from the cycling transition, serves to drive spin
rotations without coupling to motional degrees of freedom.
After state initialization, a π=2 pulse on both ions creates
the superposition state j↑↑iþ ij↑↓iþ ij↓↑i − j↓↓i. Then,
an entangling geometric phase gate [43] is carried out.
A spin-dependent optical dipole force transiently excites
collective vibrations only for parallel spin configurations,
such that the j↑↑i and j↓↓i states acquire a phase of π=2.
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FIG. 1. Experimental procedure for measurements of inhomo-
geneous magnetic fields. After creation of the sensor state at the
LIZ, the two constituent ions are separated and shuttled to the
desired trap segments L and R. In order to measure the
accumulated phase during the interrogation time T, the ions
are individually shuttled to the LIZ to perform basis rotations that
allow for state read-out via electron shelving and fluorescence
detection in either the X̂1X̂2 or X̂1Ŷ2 basis. For basis rotations,
electron shelving, and fluorescence detection, the relevant energy
levels are shown.
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Fig. 6: Experimental procedure implemented in [29] for measurements of inhomogenous mag-
netic fields in a segmented ion trap. After the creation of the sensor Bell state by means of
single- and two-qubit gates in the laser interaction zone (LIZ), the two constituent ions are
separated and shuttled to the desired trap segments L and R. In order to measure the accumu-
lated phase during the interrogation time T , the ions are individually shuttled back to the LIZ
to perform basis rotations that allow for state read-out via electron shelving and fluorescence
detection in either the X1X2 or Y1Y2 measurement basis. For basis rotations, electron shelving,
and fluorescence detection, the relevant energy levels are shown in the small inset figures at the
right. Figure reproduced from [29].

The key idea of how this works can be understood by considering a fluctuating magnetic field
which acts with exactly the same magnitude, and thus perfectly spatially correlated on all
qubits, as discussed above and described by Hamiltonian of Eq. (16). A single-qubit super-
position state |ψ〉k = α |0〉k + β |1〉k will under such noise dephase over time and end up in a
classical mixture |ρ〉k = |α|2 |0〉〈0|k + |β|2 |1〉〈1|k. If we, however, consider instead a Bell state
of two qubits,

|ψ〉12 = α |01〉12 + β |10〉12 , (34)

we find that under the time evolution generated by the collective dephasing Hamiltonian Eq. (16)
such a superposition remains an eigenstate of the time evolution operator at all times. Or in other
words, no relative phase in the superposition state (34) is accumulated. Therefore, under this
correlated dephasing noise, the basis states |01〉12 and |10〉12 span a two-dimensional so-called
decoherence-free subspace (DFS): this is a subspace of the two-qubit Hilbert space, within
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measurements, i.e., jφðT; x1; x2Þ − φmeasðT; x1; x2Þj < π. In
order to check if the phase has been incremented or
decremented properly, we verify that the residuals of all
points are well below π. Figure 2 shows an example
measurement at maximum ion distance d ¼ 6.2 mm and
the residuals δφ for each point. In this measurement, phases
of over 40 000 rad have been accumulated during inter-
rogation times of up to Tmax ¼ 1.5 s, but the residuals jδφj
of all measurement points are well below π.
The maximum interrogation time Tmax is ultimately

limited by the coherence time Tcoh of the sensor state.
The coherence time is therefore analyzed in the following
section.

IV. COHERENCE TIMES

We characterize the coherence time Tcoh of the sensor
state for two settings: The ions are kept (i) in a common
potential well at a distance of about 4.2 μm and (ii) in
separate harmonic wells at the maximum possible distance
of 6.2 mm. The coherence time is inferred from measure-
ments of the contrast C for varying interrogation times T.
For each interrogation time, we repeat the experimental

procedure 400 times for each of the two measurement
operators.
For case (i), a coherence time Tcoh > 12.5 s is observed

[Fig. 3(a)]. In this regime, residual heating of the radial
modes of motion compromises the fidelity of electron
shelving and therefore the spin read-out. In separate
measurements, we characterized the spin read-out effi-
ciency for the input states j↑↑i and j↓↓i, and confirmed
that the observed contrast loss is entirely caused by
read-out.
For the maximum possible ion distance, a Gaussian

contrast decay is observed, with a coherence time in the
1–2-s range. For Gaussian contrast decay, the best sensi-
tivity for our phase measurement scheme is achieved at an
interrogation time corresponding to a contrast of 0.85
(see Ref. [44]).
The contrast decay at maximum ion distance is presum-

ably caused by a slow drift of the magnetic-field minimum
position along the trap axis. In order to verify our
presumption, we measured this drift consecutively for
two different ion separation distances of d ¼ 6.2 mm
and d ¼ 3.2 mm over the course of 6 hours [Fig. 3(b)].
For the former case, a typical drift rate of 1 Hz=h is
observed. We verified that this drift rate corresponds to a
contrast decay within 2s. For an ion distance of
d ¼ 3.2 mm, the drift rate is suppressed by a factor of
about 1.6 as compared to the maximum ion distance. The
spatial dependence of the observed drift rates is consistent
with movement of the ion trap relative to the magnetic field
in the 200-nm range, equivalent to thermal expansion of our
vacuum chamber due to a temperature change of
roughly 0.1 °C.

V. BAYESIAN FREQUENCY ESTIMATION

In order to speed up the incremental measurement
scheme for determining Δωðx1; x2Þ described in Sec. III,
we implement an adaptive scheme for frequency estimation
based on a Bayesian experiment design algorithm [51,52].
In general, such algorithms control the choice of a

measurement parameter—in our particular case, the inter-
rogation time—which, in each measurement run, guaran-
tees the optimum gain of information on the parameter to be
determined. These algorithms are beneficial in situations
where only a few parameters are to be determined, an
accurate model relating the design parameters to the
measurement outcome holds, and the measurement is
“expensive” in terms of resources such as time.
In Bayesian statistics, for a given phase measurement to

be carried out, the combined result of all previous mea-
surements is expressed with the prior probability distribu-
tion function (PDF) pðΔω;φ0Þ. Initially, we assume a
uniformly distributed prior PDF, limited to a reasonable
parameter range Δω ∈ fΔωmin;Δωmaxg and φ0 ∈ f−π; πg.
After a phase measurement with the outcome fn;mg, the
combined result is described by the posterior PDF,
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FIG. 3. (a) Sensor state contrast C versus interrogation time T at
the maximum ion distance of d ¼ 6.2 mm (red dots) and at an ion
distance of d ¼ 4.2 μm (blue squares). For illustration, the black
curve and gray region indicate a third-order polynomial fit to a
separate read-out fidelity measurement and its confidence bands.
(b) Simultaneous drift of the measured frequency difference for
ion distances d ¼ 6.2 mm (blue circles) and d ¼ 3.2 mm (purple
triangles) over a duration of about 6 hours with an interrogation
time of T ¼ 150 ms. For d ¼ 3.2 mm, the measured drift is
suppressed by a factor of about 1.6 as compared to the maximum
ion distance.
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Fig. 7: (a) Sensor state contrast C as a function of the interrogation time during which the two
ions of the sensor Bell state (34) are exposed to the magnetic fields at their respective positions,
spatially separated by a distance of d = 6.2 mm (red dots) and d = 4.2 µm (blue squares). For
illustration, the black curve and gray region indicate a third-order polynomial fit to a separate
read-out fidelity measurement and its confidence bands (see [29]). (b) Simultaneous drift of the
measured frequency difference for ion distances d = 6.2 mm (blue circles) and d = 3.2 mm
(purple triangles) over a duration of about 6 hours with an interrogation time of T = 150 ms.
Figure reproduced from [29].

which the noise acts trivially and quantum information can be stored and protected for longer
times than in single physical qubits. Alternatively, one can view the state of Eq. (34) as a
minimal “logical qubit” formed of two physical qubits, with effective logical basis states |0〉L =

|01〉12 and |1〉L = |10〉12, and which offers protection against spatially correlated dephasing
noise. Using such two-qubit DFS spaces in two ions, quantum information and entanglement
can be preserved for timescales of minutes, as impressively demonstrated already in 2005 [9],
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and which is to be contrasted to typical single-qubit coherence times of (tens) of milliseconds.
What happens if the dephasing noise is spatially correlated, however, these correlations are not
perfect? Can this be exploited as a measurement tool? In Ref. [29] it was shown that under
these circumstances Bell states of the form (34) can be used as highly sensitive probe states to
detect small spatially inhomogeneous dc magnetic fields. As discussed above, common-mode
magnetic-field fluctuations are not seen by the entangled sensor state. In contrast, inhomoge-
neous components of the field can be detected! This gives rise to excellent sensitivity to small
differences in local magnetic fields in different areas of the trap, separated by distances as large
as 0.61mm. For comparison typical inter-ion distances in an ion Coulomb crystal are a few mi-
crometer. The experimental setup and field gradient probing protocol is summarized in Fig. 6.
Figure 7 shows experimental results of this technique, which allows to probe magnetic field
differences over distances of several mm, and with spatial resolution as small as about 20 nm,
and with accuracies down to 300 fT and sensitivities down to 12 pT/

√
Hz.

5 Lower bounds, multi-partite systems, and outlook

The exact determination of the correlation quantifier Ī requires as input the process ES, which
can be reconstructed from quantum process tomography [12]. For small systems formed of
only two qubits, this is feasible, it becomes, however, impractical for larger systems due to the
exponential number of measurements required. The good news is that a lower estimate for Ī
can be obtained by performing correlation measurements on the subsystems S1 and S2. Here,
the central result is that the normalized quantity Ī(ES) is bounded from below by

Ī(ES) ≥ 1

8 ln d

C2
ρ′(O1,O2)

‖O1‖2‖O2‖2
, (35)

with two local quantum observablesO1 andO2 and Cρ′(O1,O2) = 〈O1⊗O2〉ρ′−〈O1〉ρ′〈O2〉ρ′ .
Here, ρ′ = ES(ρ) is the evolution of an initial product state ρ according to the dynamical map
ES, while ‖ · ‖ denotes the operator norm (the absolute value of the maximum eigenvalue) and
we have taken the logarithms inside Ī(ES) in Eq. (20) to be binary logarithms log2 (otherwise
the natural logarithm ln d on the right hand side becomes multiplied by a different factor).
So far, we have focused our discussion on the characterization of correlations in the dynamics of
bipartite quantum systems. The approach to measure and estimate bipartite correlations can be
extended to the multi-partite case. In this situation, one has to specify what kind of correlations
are the matter of interest. For instance, one may be interested in the amount of correlations
shared between two parties of the system or between all parties. Figure 8 illustrates a generic
situation where correlations among all systems are investigated. For example, suppose we con-
sider the total amount of correlations, i.e., the amount of correlations shared by all parties. In
that case, if the system S has M parties S1, S2, . . . , SM , we can introduce respective ancillary
systems S′1, S

′
2, . . . , S

′
M as we did in the bipartite case, and prepare a collection of M maximally

entangled states between S1 and S′1, S2 and S′2, etc. [see Fig. 8(A)]. The dynamics is then ap-
plied on the system S we want to study. The amount of total (normalized) correlations in the
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Fig. 8: Schematic illustration of the multipartite correlation measure. (A) Choi-Jamiołkowski
representation of the dynamics. The system is prepared in a product of maximally entangled
states of 2M parties {Sj|S′j} and the dynamics affects only the subsystems Sj . If and only if
the dynamics are correlated, the bipartitions {SiS′i|SjS′j} will be entangled, yielding a nonzero
correlation measure Ī . (B) Schematic depiction of the procedure to estimate a lower bound of Ī .
There, the system is initially prepared in a separable state ρS1 ⊗ ρS2 · · · ⊗ ρSM and correlations
in the dynamics show up as correlations C (see Eq. (38)) in the measurement of suitably chosen
observables Oj . Figure reproduced from [28].

dynamics can then be assessed by

Ī(ES) :=
1

2M log d
S
(
ρCJ
S

∥∥∥ρCJ
S |S1S′1 ⊗ . . .⊗ ρ

CJ
S |SMS′M

)

:=
1

2M log d

{[
M∑

i=1

S
(
ρCJ
S |SiS′i

)
]
− S

(
ρCJ
S

)
}
, (36)

where ρCJ
S |SiS′i = Tr{∀Sj 6=iS

′
j 6=i}(ρ

CJ
S ).

A lower bound for the multipartite setting can be applied as shown in Fig. 8(B), by measuring
correlations. Mathematically the same steps as in the bipartite case [see Eq. (35)] can be applied,
resulting in

Ī(E) ≥ 1

4M ln d

C2
ρ′(O1, . . . ,OM)

‖O1‖2 . . . ‖OM‖2
. (37)

Here, ρ(t) is the joint state after the evolution of an initial product state, O1, . . . ,OM are local
observables for the parties S1, . . . , SM , respectively, and the correlation function is

Cρ(t)(O1, . . . ,OM) = 〈O1 . . .OM〉ρ(t) − 〈O1〉ρ(t) . . . 〈OM〉ρ(t). (38)

This multipartite bound makes investigating correlation dynamics accessible in systems that are
too large for full quantum process tomography, as here the number of measurements increases
only linearly compared to the exponential scaling for full quantum process tomography.
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Fig. 9: Illustration of one scalable route from macroscopic linear Paul traps (upper left) to-
wards large-scale ion-trap quantum processors. Ions can be stored in segmented traps (upper
right), where ion crystals can be controlled locally, and ions can be split, moved around and
merged with ion-crystals in different trapping regions. This allows one to control increasingly
larger qubit registers with high flexibility. Such linear traps can be coupled via junctions, along
which ions can be moved from one trap into neighboring zones, where they can be stored (S) or
manipulated (M). This will allow one to assemble traps into larger two-dimensional trap arrays,
which can be used to host and control large registers of qubits for quantum error correction and
eventually large-scale fault-tolerant quantum computation.

In summary, based on the mapping of quantum dynamics to quantum states in an enlarged
Hilbert space via the Choi-Jamiołkowski isomorphism, in this lecture we have discussed a rig-
orous and systematic method to quantify the amount of spatial correlations in general quantum
dynamics. Furthermore, we have applied the theoretical concepts developed to paradigmatic
physical models and demonstrated their usefulness for the characterization of noise in experi-
mental quantum processors. We expect that noise characterization techniques such as the ones
discussed in this lecture will be of fundamental importance for the study of dynamics in a large
variety of quantum systems. From a practical and more applied standpoint, such tools are likely
to be essential to make further progress in developing and characterizing increasingly larger and
scalable qubits registers, as shown for trapped ions in Fig. 9, to make the dream of large-scale
quantum computers and simulators become a reality.
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