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Forschungszentrum Jülich, 2020, ISBN 978-3-95806-466-9
http://www.cond-mat.de/events/correl20

http://www.cond-mat.de/events/correl20


4.2 Frank Neese, Lucas Lang, Vijay Gopal Chilkuri

1 Introduction

1.1 Why effective Hamiltonians?

Effective Hamiltonians (EHs) occupy an important place in quantum chemistry. EHs serve a
multitude of different purposes. On the one hand, they are vital in the formulation of new
approximate methods that lead to new computationally efficient tools. On the other hand, they
allow one to recast highly complex problems that are difficult to understand into seemingly
simpler problems that are amenable to human analysis. In this latter application, they unfold
their full power by creating models that can be used to highlight the physical essence of the
problem at hand. In many cases, the emerging model Hamiltonians are of low dimension and
can be solved by hand or with very little computational effort. The crucial step is that the matrix
elements of the EH can be recast in terms of effective parameters. The latter are adjustable and
can, for example, be fitted to experiments or higher-level calculations. The benefit of EH theory
is here that: a) the model Hamiltonians are derived from more complete Hamiltonians; hence
the theory provides explicit and concrete expressions that allow the calculation of the model
parameters and b) being derived from first principles, these model Hamiltonians are solidly
grounded in fundamental physics. Thus, the effective Hamiltonians derived in this way do not
just represent a curve fitting exercise of uncertain physical content and interpretation as would
be the case for model Hamiltonians that are only based on physical intuition or conjecture.

The effective Hamiltonian concept can even be taken a step further and effective Hamiltonians
can be derived from more elaborate effective Hamiltonians that themselves are derived from
first-principles physics. The important point is that there is an unbroken chain of logic that
leads by pure deduction from first physical principles to a simple, intuitively appealing, and
physically sound model that can be used to interpret the results of measurements or even the
behavior of entire classes of substances or materials. The benefit of having model Hamiltonians
derived in this way can hardly be overemphasized since the theory does not only provide a con-
crete and unambiguous way to compute the model parameters, but it also makes it clear under
which conditions the model Hamiltonian is valid and when it is expected to break down. A con-
crete example for such a situation that will be discussed in more detail in section 3.2 is the spin
Hamiltonian (SH) used to interpret magnetic measurements (electron paramagnetic resonance,
EPR or nuclear magnetic resonance, NMR) on molecules or solids. The SH is derived conve-
niently from the time-independent relativistic many-particle Schrödinger equation (technically
the Dirac-Coulomb-Breit (DCB) Hamiltonian). It leads to a low-dimensional model Hamil-
tonian that contains the SH parameters as adjustable parameters. These are the g-matrix, the
hyperfine coupling (HFC) matrix, the zero-field splitting (ZFS, in physics often referred to as
the magnetic anisotropy), the quadrupole splitting, the chemical shift and the nuclear spin-spin
coupling. For interacting magnetic systems, the familiar Heisenberg exchange Hamiltonian is
obtained from the theory.

However, once there are enough spins in a given system (for example in clusters containing
a dozen to a few dozen open-shell transition metal ions), even the SH dimensions become
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unmanageable and can reach dimensions of hundreds of millions. Quite frequently, one is only
interested in the lowest few eigenstates of such a system that are thermally accessible over a
given temperature range. In this case, one wants to describe these few magnetic sublevels with
an effective Hamiltonian that can be derived from the enormous SH of the entire system. The
parameters that enter this secondary SH are then functions of all the spins and SH parameters of
the full system. A very simple concrete example would be an S = 5/2 system with strong ZFS
(relative to external magnetic fields). Such a system contains 2S+1 = 6 magnetic sublevels
that, by means of Kramers degeneracy, form three so-called “Kramers doublets”. The latter
can each be described by an effective Hamiltonian with spin S = 1/2. Hence, three pseudo
S = 1/2 systems substitute for the entire S = 5/2 system. We refer to the specialist literature
for further details [1, 2].
In this chapter, we will provide an introduction into the theory of effective Hamiltonians. We
will cover formal aspects in section 2 before proceeding to actual chemical applications in
section 3 that will discuss both computational tools for the calculation of static (“strong” in
physics language) and dynamic electron correlation as well as EHs derived to parameterize
and understand magnetic properties. An example for the combination of both strategies will
conclude our chapter.

1.2 An introduction into quantum-chemical notation

Since we will present the material covered in this chapter mostly from a quantum chemistry
point of view, it is convenient to briefly discuss the point of departure of the theory and introduce
the necessary notation along the way.

1.2.1 One-particle and many-particle Hamiltonians

We start from the nonrelativistic many-particle Hamiltonian in the Born-Oppenheimer (BO)
approximation (clamped nuclei), which is simply given by

ĤBO =
∑
i

ĥ(xi) + 1
2

∑
i 6=j

1

|ri−rj|
+ 1

2

∑
A 6=B

ZAZB
|RA−RB|

(1)

with the one-electron part of the Hamiltonian given by the sum of the kinetic energy and
nucleus-electron attraction terms,

ĥ(xi) = −1
2
∇2
i −

∑
A

ZA
|RA−ri|

. (2)

Here, we consider a system consisting ofN electrons andM nuclei. The electrons are described
by the coordinates xi = (ri, σi), where ri is the set of three position variables for the i’th
electron and σi represents its spin degree of freedom (spin-up, α, ↑ or spin-down, β, ↓). The
nuclei are assumed to be at rest at positions RA and have nuclear charges ZA (for the A’th
nucleus). Hartree atomic units (4πε0 = ~ = e = me = 1) [3] are used throughout.
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In this chapter, we will remain within the confines of the time-independent Schrödinger equation

ĤBOΨI(x|R) = EI(R)ΨI(x|R), (3)

where x and R denote the collection of all electronic and nuclear degrees of freedom respec-
tively and the notation Ψ(x|R) indicates that the many particle wavefunction depends explic-
itly on the electron coordinates and parametrically on the nuclear coordinates. In order to
be concise, we will follow the convention of using uppercase letters and indices for many-
electron quantities and lowercase letters, symbols, and indices for one-electron quantities. Thus,
I = 0, ...,∞ enumerates the possible electronic eigenstates of the BO Hamiltonian.
While conceptionally simple, the BO Schrödinger equation cannot be solved analytically even
for a two-electron system such as the helium atom. However, very powerful approximations
have been developed over the course of the last century. Many of them begin with a model of
effective independent particles (Hartree-Fock method, HF). In the HF method one replaces the
many-particle equation by an effective one-particle equation of the form

F̂ ({ψ})ψi(x) = εiψi(x). (4)

The HF equations are readily derived from the BO Schrödinger equation and the variational
principle [3]. The effective one-particle operator F̂ depends on its own solutions (the set of
one-particle functions {ψ}) and yields the orbital energies εi and orbitals ψi(x). Given the
dependence of F̂ on its own solutions, the HF equations must be solved by iteration starting
from a set of trial orbitals. We will write down an explicit form of the Fock operator after
introducing second-quantized notation (see Eq. (13) below).
In general, the HF equations do not only have N solutions, but an infinite number of solutions.
The lowest N orbitals are referred to as “occupied orbitals” of the system and they are usually
denoted with the indices i, j, k, l. The remaining orbitals are the leftover solutions of the varia-
tional principle and are referred to as unoccupied or “virtual” orbitals with indices customarily
denoted by a, b, c, d. This corresponds to the particle-hole convention frequently encountered
in physics. General orbitals are given the indices p, q, r, s.
The set of occupied orbitals {ψ} are the building blocks of the HF wavefunction, which is an
antisymmetrized product (“Slater determinant”)

ΨHF(x1 . . .xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

... . . . ...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣
≡ |ψ1...ψN |. (5)

Occasionally, an overbar is used in order to indicate occupation of an orbital with a spin down
electron, while no overbar indicates a spin-up electron, e.g. |ψ1ψ̄1...ψ̄i...ψj...ψN |. The HF wave-
function is a mean-field approximation to the mind-boggling complexity of the exact ground
state many-particle wavefunction.
It is our experience that much confusion arises from not properly differentiating between the
many-particle and single-particle levels. Hence, in this chapter, we will make a dedicated effort
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to be clear at which level we are arguing. We note in passing that only the eigenspectrum of
the many-particle Hamiltonian (and the associated properties of the many-particle wavefunc-
tions) are directly related to observable quantities. The orbitals and orbital energies are not
observables and they are not related to observable quantities. For the purpose of the theory,
they are simply auxiliary quantities used to construct better and better approximations to the
many-particle wavefunction(s) of the system. In chemistry, the term “state” is reserved for the
many-particle eigenfunctions of the Schrödinger equation (or approximations thereof). Orbitals
are not referred to as “states”. Hence, in chemical language, there also can be no notion of
“occupied states” or “unoccupied states”.

1.2.2 Electron correlation and the correlation energy

While the HF method yields a fairly good approximation to the total energy of the system
(about 99.8% correct), the remaining 0.2% error are very large on the chemical energy scale.
For a somewhat larger system the error can easily reach 10 Eh which translates to more than
270 eV. Hence, in absolute terms, the error of the HF approximation is very large and one
needs to proceed beyond the HF approximation. By definition, the difference between the exact
energy and the HF energy is referred to as the “correlation energy”

Ecorr = Eexact − EHF. (6)

By definition, the correlation energy is always negative. If the system is conceptionally well-
described by a single Slater determinant, then all of the correlation energy is referred to as “dy-
namic” correlation energy. The physical picture being that the instantaneous electron-electron
interaction provides a correction to the mean-field HF method. If, however, the system is not
well described by a single Slater determinant, the energy gained by choosing a qualitatively cor-
rect “ansatz” is referred to as “static” correlation energy. An example would be the H2 molecule
towards its dissociation limit that requires two Slater determinants for a qualitatively correct de-
scription. From this description, it is already evident that the distinction between static and
dynamic correlation is vague, ill-defined, and not unique. We will not dwell on the subject here.
The shortcomings of the HF model are conceptually readily remedied. To this end, we will
make use of second-quantization notation and introduce the electron replacement operators

aqp = a†qap, (7)

where a†q and ap are the familiar fermion creation and annihilation operators, respectively. Since
most of the presented theory as well as the BO Hamiltonian do not explicitly contain spin
operators, it is convenient to define the spin-traced excitation operators (also called “generators
of the unitary group”)

Eq
p = aq̄p̄ + aqp. (8)

The operator Eq
p is a singlet excitation operator, i.e., it does not change the total spin of the state

on which it acts.
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Obviously, these operators refer to a specific one-particle basis. This is usually taken to be
the set of HF orbitals. The HF orbitals themselves can not, however, be exactly calculated in
practice. In quantum chemistry, it is common to expand them into a fixed, finite set of atom-
centered basis functions {ϕ} as

ψi(x) =
∑
µ

cµiϕµ(x). (9)

The actual functional form of the basis function is usually taken to be of the Gaussian type but
details would lead too far astray here.
In terms of the second-quantized operators, the BO Hamiltonian reads

ĤBO =
∑
p,q

hpqE
p
q + 1

2

∑
p,q,r,s

gqspr(E
p
qE

r
s − Ep

sδqr). (10)

Since the BO Hamiltonian can be written entirely in terms of singlet excitation operators, it is
clear that it conserves the total spin S. In Eq. (10), the nuclear repulsion term has been dropped
for convenience. Furthermore, the one- and two-electron integrals have been introduced:

hpq =
〈
ψp|ĥ|ψq

〉
, (11)

gqspr =
(
ψpψq|ψrψs

)
≡
〈
ψpψr|ψqψs

〉
. (12)

In chemistry the round bracket notation (11|22) is more common, while in physics the bracket
notation 〈12|12〉 is usually preferred (‘1’ and ‘2’ refer to the coordinates of electrons 1 and
2, respectively). The second-quantized BO operator is only equivalent to its first-quantized
counterpart in the limit that the one-particle basis is mathematically complete. This is never the
case in practice and consequently, the second-quantized BO Hamiltonian can be regarded as the
projection of the BO Schrödinger equation onto the finite one-particle basis.
With the definition of the one- and two-electron integrals, we can give an explicit form of the
Fock operator. It is represented by the matrix

Fpq = hpq +
∑
k

[〈
ψpψk|ψqψk

〉
−
〈
ψpψk|ψkψq

〉]︸ ︷︷ ︸
≡〈pk||qk〉

, (13)

where the antisymmetrized two-electron repulsion integral 〈pk||qk〉 has been introduced. The
negative term in the sum over k is the “exchange” term. It arises from the electrostatic repulsion
of the electrons among each other in conjunction with the antisymmetry requirements of the
fermionic many-particle wavefunction. It does not represent an “exchange force”.
Given the second-quantized notation, it is straightforward to write down an expansion of the
many-particle ground-state wavefunction:

|Ψ0〉 = |ΨHF〉+
∑
i,a

Ca
i |Φai 〉+

(
1
2!

)2
∑
i,j,a,b

Cab
ij

∣∣Φabij 〉+
(

1
3!

)2
∑

i,j,k,a,b,c

Cabc
ijk

∣∣Φabcijk〉+ ... (14)

Here, the building blocks |Φa...i... 〉 are determinants in which one-, two-, three- . . . up toN orbitals
have been replaced in the HF determinant, e.g.

|Φai 〉 = aai |ΨHF〉 (15)
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etc. In the language of second quantization, the HF determinant acts as the “Fermi vacuum”.
The coefficients Ca

i ... are wavefunction parameters that must be determined in one way or
another. If this is done variationally, one refers to the method as “configuration interaction”
(CI). If perturbation theory is used, “many body perturbation theory” (MBPT) arises. If CI is
done with all possible Slater determinants, the method of Full CI (FCI) arises. It represents
the exact solution of the Schrödinger equation in the chosen finite basis. Since the number of
possible Slater determinants grows factorially, this method is restricted to very small systems.
However, it serves as an invaluable benchmark for approximate methods.
Truncated CI expansion have the very undesirable property of not being size-consistent, i.e., the
energy of two non-interacting systems is not the sum of the energy of the individual systems
calculated in the same approximation. Hence, truncated CI has essentially been abandoned.
The method of coupled-cluster (CC) theory does not suffer from this shortcoming. Here, one
uses an exponential ansatz

|Ψ0〉 = exp(T̂ ) |ΨHF〉 (16)

with the cluster operator being the sum of one-, two-, . . . particle excitation operators,

T̂ = T̂1 + T̂2 + ... =
∑
i,a

tai a
a
i + 1

4

∑
i,j,a,b

tabij a
b
ja
a
i + ... (17)

CC theory is nonlinear and therefore more complex than CI. However, it is size-consistent and
extensive at any truncation level of the cluster operator and consequently the method of choice.
Truncated MBPT is also size-consistent and frequently used in chemistry.

1.2.3 Relativistic and external field terms

In order to relate to the material presented in section 3, we need to briefly mention extensions
to the BO Hamiltonian. Next to many other terms, these corrections arise either from relativity
or the presence of external electric or magnetic fields.
All relativistic terms can be derived from the DCB Hamiltonian and are usually grouped into
spin-free (“scalar”) and spin-dependent terms. Among the numerous terms that arise, the most
important relativistic term for our discussion is the spin-orbit coupling (SOC). The SOC is
in general a complex two-electron operator. Here, we represent it in a spin-orbit mean-field
(SOMF) approximation [4, 5] that can be written in the form

ĤSOC ≈
∑
i

hSOC
i ŝi. (18)

Here, ŝi is the spin of the i’th electron and hSOC is an effective SOC operator with purely
imaginary matrix elements.
Since the BO Hamiltonian is spin-free, it commutes with the total spin Ŝ =

∑
i ŝi and conse-

quently, the eigenfunctions of the BO Hamiltonian can be labeled according to two additional
quantum numbers S (the total spin) and M = S, S−1, ...,−S (the projection of the total spin
onto the z axis). At the level of the BO Hamiltonian all M -components (“magnetic sublevels”)
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of a given S and electronic state I are exactly degenerate (they form a “spin multiplet”). This
degeneracy is lifted by the SOC which mixes states of different S and M . It is essential to prop-
erly differentiate between the total spin Ŝ and the individual spins ŝi when discussing magnetic
properties.
Other contributions to the Hamiltonian will be briefly visited in section 3.2.

2 Theory of effective Hamiltonians

2.1 Effective Hamiltonians via similarity transformation

Let H be the “complete” Hamiltonian describing a quantum system, e.g. the BO or DCB
Hamiltonians introduced above. Its eigenvalues and eigenstates fulfill the time-independent
Schrödinger equation

H|ΨI〉 = EI |ΨI〉. (19)

As already mentioned in the introduction, it can be inconvenient to work with this Hamiltonian
if it has a large number of eigenstates and eigenvalues, since usually one is only interested in
the low-energy part of the spectrum. One can then define an “exact” effective Hamiltonian that
acts in a subspace of reduced dimensionality and reproduces the exact eigenvalues for a limited
number of eigenstates of H ,

Heff|Ψ̃I〉 = EI |Ψ̃I〉. (20)

The eigenstates |Ψ̃I〉 need not be identical to the true eigenstates |ΨI〉. However, they are usually
required to provide a qualitatively correct physical description of the true eigenstates.
One can formulate effective Hamiltonian theory very generally on the basis of similarity trans-
formations. This was done by Shavitt and Redmon [6] and we follow their treatment in the
following. The theory was also summarized in a recent dissertation [7]. Let H be the com-
plete Hilbert space on which H acts. A given basis of this Hilbert space is then divided into
two orthogonal subsets: The “model space” H0 with projector P =

∑
I∈model |ΦI〉〈ΦI | and the

complementary or outer space Houter with projector Q = 1−P =
∑

K∈outer |ΦK〉〈ΦK |. In the
following, we use indices I, J, ... to refer to states in the model space and indices K,L, ... to
refer to states in the outer space. The model space will be the space on which the effective
Hamiltonian acts. Once the model space is chosen, an arbitrary operator A can be decomposed
as [6]

A = AD + AX , (21)

where
AD = PAP +QAQ (22)

is called its block diagonal part and

AX = PAQ+QAP (23)

is called its block off-diagonal part. The essence of effective Hamiltonian theory can now be
described as finding a so-called decoupling operator U such that the similarity-transformed
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Hamiltonian
H̃ = U−1HU (24)

is block-diagonal [6]. The effective Hamiltonian is then defined as the model-space part of the
similarity-transformed Hamiltonian, i.e.

Heff = PH̃P. (25)

If one assumes that the energies EI and model-space states |Ψ̃I〉 fulfill the eigenvalue equation
(20), it is easy to show that

HU |Ψ̃I〉 = UH̃|Ψ̃I〉 = EIU |Ψ̃I〉. (26)

This shows that |ΨI〉 = U |Ψ̃I〉 are exact eigenfunctions and the EI the corresponding exact
eigenenergies of the full Hamiltonian H . The requirements formulated so far still leave many
different possible choices for the decoupling operator U .

2.2 Choice of the decoupling operator: Bloch and van Vleck

We already mentioned that the eigenstates of the effective Hamiltonian are usually required to
give a qualitatively correct description of the true eigenstates.
One common choice that fulfills this requirement consists in setting UD = 1 [6], where UD is
defined as the block diagonal part (see Eq. (22)) of the decoupling operator U . This leads to

|Ψ̃I〉 = P |ΨI〉, (27)

i.e., the eigenstates of the effective Hamiltonian are orthogonal projections of the exact eigen-
states on the model space. For this choice, the effective Hamiltonian, which is named after
Bloch [8], can be written

Heff = PHΩ, (28)

where the so-called wave operator Ω is defined as

Ω = UP. (29)

The wave operator is a solution of the equation

ΩHΩ = HΩ, (30)

which is a nonperturbative version [9] of the so-called generalized Bloch equation [10]. Since
its eigenstates are – as projections on the model space – in general not orthogonal, the Bloch
effective Hamiltonian is in general not Hermitian.
Another choice for U is given by the canonical Van Vleck approach [6], where the decoupling
operator is defined as

U = exp(G) (31)
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with G being an anti-Hermitian (G† = −G) and block off-diagonal (GD = 0) operator. Since
G is anti-Hermitian, U is unitary with this choice (U †U = 1). Hence, the eigenstates of the
effective Hamiltonian are orthogonal,

〈Ψ̃I |Ψ̃J〉 = 〈Ψ̃I |U †U |Ψ̃J〉 = 〈ΨI |ΨJ〉 = δIJ . (32)

This also means that the effective Hamiltonian in the canonical Van Vleck approach is Her-
mitian. One can show that the eigenstates of the Bloch (label B) and the canonical van Vleck
(label C) effective Hamiltonians are related by symmetric orthonormalization [6],

|Ψ̃C
I 〉 =

∑
J

|Ψ̃B
J 〉S

−1/2
JI . (33)

Here, SJI = 〈Ψ̃B
J |Ψ̃B

I 〉 is the positive-definite overlap matrix of the Bloch eigenstates. It should
be mentioned that the canonical van Vleck effective Hamiltonian turns out to be identical to
the effective Hamiltonian introduced by des Cloizeaux [11], as discussed by Klein [12] and
Brandow [13, 14].
If the eigenstates and eigenvalues of the effective Hamiltonians are known, it is possible to write
them via a spectral decomposition. The Bloch effective Hamiltonian can be written as

Heff
B =

∑
I

|Ψ̃B
I 〉EI〈Ψ̃D

I |, (34)

where
|Ψ̃D
I 〉 =

∑
J

|Ψ̃B
J 〉S−1

JI (35)

defines the state that is dual (also called contravariant) to the state |Ψ̃B
I 〉. The dual states are the

unique set of states that are biorthogonal to the original set of Bloch eigenstates,

〈Ψ̃D
I |Ψ̃B

J 〉 = δIJ . (36)

The canonical van Vleck / des Cloizeaux effective Hamiltonian can be written as

Heff
C =

∑
I

|Ψ̃C
I 〉EI〈Ψ̃C

I |. (37)

The quality of the chosen model space can be quantitatively defined by the norm of the projected
states |Ψ̃B

I 〉, which is given by the diagonal of the overlap matrix SII . The closer these norms are
to 1, the less severe is the non-Hermiticity of the Bloch effective Hamiltonian and the smaller
is the difference between the Bloch and canonical van Vleck effective Hamiltonian.

2.3 Partitioning method

Another approach to the construction of effective Hamiltonians, called the partitioning method,
was introduced by Löwdin [15–17]. It starts by dividing the Hilbert space into a model space
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A (corresponding to H0 from above) and a remainder B (corresponding to Houter from above).
The time-independent Schrödinger equation can then be written in block matrix form as(

HAA HAB

HBA HBB

)(
CA

CB

)
= E

(
CA

CB

)
. (38)

This can be rewritten in terms of two coupled equations

HAACA + HABCB = ECA, (39)

HBACA + HBBCB = ECB. (40)

From Eq. (40) one can obtain

CB = (E −HBB)−1HBACA, (41)

which can be inserted into Eq. (39) to eliminate CB and obtain

Heff
AA(E)CA = ECA. (42)

The energy-dependent A-space effective Hamiltonian is given by

Heff
AA(E) = HAA + HAB(E −HBB)−1HBA. (43)

One can see that the effective Hamiltonian consists of the A block of the original Hamiltonian
“dressed” with the matrix HAB(E −HBB)−1HBA. The inverse (E −HBB)−1 exists if E does
not overlap with the spectrum of HBB. Diagonalization of the effective Hamiltonian Eq. (43)
gives CA, the projection of the exact eigenstate with energy E on the model space. A drawback
is that the effective Hamiltonian is a function of the exact energy E, which is unknown unless
one solves the full problem first.

2.4 Intermediate effective Hamiltonians

In section 2.2 we made the assumption that there is a one-to-one mapping between eigenstates
|Ψ̃I〉 of the effective Hamiltonian in the model space and the same number of exact eigen-
states |ΨI〉. Sometimes this identification is ambiguous or not even possible. For example,
the qualitatively correct description of the electronic ground state of the Be atom requires two
electron configurations. Apart from the dominant (1s)2(2s)2 configuration, also (1s)2(2p)2 is
needed [18]. This means that at least these two configurations should be included in the model
space. However, it is not possible to identify a bound excited state of the Be atom that has
(1s)2(2p)2 as its dominant configuration [19]. In such a case, the effective Hamiltonian is not
well-defined and its perturbative expansion (see the next section) will often diverge.
To solve this problem, Malrieu and coworkers have introduced the concept of intermediate
effective Hamiltonians (IEH) [20]. One defines an IEHH int by the requirement that the equation

H intP |ΨI〉 = EIP |ΨI〉 (44)
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from Bloch effective Hamiltonian theory is only fulfilled for a number Nm of exact eigenstates
|ΨI〉 that is smaller than the dimension of the model space. The whole model space is divided
into the “main model space” containing Nm determinants that dominate the states of interest
and the “intermediate space” containing all remaining determinants. They explicitly contribute
to the solutions of interest and act as a “buffer space” between the main model space and the
outer space. Eq. (44) apparently does not define the IEH uniquely; hence there is a large variety
of different intermediate Hamiltonians.
If the IEH gives only a single exact energy and projection of an exact eigenstate, it is called
a state-specific intermediate Hamiltonian. An example of this is the partitioning technique
effective Hamiltonian (Eq. (43)) introduced in the last section [19].

2.5 Perturbative expansion of effective Hamiltonians

The definitions of the effective Hamiltonians given in the previous sections all require that the
solution of the full problem is known first, i.e., they do not provide a computational simplifi-
cation. Perturbation theory provides a means to construct these effective Hamiltonians without
prior knowledge of the exact solutions. Here, the Hamiltonian is separated into a zeroth-order
Hamiltonian and a perturbation,

H = H0 + V. (45)

The eigenvalues and eigenstates of the zeroth-order Hamiltonian must be known,

H0|Ψ (0)
I 〉 = E

(0)
I |Ψ

(0)
I 〉, (46)

and V is supposed to be small compared to H0.
The derivation of the final equations would go beyond the scope of the present chapter. There-
fore, we just present the results together with the relevant literature references. We also restrict
ourselves to expansions up to second order, which are most relevant in practice.

2.5.1 Quasidegenerate perturbation theory

The expansion of the Bloch effective Hamiltonian in orders of the perturbation operator V (also
known as quasidegenerate perturbation theory, QDPT) gives up to second order [6]

〈Ψ (0)
I |H

eff(0−2)
B |Ψ (0)

J 〉 = HIJ +
∑
K

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E
(0)
J − E

(0)
K

. (47)

This effective Hamiltonian is the “bare” Hamiltonian within the model space plus a “dressing”,
a form that was already observed for the partitioning technique effective Hamiltonian above.
From the presence of the index J in the denominator, it becomes apparent that the effective
Hamiltonian is not Hermitian. Up to second order (but not at higher orders), it turns out that the
canonical Van Vleck / des Cloizeaux effective Hamiltonian is simply the Hermitization of the
corresponding Bloch second-order effective Hamiltonian [6],

H
eff(0−2)
C =

1

2

(
H

eff(0−2)
B + H

eff(0−2)
B

†)
. (48)
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If all states in the model space have the same 0th order energy E(0)
I = E(0), the 2nd order Bloch

and canonical van Vleck effective Hamiltonians are identical and given by

H
eff(0−2)
IJ = HIJ +

∑
K

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E(0) − E(0)
K

. (49)

This is the common degenerate perturbation theory (DPT) expression up to second order. For
a one-dimensional model space (where the effective Hamiltonian is equal to the energy), this
reduces to the well-known nondegenerate Rayleigh-Schrödinger perturbation theory formula.

2.5.2 Expansion of the partitioning technique effective Hamiltonian

One can show that [17](
E−HBB

)−1
=
(
E−H(0)

BB

)−1
+
(
E−H(0)

BB

)−1
VBB

(
E−H(0)

BB

)−1

+
(
E−H(0)

BB

)−1
VBB

(
E−H(0)

BB

)−1
VBB

(
E−H(0)

BB

)−1
+ . . .

(50)

If this is inserted into Eq. (43), one obtains the well-known Brillouin-Wigner (BW) perturbation
series. Truncated at the 2nd order, the BW effective Hamiltonian is

Heff
AA(E) ≈ HAA + HAB

(
E−H(0)

BB

)−1
HBA. (51)

In a basis of eigenstates |Ψ (0)
I 〉 ∈ A and |Ψ (0)

K 〉 ∈ B of the 0th order Hamiltonian, one can use
〈Ψ (0)

K |H
(0)
BB|Ψ

(0)
L 〉 = E

(0)
K δKL to write the effective Hamiltonian as

Heff
IJ(E) ≈ HIJ +

∑
K∈B

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E − E(0)
K

. (52)

If a good approximation E(0) to the exact energy E is known, this can be simplified to an
energy-independent effective Hamiltonian

Heff
IJ ≈ HIJ +

∑
K∈B

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E(0) − E(0)
K

(53)

that is equivalent to the so-called “shifted Bk” [21] method. If there is a one-to-one map be-
tween the states spanning the model space A and the same number of exact eigenstates of the
Hamiltonian, then the same model space can be used for all of them, but the state-specific ef-
fective Hamiltonians Eq. (53) are in general different for each of those states. However, in
the special case that the same E(0) is a reasonable zeroth-order energy for all the states in the
model space, Eq. (53) can be considered as an effective Hamiltonian delivering all energies and
projections on the model space simultaneously. One can see that this is identical to the DPT
expression discussed in the previous section.
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2.5.3 Generalized degenerate perturbation theory

We finally mention the perturbative expansion of the first state-specific intermediate Hamilto-
nian introduced by Malrieu et al. in their seminal paper [20]. It is called generalized degenerate
perturbation theory (GDPT). Up to second order, the intermediate Hamiltonian is given by

H
int(0−2)
IJ = HIJ +

∑
K

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E(0) − E(0)
K

. (54)

This is equivalent to the shifted-Bk effective Hamiltonian (see Eq. (53)) as was already re-
cognized by Malrieu and coworkers [20]. This expression also forms the basis for the recently
introduced dynamic correlation dressed complete active space method (DCD-CAS(2)) [22,23].
The results of this section show that often one can end up with similar or even identical final
expression using quite different starting points.

3 Examples for effective Hamiltonians

3.1 The Heisenberg exchange

The Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian [24–26] is a model Hamiltonian which
is one of the simplest and most widely used Effective Hamiltonian. The Heisenberg Hamilto-
nian is a model that can describe interactions between unpaired electrons (belonging to metal
atoms or organic radicals) localized on spatially separated atomic centers or groups of atoms
constituting a molecule. Such a model is of considerable importance not only in the understand-
ing of the electronic structure and properties of single molecule magnets (SMMs) but also for
the design of molecules capable of showing a high-spin ground state. The Heisenberg-Dirac-
van Vleck Hamiltonian reads

ĤHeisenberg = −2JabŜa · Ŝb. (55)

It is an effective Hamiltonian that works in the basis of spin states of the interacting sites and
contains the adjustable parameter Jab that is determined by fitting magnetization data (or other
magnetic measurements). The task at hand is to elucidate how this parameter can be understood
and also quantitatively calculated in terms of first-principles electronic structure theory.

3.1.1 Partitioning of the Hamiltonian and definition of Model space

Consider the simplest valence space made up of two electrons of opposite spin on centers A
and B that are spatially separated. The Hilbert space of these two electrons in two orbitals is
spanned by the Slater determinants{

|ab̄〉 , |āb〉 , |aā〉 , |bb̄〉
}
,

where a and b refer to the valence local orbitals on centers A and B with a and ā denoting
the orbital at A occupied by an α or a β electron respectively. The determinants of the type
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{
|ab̄〉 and |āb〉

}
belong to a configuration with one electron per center. These configurations

are referred to as ‘Neutral’ configurations. On the other hand the centers with two (zero) elec-
trons on a site are known as ‘Ionic’ configurations. The Ionic configurations can be expected
to be high in energy as the two electrons occupy orbitals that are spatially closer and therefore
suffer greater Coulomb repulsion compared to the Neutral configuration where they are spa-
tially separated. Therefore, in local orbital basis, the low energy spectrum will be dominated
by states made up dominantly of the Neutral configurations which will be well separated from
states made up of Ionic configurations. The task of the Heisenberg Hamiltonian is then to de-
scribe the ground state of such systems in terms of the Neutral determinants only taking into
account the effect of the Ionic states in an effective manner.
The full Hamiltonian in terms of the four determinants can be written as


|ab̄〉 0 Kab tab tab
|āb〉 Kab 0 tab tab
|aā〉 tab tab U Kab

|bb̄〉 tab tab Kab U

, (56)

where we have taken the energy of the Neutral determinants as origin of energy. The matrix-
elements of the Hamiltonian are as follows: the tab is the matrix-element 〈ab̄|H|bb̄〉 and de-
scribes the movement of the electrons from site A to B, the direct exchange integral between
orbitals a and b is represented by Kab = (ab|ba), and finally the Coulomb integral (electron-
electron repulsion) on orbitals a and b is given by U = (aa|aa) = (bb|bb).
The low energy spectrum of this Hamiltonian, i.e., one singlet and one triplet state, is domi-
nated by the Neutral determinants whereas the higher energy states are dominated by the Ionic
determinants. This intuition leads to a natural partition of the Hamiltonian given above into a
model space and an outer space. The model space here is made of the two Neutral determinants
whereas the outer space constitutes the two ionic determinants. The two determinants in the
model space give rise to a singlet state and a triplet configuration which can be written as

|T0〉 =
1√
2

(
|ab̄〉+ |āb〉

)
, (57)

|SN〉 =
1√
2

(
|ab̄〉 − |āb〉

)
, (58)

where T0 signifies theMS = 0 component of the triplet state and the SN signifies that the singlet
is made up of neutral determinants. Note that both the singlet and triplet configurations are of
gerade(g) symmetry. The outer space is made up of purely singlet configurations composed of
ionic configurations which can be written in g and u symmetry combinations such as

|SgI 〉 =
1√
2

(
aā− bb̄

)
, (59)

|SuI 〉 =
1√
2

(
aā+ bb̄

)
. (60)



4.16 Frank Neese, Lucas Lang, Vijay Gopal Chilkuri

In this basis, the above Hamiltonian given in Eq. (56) is transformed as follows


|T0〉 −Kab 0 0 0

|SN〉 0 Kab 2tab 0

|SgI 〉 0 2tab U+Kab 0

|SuI 〉 0 0 0 U+Kab

. (61)

Here, we have also partitioned the Hamiltonian into a model space which is the upper left block
and the outer space which is the lower right one. Notice that the neutral singlet SN only interacts
with the ionic singlet of the same spatial symmetry i.e., SgI . There are a few important points
that one realizes from the above form of the Hamiltonian which are as follows:

• Naturally, the triplet state T0 does not interact with any of the other three states and
therefore it does not change in energy. However, the energy of the triplet state is already
lower than the singlet state by 2Kab which means that in the absence of the interaction
with the outer space (for, e.g., due to symmetry reasons), the ground state naturally tends
towards a triplet state. This implies that the system can behave as a ferromagnet due the
orthogonality of a and b orbitals which can be artificially or physically enforced.

• The singlet state, on the other hand, interacts with the ionic singlet state of gerade g
symmetry. Therefore it is influenced by the outer space configurations. This always
results in the stabilization of the lowest singlet state. In the case of large interaction
between a and b given by 〈ab̄|H|bb̄〉, this might invert the energetic ordering of the triplet
and singlet states leading to a low spin singlet ground state and an antiferromagnetic
coupling.

3.1.2 Derivation of the Effective Spin Hamiltonian via QDPT

Here we shall describe how the Heisenberg Hamiltonian given in Eq. (55) can be derived by
using QDPT, as described in 2.5.1, and applied to the partitioned Hamiltonian given in Eq. (61).
In order to see the expression for the “effective” interaction Jab, it is instructive to investigate
the g symmetry block of the Hamiltonian given in Eq. (62) [27], |T0〉 −Kab 0 0

|SN〉 0 Kab 2tab
|SgI 〉 0 2tab U+Kab

. (62)

In order to derive the Heisenberg Hamiltonian, we first begin by defining the basis representa-
tions of the model space. The model space of the Heisenberg Hamiltonian contains only neutral
configurations, i.e., configurations which show only isotropic spin-spin interaction. Therefore,
we can adopt a more compact notation which only takes into account the spin degrees of free-
dom of the electron occupying orbitals a and b such as{

|1
2
,Msa〉

}
= {|↑〉a , |↓〉a} , (63){

|1
2
,Msb〉

}
= {|↑〉b , |↓〉b} . (64)
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Subsequently, the operators Ŝa, Ŝb can be defined as

Ŝa = Ŝ+
a + Ŝ−a + Ŝza, (65)

Ŝb = Ŝ+
b + Ŝ−b + Ŝzb , (66)

where the operators Ŝ+, Ŝ− are the spin ladder operators and the Ŝz gives the z component of
the spin S. Here, Ŝa and Ŝb operators act on model space representations |1

2
,Msa〉 and |1

2
,Msb〉

respectively.
Given this basis of the model space, operators and the Hamiltonian defined in Eq. (55), the
matrix form of the model Hamiltonian can be written as[ ]

|↑, ↓〉 Jab −Jab
|↓, ↑〉 −Jab Jab (67)

with ↑ and ↓ representing the Ms = 1
2

and Ms = −1
2

components of S = 1
2

respectively. The
value of Jab can then be derived from QDPT based upon Eq. (62) at second order and takes the
following form

2Jab = 2Kab −
4t2ab
U
. (68)

Therefore, using the above expression for Jab, the Heisenberg Hamiltonian can finally be de-
rived as given in Eq. (55). Note that the operators Ŝa and Ŝb in Eq. (55) only describe the
isotropic spin-spin interaction between the two electron spins assuming they are fixed on cen-
ters A and B respectively.

3.1.3 Physical interpretation of Jab

Using the above derivation, one can analyze the physics described by the Heisenberg exchange
Jab, which is an effective parameter. As shown in Eq. (68), Jab contains the effect of both the
direct exchangeKab and what is known as the kinetic exchange effect represented by the second
term of Eq. (68):

Direct Exchange: 2Jdirect
ab = 2Kab, (69)

Kinetic Exchange: 2Jkinetic
ab = −4t2ab

U
. (70)

Therefore, the nature of the exchange between sites A and B will be described by these two
factors. The direct exchange Kab has the effect of making Jab more positive, i.e., stabilizing the
high-spin state (triplet), whereas the kinetic exchange terms leads to a more negative Jab and
therefore stabilizes the low-spin state (singlet).
This also suggests how one can control and predict the nature of coupling by looking at the
geometry (and hence the symmetry) of a given molecule. As described in the previous section
if one orients the two magnetic orbitals a and b, such that their interaction is 0 due to symmetry,
the term 〈ab̄|H|bb̄〉 vanishes and the coupling is only due to the direct exchange Kab which is
always positive leading to a ferromagnetic coupling. In this manner, we can also predict new
materials with the desired coupling and ground state. The “effective” Hamiltonian parameter
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Jab therefore results from a competition between these two contributions and shows how one
can compress information efficiently without any loss in the described physics. Herein lies the
power of effective and model Hamiltonian.
Here we have derived the Heisenberg Hamiltonian for the simplest case of two electrons in
two valence orbitals. The Heisenberg Hamiltonian can of course be applied to multi-center
molecules with more than one electron per center in which case the general form of the Hamil-
tonian is similar to Eq. (55) with summation over all nearest neighbors 〈ab〉. Note that in the
case of a large number of interacting centers, a first principles treatment of the resulting molec-
ular system becomes complicated due to the presence of a large number of open-shell electrons
coupling to give a low-spin ground state. However, the physics of the problem remains largely
the same.
A final point concerns the physics contained in the coupling term Jab which is simple enough to
describe in the case of two electrons. Such systems can be realized in Copper dimers and have
been extensively studied by first principles calculations [28–30]. The detailed physical effects
contained in Jab turn out to be quite more complicated in reality and have been a subject of
study for a long time [27].

3.2 The spin Hamiltonian in EPR and NMR spectroscopy

The spin Hamiltonian (SH) is a major asset in the analysis of magnetic resonance experiments.
The massive simplification that the SH offers, is that it only contains the effective electron spin
(Ŝ), the nuclear spins (̂I), and external magnetic fields (B) but makes no explicit reference to
electronic coordinates, molecular geometry, or any of the intricacies that render the application
of the exact (relativistic) many particle Hamiltonian so difficult. The price to pay for this enor-
mous simplification is that the SH contains adjustable parameters that are usually fitted to the
results of magnetic measurements. A fairly standard SH may be written:

Ĥspin = βBgŜ + ÎAŜ + ŜDŜ + ÎQÎ + ... (71)

(β is the Bohr magneton). The individual terms are:

• βBgŜ is the molecular Zeeman term that describes the interaction of the electron spin
with an external magnetic field B.

• ÎAŜ represents the hyperfine interaction that describes the interaction of an electron spin
with the nuclear spin of a given nucleus.

• ŜDŜ is the zero-field splitting (ZFS) that describes the interaction of the unpaired elec-
trons among themselves.

• ÎQÎ is the quadrupole splitting that describes the interaction of the electric field gradient
with the quadrupole moment of a nucleus.
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All quantities g, A, D and Q are 3×3 tensors. Their elements are the adjustable parameters
mentioned above. The SH acts on the space of spin functions

|SMIMI〉 = |SM〉 ⊗ |IMI〉 (72)

that has the (small) dimension of (2S+1) (2I+1). The matrix elements of the SH are straight-
forward to calculate using standard angular momentum operator algebra. The corresponding
eigenvalue problems are of low dimension and can usually be solved with paper and pencil or
very quickly numerically with a computer. The effective Hamiltonian approach enters the stage
upon asking the question: “how are the SH parameters related to the actual electronic structure
of my system?” Or, in other words, how do they relate to the (relativistic) eigenfunctions of the
molecular Schrödinger equation. Below, we will derive the equation for g as an illustration of
how the general argument proceeds.
The most straightforward connection is based on exploiting the partitioning method of section
2.3; see Eqs. (42), (43), and (53). To proceed from these equations, we need to define the nature
of the ‘A’ and ‘B’ spaces and how we define the full Hamiltonian. Let us assume that we have
solved the non-relativistic (BO) Schrödinger equation exactly, such that we know the entire
spectrum of eigenstates:

ĤBO

∣∣ΨSMI 〉
= EI

∣∣ΨSMI 〉
. (73)

Of course, this is entirely impractical, but we will still proceed along these lines for the sake of
the conceptual argument. Since the BO Hamiltonian is spin-free, the total spin of the system and
its projection on the z-axis are good quantum numbers and hence, we can label the eigenstates
as
∣∣ΨSMI 〉

. At the level of the BO Hamiltonian, these states are (2S+1)-fold degenerate. This
degeneracy is then lifted by relativistic effects and external magnetic fields. If we are interested
in the splittings of the ‘magnetic sublevels’ M = S, S−1, ...,−S of the electronic ground state
then it follows naturally to define the ‘A’ set as the 2S+1 states belonging to the ground state
multiplet (we assume that there are no other degeneracies than the spin degeneracies). The ‘B’
set then consists of the infinite number of excited states. The splittings induced by external
magnetic fields and relativistic effects are relatively small – usually (but not always) on the
order of only 1 cm−1 (roughly 5 · 10−6 atomic units). On the other hand, the excited states are
often > 5000–10000 cm−1 above the ground state. Hence, it is sensible to replace the unknown
energy E in the effective Hamiltonian Eq. (43) by E0, the energy of the ground state multiplet.
Second, we need to define the full Hamiltonian operator. Since we are only interested in g, we
only need to consider two additional terms. One is the molecular Zeeman operator

ĤZe = βB
∑
i

(
geŝi + l̂i

)
. (74)

This operator consists of the spin-Zeeman (ge = 2.002319... is the free electron g-value) and
orbital Zeeman operator. Note carefully that ŝi is the spin of the i’th electron, rather than
the total spin Ŝ =

∑
i ŝi. The angular momentum operator l̂i is referred to the global origin.

The second term we need is the spin-orbit coupling (SOC) operator. In principle, this is a
two-electron operator, but it can be reasonably well approximated by an effective one-electron
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operator as given by Eq. (18). The operator hSOC
i can take many different forms like the SOMF

operator mentioned in the introduction. One crude approximation is the effective nuclear charge
Hamiltonian that has the form

hSOC,ENC
i =

α2

2

∑
A

Zeff
A

|RA−ri|3
l̂Ai , (75)

where α is the fine structure constant, the sum A is over all nuclei in the system at positions RA

with effective charges Zeff
A . l̂Ai is the angular momentum operator of the i’th electron relative to

the A’th nucleus. We now have to insert the full Hamiltonian

Ĥ = ĤBO + ĤZe + ĤSOC (76)

and wavefunctions
∣∣ΨSMI 〉

into the effective Hamiltonian and pick out terms that are bilinear
in B and Ŝ since those will define the g-tensor. The effective Hamiltonian is given by (see
Eq. (53))〈

ΨSM0

∣∣Ĥeff

∣∣ΨSM ′

0

〉
=
〈
ΨSM0

∣∣Ĥ∣∣ΨSM ′

0

〉
−
∑
I>0

∆−1
I

〈
ΨSM0

∣∣Ĥ∣∣ΨS′M ′′

I

〉〈
ΨS

′M ′′

I

∣∣Ĥ∣∣ΨSM ′

0

〉
, (77)

where ∆I = EI−E0 is the energy difference between the I’th multiplet and the ground state at
the level of the BO Hamiltonian. A little reflection will quickly reveal that:

• The only first-order term (first term on the right-hand side of Eq. (77)) comes from the
spin-Zeeman term and equals the free electron g-value.

• In the infinite sum over excited states, only those terms with S ′ = S can contribute since
the orbital Zeeman operator is spin-independent and the spin-Zeeman operator does not
couple the ground and excited states.

• Contributions to the g-tensor will only arise from cross terms between ĤZe and ĤSOC

since these are the only ones that have the correct bilinear structure in B and Ŝ

Thus, the relevant part of the effective Hamiltonian becomes〈
ΨSM0

∣∣Ĥeff

∣∣ΨSM ′

0

〉
= βBge ·

〈
ΨSM0

∣∣S∣∣ΨSM ′

0

〉
− βB

∑
I>0

∆−1
I

{〈
ΨSM0

∣∣∣∑
i

ĥSOC
i ŝi

∣∣∣ΨS′M ′′

I

〉〈
ΨS

′M ′′

I

∣∣∣∑
i

l̂i

∣∣∣ΨSM ′

0

〉
+ c.c.

}
.

(78)

This is to be compared to the matrix element of the SH (focusing on the z-component)〈
SS
∣∣βBzgzzŜz

∣∣SS〉 = βBzgzzS, (79)

from which it readily follows that

gzz = ge −
1

S

∑
I>0(S′=S)

∆−1
I

{〈
ΨSS0

∣∣∣∑
i

ĥSOC,z
i ŝzi

∣∣∣ΨSSI 〉〈ΨSSI ∣∣∣∑
i

l̂zi

∣∣∣ΨSS0

〉
+ c.c.

}
. (80)
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The generalization to all components of the g-tensor is straightforward with the aid of the
Wigner-Eckart theorem, but the details would lead too far astray here. We note in passing
that g is not symmetric. However, gTg behaves like a proper symmetric second-rank tensor
and hence, in the EPR community it is common practice to refer to it as the g-tensor. Along the
same lines, all parts of the SH can be derived.

3.3 The size-consistent self-consistent configuration interaction method

In this section, we will demonstrate that effective (in this case intermediate) Hamiltonian ap-
proaches are not only useful to derive effective, parameterized models, but that they can also
pave the way for new and accurate electronic structure methods. The method that we have
chosen to highlight in this respect is the ‘size-consistent-self-consistent configuration interac-
tion’ (SC2-CI) method of Malrieu and coworkers [31, 32]. It is an elegant way to derive a
size-consistent electron correlation theory that is similar in spirit to the older coupled-electron
pair approaches (CEPA) and might be viewed as a step towards full coupled cluster theory with
single- and double excitations (CCSD). Let us re-iterate the principle of CI: we start from a
reference determinant |Φ0〉 and expand the many-particle wavefunction in terms of excited de-
terminants in which one-, two-, ... occupied spin-orbitals have been replaced by virtual orbitals,

|Ψ〉 = |Φ0〉+
∑
ia

Ci
a |Φai 〉+ 1

4

∑
ijab

Cij
ab

∣∣Φabij 〉+
∣∣Ψhigher

〉
, (81)

where
∣∣Ψhigher

〉
collectively denotes triple-, quadruple- and higher substitutions. As explained

in the introduction, in untruncated form, this ansatz leads to an exact solution of the many
particle Schrödinger equation in the chosen one-particle basis. However, it is well-known that
the most important substitutions in this expansion are the doubly excited determinants. Hence,
it is tempting to truncate the ansatz to single- and double substitutions, thus defining the |ΨCISD〉
wavefunction by setting

∣∣Ψhigher

〉
= 0. This is still a somewhat computationally manageable

theory, since the number of single and double substitutions ‘only’ grows as the fourth power of
system size and the solution of the CISD equations features O(N6) scaling.

3.3.1 A model system

In order to see what is wrong with this method, consider first a single H2 molecule in a minimal
basis set consisting only of the bonding σ and anti-bonding σ∗ orbital. Neglecting the single
substitutions, we only have two determinants: |Φ0〉 = |σσ̄| , |ΦD〉 = |σ∗σ̄∗|. In this basis, the
CID matrix becomes

HA =

[ ]
σ σ̄ 0 K

σ∗σ̄∗ K ∆ , (82)

where ∆ = 〈ΦD|H|ΦD〉 − 〈Φ0|H|Φ0〉 and K = 〈σ σ̄||σ∗σ̄∗〉. The solution of the eigenvalue
equation gives the correlation energy as

Ecorr = 1
2

(
∆−

√
∆2+4K2

)
, (83)
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which is the exact solution. Now, consider adding a second H2 molecule at infinite distance. In
this case our many particle basis consists of the three determinants

|Φ0〉 ,
∣∣ΦAD〉 , ∣∣ΦBD〉 , (84)

where superscripts in ‘ΦAD’ and ‘ΦBD ’ denote locally excited H2 molecules. This leads us to the
Hamiltonian

HD
A+B =

 |ΦA0 〉 |ΦB0 〉 0 K K

|ΦAD〉 |ΦB0 〉 K ∆ 0

|ΦA0 〉 |ΦBD 〉 K 0 ∆
(85)

and hence the correlation energy

Ecorr = 1
2

(
∆−

√
∆2+8K2

)
, (86)

which is clearly wrong, because for non-interacting H2 molecules, the correlation energy should
be exactly twice the monomer correlation energy. This severe shortcoming is known as a lack of
‘size-consistency’. Electron correlation methods that are not size-consistent are next to useless
in practice since they will give inconsistent results as a function of system size. Now, let us try
to remedy the situation by including further (higher) substitutions. The first that comes to mind
is the simultaneous pair substitution

∣∣ΦQ

〉
=
∣∣ΦABD

〉
, which gives the Hamiltonian including

quadruple substitutions |ΦQ〉:

HDQ
A+B =




|ΦA0 〉 |ΦB0 〉 0 K K 0

|ΦAD〉 |ΦB0 〉 K ∆ 0 K

|ΦA0 〉 |ΦBD 〉 K 0 ∆ K

|ΦAD〉 |ΦBD 〉 0 K K 2∆

. (87)

Diagonalizing this Hamiltonian gives us the ground state energy for the A+B system as

EA+B
corr =

(
∆−

√
∆2+4K2

)
, (88)

which is the expected value, i.e., EA+B
corr = 2EA

corr. It is an elementary, yet rewarding mathemat-
ical excise to demonstrate that the inclusion of the quadruple substitutions indeed restores the
size consistency of the calculation. What can we learn from this model system? First of all, that
truncated CI is not size-consistent and that it is essential to remedy this shortcoming. Second,
that the inclusion of higher substitutions restores this size consistency. This was a trivial exer-
cise in this model system. However, in a real system the number of triple-, quadruple- and even
higher substitutions becomes overwhelming very quickly. Hence, it is necessary to develop ap-
proximations that approximately include the effect of the higher substitutions without explicitly
including them.
This is precisely the idea of the SC2-CI method: we use the concept and language of interme-
diate Hamiltonians to divide the many particle space into three subspaces:
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• The main model space that consists of only the reference determinant.

• The intermediate or “buffer” space that consists of the single- and double substitutions.

• The “outer space” consisting of the triple and quadruple substitutions.

Clearly, the task at hand is to incorporate the effect of the higher substitutions in an approximate
manner. The task at had is thus to derive an effective Hamiltonian that incorporates these effects.
This will come in the form of a “dressed” CISD Hamiltonian matrix, the diagonalization of
which yields a size-consistent result that approximately incorporates the effects of the triple
and quadruple substitutions.

3.3.2 The model problem treated via intermediate Hamiltonian theory

Before we show the connection between intermediate Hamiltonian theory and the SC2-CI equa-
tions, it is instructive to analyze the wavefunction of the above A + B model system with
quadruply excited configurations. The Hamiltonian for A+B given above has the ground state
wavefunction

|Ψ〉 = C0 |ΦA0 〉 |ΦB0 〉 − CDA
|ΦAD〉 |ΦB0 〉 − CDB

|ΦA0 〉 |ΦBD 〉+ CQ |ΦAD〉 |ΦBD 〉 . (89)

It can be readily derived that the explicit form of this wavefunction is

|Ψ〉 =
X2

(1 +X2)

(
|ΦA0 〉 |ΦB0 〉 −

1

X
|ΦAD〉 |ΦB0 〉 −

1

X
|ΦA0 〉 |ΦBD 〉+

1

X2
|ΦAD〉 |ΦBD 〉

)
(90)

with X = (2K +
√

4K2+∆2)/∆. The products of the monomer wavefunctions occurring in
this equation should be understood as being properly antisymmetrized. Importantly, it follows
from Eq. (90) that the coefficient of the quadruply-excited configuration CQ is exactly a product
of the coefficient of the two doubly-excited ones CDA

and CDB
. This suggests a path towards

a simplification that includes the higher order excitations without explicitly including them and
hence towards the SC2-CI formulation.
First, we begin by writing the CIDQ problem with a linearly parametrized function given in
Eq. (89). The eigenvalue equation then is written as

H |Ψ〉 = E |Ψ〉 , (91)

H |ΨHF〉+ H |ΨD〉+ H |ΨQ〉 = E
(
|ΨHF〉+ |ΨD〉+ |ΨQ〉

)
. (92)

Here, the functions |ΨHF〉, |ΨD〉, and |ΦQ〉 denote the reference, doubles, and quadruples com-
ponent of the wavefunction respectively such as

|ΨHF〉 = CHF |ΦA0 ΦB0 〉 , (93)

|ΨD〉 = CDB
|ΦA0 ΦBD 〉+ CDA

|ΦADΦB0 〉 = CDB
|ΨDB
〉+ CDA

|ΨDA
〉 , (94)

|ΨQ〉 = CQ |ΦADΦBD 〉 = CQ |ΨQAB
〉 . (95)
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The correlation energy Ecorr is given by∑
D∈DA,DB

C2
DEcorr = 〈ΨD|H|ΨHF〉+ 〈ΨD|H|ΨD〉+ 〈ΨD|H|ΨQ〉 . (96)

From Eq. (96) it becomes clear that the task here is to avoid the last term 〈ΨD|H|ΨQ〉 and at the
same time obtaining a size-consistent solution. Here, we can leverage the understanding from
the above discussion and make the following assumptions:

• The coefficients of quadruply excited configurations can be seen as products of doubly
excited coefficients.

CQ = CDA
CDB

=⇒ |ΨQ〉 =
1

2

∑
DX

∑
DY 6=DX

CDX
CDY
|ΨDX
〉 .

• The matrix-elements between the doubles and quadruples 〈ΨDX
|H|ΨQAB

〉 have the same
magnitude as that between the ΦHF and doubles, i.e.

〈ΦDX
|H|ΦDX

ΦDY
〉 = 〈ΦHF|H|ΨDY

〉 . (97)

These two assumptions are exact in the case of two non-interacting molecules A and B. With
these two assumptions, we can then simplify the expression for the correlation energy Eq. (96)
such that

〈ΨDX
|H|ΨQ〉 =

1

2

∑
DZ

∑
DY 6=DZ

CDZ
CDY
〈ΨDX

|H|ΦDZ
ΦDY
〉= 1

2
CDX

∑
DY

CDY
〈ΨDX

|H|ΦDX
ΦDY
〉 ,

(98)

〈ΨDX
|H|ΦDX

ΦDY
〉 = 〈ΨHF|H|ΨDY

〉 , =⇒ 〈ΨDX
|H|ΨQ〉 = CDX

Ecorr.

Using this result and substituting it in Eq. (91) we finally get the coupled electron pair approxi-
mation of type 0 (CEPA-0) equations which are given by

CDX
E = 〈ΨX |H|ΨHF〉+ 〈ΨX |H|ΨD〉+ CDX

Ecorr, (99)

CDX
EHF = 〈ΨX |H|ΨHF〉+ 〈ΨX |H|ΨD〉 . (100)

Hence, we recover a size-consistent form of CID without actually physically including the
quadruply excited configurations.
Now looking at Eq. (99) one can show that it can also be written in an equivalent form in terms
of a modification of the doubles part of the Hamiltonian. In fact, one can show that in our model
system HD

A+B above, if one replaces the diagonal energies of the doubly excited configurations
∆ with an equivalent ‘dressed’ diagonal energy ∆̃ given by

∆̃ = ∆+
1

2

(
∆−

√
∆2+4K2

)
= ∆+ EA

corr = ∆+
1

2
EA+B

corr (101)
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then the CID matrix looks like an intermediate effective Hamiltonian obtained by a diagonal
‘dressing’ of the intermediate space of the CID Hamiltonian

H̃D
A+B =

 |ΦA0 〉 |ΦB0 〉 0 K K

|ΦAD〉 |ΦB0 〉 K ∆̃ 0

|ΦA0 〉 |ΦBD 〉 K 0 ∆̃
. (102)

This diagonally dressed Hamiltonian is exactly equivalent to the CEPA-0 equations and gives
the expected correct Energy, i.e.,

H̃D
A+B |Ψ〉 =ẼD

A+B|Ψ〉, (103)

ẼD
A+B = EDQ

A+B =
(
∆−

√
∆2+4K2

)
= 2EA. (104)

Therefore, a size-consistent CID Hamiltonian can be thought of as an intermediate Hamiltonian
with a single configuration |ΨHF〉 in the model space with all the doubles |ΨD〉 being treated in
the intermediate space and with the quadruples being the out-of-space configurations. Hence,
in this sense, a size-consistent SC2-CI consists of a state-specific (i.e., dependent on the specific
model space |ΨHF〉) dressing of the intermediate space configurations.

3.3.3 General case using intermediate effective Hamiltonians

In the previous section, we highlighted the basic idea of the role of intermediate Hamiltonian
theory in the derivation of the SC2-CI equations for a model system. Here we derive the equa-
tions for SC2-CI in the general case following along the same steps as described above. In the
general case, the model space will consist of the 0’th order wavefunction Ψ0 and all the doubly
excited configurations with respect to Ψ0 given by ΨD make up the buffer space. The outer space
will be made up of the quadruply excited configurations. This results in the same Schrödinger
equation as before

Ĥ |Ψ0〉+ Ĥ |ΨD〉+ Ĥ |ΨQ〉 = E
(
|Ψ0〉+ |ΨD〉+ |ΨQ〉

)
. (105)

The goal here is to devise a diagonal dressing 〈ΨDX
|Ṽ|ΨDX

〉 such that the intermediate Hamilto-
nian H̃ given in Eq. (107) is size-consistent. This dressing is defined by the following equations

H̃ = P ·H ·P + Ṽ, (106)∑
DI

C̃I 〈ΨX |H̃|ΨDI
〉 = EC̃X , (107)∑

DI

C̃I 〈ΨX |H|ΨDI
〉+

∑
QJ

C̃J 〈ΨX |H|ΨQJ
〉 = EC̃X . (108)

For this we proceed similarly to the previous case with the same two assumptions as before
but we shall be careful about the indices here. The main task is the derivation of the last term
on the LHS of Eq. (108). Using the assumption that the coefficients of the quadruples can be
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expressed as products of the coefficients of the doubles (Eq. (98)), we can simplify the dressing
〈ΨDX

|Ṽ|ΨDX
〉 as shown below

〈ΨDX
|H|ΨQ〉 =

1

2

∑
DZ

∑
DY

CDZ
CDY
〈ΨDX

|H|ΦD
ZΦ

D
Y 〉 , (109)

〈ΨDX
|H|ΨQ〉 = CDX

∑
DY ∈DDX

CDY
〈Ψ0|H|ΨDY

〉 , (110)

〈ΨDX
|H|ΨQ〉 = CDX

〈ΨDX
|Ṽ|ΨDX

〉 , (111)

〈ΨDX
|Ṽ|ΨDX

〉 =
∑
DY

CDY
〈Ψ0|H|ΨDY

〉 −
∑

Y /∈DDX

CDY
〈ΨDX

|H|ΨDY
〉 , (112)

〈ΨDX
|Ṽ|ΨDX

〉 = Ecorr −
∑

DY /∈DDX

CDY
〈ΨDX

|H|ΨDY
〉 . (113)

Here ‘DX’ and ‘DY ’ collectively denote a 4-tuple of indices (i, j, a, b) that denote double sub-
stitutions from occupied orbitals i and j to virtual orbitals a and b. Importantly, the summation
over DY in the above equations is over those doubles that are ‘disconnected’ DY ∈ DDX

with re-
spect to the doubly excited configuration ΨDX

. The ‘disconnected’ refers to two tuples (i, j, a, b)

and (k, l, c, d) where no index in the first tuple is identical to any index in the second tuple. This
is a direct consequence of the Pauli exclusion principle since the quadruply substituted deter-
minant is written as a product of doubly substituted. Hence, after performing a given double
substitution, the second double substitution will only lead to a non-zero result if the spin-orbital
that is depopulated by the second substitution is not already empty or the virtual orbital that is
populated by the substitution is not already populated. This is only the case if no index is re-
peated. Substitutions that violate this requirement are known as ‘exclusion principle violating’
(EPV) terms. Therefore, the final expression of the dressing with the correct consideration of
the EPV terms is as follows:

〈ΨDX
|H|Ψ0〉+ 〈ΨDX

|H|ΨD〉+ C̃DX

(
Ecorr−∆EPV

DX

)
= C̃DX

(EHF+Ecorr) . (114)

The last thing to do is to derive the expression for the EPV terms of the diagonal dressing ∆EPV
DX

.
Note that now the dressing becomes dependent on the doubly excited configuration ΨDX

which
makes the result dependent on orbitals i, j, a, bwhich are the four orbitals involved in the double
substitution |ΨDX

〉 = Ea
i E

b
j |Ψ0〉. The expression for the EPV term may be written as

∆EPV
X =

∑
klcd∈ijab

CDY
〈Ψ0|HEc

kE
d
l |Ψ0〉 . (115)

The EPV terms enumerated by considering the number of ways, in which one-, two-, three-
or all four indices in the two tuples can coincide. There are four total different type of tuples
k, l, c, d which satisfy the rule k, l, c, d ∈ i, j, a, b depending on one, two, three or four indices
in common. The intermediate quantities required for these cases are as follows:

• One common occupied index i (analogously for virtual)

e1(i) =
∑
kcd

〈Ψ0|HEd
kE

c
i |Ψ0〉 , (116)
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• one occupied pair (i,j) common (analogous for virtual pairs)

e2(i, j) =
∑
cd

〈Ψ0|HEd
jE

c
i |Ψ0〉 , (117)

• a triple of indices identical (i,j,a) common (analogous of i,a,b)

e3(i, j, a) =
∑
c

〈Ψ0|HEc
jE

a
i |Ψ0〉 , (118)

• all four indices common

e4(i, j, a, b) = 〈Ψ0|HEb
jE

a
i |Ψ0〉 . (119)

Using these intermediate quantities, we can finally write general equations for the full SC2-
CISD as follows [31, 32]

∆EPV
DX

= e1(i) + e1(j) + e1(a) + e1(b)

+ e2(i, j) + e2(i, a) + e2(i, b) + e2(j, a) + e2(j, b) + e2(a, b)

+ e3(i, j, a)− e3(i, j, b)− e3(i, a, b)− e3(j, a, b)

+ e4(i, j, a, b).

(120)

Thus, we have the general SC2-CISD equations which include the correct contributions resulting
from a careful consideration of the spurious EPV terms.

3.3.4 Further generalization and connection to Coupled Cluster Theory

The SC2-CI represents a logical progression from the highly flawed CISD method towards a
more accurate and size-consistent theory. It exactly restores size consistency by taking care
of all EPV terms. However, it still has one significant shortcoming: the lack of unitary non-
invariance. The Hartree-Fock wavefunction and even the CISD wavefunction is invariant under
unitary transformations of the occupied or virtual orbitals among themselves. The SC2-CI, ow-
ing to the way the higher substitutions are incorporated, does not have this property. Again, this
is quite problematic for chemical applications of this theory. However, if one takes inspiration
from this development, it is not difficult to envision how one can work around this problem. In
fact, with some contemplation, one could arrive at the conclusion that the essential feature is to
approximate higher substitutions as products of lower substitutions. Thus triples are products
of singles- and doubles, quadruples arise from products of doubles with other doubles etc. The
easiest way to formalize this, is to define the n-fold substitution operators T̂n:

T̂1 =
∑
ia

tiaa
†
aai T̂2 = 1

4

∑
ijab

tijaba
†
aaia

†
baj ... (121)

Here, the t-amplitudes take the place of the CI coefficients. Thus, triple substitutions would
be approximated as T̂1T̂2, quadruples as T̂ 2

2 and so on. Importantly, these higher excitation do
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not lead to additional wavefunction parameters. The singles and doubles amplitudes is all that
is required. The simplest such theory is the QCISD theory of Pople and coworkers. It may
be thought of as the simplest way to restore size consistency and unitary invariance in CISD.
However, this is not how it historically came about. In fact, one can generalize the idea of
using products of excitation operators in a beautiful way by using the coupled cluster ansatz
briefly mentioned in the introduction, in which the many-particle wavefunction is written as an
exponential

|Ψ〉 = exp(T̂ ) |Φ0〉 , with T̂ = T̂1 + T̂2 + ... (122)

Expanding the exponential leads to

exp(T̂ ) = 1̂ + T̂ + 1
2
T̂ 2 + ... = 1̂ + T̂1 + T̂2 + 1

2
T̂ 2

1 + T̂1T̂2 + 1
2
T̂ 2

2 + ... (123)

Thus, all products of excitations are automatically included. It can readily be shown that the
theory remains size consistent at any truncation level of the cluster operator. There would be
much more to say about coupled cluster theory. However, here we only wanted to illustrate that
physical reasoning based on effective Hamiltonians can lead in a natural way to its formula-
tion. Today, coupled cluster theory is a mainstay of quantum chemistry and perhaps the most
advanced and most successful wavefunction-based electronic structure method in existence.

3.4 Ab initio ligand field theory
3.4.1 Ligand field theory

The analysis of experimental results like optical absorption spectra shows that the low-energy
states of many mononuclear transition metal complexes can be qualitatively understood as linear
combinations of a certain set of Slater determinants. They all share the same doubly occupied
MOs (ligand orbitals and core orbitals on the metal) and have different occupations of a set of
5 MOs that resemble the d orbitals of free transition metal atoms or ions. For simplicity, these
MOs are also called d orbitals with the understanding that they are partially delocalized onto
the ligands. Ligand field theory (LFT) is a parametrization of an effective Hamiltonian that
describes this manifold of ‘ligand field states’ in terms of intuitively appealing parameters.
The form of the model can be derived as follows [33]: Within the Slater determinant basis
introduced above, one can replace the BO Hamiltonian H (apart from a constant energy shift)
by the effective Hamiltonian

Heff =
∑
i∈d

F core
i +

∑
i<j∈d

1

rij
, (124)

where
F core = h+

∑
i

(2Ji−Ki). (125)

Note that the i in Eq. (124) denotes electrons in d orbitals, while i in Eq. (125) denotes doubly
occupied orbitals. Ji and Ki in Eq. (125) are Coulomb and exchange operators. This means
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that this effective Hamiltonian describes the movement of the d electrons in the mean field of
the closed-shell core and ligand orbitals.

For constructing the matrix representation of the effective Hamiltonian Eq. (124) in the ba-
sis of all Slater determinants introduced above, one needs all one-electron integrals F core

pq =

〈dp|F core|dq〉 and two-electron integrals (dpdq|drds). Since the core Fock operator is Hermitian,
there are a total of 15 parameters arising from the one-electron integrals. Furthermore, there are
(considering permutational symmetry) 120 independent two-electron integrals.

In the simplest ligand field model, one makes the assumption that the d orbitals have full spher-
ical symmetry (i.e., they transform like the spherical harmonics belonging to quantum number
l = 2). In this case, there are only 3 independent parameters in terms of which one can express
all two-electron integrals. These parameters are either the Slater-Condon parameters F0, F2, F4

or the Racah parameters A,B,C [33]. In ligand field theory, one usually denotes the one-
electron part of the effective Hamiltonian as the one-electron ligand field matrix hLFT

pq instead
of a “core Fock operator”. In high-symmetry situations, the number of parameters is highly
reduced. For example, in tetrahedral or octahedral complexes, hLFT

pq is fully determined (apart
from an irrelevant constant energy shift) by a single number: the ligand field splitting ∆ (often
also denoted by 10Dq), which is the orbital energy difference between the e(g) and the t2(g)

orbital sets.

Traditionally, the parameters of the model are fitted to experimental data like electronic ex-
citation energies, thermochemical data, EPR spectra, or magnetization data. Particularly in
low-symmetry situations (where all elements of hLFT

pq appear as distinct parameters), this fit is
often underdetermined. Furthermore, one is fitting quantities that depend nonlinearly on the
ligand field parameters. This means that there can be many local minima in parameter space
and the fit is not unique. Therefore, the extracted ligand field parameters are not well-defined
and can possibly lack physical meaning.

One should also note that since the Slater determinant basis used in the definition of the lig-
and field model is far from being complete, it describes the true spectrum only approximately
if Eqs. (124) and (125) are understood literally. Fitting to experimental data (or to ab initio
effective Hamiltonians as described below) can go beyond this simple picture and lead to pa-
rameters that for example include the effect of electron correlation. They can be considered as
“renormalized parameters” [34].

3.4.2 Ab initio ligand field theory

The ab initio ligand field theory (AILFT) approach is based on the observation that the matrix
elements of the ligand field effective Hamiltonian are linear functions of the parameters of the
model [35]. When combining all the parameters in a single vector p, one can write this as

HLFT
IJ (p) =

∑
k

HLFT,k
IJ pk. (126)
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Combining I and J into a single compound index (such that the effective Hamiltonian becomes
a vector), this can also be written in matrix-vector form,

HLFT(p) = Ap, (127)

where the matrix A is defined as AIJ,k = HLFT,k
IJ .

The basic idea of AILFT is now to construct an ab initio effective Hamiltonian Heff that de-
scribes the same part of the electronic spectrum as the LFT model Hamiltonian. One then
optimizes the parameters p such that the model Hamiltonian resembles the ab initio effective
Hamiltonian as much as possible. This can be achieved by minimizing the sum of squared de-
viations of all matrix elements, i.e.,

∑
IJ

(
Heff
IJ −HLFT

IJ (p)
) !

= min (least-squares fitting). Since
the matrix elements are linear functions of the parameters, this problem has a unique solution
that is given by [36, 37]

p = A+Heff, (128)

where A+ is the Moore-Penrose pseudoinverse of A. If the number of effective Hamiltonian
matrix elements is larger than the number of parameters (which is usually the case), the pseu-
doinverse can be written as A+=(ATA)−1AT . Inserting this into Eq. (128), one arrives at

p = (ALFT)−1bLFT, (129)

ALFT
kl =

∑
IJ

HLFT,k
IJ HLFT,l

IJ , (130)

bLFT
k =

∑
IJ

HLFT,k
IJ Heff

IJ . (131)

These are the equations derived in the original description of the AILFT approach [35]. This
ab initio approach for obtaining ligand field parameters is distinguished from traditional ap-
proaches by the fact that the model is linear (i.e., the fit is unique) and that the system is not
underdetermined. This is because the full effective Hamiltonian provides much more informa-
tion than just the energies.
The most straightforward ab initio effective Hamiltonian that can be used in the AILFT context
is the CASCI Hamiltonian, where the metal d orbitals are chosen as active orbitals. In terms of
its spectral resolution, it can be written as

HCASCI = CCASCIECASCIC
T
CASCI, (132)

where CCASCI is the matrix of CASCI coefficients and E is the diagonal matrix of energies.
The problem in this case is that dynamic correlation, which is important for quantitative results,
is missing. A straightforward way to incorporate dynamic correlation on top of a CASSCF
calculation is 2nd order multireference perturbation theory (MRPT). Popular variants of MRPT
are CASPT2 [38, 39] and NEVPT2 [40–42]. The standard version of these methods is state-
specific, i.e., they are performed for each CASSCF root individually. A variant of AILFT based
on state-specific NEVPT2 was introduced in which the ab initio effective Hamiltonian is in
analogy to Eq. (132) defined as

Heff
NEVPT2 = CCASCIENEVPT2C

T
CASCI. (133)
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By definition, this effective Hamiltonian has again simply the CASCI wavefunctions as eigen-
states, while its energies include dynamic correlation at 2nd order in perturbation theory. A
downside of this approach is that often large root-mean-square deviations (RMSDs) between
the NEVPT2 energies and the energies of the fitted LFT model were observed, indicating that
the LFT model is not well suited to parametrize the NEVPT2 effective Hamiltonian of Eq. (133).
In contrast to this, there are also so-called multistate methods that can describe the dynamic-
correlation-induced mixing of states in the model space. Recently, new versions of AILFT
based on two such methods, the DCD-CAS(2) method [22, 23] and a Hermitian version of
quasidegenerate NEVPT2 (HQD-NEVPT2) [43], were implemented and tested. It turns out
that the possibility of state mixing can lead to better fits and lower RMSDs than at the NEVPT2
level. This leads to ligand field models that are closer to the physical picture provided by the ab
initio calculations.
LFT has the advantage that it allows for the rationalization of complicated properties like ex-
citation energies, EPR spectra, magnetization curves, and many other experimental results in
terms of parameters whose behavior can be intuitively understood. In particular, the reduction
of the size of the Racah parameters can be interpreted as a manifestation of the “nephelauxetic
effect”, i.e., the expansion of the size of the d orbitals due to covalency. A popular tool for
analysis of the one-electron ligand-field matrix is the angular overlap model (AOM) [44,45]. In
this case, the model parameters are eσ and eπ, which are measures for the strength of σ and π
bonding between the metal center and the ligand.
AILFT has been used in many studies over the last few years to rationalize the spectra and
other properties of transition metal complexes. For example, it was used in the analysis of the
magnetostructural correlations in pseudotetrahedral cobalt(II) complexes [46], the analysis of
the ligand field of the azido ligand [47], and for the rationalization of experimental results on a
cobalt single ion magnet [48]. Furthermore, AILFT was used to gain understanding of periodic
trends in lanthanide [49, 50] and actinide [50] ions and complexes.
For further information on AILFT, we refer to two recent review articles [51, 52].

4 Conclusions

We hope that in this chapter, we have provided a useful entry point into the fascinating world of
effective Hamiltonians. We have briefly touched upon many and diverse aspects of the subject.
However, the serious student will need to consult the cited literature in order to work out any
of the topics in full detail. Nevertheless, we hope that it came across that effective Hamilto-
nians are an incredibly versatile and powerful concept. They help us to conceptualize difficult
electronic structure problems, they help us to connect in a clear and concise way to experimen-
tal reality and they may inspire us to develop more accurate electronic structure theories – to
reiterate only a few possible applications. Clearly, the avenues that can be explored are nearly
endless. Consequently, we hope that future generations of theoreticians will embrace effective
Hamiltonians in their research and make ample use of the creative possibilities that their offer.
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