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1 Introduction

The notion of quantum entanglement goes back to the early years of quantum mechanics and
was subject of several papers by Schrödinger [1]. At the same time Einstein, Podolsky, and
Rosen discussed their famous “Gedankenexperiment” that attempted to show that quantum me-
chanical theory was incomplete [2]. Quantum entanglement is a physical phenomenon that
occurs when particles interact in a way such that the quantum state of each particle cannot be
described independently of the state of the others—including when the particles are separated
by a large distance. For a long time, it was a topic discussed mostly in quantum optics and
for systems with few degrees of freedom. In the last decades, however, it has seen a revival
with input from very different areas, including the theory of black holes, quantum information
and communication, the numerical investigation of quantum-many body systems, as well as the
characterization of topological quantum states and quantum phase transitions.
In this chapter, we will introduce some basics of many-body entanglement and focus on a
few selected applications. We begin by introducing basic notions of entanglement in many-
body systems and discuss the area law, which is commonly obeyed by ground states of local
Hamiltonians [3]. We then discuss different concepts in which the area law and the resulting
locality of the ground state turn out to be extremely helpful for the investigation of quantum-
many body phenomena: First, we show that one-dimensional area law states can represented
using matrix-product states (MPSs), allowing for efficient simulations of ground state properties
and time-evolution [4,5]. Second, we investigate the entanglement properties of gapped ground
states and how they transform under symmetries, providing a framework for the classification of
SPT phases [6,7]. Third, we identify universal scaling properties of the entanglement entropies
that allow us to characterize quantum phase transitions [8]. Finally we show how to apply all
the concepts above to investigate the phase diagram of a spin-1 chain.

2 Many-body entanglement

In the following, we introduce the concept of entanglement entropy and entanglement spectra
in many-body systems. Let us consider the bipartition of the Hilbert space H = HA⊗HB of
an N -body quantum system as illustrated in Fig. 1(a), where HA (HB) describes all the states
defined in subsystem A and B, respectively.
We perform a so-called Schmidt decomposition, in which we decompose a (pure) state |Ψ〉∈H as

|Ψ〉 =
∑
α

Λα |α〉A ⊗ |α〉B , |α〉A(B) ∈ HA(B), (1)

where the states {|α〉A(B)} form an orthonormal basis of (the relevant subspace of) HA (HB)
and Λα ≥ 0. The Schmidt decomposition is unique up to degeneracies and for a normalized
state |Ψ〉 we find that

∑
α Λ

2
α = 1. Note that the Schmidt decomposition is equivalent to the

singular-value decomposition of the coefficient matrix ψij for chosen local bases |i〉A and |i〉B,
respectively. An important aspect of the Schmidt decomposition is that it gives direct insight
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Fig. 1: (a) Bipartition of a system into two parts A and B. The shaded area A has a boundary
∂A of with surface area |∂A|. (b) Significant quantum fluctuations in gapped ground states
occur only on short length scales. (c) 1D area law states make up a very small fraction of the
many-body Hilbert space but contain all gapped ground states. (d) Comparison of the largest
Schmidt values of the ground state of the transverse field Ising model (g = 1.5) and a random
state for a system consisting of N = 16 spins. The index α labels different Schmidt values.

into the bipartite entanglement (i.e., the quantum entanglement between degrees of freedom in
HA and HB) of a state: If no entanglement between the two subsystems is present, the state
is a product state and the Schmidt decomposition has only one single non-zero Schmidt value
(Λ1 = 1 and Λα>1 = 0). If the degrees of freedom of the two subsystems are entangled, we
necessarily have multiple non-zero Schmidt values in the decomposition.
A useful measure to quantify the amount of entanglement is the so-called entanglement entropy,
which is defined as the von-Neumann entropy S = −Tr

(
ρA log(ρA)

)
of the reduced density

matrix ρA. The reduced density matrix of an entangled (pure) quantum state |ψ〉 is the density
matrix of a mixed state defined on the subsystem,

ρA ≡ TrB (|ψ〉 〈ψ|) . (2)

A simple calculation shows that it has the Schmidt states |α〉A as eigenstates and the Schmidt
coefficients are the square roots of the corresponding eigenvalues, i.e., ρA =

∑
α Λ

2
α |α〉A 〈α|A

(equivalently for ρB). Hence, the entanglement entropy can be directly expressed in terms of
the Schmidt values Λα,

S = −Tr
(
ρA log(ρA)

)
= −

∑
α

Λ2
α logΛ

2
α. (3)
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Note that we would get the same entanglement entropy from the reduced density matrix ρB. If
there is no entanglement between the two subsystems, we find S = 0; and S > 0 if there is any
entanglement.
More generally, we can also consider Rényi entropies of the reduced density matrix

Sn =
1

1−n log Tr
(
(ρA)

n
)
. (4)

For the special case n → 1, we recover the von-Neumann entropy. In analogy to the entan-
glement entropy, we find Sn>0 for an entangled and Sn=0 for an unentangled state for all n.
Rényi entropies with integer n have the advantage that they can be evaluated by introducing
n replicas—a tool that was originally introduced in analytical calculations [9]. This technique
is also suitable to obtain Rényi entropies for Monte Carlo simulations [10] or even experimen-
tally [11, 12]
Another useful quantity is the so-called entanglement spectrum {εα} [13], which is defined in
terms of the spectrum {Λ2

α} of the reduced density matrix by εα = −2 logΛα.
To demonstrate the concepts above, we consider a simple system consisting of two spin-1/2
with a bipartition in which the first spin is in subsystem A and the second in subsystem B.
The first example is a wave function

|ψ〉 =
1

2

(
|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉

)
(5)

with Schmidt decomposition

|ψ〉 = 1 · 1√
2

(
|↑〉+ |↓〉

)
⊗ 1√

2

(
|↑〉+ |↓〉

)
, (6)

representing a product state with entanglement entropy S = 0. The second example is a wave
function

|ψ〉 =
1

2

(
|↑↓〉+ |↓↑〉

)
(7)

with Schmidt decomposition

|ψ〉 =
1√
2
·
(
|↑〉⊗|↓〉

)
+

1√
2
·
(
|↑〉⊗|↓〉

)
, (8)

representing a maximally entangled state with entanglement entropy S = log 2.

2.1 Area law

As we will discuss now, ground states of (gapped) local Hamiltonians are very special with
respect to their entanglement properties—they fulfill an area law. It turns out that this allows
on one hand for efficient numerical simulations and on the other hand provides the basis for the
characterization of universal properties of quantum phases.
Let us first mention that a “typical” state in the Hilbert space has a volume law, i.e., the en-
tanglement entropy grows proportionally with the volume of the partitions. In particular, it has
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been shown in Ref. [14] that in a system of N sites with on-site Hilbert space dimension d, a
randomly drawn state |ψrandom〉 has an entanglement entropy of S ≈ N/2 log d−1/2 for a bipar-
tition into two parts of N/2 sites. Highly excited eigenstates of generic (ergodic) Hamiltonians
typically show the same behavior.
In contrast, ground states |ψ0〉 of gapped and local Hamiltonians follow an area law, i.e., the
entanglement entropy grows proportionally to the area of the cut [3]1

S = α|∂A|+ . . . , (9)

where α in the leading term is a non-universal coefficient and |∂A| denotes the surface area of
the cut.
For the special case of a one dimensional chain of length N that is cut into two equal halves as
shown in Fig. 1(b) this implies that S(N) is constant for N & ξ (with ξ being the correlation
length). This can be intuitively understood from the fact that a gapped ground state contains
only fluctuations within the correlation length ξ and thus only degrees of freedom near the cut
are entangled. A rigorous proof of the area law for 1D gapped and local Hamiltonians is given
in Ref. [15]. Since typical states have a volume law, ground states are very special states and
can be found within a very small corner of the Hilbert space, as illustrated in Fig. 1(c).
An important observation is that in slightly entangled states, only a relatively small number
of Schmidt states contribute significantly to the weight of the state. This is demonstrated in
Fig. 1(d) by comparing the largest 20 Schmidt values of an area law state and a volume law
state for a bipartition of an N=16 chain into two half-chains. As an example of an area law
state, we considered here the ground state of the transverse field Ising model

H = −
∑
n

σznσ
z
n+1 + gσxn, (10)

with σxn and σzn being the Pauli operators and g > 0. This Z2 symmetric model has a quantum
phase transition at gc = 1. As shown in Fig. 1(d) for a representative example of g = 1.5,
the entire weight of the ground state is essentially contained in a few Schmidt states. Generic
states fulfilling the area law show a similar behavior and thus the above observation provides
an extremely useful approach to compress quantum states by truncating the Schmidt decompo-
sition. In particular, for all ε > 0 we can truncate the Schmidt decomposition at some finite χ
(independent of the system size) such that∥∥∥ |ψ〉 − χ∑

α=1

Λα |α〉L ⊗ |α〉R︸ ︷︷ ︸
|ψtrunc〉

∥∥∥ < ε (11)

This particular property of area law states is intimately related to the matrix-product state (MPS)
representation of 1D quantum states, as we will discuss in the next chapter. The situation is very
different for a highly entangled (volume law) random state: All the Schmidt values are roughly
constant for all 2N/2 states and thus the 20 dominant states contain a vanishing weight (assuming
an equal weight of configurations, we find Λ2

α ≈ 1/2N/2 per Schmidt state).
1The condition of a gap can in certain cases be released but generically leads to sub-leading log corrections. In

systems with a Fermi surface, the area law breaks down.
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2.2 Entanglement in free-particle models

While it is generically very hard to obtain the entanglement entropy in many-body systems, it
can be easily obtained for free-particle models [16,17]. This is particularly useful as it allows us
to study many interesting aspects of entanglement in various settings—for example, universal
properties that might occur independently of the presence or absence of interactions.
For free-particle states, the reduced density matrix ρA of a bipartite system can be written as

ρA =
1

Z
e−HA , withHA =

∑
i∈A

εi f
†
i fi, (12)

where f †i (fi) creates (annihilates) a single particle with energy εi with respect to the so-called
“entanglement Hamiltonian”HA. The constant Z ensures the correct normalization Tr ρA = 1.
Note that HA is not simply the physical Hamiltonian H restricted to the subsystem A and
therefore Eq. (12) is not a true Boltzmann formula.
Let us now consider a non-interacting fermionic Hamiltonian of the form

H =
∑
i,j

ti,j c
†
icj. (13)

For a given filling factor, the ground state is a Slater determinant describing the filled Fermi
sea. Following Wick’s theorem, all many-particle correlation functions factorize into products
of one-particle functions, for example〈

c†ic
†
jckcl

〉
=
〈
c†icl
〉〈
c†jck

〉
−
〈
c†ick

〉〈
c†jcl
〉
. (14)

We can thus write the reduced density matrix in the form

ρA = K exp
(
−
∑
i,j∈A

hi,j c
†
icj

)
(15)

with some constant K. We now need to find a matrix hi,j chosen such that ρA reproduces
the correct single-particle correlation function Ci,j =

〈
c†icj
〉

for i, j ∈ A. This is done in a
common diagonal representation of both matrices: We diagonalize Ci,j in subsystem A with
eigenvalues ζn and corresponding eigenstates ϕn(i). The transformation

ci =
∑
n

ϕn(i)fn (16)

yields for the single-particle correlation function
〈
f †nfn′

〉
= ζn δn,n′ . To obtain this from the

reduced density matrix ρA, the entanglement Hamiltonian HA must have the diagonal form
Eq. (12) with the single-particle entanglement spectrum

εn = log

(
1− ζn
ζn

)
. (17)

The many body entanglement entropy is then given by the sum of the contributions of each
fermionic mode

S = −
∑
n

(
ζn log ζn + (1−ζn) log(1−ζn)

)
. (18)
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To demonstrate the ideas, we consider a model of spinless fermions on a 1D chain of N sites
with periodic boundary conditions described by the Hamiltonian

H = −t
∑
j

(
c†jcj+1 +H.c

)
. (19)

The following simple Python script calculates the entanglement entropy for the ground state at
half filling for a bipartition into two halves (i.e., A ≡ 1 . . . N/2 and B ≡ N/2+1 . . . N ):

import numpy as np
N = 20
t = 1
H = np.zeros((N,N))
for i in range(N):

H[i,np.mod(i+1,N)] = -t
H[np.mod(i+1,N),i] = -t

E,U = np.linalg.eigh(H)
C = np.dot(U[:N//2,:N//2],np.conj(U[:N//2,:N//2].T))
z = np.linalg.eigvalsh(C)

print ("S = ",-np.sum(z*np.log(z) + (1-z)*np.log(1-z)))

3 Efficient representation and matrix-product states (MPSs)

We will now introduce MPSs, which allow for an efficient representation of area law states
in 1D. When working with MPSs, it is very helpful to use a diagrammatic tensor representation,
which is illustrated in Fig. 2 (a) and (b). In this notation, a tensor with n indices is represented
by a symbol with n legs.

We consider a chain with N sites and label the local basis on site n by |jn〉 with jn = 1, . . . , d,
e.g., for a spin-1/2 we have d = 2 local states |↑〉 , |↓〉. Using the tensor product of local basis
states, a generic (pure) quantum state can then be expanded as

|ψ〉 =
∑

j1,j2,...jN

ψj1j2···jN |j1, j2, . . . , jN〉 . (20)

Note that the order-N tensor ψj1,...,jn has dN complex entries which makes it prohibitively ex-
pensive to store or manipulate exactly even for moderate system sizes. For example, even on a
large supercomputer, a simple S=1/2 system with d=2 can only be simulated exactly for up to
N≈40 sites. Since numerical investigations of quantum-many body systems often require much
larger systems, it is important to find ways to “compress” the quantum states to a manageable
size—this is exactly what we will be able to do using MPS!
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Fig. 2: (a) Diagrammatic representations of a vector v, a matrix M , and the coefficients of a
general many-body state ψj1j2...jn . (b) The connection of two legs symbolizes a tensor contrac-
tion, here (Mv)a =

∑
bMabvb, i.e., summing over the relevant indices. (c) The amplitude of

the wave function is decomposed into a product of matrices M [n]jn . The indices α1 and αN+1

are trivial, which we indicate by dashed lines. (d) Diagrammatic representation of the AKLT
state. The S = 1 sites are decomposed into two S = 1

2
that form singlets between neighboring

sites. With open boundary conditions, the S = 1
2

spins on the left and right are free edge modes
leading to a four-fold degeneracy of the ground state.

In an MPS, the coefficients ψj1,...,jn of a pure quantum state are decomposed into products of
matrices of the form [18–20]

|ψ〉 =
∑

j1,...,jN

∑
α2,...αN

M [1]j1
α1α2

M [2]j2
α2α3

. . .M [N ]jN
αNαN+1

|j1, j2, . . . , jN〉 (21)

≡
∑

j1,...,jN

M [1]j1M [2]j2 . . .M [N ]jN |j1, j2, . . . , jN〉 . (22)

Here, each M [n]jn is a χn×χn+1 dimensional matrix, i.e., we have a set of d matrices for each
site, which we usually group into a tensor of order 3 as shown in Fig. 2(b). The superscript [n]
denotes the fact that for a generic state we have a different set of matrices on each site. The in-
dices αn of the matrices are called “bond”, “virtual”, or “auxiliary” indices, to distinguish them
from the “physical” indices jn. The matrices at the boundary are vectors, that is χ1=χN+1=1,
such that the matrix product in Eq. (22) produces a 1×1 matrix, i.e., a single number ψj1,...,jn .
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3.1 Simple examples of MPS

To become more familiar with the MPS notation, let us consider a few examples.
Product state: The state |ψ〉 = |ϕ[1]〉 ⊗ |ϕ[2]〉 ⊗ · · · ⊗ |ϕ[n]〉 can easily be written in the form of
Eq. (22); since it has no entanglement, the bond dimension is simply χn = 1 on each bond and
the 1×1 “matrices” are given by

M [n]jn =
(
ϕ
[n]
jn

)
. (23)

Concretely, the ground state of the transverse field Ising model given in Eq. (10) at infinite field
g → ∞ is a product state |← · · · ←〉 ≡

(
1√
2
|↑〉 − 1√

2
|↓〉
)
⊗ · · · ⊗

(
1√
2
|↑〉 − 1√

2
|↓〉
)

, which
we write as an MPS using the same set of matrices on each site n,

M [n]↑ =
(

1√
2

)
and M [n]↓ =

(
−1√
2

)
. (24)

For the Néel state | ↑↓↑↓ . . .〉, we need different sets of matrices on odd and even sites,

M [2n−1]↑ =M [2n]↓ =
(
1
)

and M [2n−1]↓ =M [2n]↑ =
(
0
)

(25)

for n = 1, . . . , N/2.
Dimerized state: A product of singlets 1√

2

(
|↑↓〉− |↓↑〉

)
⊗· · ·⊗ 1√

2

(
|↑↓〉− |↓↑〉

)
on neighbor-

ing sites can be written with 1×2 matrices on odd sites and 2×1 matrices on even sites given by

M [2n−1]↑ =
(

1√
2

0
)
, M [2n−1]↓ =

(
0 −1√

2

)
, M [2n]↑ =

(
0

1

)
, M [2n]↓ =

(
1

0

)
. (26)

Spin-1 AKLT state: Affleck, Kennedy, Lieb, and Tasaki (AKLT) [21] constructed a Hamilto-
nian for which the ground state is an exact MPS of bond dimension χ=2. The Hamiltonian reads

H =
∑
j

~Sj ~Sj+1 +
1

3

(
~Sj ~Sj+1

)2
= 2

∑
j

(
P S=2
j,j+1 −

1

3

)
, (27)

where ~S are spin S = 1 operators and P S=2
j,j+1 is a projector onto the S = 2 sector of the spins on

sites j and j+1. This model is in a topologically nontrivial phase with remarkable properties
of the ground state—we will get into this later. To construct the ground state, we note that the
projector P S=2

j,j+1 does not give a contribution if we decompose the S = 1 spins on each site into
two S = 1

2
spins and form singlets between spins on neighboring sites, as illustrated in Fig. 2(d).

While the ground state is unique on a ring with periodic boundary conditions, in a chain with
open boundary conditions the S = 1

2
spins on the edges do not contribute to the energy and

thus lead to a 4-fold degeneracy of the ground state. Given the structure of the ground state,
we can construct the corresponding MPS: We start by writing the product of singlets with the
matrices of Eq. (26) and add arbitrary spin-1

2
states ϕL and ϕR on the left and right. We apply

the projectors P S=1 to map the two spin-1
2

onto the physical spin-1 site, and contract the three
tensors on each site to obtain the MPS structure. For sites 1 < n < N in the bulk, we obtain

M [n]+1 =

√
4

3

(
0 0
1√
2

0

)
M [n]0 =

√
4

3

(
1
2

0

0 −1
2

)
M [n]−1 =

√
4

3

(
0 − 1√

2

0 0

)
. (28)

Here, we included the factor
√

4
3

to normalize the MPS.
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[ ]

[ ]

[ ]

Fig. 3: Iterative conversion of a state |ψ〉 given by a rank-N tensor ψi1,...,iN using successive
Schmidt decompositions in a diagrammatic representation. The horizontal lines represent the
bond (Schmidt indices) α, β, γ, . . . and the vertical lines represent the physical indices jn ∈
{1, . . . , d}. Connected lines between tensors denote summation over the corresponding indices
(see text for details).

3.2 Area law and MPS

In general any state in a finite system can be decomposed exactly into the MPS form of Eq. (22).
However, the caveat is that for a generic state (with a volume law entanglement), the required
bond dimension χmax := maxn χn increases exponentially with the number of sites N . It turns
out that all area law states can be very well approximated by MPS with a finite bond dimension
χmax [22, 23].
For illustration, we will show now how a state can be brought into an MPS form starting from
a full many-body state |ψ〉. For this, we perform successive Schmidt decompositions as shown
diagrammatically in Fig. 3. We start by performing a Schmidt decomposition Eq. (1) of the
state |ψ〉 into the first site and the rest such that

|ψ〉 =
d∑

α1=1

Λ[1]
α1
|α1〉[1]|α1〉[2,...,N ]. (29)

The states |α1〉[1] and |α1〉[2,...,N ] form an orthogonal basis for the left and right part, respectively.
The first matrix A[i]j1

α1 in the MPS is the matrix relating the left Schmidt states |α1〉[1] with the
local states |j1〉 (describing the local states on the first site) and is given by A[1]j1

α1 = 〈j1|α1〉[1].
The resulting mixed representation of the state reads

|ψ〉 =
d∑

j1=1

d∑
α1=1

A[1]j1
α1

Λ[1]
α1
|j1〉|α1〉[2,...N ]. (30)

Next we proceed to the next bond and perform a Schmidt decomposition of the state such that

|ψ〉 =
d2∑

α2=1

Λ[2]
α2
|α2〉[1,2]|α2〉[3,...,N ]. (31)

The second matrix A[2]j2
α1α2 then relates the mixed basis states |α1〉[1]|j2〉 with the left Schmidt

states |α2〉[1,2] and is given byA[2]j2
α1α2 =

[
〈α1|[1]〈j2|

]
|α2〉[1,2]. The resulting mixed representation

of the state reads

|ψ〉 =
d∑

α1=1

d2∑
α2=1

d∑
j1,j2=1

A[1]j1
α1

A[2]j2
α1α2

Λ[2]
α2
|j1, j2〉|α2〉[3,...,N ]. (32)
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This procedure can now be continued until reaching the right end of the chain. We choose the
last matrix A[N ]jn to relate the states ΛαN

|αn〉[N ] to the local basis |jn〉. Then it is easy to see
that we finally arrive at a representation of the state that has exactly the form Eq. (22).
Generically, the matrix dimension increases exponentially as we proceed toward the center of
the chain. However, for area law states, we can make an approximation by neglecting the
Schmidt states that have a very small Schmidt values. For the ground state of the Ising model
discussed above, we can find a very good approximation of the ground state as MPS by keeping
only a maximal bond dimension of∼20 with a truncation error that is of the order of the machine
precision (independent of the system size).

3.3 Canonical form

The MPS representation Eq. (22) is not unique. Consider the bond between sites n and n+1,
which defines a bipartition into L = { 1, . . . , n } and R = {n+1, . . . , N }. Given an invertible
χn+1×χn+1 matrix X , we can replace

M [n]jn → M̃ [n]jn :=M [n]jnX−1, M [n+1]jn+1 → M̃ [n+1]jn+1 := XM [n+1]jn+1 (33)

and still represent the same state |ψ〉. This freedom can be used to define a convenient “canon-
ical form” of the MPS, following Ref. [24, 25]. Without loss of generality, we can decompose
the matrices M̃ [n]jn = Γ̃ [n]jnΛ̃[n+1], where Λ̃[n+1] is a square, diagonal matrix with positive en-
tries Λ̃[n+1]

αn+1 on the diagonal. Performing partial contractions gives a representation looking very
similar to the Schmidt decomposition (1)

|ψ〉 =
∑

j1,...,jN

M [1]j1 . . .M [n−1]jn−1Γ̃ [n]jn Λ̃[n+1] M̃ [n+1]jn+1M [n+2]jn+2 . . .M [N ]jN |j1, . . . , jN〉

=
∑
α̃n+1

Λ̃
[n+1]
α̃n+1
|α̃n+1〉L ⊗ |α̃n+1〉R , where (34)

|α̃n+1〉L =
∑
j1,...,jn

(
M [1]j1 . . .M [n−1]jn−1Γ̃ [n]jn

)
1,α̃n+1

|j1, . . . , jn〉 , (35)

|α̃n+1〉R =
∑

jn+1,...,jN

(
M̃ [n+1]jn+1M [n+2]jn+2 . . .M [N ]jN

)
α̃n+1,1

|jn+1, . . . , jN〉 . (36)

However, for general M and Γ̃ [n], the states |α̃n+1〉L/R will not be orthonormal. Note that we
can interpret the X in Eq. (33) as a basis transformation of the states |α̃n+1〉R in Eq. (36). The
idea of the canonical form is to choose the X in Eq. (33) such that it maps |α̃n+1〉R to the
Schmidt states |αn+1〉R. Using the Schmidt values Λ[n+1]

αn+1 on the diagonal of Λ̃[n+1] → Λ[n+1],
we find that Eq. (34) indeed gives the Schmidt decomposition. Repeating this on each bond
yields the canonical form

|Ψ〉 =
∑

j1,...,jN

Γ [1]j1Λ[2]Γ [2]j2Λ[3] · · ·Λ[N ]Γ [N ]jN |j1, . . . , jN〉 . (37)
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It turns out that the canonical form of MPS is extremely useful for different purposes. First,
fixing the gauge degree of freedom allows for a more efficient optimization of MPS in numerical
algorithms. Second, it provides convenient analytical properties for exactly proving certain
universal properties, which we will use later on in the context of symmetry protected phases.

3.4 Time Evolving Block Decimation (TEBD)

Now that we know how to represent quantum states as MPS, we would like to manipulate them
and use them for studying microscopic models. A very useful algorithm is the Time Evolving
Block Decimation (TEBD) algorithm [26], which allows evaluating the time evolution of a MPS

|ψ(t)〉 = U(t) |ψ(0)〉 . (38)

The time evolution operator U can either be U(t) = exp(−itH), yielding a real time evolution,
or an imaginary time evolution U(τ) = exp(−τH). The latter can be used to evaluate (finite
temperature) Green functions or as a first, conceptually simple way to find the ground state of
the Hamiltonian H through the relation

|ψGS〉 = lim
τ→∞

e−τH |ψ0〉
‖e−τH |ψ0〉‖

. (39)

The TEBD algorithm makes use of the Suzuki-Trotter decomposition [27], which approximates
the exponent of a sum of operators with a product of exponents of the same operators. For
example, the first and second order expansions read

e(X+Y )δ = eXδeY δ +O(δ2), (40)

e(X+Y )δ = eXδ/2eY δeXδ/2 +O(δ3). (41)

Here X and Y are operators, and δ is a small parameter. To make use of these expressions, we
assume that the Hamiltonian is a sum of two-site operators of the form H =

∑
n h

[n,n+1], where
h[n,n+1] acts only on sites n and n+1, and decompose it as a sum

H =
∑
n odd

h[n,n+1]

︸ ︷︷ ︸
Hodd

+
∑
n even

h[n,n+1]

︸ ︷︷ ︸
Heven

. (42)

Each term Hodd and Heven consists of a sum of commuting operators, therefore eHoddδ =∏
n odd e

h[n,n+1]δ and similar for Heven. We now divide the time into small time slices δt � 1

(the relevant time scale is in fact the inverse gap) and consider a time evolution operator U(δt).
Using, as an example, in the first order decomposition (40), the operator U(δt) can be expanded
into products of two-site unitary operators

U(δt) ≈
[ ∏
n odd

U [n,n+1](δt)

][ ∏
n even

U [n,n+1](δt)

]
, (43)

where U [n,n+1](δt) = e−i δt h
[n,n+1] . The successive application of these two-site unitary opera-

tors to an MPS is the main part of the algorithm and explained in the following.
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(i)

(ii)

(iii)

(iv)

Fig. 4: Update to apply a two-site unitary U and recover the canonical MPS form (see text for
details). Note that we do not explicitly label the positions of the individual tensors in favor for
a less cluttered presentation.

Local unitary updates of an MPS. One of the advantages of the MPS representation is that
local transformations can be performed efficiently. Moreover, the canonical form discussed
above is preserved if the transformations are unitary [24].
A one-site unitary U simply transforms the tensors Γ of the MPS

Γ̃ [n]jn
αnαn+1

=
∑
j′n

U jn
j′n
Γ [n]j′n
αnαn+1

. (44)

In such a case the entanglement of the wave-function is not affected and thus the values of
Λ do not change. The update procedure for a two-site unitary transformation acting on two
neighboring sites n and n + 1 is shown in Fig. 4. We first find the wave function in the
basis spanned by the left Schmidt states |αn〉L, the local basis |jn〉 and |jn+1〉 on sites n
and n + 1, and the right Schmidt states |αn+2〉R, which together form an orthonormal basis
{ | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R }. Calling the wave function coefficients Θ, the state
is expressed in a mixed bases as

|ψ〉 =
∑

αn,jn,jn+1,αn+2

Θjnjn+1
αnαn+2

|αn〉L |jn〉 |jn+1〉 |αn+2〉R . (45)

Using the definitions of the canonical form, Θ is given by

Θjnjn+1
αnαn+2

=
∑
αn+1

Λ[n]
αn
Γ [n],jn
αnαn+1

Λ[n+1]
αn+1

Γ [n+1],jn+1
αn+1αn+2

Λ[n+2]
αn+2

. (46)
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Writing the wave function in this basis is useful because it is easy to apply the two-site unitary
in step (ii) of the algorithm

Θ̃jnjn+1
αnαn+2

=
∑
j′nj
′
n+1

U
jnjn+1

j′nj
′
n+1

Θ
j′nj
′
n+1

αnαn+2 . (47)

Next we have to extract the new tensors B̃[n], B̃[n+1] and Λ̃[n+1] from the transformed tensor
Θ̃ in a manner that preserves the canonical form. We first “reshape” the tensor Θ̃ by com-
bining indices to obtain a dχn × dχn+2 dimensional matrix Θ̃jnαn;jn+1αn+2 . Because the basis
{ | αn〉L ⊗ | jn〉 } is orthonormal, as for the right, it is natural to decompose the matrix using
the singular value decomposition (SVD) in step (iii) into

Θ̃jnαn;jn+1αn+2 =
∑
αn+1

Ã
[n]
jnαn;αn+1

Λ̃[n+1]
αn+1αn+1

B̃
[n+1]
αn+1;jn+1αn+2

, (48)

where Ã[n], B̃[n+1] are isometries and Λ̃[n+1] is a diagonal matrix. Indeed, the suggestive notation
that the new tensors are in mixed canonical form is justified, since the SVD yields a Schmidt
decomposition of the wave function for a bipartition at the bond between sites n and n+1.
The isometry Ã[n] relates the new Schmidt states |αn+1〉L to the combined bases |αn〉L ⊗ |jn〉.
Analogously, the Schmidt states for the right site are obtained from the matrix B[n+1]. Thus
the diagonal matrix Λ̃[n+1] contains precisely the Schmidt values of the transformed state. In a
last step (iv), we reshape the obtained matrices Ã[n], B̃[n+1] back to tensors with 3 indices and
recover the right canonical form by

Γ̃ [n]jn
αnαn+1

= (Λ[n])−1αn
Ã

[n]
jnαn;αn+1

and Γ̃ [n+1]jn+1
αn+1αn+2

= B̃
[n+1]
αn+1;jn+1αn+2

(Λ[n+2])−1αn+2
. (49)

After the update, the new MPS is still in the canonical form. The entanglement at the bond
between n and n+1 has changed and the bond dimension increased to dχ. Thus the amount of
information in the wave function grows exponentially if we successively apply unitaries to the
state. To overcome this problem, we perform an approximation by fixing the maximal number
of Schmidt terms to χmax. In each update, only the χmax most important states are kept in step
(iii), i.e., if we order the Schmidt states according to their size we simply truncate the range
of the index αn+1 in Eq. (48) to be 1 . . . χmax. This approximation limits the dimension of the
MPS and the tensors B have at most a dimension of χmax × d× χmax. Given that the truncated
weight is small, the normalization conditions for the canonical form will be fulfilled to a good
approximation. In order to keep the wave function normalized, one should divide by the norm

after the truncation, i.e., divide by N =
√∑

jn,jn+1,αn,αn+2

∣∣Θjnjn+1
αnαn+2

∣∣2.
Using the TEBD algorithm, we can now perform real and imaginary time evolution of MPS.
While the imaginary time evolution provides a tool to find ground states, it turns out that a
variational optimization is often more efficient. This is done using the density-matrix renormal-
ization group (DMRG) method [28]. The DMRG replaces step (ii) in the TEBD algorithm, in
which the two site gate is applied, with a variational optimization of the local tensors. This can
be done using for example the Lanczos algorithm. Instead we refer to the existing literature for
further details [4, 5].
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4 Symmetry-protected topological (SPT) phases

Symmetry and topology are cornerstones in the characterization of quantum phases of matter.
The classification of phases in terms of spontaneously broken symmetries is well known, for ex-
ample the ferro- and paramagnetic phase of the transverse field Ising model. Topological phases
of matter are more subtle and require new frameworks for their theoretical understanding.
We consider a gapped one-dimensional system with bosonic degrees of freedom of length L that
is invariant under a global symmetry group G. An example of such symmetry is the Z2 sym-
metry

⊗
j σ

x
j of the transverse field Ising model Eq. (10). Note that the classification scheme

needs the symmetries to be well-defined even when having open boundaries, which for a unitary
symmetry

⊗
j uj(g) with g ∈ G is guaranteed if it is a product over local symmetry operations

uj(g) on sites (or unit cells), referred to as an on-site symmetry. More general symmetries
(such as for example spatial inversion symmetry) will require a more general “entanglement
based” approach which we will discuss below. If we assume that the symmetry is not spon-
taneously broken, then for periodic boundary conditions the ground state must be unique and
hence invariant, i.e.,

|ψ〉 =
[⊗

n

un(g)

]
|ψ〉. (50)

However, if we have open boundary conditions, then the absence of spontaneous symmetry
breaking in the bulk still allows for the symmetry operation to act non-trivially near the edges.
Since the bulk is invariant and thus not affected by the symmetry operation, we can formally
write this as

⊗
j uj(g) = UL(g)UR(g)—which is valid in the ground state subspace. These

effective operators UL and UR are exponentially localized near the boundaries on a length-scale
set by the correlation length. In the thermodynamic limit (L → ∞) UL(g) and UR(g) have
no overlap and since the Hamiltonian is local, this means that UL(g) and UR(g) do not change
the energy of a state in the ground state subspace. We refer to this as symmetry fractional-
ization. The same holds for any other unbroken symmetry h ∈ G, so we can equivalently
write UL(h)UR(h). Any group relation between g and h then implies a relation between the
edge symmetries. In particular, {UL(g), UL(h), . . . } then obey the same group relations as G,
possibly up to a phase factor. In the bosonic case, where UL and UR commute, both edges
completely decouple and the physical symmetry is then projectively represented on each edge
(see next section for details about projective representations). Such a projective representation
has discrete labels that cannot change smoothly. Since any non-trivial projective representation
has a minimal dimension > 1, it protects degenerate modes on the edge.

4.1 Projective representations

Let us consider a group G with group elements gi ∈ G and discuss how to classify different
SPT phases. The matrices U(gi) form a projective representation of G if

U(gi)U(gj) = ω(gi, gj)U(gigj), (51)
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where ω(gi, gj) ∈ U(1) represent the so-called factor set. Thus a projective representation is a
linear representation modulo a U(1) phase factor. In the case that all phase factors are unity, the
representation is a linear representation of the group. Because of the associativity of the group,
i.e., the elements of G fulfill gi(gjgk) = (gigj)gk, the factor set must satisfy

ω(gj, gk)ω(gi, gjgk) = ω(gigj)ω(gigj, gk). (52)

Transforming the matrices as Ũ(gi) = β(gi)U(gi), β(gi) ∈ U(1) yields a new factor set

ω̃(gi, gj) =
β(gigj)

β(gi)β(gj)
ω(gi, gj). (53)

Two projective representations Ũ(g) and U(g) that are related by such a transformation are
considered to be equivalent and belong to the same class.
It was Isaac Schur who derived in 1904 a classification of different types of projective repre-
sentation using so called “Schur multipliers” to label different classes. These correspond to the
second cohomology group H2(G,U(1)) of a group G. Instead of discussing the details of the
proof, we refer for a general introduction to Ref. [29] and consider some simple examples.

(1) Group ZN. The generators of the group are exp(iπ/N) rotations and the group elements
are {1, R,R2, . . . , RN}. For a projective representation of the group we can assign an arbitrary
phase such that UN(R) = exp(iϕ). However, a simple rescaling U(R) by exp(iϕ/N) can
always transform the projective representation to a linear one. Thus this group has only one
class and all projective representation can be transformed into a linear one.

(2) Group Z2 × Z2. This group is generated by π rotations Rx and Rz about two orthogonal
axes. Clearly,R2

x = R2
z = 1 andRzRx = RxRz, thus the group elements are {1, Rx, Rz, RxRz}.

The group Z2 × Z2 has two different classes of projective representations which can be distin-
guished by the gauge invariant phase factor

U(Rx)U(Rz)U
−1(Rx)U

−1(Rz) = exp(iϕ)

with ϕ = 0, π. Clearly, as each element occurs with its inverse, the phase of the commutator
cannot be change by rephasing the operators.
Both cases can be realized using a representation of the rotations in terms of spin operators by
U(Rx) = exp(iπSx) and U(Rz) = exp(iπSz). The S = 1 representation with

Sx =
1√
2

 0 1 0

1 0 1

0 1 0

 , Sz =

 −1 0 0

0 0 0

0 0 1

 . (54)

is a linear (ϕ = 0) representation. The S = 1/2 spin matrices

Sx =
1

2

(
0 1

1 0

)
, Sz =

1

2

(
1 0

0 −1

)
. (55)

form a projective (ϕ = π) representation. This can be seen easily as U(Rx) = σx and U(Rz) =

σz anti-commute (σx, σz are the Pauli matrices).
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4.2 MPS representations of SPT phases

For the study of SPT phases, it will be useful to derive how symmetry operations act on MPS in
the canonical form. Let us consider an on-site symmetry operation which is applied to all sites

|ψ̃〉 =
[⊗

n

un(g)

]
|ψ〉, (56)

where un(g) is acting on site n with g being an element of the symmetry group G under which
the state |ψ〉 is invariant. In the MPS formulation, the transformation corresponds to contracting
the symmetry operation with all physical legs as shown in Fig. 5(a). In Ref. [30] it was shown
that for an MPS in canonical form the matrices Γ j transform under symmetry operations g as∑

j′

ujj′(g)Γ
j′ = eiθgU †(g)Γ jU (g), (57)

with a diagrammatic representation as shown in Fig. 5(b). Here U(g) is a unitary matrix which
commutes with the Λ matrices, and eiθ(g) is a phase.2 It is clear that this is a sufficient condition
for the MPS to be symmetric. To show that it is a necessary condition, one has to apply the
Schwarz inequality and use conditions of the canonical form [30].
Equivalently to the discussion above, it can be shown that the matricesU(g) form a χ-dimensional
linear or projective representation of the symmetry group of the wave function and eiθ(g) is a
linear (1D) representation [6]. The matrices U(g) are actually a representation of the symmetry
operations in the basis of Schmidt states (this can be seen by going back to the definition of
the canonical form). Note that we assumed a translationally invariant MPS but we can directly
generalize the concept to the general case by allowing site dependent U(g).
Similar relations can be derived for symmetries that are not on-site operations. For a time
reversal transformation Γ j is transformed to (Γ j)∗ (complex conjugate) on the left hand side
(including possible spin rotations). In the case of inversion symmetry Γ j is transformed to
(Γ j)T (transpose) on the left hand side of Eq. (57). We refer to Refs. [6, 7] for further details.

4.3 Simple examples of different SPT phases

We will now consider two different MPSs for a spin-1 chain that belong to different symmetry
protected phases protected by the Z2 × Z2 symmetry, i.e, π rotations about the x and z axis.
Clearly, the onsite representation of the Z2 × Z2 in terms of the S = 1 degrees of freedom is a
linear one. Let us now analyze how the MPS representation of two different states transforms
under the Z2 × Z2 symmetry.
Spin-1 AKLT state: The AKLT state has SO(3) symmetry and Z2×Z2 is a subgroup thereof.
Since the MPS representation Eq. (28) is very simple, we can directly extract the projective
representation by applying the symmetry operations and find that

U(Rx) = σx, U(Rz) = σz

2As U(g) commutes with Λ, it also commutes with the reduced density matrices ρL and ρR.
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Fig. 5: (a): Transformation of an MPS under an on-site symmetry g applied to all sites.
(b): Representation of a symmetry operation in terms of the MPS.

and θ = π (To arrive at this result, one can simply apply the on-site symmetry operations to the
MPS). The representation of Z2 × Z2 is a projective one with the gauge invariant phase factor
U(Rx)U(Rz)U

†(Rx)U
†(Rz) = −1.

Spin-1 product state: A product state of Sz = 0 eigenstates of the form |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉
is invariant under Z2 × Z2 and the MPS transforms trivially under Z2 × Z2 rotations

U(Rx) = 1, U(Rz) = 1

with U(Rx)U(Rz)U
†(Rx)U

†(Rz) = 1 and θ = 0.
As argued above, these phase factors characterize the two phases as they cannot be changed un-
less the symmetry is broken or the system undergoes a phase transition. Thus we have identified
two representatives of different SPT phases.

4.4 Degeneracies in the entanglement spectrum

Here we discuss some practical ideas of how to detect SPT in numerical simulations in terms
of the entanglement spectrum. Topological phases with non-trivial projective representations
necessarily have degeneracies in the entanglement spectrum. That is, all eigenvalues of the
reduced density matrices ρL and ρR for the bipartition of the system into two half-chains are
degenerate.
To see this, let us assume that the ground state is represented as a MPS and is symmetric
under a symmetry group G. Using the Eq. (57), we find the symmetry representation U(g)

in terms of the auxiliary indices which commutes with the reduced density matrices. If the
U(g) for g ∈ G form a projective representation of the symmetry group, we can find a set of
non-commuting elements such that for example U(gi)U(gj)U(gi)†U(gj)† = exp(iϕ). The non-
trivial commutation relations require that the irreducible representations have dimensions larger
than one, which yields degeneracies in the spectrum of ρL and (ρR). For example, if ϕ = π, the
spectrum is doubly degenerate, since ρL and ρR commute with the two unitary matrices Ux, Uz
which anti-commute among themselves.
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5 Universal entanglement scaling at critical points

In the previous section, we mainly focused on local and gapped Hamiltonians for which we
found an area law. We will now shift our attention to ground states at critical points where
the correlation length diverges and the state becomes scale invariant. The microscopic details
become irrelevant for the long wavelength physics and according to the universality hypothesis,
certain quantities only depend on basic properties like the symmetry of the system.
Many critical points in one-dimensional systems can be described by conformal field theories
(CFT). A CFT is a quantum field theory that is invariant under conformal transformations (i.e.,
transformations that locally preserve angles, but not necessarily lengths). The number of in-
dependent conformal transformations is infinite for 1+1D, which makes conformal symmetry
highly constraining in this case. As a result, conformally invariant critical points in 1+1 dimen-
sions can be described by a small number of parameters. One of the key quantities in this context
is the central charge c, which is a universal quantity that quantifies the low energy degrees of
freedom of the theory. For example, for free bosons c = 1, whereas the Ising universality class
has c = 1/2.
We will now show that the central charge is intimately linked to the bipartite entanglement
entropy [9,8]. Let us compute the entanglement entropy for the bipartition of a 1+1 dimensional
lattice model from the reduced density matrix ρA. Since the eigenvalues lie in the interval [0, 1]
and Tr ρA = 1, Tr ρnA is convergent and analytic for all Re n > 1. Hence we can obtain the
entanglement entropy using

S = − lim
n→1

∂

∂n
Tr ρnA. (58)

While calculating Tr ρnA for a generic n is not feasible, it is possible for positive integer n using
the replica trick and then analytically continuing it to a general complex value. In particular, the
calculation for positive integer n reduces to that of a partition function on a Riemann surface
that is analytically achievable in a quantum field theory. Using this approach, it is now possible
to obtain the entanglement entropy for a 1+1 dimensional CFT in different settings:
First, we consider the case in which we cut out ` consecutive sites from an infinite chain for
which we find [9]

S =
c

3
log

(
`

a

)
+O(1). (59)

Here c is the central charge and a is an ultraviolet cutoff, corresponding to a lattice spacing.
Thus the entanglement entropy does not exhibit an area law but instead diverges logarithmically.
Moreover, the Rényi entropies are given by

Sn =
c

6

(
1 +

1

n

)
log

(
`

a

)
+O(1). (60)

Second, we consider the case in which we cut a finite chain of length L into two pieces of length
` and L− ` for which we obtain

S =
c

6
log

(
2L

πa
sin

π`

L

)
+O(1), (61)
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with the special case for a bipartition into two equally sized halves,

S =
c

6
log

(
`

a

)
+O(1). (62)

The coefficient in front of the logarithm is thus half of the one where we cut out a finite block
from an infinite system. These above two formulas are particularly useful for extracting the
central charge from finite size numerics.
Third, we consider an infinite system that is close to a critical point, where the correlation length
is large but finite. In this case one can often still effectively describe the system by a conformal
field theory. One then obtains for the entanglement entropy [31]

S =
c

6
log

(
ξ

a

)
+O(1). (63)

The latter formula is very useful for infinite-system MPS based simulations of critical points,
where a finite bond dimension induces a finite correlation length. In this entanglement scaling
approach, a simulation at the critical point is performed with increasing bond dimension, which
can be used to extract the central charge [32, 33].

6 Case study: Phase diagram of a spin-1 chain

We now demonstrate the usefulness of the entanglement based quantities we derived in the
preceding sections to numerically study the phase diagram of a spin-1 chain. For this we will
first use MPS based methods to obtain the ground state and then analyze its properties using
entanglement spectroscopy and entanglement scaling.
We will investigate the phase diagram of the Hamiltonian

H = J
∑
j

~Sj · ~Sj+1 +D
∑
j

(Szj )
2, (64)

where the first term is the spin-1 Heisenberg coupling (J > 0) and the second term is a single
ion anisotropy (D > 0). This model has various symmetries that can protect SPT phases,
including time reversal, inversion symmetry, and Z2 × Z2 spin rotation symmetry. The phase
diagram of this model is well known (Ref. [34] and citations therein) and thus it serves as a
good testing case.
In order to understand the phase diagram, let us first consider the limiting cases:

• For D � J , the model reduces to the antiferromagnetic spin-1 Heisenberg model and the
ground state is in the Haldane phase [35], which also contains the AKLT state |ψAKLT〉
[21]. Based on the consideration made in Section 4, we know that the ground state is in a
non-trivial SPT phase.

• For D � J , the ground state is adiabatically connected to a simple product state
|ψlarge D〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, which is thus in a trivial phase.
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Fig. 6: (a) Half-chain entanglement entropy for the spin-1 chain Eq. (64) of length L = 128
as function of the bond dimension χmax used for the MPS simulations for different D. (b) Half-
chain entanglement entropy for different systems sizes as function of D. The dashed line indi-
cates the location of the exact critical point [34]. (c) Entanglement spectrum as function of D
with a characteristic degeneracy in the Haldane phase. (d) Scaling of the entanglement entropy
at the critical point, allowing us to extract a central charge c = 1.

Consequently, there has to be a phase transition between the two limiting cases.
We use the DMRG [28] method to variationally optimize an MPS ansatz for the ground state
of the Hamiltonian and implement the code in Python with the TeNpy package [5]. A minimal
code that finds the MPS representation for a spin-1 chain reads:

from tenpy.networks.mps import MPS
from tenpy.models.spins import SpinModel
from tenpy.algorithms import dmrg

M = SpinModel({"S":1,"L": 16,"bc_MPS": "finite",
"Jx": 0,"Jy": 0,"Jz": 0,"D":2})

psi = MPS.from_product_state(M.lat.mps_sites(), [1]*16, "finite")
dmrg_params = {"trunc_params": {"chi_max": 30, "svd_min": 1.e-10}}
info = dmrg.run(psi, M, dmrg_params)
print("S[j] =", psi.entanglement_entropy())

For numerical stability, we add a small field at the first and last site to prevent the edge modes
from coupling to each other. To test the convergence and figure out the required bond dimension
χmax, we plot the half-chain entanglement entropy S in Fig. 6(a). We find that S converges for
relatively small χmax for the system sizes considered. Indeed, based on the area law, we expect
that the required bond dimension is independent of system size in gapped phases. However, the
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entanglement entropy diverges logarithmically at critical points and thus the bond dimension has
to be increased as we increase the system size (typically χmax ∼ Lκ for some model specific
exponent κ > 0). The logarithmic divergence of the entanglement entropy provides a useful
signature to determine critical points in phase diagrams as seen in Fig. 6(b). We can clearly dis-
tinguish the area law behavior in the gapped phases from the critical point. Similar techniques
have been used in the literature to pinpoint the critical point at DC/J = 0.96845(8) [34]. The
entanglement spectrum shown in Fig. 6(c) shows the characteristic degeneracy throughout the
Haldane phase and only accidental degeneracies in the large D phase. Note that we could also
use non-local order parameters to distinguish the two phases [36, 37]. Lastly we focus on the
properties of the critical point and investigate the entanglement scaling in Fig. 6(d). Using
Eq. (62), we extract a central charge of c = 1, compatible with the universality of a Gaussian
transition [38].
The tools applied in this case study can (in principle) be applied to determine the phase diagram
of any one-dimensional model Hamiltonian. The main obstacle is that the ground state might
be highly entangled, preventing an accurate representation as an MPS. This is particularly the
case when considering critical phases, especially if the central charge is large.

7 Conclusions and further developments

In these lecture notes, we discussed a few aspects of many-body entanglement. After a general
introduction, we introduced the area law which is commonly obeyed by ground states of local
Hamiltonians, i.e., the leading term of the entanglement entropy grows at most proportionally
with the boundary between the two partitions. This is in contrast to the volume law which is
found for random or highly excited states. The area law and resulting locality of the ground state
are extremely helpful to investigate the intricate structure of quantum many-body states and their
emergent quantum orders. To demonstrate this, we focused on three different applications to
one-dimensional quantum spin systems: First, we showed that area law states can be efficiently
represented using MPSs—which are the basis for several algorithms that allow to simulate
large quantum systems. Second, we investigated the entanglement properties of ground states
and how they transform under symmetries, providing a framework for the classification of SPT
phases. Third, we identified universal scaling properties of the entanglement entropies.
We obviously only covered a small fraction of this fast moving and rich field. Let us close by
briefly mentioning some exciting aspects that could not be covered in theses notes.

Topological entanglement. The entanglement entropy for a simply connected region for a
two-dimensional system has the general form S = α|∂A| − γ + . . . , where α in the leading
term is a non-universal coefficient and |∂A| is the perimeter of the subsystem. The sub-leading
term γ, also known as the topological entanglement entropy, is universal and reflects the any-
onic content that characterizes the topological order [39, 40]. This is directly related to the
total quantum dimension (D) of the underlying topological field theory as γ = logD. The
topological entanglement is a very useful quantity to detect topological orders.



Many-Body Entanglement 15.23

Many-body localization. So far we only discussed entanglement of ground states but the
concept is also very useful to characterize non-equilibrium properties. One of the most remark-
able predictions of quantum mechanics is that an arbitrarily weak random potential is sufficient
to localize all energy eigenstates of a single particle moving in one dimension. Recent work
has proposed that, if there are electron-electron interactions but the electronic system is isolated
from other degrees of freedom, there can be a many-body localization (MBL) transition even in
a one-dimensional system for which all the single-particle states are localized [41]. Entangle-
ment is useful to characterize MBL in different ways: First, while the highly excited eigenstates
of generic Hamiltonians fulfill a volume law, the eigenstates of a fully MBL systems obey an
area law [42]. Thus the entanglement of eigenstates serves as an “order parameter” to detect a
transition from an extended to an MBL phase. Second, the dynamical properties of the entan-
glement entropy allow us to distinguish a non-interacting (Anderson) localized system from an
MBL system. While the entanglement following a quantum quench saturates for the former, it
shows a logarithmic growth as function of time for the latter [43].
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