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7.2 Józef Spałek

1 Introduction & motivation: Localized versus itinerant

The textbook division of the electronic states in quantum matter ranges between the two princi-
pal categories: (i) localized (bound, atomic) states and (ii) extended (delocalized, band, Fermi-
liquid, free-particle-like) states. The two classes of states are depicted schematically in Fig. 1.
While the question of existence of space-bound states in solids are described and character-
ized experimentally to a very good accuracy [1], the transformation of those atomic states into
emerging delocalized states in solid state physics (or in general, in condensed matter physics)
is still under debate. The classical textbooks on the latter subject with a successful imple-
mentation of wave mechanics to molecular and metallic systems start with the Bloch theorem
establishing the periodic nature of the single-electron states in solids under the influence of the
corresponding translation-symmetric single-particle potential. The first success of the methods
of the LCAO, Hückel, etc. approaches was quite impressive given a total negligence of the in-
terparticle interactions. Those interactions are not only of Coulomb type, but also of the, e.g.,
van der Waals type which appear in molecular or solid-state systems.

The question of including interparticle interactions in the context of periodic solid-state sys-
tems was posed qualitatively by Nevill Mott (for review see [2,3]). Mott based his argument on
earlier experimental observations: for example, cobalt oxide, CoO, according to the elementary
Wilson classification of electronic states, should be regarded as a metallic system, since it pos-
sesses an odd number of valence electrons. Quite to the contrary, it was recognized as one of
the best insulators known then. The argument was that probably the repulsive electron-electron
interaction is responsible for a destruction of coherent periodic Bloch states, as it favors sep-
arating the particles from each other as far as possible, i.e., fixing them on the atomic states
they originate from. Additionally, Mott argued later that the transition between atomic-type and
itinerant (Bloch-type) states should be discontinuous (first-order), since the Coulomb interac-
tion is long-range, so the transition must take place from zero-concentration limit (insulating
ground state) to the metallic state of sizable electron concentration, to warrant screening of the
increasing - energy Coulomb interaction. In such a situation, those insulators should not only
be clear-cut from metals with odd number of valence electrons, but also from the full-band
Wilson-type insulators. In that, two features of such Mott (or Mott-Hubbard) systems should be
singled out. First, as they contain unpaired spins, their magnetic ordering is tightly connected
with them, usually of antiferromagnetic type as was discussed clearly by Anderson, see eg., [4]
and Goodenough [5]. Second, the Mott localization should be common to any condensed matter
system, such as quark-gluon plasma [6] or even cold-atom bosonic systems, and should appear
if only the repulsive interparticle interaction is strong compared to their bare band (kinetic) en-
ergy. This shows a universal character of the related physics, particularly to those system in
which such a matter-insulator (localization-delocalization) transition is observed. A textbook
example of an electronic system with such a transitions is the vanadium sesquioxide doped with
chromium, (V1 – xCrx)2O3 (see Fig. 2 and [7])

The aim of this chapter is to characterize first briefly the most striking properties of Mott-
Hubbard systems of macroscopic size and then turn to the question of the localization in cor-
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Fig. 1: Schematic representation of metallic (Fermi-liquid) (a) and Mott-Hubbard insulating
(localized) states (b). Note that in the state (a) electrons derive from the parent atoms, which
form a background lattice of cations (red solid points). The spins of unpaired electrons form as
a rule an antiferromagnetic lattice.

related nanosystems. The atomicity and itineracy of the valence electrons in the latter case can
then be seen clearly on example of exact results, at least for model systems. This analysis should
provide us with additional arguments for the universality of the Mott phenomenon within the
physics of quantum condensed matter.

2 Essence of Mott-Hubbard localization: A physical picture

In this section we define the concept of almost an localized Fermi liquid and the thermodynamic
character of the Mott-Hubbard transition for electrons in a single narrow band. This picture is
based on the Hubbard model and its direct variational analysis.
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Fig. 2: a) Temperature dependence of the electrical resistivity (in logarithmic scale) vs. 1/T
for Cr-doped V2O3. A very sharp transition from antiferromagnetic insulating (AFI) to para-
magnetic metallic (PM) phase is followed by a reverse PM→ PI at higher temperature, which
in turn is followed by PI → PM’ crossover transition to a reentrant metallic (PM’) phase at
still higher temperatures; b) Phase diagram for the same system in the T -x plane; the hatched
area depicts the hysteretic behavior accompanying the discontinuous transitions (taken from
Ref. [7, 8], with small modifications. Both AFI→ PM and PM→ PI represent examples of the
Mott-Hubbard transition (see main text).

2.1 Definitions

The ground-state energy of a periodic system of fermions can be described by starting from the
system of atomic configurations and, subsequently, adding other dynamic interactions which
appear in the emerging condensed state. Namely, its energy per atomic state can be simply
expressed in the form of [9]

EG
N

= εa + 〈T 〉+ 〈V 〉+ 〈V12〉 ≡ E1 + E2, (1)

where εa is the single particle energy in an atomic (Wannier) state, 〈T 〉 and 〈V 〉 are the average
kinetic and potential energies in, whereas 〈V12〉 is the expectation value of the two-particle
interaction. The single-particle part E1 comprises the first three terms, and E2 ≡ 〈V12〉. In
such a periodic system near the delocalization-localization transition, we usually assume that
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εa = 0; i.e., it is regarded as a constant (reference) value which is often disregarded unless stated
explicitly (see next sections). In this manner, the remaining terms characterize solely the energy
contributions of relevant fermions in the condensed state with respect to that in the atomic state.
Note also that usually E1 < 0. Next, one can define two physically distinct regimes:

1◦ |E1|&E2: Fermi-liquid (metallic) regime, ranging from a simple-metal region (|E1|�E2),
through the Fermi-liquid regime, to the delocalization-localization threshold |E1|≈E2;

2◦ |E1| � E2: strong-correlation (Mott-Hubbard) regime.

Let us characterize briefly each of them and introduce the states in these regimes. Connected
with this we start from an atomic (Wannier) representation of the involved states and interac-
tions, in the situation 1◦. The starting point is described then by either a gas of fermions or
a Landau Fermi liquid, and associated with both of them momentum representation and the
Fermi-Dirac statistics (distribution) in its canonical form. In discussing the correlated system,
we start as a rule from the Wannier representation (see below). This means that, in general, we
can start from two complementary representations of the single-particle quantum-mechanical
states, i.e., either from the Bloch representation, in which the momentum uncertainty is zero,
or from the Wannier representation, in which the proper quantum number characterizing the
state is a fixed lattice position, at which the wave function is centered. The above division
into the two asymptotic regimes |E1| � E2 and |E1| � E2 is illustrated in Fig. 1, where the
complementary nature of the single-particle states is represented for the example of a solid with
metallic (delocalized) states of electrons (a) or correlated (atomic, Mott) states (b) for the case
with one relevant valence electron per parent atom. Additionally, we have marked a dividing
line (the Mott-Hubbard boundary) between the two macrostates. The momentum representation
is described by set of the Bloch functions {Ψpσ(r)} with (quasi)momentum p = ~k and spin
quantum number σ = ±1 ≡↑, ↓, whereas the position representation is expressed by the corre-
sponding set of Wannier states {wiσ(r)}. These two representations are equivalent in the sense
that they are related by the lattice Fourier transformation. However, in the situation depicted in
Fig. 1, when we have a sharp boundary (usually first-order phase-transition line) between the
states shown in (a) and (b), this equivalence is broken and, in effect, the unitary symmetry U(N )
does not apply. The macroscopic state (a) near the transition is represented, strictly speaking, by
a modified Landau-Fermi liquid (the so-called almost localized Fermi liquid, ALFL), whereas
the Mott-insulating state is well accounted for as a localized-spin (Heisenberg) antiferromagnet.
From the above qualitative picture one can infer that with approaching the metal → insu-
lator boundary, i.e., with the formation of a localized-spin state, the kinetic energy of the
renormalized-by-interaction particle progressive motion throughout the system is drastically
reduced and, as a result, it reduces to zero in the localized (insulating) state. Effectively, one
can say that then the Landau quasiparticle effective mass m∗ →∞. This feature illustrates the
situation that strong enough interactions (called in this context strong correlations) limit the sta-
bility of the Landau-Fermi quasiparticle picture, as is exemplified explicitly by the appearance
of the Mott-Hubbard phase transition. Also, a proper quantitative description of the transition
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requires a model with a simultaneous generation of the effective exchange interactions (kinetic
exchange [10] in the one-band case or superexchange in the multi-orbital situation). In the sub-
sequent Sections 2 and 3 we provide a quantitative analysis of these statements. The starting
point of these considerations is the parametrized microscopic Hamiltonian provided below. We
limit our discussion to the Hubbard model as an illustration of the more complicated analysis
of nanophysical systems in Sections 4 and 5.

2.2 Correlated (nano)materials

The following are examples of bulk systems belonging to 1◦ or 2◦

1◦ Mott-Hubbard systems: ((V1 – xCrx)2O3 [7]), NiS2 – xSex [11], organic metals [12];

2◦ Mott (antiferromagnetic) insulators: NiO, CoO, La2CuO4, YBa2Cu3O7 etc., strongly cor-
related metals, high temperature superconductors: La2 – xSrxCuO4, YBa2Cu3O7 –δ, heavy
fermion systems: CeAl3, CeCu2Si2, UBe13, CeCoIn5, etc.

These are the most typical systems and can be regarded as almost localized Fermi-liquids. There
are also systems with quantum phase transitions and non-Landau (non-Fermi) liquid states, but
those are regarded as a separate class as then the quantum fluctuations are as important on the
correlations. Those systems are not tackled in detail here.
At this point we would like to say a few words about the correlated nanosystems. The atomic
(bound) states are localized by definition. The basic question is what happens when we form,
e.g., a nanochain or nanoring. How can such a small system become a nanometal (e.g., a
monoatomic quantum wire), when we vary the interatomic distance? In other words, at what
point does the set of discrete atomic states form a nanoliquid? We address this type of questions
after analyzing first the nature of the delocalization in bulk systems.

2.3 From Landau-Fermi liquid to Mott-Hubbard insulator through an
almost localized Fermi liquid

The Landau theory of Fermi liquids represents a standard reference point in the theory of in-
teracting fermions (for recent references see [13–15]). Here we characterize only briefly their
characteristics, particularly those which appear or are relevant to theory of correlated systems.
The principal assumption of the theory is that we are interested in the changes of ideal-Fermi-
gas-properties, which are induced by the inter-particle interactions and associated with thermal
excitations at low temperatures. In other words, we express the change of the total energy of
the system due to the appearing interaction in the Landau form

δE '
∑
kkkσ

εkkkσ δnkkkσ +
1

2

∑
kkkkkk′

fσσ
′

kkkkkk′ δnkkkσ δnkkk′σ′ ≡
∑
kkkσ

Ekkkσδnkkkσ, (2)

where εkkkσ is the single-particle energy (with respect to the chemical potential µ) and fσσ′

kkkkkk′ (gen-
erally spin-dependent) is the effective interaction between those particles; it has the form of
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spin-dependent density-density interactions. Explicitly, the bare-particle energy in the Zeeman
field Ha is εkkkσ ≡ εkkk − gµBHaσ − µ and in the isotopic liquid (not generally true for fermions
in lattice systems) we have that fσσ′

kkkkkk′ = f skkkkkk′(kkk · kkk′/k2F ) + σσ′fa(kkk · kkk′/k2F ), where kF is the
Fermi wave vector and f s,a express spin-independent and spin-dependent parts, respectively.
The next assumption is that we take into account the interaction-induced scattering processes
for particles at the Fermi surface, i.e, put that kkk · kkk′/k2F = cos θkkkkkk′ and subsequently we can
express the interaction parameters in terms of a Legendre polynomial expansion

f (s,a)(cos θ) =
∞∑
l=0

f
(s,a)
l Pl(cos θ). (3)

There are three basic assumptions in the Landau formulation of the Fermi-liquid theory. First,
the interparticle scattering is important only very near or, strictly speaking, at the Fermi sur-
face due to the Pauli principle, i.e., the circumstance that particles can scatter only from oc-
cupied states |kkkσ〉 into unoccupied ones. Second, a well defined Fermi surface remains in-
tact even if the scattering processes are included (this is the Luttinger theorem proved later
on the grounds of perturbation expansion and assuming validity the Dyson theorem, which
is not always valid for correlated systems). Third, there is a one-to-one correspondence be-
tween the initial (bare energy states, εkkkσ) and the effective (quasiparticle) states with energies
Ekkkσ ≡ εkkkσ + 1

2

∑
kkkkkk′σ′ fσσ

′

kkkkkk′ δnkkk′σ′ . Moreover, the Fermi energy value EF ≡ µ at T = 0 can be
regarded as the reference energy for both the bare- and quasi-particle states. Effectively, this
means that the interaction processes, practically active only at the Fermi surface, do not influ-
ence the Fermi surface volume. Finally, from the third assumption it follows that the statistical
distribution for the quasiparticles can be taken in the form of the Fermi-Dirac distribution for
those states, i.e., f(Ekσ) = [exp (βEkσ) + 1]−1.

The additional ingenious feature of the theory is the circumstance that the principal properties
of a Fermi liquid, such as liquid 3He, can be expressed solely by the first three parameters of
expansion (3): f s0 , f s1 , and fa0 , what makes this theory, even though phenomenological in its
nature, fully testable in its original form, at least for the isotropic quantum liquid 3He. What is
more important, the assumption about the Fermi-Dirac distribution applicability has been tested
on two systems: experimentally, for liquid 3He (cf. Fig. 3ab) and theoretically by considering
the evolution of the statistical distribution function, calculated exactly for model nano-chains
and nano-rings of hydrogen atoms, as a function of interatomic distance [16,17] (see later here).

Nevertheless, as shown in Fig. 3a and b, the effective-mass concept (m∗3) for 3He atoms breaks
down and consequently, the linear specific heat γ ceases to exist at the liquid-solid transition
(cf. Fig. 3b). These effects cannot be accounted for within the Landau-Fermi liquid theory.
We discuss that question next within the Hubbard model by introducing first the concept of an
almost localized Fermi liquid and, as a consequence, a discontinuous delocalization-localization
(metal-insulator) phase transition. These aspects are regarded as the fundamental features of
correlations.
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a) b)

Fig. 3: Principal characteristics of liquid 3He as a Fermi liquid: a) the Fermi-Dirac distribution
measured by neutron scattering at ambient pressure and temperature T = 0.37 K [18]; b) the
linear-specific-heat coefficient γ in units of gas constant R and inferred from it effective atom
mass enhancement m∗3/m3, both as a function of external pressure [19]. The vertical dashed
line marks the liquid-solid transition, regarded in this case as a discontinuous Mott transition
to the localized state of whole atoms. The spin 1/2 is attached to the nuclei for this case of
two-electrons atoms in 1s2 configuration.

2.4 The concept of almost localized Fermi liquid (ALFL)

One can notice from Fig. 3b that the Fermi-liquid state characterized there by the linear specific-
heat coefficient (in units of gas constant R), γ/R and the resulting effective-mass enhancement
m∗3/m3 of the 3He atom in this milieu, both loose their meaning at the liquid-solid transition,
which takes place at the relatively low external pressure ' 36 bar. At this point the atoms
freeze into well-defined crystal positions and their individual quantum mechanical states are
characterized from now on by a set of Wannier functions {w(r · ri)} centered at well-defined
lattice sites {ri}. It must be underlined that in this case there is no external single-particle
potential trapping the particles, as it is the case for electrons in solids. Such a solidification is
regarded thus as an example of a spontaneous breakdown of translational symmetry, albeit in a
discontinuous manner. Our task in this section is to briefly discuss the delocalization states in
the metallic liquid of electrons close to the transition to the localized state, and next, explain its
first-order phase-transition nature.
We model the system by starting from the Hubbard Hamiltonian (4) and calculate first the
system ground-state energy per atomic site 〈H〉/N . The interaction between correlated particles
in the simplest form is given by the single-band Hubbard model [20, 21] with εa = 0 (i.e.,
tii = 0; hence the primed summation in the first term),

H̃ =
∑
ijσ

′
tij â

†
iσ âjσ + U

∑
i

n̂i↑ n̂i↓, (4)

in which tij ≡ 〈wi|H1|wj〉 < 0 represents the single-particle parameter phrased as the hopping
parameter, (and with the bandwidth of bare states W ≡ 2z

∣∣∑
j(i) tij

∣∣,where j(i) means the
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summation over neighboring sites to i), and U is the magnitude of intraatomic interactions
the so-called Hubbard term. For strongly correlated electrons we can rephrase the conditions
1◦ and 2◦. Namely, situations with W ? U or W ' U represent the systems below and at
the Mott-Hubbard transition, respectively, whereas the W � U case represents the strong-
correlation limit 2◦. Note again that the primed summation in (4) excludes the i = j term∑

iσ tijn̂iσ = t0Ne, when the system is transitionally invariant (tii = t0 ∀i); then,Ne =
∑

iσ n̂iσ
is the total number of particles of N atomic sites (n ≡ Ne/N is the so-called band filling). If
we regard that the reference atomic energy of each of the electrons does not change near the
metal-insulator transition (W ' U ), then to N0 can be thought of an irrelevant constant term
(reference energy) and disregarded. This assumption must be revised (see later) as one includes
an ab initio calculations, i.e., when the parameters are also calculated explicitly. But, first we
analyze the situation as a function of U/W for the half-filled (n = 1) situation.
When approaching the localization-delocalization transition we expect that the single-particle
and interaction parts become of comparable amplitude. Due to this circumstance, we as-
sume that the hopping probability 〈â†iσ âjσ〉 is renormalized by the interaction to the form
〈â†iσ âjσ〉 ≡ q〈â†iσ âjσ〉0, where 〈â†iσ âjσ〉0 is the hopping probability for noninteracting (uncor-
related) particles and q is the so-called renormalization (band narrowing) factor: q → 1 when
U → 0 and q → 0 when U → UC , where UC is the critical interaction value for the transition
to the localized state to the take place. Explicitly, we can write down the system internal energy
in the form (for U 6 UC) [22, 23]

EG
N

=
1

N

∑
kkkσ

Ekkk f(Ekkk) + Ud2, (5)

where Ekkk ≡ qεkkk, d2 ≡ 〈n̂i↑ n̂i↓〉, and f(Ekkk) in the Fermi-Dirac function for renormalized
particles regarded still as quasiparticles. In this expression d2 is regarded as a variational pa-
rameter to be calculated self-consistently. Therefore, the whole problem reduces to determining
microscopically q ≡ q(d2). This can be carried out by considering Gutzwiller’s variational
approach [24], but also from physical considerations [25]. It turns out that for the half-filled
(n = 1) state (i.e., with one particle per atomic site) and for systems with electron-hole symme-
try this factor can be calculated in the elementary manner [25] which yields the simple result
q(d2) = 8d2(1−2d2). Additionally, we have that for a constant density of states, the chemical
potential can be set µ ≡ 0 and thus for Ha = 0 we have

ε̄ ≡ 1

N

∑
kkkσ

(Ekkk/q) = −W
4
, (6)

where Ekkk/q ≡ εkkk represents, as before, the single particle energy of bare particles at the tem-
perature T = 0; also, the effective-mass renormalization is m∗ = mB/q, where mB is the bare
band mass.
By minimizing energy (6) with respect to d2 we obtain both the physical ground-state energy and
the quasiparticle energy spectrum {Ekkk}. This in turn, allows us to calculate concrete ground-



7.10 Józef Spałek

state and thermodynamic properties. Explicitly [23, 26, 27],

d2 =
1

4

(
1− U

UC

)
, (7)

EG
N

=
1

4

(
1− U

UC

)2

ε̄ , (8)

m∗

m0

=
1

1−
(
U
UC

)2 ≡ 1

q0
≡ 1 +

1

3
F s
1 , (9)

γ = γ0
m∗

m0

= γ0
1

q0
≡ γ0

(
1 +

1

3
F s
1

)
, (10)

χ = χ0
1

q0

[
1− ρ0(µ)U · 1+U/2Uc

(1+U/Uc)
2

] ≡ χ0
m0

(m∗) (1 + F 0
a )
, (11)

χ

γ
=
χ0

γ0

1

1− ρ0(µ)U · 1+U/2Uc

(1+U/Uc)
2

, (12)

with UC ≡ 8|ε̄| = 2W (the second value is for constant density of states). Additionally, to
calculate the magnetic susceptibility χ, the full Gutzwiller approach have been used [24]. When
U → UC → 0, d2 → 0, the ground-state energy EG → 0, the effective mass m∗ →∞, and the
magnetic susceptibility to linear specific heat coefficient χ/γ → 4. We see that at the transition,
the interaction (> 0) and the single particle (< 0) parts compensate each other, the mass for
translational motion throughout the system diverges, and the magnetic susceptibility is roughly
proportional to γ. The U = UC point thus represents the dividing line between the itinerant and
atomic states of the matter and the freezing of particles into a lattice breaks the whole system
translational invariance (at least, in liquid 3He case). A full microscopic approach requires the
explicit determination of the parameters U and ε̄ as a function of pressure. Low-temperature
corrections to eq. (7)–(12) have been detailed elsewhere [23, 15]. The expression appearing on
the right of the ≡ sign give the results from Landau theory.
One may say that the picture formed by the expressions (7)–(12) represents, as in any Fermi-
liquid theory, a basic quasiparticle picture, with the additional boundary of its applicability for
U < UC . In fact, this picture can be mapped into the Landau-Fermi-liquid parametrization of
the physical properties at T = 0 [28]. The question remains what are the collective spin- and
charge-excitation spectra in the present case. This subject is a matter of our present studies and
will not be detailed here [29, 30].

2.5 Delocalization-localization (Mott-Hubbard) transition

As has been mentioned in the preceding section, the delocalization-localization transition at
T = 0 takes place at U = UC ≈ W . The question is when this transition will appear at
arbitrary T > 0. This question is a nontrivial one, since near the transition, the renormalized
single-particle and interaction energy not only almost compensate each other, but also each of
the two terms vanishes separately. In such a situation, small perturbations such as the thermal
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Fig. 4: a) Phase diagram at T 6= 0 for almost localized fermions in the temperature T versus
relative interaction magnitude U/UC plane. Note the presence of two critical points: classical
at T = Tc and quantum at T = 0. This phase diagram does not include the magnetic phases
(see below [22]); b) an analogous phase diagram for nuclear matter [31]. In both cases, the
dashed lines represent extrapolations to the high-temperature regime.

or atomic disorder, applied magnetic field, or even the onset of magnetic order may balance out
two quantum-mechanical contributions towards either insulating (localized) or itinerant (ALFL,
metallic) state. We discuss the effect of nonzero temperature.
Starting from the internal energy (3) we define the free energy functional of the itinerant corre-
lated system [22, 23] as follows

F
N

=
1

N

∑
kkkσ

Ekkk fkkkσ + Ud2 +
kBT

N

∑
kkkσ

(
fkkkσ ln fkkkσ + (1−fkkkσ) ln(1−fkkkσ)

)
, (13)

where fkkkσ is the Fermi-Dirac function for quasiparticles with energies Ekkkσ and the last term
is the entropy in the given, not necessarily, the equilibrium state, which we determine sub-
sequently by minimizing F . This expression allows also for developing the low-temperature
(Sommerfeld-type) expansion defined as the regime with kBT/qW � 1. In effect, the first
non-trivial terms in the paramagnetic state have the form

F
N

= −qW
4

+ Ud2 − γ0T
2

q
+O(T 4). (14)

After a minimizing the functionalF with respect to the d2, we obtain the physical free energyF
of ALFL. A detailed analysis of the low-T expansion is provided in [23], where the Gutzwiller-
Brinkman-Rice approach is generalized to T > 0. Note that the expressions describe the free
energy functional for an almost localized Fermi liquid to be minimized with respect to d2. As
before, we assume that µ ≡ 0, which means that electron-hole symmetry holds. The next step
is to introduce the concept of discontinuous phase transitions in the context of this fermion
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itinerant state instability. We regard the ALFL as a well-defined phase in the thermodynamic
sense and the lattice of localized electrons (spins) as the other. Then, the discontinuous phase
boundary between them is determined from the coexistence condition F = FI , where FI is the
free energy of the insulating state and has a very simple form if the spins are disordered

FI
N

= −kBT ln 2, (15)

where kB ln 2 is the entropy of S = 1/2 spins. From the coexistence condition, we obtain two
transition temperatures

kBT± =
3q0
2π2

W

ln 2±

[
(ln 2)2 − π2

3

(
1− U

UC

)2
/

q0

]1/2 . (16)

The two solutions coalesce at T+ ≡ T− = Tc for U = Ulc, i.e., for the lowest critical value of
the interaction for the transition to take place, which is determined from the condition

Ulc
UC

= 1−
√

3 ln 2

π
. (17)

The corresponding classical critical transition temperature at which the transition takes a con-
tinuous form and at U = Ulc is

kB Tc =
3 ln 2

2π2
W

[
1−

(
Ulc
UC

)2
]
. (18)

For U 6 Ulc the metallic (Fermi liquid) state is stable at all T . In effect, the regime of the tran-
sition accuracy is determined by conditions Ulc 6 U 6 UC . Disregarding the magnetic phases
one then has the following overall phase sequence. For T < T− the system is a paramagnetic
metal (PM). For Ulc < U < UC and T− < T < T+ the system is a paramagnetic insulator
(a lattice of fluctuating spins S=1/2). For T > T+ re-entrant metallic behavior is observed (a
crossover transition). Such a sequence is indeed observed for V2O3 doped with Cr [7] and for
liquid 3He (cf. Figs 2. and 3b). The most important factor is the sequence of transformations
between localized and itinerant (liquid) states of the valence electrons as a function of temper-
ature and interaction, as shown schematically in Fig. 4a. For comparison, an analogous phase
diagram appears for the quark-gluon plasma, this time calculated as a function of the chemical
potential (cf. Fig. 4b).
The physical reason for switching between the states M and I is illustrated in Fig. 5 Namely, at
temperature close to T = 0 the entropy of the disordered localized moments is large (+kB ln 2

per carrier), whereas for the Fermi liquid, it decreases linearly with T to zero. Hence, at T = T−
the entropy part of the free energy for localized particles outweighs that of the Fermi liquid
(ALFL), even though at T = 0, the opposite is true. However, as the temperature is raised,
the Fermi liquid entropy grows and asymptotically at high temperature approaches the value
2kB ln 2 per carrier. Thus, the detailed shape of the phase boundary is determined by the in-
terplay between the competing energy and entropy contributions, as is the case for classical
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-0.1 -

0.10.10

Fig. 5: Temperature dependence of the free energy per particle (F/WN ) in the Fermi-liquid
(parabolas a-d) and in the Mott-Hubbard localized state (straight line e). The crossing points
LM and JK represent, respectively, M → I and I → M’ transitions. In the low-temperature
analysis the I→ M’ transition is weakly discontinuous.

continuous phase transition. In summary, the continuous evolution of the system at T = 0 in
approaching UC from below should be contrasted with the discontinuous nature of the transfor-
mation for T > 0. Thus, the point U = UC for T = 0 is indeed a quantum critical point, at
least within this analysis in which d2 = 〈ni↑ni↓〉 plays the role of the order parameter in the
expression for the Ginzburg-Landau functional (18) for almost localized correlated fermions
and when the antiferromagnetic order is absent.

At the end of this section, we would like to quote our results on metal-insulator transition
including simultaneous presence of antiferromagnetism which with the increasing interaction
magnitude evolves from band (Slater-type, AFS) to the localized spin (Mott, AFI) antiferro-
magnetism. The part of the phase diagram depicted in Fig. 4a appears only above the Néel
temperature, where the antiferromagnetic states (AFS, AFI) cease to exist, here, in a discontin-
uous manner. The situation is shown in Fig. 6. In the inset we quote the experimental results
Fig. 2b obtained for (V1 – xCrx)2O3, with the doping x as the horizontal axis. The agreement is
qualitatively good, which is rewarding since a very simple model was considered. This means
that the inter-particle configurations are the crucial factor to a large extent an independent of the
electronic (band) structure.

The presence of the proposed classical critical point (CP) in Figs. 4a and 6 have been also
beautifully confirmed much later [32]. It has a mean-field character, exactly the type predicted
by our mean-field-like approach [33, 22, 23], which represented the very first realistic attempt
to extend theory of metal-insulator transition of the Mott-Hubbard type at T > 0. Our results
were confirmed much later [34] within the dynamic mean-field approach (DMFT).
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PM

PM’

PI

AF

TC

Fig. 6: Phase diagram of the type presented in Fig. 4, with inclusion of antiferromagnetic
Slater (AFS) and Mott (AFI) phases. Note that W = UC/2. Inset: experimentally observed [7]
phase diagram in the T -x plane for (V1 – xCrx)2O3. After Ref. [22]. The quantum critical point
appearing in Fig. 4a is wiped out by the presence of antiferromagnetic order.

3 Exact diagonalization – ab initio approach (EDABI) to
correlated systems with simple examples

3.1 The method

The notion of a simultaneous determination of the single-particle wave-function (1st quantiza-
tion aspect), combined with a precise account of inter-particle correlations (2nd quantization
aspect) arose in the author’s thinking about many-particle systems because of the following
circumstances. In the proper particle language in quantum mechanics (2nd quantization repre-
sentation) the physical particle is represented by the field operator Ψ̂σ(r) which has the form

Ψ̂σ(r) ≡
∑

ϕiσ(r) âiσ, (19)

where the set {ϕiσ(r)} represents a complete set of single particle wave-functions (not neces-
sarily orthogonal with the corresponding set of quantum numbers {iσ} (here the spin quantum
number σ = ±1 has been singled out explicitly to underline its fermionic nature (the argument
holds equally well for bosons). The explicit 2nd quantized form of the Hamiltonian is [35]

Ĥ =
∑
σ

∫
d3r Ψ̂ †σ(r)H1(r)Ψ̂σ(r) +

1

2

∑
σσ′

∫
d3r d3r′ Ψ̂ †σ(r)Ψ̂ †σ′(r

′r′r′)V(r− r′r′r′)Ψ̂ †σ′(r
′r′r′)Ψ̂σ(r). (20)

In this expression H1(r) represents the Hamiltonian for a single particle in wave mechanics,
whereas V (r−r′r′r′) is the interaction for a single pair of particles. Ψ̂ †σ(r)Ψσ(r) is the particle
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density operator, whereas Ψ̂ †σ(r) represents creation operator of a physical particle in the system
at point r and with spin σ. This is the reason why we call the 2nd quantization representation
the particle language form of quantum approach.
In the situation when both H1(r) and V (r−r′r′r′) are not explicitly spin independent, the Hamil-
tonian (20) can be brought to the following form

Ĥ =
∑
ijσ

tij â
†
iσ âjσ +

1

2

∑
ijkl
σσ′

Vijkl â
†
iσ â
†
jσ′ âlσ′ âkσ, (21)

where
tij ≡ 〈ϕiσ|H1|ϕjσ〉 and Vijkl = 〈ϕiϕj|V |ϕkϕl〉. (22)

In this situation ϕiσ(r) = ϕi(r)χσ, we have the spin-independent hopping matrix elements
tij , as well as the spinless interaction parameters Vijkl. The dynamical system behavior is deter-
mined by the corresponding operator parts of (21), the matrix elements (22) contain the arbitrary
(expect complete) set of the wave functions.
In canonical modeling of the properties with the help of (21) one takes into account only the
first few terms of the first part of Ĥ1(r) (the hopping part) and the quantities t0=tii , t〈i,j〉 = t

are regarded as parameters of the model. Likewise, one takes only a few dominant terms in
the interaction part and the corresponding Vijkl elements are treated also as free parameters. If
one selects the Wannier basis, i.e., ϕi(r) ≡ wi(r) = w(r−ri), then we can select the hoping
parameters t0, t = t〈i,j〉, and t′′ ≡ t〈〈i,j〉〉, corresponding to the atomic reference energy and
hoping amplitudes of particles between nearest and next-nearest neighbors, respectively.
The parametrized model created in the above way contains, as a rule, an incomplete quantum
mechanical basis, as in general the set {wi(r)} = {win(r)}, where n is the type of atomic orbital
and in effect the multi-orbital (multi-band) system is derived. Hence, the results may depend on
the type of orbital-based model we start with. But even if this general situation is not the case,
the general question is how to determine the wave functions contained in the matrix elements
(22)? One way is to start from a set of orthogonalized atomic orbitals, e.g., hydrogen-like Slater
orbitals, as we discuss it below. However, the question still remains, particularly if the selected
basis is not complete, whether such a basis should not be optimized in some way. This question
is of crucial importance in the case of correlated systems when the two terms in (21) provide
contributions of the same magnitude (see the preceding section). In particular, in the limit of
strong correlations the interaction part even dominates over the single-particle contribution.
In such a situation our proposal now is as follows. Because of the interaction predominance we
first diagonalize the parametrized Hamiltonian (21) in the Fock space and only subsequently
minimize the ground state energy E ≡ 〈Ĥ〉/N obtained in such a manner with respect to iσ.
We developed the whole EDABI method for the Wannier functions {wi} by treating this energy
as a functional of {ϕiσ}. In other words, we determine the single-particle renormalized wave-
functions, now adjusted in the correlated state, by solving the effective wave equation obtained
from the variational principle for the functional of the form

E{wi(r)} ≡ EG{wi(r)} − µN −
∑
i>j

λij

(∫
d3rw∗i (r)wj(r)− δij

)
, (23)
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where
N =

∑
σ

∫
d3r
〈
Ψ̂ †σ(r)Ψ̂σ(r)

〉
=
∑
ijσ

∫
d3rw∗i (r)wj(r)

〈
â†iσâjσ

〉
, (24)

and Ne = N is the number of particles in the system, whereas λij are the Lagrange multipliers,
to keep the single-particle basis orthonormal.
The general form of this equation in the stationary case and in the ground-ensemble formalism is

δ(EG − µN)

δw∗i (r)
−∇δ(EG − µN)

δ(∇w∗i (r))
−
∑
i>j

λij wj(r) = 0. (25)

We make a fundamental postulate concerning this equation: As this equation does not contain
explicitly the (anti)commutation relations between the creation and operators, it is equally valid
for both fermions and bosons and determines a rigorous, within the class of the states included
in the definition of Ψ̂σ(r), the renormalized wave equation for a single-particle wavefunction in
the ground state, in the milieu of remaining (N−1) particles.
In this expressions the Lagrange multipliers λij plays the role of single-particle energy in the
correlated state. Note also that the variational derivatives are taken also with respect to the
averages

〈
â†iσâjσ

〉
and

〈
â†iσâ

†
jσ′ âlσ′ âkσ

〉
, so is not just the optimization of parameters tij and

Vijkl. Parenthetically, the same type of formal wave-function determination (together with its
normalization) has been proposed by Schrödinger in his pioneering work on wave mechanics
(Schrödinger, 1926). Also, the optimized quantity is the system energy, not the Lagrangian,
which represents the classical system Hamiltonian (its expectation value).
Finally, a general N -particles state |ΦN〉 in the Fock space can be defined through the corre-
sponding N -particle wavefunction Ψα(r1, . . . , rN) in the Hilbert space as [36]

|ΦN〉 =
1√
N !

∫
d3r1 . . . rN ΨN(r1, . . . , rN) Ψ̂ †σ1(r1) · · · Ψ̂ †σN rN)|0〉, (26)

where |0〉 is the vacuum state. One can reverse this relation and a simple algebra yields the
following expression for the wavefunction Ψα(r1, . . . , rN) in the terms of |ΦN〉

Ψα(r1, . . . , rN) =
1√
N !
〈0|Ψ̂σ1(r1) · · · Ψ̂σN (rN)|ΦN〉, (27)

with α ≡ {σ1, . . . , σN}. In other words, to obtain the wavefunction in the coordinate repre-
sentation, we not only annihilate N particles from the Fock state |ΦN〉, but also project out the
thus obtained result onto the Fock vacuum state and normalize it by the factor (N !)−1/2. Usu-
ally, the formula (27) is not used; as we proceed from the first to second quantization. Now, the
crucial point is based on the observation that if we substitute in the field operator Ψ̂(r) the renor-
malized wavefunctions obtained from equation (24), then we should automatically obtain the
renormalized field operator and, as a consequence, the renormalized multiparticle wavefunction
Ψα(r1, . . . , rN) from relation (27). This last step of inserting the renormalized field operator
completes the procedure of a formal treatment of the many-particle system, which avoids writ-
ing down explicitly theN -particle Schrödinger equation. The approach is summarized in Fig. 7.



Mott Physics in Correlated Nanosystems 7.17

Fig. 7: Flowchart describing the scheme of the EDABI method. For details see main text. When
selecting the single-particle set, the top-most block should be disregarded. The renormalized
many-particle wave function Ψ ren0 (r1, . . . , rN) is explicitly constructed for few-particle systems
in the next section.

This scheme provides an exact renormalized single-particle wavefunction from equation (24)
and the exact N -particle wavefunction, provided we have diagonalized the second-quantized
model Hamiltonian for the problem at hand.

3.1.1 Supplement: Finite basis approximation from the field operator:
difference with the multiconfiguration interaction (MCI) approach

The field operator Ψ̂(r) defined in terms of the sum over a complete basis {wi(r)} contains
an infinite number of single-particle states. We assume that, in general, we represent the field
operator by M wavefunctions {wi(r)}. Explicitly,

Ψ̂(r) ≡
∞∑
i=1

wi(r) âi '
M∑
i=1

wi(r) âi, (28)

with i representing a complete set of quantum numbers and M being a finite number. This ap-
proximation represents one of the most fundamental features of constructing theoretical models.
The neglected states usually represent highly exited (and thus negligible) states of the system.
We can then write the approximate N -particle wavefunction (N 6M ) in the following manner

Ψα(r1, . . . , rn) =
1√
N !

M∑
i1,...,iN=1

〈0|âiN . . . âi1|ΦN〉wi1(r1) . . . wiN (rN) (29)

Recognizing that within the occupation-number space spanned on the states {|ik〉}k=1...M we
have the N -particle state in the Fock space of the form

|ΦN〉 =
1√
N !

M∑
j1,...,jN=1

Cj1...jN â
†
j1
. . . â†jN |0〉, (30)
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where Cj1...jN represents the coefficients of the expansion to be determined from a diagonaliza-
tion procedure. Substituting (30) into (29) we obtain

Ψα(r1 . . . , rn) =
1√
N !

M∑
i1,...,iN=1

M∑
j1,...,jN=1

〈0|âi1 . . . âiN â
†
j1
. . . â†jN |0〉Cj1...jNwi1(r1) . . . wiN (rN).

(31)
The expression provides N ! nonzero terms each equal to (−1)P , where P represents the sign of
the permutation of quantum numbers (j1 . . . jN ) with respect to a selected collection (i1 . . . iN ).
In other words, we can write that

Ψα(r1 . . . , rn) =
1√
N !

M∑
i1,...,iN=1

Ci1...iN (A, S)wi1(r1) . . . wiN (rN). (32)

We have the same expansion coefficients for both the wavefunction in the Fock space |ΦN〉
and that in the Hilbert space Ψα(r1, . . . , rn)! Therefore, the above expression represents the
multiconfigurational-interaction wavefunction of N particles distributed among M states with
the corresponding weights Ci1...iN for each configuration, and (A, S) represents respectively
the antisymmetrization (Slater determinant) or the symmetrization (simple product function
wi1(r1) . . . wiN (rN) for the fermions and bosons, respectively. Whereas the MCI used in quan-
tum chemistry [...] is based on variational optimizations of the coefficients Ci1...iN , here the
coefficients C are determined from diagonalization in the Fock space, spanned by M states in
Hilbert space. The presence of wave equation (24) thus supplements the usual MCI approach.
Next, we discuss selected elementary examples from atomic and molecular physics before turn-
ing to modeling extended correlated systems.

3.2 Elementary examples from atomic physics

One of the principal attractive features of EDABI method is the ability to construct atomic or-
bitals with a precise account for inter-electronic interactions. Here this program is illustrated on
example of lightest atomic systems, as well as by an elementary example of the wave equation
for renormalized wave functions.

3.2.1 A didactic example: He and Li atom

We start by selecting as {wi(r)} just two 1s-type Slater orbitals for the He atom Φσ(r) =

(α3/π)1/2 exp(−αr)χσ, where α is the effective inverse radius of the states. In other words, the
simplest trial field operator is of the form

Φ̂(r) = Φ↑(r)â↑ + Φ↓(r)â↓, (33)

where aσ is the annihilation operator of particle in the state Φσ(r). The Hamiltonian in second
quantization for this two-element basis has then the form

H = εa(n̂↑ + n̂↓) + Un̂↑n̂↓, (34)
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where n̂σ = â†σâσ, whereas
εa = 〈Φσ|H1|Φσ〉, (35)

and
U = 〈ΦσΦσ|V |ΦσΦσ〉 (36)

are the matrix elements of the single-particle part defined as

H1 = − ~2

2m
∇2

1 −
~2

2m
∇2

2 −
2e2

κ0r1
− 2e2

κ0r2

a.u.≡ −∇2
1 −∇2

2 −
4

r1
− 4

r2
(37)

and of the Coulomb interaction

V =
e2

κ0 |r1−r2|
a.u.≡ 2

|r1−r2|
, (38)

with the corresponding definitions in atomic units after the second equality sign. The only
eigenvalue of (34) is obtained for the state â†↑â

†
↓|0〉 and is E = 2εa + U . This total energy

is then minimized with respect to α to obtain the well-known Bethe and Salpeter variational
estimate of both α and the ground state energy EG, as discussed before. However, we may look
at the problem differently. The true wavefunction is obtained from the Euler equation for the
functional E = E{Ψσ} under the proviso that the wave function is normalized. This means that
we minimize the functional

E{Φσ(r)} =
∑
σ

∫
d3rΦ∗σ(r)H1(r)Φσ(r) +

1

2

∑
σ

∫
d3rd3r′|Φσ(r)|2V12(r− r′)|Φσ(r)|2. (39)

In effect, the renormalized wave equation takes the form of the unrestricted Hartree equations
for Φσ(r) (

∇2 − 2e2

κ0r

)
Φσ(r) + Φσ(r)

∫
d2r′

e2

κ0|r−r′|
|Φσ(r′)|2 = λΦσ(r). (40)

Thus, we can see that taking in the simplest case just two spin 1s-type orbitals we obtain either
the well-known Bethe-Salpeter variational estimate for α and EG for He atom: α = 27/(16a0)

and EG = −5.695 Ry, where a0 ' 0.53 Å is the 1s Bohr orbit radius. We see that the He atom
is the smallest in the Universe!
The proposed expression (33) for the field operator is the simplest one, but it leads to nontrivial
results even though the trial atomic basis {Φσ(r)} is far from being complete in the quantum-
mechanical sense. However, we can improve systematically on the basis by selecting a richer
basis than that in (33). The further step in this direction is discussed next. Namely, we can
expand the field operator in the basis involving the higher order irreducible representations of
the rotation group with n=2, which in the variational scheme involve including, apart from the
Ψ1s(r) orbital, also the higher Ψ2s(r) and Ψ2pm(r) orbitals, with m = ±1, 0 (i.e., the next shell);
all of them involving the adjustment of the corresponding orbital characteristics αi, i = 1s, 2s

and 2pm. The field operator is then

Ψ̂(r)=
∑
σ

(
w1s(r)χ1σâ1σ +w2s(r)χ2σâ2σ +

+1∑
m=−1

w2pm(r)χmσâ2pmσ

)
≡
∑
iσ

wi(r)χiσâiσ, (41)
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Table 1: Optimized Bohr-orbit radii ai = α−1i of 1s, 2s, and 2p orbitals (in units of a0), the
overlap S between renormalized 1s and 2s states, and the ground state energy for the lightest
atoms and ions (five Slater orbitals taken).

a1s a2s a2p S EG (Ry)
H 1 2 2 0 -1
H– 0.9696 1.6485 1.017 -0.1 -1.0487
He 0.4274 0.5731 0.4068 -0.272 -5.79404
He– 1.831 1.1416 0.4354 -0.781 -5.10058
Li 0.3725 1.066 0.2521 0.15 -14.8334
Be+ 0.2708 0.683 0.1829 0.109 -28.5286

where the wi(r) are orthogonalized orbitals obtained from the nonorthogonal atomic1 basis
{Ψi(r)} in a standard manner. The Fock space spanned by 2+2+6=10 trial spin orbitals con-
tains D=

(
2M
Ne

)
dimensions, where M=5 and N=Ne=2, 3 is the number of electrons for He and

Li, respectively. This means that D=45 and 120 in those two cases and we have to diagonalize
the Hamiltonian matrices of that size to determine the ground and the lowest excited states.

One should note that we construct and subsequently diagonalize the 〈i|Ĥ|j〉 matrix in the Fock
space for (fixed) parameters εa, tij , and Vkl. After the diagonalization has been carried out, we
readjust the wave function and start the whole procedure again until the absolute minimum is
reached (cf. Fig. 7).

By diagonalizing the corresponding Hamiltonian matrices and subsequently, minimizing the
lowest eigenvalue with respect to the parameters αi – the inverse radial extensions of the cor-
responding wave functions, we obtain the results presented in Table 1 (the values a2pm are all
equal within the numerical accuracy ∼ 10−6). For example, the ground state energy of He is
EG = −5.794 Ry, which is close to the accepted “exact” value −5.8074 Ry, given the simplic-
ity of our approach. Further improvement is feasible by either including the n=3 states or by
resorting to a Gaussian trial basis. These are not analyzed here.

First, we can represent the ground-state two-particle spin-singlet wavefunction for the He atom
taking Ψ̂(r) in the form (41), which has the following form [37]

|ΨHe
0 〉 '

(
− 0.799211 â†1s↓â

†
1s↑ + 0.411751 â†1s↓â

†
2s↑ − 0.411751 â†1s↑â

†
2s↓ (42)

− 0.135451 a†2s↓â
†
2s↑ + 0.0357708 â†2p0↓â

†
2p0↑ + 0.0357641 â†2p1↓â

†
2p−1↑

− 0.0357641 â†2p1↑â
†
2p−1↓

)
|0〉.

1Note that the atomic orbitals 1s and 2s are not orthogonal to each other for arbitrary values of their spatial
extents 1/αi. The 2p orbitals are orthogonal to each other and to s orbitals, since they contain a nontrivial angular
dependence expressed via spherical harmonics Y m

l (θ, ϕ).
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Similarly, the Sz = +1/2 state for Li atom is of the form

|ΨLi0 〉 '
(

0.997499 â†1s↓â
†
1s↑â

†
2s↑ − 0.0570249 â†1s↑â

†
2s↓â

†
2s↑ (43)

+ 0.0039591 â†1s↑â
†
2p0↓â

†
2p0↑ + 0.00395902 â†1s↑â

†
2p1↓â

†
2p−1↑

− 0.00395894 â†1s↑â
†
2p1↑â

†
2p−1↓ − 0.023783 â†2s↑â

†
2p0↓â

†
2p0↑

− 0.0237806 â†2s↑â
†
2p1↓â

†
2p−1↑ + 0.0237806 â†2s↑â

†
2p1↑â

†
2p−1↓

)
|0〉.

We see that the probability of encountering the configuration 1s2 in He is less than 2/3, whereas
the corresponding configuration 1s22s for Li almost coincides with that for the hydrogen-like
picture. The reason for the difference is that the overlap integral between 1s and 2s states
S = 〈1s|2s〉 in the former case is large and the virtual transitions 1s 
 2s do not involve a
substantial change of the Coulomb energy. Those wave functions can be used to evaluate any
ground-state characteristic by calculating 〈ΨG|Ô|ΨG〉 for Ô represented in the 2nd quantized
form. For example, the atom dipole moment operator is d̂ = e

∫
d3r Ψ̂ †(r)x Ψ̂(r), etc.

The second feature is connected with determination of the microscopic parameters Vijkl in our
Hamiltonian, since their knowledge is crucial for atomic cluster calculations, as well as the
determination of physical properties of extended systems as a function of the lattice parameter.
Namely, we can rewrite the Hamiltonian for the case of a single atom within the basis (41) as

H =
∑
iσ

εin̂iσ + t
∑
σ

(
â†2σâ1σ + â†1σâ2σ

)
+

5∑
i=1

Uin̂i↑n̂i↓ +
1

2

∑
i6=j

Kijn̂in̂j

−1

2

∑
i6=j

Jij

(
Si · Sj −

1

2
n̂in̂j

)
+
∑
i6=j

Jij â
†
i↑â
†
i↓âj↓âj↑ +

∑
i6=jσ

Vijn̂iσâ
†
iσâjσ.

(44)

t is the hopping integral between 1s and 2s states, Ui are the intraorbital Coulomb interactions,
Kij are their interorbital correspondents, Vij is the so-called correlated hopping integral, and
Jij is the direct exchange integral, for states i and j = 1, . . . , 5. The principal parameters for
the atoms and selected ions are provided in Table 2. We can draw the following interpretation
from this analysis. The calculated energy difference ∆E for He between the ground-state sin-
glet and the first excited triplet is −2.3707 − (−5.794) ' 3.423 Ry (the singlet 1s↑2s↓ is still
1 Ry higher). The corresponding energy of the Coulomb interaction in the 1s2 configuration is
U1 = 3.278 Ry, a value comparable to ∆E. Additionally, the Coulomb interaction in 1s↑2s↓
state is ≈ 1.5 Ry, a substantially lower value. The relative energetics tells us why we have a
substantial admixture of the excited 1s↑2s↓ state to the singlet 1s2. In other words, a substan-
tial Coulomb interaction ruins the hydrogen-like scheme, although the actual values could be
improved further by enriching the trial basis.

One may ask how the renormalized wave equation would look in the present situation. The
answer to this question is already not brief for the basis containing M=5 starting states {wi(r)}
and will not be tackled here.
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Table 2: Microscopic parameters (in Ry) of the selected atoms and ions all quantities are
calculated for the orthogonalized atomic states. t is the 1s-2s hopping magnitude, Ui is the
intraorbital Coulomb interaction (i = 1s(1), 2s(2),m = 0(3), and m = ±1(p)), whereas Kij

and Jij are the interorbital Coulomb and exchange interaction parameters.

t U1 U2 U3 Up K12 K13 K23 J12 J13 J23
H− 0.057 1.333 0.369 0.77 0.728 0.519 0.878 0.457 0.061 0.138 0.035
He 1.186 3.278 1.086 1.924 1.821 1.527 2.192 1.289 0.212 0.348 0.115
He− -1.1414 1.232 0.764 1.798 1.701 0.929 1.421 1.041 0.269 0.28 0.102
Li -0.654 3.267 0.533 3.105 2.938 0.749 3.021 0.743 0.06 0.606 0.014
Be+ -0.929 4.509 0.869 4.279 4.049 1.191 4.168 1.175 0.105 0.837 0.025

3.3 H2 molecule and H2
– ion

In this Subsection we consider H2 molecule. For the illustration of the method we have plotted
in Fig. 8 the level scheme for the H2 and H2

– systems. We consider first the situation with only
one 1s-like orbital per atom. For H2 we have

(
4
2

)
= 6 two-particle states. For that purpose, we

start with the parametrized Hamiltonian (44), where subscripts i and j label now the two atomic
sites and hence U1 = U2 = U, K12 = K, J12 = J, V12 = V, and ε1 = ε2 = εa. Note that the
Hamiltonian (44) in the two-site (H2) case contains all possible intersite interactions.
The lowest eigenstate for H2 is the spin-singlet state

EG ≡ λ5 = 2εa +
1

2
(U+K) + J − 1

2

(
(U−K)2 + 16(t+V )2

)1/2
, (45)

and the corresponding singlet ground state in the Fock space has the form

|G〉 =
1√

2D(D−U+K)

(
4(t+V )√

2

(
â†1↑â

†
2↓ − â

†
1↓â
†
2↑
)
− (D−U+K)√

2

(
â†1↑â

†
2↓ + â†1↓â

†
2↑
))
|0〉,

(46)
where

D ≡
(
(U−K)2 + 16(t+V )2

)1/2
.

The lowest spin-singlet eigenstate has an admixture of the ionic state
(
â†1↑â

†
2↓ + â†1↓â

†
2↑
)
/
√

2.
Therefore, to see the difference with either the Hartree-Fock or Heitler-London approach to
H2 is that we construct the two-particle wavefunction for the ground state according to the
prescription

Φ0(r1, r2) ≡
1√
2
〈0|Ψ̂(r1)Ψ̂(r2)|G〉. (47)

Taking Ψ̂(r) =
∑2

i=1

∑↓
σ=↑ Φi(r)χσ(r), we obtain that

Φ0(r1, r2) =
2(t+V )√

2D(D−U+K)
Φc(r1, r2)−

1

2

√
D−U+K

2D
Φi(r1, r2), (48)

where the covalent part is

Φc(r1, r2) =
(
w1(r1)w2(r2) + w1(r2)w2(r1)

)(
χ↑(r1)χ↓(r2)− χ↓(r1)χ↑(r2)

)
, (49)
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Fig. 8: Level scheme of the H2 ground state and the lowest H2
– states as a function of the

interatomic distance R.

whereas the ionic part takes the form

Φi(r1, r2) =
(
w1(r1)w1(r2) + w2(r1)w2(r2)

)(
χ↑(r1)χ↓(r2)− χ↓(r1)χ↑(r2)

)
. (50)

The ratio of the coefficients before Φc(r1, r2) and Φi(r1, r2) can be termed as the many-body
covalency γmb. This value should be distinguished from the usual single-particle covalency γ
appearing in the definition of the orthogonalized atomic orbital wi(r)

wi(r) = β
(
Φi(r)− γΦj(r)

)
, (51)

with j 6= i. The two quantities are drawn in Fig. 9. The many-body covalency γmb represents a
true degree of multiparticle configurational mixing.
In Table 3 we list the energies and the values of the microscopic parameters for H2 system with
optimized orbitals. One should notice a drastic difference for the so-called correlated hopping
matrix element V in the two cases. The same holds true for the direct exchange integral J
(ferromagnetic). This exchange integral is always decisively smaller than that for the antiferro-
magnetic kinetic exchange, Jkex ≡ 4(t+V )2/(U−K).

3.3.1 Hydrogen clusters HN

As the next application we consider hydrogen-cluster HN systems. We take the atomic-like 1s

orbitals {Φi(r)} of an adjustable size a ≡ α−1, composing the orthogonalized atomic (Wannier)
functions {wi(r)}i=1,...,N . The cluster of N atoms with N electrons contains

(
2N
N

)
states and the

second-quantized Hamiltonian is of the form (44), with three- and four-site terms added. The
three- and four-site interaction terms are difficult to calculate in the Slater basis (see below).
Therefore, we have made an ansatz [38] namely, we impose the condition on the trial Wannier
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Fig. 9: The single-particle (γ) and many-body (γmb) covalency factors for the H2 wave func-
tions. For details see main text. Note that the many-body covalency is stronger than its single-
particle correspondent (orbital mixing).

function that the three- and four-site matrix elements Vijkl vanish. This allows for an explicit
expression of the three- and four-site matrix elements V ′ijkl in the atomic representation via the
corresponding one- and two-site elements. In Fig. 10 we present the results for the ground- and
excited-states energies for the square configuration, N = 4 atoms. The states are grouped into
manifolds, which are characterized by the number, 0, 1, and 2, of double occupancies, appearing
in the system. The horizontal lines mark the ground state, states with one and two double
electron occupancies in the atomic limit (i.e., for large interatomic distance). The manifolds
thus correspond to the Hubbard subbands introduced for strongly correlated solids [21]. As
far as we are aware of, our results are the first manifestation of the energy manifold evolution
into well separated subbands with the increasing interatomic distance. The first two subbands
correspond to HOMO and LUMO levels determined in quantum-chemical calculations. In.
Fig. 11 we draw the renormalized Wannier function profiles for the N = 6 atoms. Note the
small negative values on the nearest-neighbor sites to assure the orthogonality of the functions
centered on different sites. In the same manner, the electron density profiles can be obtained as
a function of intraatomic distances.

On these examples one can see that both the ab initio electronic-structure calculations can be
carried out with a simultaneous precise evaluation of microscopic parameters characterizing the
particle dynamics and interactions between them. No double counting of the interaction appears
at all in either aspect of the calculations. The accuracy of calculating the atomic or molecular
structure in the ground state can be reached with accuracy of the order of 1% relatively easy.
In the next two sections extend the method to characterize the Mott physics in nanoscopic one-
and two-dimensional systems.
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Table 3: Ground-state energy and microscopic parameters (in Ry) for H2. The last column rep-
resents the kinetic-exchange integral characterizing the intersite antiferromagnetic exchange.

R/a EG/N εa t U K V [mRy] J [mRy] 4(t+V )2

U−K [mRy]
1.0 -1.0937 -1.6555 -1.1719 1.8582 1.1334 -13.5502 26.2545 7755.52
1.5 -1.1472 -1.7528 -0.6784 1.6265 0.9331 -11.6875 21.2529 2747.41
2.0 -1.1177 -1.722 -0.4274 1.4747 0.7925 -11.5774 16.9218 1130.19
2.5 -1.0787 -1.6598 -0.2833 1.3769 0.6887 -12.0544 13.1498 507.209
3.0 -1.0469 -1.5947 -0.1932 1.3171 0.6077 -12.594 9.8153 238.939
3.5 -1.0254 -1.5347 -0.1333 1.2835 0.5414 -12.8122 6.9224 115.143
4.0 -1.0127 -1.4816 -0.0919 1.2663 0.4854 -12.441 4.5736 55.8193
4.5 -1.006 -1.4355 -0.0629 1.2579 0.4377 -11.4414 2.8367 26.9722
5.0 -1.0028 -1.3957 -0.0426 1.2539 0.3970 -9.9894 1.6652 12.9352
5.5 -1.0012 -1.3616 -0.0286 1.2519 0.3623 -8.3378 0.9334 6.1455
6.0 -1.0005 -1.3324 -0.01905 1.251 0.3327 -6.7029 0.5033 2.8902
6.5 -1.00024 -1.3073 -0.0126 1.2505 0.3075 -5.2242 0.2626 1.3452
7.0 -1.0001 -1.2855 -0.0083 1.2503 0.2856 -3.9685 0.1333 0.6197
7.5 -1.00004 -1.2666 -0.0054 1.2501 0.2666 -2.9509 0.066 0.2826
8.0 -1.00002 -1.25 -0.0035 1.25006 0.25 -2.1551 0.032 0.1277
8.5 -1.00001 -1.2353 -0.0023 1.25003 0.2353 -1.5501 0.01523 0.0572
9.0 -1. -1.2222 -0.0015 1.25001 0.2222 -1.1005 0.0071 0.0254
9.5 -1. -1.2105 -0.0009 1.25001 0.2105 -0.7725 0.0033 0.0112

10.0 -1. -1.2 -0.0006 1.25 0.2 -0.5371 0.0015 0.0049

4 Mott-Hubbard physics for nanochains:
Exact analysis with EDABI

Here we analyze the electronic system properties for a system composed of N = 6÷ 14 hydro-
gen atoms in a linear chain or a ring and draw some universal conclusions about “the Mottness”.
We start with a bit simplified Hamiltonian, but containing the same principal physics. Namely,

Ĥ = εa
∑
iσ

n̂i + t
∑
iσ

(
â†iσ âiσ +H.c.

)
+U

∑
i

n̂i↑ n̂i↓+
∑
i<j

Kijn̂i n̂i +
∑
i<j

Vion(rj−ri). (52)

The first term represents the atomic energy (we include it explicitly, since εa changes with the
varying lattice constant). The second describes the kinetic energy of the system with nearest-
neighbor hopping t. Next two terms express the intra- and interatomic Coulomb interaction.
The last term is the Coulomb repulsion between the ions located at positions {ri}, included for
the same reasons as the atomic energy εa. Vion is the proton-proton classical repulsion term.
Here we recall only the definitions of single- and two-particle parameters tij and Vijkl, which
are

εa = tii = 〈wi|T |wi〉, t = ti,i+1 = 〈wi|T |wi+1〉, (53)

and
U = Viiii = 〈wiwi|V |wiwi〉 , Kij = Vijij = 〈wiwj|V |wiwj〉 . (54)
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Fig. 10: Ground- and excited-states energies for the H4 square configuration as a function of the
interatomic distance. The position of subsequent Hubbard subbands (distant by U ) are marked.
The lowest two are HOMO-LUMO split energy levels.

The operator T represents the full single-particle lattice potential, i.e.,

T (r) = − ~2

2m
∇2 −

∑
j

e2

|r−rj|
a.u.
= −∇2 −

∑
j

2

|r−rj|
, (55)

where a.u. means the expression in atomic units. V = e2/|r1−r2| is the usual Coulomb potential
(we do not include any screening by, e.g., core electrons as we want to discuss the model
situation, but in a rigorous manner). Analogously, the Coulomb repulsion between ions is
Vion = V (r1−r2).
The interatomic Coulomb term in the Hamiltonian can be represented as∑

i<j

Kijninj =
∑
i<j

Kij(ni−1)(nj−1)−
∑
i<j

Kij + 2Ne
1

N

∑
i<j

Kij

= HK +Ne
1

N

∑
i<j

Kij + (Ne−N)
1

N

∑
i<j

Kij,
(56)

where we use the relationNe=
∑

i ni and introduce the symbolHK for the longer-range Coulomb
interaction. Substituting (56) into (52) and representing the ionic repulsion in the form∑

i<j

2

Rij

= Ne
1

N

∑
i<j

2

Rij

− (Ne−N)
1

N

∑
i<j

2

Rij
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Fig. 11: Single Wannier function for the H6 configuration for the ground state and at the optimal
interatomic distance. Note the negative values at the nearest neighboring sites, as well as its
anisotropic character due to the 6-fold symmetry.

(in Rydbergs), where Rij = |rj−ri|, we obtain that

H = Neε
eff
a +Ht +HU +HK + (Ne−N)

1

N

∑
i<j

(
Kij −

2

Rij

)
, (57)

where the kinetic energy and intraatomic Coulomb interaction terms are Ht and HU , and the
effective atomic energy is defined (in Ry) as

εeff
a ≡ εa +

1

N

∑
i<j

(
Kij +

2

Rij

)
. (58)

The effective atomic energy contains the electron attraction to the ions, as well as the mean-field
part of their repulsion (Kij), and the ion-ion interaction. Such a definition preserves correctly
the atomic limit, when the distant atoms should be regarded as neutral objects. In practice, the
above form is calculated numerically with the help of Richardson extrapolation for N → ∞.
One can find it converges exponentially with N , whereas bare εa is divergent harmonically, due
to ∼ 1/r Coulomb wells in the single-particle potential (55).
The last term in the Hamiltonian (57) vanishes for the half-filled band caseNe = N . It also does
not affect the system charge gap (as it depends linearly on Ne), and the correlation functions
away from half filling. Therefore, we can write down the system Hamiltonian in the more
compact form

H = εeff
a

∑
i

ni + t
∑
iσ

(
a†iσai+1σ + H.c.

)
+ U

∑
i

ni↑ni↓ +
∑
i<j

Kijδniδnj, (59)

where δni ≡ ni−1. Thus, all the mean-field Coulomb terms are collected into εeff
a .
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Table 4: Wannier-basis parameters for 1D chain calculated in the Gaussian STO-3G basis,
with adjustable size, as a function of lattice parameter a (a0 is the Bohr radius). The values of
the optimal inverse orbital size αmin are also provided.

a/a0 αmina0 β γ 〈wi|wi+2〉 ∆
1.5 1.363 1.41984 0.32800 0.21689 0.34735
2.0 1.220 1.23731 0.26301 0.10590 0.50525
2.5 1.122 1.14133 0.20965 0.05725 0.63980
3.0 1.062 1.08190 0.16246 0.03089 0.75691
3.5 1.031 1.04394 0.12013 0.01573 0.85349
4.0 1.013 1.02216 0.08568 0.00768 0.92009
4.5 1.007 1.01010 0.05795 0.00343 0.96170
5.0 1.004 1.00429 0.03779 0.00144 0.98327
6.0 1.001 1.00063 0.01451 0.00021 0.99749
7.0 1.000 1.00007 0.00483 2.3·10−5 0.99972
8.0 1.000 1.00001 0.00139 1.9·10−6 0.99998

10.0 1.000 1 7.3·10−5 5.3·10−9 1

In the framework of the tight-binding approximation (TBA) one can postulate Wannier func-
tions in a simple form, which is validated by an exponential drop of Wannier functions. The
orthogonality relation 〈wi|wi±1〉 = 0 and the normalization condition 〈wi|wi〉 = 1 leads to
coefficients of the expansion

γ =
S1

(1+S2) +
√

(1+S2)2 − S1(3S1+S3)
, (60)

and
β =

(
1− 4γS1 + 2γ2(1+S2)

)−1/2
, (61)

where we define the overlap integral of atomic functions Sm = 〈Ψi|Ψi+m〉 (the normalization
S0 = 〈Ψi|Ψi〉 = 1 is assumed). The above expressions are well-defined if the quantity under the
square root of Eq. (60)

∆ ≡ (1+S2)
2 − S1(3S1+S3) > 0, (62)

(cf. Table 4). The actual limit of TBA comes with nonzero overlap integral of Wannier func-
tions, when including the second-neighbor contribution (see Table 4), i.e.,

〈wi|wi+2〉 = β2γ2.

The above non-orthogonality may strongly affect the second neighbor hopping, as a zero-
overlap is crucial for the convergence of hopping integral on a lattice providing the single-
particle potential of the form (55). However, as the only term involving second neighbors in our
Hamiltonian (59) is the interatomic Coulomb repulsion K2, the presented TBA approach seems
sufficient for the purpose (for details see [16]).
We already mentioned, that the atomic energy εa is divergent with the lattice size N and define
the convergent effective quantity εeff

a (58).
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Table 5: Microscopic parameters (in Ry) of the 1D chain, calculated in the Gaussian STO-3G
basis. Corresponding values of the optimal inverse orbital size αmin are provided in Table 4.
The Richardson extrapolation to N →∞ was used.

R/a0 εeff
a t U V [mRy] J [mRy] K1 K2 K3

1.5 0.0997 -0.8309 2.054 -43.93 30.92 1.165 0.667 0.447
2.0 -0.5495 -0.4423 1.733 -23.81 21.06 0.911 0.501 0.334
2.5 -0.7973 -0.2644 1.531 -14.95 15.13 0.750 0.401 0.267
3.0 -0.9015 -0.1708 1.407 -10.99 10.91 0.639 0.334 0.222
3.5 -0.9483 -0.1156 1.335 -9.41 75.6 0.557 0.286 0.191
4.0 -0.9705 -0.0796 1.291 -8.74 4.93 0.493 0.250 0.167
4.5 -0.9815 -0.0549 1.270 -8.10 2.92 0.442 0.222 0.148
5.0 -0.9869 -0.0374 1.258 -7.07 1.57 0.399 0.200 0.133
6.0 -0.9908 -0.01676 1.249 -4.29 0.34 0.333 0.167 0.111
7.0 -0.9915 -0.00710 1.247 -1.96 0.05 0.286 0.146 0.095
8.0 -0.9917 -0.0027 1.247 -0.70 5·10−3 0.250 0.125 0.083

10.0 -0.9917 -2.5·10−3 1.247 -0.05 2·10−5 0.200 0.100 0.067

The values of the model parameters, corresponding to the lattice spacing a/a0 = 1.5 ÷ 10,
are presented in Table 5. The data correspond to the optimal values of the inverse orbital size
αmin as displayed in Table 4. We also provide there the values of the correlated hopping V and
the Heisenberg-exchange integral J to show that one could indeed disregard the corresponding
terms in the Hamiltonian (59).
One can note that the values of t calculated in the Gaussian STO-3G basis (listed in Table 5)
differ from those obtained in the Slater basis by less then 0.5% when using the same values
of the inverse orbital size α. However, the differences grow significantly, if α is optimized
independently for the Slater basis and the three- and four-site terms are not included in the
atomic basis.

4.1 Results

We now consider a nanoscopic linear chain of N = 6 ÷ 14 atoms, each containing a single
valence electron (hydrogen-like atoms), including all long-range Coulomb interactions (3- and
4-site terms are also included in the adjustable Gaussian STO-3G basis).

4.1.1 Crossover from metallic to Mott-Hubbard regime

The Hamiltonian (59) is diagonalized in the Fock space with the help of the Lanczos method.
As the microscopic parameters εeff

a , t, U , and Kij are calculated numerically in the Gaussian
STO-3G basis, the inverse orbital size α of the 1s-like state is subsequently optimized to obtain
the ground state energy EG as a function of the interatomic distance a.
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Their effects on convergence of the results for the ground-state energy EG and the optimal
inverse orbital size αmin are shown in Figure 12 for N = 6 ÷ 10 atoms. These results were
used to extrapolate the value of the variational parameter αmin to larger N to speed up the
computations. Figure 12 illustrates also the Mott-Hubbard localization criterion. Namely, for
the interatomic distance a ≈ 3 a0 the energy of the ideal metallic state (M), determined as

EM
G = εeff

a −
4

π
|t|+ 1

N

∑
i<j

Kij〈δniδnj〉, (63)

where the density correlation function 〈δniδnj〉, taken for the 1D electron-gas on the lattice

〈δniδnj〉 = −2
sin2(π |i−j| /2)

(π |i−j|)2
(64)

(for the half-filled band), crosses over to that representing the Mott insulating state (INS), with

EINS
G = εeff

a . (65)

One usually adds the second-order perturbation correction to the energy of the insulating state
(65) in the well-known form [39]

4t2

U−K1

(
〈Si · Si+1〉 −

1

4

)
, (66)

the Bethe-Ansatz result is 〈Si · Si+1〉−1/4 = − ln 2 for the quantum Heisenberg antiferromag-
net. Here we only compare the two simplest approaches, leading to the energies (63) and (65).
The critical value of a is very close to obtained for the 1s Slater-type orbitals. The validity of
the above Mott-Hubbard criterion for this one-dimensional system is quantitative, as the energy
of the antiferromagnetic (so Slater-type) Hartree-Fock solution (HF) is lower than those of the
paramagnetic M and INS states. Therefore, a detailed verification of this criterion would be
estimating the charge-energy gap and transport properties of this correlated system directly.

4.1.2 Evolution of Fermi-Dirac distribution into continuous spread of localized states

We consider now on the principal and exact results for model linear chains of hydrogen atoms.
Those results can be viewed as concerning quantum monoatomic nano-wires composed of el-
ements with one valence electron, and the inner-shell electrons treated as part of ionic case.
Before presenting the physical properties we characterize briefly the methodology of our ap-
proach. First, the single-particle basis is selected in such a way that each of the starting atomic
wave function (Slater orbital) is composed of three Gaussians STO-3G of adjustable size. Out
of them one constructs the Wannier basis with the help of which we determine the trial values
of the microscopic parameters of Hamiltonian (59). Second, in accordance with the scheme
presented in Fig. 7, we diagonalize the Hamiltonian in the Fock space for N 6 14 atoms us-
ing the Lanczos algorithm. At the end, we optimize the orbital size α−1 and thus the results
can be presented as a function of interatomic distance, which mimics the gradual transforma-
tion of collective (itinerant) states at small distances into a set of atomic states, emplifying the
Mott-Hubbard insulator.
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Fig. 12: The ground state energy per atom for the linear chain of N = 6 ÷ 10 atoms with
periodic boundary conditions. The Gaussian-type orbitals (STO-3G basis) with their adjustable
inverse size α−1 have been used. The energies of the ideal metallic (M), ideal insulating (INS),
and Hartree-Fock (HF) solutions for an infinite system are shown for comparison. The inset
provides the optimal inverse orbital size αmin.

Few words about the modified boundary conditions should be added. We take periodic condi-
tions for the systems with N = 4n+2 atoms and antiperiodic for N = 4n+4. In the case of odd
N the phase is defined with value between the above two cases, where the wavefunction phase
changes ϕ by 2π and π, respectively). In Fig. 13 we present the statistical distribution function
nkσ for N = 6÷ 14 atoms in the chain. This is one of our principal results. The solid state lines
represent a singular polynomial fit [40]

nkσ = nF + A |kF−k|Θ sgn (k−kF ) , (67)

with a non-universal (interaction dependent) exponent Θ ranging from 0.4 (for a = 2a0) to
Θ ' 1.5 for a & 4a0. Also, a finite jump of∆nF is observed at the Fermi momentum providing
a quasi-particle type normalization factor ZkF .
The situation of this nano-Fermi liquid can be characterized equally well a by Tomonaga-
Luttinger-model (TLM) scaling [16] of this nanoliquid as depicted is Fig. 14. In conclusion,
although the two types of fitting procedures work almost equally well, the intermediate charac-
ter of the nanoliquid between the Fermi and T-L limits has the value of its own.
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Fig. 13: Momentum distribution for nanochains of interacting N hydrogen atoms. The distri-
bution is smeared out with increasing lattice constant a and reaches its average ' 0.5 for the
critical distance a ' 5a0. The threshold value of a signals a crossover transformation to the
localized state.

Fig. 14: Tomonaga-Luttinger-liquid scaling for half-filled nano-chains of N = 6÷14 atoms
with long-range Coulomb interactions: (a) momentum distribution in linear and (b) in log-log
scale: continuous lines represent the fitted singular expansion in powers of ln(π/|kF−k|a).
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Fig. 15: Exemplary electronic structure of electrons in a nanochain of N = 10 (left panel) and
N = 11 (right panel) atoms as a representation of spectral-density-peak positions. The solid
lines represent the Hartree-Fock results, the dashed lines the result for noninteracting electrons.
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Fig. 16: Parity effect on spin ordering: spin-spin correlations for nanochains of N = 10 (a)
and N = 11 (b) atoms. The values of the interatomic distance R are specified in atomic units
(a0 = 0.529 Å).

A direct demonstration of the emerging electronic structure is exemplified in Fig. 15, which
was obtained by calculating from the definition of the spectral density for N=10 (left panel)
and N=11 (right panel). The main novel feature is the splitting accusing at the nominal Fermi-
momentum points. The solid line is the calculated electronic structure in the Hartree-Fock ap-
proximation and the dashed line is the band structure for noninteracting electrons with t values
obtained from EDABI. The striking feature of this electronic structure is the splitting occurring
at kF=±π/a signaling the onset of the antiferromagnetic superstructure appearing even for this
very small system in the ground state. An explanation of this surprising feature emerges directly
from the calculation of the spin-spin correlation function 〈SSSi ·SSSj〉, as illustrated in Fig. 16. We
see that the correlations persist throughout the whole system length. In such circumstance the
system behaves as if it possessed a long-range order, a truly collective behavior of a system with
Ne∼10 electrons, but with long-range interaction (Coulomb interaction) included.
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Fig. 17: Schematic representation of stacked verticallyH2 molecular 2D layer forming a square
lattice. The bond length and the intermolecular distance are marked by R and a, respectively.
There are eight atoms in the supercell (dark blue spheres). The supercell is repeated period-
ically to conform periodic boundary conditions (PBC). Shaded spheres indicate atoms which
are continuations resulting from the PBC implementation. The indices α, β distinguish the
component atoms of each molecule.

5 Recent developments

Here we would like to mention an application of the EDABI method to the problem of metal-
lization of molecular hydrogen. First, the insulator-metal transition (hydrogen metallization of
the insulating molecular hydrogen into metal) is a discontinuous transition from a diamagnet
into a paramagnet, so this transition should be describable in our local language. Second, we
have extended the cluster EDABI analysis to a bulk system, both in one- and two-dimensions.
Here we present only the results for the latter situation.

In Fig. 17 we the present schematically the H2 molecules stacked vertically and forming a
square lattice, which is divided into super-cells specified explicitly there. The extent Hubbard
Hamiltonian of a single supercell is diagonalized exactly, and repeated periodically, with the in-
termolecular Coulomb interaction between the cells included (for details see [41]). The system
enthalpy is calculated as a function of pressure and the relevant renormalized Wannier functions
{wui (r)}, with µ = 1, 2 characterizing the adjusted wave functions of the individual 1s atomic
states in the molecule, are determined in the whole procedure. As a result, the phase diagram in
the pressure-enthalphy plane is determined and comprises molecular-molecular and molecular-
atomic solid discontinuous phase transitions. This phase diagram is drawn in Fig. 18. Those
results may serve as a starting point to a more comprehensive analysis of the complex phase
diagram of solid hydrogen. The molecular to atomic solid transition can be characterized as
an example of a Mott-Hubbard transition, albeit from molecular solid to metal [41]. In brief,
this example also shows that the EDABI method may be applied to real systems and to the
localization-delocalization transition of a nonstandard nature. As the most recent example of
an EDABI application we display the total energy of LiH and LiH · H2 clusters (M. Hendzel,
private communication) within an extended basis involving starting 1s, 2s, and 2p orbitals of
variable size. The values are close to the experimental values for those systems: −16.1611 and
−17.8942 Ry, respectively. We should see progress along these lines in the near future.
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Fig. 18: Enthalpy (per molecule) versus pressure. At lower pressure, two molecular phases
are stable; the transition to the quasiatomic phase occurs at pc2 ∼ 0.1954 Ry/a20, as marked.
EB(p=0) = −2.3858 Ry, Reff (p=0) = 1.4031 a0, a(p=0) = 4.3371 a0. Thin lines extrapolate
the enthalpies of the particular phases beyond the regime of their stability. Insets show some
detail of the transitions.

Fig. 19: Total energy for LiH (squares) and LiH · H2 clusters as a function of unit cell volume
as obtained from EDABI [M. Hendzel, unpublished].
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6 Conclusions

The Exact Diagonalization Ab Inito (EDABI) method has been developing slowly and so far
is useful mainly in describing in a precise manner model systems. Its principle aim has been
to determine properties of correlated systems by incorporating also the calculations of model
parameters, such as the Hubbard U, the hopping integrals tij , etc., into the general scheme of
electronic structure calculations. It is particularly well suited for a description of nanosystems,
in which a crossover from atomic to itinerant character of electronic states occurs as a sign of
the Mott-Hubbard behavior. The studied evolution with the lattice parameter emulates the pres-
sure dependence of the basic quantum properties and correlation functions. On the examples
discussed in sections 4 and 5 collective (bulk) properties are exhibited in a direct manner. Fu-
ture studies should show to what extent the results can be analyzed experimentally. Finally, we
summarize the fundamental features of the EDABI method:

1◦ The 1st and 2nd quantization aspects of the collective (nano)systems are tackled in a con-
sistent manner, i.e., without encountering the problem of double counting interactions, as
is the case in the present versions of DFT+U and DFT+DMFT treatments.

2◦ In the approach we first diagonalize the second-quantized Hamiltonian for selected trial
single-particle wavefunction basis and optimize it subsequently in the correlated state.
In other words, the usual quantum-mechanical procedure of determining their e.g., the
system energy is carried out in a reverse order (the correlations are as crucial as the single-
particle wave function evaluation).

3◦ The method allows to analyze within a single scheme atomic, molecular, and extended
systems via studies of nanoscopic systems of the increasing size.

Progress in calculating precisely properties of collective systems composed of more complex
atoms will be effective within is method only with the implementation of computing capabili-
ties, perhaps coming with the advent advanced quantum computing.
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