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1. Interatomic Potentials
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1.1 Motivation: numerical efficiency
Example: computation of phase diagram for an element

• Thermodynamic sampling requires about:
• ~103 atoms
• ~109 force evaluations at different pressures/temperatures
➔ ~1012 atomic force calls

• Do do this within one year: ~30 μs/atomic force call
➔ Not possible with Density Functional Theory

Example: mechanical properties
• Dislocation interactions require large cells and long simulation times

• ~106 atoms
• ~106 molecular dynamics steps
➔ ~1012 atomic force calls

• Do do this within one year: ~30 μs/atomic force call
➔ Not possible with Density Functional Theory

Need fast models of interatomic interaction.
Fast models need to be accurate.
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1.2 Motivation: insight and interpretation

Example: multi-component alloy phase stability
• Modern alloys contain many elements (>10)
• Impossible to sample combinatorial phase space

➔ Need effective descriptors for guidance
• Reproduce basic chemical trends
• Key descriptors such as bandfilling, atomic size, 

electronegativity, etc. should emerge naturally

Need simplified models of bonding.
Simplified models need to be accurate.
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1.3 Development of potentials
• Electrons regarded as glue that mediates the interaction between atomic cores

• Until about the 1980s: 
• Development empirical, based on experience and intuition
• Force fields for bio-systems different from potentials for materials

• Potentials based on or inspired by DFT and TB:
• Second Moment Potentials, Effective Medium Theory, Embedded Atom 

Method, Finnis Sinclair Potential, Tersoff Potential, …

• Increased complexity/formal derivation:
• Modified Embedded Atom Method, and others
• Reactive force fields
• Bond-Order Potentials

• Machine learning potentials:
• Learn DFT reference data 
• Neural network potentials, Gaussian approximation potentials, …

This lecture: 1. Derive potentials from DFT
2. Many atom expansion
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2. Coarse graining the electronic structure 
for interatomic potentials
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2.1 Second-order expansion of the density 
functional

• Tight-binding (TB) approximation obtained from DFT

• Many developments about 20-40 years ago

• Names that you may come across: Pettifor, Ducastelle, Elstner, Finnis, 
Foulkes, Frauenheim, Harris, Haydock, Horsfield, Heine, Paxton, Sutton, 
… and many others

• Several related but different representations and approaches

• Aim here: simple approach from DFT to TB



• Represent DFT functional in basis

• Overlap

• One-electron eigenfunctions in basis

• For simplified notation introduce

• Therefore
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2.2 Basis5.4 Ralf Drautz

the basis functions are non-orthogonal,

Sij = h'i|'ji and �ij = h'i|'ji with |'ii =
X

j

S
�1
ij

|'ji , (3)

with the overlap matrix S. The basis function indices may be raised with the inverse of the
overlap matrix and lowered with the overlap matrix, which enables a more compact notation in
the following. The eigenstates are then written as

| ni =
X

i

c
i(n)|'ii , and c

i(n) =
X

j

S
�1
ij

c
(n)
j

, (4)

with expansion coefficients ci(n). The matrix elements of the density matrix are given by

⇢
ij = h'i|⇢̂|'ji =

X

n

fnh'i| nih n|'ji =
X

n

fnc
i(n)(cj(n))⇤ , (5)

with the occupation numbers fn of the eigenstates  n. Here I take fn = 1 for occupied states
below the Fermi level and fn = 0 for empty states above the Fermi energy. The charge density
is expressed as

⇢(rrr) =
X

ij

⇢
ij
'i(rrr)'

⇤
j
(rrr) . (6)

If expressed in eigenstates, the density matrix is diagonal

⇢nn0 = fn�nn0 . (7)

The DFT energy can be categorized in first, second and higher-order contributions in terms
of the density matrix. The kinetic energy of non-interacting electrons is linear in the density
matrix,

TS =
X

n

fnh n|T̂ | ni = TTT⇢⇢⇢ , (8)

where here and in the following the trace is implicitly included in the matrix products,

TTT⇢⇢⇢ =
X

ij

Tij⇢
ji
. (9)

The matrix elements of TTT are given by

Tij = h'i|T̂ |'ji . (10)

The external energy that contains the interaction of the electrons with the ionic cores is also
written as a first-order term

Eext =

Z
V

ext(rrr)⇢(rrr) drrr = VVV
ext
⇢⇢⇢ , (11)

with
V

ext

ij
=

Z
'
⇤
i
(rrr)Vext(rrr)'j(rrr) drrr . (12)
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• Density matrix element

• Charge density

2.3 Example: density matrix



• Contributions to energy

• Kinetic energy of non-interacting electrons

• With
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2.4 Contributions to DFT functional
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From Electrons to Potentials 5.3

BOPs provide a rigorous derivation of interatomic potentials for semiconductors [11, 12] and
metals [13, 14], where the BOPs for metals will be discussed in this chapter. At their lowest
order of approximation the BOPs recover the Tersoff [8, 9] and Finnis-Sinclair [4] potentials,
respectively.
In contrast, the development of more formal, general parameterizations is often based on large
numbers of DFT data that enable the application of methods from statistical learning for inter-
polating the reference data. This has led to the development of machine learning interatomic po-
tentials, such as neural networks potentials [15] or Gaussian process regression for the Gaussian
approximation potentials [16]. The field is very active with many recent developments [17–36].
The machine learning potentials reproduce DFT reference data sets with excellent accuracy.
As machine learning potentials are not derived or motivated by physical or chemical intuition,
the excellent accuracy of the machine learning potentials comes at the cost of interpretability.
Machine learning potentials employ a descriptor that quantifies the local atomic environment.
The atomic energy or other atomic properties are then learned as a non-trivial function of the
descriptor by training with reference data. The atomic cluster expansion (ACE) provides a for-
mally complete descriptor of the local atomic environment [34,37] and may be used to compare
and re-expand different machine learning interatomic potentials.
In section 2 I will discuss the derivation of the TB approximation from DFT. In Sec. 3 the mo-
ments theorem will be introduced. Several local expansions that implicitly or explicitly exploit
the moments theorem will then be summarized, before the analytic BOPs will be introduced. In
Sec. 4 I will discuss the ACE for the many-atom expansion of the interatomic interaction.

2 Coarse graining the electronic structure for interatomic

potentials

The TB approximation is obtained from a second-order expansion of the DFT functional. I
will first discuss the second-order expansion of the DFT energy and then introduce the TB ap-
proximation. This section follows closely the review in Ref. [38]. It builds on many earlier
developments. Here I highlight a few references only, some of which were key for the develop-
ment of modern TB, others which provide excellent reviews [39–47].

2.1 Second-order expansion of the density functional

The contributions to the Hohenberg-Kohn-Sham DFT energy functional [48, 49] are given by

E = TS + EH + EXC + Eext , (2)

with TS the kinetic energy of the non-interacting electrons, EH the Hartree energy, EXC the
exchange-correlation energy and Eext the interaction of the electrons with the nuclei. The
Coulomb interaction between the cores of the nuclei still needs to be added for the compu-
tation of total energies. Next, the eigenstates  n are expanded in basis functions 'i. In general
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• Hartree energy
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2.7 Band energy
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2.8 Band energy and density of states
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such that
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with the Fermi energy EF . This is called the onsite representation of the band energy as it
involves only one orbital i.

2.1.2 Perturbation expansion

Often one is interested in the response of a material to a perturbation. Then instead of expanding
the DFT energy about ⇢ = 0, one would like to discuss the energy associated to the deviation
of the density from a particular density ⇢

(0)(rrr) [39, 40]. I re-expand the series Eq.(17) about a
reference density matrix ⇢⇢⇢

(0) such that

⇢⇢⇢ = ⇢⇢⇢
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where JJJ
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0 refer to the second and third-order expansion coefficients about ⇢⇢⇢(0). The
Hamiltonian is given by
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2.2 Tight-binding approximation

In the TB approximation one takes the view that bond formation takes place when atomic-
like orbitals overlap. In practice this means that one builds TB models on a minimal basis
of atomic-like orbitals. The one-electron eigenstates are expanded as a linear combination of
atomic orbital-type (LCAO) basis functions, orbital |i↵i is located on atom i and has a well
defined angular momentum character, so that ↵ comprises ↵ = n, l,m. The basis functions are
written as

'i↵(rrr) = Rnl(|rrr � rrri|)Y m

l
(✓,�) , (26)

where the radial functions Rnl depend only on the distance to the position rrri of atom i and Y
m

l

are spherical harmonics or real linear combination of spherical harmonics. Different from an
LCAO basis that is used in DFT, where often several radial basis functions are employed for a
given angular momentum, in TB one typically uses only one radial function for each angular
momentum and only includes orbitals that are dictated by the chemistry of the problem at hand.
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Figure 3.1: Illustration of the local density of states ni(✏) and the local band energy Ei,band

associated with orbital |ii.

Figure 3.2: Illustration of the evaluation of the local band energy Ei,band in the intersite
representation (left) and the onsite representation (right).

The first identity is called the intersite representation, as the local band energy is cal-
culated from pairs of bonds between orbitals |ii and |ji, i.e., from the sum of chemical
bonds that orbital |ii forms with all other orbitals |ji. On the other hand, the onsite
representation calculates the local band energy from the knowledge of the density of
states on orbital |ii alone, i.e. only information on orbital |ii is used for the evaluation
of the band energy. Fig. 3.2 illustrates the situation for atom-centered orbitals. As we
will see in chapter 4, the local decomposition of the band energy Ei,band is very useful
for characterizing the bond chemistry of an orbital.
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2.9 Perturbation expansion
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with the Fermi energy EF . This is called the onsite representation of the band energy as it
involves only one orbital i.
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2.2 Tight-binding approximation

In the TB approximation one takes the view that bond formation takes place when atomic-
like orbitals overlap. In practice this means that one builds TB models on a minimal basis
of atomic-like orbitals. The one-electron eigenstates are expanded as a linear combination of
atomic orbital-type (LCAO) basis functions, orbital |i↵i is located on atom i and has a well
defined angular momentum character, so that ↵ comprises ↵ = n, l,m. The basis functions are
written as

'i↵(rrr) = Rnl(|rrr � rrri|)Y m

l
(✓,�) , (26)

where the radial functions Rnl depend only on the distance to the position rrri of atom i and Y
m

l

are spherical harmonics or real linear combination of spherical harmonics. Different from an
LCAO basis that is used in DFT, where often several radial basis functions are employed for a
given angular momentum, in TB one typically uses only one radial function for each angular
momentum and only includes orbitals that are dictated by the chemistry of the problem at hand.

5.6 Ralf Drautz

inserting in the band energy, one arrives at Eband =
P

i

P
n
fnEnc

(n)
i

(ci(n))⇤. It is customary to
define the local and global density of states

ni(E) =
X

n

c
(n)
i

(ci(n))⇤�(En � E) , and n(E) =
X

i

ni(E) =
X

n

�(En � E) , (21)

such that

Eband,i =

Z
EF

E ni(E) dE and Eband =

Z
EF

E n(E) dE , (22)

with the Fermi energy EF . This is called the onsite representation of the band energy as it
involves only one orbital i.

2.1.2 Perturbation expansion

Often one is interested in the response of a material to a perturbation. Then instead of expanding
the DFT energy about ⇢ = 0, one would like to discuss the energy associated to the deviation
of the density from a particular density ⇢

(0)(rrr) [39, 40]. I re-expand the series Eq.(17) about a
reference density matrix ⇢⇢⇢

(0) such that

⇢⇢⇢ = ⇢⇢⇢
(0) + �⇢⇢⇢ . (23)

From Eq.(17) one then obtains

E = E
(0) +HHH

(0)
�⇢⇢⇢+

1

2
JJJ

0
�⇢⇢⇢ �⇢⇢⇢+

1

6
KKK

0
�⇢⇢⇢ �⇢⇢⇢ �⇢⇢⇢+ · · · , (24)

where JJJ
0 and KKK

0 refer to the second and third-order expansion coefficients about ⇢⇢⇢(0). The
Hamiltonian is given by

HHH =HHH
(0) +JJJ

0
�⇢⇢⇢+

1

2
KKK

0
�⇢⇢⇢�⇢⇢⇢+ · · · , with HHH

(0) = VVV +JJJ⇢⇢⇢
(0) +

1

2
KKK⇢⇢⇢

(0)
⇢⇢⇢
(0) + · · · . (25)

2.2 Tight-binding approximation

In the TB approximation one takes the view that bond formation takes place when atomic-
like orbitals overlap. In practice this means that one builds TB models on a minimal basis
of atomic-like orbitals. The one-electron eigenstates are expanded as a linear combination of
atomic orbital-type (LCAO) basis functions, orbital |i↵i is located on atom i and has a well
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In the TB approximation one takes the view that bond formation takes place when atomic-
like orbitals overlap. In practice this means that one builds TB models on a minimal basis
of atomic-like orbitals. The one-electron eigenstates are expanded as a linear combination of
atomic orbital-type (LCAO) basis functions, orbital |i↵i is located on atom i and has a well
defined angular momentum character, so that ↵ comprises ↵ = n, l,m. The basis functions are
written as

'i↵(rrr) = Rnl(|rrr � rrri|)Y m

l
(✓,�) , (26)

where the radial functions Rnl depend only on the distance to the position rrri of atom i and Y
m

l

are spherical harmonics or real linear combination of spherical harmonics. Different from an
LCAO basis that is used in DFT, where often several radial basis functions are employed for a
given angular momentum, in TB one typically uses only one radial function for each angular
momentum and only includes orbitals that are dictated by the chemistry of the problem at hand.

For TB: terminate expansion, typically after 2nd order
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FIG. 1. (Color online) Illustration of the downfolding of a triple-ζ (3-ζ ) basis to an optimal single-ζ basis. Left plot: The original 3-ζ GPAW

pseudo-atomic orbitals (PAOs) basis. Right plot: the optimal basis function for Fe in the simple cubic (with a lattice constant of a = 2.50 Å),
the fcc (a = 3.46 Å) and the bcc (a = 2.87 Å) structures. The structures all have a nearest-neighbor distance of 2.5 Å and the basis functions
are virtually indistinguishable. The confinement potentials corresponding to "EPAO = 0.1 eV are shown in black. Also shown with a dashed
line is the optimal basis function for the Fe dimer at an interatomic distance of 2.5 Å.

simple TB models that we wish to construct. We therefore use
the dual basis sets of grid points20 and atomic orbitals17 im-
plemented in the GPAW code. We first calculate self-consistent
total energies and potentials using the systematic grid basis.
We then obtain the eigenstates |ψn〉 expanded in a 3-ζ basis,
given by Eq. (2), by performing a single diagonalization in the
potential obtained by the grid calculation. Figure 2 illustrates
the very good agreement between the density of states (DOS)
calculated with the grid basis and with a 3-ζ basis.

B. Optimized atomic orbitals

The optimized minimal (1-ζ ) basis is obtained from the
multiple-ζ basis by a downfolding of the LCAO eigenstates
for a given atomic configuration. In a nonorthogonal minimal

basis {|ϕIµ〉}, the contravariant basis {〈ϕIµ|} provides a simple
expression for the closure relation,

〈ϕIµ| =
∑

Jν

S−1
IµJν〈ϕJν |,

∑

Iµ

|ϕIµ〉〈ϕIµ| = 1̂, (4)

with the overlap matrix S = 〈ϕIµ|ϕJν〉. The closure relation
may be seen as a projection operator, which, if applied on
|ψn〉, measures to what extent |ψn〉 can be represented in the
basis. We thus write the projection of |ψn〉 expanded in the
multiple-ζ basis {|φIjµ〉}, given by Eq. (2), on the minimal
basis {|ϕIµ〉} as

Pn =
∑

Iµ

〈ψn|ϕIµ〉〈ϕIµ|ψn〉, P = N−1
e

∑

n

fnPn, (5)

FIG. 2. (Color online) Comparison of the density of states (DOS) of nonmagnetic iron calculated using three different basis sets. The
lattice constants for the calculations are a = 3.46 Å (fcc) and a = 2.87 Å (bcc). The structures have a nearest-neighbor distance of 2.5 Å.
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• Parameterize matrix elements

• Example: Hamiltonian matrix elements for Fe in minimal basis
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FIG. 3. (Color online) Bond integrals: (a) nonorthogonal !EPAO = 0.1 eV, (b) orthogonal !EPAO = 0.1 eV, and (c) nonorthogonal
!EPAO = 0.4 eV. The solid lines in (b) show a fit to simple exponentials to the orthogonal !EPAO = 0.1 eV dimer curves.

d-valent TB model, we will retain only the ddσ , ddπ , and
ddδ integrals.

In Fig. 3 we show the bond integrals β that were calculated
from the optimal minimal basis using Eq. (12). The bond
integrals are discontinuous and poorly transferable. It has
earlier been shown that the inclusion of screening makes the
bond integrals β continuous at the nearest-neighbor and next-
nearest-neighbor distances.2,15,35,36 This prompted us to define
the bond integrals based on a Hamiltonian orthogonalized by
a symmetric Löwdin procedure,37

H̃ = S−1/2HS−1/2, (13)

where H corresponds to the full Hamiltonian in the sd-
minimal basis. Compared to other orthogonalization schemes,
the Löwdin orthogonalization has two important advantages:
the orthogonal orbitals bear the same symmetry as the
nonorthogonal original vectors,4 and they are the closest in a
least-squares sense.38 Figure 3(b) shows that the bond integrals
obtained by using H̃ in Eq. (12) are both transferable and
continuous. The very good agreement shown in Fig. 3(b),
even with the Fe dimer, is somewhat surprising. It has
already been shown in Fig. 1 that the optimal d basis is
transferable for a given interatomic distance. Therefore the
poor transferability observed in Fig. 3(a) can only be due to
three-center, 〈ϕI |VK |ϕJ 〉, contributions to the Hamilton matrix
elements leading to an environmental dependence of the two-

center integrals. The effect of the Löwdin orthogonalization
must be a screening of the three-center integrals.

A qualitative rationalization of the transferability can be
found by comparing H̃ to the D matrix used in an analy-
sis of chemical pseudopotential theory.39 Large three-center
contributions will be associated with large two-center overlap
integrals, thereby screening the large three-center integrals.
This interpretation is confirmed in Fig. 3(c), where radial
extents of the basis functions, and thereby the three-center
contributions, are reduced. Using !EPAO = 0.4 eV instead
of !EPAO = 0.1 eV reduces the radial extent of the d orbitals
from 5.1 to 3.9 Å. Consequently the unscreened bond integrals
show transferability and are continuous.

The bond integrals are fitted to simple exponentials as

βddλ(R) = addλ exp(−bddλR), λ = σ,π,δ. (14)

Due to the transferability of the bond integrals, shown in
Fig. 3, we simply use the bond integrals obtained for the
dimer; the parameters are given in Table I. At the nearest-
neighbor distance of the bcc and fcc structure of around
2.5 Å, the relative strength of the bond integrals, ddσ : ddπ :
ddδ = −0.60 : 0.41 : −0.08 eV, shows a surprisingly good
agreement with the canonical d-band ratio of −6 : 4 : −1.40

The transferability to the dimer also forms a link to the
widely used density-functional-based tight-binding (DFTB)
approach,13 where the bond integrals are evaluated from a
dimer calculation using a single-ζ basis in a potential from
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• Expansion needs reference: start from spherical, charge neutral atoms

• Shrink atoms, contract radial functions

• Overlap atomic charge densities
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2.12 Bond formation in TB

5.10 Ralf Drautz

2.3.3 Free atom energy

For the evaluation of the binding energy the energies of the free atoms are subtracted

EB = E
TB � E

TB

free atoms
. (36)

From Eq.(28) the TB energy of non-magnetic, charge neutral free atoms is given by

E
TB

free atoms
=

X

i↵

E
(at)
i↵

N
(0)
i↵

� 1

2

X

i↵�

Ji↵i�N
(0)
i↵

N
(0)
i�

, (37)

where E
(at)
i↵

are the eigenstates of the free atom i and the population of the atomic orbitals is
equal to the population in the reference state, N (0)

i↵
.

2.3.4 Preparation energy

The preparation energy takes into account modifications of the onsite levels when the free atoms
are brought together and their charge density is overlapped to the reference charge density ⇢⇢⇢

(0),

Eprep =
X

i↵

(E(0)
i↵

� E
(at)
i↵

)N (0)
i↵

. (38)

2.3.5 Charge transfer

Charge transfer leads to two further contributions to the energy and a somewhat modified ex-
pression for the promotion energy above. Because of the onsite level difference between atoms
there is an energy linear in charge, and further the second-order contribution to the TB energy
Eq.(28). The two terms are denoted as an electrostatic interaction of charges on different atoms

Ees =
1

2

i 6=jX

ij

Jijqiqj , (39)

and an ionic onsite contribution for charging each atom

Eion = Ēiqi +
1

2

X

i

Jiiq
2
i
. (40)

The energy Ēi is obtained as a weighted average of the reference onsite levels on atom i and
corresponds to the electronegativity of the atom. The parameter Jii further determines resistance
against charge transfer from the charge neutral state.

2.3.6 Repulsive energy

The repulsive energy summarizes all terms that do not explicitly depend on the modification of
the density matrix �nnn. For this reason Eprep is also absorbed in the repulsive energy

Erep = �1

2

j 6=jX

i↵j�

Ji↵j�N
(0)
i↵

N
(0)
j�

+ Enuc + Eprep , (41)

where Enuc corresponds to the Coulomb repulsion of the bare atomic cores.
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1

2

X

i

Jiiq
2
i
. (40)
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• Charge transfer, often simplified

• Promotion energy

From Electrons to Potentials 5.9

Often in an even simpler approximation only the total charge on each atoms qi =
P

↵
qi↵ is

considered and the second-order term takes the form
P

ij

1
2Jijqiqj . Then from Eq.(29) all onsite

levels on an atom are shifted in parallel upon charge transfer. In literature it is sometimes
incorrectly assumed that this automatically corresponds to a point charge approximation.

2.3 Bond formation in the tight-binding approximation

Follwing Eq.(28) two different types of bond formation are represented in a TB model, the
formation of covalent bonds through the modification of the off-diagonal elements of the den-
sity matrix �⇢i↵j� with i↵ 6= j� and ionic interactions driven by charge transfer through the
modification of the diagonal elements of the density matrix �⇢i↵i↵ = qi↵. I will discuss the
decomposition of the TB energy in physically and chemically intuitive and transparant contri-
butions in the following.

2.3.1 Bond energy

The bond energy summarizes the energy that is stored in the bonds between different atoms

Ebond =
X

i↵j�

(Hi↵j� � Ei↵Si↵j�)⇢j�i↵ = Eband �
X

i↵

Ei↵Ni↵ . (31)

Different from the band energy, the bond energy is invariant with respect to a shift of the energy
scale. Using Eq.(29) the bond energy is closely related to the linear term in the TB energy

HHH
(0)
⇢⇢⇢ = Ebond +

X

i↵

E
(0)
i↵

Ni↵ . (32)

Equivalent to the intersite representation of the bond energy above is the onsite representation,

Ebond =
X

i↵

Z
EF

�1
(E � Ei↵)ni↵(E) dE . (33)

The population of the density of states below Ei↵ leads to a negative contribution to the bond
energy, i.e. corresponding to the filling of bonding states. Once states above Ei↵ have to be
populated, the bond energy decreases, corresponding to a filling of anti-bonding states. The
integral over the complete band is zero, 0 = Ebond =

P
i↵

R1
�1(E � Ei↵)ni↵(E) dE, which

helps to show that the bond energy is always smaller or equal to zero,

Ebond  0 . (34)

2.3.2 Promotion energy

When bonds are formed the onsite levels are re-propulated. In the free atom the number of
electrons per orbital is denoted by N

(0)
i↵

. For charge neutral atoms the promotion energy is then
written as

Eprom =
X

i↵

E
(0)
i↵

(Ni↵ �N
(0)
i↵

) . (35)

In contrast to the bond energy, the promotion energy is strictly positive as the electrons in the
free atom occupy the energetically lowest orbitals.
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2.14 Bond formation in TB
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butions in the following.

2.3.1 Bond energy

The bond energy summarizes the energy that is stored in the bonds between different atoms

Ebond =
X

i↵j�

(Hi↵j� � Ei↵Si↵j�)⇢j�i↵ = Eband �
X

i↵

Ei↵Ni↵ . (31)

Different from the band energy, the bond energy is invariant with respect to a shift of the energy
scale. Using Eq.(29) the bond energy is closely related to the linear term in the TB energy

HHH
(0)
⇢⇢⇢ = Ebond +

X

i↵

E
(0)
i↵

Ni↵ . (32)

Equivalent to the intersite representation of the bond energy above is the onsite representation,

Ebond =
X

i↵

Z
EF

�1
(E � Ei↵)ni↵(E) dE . (33)

The population of the density of states below Ei↵ leads to a negative contribution to the bond
energy, i.e. corresponding to the filling of bonding states. Once states above Ei↵ have to be
populated, the bond energy decreases, corresponding to a filling of anti-bonding states. The
integral over the complete band is zero, 0 = Ebond =

P
i↵

R1
�1(E � Ei↵)ni↵(E) dE, which

helps to show that the bond energy is always smaller or equal to zero,

Ebond  0 . (34)

2.3.2 Promotion energy

When bonds are formed the onsite levels are re-propulated. In the free atom the number of
electrons per orbital is denoted by N

(0)
i↵

. For charge neutral atoms the promotion energy is then
written as

Eprom =
X

i↵

E
(0)
i↵

(Ni↵ �N
(0)
i↵

) . (35)

In contrast to the bond energy, the promotion energy is strictly positive as the electrons in the
free atom occupy the energetically lowest orbitals.

• Bond energy

intersite

onsite

• Binding energy in TB approximation (rewrite of 2nd order DFT expansion)
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2.3.7 Summary of the energy in the tight-binding approximation

In summary, the second-order expansion of DFT Eq.(24) cast in a TB binding energy is re-
written in the form

EB = Ebond + Eprom + Eion + Ees + Erep . (42)

The TB expansion suggests a representation of bond formation in the steps summarized in Tab 1.
Typically the steps 1-3 are repulsive, while step 4 is attractive and drives bond formation.

1 Erep ! overlap atomic charge densities
2 Eion ! charge atoms
3 Eprom ! re-populate atomic energy levels
4 Ebond + Ees ! chemical and electrostatic interactions

Table 1: Steps for bond formation in the TB formalism

3 The moments theorem and local expansions

For the derivation of interatomic potentials I next turn to local solutions of the TB model. In
particular, the moments theorem will allow us to relate the local electronic structure to the local
atomic environment, which is critical for analysing the interaction between atoms.
The moments of the local density of states may be defined as

µ
(N)
i↵

=

Z
E

N
ni↵(E) dE . (43)

The moments may be used to characterize the density of states. The zeroth moment is just the
norm, µ(0)

i↵
= 1. The first moment gives the center of the density of states. From the second

moment the root mean square witdth of the density of states may be obtained and from the third
moment the skweness. The fourth moment characterizes the bimodality of the local density
of states, etc. If all moments are known, then the density of states may be reconstructed and
therefore may be viewed as a function of its moments,

ni↵(E) = ni↵(E, µ
(0)
i↵
, µ

(1)
i↵
, µ

(2)
i↵
, . . . ) . (44)

The idea of reconstructing the density of states from its moments (or equivalent information)
is the basis for the different methods that will be discussed in the following. In order that such
a reconstruction can be efficient, the moments of the density of states need to be accessible.
Here the moments theorem that I will briefly derive in the following provides the critical link. I
assume for ease of notation that the basis functions are orthonormal

hi↵|j�i = �ij�↵� . (45)
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3. Moments theorem and local expansions



• Moments of the local density of states

• Idea: reconstruct density of states from its moments

• Moments theorem (for orthonormal basis)
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3.1 Moments of the density of states
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5.12 Ralf Drautz

By using the definition of the density of states from Eq.(21) the moments may be rewritten as

µ
(N)
i↵

=

Z
E

N
ni↵(E) dE =

X

n

E
N

n
hi↵|nihn|i↵i

Z
�(En � E) dE

=
X

n

hi↵|ĤN |nihn|i↵i = hi↵|ĤN |i↵i , (46)

where I used the completeness of the eigenstates 1̂ =
P

n
|nihn|. A further manipulation

enables a geometric interpretation

µ
(N)
i↵

= hi↵|ĤN |i↵i =
X

j�k�...

hi↵|Ĥ|j�ihj�|Ĥ|k�ihk�|Ĥ . . . Ĥ|i↵i

=
X

j�k�...

Hi↵j�Hj�k�Hk�... . . . H...i↵ , (47)

with a complete basis 1̂ =
P

i↵
|i↵ihi↵|. The last identity tells us that the N

th moment may be
obtained from the product of N Hamiltonian matrix elements. The N

th moment may therefore
be described as the sum of all self-returning hopping path of length N that start and end on the
same basis function.
Along the same lines it is straightforward to show that the moments of the spectrally resolved
density matrix

ni↵j�(E) =
d⇢i↵j�

dE
, or ⇢i↵j� =

Z
EF

ni↵j�(E) dE , (48)

may be obtained as

⇠
(N)
i↵j�

=

Z
E

N
ni↵j�(E) dE = hi↵|ĤN |j�i . (49)

The N th moment ⇠(N)
i↵j�

of the spectrally resolved density matrix is thus given by all interference
paths of N products of the Hamiltonian matrix that start and end on orbitals |i↵i and |j�i,
respectively.
As the Hamiltonian matrix elements depend on the positions of the atoms, the moments theorem
relates the atomic structure to the electronic structure. For the reconstruction of the local density
of states, the lowest moments contribute basic information on the width and shape of the density
of states, while higher moments may be used to reconstruct increasingly finer details. This is
intuitive: the matrix elements Hi↵j� decay roughly exponentially with distance between the
atoms i and j, which means that the low moments only sample the local environment of an
atom and higher moments incorporate information of an increasingly distant neighborhood of
orbital |i↵i.
In the following I will discuss methods for the reconstruction of the band energy from the atom-
ically local neighborhood. These methods were developed originally for linear-scaling DFT or
TB. The methods have different starting points, but implicitly or explicitly they all correspond to
a reconstruction of the density of states from its moments. For the anlytic bond-order potenials
we use the moments to derive a hierarchical analytic expansion of the interatomic interaction.
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3.2 Moments theorem II

5.12 Ralf Drautz
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• Spectrally resolved density matrix

• Interference paths
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3.3 Local expansions

• Different methods make use of the relations provided by the 
moments theorem, explicitly or implicitly

• Next we will briefly look at:
1. Recursion
2. Numerical bond-order potentials
3. Kernel polynomial method
4. Fermi operator expansion
5. Analytic bond-order potentials



• Recursively generate new states

• Tridiagonal Hamiltonian matrix
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3.4 Recursion

From Electrons to Potentials 5.13

3.1 Recursion and numerical bond-order potentials

In the recursion method the Hamiltonian matrix is transformed to tridiagonal form, from which
the Green’s function may be obtained as a continued fraction [53, 54]. Given a starting orbital
|u0i = |i↵i first a basis transformation is carried out,

bn+1|un+1i = (Ĥ � an)|uni � bn|un�1i , (50)

with
bn = hun|Ĥ|un�1i , and an = hun|Ĥ|uni . (51)

The recursion is initialized with b0 = 0 and leads to orbitals |uni that have remarkable proper-
ties: the resulting Hamiltonian matrix is tridiagonal, i.e. it only has entries on the diagonal and
next to the diagonal,

hun|Ĥ|umi =

0

BBBBBBBBBBB@

a0 b1 0 0 0 0 . . .

b1 a1 b2 0 0 0 . . .

0 b2 a2 b3 0 0 . . .

0 0 b3 a3 b4 0 . . .

0 0 0 b4 a4 b5 . . .

0 0 0 0 b5 a6
. . .

...
...

...
...

... . . . . . .

1

CCCCCCCCCCCA

, and hun|umi = �nm . (52)

The tridigonal Hamiltonian may be viewed as semi-infinite one-dimensional chain and is il-
lustrated in Fig. 3. The recursion also shows that every Hamiltonian may be represented as a
one-dimensional semi-infinite chain with nearest-neighbor interactions.

a0

b1 b2 b3

a1 a2

Fig. 3: Illustration of the semi-infinite recursion chain Hamiltonian.

The moments of the density of states Eq.(43) may be obtained from self-returning paths along
the tridiagonal Hamiltonian matrix as

µ
(0)
i↵

= 1 ,

µ
(1)
i↵

= a0 ,

µ
(2)
i↵

= a
2
0 + b

2
1 ,

µ
(3)
i↵

= a
3
0 + (a0 + a1)b

2
1 ,

µ
(4)
i↵

= a
4
0 + b

4
1 + (a20 + a

2
1 + a0a1 + b

2
2)b

2
1 ,

. . .
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3.5 Recursion

From Electrons to Potentials 5.13

3.1 Recursion and numerical bond-order potentials

In the recursion method the Hamiltonian matrix is transformed to tridiagonal form, from which
the Green’s function may be obtained as a continued fraction [53, 54]. Given a starting orbital
|u0i = |i↵i first a basis transformation is carried out,

bn+1|un+1i = (Ĥ � an)|uni � bn|un�1i , (50)

with
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• Recursion chain Hamiltonian

• Relation to moments
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bn = hun|Ĥ|un�1i , and an = hun|Ĥ|uni . (51)
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• Green’s function

• Continued fraction expansion

• Relation to density of states
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3.6 Recursion

5.14 Ralf Drautz

3.1.1 Green’s function expansion

The Green’s function is defined as

Ĝ = (E1̂� Ĥ)�1
. (53)

The matrix elements of the Green’s function in eigenstates are given by

h n|Ĝ| mi =
�nm

E � En

. (54)

This is easily verfied by inserting the identify 1̂ =
P

n0 | n0ih n0 | into

h n|(E1̂� Ĥ)Ĝ| mi =
X

n0

h n|E1̂� Ĥ| n0ih n0 |Ĝ| mi =
E � En

E � Em

�nm = �nm . (55)

The Green’s function matrix elements in basis functions are given by

Gi↵j�(E) =
X

nm

hi↵| nih n|Ĝ| mih m|j�i =
X

n

hi↵| nih n|j�i
E � En

. (56)

With the help of the recursion chain Eq.(50) the diagonal elements of the Green’s function
matrix may be expressed in the form of a continued fraction [53],

Gi↵i↵(E) = G00(E) =
1

E � a0 �
b
2
1

E � a1 �
b
2
2

E � a2 �
b
2
3

E � a3 �
b
2
4

. . .

. (57)

Next the Green’s function is related to the density matrix by making use of the identity
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h n|Ĝ| mi =
�nm

E � En

. (54)

This is easily verfied by inserting the identify 1̂ =
P

n0 | n0ih n0 | into

h n|(E1̂� Ĥ)Ĝ| mi =
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3.7 Numerical bond-order potentials

From Electrons to Potentials 5.15

3.1.2 Numerical bond-order potentials

We are interested in the local calculation of the band energy or, for the TB approximation, the
bond energy associated to orbital |i↵i. This is achieved by terminating the recursion expansion
of the Green’s function after a few recursion levels n. The recursion coefficients am and bm for
m > n are replaced by a constant terminator

am = a1 , bm = b1 for m > n . (60)

The terminator in the Green’s function may be summed analytically and leads to termination of
the continued fraction at level n by

E � an�1 � T (E) , (61)

with
T (E) =

1

2

⇣
E � a1 �

p
E � a1 � 2b1

p
E � a1 + 2b1

⌘
. (62)

The corresponding density of states is different from zero only in the interval between a1�2b1
and a1 + 2b1. A local expansion of the bond energy is now obtained as

Ebond,i↵ = � 1

⇡
Im

Z
EF E � Ei↵

E � a0 �
b
2
1

E � a1 �
b
2
2

. . . �
. . .

E � an�1 � T (E)

. (63)

The integration of the Green’s function is carried out numerically, therefore the name numerical
BOPs.
For the evaluation of forces the off-diagonal elements of the Green’s function are also required.
These are obtained by defining

|u0i =
1p
2
(|i↵i+ e

i#|j�i) , (64)

with # = cos�1
� and therefore

G00 = �Gi↵j� +
1

2
(Gi↵i↵ +Gj�j�) . (65)

A particular termination of the expansion ensures that the onsite and intersite representation of
the bond energy are identical [55]. Details of the numerical BOPs are available in Refs. [56–58].

3.2 Kernel polynomial method

In the Kernel Polynomial Method (KPM) [59–61] the density of states is represented as

ni↵(✏) =

Z
K(✏, ✏0)ni↵(✏

0) d✏0 , (66)
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3.8 Kernel polynomial method
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where the energy has been rescaled as

✏ =
E � a1

2b1
. (67)

It is clear that this identity only holds if the kernel fulfills K(✏, ✏0) = �(✏ � ✏
0). In order to

achieve an approximate, local representation of ni↵(✏) the kernel is expanded in Chebyshev
polynomials of the first kind

K(✏, ✏0) =
1

⇡

1p
1� ✏2

 
g
(0)
T

+ 2
nmaxX

n=1

g
(n)
T

Tn(✏)Tn(✏
0)

!
. (68)

The factors g(n)
T

are chosen in such a way that for every nmax the kernel is positive, K(✏, ✏0) � 0,
while it is also as narrow as possible for an efficient convergence to the Dirac delta function
when nmax is increased. Typically g

(n)
T

smoothly decays as a function of n from g
(0)
T

= 1 to
g
(nmax)
T

= 0. Fig. 4 illustrates different damping factors.
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) � 0,
then, because the density of states is positive too, niα(ε) � 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) � 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1
π

1
sin φ

{

g
(0)
T +

nmax∑

n=1

g
(n)
T [cos n(φ − φ′)

+ cos n(φ + φ′)]

}

, (29)

where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
Therefore, in order to establish the positivity of the kernel,
it suffices to show that

D(α) = g
(0)
T + 2

nmax∑

n=1

g
(n)
T cos nα � 0 , (30)

for arbitrary α. Examples of positive kernels are the Fejer
kernel,

g
(n)
T = 1 − n

nmax
, (31)

and the Jackson kernel that is used in the KPM,21

g
(n)
T = nmax − n + 1

nmax + 1

(
cos π

n

nmax + 1

+ sin π
n

nmax + 1
cot π

1
nmax + 1

)
. (32)

In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)

iα and b
(∞)
iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ

(n)
iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
polynomials of the second kind:

K (nmax)(ε,ε′) = 2
π

√
1 − ε2

[

g
(0)
U +

nmax∑

n=1

g
(n)
U Un(ε)Un(ε′)

]

,

(33)

such that the density of states may be written in the form of
Eq. (2) modified by the kernel expansion coefficients g

(n)
U ,

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

[

g
(0)
U +

nmax∑

n=1

g
(n)
U σ

(n)
iα Un(ε)

]

. (34)

By using Un = sin(n + 1)φ/ sin φ, the representation of the
kernel is equivalent to

K (nmax)(ε,ε′) = 1
π

1
sin φ′

{
nmax+1∑

n=1

g
(n−1)
U [cos n(φ − φ′)

− cos n(φ + φ′)]

}

, (35)

where we used 2 sin φ sin φ′ = cos(φ − φ′) − cos(φ + φ′). By
comparing to Eq. (29), we may choose to identify

g
(n)
U = g

(n+1)
T

/
g

(1)
T , n = 1, . . . ,nmax, (36)

where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1
2π

1
sin φ′

[
nmax+1∑

n=1

g
(n−1)
U (cos nα − cos nβ)

]

,

(37)

with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 �
α � β � π . Therefore the kernel is positive if

nmax+1∑

n=1

g
(n−1)
U cos nα �

nmax+1∑

n=1

g
(n−1)
U cos nβ . (38)

FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.

094105-5

Fig. 4: Damping factors used in the KPM (Jackson kernel) and analytic BOPs for nexp = 50.
Taken from Ref. [62].

By inserting the expansion for the Kernel in Eq.(66), an expansion for the density of states is
obtained as

ni↵(✏) =
1

⇡

1p
1� ✏2

 
g
(0)
T

+ 2
nmaxX

n=1

g
(n)
T

Tn(✏)µ
T

n

!
, (69)

with the Chebyshev moments

µ
T

n
=

Z 1

�1

Tn(✏)ni↵(✏) d✏ . (70)
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n=1

g
(n−1)
U [cos n(φ − φ′)

− cos n(φ + φ′)]

}

, (35)

where we used 2 sin φ sin φ′ = cos(φ − φ′) − cos(φ + φ′). By
comparing to Eq. (29), we may choose to identify

g
(n)
U = g

(n+1)
T

/
g

(1)
T , n = 1, . . . ,nmax, (36)

where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1
2π

1
sin φ′

[
nmax+1∑

n=1

g
(n−1)
U (cos nα − cos nβ)

]

,

(37)

with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 �
α � β � π . Therefore the kernel is positive if

nmax+1∑

n=1

g
(n−1)
U cos nα �

nmax+1∑

n=1

g
(n−1)
U cos nβ . (38)

FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.
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Fig. 4: Damping factors used in the KPM (Jackson kernel) and analytic BOPs for nexp = 50.
Taken from Ref. [62].

By inserting the expansion for the Kernel in Eq.(66), an expansion for the density of states is
obtained as
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) ! 0,
then, because the density of states is positive too, niα(ε) ! 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) ! 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1
π

1
sin φ

{

g
(0)
T +

nmax∑

n=1

g
(n)
T [cos n(φ − φ′)

+ cos n(φ + φ′)]

}

, (29)

where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
Therefore, in order to establish the positivity of the kernel,
it suffices to show that

D(α) = g
(0)
T + 2

nmax∑

n=1

g
(n)
T cos nα ! 0 , (30)

for arbitrary α. Examples of positive kernels are the Fejer
kernel,

g
(n)
T = 1 − n
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and the Jackson kernel that is used in the KPM,21
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n
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cot π
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In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)

iα and b
(∞)
iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ

(n)
iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
polynomials of the second kind:
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such that the density of states may be written in the form of
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As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as
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1
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[
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FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.
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3.9 Kernel polynomial method

5.16 Ralf Drautz

where the energy has been rescaled as

✏ =
E � a1

2b1
. (67)

It is clear that this identity only holds if the kernel fulfills K(✏, ✏0) = �(✏ � ✏
0). In order to

achieve an approximate, local representation of ni↵(✏) the kernel is expanded in Chebyshev
polynomials of the first kind

K(✏, ✏0) =
1

⇡

1p
1� ✏2

 
g
(0)
T

+ 2
nmaxX

n=1

g
(n)
T

Tn(✏)Tn(✏
0)

!
. (68)

The factors g(n)
T

are chosen in such a way that for every nmax the kernel is positive, K(✏, ✏0) � 0,
while it is also as narrow as possible for an efficient convergence to the Dirac delta function
when nmax is increased. Typically g

(n)
T

smoothly decays as a function of n from g
(0)
T

= 1 to
g
(nmax)
T

= 0. Fig. 4 illustrates different damping factors.
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) � 0,
then, because the density of states is positive too, niα(ε) � 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) � 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1
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1
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where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
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for arbitrary α. Examples of positive kernels are the Fejer
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In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)
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iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ
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iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
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comparing to Eq. (29), we may choose to identify
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/
g
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where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1
2π

1
sin φ′

[
nmax+1∑

n=1

g
(n−1)
U (cos nα − cos nβ)

]

,

(37)

with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 �
α � β � π . Therefore the kernel is positive if
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FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.
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Fig. 4: Damping factors used in the KPM (Jackson kernel) and analytic BOPs for nexp = 50.
Taken from Ref. [62].

By inserting the expansion for the Kernel in Eq.(66), an expansion for the density of states is
obtained as
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where the energy has been rescaled as
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It is clear that this identity only holds if the kernel fulfills K(✏, ✏0) = �(✏ � ✏
0). In order to

achieve an approximate, local representation of ni↵(✏) the kernel is expanded in Chebyshev
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The factors g(n)
T

are chosen in such a way that for every nmax the kernel is positive, K(✏, ✏0) � 0,
while it is also as narrow as possible for an efficient convergence to the Dirac delta function
when nmax is increased. Typically g
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T

smoothly decays as a function of n from g
(0)
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= 1 to
g
(nmax)
T

= 0. Fig. 4 illustrates different damping factors.
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) � 0,
then, because the density of states is positive too, niα(ε) � 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) � 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1
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1
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T +
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where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
Therefore, in order to establish the positivity of the kernel,
it suffices to show that
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for arbitrary α. Examples of positive kernels are the Fejer
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In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)

iα and b
(∞)
iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ

(n)
iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
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where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1
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1
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with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 �
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FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.
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Fig. 4: Damping factors used in the KPM (Jackson kernel) and analytic BOPs for nexp = 50.
Taken from Ref. [62].

By inserting the expansion for the Kernel in Eq.(66), an expansion for the density of states is
obtained as
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3.10 Fermi operator expansion

From Electrons to Potentials 5.17

As the Chebyshev polynomials may just be written in powers of ✏, the Chebyshev moments are
linear combinations of the moments of the density of states, Eq.(21).
The damping factors g(n)

T
that ensure a positive expansion of the density of states remove much

of the contribution of higher moments. One way to avoid this is to add higher moments that are
generated based on a maximum entropy principle [63].

3.3 Fermi operator expansion

In DFT it is customary to introduce an electronic temperature. This is done in part for practical
reasons, as temperature dampens details of the Fermi surface in a metal and leads to faster
convergence of the k-space integration over the Brillouin zone as a function of the k-mesh
density. For the Fermi Operator expansion the electronic temperature provides the starting
point for the expansion. With temperature, the band energy and the number of electrons are
computed as

Eband =

Z
✏f(✏, µ)n(✏) d✏ , (71)

N =

Z
f(✏, µ)n(✏) d✏ , (72)

with the energy scale Eq.(67), where µ is the electron chemical potential and

f(✏, µ) =
1

1 + exp( ✏�µ

kBT
)
, (73)

the temperature dependent Fermi-Dirac distribution function and n(✏) the density of states. At
T = 0 K the smearing is zero and f(✏, µ) corresponds to the Heaviside step function ⇥(✏, ✏F )

which is one below the Fermi energy ✏F and zero above. In the Fermi operator expansion (FOE)
method [64, 65] the density matrix is locally approximated by writing it as

⇢i↵j� =

Z
f(✏, µ)ni↵j�(✏)d✏ , (74)

and then expanding f in a polynomial

f(✏, µ) =
X

k

ck✏
k
. (75)

By making use of Eq.(49) the density matrix is written as

⇢i↵j� =
X

k

ck⇠
(k)
i↵j�

, (76)

and
Eband =

X

i↵j�

X

k

ck⇠
(k)
i↵j�

Hj�i↵ =
X

i↵

X

k

ckµ
(k+1)
i↵

. (77)

In practise the Fermi-Dirac distribution function is expanded in Chebyshev polynomials

f(✏) =
1

⇡
p
1� ✏2

(µT

0 + 2
nmaxX

n=1

µ
T

n
Tn(✏)). (78)
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that ensure a positive expansion of the density of states remove much

of the contribution of higher moments. One way to avoid this is to add higher moments that are
generated based on a maximum entropy principle [63].

3.3 Fermi operator expansion

In DFT it is customary to introduce an electronic temperature. This is done in part for practical
reasons, as temperature dampens details of the Fermi surface in a metal and leads to faster
convergence of the k-space integration over the Brillouin zone as a function of the k-mesh
density. For the Fermi Operator expansion the electronic temperature provides the starting
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computed as
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the temperature dependent Fermi-Dirac distribution function and n(✏) the density of states. At
T = 0 K the smearing is zero and f(✏, µ) corresponds to the Heaviside step function ⇥(✏, ✏F )

which is one below the Fermi energy ✏F and zero above. In the Fermi operator expansion (FOE)
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• Introduce temperature into band energy

• Fermi-Dirac distribution function

• Density matrix elements



• Polynomial expansion of Fermi-Dirac distribution function

• Use moments theorem

• Expansion for band energy

• In practise the Fermi-Dirac function is expanded in Chebyshev polynomials
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Plus a few tricks for convergence
➔ Efficient local expansion of the TB energy



• Make use of elements of Numerical Bond-Order Potentials and Kernel 
Polynomial Method

• Moments of the Chebyshev polynomials of the second kind

• Expansion of the density of states

• Close-packed structures recovered at low order
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3.12 Analytic bond-order potentials

5.18 Ralf Drautz

with the Chebyshev moments µ
T

n
, Eq.(70) and the band energy accordingly. Another repre-

sentation of the Fermi operator expansion, the rational representation, may be related to the
recursion expansion.

3.4 Analytic bond-order potentials

The analytic BOPs combine the recursion expansion and the KPM. I start from a scaled energy
Eq.(67) that allows us to work with Chebyshev polynomials that are defined on the interval
[�1, 1]. The analytic BOPs use the Chebyshev polynomials of the second kind as the they are
orthogonal with respect to the square root function

2

⇡

Z +1

�1

Un(✏)Um(✏)
p
1� ✏2 d✏ = �nm . (79)

The square root function is also the density of states of the semi-infinite recursion chain when
all matrix elements are identical a0 = a1 = · · · = a1 and b1 = b2 = · · · = b1. If the reference
energy is shifted to a0 = 0, then b

2
1 = µ

(2)
i↵

. As b1 = b1 determines the width of the density of

states, the bond energy scales as
q

µ
(2)
i↵

and the Finnis-Sinclair potential, Eq.(1), is immediately
obtained. Therefore by choosing the Chebyshev polynomials of the second kind, the analytic
BOPs incorporate the Finnis-Sinclair potential at the lowest order of approximation.
The Chebyshev polynomials of the second kind fulfill the recursion relation

Un+1(✏) = 2✏Un(✏)� Un�1(✏) , (80)

with U0 = 1 and U1 = 2✏.
The expansion coefficients for the density of states are obtained by projection,

�
(n)
i↵

=

Z +1

�1

Un(✏)ni↵(✏) d✏ , (81)

and the density of states is expressed as

ni↵(✏) =
X

n

2

⇡

p
1� ✏2 �

(n)
i↵

Un(✏) . (82)

The expansion coefficients �(n)
i↵

are computed using the moments theorem Eq.(43) as

�
(n)
i↵

= hi↵|Un(ĥ)|i↵i , (83)

with the scaled Hamiltonian

ĥ =
Ĥ � a1

2b1
. (84)

In practice nmax expansion coefficients are computed, which corresponds to evaluating nmax

moments of the density of states. Thus the expansion Eq.(82) becomes

ni↵(✏) =
nmaxX

n=0

p
1� ✏2�

(n)
i↵

Un(✏) , (85)
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or using ✏ = � cos�,

ni↵(✏) =
nmaxX

n=0

�
(n)
i↵

sin(n+ 1)� . (86)

If a Fourier series expansion is abruptly terminated because only the first nmax expansion coef-
ficients are taken into account, this may lead to significant oscillations that are known as Gibbs
ringing. In particular, these oscillations may be so large that the expansion of the density of
states Eq.(86) may become negative.
The Gibbs ringing may be removed and a strictly positive expansion of the density of states may
be enforced by damping the expansion coefficients,

ni↵(✏) =
nmaxX

n=0

gn�
(n)
i↵

sin(n+ 1)� . (87)

The damping factors gn are similiar to the damping factors in KPM and decrease monotonically
from g0 = 1 to gnmax = 0 [62, 66], see Fig. 4. They damp oscillations and avoid Gibbs ringing
and potentially negative values of the density of states. As the damping factors decrease to zero
for nmax, they remove most of the contribution from higher moments. Therefore more moments
need to be calculated, i.e., nmax needs to be increased. As the calculation of the moments is the
most time consuming part in the energy and force evaluation, one would like to keep nmax as
small as possible.
This may be resolved by terminating the expansion Eq.(87). One first evaluates moments up to
nmax from the Hamiltonian using the moments theorem. Further moments from nmax + 1 up
to nexp � nmax are then computed using an estimated model Hamiltonian that has the form of
a semi-infinite chain with nearest neighbour bonds only [62]. Because of the simple structure
of the semi-infinite chain, only very few matrix elements need to be multiplied and therefore
the computation of the moments along the chain is very fast. The resulting expansion takes the
form

ni↵(✏) =
nmaxX

n=0

gn�
(n)
i↵

sin(n+ 1)�+

nexpX

n=nmax+1

gn�
(n)
i↵

sin(n+ 1)� . (88)

The damping factors decay monotonically from g0 = 1 to gnexp = 0. For nexp � nmax

the damping factors for the first few moments are close to one and the contributions of the
corresponding moments are hardly affected. This means that the expansion as a function of
nmax converges quickly to the tight-binding reference. In practise one uses nexp ⇡ 20 ⇥ nmax.
This leads to a good quality of the reconstructed DOS already at a small number of calculated
moments.
The density of states Eq.(88) may be integrated analytically,

Ebond,i↵ = 2b1

nexpX

n=0

gn�
(n)
i↵

⇥
�̂n+2(�F )� �0�̂n+1(�F ) + �̂n(�F )

⇤
, (89)

with �0 = (Ei↵ � a1)/b1 and �̂0 = 0,

�̂1 = 1� �F

⇡
+

1

2⇡
sin(2�F ) . (90)
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• Damp and terminate expansion

• Can be integrated analytically

• With response functions
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The response functions take the form
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number of electrons Ni↵ efficient analytic expressions may be obtained [14, 62]. The analytic
BOPs have been extended further to include non-collinear magnetism [14, 67]. The analytic
BOPs scale-linearly with the number of atoms. An efficient and parallel implementations is
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➔ Efficient local expansion of the TB energy
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3.15 Examples: Analytic bond-order potentials

of the neglected three-membered rings causes the DOS to be
nonsymmetric. We also see that the analytic ! bond orders
predict the large bifurcation between the saturated !+ and the
unsaturated !− bonds that occurs in planar structures such as
graphite. However, at the level of the second moment matrix
approximation, the TB bifurcation of the fcc ! bond orders
into !0.05, −0.02" is not observed with the analytic BOP
values remaining degenerate !0.07, 0.07". This error is not
serious because both p! and the magnitude of the ! bond
orders are small.

Finally, the importance of the four-hop and four-member
ring contributions in Eqs. !23" and !24" can be judged by
considering the results for only the two-hop contributions,46

namely,

"ij,#!!"
!1/2" = 1/#1 + $2#!!", !25"

where we have taken c#=c!=1. For the special case of the
first-nearest-neighbor structure types considered in this paper
!but not including the helical chain, the puckered graphene
layer and the simple hexagonal lattice", the analytic expres-
sions reduce to the particularly simple forms for the #
bond26,47

"#
!1/2"!2hop" = 1/#z$!1 − p#"2 +

1
d

p#
2% , !26"

and for the ! bond, generalizing Eq. !53" of Ref. 32 to gen-
eral dimension d,

FIG. 3. !Color online" Bond order of the #,
!+, and !− bonds as a function of the fractional
bond occupancy for the case p#=2/3, p!=1/6.
Shown are the dimer !1", the linear chain !2!", the
helical chain !2, dashed line", the graphene sheet
!3!", the puckered graphene sheet !3, dashed
line", cubic diamond !4", simple cubic !6", simple
hexagonal !8a and 8b for the axial and basal
bonds, respectively", and face-centered cubic
!12". For the ! bonds only the structures with
coordination z%6 are shown. The BOP results
were evaluated using the extrapolation scheme
described in Sec. IV with c#=1.27 and c!=1.

FIG. 4. !Color online" Reduced TB and analytic BOP # bond
order "# !!", !+ bond order "!+

!!", and !− bond order "!−
!""

as a function of coordination z for a half-full band with p#=2/3 and
p!=1/6. For clarity we have plotted only the values for the linear
chain !2!" and graphene sheet !3!" for two- and threefold coordina-
tion, respectively. All the first-nearest-neighbor bonds are equiva-
lent in these structures apart from the eightfold-coordinated simple
hexagonal structure, where we have presented the weighted average
of the six basal and two axial bonds. The dashed and dotted lines
correspond to the # and ! bond order, respectively, within the sim-
plified two-hop approximation of Eq. !28". The BOP values were
calculated with c#=c!=1.

ANALYTIC BOND-ORDER POTENTIAL FOR … PHYSICAL REVIEW B 72, 144105 !2005"

144105-7
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3.16 Examples: Analytic bond-order potentials
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THEORY OF STRUCTURAL TRENDS WITHIN 4d AND . . . PHYSICAL REVIEW B 83, 224116 (2011)

FIG. 9. (Color online) (Left panels) Convergence of structural
energy differences for exact BOP expansion with respect to maximum
number of moments mmax. The bottom panel gives TB reference
structural energy differences as shown from the right panel of
Fig. 6. All energy differences are given with respect to fcc and
plotted against number of d electrons. (Right panels) Convergence
of structural energy differences for first-order BOP expansion with
respect to maximum number of moments mmax. The bottom panel
gives first-order TB reference structural energy differences. All
energy differences are given with respect to fcc and plotted against
number of d electrons in fcc.

the fine structure of the Laves DOS, for example, would only
be picked up by the rapidly oscillating high-order Chebyshev
polynomials in the BOP expansion Eq. (39). Their neglect is
responsible for the remaining errors in the bottom left panel of
Fig. 10. As an aside, we see in the top left panel of Fig. 11 that
the linear approximation to the expansion coefficients leads to
a sizable shift in the bonding and antibonding peaks in the bcc
DOS to lower energies. This results in the deep minimum of
the (bcc-fcc) BOP structural energy difference curve in the left
panel of Fig. 9 being shifted from Nd around 4.1 (nonlinear)
to 3.4 (linear) with an accompanying error in the energy 50%
that of the structural energy difference itself.

The errors made by using the first-order expression,
Eq. (42), can be investigated explicitly for the TB case.

FIG. 10. (Color online) (Left panels) Errors in exact BOP
structural energy difference curves for mmax = 6,8,10 with respect
to exact TB result shown in bottom left panels of Fig. 9. Errors
are plotted against number of d electrons. (Right panels) Errors in
first-order BOP structural energy difference curves for mmax = 6,8,10
with respect to first-order TB result shown in bottom right panel of
Fig. 9. Errors are plotted against number of d electrons in fcc.

These errors are shown in the bottom panel of Fig. 12,
which has been obtained by comparing the exact with the
first-order TB structural energy difference curves in the
bottom left and bottom right panels of Fig. 9. We see
that the errors are all positive with the bcc half-filled band
displaying a sizable error compared to the other structure
types. This can be understood by looking at the second-
order error,58 which is neglected in the first-order expression,
Eq. (42), namely,
{(

U II
bond−U I

bond

)
−

(
U II

bond−U I
bond

)(1)}(2) = 1
2nI

(
EI

F

)
(!EF )2,

(48)

where !EF = EII
F − EI

F . We have replaced the band energy
on the left-hand side with the bond energy as they are identical
for our non-self-consistent TB model. The top panel of Fig. 12
shows the band-filling variation in the normalized values of
!EF for the different structure types, while the middle panel

224116-13

Fig. 6: Structural energy differences for a number of close-packed phases (left panel). mmax

indicates the moment at which the expansion was terminated, the lowest panels show the TB
reference. The right panel shows a first order expansion. For details Ref. [69], from which this
figure was also taken.

4 Many atom expansions

In the first part of this chapter I discussed the derivation of simplified electronic structure models
from DFT. A local expansion of the TB energy then led to explicit interatomic potentials. While
a lot of insight can be gained from the analysis of bond formation in the BOPs and robust
parameterizations may be achieved with few parameters, the accuracy and transferability of the
BOPs are also limited by the coarse graining approximations from DFT to TB and BOP.
In the past years an important focus in the field of atomistic modelling was the parameteriza-

• Structural energy 
differences for close 
packed structures across 
the d band
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3.17 Examples: Analytic bond-order potentials

From Electrons to Potentials 5.23

volumes, andUpot
0( ) is the energy of the equilibrium ω or hcp phases. The thermal averages in

equation (16) were calculated from MD trajectories in the NVT ensemble with a duration of
10 ps after complete equilibration with a Langevin thermostat for 5 different volumes. For the
ω phase we employed a 4×4×6 supercell while for the hcp phase a 6×6×4 supercell,
with a total of 288 atoms for both structures. For each temperature, the obtained free energy-
volume curves were fitted using the Birch–Murnaghan equation [99, 100] to determine the
value of the zero-pressure (Helmholtz) free energy.

Since the bcc structure is not stable at 0 K, temperature integration as in equation (16) is
not possible. To calculate the free energy of the bcc phase, we instead employed the standard
Frenkel–Ladd method [101] to integrate the free energy difference between our potential U1

and a reference potential U0,
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choosing as the reference system an Einstein crystal with potential energy
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with k=5 eVÅ−2. The thermal averages � MU U1 0� � were again calculated in the NVT
ensemble for 10 ps using a 6×6×6 bcc cubic supercell with 432 atoms. The volume was
varied for each temperature so that the total pressure was zero. The integral in equation (17)
was evaluated using 15 values of the switching parameter λ.

Figure 7 presents the Helmholtz free energy differences between ω and hcp and between
bcc and hcp as a function of temperature. The energy difference between ω and hcp at 0 K
reduces to 3 meV at−1if the zero point energy is considered. Our BOP predicts a phase

Figure 7. Helmholtz free energy differences with respect to the hcp phase as a function
of temperature. At zero pressure the phase with the lowest free energy is the most stable
phase.

Modelling Simul. Mater. Sci. Eng. 27 (2019) 085008 A Ferrari et al
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Fig. 7: Free energy differences as computed for Ti with analytic BOPs. Taken from Ref. [70].

tion of DFT reference data with very high accuracy, i.e., errors of less than a few meV. The
TB and BOP expansions introduced in the previous sections are not competitive here, as the
approximations made down the coarse graining hierarchy from DFT to TB to BOPs introduce
errors that are larger than a few meV. As I will discuss in the following, one can develop models
that incorporate some of the spirit of TB for obtaining meV accurate parameterizations of DFT
reference data.
For the parameterization of large DFT datasets with very high accuracy typically methods that
are rooted in machine learning are employed, for example, neural network potentials that are
based on neural networks [15] or Gaussian process regression in the Gaussian approximation
potentials [16]. All machine learning methods have in common that the target propety, for
example, the atomic energy, is obtained as a complex, non-linear function of some mathemat-
ical descriptions of the local atomic environment. The detailed mathematical structure of the
descriptors are mostly obtained by intuition. One may view the empirical mathematical struc-
ture of the descriptors as the Achilles’ heel of machine learning interatomic potentials and a
formally complete descriptor of the local atomic environment is desirable. The atomic cluster
expansion [34, 37] achieves a formally complete description of the local atomic environment
and will be introduced in the following.

4.1 Atomic cluster expansion

The atomic cluster expansion (ACE) provides a complete descriptor for the local environment
of an atom [34, 37] . Each atom i has a configuration that in the simplest case of an elemental
material and excluding charge transfer or magnetism is fully characterized by the distance vec-
tors to all neighboring atoms j, rrrji = rrri�rrrj , and where rrri and rrrj are the positions of the atoms

• Titanium phase diagram 
computed with analytic 
bond-order potentials

From Electrons to Potentials 5.23

volumes, andUpot
0( ) is the energy of the equilibrium ω or hcp phases. The thermal averages in

equation (16) were calculated from MD trajectories in the NVT ensemble with a duration of
10 ps after complete equilibration with a Langevin thermostat for 5 different volumes. For the
ω phase we employed a 4×4×6 supercell while for the hcp phase a 6×6×4 supercell,
with a total of 288 atoms for both structures. For each temperature, the obtained free energy-
volume curves were fitted using the Birch–Murnaghan equation [99, 100] to determine the
value of the zero-pressure (Helmholtz) free energy.

Since the bcc structure is not stable at 0 K, temperature integration as in equation (16) is
not possible. To calculate the free energy of the bcc phase, we instead employed the standard
Frenkel–Ladd method [101] to integrate the free energy difference between our potential U1

and a reference potential U0,

¨ M% � � MF U U d , 17
0

1

1 0� � ( )
choosing as the reference system an Einstein crystal with potential energy

�� %
�

U k r
1
2

, 18
i

N

i0
1

2 ( )

with k=5 eVÅ−2. The thermal averages � MU U1 0� � were again calculated in the NVT
ensemble for 10 ps using a 6×6×6 bcc cubic supercell with 432 atoms. The volume was
varied for each temperature so that the total pressure was zero. The integral in equation (17)
was evaluated using 15 values of the switching parameter λ.

Figure 7 presents the Helmholtz free energy differences between ω and hcp and between
bcc and hcp as a function of temperature. The energy difference between ω and hcp at 0 K
reduces to 3 meV at−1if the zero point energy is considered. Our BOP predicts a phase

Figure 7. Helmholtz free energy differences with respect to the hcp phase as a function
of temperature. At zero pressure the phase with the lowest free energy is the most stable
phase.
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Fig. 7: Free energy differences as computed for Ti with analytic BOPs. Taken from Ref. [70].

tion of DFT reference data with very high accuracy, i.e., errors of less than a few meV. The
TB and BOP expansions introduced in the previous sections are not competitive here, as the
approximations made down the coarse graining hierarchy from DFT to TB to BOPs introduce
errors that are larger than a few meV. As I will discuss in the following, one can develop models
that incorporate some of the spirit of TB for obtaining meV accurate parameterizations of DFT
reference data.
For the parameterization of large DFT datasets with very high accuracy typically methods that
are rooted in machine learning are employed, for example, neural network potentials that are
based on neural networks [15] or Gaussian process regression in the Gaussian approximation
potentials [16]. All machine learning methods have in common that the target propety, for
example, the atomic energy, is obtained as a complex, non-linear function of some mathemat-
ical descriptions of the local atomic environment. The detailed mathematical structure of the
descriptors are mostly obtained by intuition. One may view the empirical mathematical struc-
ture of the descriptors as the Achilles’ heel of machine learning interatomic potentials and a
formally complete descriptor of the local atomic environment is desirable. The atomic cluster
expansion [34, 37] achieves a formally complete description of the local atomic environment
and will be introduced in the following.

4.1 Atomic cluster expansion

The atomic cluster expansion (ACE) provides a complete descriptor for the local environment
of an atom [34, 37] . Each atom i has a configuration that in the simplest case of an elemental
material and excluding charge transfer or magnetism is fully characterized by the distance vec-
tors to all neighboring atoms j, rrrji = rrri�rrrj , and where rrri and rrrj are the positions of the atoms
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4.1 Many atom expansion

Until here:
• Derived interatomic potentials from DFT
• Several approximations along the way
➔ Cannot expect to reproduce DFT with meV accuracy

Next: 
• Introduce formally complete representation of interatomic interactions
• Parameterized from large numbers of DFT reference data
• Reproduce DFT energy accurately, but no insight into bond formation
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4.2 Local atomic environment

• Descriptors key to machine learning

• Many different descriptors for atomic 
environment

➔ Formally complete descriptor desirable



• Aim: represent atomic energy

• Energy is fully characterized by vectors to all other atoms

➜ Energy

with
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4.3 Atomic energy
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su�cient data is available for methods from statistical
learning for the interpolation of high-dimensional data
sets. This has led to the adoption of machine learn-
ing to the development of interatomic potentials, such as
neural networks potentials25 or Gaussian process regres-
sion for the Gaussian approximation potentials.26 The
resulting potentials are generally called machine learn-
ing potentials, the field is very active with many recent
developments.27–41 The machine learning potentials em-
ploy a descriptor that quantifies the local atomic envi-
ronment. The atomic energy or other atomic properties
are then learned as a non-trivial function of the descrip-
tor by training with a reference data set. The machine
learning potentials reproduce DFT reference data sets
with excellent accuracy and are currently considered to
be significantly more accurate than cluster functionals.
As machine learning potentials are not derived or mo-
tivated by physical or chemical intuition, the excellent
accuracy of the machine learning potentials comes at the
cost of interpretability, and the machine learning poten-
tials are generally regarded as black box models.

In this paper I show how to obtain a cluster functional
with an accuracy that rivals machine learning potentials
but with a simple functional form that is amenable to
physical and chemical interpretation. To this end I will
first introduce the atomic cluster expansion as a general
and complete descriptor of the local atomic environment
in Sec. II. I will further show that the expansion scales
linearly with the number of neighbors Nc and therefore

overcomes the poorN (K�1)
c scaling of general many-atom

potentials. Popular descriptors are then discussed in the
light of this expansion in Sec. III and it is shown that
these descriptors may be understood as subsets of the
atomic cluster expansion. By combining a physically mo-
tivated functional form with a relatively low dimensional
atomic cluster expansion, the curse of dimensionality, i.e.
the impossibility to sample a high-dimensional space uni-
formly, that is immanent to general methods from ma-
chine/statistical learning, is overcome.

The parameterization of the non linear atomic clus-
ter expansion is demonstrated for copper and validated
against a comprehensive dataset of DFT calculations in
Sec. IV and Sec. V. The completeness of the atomic
cluster expansion means that in principle it is possible to
converge the cluster functional to arbitrary accuracy. In
Sec. VI I conclude.

II. ATOMIC CLUSTER EXPANSION

I extend the spin cluster expansion42 to a complete de-
scriptor of local atomic environments. The spin cluster
expansion was obtained as a generalization of the lat-
tice cluster expansion43 to continuous degrees of freedom,
such as the direction of magnetic moments.44 The cluster
expansion is related to Hadamard and multi-dimensional
discrete Fourier and wavelet transforms.45

Here our interest is in the energy (or another property)

of atom i,

Ei(���) = Ei(rrr1i, rrr2i, . . . , rrrNi) , (4)

which is completely characterized by the N � 1 vectors
from atom i to all other atoms, rrrji = rrrj �rrri. The collec-
tion of the N � 1 vectors is abbreviated as the configura-
tion ��� = {rrr1i, rrr2i, . . . , rrrNi} of atom i and it is clear that
the order of the entries in ��� may not matter. The in-
ner product between two functions f(���) and g(���) is then
defined as

hf |gi =
Z

f⇤(���)g(���)w(���) d��� . (5)

Next a set of orthogonal and complete basis functions
�v(rrr) with v = 0, 1, 2, . . . that depend only on a single
bond rrr are introduced,

Z
�⇤
v(rrr)�u(rrr) drrr = �vu , (6)

X

v

�⇤
v(rrr)�v(rrr

0) = �(rrr � rrr0) . (7)

The basis functions for the expansion of the atomic en-
ergy Eq.(4) are obtained from the product of single-bond
basis functions. By choosing �0 = 1 a hierarchical ex-
pansion is obtained.
A cluster ↵ with K elements contains K bonds ↵ =

(j1i, j2i, . . . , jKi), where the order of entries in ↵ does
not matter, and the vector ⌫ = (v1, v2, . . . , vK) contains
the list of single-bond basis functions in the cluster. Only
single-bond basis functions with v > 0 are considered in
⌫. The cluster basis function is given by

�↵⌫ = �v1(rrrj1i)�v2(rrrj2i) . . .�vK (rrrjKi) , (8)

with 0  K  N � 1. The orthogonality and complete-
ness of the one-bond basis functions transfers to the clus-
ter basis functions

h�↵⌫ |��µi = �↵��⌫µ , (9)

1 +
X
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X

⌫
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�⌫(���)��⌫(���

0) = �(��� � ���0) , (10)

where ↵ is an arbitrary cluster and the right hand side of
the completeness relation is the product of the relevant
right hand sides of Eq.(7). A kernel may then be obtained
as

k(���,���0) = 1 +
X

�⌫

�⇤
�⌫(���)��⌫(���

0) , (11)

and the expansion of the atomic energy Eq.(4) may be
written in the form

Ei(���) = hk(���,���0)|Ei(���
0)i = J0 +

X

↵⌫

J↵⌫�↵⌫(���) . (12)

The expansion coe�cients J↵⌫ are obtained by projection

J↵⌫ = h�↵⌫ |Ei(���)i . (13)
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(j1i, j2i, . . . , jKi), where the order of entries in ↵ does
not matter, and the vector ⌫ = (v1, v2, . . . , vK) contains
the list of single-bond basis functions in the cluster. Only
single-bond basis functions with v > 0 are considered in
⌫. The cluster basis function is given by

�↵⌫ = �v1(rrrj1i)�v2(rrrj2i) . . .�vK (rrrjKi) , (8)
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4.5 Cluster expansion

2

su�cient data is available for methods from statistical
learning for the interpolation of high-dimensional data
sets. This has led to the adoption of machine learn-
ing to the development of interatomic potentials, such as
neural networks potentials25 or Gaussian process regres-
sion for the Gaussian approximation potentials.26 The
resulting potentials are generally called machine learn-
ing potentials, the field is very active with many recent
developments.27–41 The machine learning potentials em-
ploy a descriptor that quantifies the local atomic envi-
ronment. The atomic energy or other atomic properties
are then learned as a non-trivial function of the descrip-
tor by training with a reference data set. The machine
learning potentials reproduce DFT reference data sets
with excellent accuracy and are currently considered to
be significantly more accurate than cluster functionals.
As machine learning potentials are not derived or mo-
tivated by physical or chemical intuition, the excellent
accuracy of the machine learning potentials comes at the
cost of interpretability, and the machine learning poten-
tials are generally regarded as black box models.

In this paper I show how to obtain a cluster functional
with an accuracy that rivals machine learning potentials
but with a simple functional form that is amenable to
physical and chemical interpretation. To this end I will
first introduce the atomic cluster expansion as a general
and complete descriptor of the local atomic environment
in Sec. II. I will further show that the expansion scales
linearly with the number of neighbors Nc and therefore

overcomes the poorN (K�1)
c scaling of general many-atom

potentials. Popular descriptors are then discussed in the
light of this expansion in Sec. III and it is shown that
these descriptors may be understood as subsets of the
atomic cluster expansion. By combining a physically mo-
tivated functional form with a relatively low dimensional
atomic cluster expansion, the curse of dimensionality, i.e.
the impossibility to sample a high-dimensional space uni-
formly, that is immanent to general methods from ma-
chine/statistical learning, is overcome.

The parameterization of the non linear atomic clus-
ter expansion is demonstrated for copper and validated
against a comprehensive dataset of DFT calculations in
Sec. IV and Sec. V. The completeness of the atomic
cluster expansion means that in principle it is possible to
converge the cluster functional to arbitrary accuracy. In
Sec. VI I conclude.

II. ATOMIC CLUSTER EXPANSION

I extend the spin cluster expansion42 to a complete de-
scriptor of local atomic environments. The spin cluster
expansion was obtained as a generalization of the lat-
tice cluster expansion43 to continuous degrees of freedom,
such as the direction of magnetic moments.44 The cluster
expansion is related to Hadamard and multi-dimensional
discrete Fourier and wavelet transforms.45

Here our interest is in the energy (or another property)

of atom i,

Ei(���) = Ei(rrr1i, rrr2i, . . . , rrrNi) , (4)

which is completely characterized by the N � 1 vectors
from atom i to all other atoms, rrrji = rrrj �rrri. The collec-
tion of the N � 1 vectors is abbreviated as the configura-
tion ��� = {rrr1i, rrr2i, . . . , rrrNi} of atom i and it is clear that
the order of the entries in ��� may not matter. The in-
ner product between two functions f(���) and g(���) is then
defined as

hf |gi =
Z

f⇤(���)g(���) d��� . (5)

Next a set of orthogonal and complete basis functions
�v(rrr) with v = 0, 1, 2, . . . that depend only on a single
bond rrr are introduced,
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The basis functions for the expansion of the atomic en-
ergy Eq.(4) are obtained from the product of single-bond
basis functions. By choosing �0 = 1 a hierarchical ex-
pansion is obtained.
A cluster ↵ with K elements contains K bonds ↵ =

(j1i, j2i, . . . , jKi), where the order of entries in ↵ does
not matter, and the vector ⌫ = (v1, v2, . . . , vK) contains
the list of single-bond basis functions in the cluster. Only
single-bond basis functions with v > 0 are considered in
⌫. The cluster basis function is given by
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where ↵ is an arbitrary cluster and the right hand side of
the completeness relation is the product of the relevant
right hand sides of Eq.(7). A kernel may then be obtained
as

k(���,���0) = 1 +
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and the expansion of the atomic energy Eq.(4) may be
written in the form

Ei(���) = hk(���,���0)|Ei(���
0)i = J0 +
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ing to the development of interatomic potentials, such as
neural networks potentials25 or Gaussian process regres-
sion for the Gaussian approximation potentials.26 The
resulting potentials are generally called machine learn-
ing potentials, the field is very active with many recent
developments.27–41 The machine learning potentials em-
ploy a descriptor that quantifies the local atomic envi-
ronment. The atomic energy or other atomic properties
are then learned as a non-trivial function of the descrip-
tor by training with a reference data set. The machine
learning potentials reproduce DFT reference data sets
with excellent accuracy and are currently considered to
be significantly more accurate than cluster functionals.
As machine learning potentials are not derived or mo-
tivated by physical or chemical intuition, the excellent
accuracy of the machine learning potentials comes at the
cost of interpretability, and the machine learning poten-
tials are generally regarded as black box models.

In this paper I show how to obtain a cluster functional
with an accuracy that rivals machine learning potentials
but with a simple functional form that is amenable to
physical and chemical interpretation. To this end I will
first introduce the atomic cluster expansion as a general
and complete descriptor of the local atomic environment
in Sec. II. I will further show that the expansion scales
linearly with the number of neighbors Nc and therefore
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light of this expansion in Sec. III and it is shown that
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tivated functional form with a relatively low dimensional
atomic cluster expansion, the curse of dimensionality, i.e.
the impossibility to sample a high-dimensional space uni-
formly, that is immanent to general methods from ma-
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The parameterization of the non linear atomic clus-
ter expansion is demonstrated for copper and validated
against a comprehensive dataset of DFT calculations in
Sec. IV and Sec. V. The completeness of the atomic
cluster expansion means that in principle it is possible to
converge the cluster functional to arbitrary accuracy. In
Sec. VI I conclude.
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scriptor of local atomic environments. The spin cluster
expansion was obtained as a generalization of the lat-
tice cluster expansion43 to continuous degrees of freedom,
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expansion is related to Hadamard and multi-dimensional
discrete Fourier and wavelet transforms.45

Here our interest is in the energy (or another property)

of atom i,

Ei(���) = Ei(rrr1i, rrr2i, . . . , rrrNi) , (4)

which is completely characterized by the N � 1 vectors
from atom i to all other atoms, rrrji = rrrj �rrri. The collec-
tion of the N � 1 vectors is abbreviated as the configura-
tion ��� = {rrr1i, rrr2i, . . . , rrrNi} of atom i and it is clear that
the order of the entries in ��� may not matter. The in-
ner product between two functions f(���) and g(���) is then
defined as

hf |gi =
Z

f⇤(���)g(���) d��� . (5)

Next a set of orthogonal and complete basis functions
�v(rrr) with v = 0, 1, 2, . . . that depend only on a single
bond rrr are introduced,

Z
�⇤
v(rrr)�u(rrr) drrr = �vu , (6)

X

v

�⇤
v(rrr)�v(rrr

0) = �(rrr � rrr0) . (7)

The basis functions for the expansion of the atomic en-
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pansion is obtained.
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right hand sides of Eq.(A5). The expansion of an element
of GGG, Eq.(2) may therefore be written in the form

G(���) = J0 +
X

↵⌫

J↵⌫�↵⌫(���) , (A9)

and the expansion coe�cients J↵⌫ obtained by projection

J↵⌫ = h�↵⌫ |G(���)i . (A10)

For convenience and readability I will write the basis
function indices of the expansion coe�cients as subscripts
in the following, corresponding to an expansion in an or-
thonormal basis with �v(�) = �v(�). The expansion in
an non-orthogonal basis may be obtained for the follow-
ing expressions and the expressions in the main body of
the manuscript simply by writing all basis function in-
dices of expansion coe�cients as superscripts.

Re-writing the expansion Eq.(A9) explicitly in single-
atom basis functions leads to
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+
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1
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v0v1v2v3

Jv0v1v2v3�v0(�i)�v1(�j1)�v2(�j2)�v3(�j3)

+ . . . , (A11)

where by invariance under permutation the expansion
coe�cients are identical for all clusters ↵ that contain the
same number of equivalent atoms. This expression may
be changed to unrestricted sums and updated expansion
coe�cients

G(���) =
X

v

cv�v(�i)

+
X

j
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+ . . . , (A12)

where only i is excluded from the summations over
j1, j2, . . . . As had already been pointed out in Ref. 3,
the expansion Eq.(A12) is identical to Eq.(A11), with
expansion coe�cients c⌫ that are di↵erent from the ex-
pansion coe�cients J⌫ in Eq.(A11). The expansion co-
e�cients c⌫ are functions of J⌫ that may be obtained

by taking into account that products of basis func-
tions of the same argument may be expanded into lin-
ear combinations of single basis functions, for example,P

v av�v(�j) = �v1(�j)�v2(�j), etc., such that the self-
interactions are removed by an appropriate modification
of a lower-order expansion coe�cient. An explicit itera-
tive transformation from c⌫ to J⌫ is provided in Ref. 29.

Appendix B: Coupling angular momenta

In the following I give examples of the coupling scheme
Eq.(12) for up to eight angular momenta, corresponding
to nine-body interactions. Higher order couplings are
straightforward to construct.
For coupling two angular momenta, one has
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4.6 Cluster expansion
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su�cient data is available for methods from statistical
learning for the interpolation of high-dimensional data
sets. This has led to the adoption of machine learn-
ing to the development of interatomic potentials, such as
neural networks potentials25 or Gaussian process regres-
sion for the Gaussian approximation potentials.26 The
resulting potentials are generally called machine learn-
ing potentials, the field is very active with many recent
developments.27–41 The machine learning potentials em-
ploy a descriptor that quantifies the local atomic envi-
ronment. The atomic energy or other atomic properties
are then learned as a non-trivial function of the descrip-
tor by training with a reference data set. The machine
learning potentials reproduce DFT reference data sets
with excellent accuracy and are currently considered to
be significantly more accurate than cluster functionals.
As machine learning potentials are not derived or mo-
tivated by physical or chemical intuition, the excellent
accuracy of the machine learning potentials comes at the
cost of interpretability, and the machine learning poten-
tials are generally regarded as black box models.

In this paper I show how to obtain a cluster functional
with an accuracy that rivals machine learning potentials
but with a simple functional form that is amenable to
physical and chemical interpretation. To this end I will
first introduce the atomic cluster expansion as a general
and complete descriptor of the local atomic environment
in Sec. II. I will further show that the expansion scales
linearly with the number of neighbors Nc and therefore

overcomes the poorN (K�1)
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potentials. Popular descriptors are then discussed in the
light of this expansion in Sec. III and it is shown that
these descriptors may be understood as subsets of the
atomic cluster expansion. By combining a physically mo-
tivated functional form with a relatively low dimensional
atomic cluster expansion, the curse of dimensionality, i.e.
the impossibility to sample a high-dimensional space uni-
formly, that is immanent to general methods from ma-
chine/statistical learning, is overcome.

The parameterization of the non linear atomic clus-
ter expansion is demonstrated for copper and validated
against a comprehensive dataset of DFT calculations in
Sec. IV and Sec. V. The completeness of the atomic
cluster expansion means that in principle it is possible to
converge the cluster functional to arbitrary accuracy. In
Sec. VI I conclude.
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scriptor of local atomic environments. The spin cluster
expansion was obtained as a generalization of the lat-
tice cluster expansion43 to continuous degrees of freedom,
such as the direction of magnetic moments.44 The cluster
expansion is related to Hadamard and multi-dimensional
discrete Fourier and wavelet transforms.45
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ner product between two functions f(���) and g(���) is then
defined as
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v(rrr)�v(rrr

0) = �(rrr � rrr0) . (7)

The basis functions for the expansion of the atomic en-
ergy Eq.(4) are obtained from the product of single-bond
basis functions. By choosing �0 = 1 a hierarchical ex-
pansion is obtained.
A cluster ↵ with K elements contains K bonds ↵ =

(j1i, j2i, . . . , jKi), where the order of entries in ↵ does
not matter, and the vector ⌫ = (v1, v2, . . . , vK) contains
the list of single-bond basis functions in the cluster. Only
single-bond basis functions with v > 0 are considered in
⌫. The cluster basis function is given by

�↵⌫ = �v1(rrrj1i)�v2(rrrj2i) . . .�vK (rrrjKi) , (8)

with 0  K  N � 1. The orthogonality and complete-
ness of the one-bond basis functions transfers to the clus-
ter basis functions

h�↵⌫ |��µi = �↵��⌫µ , (9)

1 +
X

�✓↵

X

⌫

�⇤
�⌫(���)��⌫(���

0) = �(��� � ���0) , (10)

where ↵ is an arbitrary cluster and the right hand side of
the completeness relation is the product of the relevant
right hand sides of Eq.(7). A kernel may then be obtained
as

k(���,���0) = 1 +
X

�⌫

�⇤
�⌫(���)��⌫(���

0) , (11)

and the expansion of the atomic energy Eq.(4) may be
written in the form

Ei(���) = hk(���,���0)|Ei(���
0)i = J0 +

X

↵⌫

J↵⌫�↵⌫(���) . (12)

The expansion coe�cients J↵⌫ are obtained by projection

J↵⌫ = h�↵⌫ |Ei(���)i . (13)

E =         +...+         +...+         +...+         +...

8

right hand sides of Eq.(A5). The expansion of an element
of GGG, Eq.(2) may therefore be written in the form

G(���) = J0 +
X

↵⌫

J↵⌫�↵⌫(���) , (A9)

and the expansion coe�cients J↵⌫ obtained by projection

J↵⌫ = h�↵⌫ |G(���)i . (A10)

For convenience and readability I will write the basis
function indices of the expansion coe�cients as subscripts
in the following, corresponding to an expansion in an or-
thonormal basis with �v(�) = �v(�). The expansion in
an non-orthogonal basis may be obtained for the follow-
ing expressions and the expressions in the main body of
the manuscript simply by writing all basis function in-
dices of expansion coe�cients as superscripts.

Re-writing the expansion Eq.(A9) explicitly in single-
atom basis functions leads to

G(���) =
X

v0

Jv0�v0(�i)

+
i 6=jX

j

X

v0v1

Jv0v1�v0(�i)�v1(�j)

+
1

2

i 6=j1 6=j2X

j1j2

X

v0v1v2

Jv0v1v2�v0(�i)�v1(�j1)�v2(�j2)

+
1

3!

i 6=j1 6=j2,...X

j1j2j3

X

v0v1v2v3

Jv0v1v2v3�v0(�i)�v1(�j1)�v2(�j2)�v3(�j3)

+ . . . , (A11)

where by invariance under permutation the expansion
coe�cients are identical for all clusters ↵ that contain the
same number of equivalent atoms. This expression may
be changed to unrestricted sums and updated expansion
coe�cients

G(���) =
X

v

cv�v(�i)

+
X

j

X

v0v1

cv0v1�v0(�i)�v(�j)

+
1

2

X

j1j2

X

v0v1v2

cv0v1v2�v0(�i)�v1(�j1)�v2(�j2)

+
1

3!

X

j1j2j3

X

v0v1v2v3

cv0v1v2v3�v0(�i)�v1(�j1)�v2(�j2)�v3(�j3)

+ . . . , (A12)

where only i is excluded from the summations over
j1, j2, . . . . As had already been pointed out in Ref. 3,
the expansion Eq.(A12) is identical to Eq.(A11), with
expansion coe�cients c⌫ that are di↵erent from the ex-
pansion coe�cients J⌫ in Eq.(A11). The expansion co-
e�cients c⌫ are functions of J⌫ that may be obtained

by taking into account that products of basis func-
tions of the same argument may be expanded into lin-
ear combinations of single basis functions, for example,P

v av�v(�j) = �v1(�j)�v2(�j), etc., such that the self-
interactions are removed by an appropriate modification
of a lower-order expansion coe�cient. An explicit itera-
tive transformation from c⌫ to J⌫ is provided in Ref. 29.

Appendix B: Coupling angular momenta

In the following I give examples of the coupling scheme
Eq.(12) for up to eight angular momenta, corresponding
to nine-body interactions. Higher order couplings are
straightforward to construct.
For coupling two angular momenta, one has

�
lll L12

�
2
=
�
l1 l2 L12

�
2
= (l1l2)L12 . (B1)

For coupling three angular momenta,

✓
lll
LLL

L123

◆

3

=

✓
l1 l2 l3
L12

L123

◆

3

= ((l1l2)L12l3)L123 .

(B2)

For four angular momenta,

✓
lll
LLL

L1234

◆

4

=

✓
l1 l2 l3 l4
L12 L34

L1234

◆

4

= ((l1l2)L12 (l3l4)L34)L1234 . (B3)

For five angular momenta,

✓
lll
LLL

L12345

◆

5

=

✓
l1 l2 l3 l4 l5
L12 L34 L1234

L12345

◆

5

= (((l1l2)L12 (l3l4)L34)L1234l5)L12345 . (B4)

For six angular momenta,

✓
lll
LLL

L123456

◆

6

=

✓
l1 l2 l3 l4 l5 l6

L12 L34 L1234 L56
L123456

◆

6

= (((l1l2)L12 (l3l4)L34)L1234 (l5l6)L56)L123456 . (B5)

For seven angular momenta,

✓
lll
LLL

L1234567

◆

7

=

0

@
l1 l2 l3 l4 l5 l6 l7

L12 L34 L1234 L56 L567

L1234567

1

A

7

= (((l1l2)L12 (l3l4)L34)L1234 (((l5l6)L56) l7)L567)L123457 .
(B6)

For eight angular momenta,

✓
lll
LLL

L12345678

◆

8

=

✓
l1 l2 l3 l4 l5 l6 l7 l8

L12 L34 L1234 L56 L78 L5678
L12345678

◆

8

= (((l1l2)L12 (l3l4)L34)L1234 ((l5l6)L56 (l7l8)L78)L5678)L12345678 .
(B7)
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4.7 Atomic cluster expansion

➔ Linear scaling with number of neighbours
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nonorthogonal basis. The extension of the cluster expansion
to a nonorthogonal basis is summarized in Appendix B.

Next I will simplify the expansion by exploiting invariance
with respect to permutations of bonds and further show how
the expression Eq. (12) may be evaluated in a way that scales
linearly with the number of neighbors.

A. Permutation of bonds

If atoms j and k are of the same chemical species then an
exchange of the bonds ji and ki leaves the energy or any other
atomic observable unchanged. This means that the bonds in
a cluster can be grouped by chemical species. If a cluster
with K bonds contains kA, kB, . . . bonds to chemical species
A, B, . . . , then by invariance with respect to permutations
the expansion coefficient Jαν is fully characterized by the
number of bonds that it contains to a specific chemical species,
Jαν = JkAkB ...ν . Here I discuss the application of the atomic
cluster expansion to elements. In this case only the number of
bonds in the cluster is required for the characterization of the
expansion coefficient and therefore, for the case of elemental
materials, one may write

Jαν = J (K )
ν . (14)

Equation (12), or Eq. (B8) for a nonorthogonal expansion,
may then be rewritten as

Ei (σσσ ) =
∑

j

∑

v

J (1)
v φv (rrrji )

+ 1
2

j1 !=j2∑

j1j2

∑

v1v2

J (2)
v1v2

φv1 (rrrj1i )φv2 (rrrj2i )

+ 1
3!

j1 !=j2,...∑

j1j2j3

∑

v1v2v3

J (3)
v1v2v3

φv1 (rrrj1i )φv2 (rrrj2i )φv3 (rrrj3i )

+ · · · , (15)

and where I set J0 = 0 such that from correspondence to
Eq. (2) it is evident that the cluster expansion coefficient J (K )

ν

contributes to the potential V (K+1).
The expansion Eq. (15) may be rewritten in a slightly

different way with unrestricted sums and updated expansion
coefficients,

Ei (σσσ ) =
∑

j

∑

v

c(1)
v φv (rrrji )

+ 1
2

∑

j1j2

∑

v1v2

c(2)
v1v2

φv1 (rrrj1i )φv2 (rrrj2i )

+ 1
3!

∑

j1j2j3

∑

v1v2v3

c(3)
v1v2v3

φv1 (rrrj1i )φv2 (rrrj2i )φv3 (rrrj3i )

+ · · · . (16)

The expansion Eq. (16) is identical to Eq. (15), with expan-
sion coefficients c(K )

ν that are different from the expansion
coefficients J (K )

ν in Eq. (15) and that may be obtained from
J (K )

ν as follows. Due to the unrestricted sums in Eq. (16)
products of single-bond basis functions φiv that contain
the same bonds are obtained, i.e., expressions of the form

φv1 (rrrji )φv2 (rrrji ) that are not part of the expansion Eq. (15)
and that may be understood as unphysical self-interactions.
Because of the completeness of the single-bond basis func-
tions these products may be re-expanded at lower order, for
example,

∑
v avφv (rrrji ) = φv1 (rrrji )φv2 (rrrji ), etc., such that the

self-interactions are removed by an appropriate modification
of a lower-order expansion coefficient.

B. Atomic base and linear scaling

As argued in Sec. I the summation of the many-atom po-
tentials quickly becomes numerically prohibitively expensive
as it scales as NK

c . For the expansion Eq. (16) this may
be avoided by a simple reordering of summations. I define
the atomic base as the projection of the basis functions on the
atomic density

Aiv = 〈%i |φv〉 =
∑

j

φv (rrrji ), (17)

with the atomic density of an elemental material

%i =
∑

j

δ(rrr − rrrji ). (18)

The atomic energy Eq. (16) then becomes a polynomial in Aiv ,

Ei (σσσ ) =
∑

v

c(1)
v Aiv +

v1!v2∑

v1v2

c(2)
v1v2

Aiv1Aiv2

+
v1!v2!v3∑

v1v2v3

c(3)
v1v2v3

Aiv1Aiv2Aiv3 + · · · . (19)

As the expansion coefficients c(K )
ν are fully symmetric with

respect to permutations of indices v1, v2, v3, . . . , in Eq. (19)
an ordered summation v1 ! v2 ! v3 was used.

The numerical effort required for the construction of the
atomic base Aiv is linear with the number of neighbors Nc,
while the evaluation of the energy in the form of Eq. (19)
is independent of Nc. This means that the time required for
the evaluation of the energy scales linearly with the number
of neighbors independent of the order of the expansion. The
atomic cluster expansion therefore overcomes the poor scaling
of the formal many-atom expansion Eq. (2). This is absolutely
critical for a fast evaluation of higher-order terms in close-
packed materials with hundreds of atoms within the cutoff
sphere.

The time for the evaluation of the forces also scales linearly
with the number of neighbors; see Sec. II D. The atomic
cluster expansion is illustrated graphically in Fig. 1.

C. Basis functions

The second-moment, Finnis-Sinclair, and embedded atom
method potentials have shown that volume-dependent terms
provide by far the largest contribution to the cohesive energy.
Volume contributions are in general significantly larger than
angular contributions. Therefore I choose to use the following
single-bond basis that separates radial and angular contribu-
tions and that has the structure of a linear combination of
atomic orbitals basis set that is commonly used in electronic

014104-3
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Av = h⇢i|�vi =
X

j

�v(rrrji) . (6)

2

a magnetic moment mmmi or a polarizibility tensor de-
pends on the atomic environment ��� of atom i. I will
describe the atomic environment of atom i by the state
�j of other atoms j as well as the state of atom i, �i as
��� = (�i;�1,�2, . . . ,�N ). For example, degrees of freedom
of atom j that may contribute to a property of atom i
are

�j = (µj , rrrji, qj ,mmmj ,TTT j , . . . ) , (1)

with the atomic species µj and where the other contri-
butions illustrate possible dependencies of the state �j of
atom j on scalars, e.g., the charge qj , vectors rrrji = rrrj�rrri,
where rrri and rrrj are the positions of atoms i and j, re-
spectively, and mmmj , or tensors TTT j . A scalar, vectorial or
tensorial property GGGi of atom i may then be parameter-
ized as a function of ���,

GGGi =GGG(���) . (2)

III. ATOMIC CLUSTER EXPANSION

The atomic cluster expansion provides a complete de-
scriptor for the local atomic environment that I extend
to multiple degrees of freedom per atom. Details of the
derivation are given in App. A and only summarized here.

The state of atom i is characterized by the combined
atomic density

⇢i(�) =
j 6=iX

j

�(� � �j) , (3)

that includes continuous and discrete degrees of freedom
on neighboring atoms. For the example Eq.(1) the com-
bined atomic density is given by

�(���j) = �µµj�(rrr�rrrji)�(q�qj)�(mmm�mmmj)�(TTT�TTT j) . . . .
(4)

Basis functions �v(�j) that depend on the state �j of each
atom j are projected on the combined atomic density to
form the atomic base

Av = h⇢i|�vi =
j 6=iX

j

�v(�j) . (5)

To further capture properties inherently associated to
atom i I define

⇢(0)i (�) = �(� � �i) , (6)

and

A(0)
v = h⇢(0)i |�vi = �v(�i) . (7)

The expansion of GGG(���) may then be written as

G(���) =
0X

⌫

c⌫AAA⌫ , (8)

with ⌫ = (v0, v1, . . . , vN ) and the sum implies summation
over N = 0, 1, 2, . . . , too. Except for v0 it is su�cient to
sum over ordered basis functions v1 � v2 � v3 . . . and

AAA⌫ = A(0)
v0 Av1 . . . AvN , (9)

therefore the cluster expansion that is written as a lin-
ear expansion in cluster correlation functions Eq.(A9) is
expressed as a polynomial expansion in the atomic base
Av.

IV. TRANSLATION, ROTATION, INVERSION
AND PERMUTATION

Atomic properties are expected to be invariant under
homogeneous translation and permutation of identical
atoms, i.e., atoms with identical state variables, and to
have well defined transformation behavior under rotation
and inversion. In the following I will discuss how the ap-
propriate transformation of the expansion Eq.(8) under
translation, rotation, inversion and permutation may be
ensured.

A. Translation and permutation

The atomic environment ��� is constructed to be in-
variant under translation, the expansion Eq.(8) is there-
fore immediately invariant under translation, too. The
atomic base Eq.(5) is evaluated as a sum over neighbor-
ing atoms and is therefore invariant when two atoms j
and k in identical states �j = �k are exchanged. As the
atomic cluster expansion may be expressed as a poly-
nomial in the atomic base, Eq.(8), by construction the
atomic cluster expansion is invariant with respect to per-
mutation.

B. Rotation and inversion

For many systems one further expects a well-defined
transformation under rotation and inversion. To this end
I classify the property that is expanded according to its
irreducible representation of the rotation group. Without
applied field a scalar property such as the energy is invari-
ant under rotation, this means it transforms according
to the irreducible representation D(l=0) of the rotation
group. A vector, for example, the magnetic moment on
an atom, transforms according to the irreducible repre-
sentation l = 1 of the rotation group, D(l=1). A tensor of
rank two transforms as D(1) ⇥D(1) = D(2) +D(1) +D(0),
i.e., a symmetric matrix with 5 independent matrix el-
ements, an anti-symmetric matrix with 3 independent
matrix elements and one constant, the trace, required to
characterize the transformation behavior of the 9 matrix
elements under rotation. A tensor of rank three trans-
forms as D(1)⇥D(1)⇥D(1) = D(3)+2D(2)+3D(1)+D(0),
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j
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4

spherical harmonics is given by 1 + 3 + 5 + · · · + (2N +
1) = (N + 1)2. For example, a tensor of order 10 with
310 = 59049 matrix elements may be represented by only
121 spherical harmonics.

Traditionally spherical harmonics are evaluated in
spherical coordinates and the transformation to a spher-
ical coordinate system may be viewed as an overhead. In
App. D I discuss the computation of spherical harmonics
as polynomials of Cartesian coordinates without the need
to transform to spherical coordinates. This also means
that although the atomic cluster expansion is expanded
in spherical harmonics, it takes the form of a polynomial
expansion in Cartesian coordinates.

As already elucidated in Ref. 3, Eq.(14) implies that
the moment tensor potentials6 may be written exactly in
the form of an ACE. As the ACE provides a complete
basis, the atomic cluster expansion may be used to set
up a complete Cartesian tensor product basis.

Furthermore, the smooth overlap of atomic positions
descriptor14 is parameterized using hyperspherical har-
monics for the Spectral Neighbor Analysis method Po-
tential (SNAP)12. By decomposing the hyperspherical
harmonics into a product of an e↵ective radial contri-
bution and a spherical harmonics, one can rewrite the
SNAP exactly in the form of an atomic cluster expan-
sion. The details are given in App. E.

V. MULTI-COMPONENT MATERIALS

Before adding magnetic or charge degrees of freedom,
I discuss the expansion of scalar, vectorial or tensorial
properties in multi-component materials. I assume that
the state of a multi-component material is completely
characterized by the atomic positions and the chemical
species of the atoms, such that

�j = (µj , rrrji) . (15)

Next I choose basis functions that are localized on the
atoms and are written as a product of chemical, radial
and angular contributions

�v(�j) = eee(µj)R
µjµi

nl (rji)Y
m
l (r̂rrji) , (16)

with v = (µi,, n, l,m). The radial functions R
µjµi

nl (rji)
may depend on the chemical species µi and µj . Dif-
ferent from Ref. 1, where the chemical space is ex-
panded in Chebyshev polynomials, I simply use an explic-
itly orthogonal basis. The M di↵erent chemical species
are identified by M orthogonal unit vectors in an M -
dimensional space,

eee(µ) = �µ , (17)

such that orthonormality and completeness (see
Eqs.(A4,A5)) are given by

heee1(µ)|eee2(µ)i = �12 , (18)
X



eee(µ1)eee(µ2) = �µ1µ2 . (19)

This has the advantage that chemical species may be
added or removed to the system without modifying ba-
sis functions of other species and therefore the chem-
istry dependent expansion coe�cients are directly trans-
ferable between di↵erent materials systems. One may
argue that this contradicts the spirit of the original clus-
ter expansion1 that requires �0 = 1. This may easily
be taken into account by introducing explicitly a further
species, the ’vacuum species’ for which �0 = 1 and which
has no properties associated to it.

The atomic base Eq.(5) reads

Av =
X

j

�µjR
µjµi

nl (rji)Y
m
l (r̂rrji) , (20)

which means that in the sum over neighbors j only atoms
of species  are considered, and

A(0)
v = �µi . (21)

Basis functions for the atomic cluster expansion with an-
gular character LR may now be written as

BBB⌫ =
X

mmm

✓
lll
LLL

LR

◆

N

NY

k=1

Avk , (22)

where the summation over possible combinationsmmm leads
to rotationally covariant basis functions BBB⌫ with ⌫ =
(µnlLµnlLµnlL). The atomic cluster expansion Eq.(8) for an
atomic property that transforms according to the irre-
ducible representation LR of the rotation group is then
given as

GGGi =
0X

⌫

c⌫BBB⌫ , (23)

with expansion coe�cients c⌫ . The sum is taken over
lexicographically ordered combinations µnlµnlµnl and the inter-
mediate couplings LLL that are necessary for a complete set
of basis functions. For the important case of scalar prop-
erties LR = 0 the expression may be simplified consider-
ably as this constrains possible intermediate couplings LLL.
Further, selection rules for the couplings apply, Sec. IV
and App. B.

VI. INCLUDING MAGNETISM

Often other degrees of freedom than chemical species
and atomic positions are relevant. I use an atomic clus-
ter expansion that includes magnetism to demonstrate
the coupling to other degrees of freedom. In addition to
chemical species and position each atom j is assigned a
magnetic moment vectormmmj , such that the state of atom
j for the expansion on atom i is given by

�j = (µj , rrrji,mmmj) . (24)

Here I assume that a three-dimensional vector mmmj de-
scribes completely the magnetic state of each atom j.

3

and higher order tensors accordingly26. The relation be-
tween Cartesian and spherical tensors and their represen-
tation in irreducible representations of the rotation group
is discussed further in Sec. IVC.

An irreducible representation l of the rotation group
comprises 2l + 1 basis functions. I assume that the ba-
sis functions �v are chosen as belonging to a particular
irreducible representation and denote the basis functions
with v = (n, l,m). The index l specifies the irreducible
representation, n di↵erentiates between basis functions of
the same irreducible representation and m takes values
m = �l,�l + 1, . . . , l � 1, l. Typically one takes prod-
uct basis functions with a distance dependent only radial
function Rnl(r) and spherical harmonics Y m

l (r̂) that are
basis functions for the irreducible representation l and
depend only on the direction r̂rr = rrr/r,

�v(rrr) = Rnl(r)Y
m
l (r̂rr) . (10)

A product of two irreducible representations l1 and l2
may be decomposed into a sum of irreducible represen-
tations D(L) with exactly one representation L between
l1 + l2 � L � |l1 � l2|. I denote the decomposition of
the product of the representations l1 and l2 into L by
(l1l2)L. With Clebsch-Gordan coe�cients CMm1m2

Ll1l2
, the

matrix elements of the transformation are given by

{(l1l2)L}Mm1m2 = CMm1m2
Ll1l2

. (11)

If more than two irreducible representations are multi-
plied, the extraction of the resulting irreducible represen-
tations may be achieved by iterativly decomposing pair-
wise products. The resulting transformations are termed
generalized Clebsch-Gordan coe�cients or the general-
ized Wigner symbols from products of the Wigner 3j
symbol and were developed for the coupling of angular
momenta27.

The analysis for the coupling of angular momenta is
immediately transferable to the products of the atomic
base in Eq.(8) and the product basis functions Eq.(A6).
When products of three or more basis functions are
reduced to their irreducible representation, the itera-
tive decomposition may proceed along di↵erent coupling
schemes, i.e., one may first couple the first and the sec-
ond basis function and then couple the result to the third
basis function, or one may start by coupling the first and
third basis function and then couple to the second basis
function, see Refs. 27, 28, 29 for a detailed discussion.
Di↵erent coupling schemes in general lead to di↵erent
irreducible product basis functions that are related by
unitary transformations, c.f. recoupling with the Wigner
6j symbols or the Racah W coe�cients for three angular
momenta and the Wigner 9j symbols or Fano X coe�-
cients for four angular momenta26,30–33.

As the resulting irreducible basis functions from di↵er-
ent coupling schemes are connected by unitary transfor-
mations, for the purpose of extracting a set of irreducible
basis functions di↵erent coupling schemes are equiva-
lent. One is therefore free to select a particular coupling

scheme. I choose a pairwise iterative coupling scheme of
the angular momenta lll = (l1, l2, . . . , lN ) as follows,

✓
lll
LLL

L1...N

◆

N

=

✓
l1 l2 l3 . . . lN
L12 L34 . . .

L1...N

◆

= (((l1l2)L12 (l3l4)L34)L1234 (l5l6)L56 . . . lN )L123456...N ,
(12)

with the intermediate angular momenta LLL =
(L12, L34, . . . ) and the resulting angular momentum
L123456...N .
Using Clebsch-Gordan coe�cients the brackets are

written as

((l1l2)L12 (l3l4)L34)L1234 = CL1234L12L34CL12l1l2CL34l3l4 ,
(13)

with summation over the intermediate M12,M34 implied
and m1,m2,m3,m4,M1234 suppressed. Explicit expres-
sions for coupling up to eight angular momenta are given
in App. B. The parity of the product representation is
given by (�1)(l1+l2+···+lN ), therefore invariance with re-
spect to inversion requires that l1 + l2 + · · · + lN is an
even number.

For obtaining a complete set of basis functions
with specified properties under rotation and inversion
one extracts the irreducible content of representation
L123456...N from products �n1l1m1�n2l2m2�n3l3m3 . . . by
transforming with Eq.(12). This is followed by a singular
value decomposition when two or more of the basis func-
tions nili are pairwise identical to remove functions that
are linearly dependent due to permutation invariance29.
The procedure is identical for scalar, vectorial or tenso-
rial properties and di↵ers only in the resulting irreducible
representation L123456...N . For a rotationally invariant
scalar, such as an interatomic potential, one requires
L12...N = 0. For a vector-valued quantity one requires
L12...N = 1 and for the symmetric D(2) contribution to a
rank two tensor L12...N = 2, etc.

C. Relation to Cartesian tensors and expansions in
hyperspherical harmonics

The transformation between Cartesian and spherical
tensors is well established26,34–37. Here I illustrate the
relation for tensor products of unit length vectors r̂rr⌦ r̂rr⌦
r̂rr ⌦ . . . with matrix elements r̂n1 r̂n2 r̂n3 . . . . A tensor of
order N may be represented as a linear combination of
spherical harmonics up to angular momentum N ,

r̂n1 r̂n2 . . . r̂nN =
NX

l=0

lX

m=�l

X lm
n1n2n3...nN

Y m
l . (14)

The transformation matrix X is given in App. C. The
expansion of the Cartesian tensor in spherical harmonics
provides a sparse representation: the number of matrix
elements of the Cartesian tensor of order N is formally
given by 3N in three dimensions, while the number of

4.8 Rotational invariance
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spherical harmonics is given by 1 + 3 + 5 + · · · + (2N +
1) = (N + 1)2. For example, a tensor of order 10 with
310 = 59049 matrix elements may be represented by only
121 spherical harmonics.

Traditionally spherical harmonics are evaluated in
spherical coordinates and the transformation to a spher-
ical coordinate system may be viewed as an overhead. In
App. D I discuss the computation of spherical harmonics
as polynomials of Cartesian coordinates without the need
to transform to spherical coordinates. This also means
that although the atomic cluster expansion is expanded
in spherical harmonics, it takes the form of a polynomial
expansion in Cartesian coordinates.

As already elucidated in Ref. 3, Eq.(14) implies that
the moment tensor potentials6 may be written exactly in
the form of an ACE. As the ACE provides a complete
basis, the atomic cluster expansion may be used to set
up a complete Cartesian tensor product basis.

Furthermore, the smooth overlap of atomic positions
descriptor14 is parameterized using hyperspherical har-
monics for the Spectral Neighbor Analysis method Po-
tential (SNAP)12. By decomposing the hyperspherical
harmonics into a product of an e↵ective radial contri-
bution and a spherical harmonics, one can rewrite the
SNAP exactly in the form of an atomic cluster expan-
sion. The details are given in App. E.

V. MULTI-COMPONENT MATERIALS

Before adding magnetic or charge degrees of freedom,
I discuss the expansion of scalar, vectorial or tensorial
properties in multi-component materials. I assume that
the state of a multi-component material is completely
characterized by the atomic positions and the chemical
species of the atoms, such that

�j = (µj , rrrji) . (15)

Next I choose basis functions that are localized on the
atoms and are written as a product of chemical, radial
and angular contributions

�v(�j) = eee(µj)R
µjµi

nl (rji)Y
m
l (r̂rrji) , (16)

with v = (µi,, n, l,m). The radial functions R
µjµi

nl (rji)
may depend on the chemical species µi and µj . Dif-
ferent from Ref. 1, where the chemical space is ex-
panded in Chebyshev polynomials, I simply use an explic-
itly orthogonal basis. The M di↵erent chemical species
are identified by M orthogonal unit vectors in an M -
dimensional space,

eee(µ) = �µ , (17)

such that orthonormality and completeness (see
Eqs.(A4,A5)) are given by

heee1(µ)|eee2(µ)i = �12 , (18)
X



eee(µ1)eee(µ2) = �µ1µ2 . (19)

This has the advantage that chemical species may be
added or removed to the system without modifying ba-
sis functions of other species and therefore the chem-
istry dependent expansion coe�cients are directly trans-
ferable between di↵erent materials systems. One may
argue that this contradicts the spirit of the original clus-
ter expansion1 that requires �0 = 1. This may easily
be taken into account by introducing explicitly a further
species, the ’vacuum species’ for which �0 = 1 and which
has no properties associated to it.

The atomic base Eq.(5) reads

Av =
X

j

�µjR
µjµi

nl (rji)Y
m
l (r̂rrji) , (20)

which means that in the sum over neighbors j only atoms
of species  are considered, and

A(0)
v = �µi . (21)

Basis functions for the atomic cluster expansion with an-
gular character LR may now be written as

BBB⌫ =
X

mmm

✓
lll
LLL

LR

◆

N

NY

k=1

Avk , (22)

where the summation over possible combinationsmmm leads
to rotationally covariant basis functions BBB⌫ with ⌫ =
(µnlLµnlLµnlL). The atomic cluster expansion Eq.(8) for an
atomic property that transforms according to the irre-
ducible representation LR of the rotation group is then
given as

GGGi =
0X

⌫

c⌫BBB⌫ , (23)

with expansion coe�cients c⌫ . The sum is taken over
lexicographically ordered combinations µnlµnlµnl and the inter-
mediate couplings LLL that are necessary for a complete set
of basis functions. For the important case of scalar prop-
erties LR = 0 the expression may be simplified consider-
ably as this constrains possible intermediate couplings LLL.
Further, selection rules for the couplings apply, Sec. IV
and App. B.

VI. INCLUDING MAGNETISM

Often other degrees of freedom than chemical species
and atomic positions are relevant. I use an atomic clus-
ter expansion that includes magnetism to demonstrate
the coupling to other degrees of freedom. In addition to
chemical species and position each atom j is assigned a
magnetic moment vectormmmj , such that the state of atom
j for the expansion on atom i is given by

�j = (µj , rrrji,mmmj) . (24)

Here I assume that a three-dimensional vector mmmj de-
scribes completely the magnetic state of each atom j.

Formulas

Ralf Drautz
ICAMS, Ruhr-Universität Bochum, Bochum, Germany

(Dated: June 28, 2020)

I. FORMULAS

E = EFM (|mmm|)� ENM (1)

|mmm| = 1 (2)

|mmm| = 2 (3)

|mmm| = 3 (4)

CPU time / N |↵| (5)

Av = h⇢i|�vi =
X

j

�v(rrrji) . (6)

Generalized Glebsch-Gordan coefficients
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4.9 Example: Aluminium

bcc

sc

hcp

fcc

• ~100000 DFT reference 
calculations

• up to 7-body 
interactions

• 514 parameters
• 525 radial function

parameters

• RMSE ~ 4.3 meV
• MAE ~ 2.5 meV
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4.10 Application to small clusters
• Small Cu clusters with LDA and PBE, FHI-aims with ‘tight’ basis settings

• Complete sampling of phase space of clusters 

• 575 two-atom clusters

Dimers only

number of radial functions
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4.11 Small clusters: trimers
• 3809 three-atom clusters (symmetric 3d space) + 575 dimers

è Linear fit with less than 1 meV RMSE easily possible
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4.12 Small clusters: four atoms
• 18864 four-atom clusters (symmetric 6d space) + 3809 trimers + 575 dimers

• LDA and PBE on top of each other

è Linear fit with less than 1 meV RMSE easily possible
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2, 3 and 4-atom clusters
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4.13 From free atoms to bulk
• Cu clusters and bulk

• More than 50000 structures in total

• Finnis-Sinclair-type potential

è Errors of about 1-3 meV including up to four-body interactions

Difference in cohesive energy between 
LDA and PBE: 1eV (25%)

2 3 4
max. cluster size 
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4.14 Reference vs. fit

• Comparison of reference and fitted data

13

FIG. 6. Comparison of reference and fitted energy for the clu1-4+bulk PBE data set and Kmax = 3.

VI. CONCLUSIONS

I have introduced the atomic cluster expansion as
a general and formally complete descriptor of the lo-
cal atomic environment and gave expressions for multi-
component systems and non-orthogonal basis functions.
The time required for evaluating energy and forces from
the atomic cluster expansion scales linearly with the
number of neighbors, irrespective of the order of the ex-
pansion. The atomic cluster expansion therefore over-
comes the problem of poor scaling of formal many-atom
expansions. Several well known and frequently used de-
scriptors may be expanded using the atomic cluster ex-
pansion or are part of an atomic cluster expansion.

The atomic cluster expansion was demonstrated nu-
merically for small clusters of copper, parameterized from
a comprehensive DFT reference data set. In particular,
the test set sampled the space of 2, 3 and 4-atomic clus-
ters exhaustively. The atomic cluster expansion was able
to reproduce the test set for the small clusters with 1 meV
accuracy. A linear expansion is not e�cient for bridging
from free atoms to bulk and I therefore introduced the
non linear atomic cluster expansion as an extension of the
Finnis-Sinclair and EAM/MEAM potentials. I showed
that the non linear atomic cluster expansion reaches an
RMSE of about 1-3 meV, comparable to that of a re-
cent neural network potential. I discussed in particular
the dependence of the RMSE on the reference data set
and illustrated the di�culties that follow for comparing
interatomic potentials that are derived from di↵erent ref-
erence data sets.
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Appendix A: Atomic cluster expansion for
multi-component systems

The energy of an atom of species µi is given by

Ei(���,µµµ) = Ei(xxx1i,xxx2i, . . . ,xxxNi) , (A1)

with xxxji = (rrrji, µj) and rrrji = rrrj � rrri and where µ =
0, 1, 2, . . . ,M � 1 is a discrete index for the M di↵erent
chemical species in the system. The collection of the
N � 1 vectors is abbreviated as the configuration ��� =
(rrr1i, rrr2i, . . . , rrrNi) of atom i and the corresponding vector
of chemical species denoted as µµµ = (µ1, µ2, . . . , µN ). The
inner product between two functions f(���,µµµ) and g(���,µµµ)
is then defined as,

hf |gi =
X

µµµ

Z
f⇤(���,µµµ)g(���,µµµ)w(���) d��� , (A2)

where the sum over µµµ implies summation over all chem-
ical species for all positions. A set of orthogonal and
complete basis functions �vm(rrr, µ) with v = 0, 1, 2, . . .
and m = 0, 1, 2, . . .M � 1 that depend only on a single
bond rrr are introduced,

X

µ

Z
�⇤
vm(xxx)�un(xxx)!(rrr) drrr = �vu�mn , (A3)

X

vm

�⇤
vm(xxx1)�vm(xxx2) =

�(rrr1 � rrr2)�µ1µ2p
!(rrr1)!(rrr2)

, (A4)

with xxx = (rrr, µ). The basis functions for the expansion of
the atomic energy Eq.(4) are obtained from the product
of N�1 single-bond basis functions. By choosing �00 = 1
a hierarchical expansion is obtained. A cluster ↵ with K
elements contains K bonds ↵ = (j1i, j2i, . . . , jKi), where

➔ Transferable over three orders of magnitude in energy
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5. Summary and conclusions

• Second moment expansion of DFT functional
• Derivation of TB approximation
• Parameterization of matrix elements
• Bond formation in the TB approximation

• The moments theorem and local expansions
• Moments theorem
• Recursion
• Numerical bond-order potentials
• Kernel polynomial method
• Fermi operator expansion
• Analytic bond-order potentials
• Applications: bond-orders, structural stability, phase diagrams, …

• Many atom expansion
• Formally complete atomic cluster expansion
• Accurate representation of DFT reference energy


