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The simplest model to describe Mott insulators is the Hubbard model
(see lecture by E. Pavarini)

H = −t ∑
〈i,j〉

∑
σ

(
c†

i,σcj,σ + c†
j,σci,σ

)
+ U ∑

i
ni,↑ ni,↓

We consider this model on a 2D square lattice with N sites

< i, j > denotes sum over all 2N pairs of nearest neighbors

Hopping between more distant neighbors could be included but for the time
being we omit this

We assume U/t � 1

Initially number of electrons Ne = N or one electron per site

Electron density is denoted by ne = Ne/N = 1
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We recall U/t is finite but U/t � 1



Mott insulators

3

We recall U/t is finite but U/t � 1

By processes like this the spins can ‘communicate’ with one another

It is energetically favourable if two spins on neighboring sites are antiparallel

Two opposite spins on neighboring sites can simultaneously flip their direction
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The Mott-insulator with finite U/t is described by the Heisenberg antiferromagnet

H = J ∑
〈i,j〉

Si · Sj

= J ∑
〈i,j〉

(
Sx

i Sx
j + Sy

i Sy
j + Sz

i Ss
j

)

= J ∑
〈i,j〉

(
1
2

(
S+

i S−j + S−i S+
j

)
+ Sz

i Sz
j

)
.

Here J = 4t2

U > 0 and we have introduced the spin-raising and -lowering operators

S+ = Sx + iSy

S− = Sx − iSy
⇒

Sx = 1
2 (S

+ + S−)

Sy = 1
2 (S

− − S+)
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A Mott insulator is not that spectacular - to observe spectacular phenomena such
as high-temperature the electron density has to be reduced ne → 1− p
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To describe the doped Mott insulator we have to upgrade the Heisenberg

antiferromagnet and add some mobile vacancies - this gives the famous t-J model
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i,σ = c†

i,σ(1− ni,σ̄) creates an electron only on empty sites



Doped Mott insulators

6

To describe the doped Mott insulator we have to upgrade the Heisenberg

antiferromagnet and add some mobile vacancies - this gives the famous t-J model

Ht−J = −t ∑
〈i,j〉

∑
σ

(
ĉ†
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To describe the doped Mott insulator we have to upgrade the Heisenberg

antiferromagnet and add some mobile vacancies - this gives the famous t-J model

Ht−J = −t ∑
〈i,j〉

∑
σ

(
ĉ†

i,σĉj,σ + H.c.
)
+ J ∑

〈i,j〉

(
1
2

(
S+

i S−j + S−i S+
j

)
+ Sz

i Sz
j

)

The Hubbard operator ĉ†
i,σ = c†

i,σ(1− ni,σ̄) creates an electron only on empty sites

J

4
−

J

4
+ 
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The t-J model

Ht−J = −t ∑
〈i,j〉

∑
σ

(
ĉ†

i,σĉj,σ + H.c.
)
+ J ∑

〈i,j〉

(
1
2

(
S+

i S−j + S−i S+
j

)
+ Sz

i Sz
j

)

It was derived by Chao, Spałek and Oleś as the strong coupling limit of the
Hubbard model, J. Phys. C10, L 271 (1977)

It was shown to describe the CuO2-planes in copper oxide superconductors by
Zhang and Rice, Phys. Rev. B 37, 3759 (1988)

Parameter values to describe the CuO2 planes of copper oxide superconductors
are t ≈ 350meV and J ≈ 140meV, so J/t = 0.4



The Heisenberg antiferromagnet

8

We consider the case Ne = N - one electron/site⇒ no hopping is possible

Only the spin exchange (Heisenberg antiferromagnet) is active

H = J ∑
〈i,j〉

Si · Sj = J ∑
〈i,j〉

(
1
2

(
S+

i S−j + S−i S+
j

)
+ Sz

i Sz
j
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We consider the case Ne = N - one electron/site⇒ no hopping is possible

Only the spin exchange (Heisenberg antiferromagnet) is active

H = J ∑
〈i,j〉

Si · Sj = J ∑
〈i,j〉

(
1
2

(
S+

i S−j + S−i S+
j

)
+ Sz

i Sz
j

)

If only the term ∝ Sz
i Sz

j were present the ground state would be the Néel state

i j

The Néel state is not an eigenstate of the full Hamiltonian because the term

∝ S+
i S−j + S−i S+

j produces quantum fluctuations
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More on quantum fluctuations:

i j
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More on quantum fluctuations:

i j

There are two possible outcomes

The quantum fluctuations could completely destroy the antiferromagnetic order
and a qualitatively new state may ensue

Or an equilibrium concentrations of inverted spins may be reached and we
have an antiferromagnet hosting a gas of magnons

In one dimension the ground state is disordered in two dimensions or higher
the antiferromagnetic order survives



Linear spin wave theory

10

Consider the Néel state as vacuum |0〉
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i j i j

Consider the Néel state as vacuum |0〉

Represent a ↓-spin at site i on the ↑-sublattice as a Boson created by a†
i

Represent a ↑-spin at site j on the ↓-sublattice as a Boson created by b†
j
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i j i j

Consider the Néel state as vacuum |0〉

Represent a ↓-spin at site i on the ↑-sublattice as a Boson created by a†
i

Represent a ↑-spin at site j on the ↓-sublattice as a Boson created by b†
j

Why Bosons? - Spin operators on different sites commute!

States like (a†
i )

2|0〉 are meaningless

Additional constraint: at most one Boson/site - ‘hard core constraint’
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Represent a ↓-spin at site i on the ↑-sublattice as a Boson created by a†
i

Represent a ↑-spin at site j on the ↓-sublattice as a Boson created by b†
j

J ∑
〈i,j〉

1
2

(
S−i S+

j + S+
i S−j

)
=

J
2 ∑

i∈↑−SL
∑

j∈N(i)

(
S−i S+

j + S−j S+
i

)
=

J
2 ∑

i∈↑−SL
∑

j∈N(i)

(
a†

i b†
j + bj ai

)
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i

An inverted spin is parallel rather than antiparallel to its z = 4 neighbors

For z = 4 bonds the energy increases from − J
4 to J

4

The total increase of energy is zJ
2

We interpret this as the energy of the boson

J ∑
〈i,j〉

Sz
i Sz

j = ENeel +
zJ
2

(
∑
i∈A

a†
i ai + ∑

j∈B
b†

j bj

)
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Collecting everything we find the spin wave Hamiltonian

HSW =
zJ
2

(
∑
i∈A

a†
i ai + ∑

i∈B
b†

i bi

)
+

J
2 ∑

i∈A
∑
n

(
a†

i b†
i+n + bi+n ai

)
.
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Collecting everything we find the spin wave Hamiltonian

HSW =
zJ
2

(
∑
i∈A

a†
i ai + ∑

i∈B
b†

i bi

)
+

J
2 ∑

i∈A
∑
n

(
a†

i b†
i+n + bi+n ai

)
.

We switch to Fourier transformed operators ...

a†
k =

√
2
N ∑

j∈A
eik·Rj a†

j b†
k =

√
2
N ∑

j∈B
eik·Rj b†

j
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Collecting everything we find the spin wave Hamiltonian

HSW =
zJ
2

(
∑
i∈A

a†
i ai + ∑

i∈B
b†

i bi

)
+

J
2 ∑

i∈A
∑
n

(
a†

i b†
i+n + bi+n ai

)
.

We switch to Fourier transformed operators ...

a†
k =

√
2
N ∑

j∈A
eik·Rj a†

j b†
k =

√
2
N ∑

j∈B
eik·Rj b†

j

... and find

HSW =
zJ
2 ∑

k∈AFBZ

(
a†

kak + b†
kbk + γk (a†

kb†
−k + b−kak)

)
,

γk =
1
z ∑

n
eik·n =

1
4
(2 cos(kx ) + 2 cos(ky )) .
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HSW =
zJ
2 ∑

k∈AFBZ

(
a†

kak + b†
kbk + γk (a†

kb†
−k + b−kak)

)
HSW can be diagonalized by a Bosonic Bogoliubov transformation

We define new Bosonic operators α†
k and β†

k by ...

α†
k = uk a†

k + vk b−k,

β†
−k = uk b†

−k + vk ak,

... and demand that they obey Bosonic commutation rules and diagonalize HSW[
αk, α†

k′

]
=

[
βk, β†

k′

]
= δk,k′

[
HSW , α†

k

]
= ωk α†

k
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This gives |uk|2 − |v2
k | = 1 and the non-Hermitean eigenvalue problem ...

zJ
2

(
1 −γk

γk −1

)(
uk

vk

)
= ωk

(
uk

vk

)
.

... see my notes for details

The characteristic equation can be easyly written down and gives the magnon
dispersion

ωk =
zJ
2

√
1− γ2

k
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We found

ωk =
zJ
2

√
1− γ2

k

 0

 0.5

 1

 1.5

 2

ω
k
/J

(0,0) (π,π) (π,0) (0,0)
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Result of inelastic neutron scattering experiments on La2CuO4
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Taken from Coldea et al. PRL 86, 5377
(2001)
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... electrons in a Mott-insulator retain only their spin degrees of freedom

The spin degeneracy must be somehow resolved in that the spins arrange in some
‘pattern’

Deviations from this ‘pattern’ can aquire the character of Bosonic particles:
spin excitations

Mobile holes move through this ‘pattern’ and this drastically modifies their motion -
as we will see now
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We consider the case Ne = N − 1 - a single hole in an antiferromagnet

In this case the hopping term can act and we must consider the full t-J model

Ht−J = −t ∑
〈i,j〉

∑
σ

(
ĉ†

i,σĉj,σ + H.c.
)
+ J ∑

〈i,j〉
Si · Sj ,
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The hole leaves behind a ‘trace of frustration’ - the magnetic energy increases

linearly with the number of steps that the hole has taken

The hole is self-trapped



Hole in an antiferromagnet

20

The hole leaves behind a ‘trace of frustration’ - the magnetic energy increases

linearly with the number of steps that the hole has taken

The hole is self-trapped

To find the resulting localized state we make the following ansatz

|Φi 〉 =
∞

∑
ν=0

αν ∑
i1,i2,...,iν

|i, i1, i2, . . . , iν〉,

i i
1

i
2

i
3

i
4

i i
1

i
2

i
3

i
4

ii
1i
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Our ansatz:

|Φi 〉 =
∞

∑
ν=0

αν ∑
i1,i2,...,iν

|i, i1, i2, . . . , iν〉

We call the |i, i1, i2, . . . , iν〉 string states

We decompose the t-J Hamiltonian as ...

Ht = −t ∑
〈i,j〉

∑
σ

(ĉ†
i,σĉj,σ + H.c), HI = J ∑

〈i,j〉
Sz

i Sz
j , H⊥ =

J
2 ∑
〈i,j〉

(S+
i S−j + (S−i S+

j )

... and choose H0 = Ht + HI

We determine the coefficients αν variationally

Eloc =
〈Φi |H0|Φi 〉
〈Φi |Φi 〉

→ min
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Performing the variational procedure (see notes for details) gives an eigenvalue
problem

− ( t̃νβν+1 + t̃ν−1βν−1) + Iνβν = Eloc βν

with the side condition β−1 = 0 - moreover

βν =
√

z(z − 1)ν−1 αν

t̃ν =


√

z t ν = 0

√
z − 1 t ν > 0

I
ν

1 2 3 40

ν

Numerical solution gives βν and αν
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This is what the solution looks like for J/t = 0.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

α
ν

ν

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10

α
ν

ν
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So far we find the hole is self-trapped...

However, at this point the part H⊥ = J
2 ∑〈i,j〉(S

+
i S−j + H.c.) comes into play

i

j
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So far we find the hole is self-trapped...

However, at this point the part H⊥ = J
2 ∑〈i,j〉(S

+
i S−j + H.c.) comes into play

i

j

A string of length ν - coefficient αν is converted into one length ν± 2 - coefficient
αν±2 - described by the matrix element

δ 〈Φj |H⊥|Φi 〉 = J
∞

∑
ν=0

(z − 1)ν αναν+2 = J ·m
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One more detail

i j

The matrix element to (1,1)-like neighbors is twice that to (2,0)-like
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One more detail

i j

The matrix element to (1,1)-like neighbors is twice that to (2,0)-like neighbors

Ek = Eloc + 2Jm · 4 cos(kx ) cos(ky ) + Jm · 2(cos(2kx ) + cos(2ky ))

= Eloc − 4Jm + 4Jm [ cos(kx ) + cos(ky ) ]
2
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Summary of results
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Note in particular: the bandwidth is W ≈ 2J - the free bandwidth would be

Wfree = 8t so that Wfree
W = 4t

J = 10 for J/t = 0.4
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In actual cuprate materials there are also substantial hopping integrals t ′ and t ′′

between (1,1)-like and (2,0) like neighbors - these can be included into the
present theory (see notes) and we can compare to experiment:

-0.4

-0.2

 0

E
k
 -

E
F
 (

e
V

)

(0,0) (π,π) (π,0) (0,0)

Band dispersion from ARPES for the AF Insulator Sr2CuO2Cl2 from
S. LaRosa et al. PRB 56, R525(R) (1997)

Parameter values are t = 350meV, J = 140meV, t ′ = −120meV, t ′′ = 60meV
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The Heisenberg exchange gives the spins a ‘life of their own’ - they somehow
arrange themselves to optimize the exchange energy ∝ J and deviations from
this arrangement form a new type of excitations - spin excitations

The holes move through this spin arrangement and their motion is modified by
this - as we have just seen!
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The Heisenberg exchange gives the spins a ‘life of their own’ - they somehow
arrange themselves to optimize the exchange energy ∝ J and deviations from
this arrangement form a new type of excitations - spin excitations

The holes move through this spin arrangement and their motion is modified by
this - as we have just seen!

For a finite concentration of holes this also goes the other way round - the spins
are ‘stirred’ by the holes and modify their arrangement to some degree to
accomodate the holes

In fact in cuprate superconductors the Néel order disappears for hole
concentrations of a few percent
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We consider the t-J Hamiltonian on a dimer with sites labeled 1 and 2

H = −t ∑
σ

(
ĉ†

1,σĉ2,σ + ĉ†
2,σĉ1,σ

)
+ J S1 · S2 (1)

We first consider the case of two electrons⇒ only the term ∝ J can be active
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2,σĉ1,σ

)
+ J S1 · S2 (1)

We first consider the case of two electrons⇒ only the term ∝ J can be active

Two spins 1
2 can be coupled to a singlet (total spin S = 0) or triplet (S = 1)

The operator of total spin is S = S1 + S2 and S2 has eigenvalue S(S + 1)

Moreover S2
1 = S2

2 = 1
2

(
1
2 + 1

)
= 3

4



Prelude: Dimer basis

29

We consider the t-J Hamiltonian on a dimer with sites labeled 1 and 2

H = −t ∑
σ

(
ĉ†
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Moreover S2
1 = S2
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(
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Combining everything

S2 = S2
1 + 2 S1 · S2 + S2

2 = S(S + 1) ⇒ J S1 · S2 = J
(

S(S + 1)
2

− 3
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Singlet and triplet are eigenstates of H with energies − 3J

4 and J
4
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Singlet and triplet are eigenstates of H with energies − 3J
4 and J

4

The wave functions are obtained by standard angular momentum coupling

|s〉 =
1√
2

(
c†

1,↑c
†
2,↓ − c†

1,↓c
†
2,↑

)
|0〉,

|tx 〉 =
1√
2

(
c†

1,↓c
†
2,↓ − c†

1,↑c
†
2,↑

)
|0〉,

|ty 〉 =
i√
2

(
c†

1,↑c
†
2,↑ + c†

1,↓c
†
2,↓

)
|0〉,

|tz〉 =
1√
2

(
c†

1,↑c
†
2,↓ + c†

1,↓c
†
2,↑

)
|0〉.

|s〉 the singlet and |tx 〉, |ty 〉 and |tz〉 the three components of the triplet

They are not eigenstates of Sz but are constructed to obey Sα|tβ〉 = iεαβγ |tγ〉

This means they behave like the three components of a vector under spin
rotations
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We consider the effect of inversion I: 1↔ 2

|s〉 =
1√
2

(
c†

1,↑c
†
2,↓ − c†

1,↓c
†
2,↑

)
|0〉

⇒ I|s〉 =
1√
2

(
c†

2,↑c
†
1,↓ − c†

2,↓c
†
1,↑

)
|0〉

=
1√
2

(
−c†

1,↓c
†
2,↑ + c†

1,↑c
†
2,↓

)
|0〉 = |s〉

The singlet is even under inversion

|tx 〉 =
1√
2

(
c†

1,↓c
†
2,↓ − c†

1,↑c
†
2,↑

)
|0〉

⇒ I|tx 〉 =
1√
2

(
c†

2,↓c
†
1,↓ − c†

2,↑c
†
1,↑

)
|0〉

= −|tx 〉

The triplets are odd - the triplets have an ‘orientation’
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Let the N sites of the plane be partitioned into N/2 dimers - each made of two
nearest neighbors:

Let each dimer be covered by a singlet - the resulting state is a product state

|Ψ0〉 = ∏
(i,j)∈D

1√
2

(
c†

i,↑c
†
j,↓ − c†

i,↓c
†
j,↑

)
|0〉

D is the set of N/2 pairs (i, j) of nearest neighbor sites corresponding to the
given dimer covering

|Ψ0〉 is the ground state of the ‘depeleted Hamiltonian’ Hd = J ∑(i,j)∈D Si · Sj
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Now compare

i j

(c) (d)

i j i j

lk k l

i j

(a) (b)

and

m

l l

m

n
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m

l l

m

n

We assume that the dimers are labeled by m,n ∈ {1,2, . . . , N
2 }

We introduce Bosons which stand for a singlet or a triplet, created by s†
m and

t†
m,α α ∈ {x, y, z}

The first transition is described by t†
m,x t†

l,xsmsl the second one by t†
n,xs†

mtm,xsn

Why Bosons? Singlet and triplet consist of two electrons each so that operators
referring to different dimers commute

Next we need to set up the Hamiltonian for the Bosons
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Now exchange 1↔ 2

S2,α|s〉 = −
1
2
|tα〉 −S2,α|tα〉 =

1
2
|s〉

When a dimer is converted from singlet to triplet or vice versa the sign depends on
‘where the spin operator touches the dimer’

We need to adopt a convention how to label the sites in the dimers

= 1λ
ι

= −1λ
ι

= 1λ
ι

= −1λ
ι

1

2

21

Si,α|s〉 =
λi

2
|tα〉

Si,α|tα〉 =
λi

2
|s〉
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Sj →
λj

2

(
t†s + s†t

)
− i

2
t† × t

= 1λ
ι

= −1λ
ι

= 1λ
ι

= −1λ
ι

1

2

21
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(
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(
s†
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· (t†
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]

To make things even worse this has to be solved under the constraint

s†
msm + t†

m · tm = 1
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J Si · Sj →
Js2λi λj

4

(
tm + t†

m

)
·
(

tn + t†
n

)
− J

4
(t†

n × tn) · (t†
m × tm)

− iJs
4

[
λi

(
tm + t†

m

)
· (t†

n × tn) + λj

(
tn + t†

n

)
· (t†

m × tm)
]
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[
λi

(
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m

)
· (t†

n × tn) + λj

(
tn + t†

n

)
· (t†
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]

This gives a quadratic term
(
tm + t†

m
)
·
(
tn + t†

n
)
= t†

m · tn + t†
n · tm + t†

m · t†
n + tn · tm
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The quartic term can be treated in mean-field approximation - however, it turns out
that the corrections always are small

There remains the last line....this contain terms like t†
m · (t†

n × tn) -

‘one triplet in - two triplets out’

For phonons this would describe the ‘decay’ of a phonon due to anharmonicities

For simplicity we discard this term....
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... we can write down a theory for a disordered spin system by starting from a
‘singlet soup’

This is - essentially - the only known way of writing down a wave function which
obeys the constraint of having one spin per site, has no order and is a singlet

The excitations of the ‘singlet soup’ are triplet-excited dimers which can
propagate

We were forced to make quite some approximations

To illustrate its usefulness and further develop the theory we now apply it to
spin ladders following the seminal work of Gopalan, Rice, and Sigrist,
PRB 49, 8901 (1994)
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In compounds such as SrCu2O3 the spins are arranged like this

J1

J
2

x

y

λ = −1

λ =   1
ι

ι

Two successive rungs m and m + 1 are connected by two exchange bonds

The product λi λj is always 1 - the contributions add up

The ‘anharmonic term’ contains only one factor of λ - the contributions cancel

With our simplifications we get H = H1 + H2

H0 = ∑
m

(
−3J1

4
s†

msm +
J1

4
t†
m · tm

)
→ J1 ∑

m
t†
m · tm

H1 =
J2s2

4 ∑
m

(
t†
m · tm+1 + t†

m+1 · tm + t†
m · t†

m+1 + tm+1 · tm
)
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m · tm = 1
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Each rung must be either singlet or triplet⇒ the Bosons have to obey the
constraint for each rung m

s†
msm + t†

m · tm = 1

This is impossible to treat rigorously - we make a drastic and uncontrolled
approximation: we sum over rungs

∑
m

(
s†

msm + t†
m · tm

)
= Nr

We had assumed that the singlets are condensed into the state with momentum
k = 0⇒ the singlet operators s†

m and sm can be replaced by a real number s

Nr s2 + ∑
m

t†
m · tm = Nr

Fourier transformation gives

∑
k

t†
k · tk −Nr (1− s2) = 0
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The Hamiltonian is

H = J1 ∑
m

t†
m · tm +

J2s2

2 ∑
m

[(
t†
m+1 · tm + H.c

)
+
(

t†
m · t†

m+1 + H.c
)]
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The Hamiltonian is

H = J1 ∑
m

t†
m · tm +

J2s2

2 ∑
m

[(
t†
m+1 · tm + H.c

)
+
(

t†
m · t†

m+1 + H.c
)]

The constraint was

∑
k

t†
k · tk −Nr (1− s2) = 0

We do a Fourier transform and add the constraint with Lagrange multiplier −µ

H = ∑
k

εk t†
k · tk +

1
2 ∑

k
∆k ( t†

k · t†
−k + H.c ) + µNr (1− s2)

εk = J1 + J2s2 cos(k)− µ ∆k = J2s2 cos(k)
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H = ∑
k

εk t†
k · tk +

1
2 ∑

k
∆k ( t†

k · t†
−k + H.c ) + µNr (1− s2)

εk = J1 − µ + J2s2 cos(k) ∆k = J2s2 cos(k)

We again use Bosonic Bogoliubov transformation to diagonalize H

τ†
k = uk t†

k + vk t−k

τ−k = vk t†
k + uk t−k

Demanding again [τk,ν, τ†
k,ν] = 1 and [H, τ†

k,ν] = ωk τ†
k,ν gives the triplet dispersion

ωk =
√

ε2
k − ∆2

k
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We had

ωk =
√

ε2
k − ∆2

k

εk = J1−µ + J2s2 cos(k) ∆k = J2s2 cos(k)

This involves the unknown singlet condensation amplitude s and the unknown
Lagrange multiplier µ

These can be determined by minimizing the Helmholtz Free Energy - which is
the ground state energy for T = 0

This can be found in my notes - and also the mean-field treatment of the
quartic term
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We had

ωk =
√

ε2
k − ∆2

k

εk = J1 − µ + J2s2 cos(k) ∆k = J2s2 cos(k)
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Compared to theory for
J1 = 1.09meV
J2 = 0.30meV
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In the treatment of ladders we saw that the excitations of the ‘singlet soup’ can
be described a propagating triplets

This seems to be of little use for the plane because there is no unique dimer
covering and for a macroscopic system we cannot even write down a single one

However, the representation of the Heisenberg exchange in terms of singlets
and triplets is exact for any dimer covering

Therefore any dimer covering should give the same results

Therefore we might come up with the idea to average the dimer Hamiltonian
over all possible coverings
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m

l l

m

n

We want to average the dimer Hamiltonian over all dimer coverings

This means we put a ‘dimer’ on any of the 2N bonds of the lattice

The Hamitonian for two bonds m and n connected by the exchange term is

h̄m,n = ζ hm,n ζ =
Nm,n

Nd

hm,n is the full singlet-triplet Hamiltonian

Nm,n: Number of dimer coverings which contain the bonds n and m

Nd : Total number of dimer coverings
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We had

h̄m,n = ζ hm,n ζ =
Nm,n

Nd

We use a crude estimate for ζ

m

n

This gives ζ ≈ 1
12
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The Heisenberg exchange was (i belongs to bond m, j belongs to bond n)

J Si · Sj →
Jλi λj

4

(
s†

mtm + t†
msm

)
·
(

s†
ntn + t†

nsn

)
− J

4
(t†

n × tn) · (t†
m × tm)

− iJ
4

[
λi

(
s†

mtm + t†
msm

)
· (t†

n × tn) + λj

(
s†

ntn + t†
nsn

)
· (t†

m × tm)
]

What we learned from the spin ladder:

The singlet operators s†
m, sm where replaced by the condensation amplitude s

The quartic terms did not give an important correction - we may discard them

The energy of the triplet was changed J1 → J1 − µ with µ large and negative

The approximate Hamiltonian is



Planar System

50

The Heisenberg exchange was (i belongs to bond m, j belongs to bond n)

J Si · Sj →
Jλi λj

4

(
s†

mtm + t†
msm

)
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s†
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)
− J

4
(t†

n × tn) · (t†
m × tm)

− iJ
4

[
λi

(
s†

mtm + t†
msm

)
· (t†

n × tn) + λj

(
s†

ntn + t†
nsn

)
· (t†

m × tm)
]

What we learned from the spin ladder:

The singlet operators s†
m, sm where replaced by the condensation amplitude s

The quartic terms did not give an important correction - we may discard them

The energy of the triplet was changed J1 → J1 − µ with µ large and negative

The approximate Hamiltonian is

H = Jeff ∑
m

t†
m · t†

m +
ζs2

4 ∑
m∩n=0

∑
i∈m
j∈n

Ji,j λi λj

(
t†
m · t†

n + tn · tm + t†
m · tn + t†

n · tm
)
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In this way we obtain the final triplet Hamiltonian

H = Jeff ∑
m

t†
m · t†

m +
ζs2

4 ∑
m∩n=0

∑
i∈m
j∈n

Ji,j λi λj

(
t†
m · t†

n + tn · tm + t†
m · tn + t†

n · tm
)

Sum over m ∩ n = 0 runs over all nonintersecting pairs of bonds in the
averaged system

Ji,j = J if i and j are nearest neighbors and zero otherwise

H is a quadratic form and can be diagonalized by Fourier transform and
Bosonic Bogoliubov transformation

If bond m connects the sites i and j we define the ‘position of the bond’ as

Rm = (Ri + Rj )/2

We have two species of bonds: x- and y-direction - and give the Fourier
transform an additional index: t†

k,µ with µ ∈ {x, y}
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Geometry of dimers and presence of λ’s gives unusual tight-binding harmonics

H = ∑
k

∑
µ,µ′∈{x,y}

(
t†
k,µ

(
Jeff δµµ′ + εµ,µ′ (k)

)
tk,µ′ +

1
2

(
t†
k,µ εµ,µ′ (k) t†

−k,µ′ + H.c.
))

ε x,x (k) = ζs2J
(

cos(ky )−
1
2

cos(2kx )− cos(kx ) cos(ky )

)
,

ε x,y (k) = ζs2J
(

sin(
3kx

2
) sin(

ky

2
) + sin(

kx

2
) sin(

3ky

2
)

)
,
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Surprisingly after doing the Bogoliubov transform we get a rather simple
expression for the magnon dispersion

ωk =
√

J2
eff + 2Jeff λk

λk = ζs2J
(

3
2
+ 2γk − 4γ2

k

)

γk =
1
2
(cos(kx ) + cos(ky ))

We should now do a self-consistency procedure to determine the renormalized
triplet energy Jeff = J − µ and singlet condensation amplitude s2

However, we simplify matters and adjust the two unknown parameters Jeff and
ζs2 to reproduce two characteristic energies: bandwidth 2J and spin gap ∆s
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Left: Triplet dispersion with Jeff = 1.7 J - for ladders at J2 = J1 we had Jeff = 1.8 J
We also recall ζ ≈ 1

12 = 0.125 and s2 = 0.8 for ladders at J2 = J1

Right: Triplet dispersion for Jeff = 1.7 J, s2ζ = 0.16 and J = 140meV compared to
the ‘hourglass dispersion’ in La1.875Ba0.125CuO4
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1,σĉ2,σ + ĉ†
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+ J S1 · S2 (2)

We return to the single dimer but now consider the case of one electron
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H = −t ∑
σ

(
ĉ†

1,σĉ2,σ + ĉ†
2,σĉ1,σ

)
+ J S1 · S2 (2)

We return to the single dimer but now consider the case of one electron

In this case only the term ∝ t can be active

The eigenstates are the bonding (+) and antibonding (-) state

|f±,σ〉 =
1√
2
(ĉ†

1,σ ± ĉ†
2,σ)|0〉

They have spin ± 1
2 - the spin quantum numbers of an electron

They have energy −t (bonding) and t (antibonding)

We incorporate these into our theory by introducting a new type of bond particle

If dimer m is in one of the states |f±,σ〉 we consider it as occupied by a
Fermion, created by f †

m,±,σ

Why a Fermion? Because these states have an odd number of electrons
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The two Fermion creation/annihilaton operators can be combined into a spinor

c† =

(
c†
↑

c†
↓

)
c =

(
c↑

c↓

)

Under spin rotations c transforms like iτyc† (iτy is the ‘metric spinor’)

Similarly as for the spin operator Si we can find the representation of the c†
j -spinor

cj → 1
2

(
s iτy + λj t ·~τiτy

) (
f†
+ − λj f

†
−

)
The factors of iτy are necessary to match the transformation properties

s and t are the singlet and triplet operators

The ‘spinor product’ t ·~τiτy f† is how to construct a spinor from a vector
operator and a spinor - i.e. familiar angular momentum addition
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cj → :
1
2

(
s iτy + λj t ·~τiτy

) (
f†
+ − λj f

†
−

)
:

From here on everything is analogous to the procedure for triplets

We ‘translate’ −t ∑σ ĉ†
i,σĉj,σ - this gives a complicated expression ...

We again simplify this by replacing the singlet operators by the condensation
amplitude s and dropping the triplets

We again do the averaging over dimer coverings thereby introducing ζ

In the end we again obtain a Hamiltonian which is a quadratic form

The details are given in my notes - we find a surprisingly simple expressions for
the lowest hole-band:

εk = const + 2s2ζt(γk + 2γ2
k)

However, we need to discuss how to determine the Fermi surface
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To determine the Fermi surface we must know how to count electrons

A singlet or triplet contain two electrons, the f -Fermions one

For a fixed dimer covering the total number of electrons is

Ne = 2 ·∑
m

(
s†

msm + t†
m · tm

)
+ 1 · ∑

m,σ

(
f †
m,+,σfm,+,σ + f †

m,−,σfm,−,σ

)
= 2 ·∑

m

(
s†

msm + t†
m · tm + f †

m,+,σfm,+,σ + f †
m,−,σfm,−,σ

)
−1 · ∑

m,σ

(
f †
m,+,σfm,+,σ + f †

m,−,σfm,−,σ

)
= 2 · N

2
− ∑

m,σ

(
f †
m,+,σfm,+,σ + f †

m,−,σfm,−,σ

)
Dividing by N we find the density of electrons/site

ne = 1− 1
N ∑

m,σ

(
f †
m,+,σfm,+,σ + f †

m,−,σfm,−,σ

)
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But: ne = 1− p where p is the density of doped holes

ne = 1− p = 1− 1
N ∑

m,σ

(
f †
m,+,σfm,+,σ + f †

m,−,σfm,−,σ

)

p =
1
N ∑

m,σ

(
f †
m,+,σfm,+,σ + f †

m,−,σfm,−,σ

)

The doped holes correspond to spin- 1
2 Fermions

The area of the Fermi surface is proportional to the density of holes

When approaching the Mott insulator - ne = 1 - the area of the Fermi surface
shrinks to zero

This is completely different from the band picture where ne = 1 corresponds to
a half-filled band

We use the above expression also after the averaging procedure
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We found the lowest band for the Fermions

εk = const + 2s2ζt(γk + 2γ2
k)

Here are results for s2ζ = 0.16
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 0
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k
/t

(0,0) (π,π) (π,0) (0,0)

Max Max
(0,π)

(0,0) (π,0)

With addional hopping terms between (1,1) and (2,0)-like neighbors the Fermi
surface takes the form of a hole pocket - here t ′ = −0.2t , t ′′ = 0.1t and the hole
concentration p = 1− ne = 0.1.
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Ba2Ca4Cu5O10(F,O)2 Fermi surface of Ba2Ca4Cu5O10(F,O)2 seen in ARPES
Kunisada et al., Science 369, 833 (2020).
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For low hole concentration most electrons ‘jammed’ and retain only their spin
degrees of freedom

The mobile carriers are the doped holes

Accordingly the system has a branch of triplet or S = 1 excitations and a Fermi
surface with a volume proportional to the concentration p of doped holes

This is what experiments on copper oxide superconductors have been pretty
much converging to

However, this state will not persist to higher doping

For example, at a concentration of p = 0.25 each electron will find an
unoccupied site on one of its 4 neighbors

At a certain p a phase transition must occur to a state with a renormalized
free-electron band and Fermi surface

This is indeed what is see experimentally
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Phase diagram of copper-oxide superconductors


