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Linear response in density
functional theory
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Adiabatic perturbation ﬂ( T

Karlsruhe Institute of Technology

Q d"E
n= —°n
dA A—=0
type of perturbation A [ order n | physical property Q
displacements of atoms 1 atomic force
SR 2 force constants
>3 anharmonic force constants
homogeneous strain 5 1 stress
2 elastic constants
>3 higher order elastic constants
homogeneous electric field E 1 dipole moment
2 polarizability
oR+17 2+1 Griineisen parameter
R+ E 1+2 Raman scattering cross section
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Basics of density functional theory AT

Interacting electron system

ZV2+ Z — +2Vext ri)
‘rl rj|

l#/
DFT framework: Hohenberg-Kohn (1964)
Eln] = Fln] + / A2 (F) Ve (1)
Minimization — ground-state energy+density: Eq = E[ng], no(r)

Practical approach: Kohn-Sham (1965)

Fictious non-interacting reference system

F[n] = Ts[n] + Ey[n] + Excln]
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Basics of density functional theory (2) AT

Single-partice (Kohn-Sham) equations
{ = V24 ven(r) fn(r) = exy(r)
Effective potential
Vet [N = Vext + Vscr[N] = Vext + VH[N] 4 Vxc[N]

with

_ OEy _ 0Exc
Ol = 5t veelnln = 0
Density
n(r) = Zf,-\lp,-(r)|2 fi: occupation numbers
I

Exc[n]: exchange-correlation; approximated (LDA, GGA, ...)
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Energy derivatives ﬂ(“'

w Adiabatic perturbations: v, A= {Aza=1,..., p}
a Energy functional
EN[n) = Fln] + / ABr(r)vi(r)
m Variational principle
SE”[n] A
OB 0— my(r)
a Ground-state energy
B = Flng] + [ orn (r)viu(r)
a Two contributions to 1st-order derivative

3, A ext() E " r
aAa /d Na +m’5n(r
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Energy derivatives

m 1st derivative

anA_/ o (n el ext<>

Karlsruhe Institute of Technology

oAg
a 2nd derivatives
P?Eg _ /dsra”o ) 0V (r) Jr/dsm PVaa(r)
9Aa0Ap OAp  OAg 0 9N 20,

@ Evaluate for A — 0

. A .
— only linear response of g (r) required
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Energy derivatives (2) ﬂ(“.

”2n+1”-theorem of density functional theory (Gonze 1989+1995)

9
Al

calculation of all derivatives -2 Eq up to order 2n+1.

Knowledge of derivatives - ng(r) up to order n allows

Examples:

a Forces (Hellmann-Feynman theorem)

Feil) = _ana(i) B =~ [ rm(n agenng)r)

m 2nd and 3rd order accessible in linear response
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Linear response within Kohn-Sham scheme AT

Density: n(r) = Y, filp;(r)|? fi: occupation numbers

Kohn-Sham equations: { - V24 veff(r)}lp,-(r) = ejpi(r)

= 51Pi(") — Z <j|5veff|i>¢j(r>

i) T
Linear density response

on(r)

fo[l/’?‘(r)&lii(r) +0y; (Nyi(r)]
fi —
Y

i# €1

</|5veff\/>¢,< 19y(r) = [ rxo(r.¥)éven(r)

fi —
with charge susceptibility — xo(r,¥) = Ze
i#j !
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Linear response within Kohn-Sham scheme (2) [T

Variation of effective potential v¢[n] = Vext + vi[n] + vxc[N]

OVeis () = OVext(F) + OVecr (F) = 0Vexi(F) +/d3r/l(r, r')on(r')
with kernel
_ ovy(r) | dvxe(r) 2 6%Exc

~on(r)y " 6n(r)y  r—r] " on(r)én(r')

I(r,v")

Dielectric screening

0N = X00Veff, OVeft = OVext + 10N = SVeft = OVext + IX00 Vet
= OVeif = [1 — Ixo] "OVext = € 10Vext and  6n = xge 'Vext
e(r,r'): (static) dielectric matrix
m historically first route persued (Pick et al.1970, Resta 1985)
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Modern formulation: Density functional AT
perturbation theory

Simple case: non-metal, gap between conduction and valence states

Starting from

o) = L2 ’ L lovenl; ()91
i# T
= 22 C\5Veff|V>va( )e(r)

Rewriting

r)=2) yy(rNAv(r)

with definition

A=Y

p— c){c|dVesr|V)
(o]

12 Rolf Heid Autumn School on Correlated Electrons, Jilich, September 2020



13

DFPT (2)

How to calculate  [Ay) = Yo o2=-|¢)(CloVes|v) ?

Not directly, but use a linear equation!

(H—ey)|Ay) = =Y lc)(cloves|v) = —PcoVveii|v)
= (Py—1)dveg|v)

® P, (P.) projection onto valence (conduction) space
m advantage: final form contains only valence space quantities

"Sternheimer" - equation

atomic physics: Sternheimer, 1954, Phys. Rev. 951, 96 (1954)
solid state: Baroni et al., PRL 59, 1861 (1987);
Zein, Sov. Phys. Solid State 26, 1825 (1984)

Iterative solution: — 5n and v

Rolf Heid Autumn School on Correlated Electrons, Jilich, September 2020



Karlsruhe Institute of Technology

Electron-phonon coupling



General considerations ﬂ(“'

Born-Oppenheimer expansion
R; = R? + xu; k=(m/M)"/* <01  (except H and He)

Lowest order: adiabatic or Born-Oppenheimer approximation

¥(r.R) = x(R)y(r;R)

— decoupling

[Te + Vee + Ve_i(R)|¥n(r;R) = En(R)pn(r;R)
[Ti + Vii(R) + En(R)]x(R) Ex(R)

m Electronic wavefunction depends parametrically on R
a lons move in an effective potential (electrons in ground state)

O(R) = Vi(R) + Eo(R)
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General considerations

Expansion around rest positions: u; = R; — R,(O)

Q({R}) = ZFMXUI!X +5 Z(PA‘B i f ulzxujﬁ + .
//aﬁ

Harmonic force constants: Dup(i,f) = m mﬁ, — phonons

Electron-phonon vertex

1st order beyond the adiabatic approximation: (n|dgV/|n’)

(SRVOCU-VV0|RO

u « b+ b" — phonon creation/annihilation
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Density functional perturbation theory (DFPT)  AI{|IT

Phonons in periodic lattices
i — (Is): unit cell / ion in unit cell R? — RY = R? + R?

Dynamical matrix

Is, 08')e ARk Roy)

1
Dsas/,B(q) = \/W Z‘Daﬁ(
S/

Normal modes
Y Dows'p(@)7575(q) = wiirrsa ()
s'B

Periodic displacements

iaRO _iaRO
Ris = R?s + Ups Ujsa = dSIXquR’S + d;ae R

Define operators: 63 = 34—, 0a = 39 = 0%
Su
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DFPT: Phonons in periodic lattices (2)

Electronic contribution to the dynamical matrix

1
Deysip(q) = —=—==0d04 0 E
Su S ,B(q) \/W Su /g u—0
Electron-ion potential: Vext(F) = Yis Vs(r — Ryg)
= 520‘ Vext(r) = - 2 vr Vs IqR

= Iqrzelq &I Vhvs(r — RY)

m Operator 53, carries a momentum q

18 Rolf Heid Autumn School on Correlated Electrons, Jilich, September 2020



DFPT: Phonons in periodic lattices (3) AIT

5ga5;gE = 2 [5gan(G + Q)(S;g Vext(G + CI) + n(G)(sga(S;g Vext<G)}
G
1st-order density

4 .
05un(@+G) ==, ) (kvle 1@t A, (kv))
kv

k k
(HK\Jgrq - ev(k))|Agtx(kv)> = (Pv+q - 1)(5gaveff|kv>

@ no coupling between different q

m involves only valence state quantities — from ground state calculation
q-grid
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Electron-phonon vertex in DFPT

Bare vertex

. . 0 _
(k+ v/ |63, vealkv) = — (k + qv/| €% Y e¥RE IV v (r — RY) k)
|

Normal-mode representation

: k+qV’
. qj
0 .
gl((-i-)glj//,kv = SZAgth<k + qV'\(Sg,X Vext|Kv) M(::
114

. k
AY Us’ﬁ(q” Y
su A/ 2Msﬂ)qj

a rigid displacement of electron-ion potential
m ignores screening effects
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Electron-phonon vertex in DFPT (2)

Screened vertex

qj k+qv
R .
Teiq ke = SZAEQ (k+qv' |03, Verr| k) M<
44

kv
easily accessible in DFPT

]

Relationship to bare vertex: SV = O Vext + X000 Veit
= L - -
= A D A O

m screening via static Kohn-Sham (non-interacting) susceptibility xq

m electron-electron interaction represented by | = Iy + Ixc
— includes exchange-correlation
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Applications

22 Rolf Heid Autumn School on Correlated Electrons, Jilich, September 2020



Frohlich Hamiltonian AT

Minimal Hamiltonian (Fréhlich 1952)

H = He + th + He,ph
He = Z ekaIngkva
kvo

1
th = quj <bI|jqu + 2)
a/

y Y 4 pt
Z ng+qv’,kvck+qv’crckva (bqj + bqu)
kvv'o qf

Hefph

m He: band electrons (noninteracting)
® Hpp: harmonic phonons

@ He_pp: lowest-order electron-phonon interaction
Compact notation: k = (kv), k' = (k'v’), g = (qj)  no spin

9 _ U
— Ik k = I koK k+q
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Frohlich Hamiltonian AT

Minimal Hamiltonian (Fréhlich 1952)
H = He + th + He,ph

He = ZGKC;CK
k
1
th = ;wq <b$bq + 2)
Hefph = Z Zgg,kaI/Ck (bq + biq)

kK g
® He: band electrons (noninteracting)
@ Hpp: harmonic phonons
® H,_pp: lowest-order electron-phonon interaction

Compact notation: k = (kv), k' = (k'v’), g = (qj) no spin

q _ U
- 9k k = v kK k+q
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Many-body perturbation ﬂ(“'

Dyson equations and self-energies

Electrons G(k, iwn) ™" = Go(k, iwn) ™" = Z(k, iwn)
Phonons D(q,ivm)~" = Dy(q, ivm) ™" —T1(q, ivm)

Quasiparticle picture

Retarded GF: G(k,€) = G(k, iwp — € +i6) = [e — ex — Z(k, €)] "

€l €
Small & g
® QP-energy shift: €, = ex + ReX(k, &) E
m Linewidth (x 1/7): Tx = —2ImX(k, &) 3 -
= Energy
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Renormalization of electronic properties ﬂ(“'

Electron self-energy
k-k o,—w,

ko, k', ko,

After analytic continuation: iwp — € + i

b(wq) + f(exr) b(wq) +1 — f(ex)
s k i 2 q q
ep(K, ) Z’kkl {w+wq—€k1+i(5+w—wq—ekr—kié}
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Electron self-energy ﬂ(“.

IMEep(k, €) = nI\L b 197, 2 [6(e — 10 + wq) (blwq) + Flew))
.q
+6(€ — ex — wq) (b(wq) +1 — f(ex))]

Collect all g-dependent parts

ImXep(k, €) 7'[2 Z|gk,k| /dw(S w — wq)

[6(€ — ey + w) (b(w) + f(ex))
+o(e — e —w)(b(w) +1—f(ex))]
Introduce

1
ucszi(e,w) = Wq Zé(w — wq) 2 |gg/’k|2c5(e —€p T w)
q k!
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Electron self-energy ﬂ(“.

Scattering processes
I mZep ( k, €) -

—n/ooo dw{«sz,j(e, w)[b(w) + f(w + €)] SF\ \ V/. 7

+zx2Fk_(e, w)[b(w) + flw — 6)]} A

"+": phonon emission  "-": absorption

Quasielastic approximation

_ 1
WPFF ~ a?F ~ 0 Fi(e,w) = N Y d(w—wq) ) ]gg,’klzé(e —ep)
q k'

Coupling constant

2,: =
Ak =2 / dw% depends on electronic state!
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Electron self-energy: Example

_—
Topological insulator Bi»Ses: surface Dirac cone
0.4 ; i i " i 0.8
0.4 \/\/ % i \:\L‘ (C)\ ]
3 1 , 1 lower cone i 107
(a) '
021 4 0319y . I 106
i Bi,Se, 1.3
S Bi)S I 273 T g
° 12>% <ozl D Joad
= 0 . e ) ) 1 0.45
FJ:] ; : Dirac point ] 1 032
= [ 1 rol :ﬁ o’— 8
02 | 0~lf : upper co&c{‘;’g %D o@| 0.2
N I
L [ “ oot o0 .o intraband only | 0.1
/\ ¥ 1 0 01 o0z 03°
MR T > M EE, (V)

RH, Sklyadneva, Chulkov, Sci. Rep. 7, 1095 (2017)

a Coupling in upper cone increases linearly with binding energy
® Small A guarantees well defined quasiparticles at room temperature
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Electron self-energy: Experimental probes AT

_ dReZep(k.€)
de e=0,T=0

€x = ex + ReX(k,€x) = Ve=ve/(1 +/\kF)
my = mi(1+ Ag)

(1) Slope of of ReXgp at ErF Ak =

(2) T-dependence of linewidth

T((T) = 7'(/0 dw{zszk(Ek,w)[Zb(aJ) + f(w+€k) + f(w —ék)]}
~ 2mA,T for T > Wph

Cu(111) surface state

ARPES data after McDougall et al.,
PRB 51, 13891 (1995)
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Phonon renormalization

W O

Phonon self-energy: leading order

Z| gl k|2 fek) f(ek/)

w+tex— €+ id

Real part — frequency renormalization: static part included in DFPT

Linewidth

Yq = —2ImIg(wq) = 27r Z |gk, k| (ex) — f(ex)]0lwq + (ek — €xr)]
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Phonon renormalization (2)

Tq = 27T Z |97 «[2[f(ex) — Flex)]8[wq + (ek — exr)]
Simplifications for wq < electronic scale
flex) — flew) =~ f'(ex)(ek — exr) — —f'(ex)wq
T — 0: f'(ex) — —d(ex) and drop wgq in &-function
1
Vg = 2Mwar ) 197, (|28 (ex)d(ex)
k K.k Allen, PRB 6, 2577 (1972)

®m 4 measurable quantity (e.g., via inelastic neutron or x-ray scattering)
m — experimental test of theoretical predictions
m but need to separate from other contributions: anharmonicity, defects
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Phonon renormalization (3): Example A

Karlsruhe Institute of Technology

YNi,B,C

Weber et al., PRL 109, 057001 (2012), PRB 89, 104503 (2014)
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Transport ﬂ(“.

Example: electric current

Semi-classical picture: steady state characterized by new distribution F

. 2e 1
Ix = *Vﬁk;Fk(Vk)x

Electrical conductivity:
oxx = Jx/ Ex
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Transport (2) ﬂ("

Boltzmann transport equations

dF.  [9Fx
_eE, K _ [ K
© XakX ( dat >co|l

LHS: change in occupation due to electric field

RHS: rate of change in occupation due to collisions '
Ludwig Eduard Boltzmann

oF,
(atk) =Y (PwkFie[1 = Fi] — Piwr Fi[1 — Fi])
coll k'

Pk : probability of scattering from state (k) to (k’)

Electron-phonon scattering: annihilation and creation processes
2m
P = N, ) |g,‘(7,k|2 [b(wq)é(exr — ek — wq) + (b(wgq) +1)8(e — €k + wq)]
q
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Transport: Electron-phonon scattering AT

Small field: Linear expansion
Fy = fe+ £ £l o« Ex

Linearized Boltzmann equation:

i op g M _ g O
ke ok T TG ke gei )X

RHS Zk’ (Pk’k(fll’“ — fk] — fk’fl:) — Pkk’(fll [1 — fk’] — fkfll’))

fk/
= Zk/ Pkk/ < f f fk/ fk/)

LHS : —eEx——

using detailed balance: Py fis [1 — fx] = Py fi[1 — fi]
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Transport: Relaxation time approximation AT
Approximation: f}, = 0

1—fo
RHS — Y Py (—f,21;‘> = —f} /7y
k' — Ik

Solution o
Conductivity
_ 2e 1 2e 1 1
Oxx = VE, N Zk:Fk( k) x VE,N Zk:fk(Vk)x
2e” 1 of
= T 2 (= ey (e
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Transport: EPC relaxation time ﬂ(“'

1

—fk/
1/T = P /< >
k ; kk 1_fk

2r
= LY 19l [b(WQ)‘S(Gk’ — ek — wq)
Kk q ''d

+(bleq) + 1ol — eu+ wa)] (1= )

= Ty Linewidth of el. quasiparticle

m Evaluation of k-dependence is cumbersome
m Applications to transport in semiconductors
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Transport: EPC relaxation time ﬂ(“'

Example: Mobility of Si

Wu Li, PRB 92, 075405 (2015)
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Transport: Metals ﬂ(“.

Effective relaxation time: Variational approach (Ziman 1960)

w
—27t/dw zxtr() X=o7

Transport spectral function

WEF() = g Dol - @) gy g T 08 Predleiolen)

ViV
vil2

Efficiency factor:  np =1—
Conductivity

B ofy _ _2e2N(0) _ ,
U—X)(—TVIVk;( ae )(Vk)x( )X—TT<VX >
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Transport: Metals (2)

Karlsruhe Institute of Technology

Bauer et al., PRB 57, 11276 (1998)
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Phonon-mediated pairing ﬂ(“.

Microscopic theories of superconductivity
m Weak coupling: BCS model by Bardeen, Cooper, Schrieffer (1957)
m Strong coupling: Eliashberg (1960)

Eliashberg gap equations (isotropic)

iwn(1 — Z(iwp)) = —nTZA — W) od 1
Cd%, + A(iwn/)z
A(iwn/)

w? + Aliwpy )2

Aiwn)Z(iwn) = 7TY Awn—wpy)

A(iwp): Gap function
Z(iwn): Quasiparticle renormalization factor
A(vm): Pairing interaction
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Electron-phonon pairing interaction AT

Kernel

2walF(w
Um)—/d (v )24—(w)2

Eliashberg function

W2F(w) = qu(s w — wg) ZO)N MENECAEN

m effective between states at Ef

Coupling constant: Maximum of A(vpy) at vy = 0
22
—2 / dw®Flw)
m A < 0.5weak coupling, 0.5 < A < 1 medium, A > 1 strong coupling
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Relation to phonon linewidth ﬂ(“'

Reminder: for T — 0

1
Yq = zanI\TK Z |gg/’k|25(€k)5(€k’)
Kk

1 1 1
=a?Flw) = Y 6w— —_—— 9 126(ex )8 (e
CFw) = g D ) oy . ok lensten)
IR NS

ZTZ: dimensionless measure of mode coupling strength

Similar 1 1 Tq
A= - ) —
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Superconductivity: Example SrPt;P

Toc = 8.4K

Zocco et al., PRB 92, 220504 (2015)

m Predicts soft-mode (Pt(1)) with strong coupling, confirmed by IXS
measurements

m Contributes 80% to total A ~ 2
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Extensions: LDA+U and beyond



LDA+U AT

a Correction to DFT functional to improve descripton of local correlations
m Introduced by Anisimov et al. (1991), various extensions exist

m Correlated subspace via atomic-like orbitals: ®4(r) with a = (Imo)
Functional

E= Elocal + EU
Eiocal: DFT functional in local approximation (LDA or GGA)
1
Ey =5 ) (ablve|cd)(pacpha — padPbe) — Edcl{pav}]
abcd
Orbital density matrix
occ

pab = Y ilb)al)

1
(ab|vc|cd): Coulomb potential, few pararmeters (like U or J)
Eq.: double counting correction
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LDA+U: Effective potential AT

Vett = Vext + Vser[N(F)] + Vyl{pan}]

vy = Zvab|a (b] = Zvaboab

ab
(sEU

Vao = 5= =) ((ac|ve|bd) - (ad|ve|ch)) poa — (Vac)ap
Pba cd

Complications for linear response:

a Non-local potential ¥y

® Vg functional of both n(r) and p4p

m Correlated subspace attached to atom postions
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LDA+U: Linear response ﬂ(“'

Linear response of orbital density matrix

occ

pab = Y_ (il Qpali)

I

Spap = 008 + 502

oS = 5 (1001} Quali) + (1Qoalo1) })

5o = Y {116 Qpali)

]
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LDA+U: Energy derivatives ﬂ(“'

1st order b
OE oy (0l
oA = Opab oA

a Only "bare" part contributes (Hellman-Feynman theorem)
2nd order

b b
FE ¢ PEy 9% (apcd> Ly 0B @ oL
8A1 a/\g abod ‘5Pab5Pcd 82\1 a/\g ab 5Pab a/\g a/\1

m Requires full linear response dp4p and 5n(r’)

SVai(1) = Ve (r) + [ &IEE)0NE) + 1 loscatpeaCap + ) Vabi Qe
abecd

e _ 0%Ey

! C a [
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LDA+U: Example NiO A

Karlsruhe Institute of Technology

a NiO: rocksalt structure, AFM along [111], large optical gap (3.1 eV)
a Charge-transfer insulator, correlated Ni-3d

8 T T 70 - 7

LDA |- ‘[ LDA+U

eDOS

eDOS

Frequency (meV)
w N
T
RPAY:
w IS
T T
AV,

T 10— 10— —

2 0 2 0 0
E-Eg (V) (5-5-5) r T (5-5-5) r T

Exp. data after Reichardt et al., J.Phys.C 8, 3955 (1975)

a LDA: small gap, soft spectrum — too much screening
a LDA+U: larger gap, reduced screening, harder spectrum
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Beyond DFT+U AT

Linear response and electron-phonon coupling: extensions
@ Hybrid functionals

@ GW approach
© DFT + Dynamical Mean-Field Theory (DMFT)
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Beyond DFT+U

Karlsruhe Institute of Technology

@ Hybrid functionals
a Exact exchange, non-local

(ro); (r2)y;(ro)gi(r2)

ri —re

EZ[n] = %2 / Y
if

EX c — E;a(xact 4 Elgcal

Improves descriptions of wave functions and energies (band gaps)
Evaluation of non-local exchange — numerically expensive
Phonons and EPC: no full linear response implementation
Applications: frozen phonon and supercell approach
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Beyond DFT+U AT

@ Hybrid functionals
© GW approach

Quasi-particle equation W
vxe — L~ GW s N
‘ib
G

m 3 expressed by Green’s function G and electron-electron interaction W
m Advantage: improves descriptions of quasi particles

a Numerically expensive (W non-local)
a
a

Phonons and EPC: frozen phonon and supercell approach
Recently: a more elaborate linear-response formulation (Li et al., PRL 122,
186402 (2019))

ovEV = ovBFT — bvye + 6%
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Beyond DFT+U ﬂ(“‘
@ Hybrid functionals

© GW approach

© DFT + Dynamical Mean-Field Theory (DMFT)

m Frequency-dependent self energy: X (w)

a Many-body impurity problem embedded in periodic lattice

m Unified framework: Kotliar et al., Rev. Mod.Phys. 78, 865 (2006)

m Linear-response formulation: Savrasov, Kotliar, PRL 90, 056401 (2003)

OVt (r), 0Z(w): functionals of dn(r), §G(w)
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Summary ﬂ(“.

Karlsruhe Ins

m Introduction to linear-response techniques and electron-phonon
coupling from a DFT perspective

m DFPT approach: provides insight into the microscopic form of
coupling, on the basis of realistic atomic and electronic structures

a Full energy and momentum dependence of coupling matrix elements

m Applications: quasiparticle renormalization (electrons and phonons);
transport; phonon-mediated pairing

a Challenge: extend method to approaches with more accurate
treatment of strongly correlated systems
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