Multiplets and Spin-Orbit Coupling

Erik Koch Jülich Supercomputer Centre Forschungszentrum Jülich

homework

The underlying laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that exact applications of these laws lead to equations which are too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

P.M.A. Dirac, Proceedings of the Royal Society A123, 714 (1929)

Theory of (almost) Everything

More is Different

... the reductionist hypothesis does not by any means imply a ``constructionist" one: The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe.

Sometimes, as in the case of superconductivity, the new symmetry — now called broken symmetry because the original symmetry is no longer evident — may be of an entirely unexpected kind and extremely difficult to visualize. In the case of superconductivity, 30 years elapsed between the time when physicists were in possession of every fundamental law necessary for explaining it and the time when it was actually done.

Thus with increasing complication at each stage, we go up the hierarchy of the sciences. We expect to encounter fascinating and, I believe, very fundamental questions at each stage in fitting together less complicated pieces into the more complicated system and understanding the the basically new types of behavior which can result.

P.W. Anderson: More is Different, Science 177, 393 (1972)

Periodic Table

н																	Не
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Hamiltonian

$$H = \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right) + \sum_{i < j} \frac{1}{|\vec{r_{i}} - \vec{r_{j}}|}$$
$$\left[\vec{L}_{tot}, H \right] = 0$$
$$L_{x} \frac{1}{|\vec{r} - \vec{r'}|} = -i \left(r_{y} \frac{\partial}{\partial r_{z}} - r_{z} \frac{\partial}{\partial r_{y}} \right) \frac{1}{\sqrt{(r_{x} - r'_{x})^{2} + (r_{y} - r'_{y})^{2} + (r_{z} - r'_{z})^{2}}}$$
$$= \frac{+i}{2\sqrt{\cdots^{3}}} \left(r_{y} 2(r_{z} - r'_{z}) (+1) - r_{z} 2(r_{y} - r'_{y}) (+1) \right)$$
$$L'_{x} \frac{1}{|\vec{r} - \vec{r'}|} = \frac{+i}{2\sqrt{\cdots^{3}}} \left(r'_{y} 2(r_{z} - r'_{z}) (-1) - r'_{z} 2(r_{y} - r'_{y}) (-1) \right)$$

equations too complicated to be soluble two-step approach:

- 1. (spherical) mean-field calculation
- 2. (degenerate) perturbation theory

DFT

Self-consistent field computation

Fe : [Ar]
$$3d^6 4s^2 4p^0$$

Fe : [Ar]
$$3d^6 4s^2 4p^0$$

Fe : [Ar]
$$3d^{6} 4s^{2} 4p^{0}$$

2s-2p degeneracy lifted

Fe : [Ar]
$$3d^6 4s^2 4p^0$$

why not 3d⁸ 4s⁰ ??

levels change with occupations

total energy

recap: spherical mean-field

- spherical symmetry: atoms are round
- atom still too complicated to be soluble
- Fe : [Ar] $3d^{6} 4s^{2} 4p^{0}$ spherical mean-field filling of atomic shells effective nuclear charge lifts hydrogen degeneracies
- open shells: large degeneracies

N electrons in 2(2/+1) orbitals:

Atomic Spectra Database

Configuration	Term	7	Level (eV)	Uncertainty (eV)	Leading percentages				Reference	
3 <i>0</i> 0	a4F	3j2	0.0000		100	1/2-			1718	
		⁵ /2	0.01804		100	V	. 00		$10 \cdot 9 \cdot 8$	
		7i2	0.04234		100	120 cont	figurat	tions		
		⁹ /2	0.07238		100	split int	o 8 lev	vels	1 • 2 • 3	
3 <i>d</i> ⁰	a ⁴ P	1/2	1.42753		100					
		3/2	1.43720		99					
		⁵ /2	1.45926		100					
3d ^a	a ² G	7/2	1.48363		100					
		9/2	1.51100		100					
300	a ² P	3/2	1.92799		67	25	30 ³	2D2		
		1/2	1.93165		100				12	
3 d ^a	e 2D2	3/2	2.02472		52	32	3a ³	2p		
		⁵ / ₂	2.03020		77	22	30 ³	2D1		
309	a ² H	9/2	2.08429		100					
		11/2	2.10495		100					
304	a²F	1/2	3.43781		100					
		D/2	3.45256		100					
3d ^a	b ² D1	5/2	5.24049		77	22	3a ³	°D2		
		312	5.25336		77	23	3a ³	² D2		
3d ^e (³ F)4s	b4F	3/2	5.448174							
		5/0	5.468948							

physics.nist.gov/PhysRefData/ASD

Multiplet Terms Hund-style

•
$$p^{1}$$
: ${}^{2}P$ notation: ${}^{2S+1}L$ (S P D F G H ...)
• $pp' \rightarrow p({}^{2}P) p'$: ${}^{3}D {}^{3}P {}^{3}S$ vector addition
 ${}^{1}D {}^{1}P {}^{1}S$ $L = l + l', l + l' - 1, ..., |l - l'|$
same shell (n, l): orbitals $\varphi_{n,l,m,\sigma} \rightarrow m_{\sigma}$
 ${}^{3}D$: $1_{\uparrow} 1_{\uparrow}$ occupied; ${}^{3}S : 0_{\uparrow} 0_{\uparrow}$ X Pauli principle
 $p^{2} : {}^{1}D {}^{3}P {}^{1}S$ dimension: $\binom{6}{2} = 15 = 1 \cdot 5 + 3 \cdot 3 + 1 \cdot 1$
• $p^{2}p' \rightarrow p^{2}({}^{3}P) p'$: ${}^{4}D {}^{4}P {}^{4}S$
 ${}^{2}D {}^{2}P {}^{2}S$
 $p^{2}({}^{1}D) p'$: ${}^{2}F {}^{2}D {}^{2}P$
 $p^{2}({}^{1}S) p'$: ${}^{2}P$
 $p^{3} : {}^{4}S {}^{2}D {}^{2}P$
 $p^{3} : {}^{4}S {}^{2}D {}^{2}P$
 $p \otimes_{\mathscr{A}} p \otimes_{\mathscr{A}} p = {}^{4}S \oplus {}^{2}D \oplus {}^{2}P$

multiplet terms

<i>s</i> ⁰ , <i>s</i> ²	${}^{1}S$			
s^1		^{2}S		
p^{0}, p^{6}	¹ S			
p ¹ , p ⁵		^{2}P		
p ² , p ⁴	${}^{1}S {}^{1}D$		³ P	
<i>p</i> ³		$^{2}P^{2}D$		⁴ S
d ⁰ , d ⁶	^{1}S			
<i>d</i> ¹ , <i>d</i> ⁹		² D		
d², d ⁸	${}^{1}S {}^{1}D {}^{1}G$	2×	³ P ³ F	
d^{3}, d^{7}	$2 \times 2 \times 2 \times$	$^{2}P^{2}D^{2}F^{2}G^{2}H$	$2 \times 2 \times$	⁴ P ⁴ F
<i>d</i> ⁴ , <i>d</i> ⁶	${}^{1}S {}^{1}D {}^{1}F {}^{1}G {}^{1}H$	$3 \times 2 \times 2 \times$	^{.3} P ³ D ³ F ³ G ³ H	^{5}D
ds		-25 2P 2D 2F 2G 2H 2I		$^{+}P ^{+}D ^{+}F ^{+}G ^{0}S$

Hund's rules from experimental spectra

<i>s</i> ⁰ , <i>s</i> ²	${}^{1}S$		
S^1		² S	
р ⁰ , р ⁶	^{1}S		
p ¹ , p ⁵		^{2}P	
p ² , p ⁴	${}^{1}S {}^{1}D$		³ P
<i>p</i> ³		$^{2}P^{2}D$	
d ⁰ , d ⁶	^{1}S		
d ¹ , d ⁹		² D	
d², d ⁸	${}^{1}S {}^{1}D {}^{1}G$	$2 \times$	³ P
d ³ , d ⁷	$2 \times 2 \times 2 \times$	$^{2}P^{2}D^{2}F^{2}G^{2}H$	2×
d ⁴ , d ⁶	${}^{1}S {}^{1}D {}^{1}F {}^{1}G {}^{1}I$	$3 \times 2 \times 2 \times$	^{3}P
d^5		$^{2}S^{2}P^{2}D^{2}F^{2}G^{2}H^{2}I$	

Zeitschrift für Physik 33, 345 (1925) 345

Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel.

Von F. Hund in Göttingen.

Mit drei Abbildungen. (Eingegangen am 22. Juni 1925.)

Auf Grund der Vorstellungen von Russell und Saunders, Pauli und Heisenberg über das Zusammenwirken mehrerer Elektronen bei der Aussendung von Spektrallinien werden die Spektralterme einiger Elemente auf ganz bestimmte, durch Quantenzahlen gekennzeichnete Anordnungen von Elektronen zurückgeführt. Insbesondere werden bei den Elementen Sc bis Ni für die Normalzustände der Elemente und (soweit bekannt) ihrer positiven Ionen, ferner für die übrigen tiefen Terme der Elemente die Quantenzahlen aller Elektronen angegeben. Damit ist der Zusammenhang hergestellt zwischen dem Bau dieser verwickelten Spektren und der Stellung der Elemente im periodischen System.

Man kann mehrere Stufen der Erklärung eines empirisch bekannten Spektrums unterscheiden. Beim Wasserstoff liefert die Bohrsche Quantentheorie mehrfach periodischer Systeme eine quantitativ genaue Festlegung der Spektralterme. Für die übrigen Elemente gibt es keine entsprechende strenge Theorie. Bei einer Anzahl von Elementen, im wesentlichen bei den in den ersten drei Spalten des periodischen Systems stehenden, lassen sich die Spektralterme bestimmten Quantenbahnen eines Elektrons (des Leuchtelektrons) zuordnen (Bohr, Sommerfeld) und die Energiewerte wenigstens angenähert abschätzen. Noch weniger war bisher bei den verwickelteren Spektren, z. B. bei Sc bis Ni möglich. Catalan und die ihm gefolgten Forscher¹),

1) Über Elemente der mit K beginnenden Periode: Ca: H. N. Russell und F. A. Saunders, Astrophys. Journ. 61, 38, 1925. Sc: M. A. Catalan, An. Soc. Esp. d. Fis. y Quim. 20, 606, 1922; 21, 464, 1923. Ti: C. C. Kiess und H. K. Kiess, Journ, Washington Acad. Sc. 13, 270, 1923; Journ, Opt. Soc. Amer. 8, 607, 1924. V: W. F. Meggers, Journ. Washington Acad. Sc. 13, 317, 1923; O. Laporte, Naturwissensch. 11, 779, 1923; Phys. ZS. 24, 510, 1923; M. A. Catalan, An. Soc. Esp. d. Fis. y Quim. 22, 72, 1924; H. Gieseler und W. Grotrian, ZS. f. Phys. 25, 342, 1924; K. Bechert und L. A. Sommer, ZS. f. Phys. 31, 145, 1925. Cr: M. A. Catalan, Phil. Trans. Roy. Soc. London (A) 223, 127. 1922; H. Gieseler, Ann. d. Phys. 69, 147, 1922; C. C. und H. K. Kiess, Science 56, 666, 1922, Nr. 1458; M. A. Catalan, An. Soc. Esp. d. Fis. y Quim. 21, 84, 1923. Mn: M. A. Catalan, Phil. Trans. Roy. Soc. London (A) 223, 127, 1922; A. Sommerfeld, Ann. d. Phys. 70, 32, 1923; E. Back, ZS. f. Phys. 15, 206, 1923. Fe: F. M. Walters jr., Journ. Washington Acad. Sc. 13, 243, 1923; H. Gieseler und W. Grotrian, ZS. f. Phys. 22, 245, 1924; 25, 243, 1924; E. v. Angerer und G. Joos, Naturwissensch. 12, 140, 1924; Ann. d. Phys. 74, 743, 1924; O. Laporte, ZS. f. Phys. 23, 135, 1924; 26, 1, 1924. Co: F. M. Walters jr.,

Racah's fractional parentage

$$p^{2}p' \rightarrow p^{2}(^{3}P)p': {}^{4}D {}^{4}P {}^{4}S$$

$${}^{2}D {}^{2}P {}^{2}S$$

$$p^{2}(^{1}D)p': {}^{2}F {}^{2}D {}^{2}P$$

$$p^{2}(^{1}S)p': {}^{2}P$$

$$p^3: {}^4S {}^2D {}^2P$$

 4S originates from $p^2({}^3P)p$

 2D has parents in $p^2({}^3P)p$ and $p^2({}^1D)p$

 2P has parents in all three

multiplet states are those linear combinations of the Clebsch-Gordan states that are antisymmetric the corresponding expansion coefficients are the *coefficients of fractional parentage*

$$|p^{3}(^{2}D)\rangle = \boldsymbol{c_{3P}}|p^{2}(^{3}P)p\rangle + \boldsymbol{c_{1D}}|p^{2}(^{1}D)p\rangle$$

fractional-parentage tables

4			FRACTIONAL PARENTAGE P2	ç.	FRACTIONAL PARENTAGE D4 5
3P 15 45 2P	2P 2P 3P 15	1 1 -1 -1 1 1-2	1D 2P 1 FRACTIONAL PARENTAGE P3 1D -1 -1-2 1 2D 3P 1 -1 1D -1 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			FRACTIONAL PARENTAGE DZ	:	
3P 3F 15	2D 20 20	1 1 1	10 20 1 16 20 1	4P 5D -1 -2 3P1 -1 4-1 3P2 1 -1- 3D 1 -2-1 3F1 -1 1-1	
			FRACTIONAL PARENTAGE D3	3F2 1 1-1 40 50 -1 -2 3P2 1 -1 1	Spectroscopic Coefficients
.4P 4F 2P 2D1	3P 3F 3F 3F 3F 1D 3F 1S 1D 1G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	for the p ⁿ , d ⁿ , and f ⁿ Configurations
				25 3D 1 01 1D2 -1 10	
5D 3P1	4P 4F 4F 2P 201 202 2F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FRACTIONAL PARENTAGE D4 2P 1 1-1-1-1 2D1 1 -3 1 2D2 1 -3 0 0-1 2F -1 -2-1-1 2G 1 -2 1 0-1 2H 1 -2-1 0-1 1 3F2 4P -1 2-1-1 4F -1 0-1-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I
3 P 2	4 P 4 F 2 P 2 D 2 2 F	$\begin{array}{cccc} -1 & 0-2-1 & 1 \\ 1 & 3-2-1 \\ 1 & -1-2 & 1 \\ 1 & 0-2 \\ -1 & -1-2 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The M. I. T. Press
ЗD	4 P 4 F 2 P 2 D2 2 F 2 G	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Massachusetts Institute of Technology Cambridge, Massachusetts
3 F 1	4 P 4 F	-1 0-1-1 1 2-1-1	2F 1 -2-1 2G -1 -2 1-1 2H 1 -1-1-1 0 0 1	2D3 3P2 1 -1 2 30 1 0 1-1-1	162 -1 -1 2-1 0 -1 11 -1 -1 0 0 1 -1

2nd quantization

wave function $\varphi_{\alpha}(\vec{r}) \rightarrow \text{Dirac state } |\alpha\rangle$ get rid of coordinate: $\varphi_{\alpha}(\vec{r}) = \langle \vec{r} | \alpha \rangle = \langle 0 | \hat{\Psi}(\vec{r}) c_{\alpha}^{\dagger} | 0 \rangle$

analogous for Slater determinants

$$\frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_{\alpha_1}(x_1) & \cdots & \varphi_{\alpha_N}(x_1) \\ \vdots & & \vdots \\ \varphi_{\alpha_1}(x_N) & \cdots & \varphi_{\alpha_N}(x_N) \end{vmatrix} = \frac{1}{\sqrt{N!}} \left\langle 0 \left| \hat{\Psi}(x_1) \cdots \hat{\Psi}(x_N) \ c_{\alpha_N}^{\dagger} \cdots c_{\alpha_1}^{\dagger} \right| 0 \right\rangle$$

with vacuum state $|0\rangle$ and field operators $\hat{\Psi}(x)$ defined by $\{\hat{\Psi}(x), \hat{\Psi}(x')\} = 0, \ \{\hat{\Psi}(x), \hat{\Psi}^{\dagger}(x')\} = \delta(x-x') \text{ and } \hat{\Psi}(x) |0\rangle = 0, \ \langle 0 | 0\rangle = 1$ $\{A, B\} := AB + BA$

2nd quantization: work with basis states

$$c_{\alpha_N}^{\dagger} \cdots c_{\alpha_1}^{\dagger} | 0 \rangle$$
 where $c_{\alpha}^{\dagger} := \int dx \, \varphi_{\alpha}(x) \hat{\Psi}^{\dagger}(x)$

one-body operator

$$\vec{L}_{tot}(x_1,\ldots,x_N) = \sum_{n=1}^N \vec{L}(x_n)$$

include field operators in matrix elements

$$\int dx_1 \dots dx_N \,\overline{\Phi_{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N)} \,\vec{L}_{tot}(x_1, \dots, x_N) \Phi_{\beta_1 \dots \beta_N}(x_1, \dots, x_N) = \langle 0 | c_{\alpha_1} \cdots c_{\alpha_N} \underbrace{\frac{1}{N!} \int d\mathbf{x} \,\hat{\Psi}^{\dagger}(x_N) \cdots \hat{\Psi}^{\dagger}(x_1) \sum_n \vec{L}(x_n) \hat{\Psi}(x_1) \cdots \hat{\Psi}(x_N) c_{\beta_N}^{\dagger} \cdots c_{\beta_1}^{\dagger} | 0 \rangle}_{=:\hat{L}}$$

operator \hat{L}_{tot} independent of number of electrons

total angular momentum operator

expand field operators in orthonormal basis $\hat{\Psi}^{\dagger}(x) = \sum \overline{\varphi_{\alpha_n}(x)} c_{\alpha_n}^{\dagger}$ $\alpha_{n} c_{\alpha}^{\dagger} := \int dx' \varphi_{\alpha}(x') \hat{\Psi}^{\dagger}(x')$ $\hat{L} = \int dx \,\hat{\Psi}^{\dagger}(x) \overrightarrow{L}(x) \Psi(x) = \sum c_{\alpha_n}^{\dagger} \int dx \,\overline{\varphi_{\alpha_n}(x)} L(x) \varphi_{\alpha_m}(x) c_{\alpha_m}(x) c_{\alpha_m}(x) dx$ $\langle \alpha_n | L | \alpha_m \rangle$ basis of atomic orbitals $|n, l, m, \sigma\rangle$ $\hat{L}_{z} = \sum m c_{n,l,m,\sigma}^{\dagger} c_{n,l,m,\sigma}^{\dagger}$

$$\hat{L}_{\pm} = \sum_{n,l,m,\sigma} \sqrt{(l \pm m + 1)(l \mp m)} c^{\dagger}_{n,l,m\pm 1,\sigma} c_{n,l,m,\sigma}$$

 $n \mid m \sigma$

similarly: total spin $\hat{S}_{+} = \sum_{n,l,m} c^{\dagger}_{n,l,m,\uparrow} c_{n,m,m,\downarrow}$

p² shell

arrange	basis	determinants	$ n_{1\uparrow}, n_{0\uparrow}, n_{-1\uparrow}, n_{1\downarrow}, n_{0\downarrow}, n_{-1\downarrow}\rangle := \prod \left(p_{m,\sigma}^{\dagger} \right)^{n_{m\sigma}} 0\rangle$			
			Σ			
		1	0	-1		
	2		$p^{\dagger}_{1\uparrow}p^{\dagger}_{1\downarrow} 0 angle$			
	1	$p_{1\uparrow}^{\dagger}p^{\dagger}\left{0\uparrow} ight 0 ight angle$	$p^{\dagger}_{1\uparrow}p^{\dagger}_{0\downarrow} 0 angle \ p^{\dagger}_{0\uparrow}p^{\dagger}_{1\downarrow} 0 angle$	$p^{\dagger}_{1\downarrow}p^{\dagger}\left{0\downarrow} ight 0 ight angle$		
M	0	$p_{1\uparrow}^{\dagger}p_{-1\uparrow}^{\dagger} 0 angle$	$p^{\dagger}_{1\uparrow}p^{\dagger}_{-1\downarrow} 0 angle \ p^{\dagger}_{0\uparrow}p^{\dagger}_{0\downarrow} 0 angle \ p^{\dagger}_{-1\uparrow}p^{\dagger}_{1\downarrow} 0 angle$	$p_{1\downarrow}^{\dagger}p_{-1\downarrow}^{\dagger} 0 angle$		
	-1	$p^{\dagger}_{0\uparrow}p^{\dagger}_{-1\uparrow} 0 angle$	$p^{\dagger}_{0\uparrow}p^{\dagger}_{-1\downarrow} 0 angle onumber \ p^{\dagger}_{-1\uparrow}p^{\dagger}_{0\downarrow} 0 angle$	$p^{\dagger}_{0\downarrow}p^{\dagger}_{-1\downarrow} 0 angle$		
	-2		$p^{\dagger}_{-1\uparrow}p^{\dagger}_{-1\downarrow} 0 angle$			

construct multiplet states

construct eigenstates $|L, M; S, \Sigma\rangle$ of \overrightarrow{L}_{tot} and \overrightarrow{S}_{tot}

basis states with maximum M and Σ are eigenstates: $\hat{L}_{+} | \Phi_{M,\Sigma} \rangle = 0 = \hat{S}_{+} | \Phi_{M,\Sigma} \rangle \iff | \Phi_{M,\Sigma} \rangle = | L, M; S, \Sigma \rangle$ $\overrightarrow{J}^{2} = J_{z}(J_{z}+1) + J_{-}J_{+}$

applying operators to basis states: $\hat{L} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} | 0 \rangle = \left([\hat{L}, c_{\alpha}^{\dagger}] + c_{\alpha}^{\dagger} \hat{L} \right) c_{\beta}^{\dagger} | 0 \rangle$ $= [\hat{L}, c_{\alpha}^{\dagger}] c_{\beta}^{\dagger} | 0 \rangle + c_{\alpha}^{\dagger} [\hat{L}, c_{\beta}^{\dagger}] | 0 \rangle + c_{\alpha}^{\dagger} c_{\beta}^{\dagger} \hat{L} | 0 \rangle$

 $p^{2}(^{3}P)$

			2
1,1;1,1 angle	—	$ ho_{1\uparrow}^{\dagger} ho_{0\uparrow}^{\dagger} 0 angle$	1
$\sqrt{2} 1, 1; 1, 0\rangle$	$=S_{-}\left 1,1 ight;1,1 ight angle =ig(p_{1\downarrow}^{\dagger}p_{0\uparrow}^{\dagger})$	$+ ho_{1\uparrow}^{\dagger} ho_{0\downarrow}^{\dagger}ig) 0 angle$	0
$2\left 1,1;1,-1 ight angle$	$=S_{-}\left 1$, 1; 1, 0 $ ight angle =$	$2 p_{1\downarrow}^\dagger p_{0\downarrow}^\dagger 0 angle$	
		-	-1

	1	0	-1
2		$p^{\dagger}_{1\uparrow}p^{\dagger}_{1\downarrow} 0 angle$	
1	$ ho_{1\uparrow}^{\dagger} ho_{0\uparrow}^{\dagger} 0 angle$	$egin{array}{ccc} p^{\dagger}_{1\uparrow} p^{\dagger}_{0\downarrow} 0 angle \ p^{\dagger}_{0\uparrow} p^{\dagger}_{1\downarrow} 0 angle \end{array}$	$ ho_{1\downarrow}^{\dagger} ho^{\dagger} \left{0\downarrow} ight 0 ight angle$
0	$p_{1\uparrow}^{\dagger}p_{-1\uparrow}^{\dagger} 0 angle$	$egin{aligned} & p^{\dagger}_{1\uparrow}p^{\dagger}_{-1\downarrow} 0 angle \ & p^{\dagger}_{0\uparrow}p^{\dagger}_{0\downarrow} 0 angle \ & p^{\dagger}_{-1\uparrow}p^{\dagger}_{1\downarrow} 0 angle \end{aligned}$	$p_{1\downarrow}^{\dagger}p_{-1\downarrow}^{\dagger} 0 angle$
-1	$ ho_{0\uparrow}^{\dagger} ho_{-1\uparrow}^{\dagger} 0 angle$	$p^{\dagger}_{0\uparrow} p^{\dagger}_{-1\downarrow} 0 angle onumber \ p^{\dagger}_{-1\uparrow} p^{\dagger}_{0\downarrow} 0 angle$	$p^{\dagger}_{0\downarrow}p^{\dagger}_{-1\downarrow} 0 angle$
-2		$ ho_{-1\uparrow}^{\dagger} ho_{-1\downarrow}^{\dagger} 0 angle$	

p² (¹**D**)

$$\hat{L}_{+} = \sqrt{2} \sum_{\sigma} \left(p_{0\sigma}^{\dagger} p_{1\sigma} + p_{-1\sigma}^{\dagger} p_{0\sigma} \right)$$

$$[\hat{L}_{-}, p_{m\sigma}^{\dagger}] = \sqrt{2} (p_{0,\sigma}^{\dagger} \,\delta_{m,1} + p_{-1\sigma}^{\dagger} \,\delta_{m,0})$$

	1	0	-1
2		$p^{\dagger}_{1\uparrow}p^{\dagger}_{1\downarrow} 0 angle$	
1	$ ho_{1\uparrow}^{\dagger} ho_{0\uparrow}^{\dagger} 0 angle$	$egin{aligned} & \rho^{\dagger}_{1\uparrow} \rho^{\dagger}_{0\downarrow} 0 angle \ & ho^{\dagger}_{0\uparrow} \rho^{\dagger}_{1\downarrow} 0 angle \end{aligned}$	$p^{\dagger}_{1\downarrow}p^{\dagger}\left{0\downarrow} ight 0 ight angle$
0	$ ho_{1\uparrow}^{\dagger} ho_{-1\uparrow}^{\dagger} 0 angle$	$egin{aligned} & p^{\dagger}_{1\uparrow}p^{\dagger}_{-1\downarrow} 0 angle \ & p^{\dagger}_{0\uparrow}p^{\dagger}_{0\downarrow} 0 angle \ & p^{\dagger}_{-1\uparrow}p^{\dagger}_{1\downarrow} 0 angle \end{aligned}$	$p_{1\downarrow}^{\dagger}p_{-1\downarrow}^{\dagger} 0 angle$
-1	$ ho_{0\uparrow}^{\dagger} ho_{-1\uparrow}^{\dagger} 0 angle$	$p^{\dagger}_{0\uparrow} p^{\dagger}_{-1\downarrow} 0 angle onumber \ p^{\dagger}_{-1\uparrow} p^{\dagger}_{0\downarrow} 0 angle$	$p^{\dagger}_{0\downarrow}p^{\dagger}_{-1\downarrow} 0 angle$
-2		$p^{\dagger}_{-1\uparrow}p^{\dagger}_{-1\downarrow} 0 angle$	

$$\begin{array}{|c|c|c|c|c|c|c|} \hline 1D & \Sigma = 0 \\ \hline 2 & p_{1\uparrow}^{\dagger}p_{1\downarrow}^{\dagger} \mid 0 \rangle \\ \hline 1 & \frac{1}{\sqrt{2}} \left(p_{1\uparrow}^{\dagger}p_{0\downarrow}^{\dagger} + p_{0\uparrow}^{\dagger}p_{1\downarrow}^{\dagger} \right) \mid 0 \rangle \\ \hline M & 0 & \frac{1}{\sqrt{6}} \left(p_{1\uparrow}^{\dagger}p_{-1\downarrow}^{\dagger} + 2p_{0\uparrow}^{\dagger}p_{0\downarrow}^{\dagger} + p_{-1\uparrow}^{\dagger}p_{1\downarrow}^{\dagger} \right) \mid 0 \rangle \\ \hline -1 & \frac{1}{\sqrt{2}} \left(p_{0\uparrow}^{\dagger}p_{-1\downarrow}^{\dagger} + p_{-1\uparrow}^{\dagger}p_{0\downarrow}^{\dagger} \right) \mid 0 \rangle \\ \hline -2 & p_{-1\uparrow}^{\dagger}p_{-1\downarrow}^{\dagger} \mid 0 \rangle \end{array}$$

p² (1**S**)

$$\begin{bmatrix} 1S \end{bmatrix} \quad |0,0;0,0\rangle = \frac{1}{\sqrt{3}} \left(-p_{1\uparrow}^{\dagger} p_{-1\downarrow}^{\dagger} + p_{0\uparrow}^{\dagger} p_{0\downarrow}^{\dagger} - p_{-1\uparrow}^{\dagger} p_{1\downarrow}^{\dagger} \right) |0\rangle$$

constructed all eigenstates of H_{ee} for p^2 shell

d³ shell

			$\frac{3}{2}$	-	$\frac{1}{2}$		
	5			2 H	$d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}$	$d^{\dagger}_{2\downarrow} 0\rangle$	
	4			² G	$d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}d^{\dagger}_{1\downarrow} 0 angle$	$d^{\dagger}_{2\uparrow} d^{\dagger}_{0\uparrow} d^{\dagger}_{2\downarrow} 0 angle$	
	3	4 F	$d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow} 0 angle$	2 F	$egin{aligned} &d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}d^{\dagger}_{0\downarrow} 0 angle\ &d^{\dagger}_{2\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{1\downarrow} 0 angle \end{aligned}$	$egin{aligned} &d^{\dagger}_{2\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{2\downarrow} 0 angle \ &d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{2\downarrow} 0 angle \end{aligned}$	
М	2		$d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}d^{\dagger}_{-1\uparrow} 0 angle$	2ײD	$\begin{array}{c} d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle \\ d^{\dagger}_{2\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{0\downarrow} 0\rangle \\ d^{\dagger}_{2\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{1\downarrow} 0\rangle \end{array}$	$egin{aligned} &d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{1\downarrow} 0 angle\ &d^{\dagger}_{2\uparrow}d^{\dagger}_{-2\uparrow}d^{\dagger}_{2\downarrow} 0 angle\ &d^{\dagger}_{1\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{2\downarrow} 0 angle \end{aligned}$	
	1	4 P	$egin{aligned} & d_{2\uparrow}^{\dagger}d_{1\uparrow}^{\dagger}d_{-2\uparrow}^{\dagger} 0 angle \ & d_{2\uparrow}^{\dagger}d_{0\uparrow}^{\dagger}d_{-1\uparrow}^{\dagger} 0 angle \end{aligned}$	2 P	$\begin{array}{c} d^{\dagger}_{2\uparrow}d^{\dagger}_{1\uparrow}d^{\dagger}_{-2\downarrow} 0\rangle \\ d^{\dagger}_{2\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle \\ d^{\dagger}_{2\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{0\downarrow} 0\rangle \\ d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{0\downarrow} 0\rangle \end{array}$	$\begin{array}{c} d^{\dagger}_{2\uparrow}d^{\dagger}_{-2\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle \\ d^{\dagger}_{1\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle \\ d^{\dagger}_{1\uparrow}d^{\dagger}_{-2\uparrow}d^{\dagger}_{-2\downarrow} 0\rangle \\ d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{-2\downarrow} 0\rangle \end{array}$	
	0		$egin{aligned} &d^{\dagger}_{2\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{-2\uparrow} 0 angle\ &d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\uparrow} 0 angle \end{aligned}$		$\begin{array}{c} d^{\dagger}_{2\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{-2\downarrow} 0\rangle\\ d^{\dagger}_{2\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle\\ d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle\\ d^{\dagger}_{1\uparrow}d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\downarrow} 0\rangle\end{array}$	$egin{aligned} &d^{\dagger}_{1\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{0\downarrow} 0 angle\ &d^{\dagger}_{1\uparrow}d^{\dagger}_{-2\uparrow}d^{\dagger}_{1\downarrow} 0 angle\ &d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{1\downarrow} 0 angle\ &d^{\dagger}_{0\uparrow}d^{\dagger}_{-1\uparrow}d^{\dagger}_{2\downarrow} 0 angle \end{aligned}$	

 $d^{3}(2 \times {}^{2}D)$

$$|2,2; \frac{1}{2}, \frac{1}{2}\rangle \in \operatorname{span} \left\{ \begin{array}{c} d_{2\uparrow}^{\dagger} d_{1\uparrow}^{\dagger} d_{-1\downarrow}^{\dagger} |0\rangle, d_{2\uparrow}^{\dagger} d_{0\uparrow}^{\dagger} d_{0\downarrow}^{\dagger} |0\rangle, d_{2\uparrow}^{\dagger} d_{-1\uparrow}^{\dagger} d_{1\downarrow}^{\dagger} |0\rangle \\ d_{1\uparrow}^{\dagger} d_{0\uparrow}^{\dagger} d_{1\downarrow}^{\dagger} |0\rangle, d_{2\uparrow}^{\dagger} d_{-2\uparrow}^{\dagger} d_{2\downarrow}^{\dagger} |0\rangle, d_{1\uparrow}^{\dagger} d_{-1\uparrow}^{\dagger} d_{2\downarrow}^{\dagger} |0\rangle \end{array} \right\}$$

 $\begin{array}{c} \bot \ |3,2; \ \frac{3}{2}, \frac{1}{2}\rangle_{4F} \\ \bot \ |5,2; \ \frac{1}{2}, \frac{1}{2}\rangle_{2H} \\ \bot \ |4,2; \ \frac{1}{2}, \frac{1}{2}\rangle_{2G} \\ \bot \ |3,2; \ \frac{1}{2}, \frac{1}{2}\rangle_{2F} \end{array}$

need to diagonalize *H*_{ee} on two-dimensional subspace

way to uniquely define function? seniority

seniority

s ⁰ , s ²	^{1}S			
<i>s</i> ¹		² S		
p^{0}, p^{6} p^{1}, p^{5} p^{2}, p^{4}	^{1}S \downarrow ^{1}S ^{1}D	$\begin{array}{c} \text{Kramers paral}\\ -p_{1\uparrow}^{\dagger}p_{-1\downarrow}^{\dagger}+p \end{array}$	air (L=0, S=0) $p_{0\uparrow}^{\dagger} p_{0\downarrow}^{\dagger} - p_{-1\uparrow}^{\dagger} p_{1\downarrow}^{\dagger}$ ^{3}P	
<i>p</i> ³		$^{2}P^{2}D$	2	¹ S
d^{0}, d^{6} d^{1}, d^{9}	¹ S	$d^{\dagger}_{2\uparrow}d^{\dagger}_{-2\downarrow} - d^{\dagger}_{1\uparrow}d^{\dagger}_{-2\downarrow}$	$d^{\dagger}_{-1\downarrow} + d^{\dagger}_{0\uparrow}d^{\dagger}_{0\downarrow} - d^{\dagger}_{-}$	$d_{1\uparrow}^{\dagger} d_{1\downarrow}^{\dagger} + d_{-2\uparrow}^{\dagger} d_{2\downarrow}^{\dagger}$
d^{2}, d^{8} d^{3}, d^{7}	${}^{1}S {}^{1}D {}^{1}G$	$2 \times 2P^2 D^2 F^2 G^2 H$	³ P ³ F	4 <i>D</i> 4 <i>E</i>
d^{4}, d^{6} d^{5}	${}^{2\times 2\times 2\times 2\times 1}S {}^{1}D {}^{1}F {}^{1}G {}^{1}H$	$^{3\times2\times2\times}_{2S}^{3\times2\times2\times}$	${}^{2\times}{}^{3}P{}^{3}D{}^{3}F{}^{3}G{}^{3}H$	$^{4}P^{4}D^{4}F^{4}G^{6}S$

multiplet terms

p^0, p^6 p^1, p^5 p^2, p^4	${}^{1}S$ ${}^{1}S {}^{1}D$	^{2}P	^{3}P				
p^3		$^{2}P^{2}D$		^{4}S			
d^{0}, d^{6}	^{1}S						
d^1, d^9		^{2}D					
d^2, d^8	^{1}S ^{1}D ^{1}G	$2 \times$	${}^{3}P{}^{3}F$				
d^{3}, d^{7}	$2 \times 2 \times 2 \times 2 \times$	$^{2}P^{2}D^{2}F^{2}G^{2}H$	$2 \times 2 \times$	${}^{4}\!P{}^{4}\!F$	_		
d^4, d^6	${}^{1}S {}^{1}D {}^{1}F {}^{1}G {}^{1}I$	$3 \times 2 \times 2 \times$	${}^{3}P{}^{3}D{}^{3}F{}^{3}G{}^{3}H$		^{5}D	60	
		25 °P °D °F °G °H °I		P D F G		05	
f^{0}, f^{14}	^{1}S				$\sum_{n=1}^{\infty} (1)m$		
f^{1}, f^{13}		^{2}F		kramers pa	air $\sum_{i=1}^{n} (-1)^{i}$	$C_{n,l,m,\uparrow}^{c}$, $n,l,-m, $	Ļ
f^2, f^{12}	${}^{1}\!S{}^{1}\!D{}^{1}\!G{}^{1}\!I$		${}^{3}P{}^{3}F{}^{3}H$		т		
f^{3}, f^{11}		${}^{2 \times 2 \times 2 \times 2 \times 2 \times}_{P {}^{2}D {}^{2}F {}^{2}G {}^{2}H {}^{2}I {}^{2}K {}^{2}L$		${}^{4}\!S{}^{4}\!D{}^{4}\!F{}^{4}\!G{}^{4}\!I$			
f^4, f^{10}	${}^{2\times}{}^{4\times}{}^{1}S {}^{1}D {}^{1}F {}^{1}G {}^{1}H {}^{1}I$	$\times {}^{2\times} {}^{1}K {}^{1}L {}^{1}N$	${}^{3\times}_{3}P {}^{2\times}D {}^{3}F {}^{3}G {}^{3}H {}^{3}I {}^{3}K {}^{3}H$	$L^{3}M$	⁵ S ⁵ D ⁵ F ⁵ G ⁵ I		
f^{5}, f^{9}		${}^{4\times} {}^{5\times} {}^{7\times} {}^{6\times} {}^{7\times} {}^{5\times} {}^{5\times} {}^{3\times} {}^{2\times} {}^{2}P^{2}D^{2}F^{2}G^{2}H^{2}I^{2}K^{2}L^{2}N$	$\tilde{d}^{2}N^{2}O$	${}^{4}S {}^{4}P {}^{4}D {}^{4}F {}^{4}G {}^{4}H {}^{4}I {}^{4}K {}^{4}H$	L^4M	${}^{6}\!P{}^{6}\!F{}^{6}\!H$	
f^{6}, f^{8}	${}^{4\times}_{1S}{}^{1P}{}^{1D}{}^{1F}{}^{1G}{}^{1H}$	$\stackrel{\times}{}_{I}^{3\times} \stackrel{3\times}{}_{I}^{4\times} \stackrel{2\times}{}_{I}^{2\times} \stackrel{2\times}{}_{I}^{2\times} \stackrel{2\times}{}_{I}^{1} \stackrel{1}{K} \stackrel{1}{}_{L}^{1} \stackrel{1}{M} \stackrel{1}{}_{N}^{1} \stackrel{1}{Q}$	${}^{6\times}_{3P} {}^{5\times}_{3D} {}^{9\times}_{3F} {}^{7\times}_{3G} {}^{9\times}_{3H} {}^{3}_{I} {}^{3}_{K} {}^{3}_{I}$	$\times {}^{3\times}_{M} {}^{3}\!N {}^{3}\!O$	${}^{5}S{}^{5}P{}^{5}D{}^{5}F{}^{5}G{}^{5}H{}^{5}I$	5K $5L$ $7F$	
f^5		$^{2 \times 5 \times 7 \times 10 \times 10 \times 9 \times 9 \times 7 \times 5 \times} ^{2 S \ 2} P^{2} D^{2} F^{2} G^{2} H^{2} I^{2} K^{2} L^{2}$	$4 \times 2 \times 2 \times 2^2 M^2 N^2 O^2 O$	${}^{2\times2\times6\times5\times7\times5\times5\times3\times3}_{4S} {}^{4}\!P {}^{4}\!D {}^{4}\!F {}^{4}\!G {}^{4}\!H {}^{4}\!I {}^{4}\!K {}^{4}\!H$	$\stackrel{\times}{L}{}^4M {}^4N$	${}^{6}\!P{}^{6}\!D{}^{6}\!F{}^{6}\!G{}^{6}\!H{}^{6}\!I$	⁸ S

electron-hole symmetry

$$p^{0}: |0\rangle \qquad p^{6}: p_{1\uparrow}^{\dagger} p_{0\uparrow}^{\dagger} p_{-1\uparrow}^{\dagger} p_{0\downarrow}^{\dagger} p_{-1\downarrow}^{\dagger} |0\rangle =: |p^{6}\rangle$$
vacuum state:

$$p_{m\sigma}|0\rangle = 0 \text{ and } \langle 0|0\rangle \qquad p_{m\sigma}^{\dagger}|p^{6}\rangle = 0 \text{ and } \langle p^{6}|p^{6}\rangle = 1$$

$$p^{1}: p_{0\uparrow}^{\dagger}|0\rangle \qquad p^{5}: p_{0\uparrow}|p^{6}\rangle = -p_{1\uparrow}^{\dagger} p_{-1\uparrow}^{\dagger} p_{1\downarrow}^{\dagger} p_{0\downarrow}^{\dagger} p_{-1\downarrow}^{\dagger} |0\rangle$$
hole operator $h_{n,l,-m,-\sigma}^{\dagger}:= (-1)^{l-m+1/2-\sigma}c_{n,l,m,\sigma}$

$$\prod_{m,\sigma} \left(c_{n,l,m,\sigma}^{\dagger}\right)^{n_{m,\sigma}}|0\rangle = \prod_{m,\sigma} \left(h_{n,l,-m,-\sigma}^{\dagger}\right)^{1-n_{m\sigma}}|l^{4l+2}\rangle$$

angular momentum operators have same form, e.g.

$$L_{z} = \sum_{m,\sigma} m c_{n,l,m,\sigma}^{\dagger} c_{n,l,m,\sigma} = \sum_{m,\sigma} m h_{n,l,-m,-\sigma} h_{n,l,-m,-\sigma}^{\dagger}$$

same construction of states in hole representation

recap: multiplet terms

multiplet terms: vector addition & exclusion principle Racah: coefficients of fractional parentage second quantization: Dirac representation for many-body states can only represent physical states and operators use ladder operators to construct multiplet states diagonalizes Hamiltonian when eigenstates of total angular momenta are non-degenerate residual eigenvalue problem for degenerate angular momenta, (partially) classify degenerate states using seniority (Kramers pairs) electron-hole transformation establishes relation between shells with N and (4/+2 - N) electrons

so far only used angular momenta, next consider Hamiltonian...

two-body operators

$$H_{ee}(\vec{r}_{1}, \dots, \vec{r}_{N}) = \sum_{i < j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|}$$
second quantization
$$\hat{H}_{ee} = \frac{1}{2} \int dx \int dx' \,\hat{\Psi}^{\dagger}(x) \hat{\Psi}^{\dagger}(x') \frac{1}{|\vec{r} - \vec{r}'|} \hat{\Psi}(x') \hat{\Psi}(x)$$
expand in orthonormal basis
$$\hat{H}_{ee} = \frac{1}{2} \sum_{n,n',m,m'} \underbrace{\int dx \int dx' \frac{\overline{\varphi_{n}(x)} \,\overline{\varphi_{n'}(x')} \,\varphi_{m'}(x') \varphi_{m}(x)}{|\vec{r} - \vec{r'}|}}_{=:\langle n,n'|H_{ee}|m',m\rangle} c_{n}^{\dagger} c_{n'}^{\dagger} c_{m'} c_{m}$$

orbitals:
$$\varphi_{n,l,m}(x) = \frac{u_{n,l}(r)}{r} Y_{l,m}(\vartheta, \varphi) \chi_{\sigma}$$

addition theorem for spherical harmonics

$$\begin{split} \operatorname{express} \frac{1}{|\vec{r} - \vec{r}'|} & \text{in spherical coordinates} \\ f(\vec{r}, \vec{r}') &= \sum_{l,m} a_{l,m}(r, r', \vartheta', \varphi') Y_{l,m}(\vartheta, \varphi) \\ &= \sum_{l,m} \left(\sum_{l',m'} a_{l,m,}(r, r') Y_{l',m'}(\vartheta', \varphi') \right) Y_{l,m}(\vartheta, \varphi) \\ & \text{special case: singlet } \left(\vec{L} + \vec{L}' \right) s(\vec{r}, \vec{r}') = 0 \\ s(\vec{r}, \vec{r}') &= \sum_{l=0}^{\infty} a_l(r, r') \sum_{m=-l}^{l} (-1)^m Y_{l,-m}(\vartheta', \varphi') Y_{l,m}(\vartheta, \varphi) \\ &= \sum_{l=0}^{\infty} a_l(r, r') \sum_{m=-l}^{l} \overline{Y_{l,m}(\vartheta', \varphi')} Y_{l,m}(\vartheta, \varphi) \\ s(\vec{r}, r'\hat{z}) &= \sum a_l(r, r') \sqrt{\frac{2l+1}{4\pi}} Y_{l,0}(\vartheta, \varphi) \quad \Rightarrow \quad a_l(r, r') \end{split}$$

V

Legendre polynomials

generating function
$$\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n$$

$$\frac{1}{|\vec{r}-\vec{r'}|} = \frac{1}{\sqrt{r^2 - 2\vec{r}\cdot\vec{r'} + r'^2}} = \sum_{l=0}^{\infty} \frac{r'_{<}}{r_{>}^{l+1}} P_l(\hat{r}\cdot\hat{r'})$$

$$\frac{1}{|\vec{r}-\vec{r}'|} = \sum_{l=0}^{\infty} \frac{r_{<}'}{r_{>}^{l+1}} \frac{4\pi}{2l+1} \sum_{m=-l}^{l} \overline{Y_{l,m}(\vartheta,\varphi')} Y_{l,m}(\vartheta,\varphi)$$

matrix elements

$$\begin{split} \left\langle \alpha, \beta \right| \frac{1}{\left|\vec{r} - \vec{r}'\right|} \left| \gamma, \delta \right\rangle &= \int d^3 r \, d^3 r' \, \overline{\varphi_{\alpha}(\vec{r})} \, \overline{\varphi_{\beta}(\vec{r}')} \, \frac{1}{\left|\vec{r} - \vec{r}'\right|} \, \varphi_{\gamma}(\vec{r}') \varphi_{\delta}(\vec{r}) \, \delta_{\sigma_{\alpha},\sigma_{\delta}} \, \delta_{\sigma_{\beta},\sigma_{\gamma}} \\ &= \sum_{k} F_{\alpha,\beta,\gamma,\delta}^{(k)} \, \frac{4\pi}{2k+1} \, \sum_{\mu=-k}^{k} \left\langle Y_{\alpha} | Y_{k,\mu} \, Y_{\delta} \right\rangle \left\langle Y_{\beta} Y_{k,\mu} | Y_{\gamma} \right\rangle \, \delta_{\sigma_{\alpha},\sigma_{\delta}} \, \delta_{\sigma_{\beta},\sigma_{\gamma}} \end{split}$$

Slater-Condon parameters

$$F_{\alpha,\beta,\gamma,\delta}^{(k)} := \int_0^\infty dr \,\overline{u_\alpha(r)} \, u_\delta(r) \int_0^\infty dr' \,\overline{u_\beta(r')} \, u_\gamma(r') \, \frac{r_{<}^k}{r_{>}^{k+1}}$$

Gaunt coefficients

$$c_{m,m'}^{(k,l,l')} := \sqrt{\frac{4\pi}{2k+1}} \left\langle Y_{l,m} \middle| Y_{k,m-m'} Y_{l',m'} \right\rangle = (-1)^{m'} \sqrt{\frac{4\pi}{2k+1}} \left\langle Y_{k,m'-m} \middle| Y_{l,-m} Y_{l',m'} \right\rangle$$

 $\hat{H}_{ee} = \frac{1}{2} \sum_{m\sigma,m'\sigma'} \sum_{k=0,2,...,2l} F_{n,l}^{(k)} \sum_{\Delta m=-k}^{k} c_{m+\Delta m,m}^{(k,l,l)} c_{m',m'-\Delta m}^{(k,l,l)} I_{m+\Delta m,\sigma}^{\dagger} I_{m',\sigma'}^{\dagger} I_{m,\sigma}$

Gaunt coefficients

$$Y_{l,m}(\vartheta,\varphi)Y_{l',m'}(\vartheta,\varphi) = \sum_{k=0}^{\infty}\sum_{\mu=-k}^{k} \langle Y_{k,\mu} | Y_{l,m}Y_{l',m'} \rangle Y_{k,\mu}(\vartheta,\varphi)$$

products behave like independent angular momenta (but are not normalized) (Wigner-Eckart theorem)

$$L_{+}Y_{lm}Y_{l'm'} = (L_{+}Y_{lm})Y_{l'm'} + Y_{lm}(L_{+}Y_{l'm'})$$
 product rule

$$c_{m,m'}^{(2,2,2)} = \sqrt{\frac{4\pi}{5}} \langle Y_{2,m} | Y_{2,m-m'} Y_{2,m'} \rangle = \frac{1}{7} \begin{pmatrix} -2 & \sqrt{6} & -2 & 0 & 0\\ -\sqrt{6} & 1 & 1 & -\sqrt{6} & 0\\ -2 & -1 & 2 & -1 & -2\\ 0 & -\sqrt{6} & 1 & 1 & -\sqrt{6}\\ 0 & 0 & -2 & \sqrt{6} & -2 \end{pmatrix}$$

tensor vs two-body matrix

$$\hat{H} = \frac{1}{2} \sum_{\substack{n,n',m,m' \\ n,n',m,m'}} M_{n,n';m,m'} c_n^{\dagger} c_{n'}^{\dagger} c_{m'} c_m$$
$$= \sum_{\substack{n'>n,m'>m}} \left(M_{n,n';m,m'} - M_{n',n;m,m'} \right) c_n^{\dagger} c_{n'}^{\dagger} c_{m'} c_m$$

direct and exchange terms each set of operators appears only once

average traces

$$U_{avg} := \frac{\operatorname{Tr} \mathbf{H}_{\uparrow\downarrow}}{\dim(\mathbf{H}_{\uparrow\downarrow})} = \frac{1}{(2l+1)^2} \sum_{m,m'} U_{m,m'} = F_{n,l}^{(0)}$$
$$U_{avg} - J_{avg} := \frac{\operatorname{Tr} \mathbf{H}_{\uparrow\uparrow} + \operatorname{Tr} \mathbf{H}_{\downarrow\downarrow}}{\dim(\mathbf{H}_{\uparrow\uparrow} + \dim(\mathbf{H}_{\downarrow\downarrow}))} = \frac{1}{2l(2l+1)} \sum_{m,m'} \left(U_{m,m'} - J_{m,m'} \right)$$

average energy for N electrons in K = 2(2I+1) orbitals:

average trace of full Hamiltonian

$$\left\langle E(I^N) \right\rangle = \frac{N(N-1)}{2} \left(U_{avg} - \frac{2I}{4I+1} J_{avg} \right)$$

electron-hole relation:

$$E(K-N) = E(N) + \left(\frac{K-1}{2}U_{avg} - \frac{K-2}{4}J_{avg}\right)((K-N) - N)$$

recap: Hamiltonian

p^{0}, p^{\bullet} ¹ 2-electron matrix elements p^{1}, p^{5} p^{2}, p^{4} ¹ expand interaction in spherical f p^{2}, p^{4} ¹ expand preserved interaction in spherical f	unctions							
• addition theorem for spherica	ddition theorem for spherical harmonics							
generating function of Legend	dre polynomia	als						
• Slater-Condon parameters G H electrostatic multipoles	${}^{4}P {}^{4}F$ ${}^{4}P {}^{4}D {}^{4}F {}^{4}G$	⁵ D	⁶ S					
Gaunt coefficients ³ f ¹² Gaunt coefficients ³ f ¹² Clebsch-Gordan/Wigner-Eckart	${}^4S{}^4D{}^4F{}^4G{}^4I$							
 collect all operators of same typ two-body matrix instead of tens 	e : ³ ³ ² × ³ × ⁴ × ⁴ × ³ × ³ × ² × ⁴ S ⁴ P ⁴ D ⁴ F ⁴ G ⁴ H ⁴ I ⁴ K O ⁷ ³ × ³ L ³ M ³ N ³ O	${}^{5}S{}^{5}D{}^{5}F{}^{5}G{}^{5}I$ ${}^{4}L{}^{4}M$ ${}^{3\times2\times3\times2\times2\times}{}^{5}S{}^{5}P{}^{5}D{}^{5}F{}^{5}G{}^{5}H{}^{5}I{}^{5}I$	$^6P {}^6F {}^6H$ $^5K {}^5L$	$^7\!F$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2 imes}{}^{2 imes}{}^{2 imes}{}^{2 imes}{}^{2 imes}{}^{6 imes}{}^{6 imes}{}^{6 imes}{}^{4 imes}$	${}^{3\times}_{^{4}\!L} {}^{4}\!M {}^{4}\!N$	⁶ P ⁶ D ⁶ F ⁶ G ⁶ H	⁶ I ⁸ S				

theory \rightarrow practice

practical calculations

https://www.cond-mat.de/sims/multiplet/