Markus Müller

Peter-Grünberg-Institut 2, Forschungszentrum Jülich Institute for Quantum Information, RWTH Aachen www.rwth-aachen.de/mueller-group

Quantifying Spatial Correlations in General Quantum Dynamics

Autumn School on Correlated Electrons: Topology, Entanglement, and Strong Correlations

My background and research areas

Research Lines & Applications

Angel Rivas and Markus Müller

g

Departamento de Física Teórica I, Universidad Complutense, E-28040 Madrid, Spain

Dynamics of Quantum Systems

Correlated vs Uncorrelated Dynamics

Evolution of a part of a multipartite quantum system may depend on the evolution of the others

"Spatial" Correlations

Correlated Quantum Dynamics

Examples:

Any multipartite quantum system with interaction among their parties, or with a common bath

Quantum Computers and Simulators

Blatt group (Innsbruck, Austria)

Superconducting Qubits

Martinis group (UCSB, California)

Atomic gases

Ye group (NIST, Colorado)

Fundamental processes and applications, e.g. performance of quantum information processing protocols

Harnessing dynamical correlations

Protection of quantum states

Decoherence-Free Subspaces (DFS), Dynamical decoupling, quantum control

Quantum technology

Entanglement-based magnetometry, Quantum sensing

Outline of this lecture

- I) Quantifying correlations in quantum states
- 2) Dynamics in closed and open quantum systems
- 3) Quantifying spatial correlations in quantum dynamics
- 4) Physical application: radiating atoms
- 5) Experimental noise characterisation in a quantum computer
- 6) Harnessing spatially correlated noise

Quantifying Correlations in Dynamics

First attempt: correlations of observables

 $C(X_{\rm A}, Y_{\rm B}) = \langle X_{\rm A} \otimes Y_{\rm B} \rangle - \langle X_{\rm A} \rangle \langle Y_{\rm B} \rangle$

If $C(X_A, Y_B) \neq 0$ \square Correlated Dynamics

Not enough!

Quantifying Correlations in Dynamics

Introduce a quantifier to assess the amount of correlations in quantum dynamics in a general way, and independently of specific underlying situations or models

Wishlist

- No need for good guesses of test states
- No need for good guesses of test observables
- Quantitative measure not a simple yes / no / I don't know output

Correlations in quantum dynamics states

ALICE

Example: Bell states (EPR pairs) BOB

 $\frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)$

 $\rho_{\rm S}|_{\rm A} = \mathrm{Tr}_{\rm B}(\rho_{\rm S}) = \frac{1}{2} \left(|0\rangle \langle 0|_{\rm A} + |1\rangle \langle 1|_{\rm A} \right)$

 $\langle Z_{\rm A} \rangle = \operatorname{Tr}_{\rm A}(Z_{\rm A}\rho_{\rm S}|_{\rm A}) = 0$

 $C(Z_A, Z_B) = \langle Z_A \otimes Z_B \rangle - \langle Z_A \rangle \langle Z_B \rangle = 1$

$C(X_A, X_B) = \langle X_A \otimes X_B \rangle - \langle X_A \rangle \langle X_B \rangle = 1$

Entangled:

 $|\Phi^+
angle
eq |\psi_1
angle_{\mathrm{A}} \otimes |\psi_2
angle_{\mathrm{B}}$ with $|\psi_i
angle = lpha_i|0
angle_i + eta_i|1
angle_i$

How correlated is a bi-partite state?

Quantum mutual information

generalises Shannon mutual information (quantifying dependence between two random variables)

von Neumann entropy
$$S(\rho_S) := -\text{Tr}\rho_S \log(\rho_S)$$

 $\rho_S = \sum_i p_i |\psi_i\rangle \langle \psi_i |$

with
$$p_i \geq 0$$
 and $\sum_i p_i = 1$

$$S(\rho_{\rm S}) = -\sum_i p_i \log p_i$$

How correlated is a bi-partite state?

Quantum mutual information

von Neumann entropy $S(\rho_{\rm S}) := -\mathrm{Tr}\rho_{\rm S}\log(\rho_{\rm S})$

Quantum mutual information

$$\begin{split} I(\rho_{\rm S}) &= S(\rho_{\rm S}|_{\rm A}) + S(\rho_{\rm S}|_{\rm B}) - S(\rho_{\rm S}) \\ \hline & & & \\ \\ \text{Reduced density} \\ \rho_{\rm S}|_{\rm A} &= \mathrm{Tr}_{\rm B}(\rho_{\rm S}), \quad \rho_{\rm S}|_{\rm B} = \mathrm{Tr}_{\rm A}(\rho_{\rm S}) \end{split}$$

How correlated is a bi-partite state?

Quantum mutual information

$$\frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)$$

 $\rho_{\rm S} \qquad \text{von Neumann entropy } S(\rho_{\rm S}) := -\text{Tr}\rho_{\rm S}\log(\rho_{\rm S})$ $\rho_{\rm S}|_{\rm A} = \text{Tr}_{\rm B}(\rho_{\rm S}) = \frac{1}{2} \Big(|0\rangle\langle 0|_{\rm A} + |1\rangle\langle 1|_{\rm A} \Big) \qquad S(\rho_{\rm S}|_{\rm A}) = S(\rho_{\rm S}|_{\rm B}) = \log 2$ $I(-) = O(-|-\rangle + O(-|-\rangle) = O(-|-\rangle) = O(-|-\rangle)$

$$I(\rho_{\rm S}) = S(\rho_{\rm S}|_{\rm A}) + S(\rho_{\rm S}|_{\rm B}) - S(\rho_{\rm S}) = 2\log 2$$

Maximally entangled states

For any uncorrelated state $\,
ho_{
m S}\,=\,
ho_{
m S}|_{
m A}\otimes
ho_{
m S}|_{
m B}\,$ we have $\,I(
ho_S)=0$

Quantum Dynamics

General time evaluation of a quantum system

Completely positive, trace-preserving (CPT) maps or Kraus maps

$$\mathcal{E}_{\mathrm{S}}: \rho_{\mathrm{S}} \mapsto \mathcal{E}_{\mathrm{S}}(\rho_{\mathrm{S}}) = \sum_{i} K_{i} \rho_{\mathrm{S}} K_{i}^{\dagger}$$

with a set of Kraus operators $\sum_{i} K_{i}^{\dagger} K_{i} = \mathbb{1}_{\mathrm{S}}$

Closed system dynamics

System
$$\rho_{\rm S} \mapsto U_{\rm S} \, \rho_{\rm S} \, U_{\rm S}^{\dagger}$$

Open-system dynamics: dephasing channel

and delta-correlated noise

Open-system dynamics: dephasing channel

$$\rho(t) = \int |\psi(t)\rangle \langle \psi(t)| P(B) dB =$$

= $|\alpha|^2 |0\rangle \langle 0| + |\beta|^2 |1\rangle \langle 1| + e^{-\frac{1}{2}\gamma t} (\alpha \beta^* |0\rangle \langle 1| + \alpha^* \beta |1\rangle \langle 0|$

From the evaluation for an arbitrary single-qubit state $ho_{
m S}$

$$\mathcal{E}_{\mathrm{S}}: \rho_{\mathrm{S}} \mapsto (1-p)\rho_{\mathrm{S}} + pZ\rho_{\mathrm{S}}Z$$

we identify the Kraus map

$$\mathcal{E}_{\mathrm{S}} : \rho_{\mathrm{S}} \mapsto \mathcal{E}_{\mathrm{S}}(\rho_{\mathrm{S}}) = \sum_{i} K_{i} \rho_{\mathrm{S}} K_{i}^{\dagger} \qquad \sum_{i} K_{i}^{\dagger} K_{i} = \mathbb{1}_{\mathrm{S}}$$

Kraus operators $K_0 = \sqrt{1-p} \mathbb{1}$ and $K_1 = \sqrt{pZ}$

with
$$p = \frac{1}{2}(1 - e^{-\frac{1}{2}\gamma t})$$

Open-system dynamics: dephasing channel

$$p \simeq \frac{1}{4}\gamma(\Delta t)$$

one recovers the quantum master equation in Lindblad form

$$\dot{\rho} \simeq \frac{\rho(t + \Delta t) - \rho(t)}{\Delta t} = \frac{\gamma}{4} (Z\rho Z^{\dagger} - \frac{1}{2} \{\rho, Z^{\dagger} Z\})$$

Correlated quantum dynamics

Focus on bi-partite systems

 $\dim(\mathcal{H}_{\mathrm{A}}) = \dim(\mathcal{H}_{\mathrm{B}}) = d$

Example: 2-qubit entangling gate $\text{CNOT} = |0\rangle \langle 0|_{A} \otimes \mathbb{1}_{B} + |1\rangle \langle 1|_{A} \otimes X_{B}$

Outputs a (maximally) \Rightarrow Correlated quantum dynamics

Correlated quantum dynamics

Spatially correlated, global dephasing on an N-qubit register $\mathcal{E}_{ ext{S}}
eq \otimes_k \mathcal{E}_k$

Test state
$$|\psi(0)\rangle = \bigotimes_k |+\rangle_k$$

... will build up correlations under the correlated dynamics $\mathcal{E}_{\rm S}$

There are highly correlated quantum processes that do not create correlations

 $U_{\rm SWAP}(\rho\otimes\sigma)U_{\rm SWAP}^{\dagger}=\sigma\otimes\rho$

 $H_G(t) = \frac{1}{2} B(t) \sum Z_k$

Real particle exchange, correlated hopping

e.g melting & re-crystalisation of ion Coulomb crystals

Rigorous quantification of correlations in quantum dynamics

Basic idea

Choi-Jamiołkowski Isomorphism (1972)

Man-Duen Choi

Andrzej Jamiołkowski

Choi-Jamiołkowski Isomorphism

Example: Single-qubit dephasing channel

 $\rho_{\rm S}^{\rm CJ} := \mathcal{E}_{\rm S} \otimes \mathbb{1}_{\rm S'} (|\Phi_{\rm SS'}\rangle \langle \Phi_{\rm SS'}|)$ $= \frac{1}{2} \Big(|00\rangle \langle 00|_{\rm SS'} + |11\rangle \langle 11|_{\rm SS'} \Big) + \frac{1}{2} (1-2p) \Big(|00\rangle \langle 11|_{\rm SS'} + |11\rangle \langle 00|_{\rm SS'} \Big)$

Construction of the correlation measure

Resource-theory approach: Correlations as a resource

Correlated dynamics = resource to perform whatever task which can't be implemented solely by (composing) uncorrelated dynamics $\mathcal{E}_A \otimes \mathcal{E}_B$

Fundamental law of the resource theory

The amount of correlations of some dynamics does not increase under composition with uncorrelated dynamics $\mathcal{E}'_{S} = (\mathcal{L}_{A} \otimes \mathcal{L}_{B})\mathcal{E}_{S}(\mathcal{R}_{A} \otimes \mathcal{R}_{B})$

Construction of the correlation measure

Resource-theory approach: Correlations as a resource

Correlated dynamics = resource to perform whatever task which can't be implemented solely by (composing) uncorrelated dynamics $\mathcal{E}_A \otimes \mathcal{E}_B$

Fundamental law of the resource theory

The amount of correlations of some dynamics does *not increase* under composition with uncorrelated dynamics $\mathcal{E}'_{S} = (\mathcal{L}_{A} \otimes \mathcal{L}_{B})\mathcal{E}_{S}(\mathcal{R}_{A} \otimes \mathcal{R}_{B})$

Good Quantifier:
$$\mathcal{I}(\mathcal{E}) \geq \mathcal{I}(\mathcal{E}')$$
 partial order

*L. Li, K. Bu and Z.-W. Liu, Quantifying the resource content of quantum channels: An operational approach, arXiv:1812.02572 *Y. Liu and X. Yuan, Operational Resource Theory of Quantum Channels, arXiv:1904.02680 *Z.-W. Liu and A. Winter, Resource theories of quantum channels and the universal role of resource erasure, arXiv:1904.04201.

Resource theory of entanglement

Entanglement as a resource ...

Correlation measure for dynamics

Maximally entangled state: $|\Phi_{\mathrm{SS}'}\rangle := \frac{1}{d} \sum_{i=1}^{d^2} |jj\rangle_{\mathrm{SS}'} = \frac{1}{d} \sum_{k \ \ell=1}^d |k\ell\rangle_{\mathrm{AB}} \otimes |k\ell\rangle_{\mathrm{A'B'}} \qquad \rho_{\mathrm{S}}^{\mathrm{CJ}} := \mathcal{E}_{\mathrm{S}} \otimes \mathbb{1}_{\mathrm{S}'} \left(|\Phi_{\mathrm{SS}'}\rangle \langle \Phi_{\mathrm{SS}'} | \right)$

Choi-Jamiołkowski state

Correlation measure for dynamics

Normalised quantum mutual information of the Choi-Jamiołkowski state:

$$\bar{I}(\mathcal{E}_{\mathrm{S}}) := \frac{I(\rho_{\mathrm{S}}^{\mathrm{CJ}})}{4\log d} := \frac{1}{4\log d} \left(S\left(\rho_{\mathrm{S}}^{\mathrm{CJ}}|_{\mathrm{AA'}}\right) + S\left(\rho_{\mathrm{S}}^{\mathrm{CJ}}|_{\mathrm{BB'}}\right) - S\left(\rho_{\mathrm{S}}^{\mathrm{CJ}}\right) \right)$$

with $\rho_{\mathrm{S}}^{\mathrm{CJ}}|_{\mathrm{AA'}} := \mathrm{Tr}_{\mathrm{BB'}}(\rho_{\mathrm{S}}^{\mathrm{CJ}})$ and $\rho_{\mathrm{S}}^{\mathrm{CJ}}|_{\mathrm{BB'}} := \mathrm{Tr}_{\mathrm{AA'}}(\rho_{\mathrm{S}}^{\mathrm{CJ}})$

Quantifying Correlations in Dynamics

Properties of the quantifier $\bar{I}(\mathcal{E}) := \frac{1}{4 \log d} I(\rho^{\text{CJ}})$

 \mathbf{V} Normalisation: $\overline{I}(\mathcal{E}) \in [0,1]$

 $I(\rho_{\rm S}^{\rm CJ}) = 2 \log d^2$ maximal for a maximally entangled state w/ respect to partition AA'|BB'

Markov Fundamental Law:

$$\overline{I}(\mathcal{E}) \geq \overline{I}[(\mathcal{L}_{A} \otimes \mathcal{L}_{B})\mathcal{E}(\mathcal{R}_{A} \otimes \mathcal{R}_{B})]$$

 \hookrightarrow = for local unitaries $U_A \otimes U_B$

Two copies of the quantum system needed?

No... mathematical construction only.

Reconstruction of $\mathcal{E}_{\rm S}$ Via quantum process tomography

Equivalent to a quantum state tomography on $\rho_{\rm S}^{\rm CJ}$

Example: N-qubit-system S $d = 2^N \implies 4^N(4^N - 1)$ real parameters N=1: 12, N=2: 240, N=3: 4032, ...

Maximally Correlated Dynamics

Resource theory approach

Maximally correlated dynamics cannot be obtained by composing some dynamical map with uncorrelated dynamics

Maximally Correlated Dynamics

Characterization of $\bar{I}(\mathcal{E}_{\max}) = 1$

$$\bar{I}(\mathcal{E}) = 1 \Rightarrow \mathcal{E}(\rho) = U\rho U^{\dagger}, \quad UU^{\dagger} = \mathbb{1}$$
$$\mathcal{E}_{S} \otimes \mathbb{1}_{S'} \left(|\Phi_{SS'}\rangle \langle \Phi_{SS'}| \right) = |\Psi_{(AA')|(BB')}\rangle \langle \Psi_{(AA')|(BB')}|$$

Example: $\overline{I}(U_{SWAP}) = 1$ despite the fact that it does not create correlations!

(Non-)Maximally Correlated Dynamics

Physical Application: Superradiance

Two two-level atoms radiating in the EM vacuum

Details in the lecture notes

First Application: Superradiance

Two two-level atoms radiating in the EM vacuum

First Application: Superradiance

Two two-level atoms radiating in the EM vacuum

Second application: Noise characterisation in a quantum computer

Courtesy: Innsbruck ion-trap group

Innsbruck linear ion-trap lab

K E

Vacuum chamber

FIELD AXES

lons confined in a string by a Paul trap

Ion Coulomb crystals

- Charged particles can't be trapped by static electric fields only (Earnshaw's theorem).
- Solution: Effective confinement by combining static and oscillating electric fields.

Mechanical analog Friday, April 3, 2009

Loading your desired number of ions

Universität Innsbruck

The qubit register

Simplified electronic level scheme

Physical qubits are encoded in (meta-)stable electronic states

Single-qubit gate operations

Simplified electronic level scheme

Single-qubit quantum gates

can be realised by tightly focused, near-resonant laser beams applied to individual ions

Entangling gate operations

laser pulses

Key idea:

+)

- Use collective vibrational modes (phonons) as a quantum information bus
- Lasers pulses that couple electronic (qubit) states of different ions to the collective vibrational modes can mediate entangling interactions between two or more qubits
- Two- or multi-ion entangling gates + arbitrary single-qubit rotations = universal set of quantum gates

... fidelity > 99.3 % or higher for 2 qubits, e.g. Benhelm *et al.* Nat. Phys. **4**, 463 (2008) ... 14-qubit entanglement, T. Monz *et al.* PRL **106**,130506 (2011) entanglement in a 20-qubit register. Eriis *et al.* Phys. Rev. X **8**, 021012 (2018)

... entanglement in a 20-qubit register, Friis et al. Phys. Rev. X 8, 021012 (2018)

Measurement of the qubit register

Working principle

Readout / measurement of qubits: Quantum states can be discriminated via **laser-induced fluorescence** light, recorded by a CCD camera

- Electron in $|1\rangle$ is excited to the P-state, decays quickly, under an emission of a photon, excited again... "cycling transition"
 - Electron in $|0\rangle$ does not couple to the laser light.

Quantum state and process reconstruction

Example: 2 ions

Collect fluorescence with CCD camera (picture) Repeat 100-200 times

Measurement of populations in $|0\rangle$ and $|1\rangle$

Example, repeat 100 times:

How do we know which state we have? Rotate qubits before the measurement

 reconstruction of quantum states and dynamics ("state and process tomography")

Characterisation of noise correlations in a real quantum computer

Usual preferred choice: 'clock qubit' (First-order insensitive to magnetic field fluctuations)

Qubit i accumulates phase

$$\phi_i(t) = \int_0^t d\tau B(\tau) \mu_b g_i$$

Time evolution of a single implementation

$$U(\phi_1) = \exp\left(-i\phi_1(\sigma_1^z + g\sigma_2^z)\right)$$

with the ratio of the Landé factors $g=g_2/g_1$

Decoherence-free subspaces

 $|\downarrow\downarrow\rangle$

 $|\uparrow\downarrow\rangle$

 $|\downarrow\uparrow\rangle$

 $\uparrow\uparrow\rangle$

Decoherence-free subspaces

Entanglement-based magnetometry in a trapped-ion quantum computer

Entanglement-based magnetometry

Bell state as sensor $\frac{1}{\sqrt{2}}(|1\rangle|0\rangle+|0\rangle|1\rangle)$

magn. field inhomogeneities

$$\rightarrow \frac{1}{\sqrt{2}} (|1\rangle|0\rangle + e^{i\phi}|1\rangle|0\rangle)$$

T. Ruster, et al., Phys. Rev. X 7, 031050 (2017)

Entanglement-based magnetometry

Correlated Dynamics in Multipartite Setting

Several parties

$$\bar{I}(\mathcal{E}_{\mathrm{S}}) := \frac{1}{2M \log d} \left\{ \left[\sum_{i=1}^{M} S(\rho_{\mathrm{S}}^{\mathrm{CJ}}|_{\mathrm{S}_{i}\mathrm{S}'_{i}}) \right] - S(\rho_{\mathrm{S}}^{\mathrm{CJ}}) \right\}$$

with
$$\rho_{\mathrm{S}}^{\mathrm{CJ}}|_{\mathrm{S}_{i}\mathrm{S}'_{i}} = \mathrm{Tr}_{\{\forall \mathrm{S}_{j\neq i}\mathrm{S}'_{j\neq i}\}}(\rho_{\mathrm{S}}^{\mathrm{CJ}})$$

Lower Bound Estimation

The exact experimental determination of *I* becomes impractical as the number of systems increases

$$\overline{I}(\mathcal{E}) \geq \frac{1}{4M \ln d} \frac{C_{\mathcal{E}(\rho)}^2(X_1, \dots, X_M)}{\|X_1\|^2 \dots \|X_M\|^2}, \quad \rho = \bigotimes_{i=1}^M \rho_i$$
Operator norm

 $C^2_{\mathcal{E}(\rho)}(X_1,\ldots,X_M) = \langle X_1\ldots X_M \rangle_{\mathcal{E}(\rho)} - \langle X_1 \rangle_{\mathcal{E}(\rho)} \ldots \langle X_M \rangle_{\mathcal{E}(\rho)}$

Vision of scalable quantum computers

Couple linear traps to build larger 2D trap arrays as scalable qubit registers

Vision of scalable quantum computers

Understanding and mitigating correlated noise, and quantum error correction will be crucial W. Hensinger group University of Sussex

Thanks!

Lukas Postler

Philipp Schindler

Alex Erhard Roman Stricker

Daniel Nigg

Thomas Monz **Rainer Blatt**

New J. Phys. 17 (2015) 062001

Aark

New Journal of Physics

The open access journal at the forefront of physics

doi:10.1088/1367-2630/17/6/062001

vsikalische Gesetlischaft DPG Publi Norder Statute of Physics of DP

G Published in partnership with: Deutsche Physikalische Gesellschaft and the Institute of Physics

FAST TRACK COMMUNICATION

Quantifying spatial correlations of general quantum dynamics

Ángel Rivas and Markus Müller

Departamento de Física Teórica I, Universidad Complutense, E-28040 Madrid, Spain

Experimental quantification of spatial correlations in quantum dynamics

Lukas Postler¹, Ángel Rivas^{2,3}, Philipp Schindler¹, Alexander Erhard¹, Roman Stricker¹, Daniel Nigg¹, Thomas Monz¹, Rainer Blatt^{1,4}, and Markus Müller⁵

Published:	2018-09-03, volume 2, page 90
Eprint:	arXiv:1806.08088v2
Scirate:	https://scirate.com/arxiv/1806.08088v2
Doi:	https://doi.org/10.22331/q-2018-09-03-90
Citation:	Quantum 2, 90 (2018).

