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Abstract
Understanding the role of correlations in quantum systems is both a fundamental challenge as well as
of high practical relevance for the control ofmulti-particle quantum systems.Whereas a lot of research
has been devoted to study the various types of correlations that can be present in the states of quantum
systems, in this workwe introduce a general and rigorousmethod to quantify the amount of
correlations in the dynamics of quantum systems. Using a resource-theoretical approach, we
introduce a suitable quantifier and characterize the properties of correlated dynamics. Furthermore,
we benchmark ourmethod by applying it to the paradigmatic case of two atomsweakly coupled to the
electromagnetic radiation field, and illustrate its potential use to detect and assess spatial noise
correlations in quantumcomputing architectures.

1. Introduction

Quantum systems can display awide variety of dynamical behaviors, in particular depending on how the system
is affected by its coupling to the surrounding environment. One interesting feature which has attractedmuch
attention is the presence ofmemory effects (non-Markovianity) in the time evolution. These typically arise for
strong enough coupling between the system and its environment, or when the environment is structured, such
that the assumptions of thewell-knownweak-coupling limit [1–3] are no longer valid.Whereasmemory effects
(or time correlations) can be present in any quantum system exposed to noise, another extremely relevant
feature, whichwewill focus on in this work, are correlations in the dynamics of different parts ofmulti-partite
quantum systems. Since different parties of a partition are commonly, though not always, identifiedwith
different places in space, without loss of generality wewill in the following refer to these correlations between
different subsystems of a larger system as spatial correlations.

Spatial correlations in the dynamics give rise to awide plethora of interesting phenomena ranging from
super-radiance [4] and super-decoherence [5] to sub-radiance [6] and decoherence-free subspaces [7–11].
Moreover, clarifying the role of spatial correlations in the performance of a large variety of quantumprocesses,
such as e.g. quantum error correction [12–17], photosynthesis and excitation transfer [18–28], dissipative phase
transitions [29–33] and quantummetrology [34] has been and still is an active area of research.

Along the last few years, numerousworks have aimed at quantifying up towhich extent quantumdynamics
deviates from theMarkovian behavior, see e.g. [35–43].However,much less attention has been paid to develop
quantifiers of spatial correlations in the dynamics, although someworks e.g. [44, 45] have addressed this issue
for some specificmodels. Thismay be partially due to thewell-known fact that undermany, though not all
practical circumstances, dynamical correlations can be detected by studying the time evolution of correlation
functions of properly chosen observables A and B , acting respectively on the two partiesA andB of interest.
For instance, in the context of quantum computing, sophisticatedmethods towitness the correlated character of
quantumdynamics, have been developed and implemented in the laboratory [45]. Indeed, any correlation
C ( , )A B A B A B= 〈 ⊗ 〉 − 〈 〉〈 〉      detected during the time evolution of an initial product state,

A Bρ ρ ρ= ⊗ , witnesses the correlated character of the dynamics. However, note that there exist highly
correlated dynamics, which cannot be realized by a combination of local processes, which do not generate any

OPEN ACCESS

RECEIVED

19March 2015

REVISED

14April 2015

ACCEPTED FOR PUBLICATION

29April 2015

PUBLISHED

18 June 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

My background and research areas

Rydberg atomsTrapped ions Trapped Rydberg ions

Rydberg excited Calcium Ions 
for quantum interactions 

Warsaw – 08.03.2012 

Innsbruck – Mainz – Nottingham 

Igor Lesanovsky 

Research Lines & Applications

Quantum Information Processing
Quantum Gate Design

AMO System Engineering
Microscopic modelling

S
E

Quantum Simulations
Quantum Many-Body Systems

Reservoir Engineering 
Topological Quantum Matter

QEC and Fault-Tolerant QC
Quantum Error Correction Protocols

Topological Quantum Codes
Decoders

functions of statistical mechanical models with three-body
interactions and external magnetic fields. Section VI is de-
voted to conclusions.

II. TOPOLOGICAL COLOR CODES

A. Construction

Let us start by recalling the notion of a topological color
code in order to see what type of classical spin models we
obtain from them with appropriate projections onto factor-
ized quantum states and specific lattices.

A TCC, denoted by C, is a quantum stabilizer error cor-
rection code constructed with a certain class of two-
dimensional lattices called 2-colexes. The word !colex! is a
contraction that stands for color complex, where complex is
the mathematical terminology for a rather general lattice. A
2-colex, denoted by C2, is a 2D trivalent lattice which has
three-colorable faces and is embedded in a compact surface
of arbitrary topology such as a torus of genus g. A trivalent
lattice is one for which three edges meet at every vertex. The
property of being three-colorable means that the faces !or
plaquettes" of the lattice can be colored with these colors in
such a way that neighboring faces never have the same color.
We select as colors red !r", green !g", and blue !b". An ex-
ample of a 2-colex construction is shown in Fig. 1.

Edges can be colored according to the coloring of the
faces. In particular, we attach red color to the edges that
connect red faces, and so on and so forth for the blue and
green edges and faces. When studying higher dimensional
colexes, it turns out that the coloring of the edges is the key
property of D-colexes: all the information about a D-colex is
encoded in its 1-skeleton, i.e., the set of edges with its col-
oring #11$.

Given a 2-colex !C2", a TCC !C" is constructed by placing
one qubit at each vertex of the colored lattice. Let us denote
by V, E, and F the sets of vertices v, edges e, and faces f,
respectively, of the given 2-colex. Then, the generators of the
stabilizer group, denoted by S, are given by face operators
only. For each face f, they come into two types depending on
whether they are constructed with Pauli operators of X or Z
type,

Xf: = !
v!f

Xv,

Zf: = !
v!f

Zv, !1"

and there are no generators associated to lattice vertices. For
example, a hexagonal lattice is an instance of a 2-colex, see
Fig. 2. The operators for the face f displayed in the figure
take the form Xf=X1X2X3X4X5X6, Zf=Z1Z2Z3Z4Z5Z6.

We notice that for the purpose of this paper, we are deal-
ing only with lattices of trivial topology, such as the plane or
the sphere. In these cases, it suffices to require the lattice to
have the following properties: !i" Each vertex has coordina-
tion number 3; !ii" each face has even number of edges !ver-
tices". These conditions guarantee that the stabilizers Xf and
Zf pairwise commute and the TCC state is unique for the
trivial topology. Nevertheless, we have kept the general defi-
nition of a 2-colex in terms of three-colorability since we are
referring to previous works where nontrivial topologies are
considered.

A given state %!c&!C is left trivially invariant under the
action of the face operators,

Xf%!c& = %!c&, Zf%!c& = %!c&, ∀ f ! F . !2"

An erroneous state %!&e is one that violates conditions !2" for
some set of face operators of either type. As the generator
operators Xf ,Zf!S satisfy that they square to the identity
operator, !Xf"2=1= !Zf"2, ∀f!F, then an erroneous state is
detected by having a negative eigenvalue with respect to
some set of stabilizer generators: Xf%!&e=−%!&e and/or
Zf%!&e=−%!&e.

Interestingly enough, it is possible to construct a quantum
lattice Hamiltonian Hc such that its ground state is degener-
ate and corresponds to the TCC !C", while the erroneous
states are given by the spectrum of excitations of the Hamil-
tonian #9$. Such Hamiltonian is constructed out of the gen-
erators of the topological stabilizer group S,

Hc = − '
f!F

!Xf + Zf" . !3"

The ground state of this Hamiltonian exhibits what is called
a topological order #12$, as opposed to a more standard order
based on a spontaneous symmetry breaking mechanism. One
of the signatures of that topological order is precisely the

FIG. 1. !Color online" An example of 2-colex. Both edges and
faces are three-colorable and they are colored in such a way that
green edges connect green faces !light gray" and so on and so forth
for red !medium gray" and blue !dark gray" edges and faces.

f

γ

1 2

3
45

6

a b
c

d

e f

FIG. 2. !Color online" A hexagonal lattice is an instance of
2-colex. Numbered vertices belong to the face f. Vertices labeled
with letters correspond to the red string " displayed. " is an open
string, because it has an end point in a red face.
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Dynamics of Quantum Systems

Correlated vs Uncorrelated Dynamics

A B

Evolution of a part of a multipartite quantum system 
may depend on the evolution of the others

“Spatial” Correlations



Correlated Quantum Dynamics
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First attempt: correlations of observables

Quantifying Correlations in Dynamics

C(XA, YB) = hXA ⌦ YBi � hXAihYBi

S

⇢A ⌦ ⇢B C

XA YB

If Correlated Dynamics 

Not enough!

C(XA, YB) 6= 0
<latexit sha1_base64="tzFBK1vzMyLvpsOmKSsEplRmH3A=">AAAB8nicbZDNTgIxFIU7/iL+MOrSTSMxwcSQGTTRJcLGJSbyY2Ay6ZQ70NDpjG3HhBBeRFdG3fkovoBvY8FZKHhWX+85Te65QcKZ0o7zZa2srq1vbOa28ts7u3sFe/+gpeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tINRfea3H0EqFos7PU7Ai8hAsJBRos3Itwv1Use/Prv3a6c9AQ+ObxedsjMXXgY3gyLK1PDtz14/pmkEQlNOlOq6TqK9CZGaUQ7TfC9VkBA6IgPoGhQkAuVN5otP8UkYS6yHgOfv39kJiZQaR4HJREQP1aI3G/7ndVMdXnkTJpJUg6AmYrww5VjHeNYf95kEqvnYAKGSmS0xHRJJqDZXypv67mLZZWhVyu55uXJ7UazWskPk0BE6RiXkoktURTeogZqIohQ9ozf0bmnryXqxXn+iK1b25xD9kfXxDX17j1w=</latexit>



Introduce a quantifier to assess the amount of correlations in 
quantum dynamics in a general way, and independently of 

specific underlying situations or models

No need for good guesses of test states
No need for good guesses of test observables 
Quantitative measure - not a simple yes / no / I don’t know output

Wishlist

Quantifying Correlations in Dynamics
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classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00iAB, and with 50% in |11iAB – the resulting measurement statistics would be the same.
But what happens if the qubits of the Bell state (1) are measured in the X-basis instead, i.e.,
the observable Pauli matrix X = |0ih1| + |1ih0| is measured? The Bell state can be equally
written as

���+
↵
AB

=
1p
2

⇣
|00iAB + |11iAB

⌘
=

1p
2

⇣
|++iAB + |��iAB

⌘
(2)

with |±i =
�
|0i ± |1i

�
/
p
2 denoting the eigenstates of X , X |±i = ± |±i. Thus, the mea-

surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |�+iAB can be written as a product of single-qubit states | 1iA and | 2iB,
|�+i 6= | 1iA ⌦ | 2iB – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ⇢S describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(⇢S)

of the state ⇢S is defined by
S(⇢S) := �Tr⇢S log(⇢S) (3)

The density operator ⇢S can be written in terms of its eigenstates | ii, ⇢S =
P

i pi | iih i|,
with pi � 0 and

P
i pi = 1. Then the expression for the von Neumann entropy reduces to

S(⇢S) = �
P

i pi log pi. For the system S in a pure state | i, ⇢S = | i h |, and S(⇢S) = 0.
The reduced density operators, associated to parts A and B of the composite system, ⇢S|A and
⇢S|B, are obtained by performing the partial trace [12] over the respective complementary parts

⇢S|A = TrB(⇢S), ⇢S|B = TrA(⇢S). (4)

For the Bell state of Eq. (1), the reduced density operators correspond to the fully mixed state

⇢S|A =
1

2

⇣
|0ih0|A + |1ih1|A

⌘
, ⇢S|A =

1

2

⇣
|0ih0|B + |1ih1|B

⌘
, (5)

and thus the von Neumann entropies evaluate to S(⇢S|A) = S(⇢S|B) = log 2.
Now, the quantum mutual information of a state ⇢S is given by

I(⇢S) = S(⇢S|A) + S(⇢S|B)� S(⇢S). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that

⌧
exp


±i

Z t

0

B(t
0
)dt

0
��

= exp

"
�1

2

*✓Z t

0

B(t
0
)dt

0
◆2

+#
. (9)
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
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Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
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2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics
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our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
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can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
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2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that

⌧
exp


±i

Z t

0

B(t
0
)dt

0
��

= exp

"
�1

2

*✓Z t

0

B(t
0
)dt

0
◆2

+#
. (9)

<latexit sha1_base64="AcCnB8rKunoCYg6WyzXCLtJl/t4="></latexit>

C(ZA, ZB) = hZA ⌦ ZBi � hZAihZBi = 1



1p
2
(|0i|0i+ |1i|1i) = 1p

2
(|+i|+i+ |�i|�i)

Two-qubit entangled state
<latexit sha1_base64="d9o0TjgtSUtHy2J6yaWdmNJvuko=">AAAB+3icbVBNS8NAEJ3Ur1q/Uj16WSyCIJRECnoRil48VrC20MSy2W7apZtN2N0oJe1P8eJBQbz6R7z5b9y2OWjrg4HHezPMzAsSzpR2nG+rsLK6tr5R3Cxtbe/s7tnl/XsVp5LQJol5LNsBVpQzQZuaaU7biaQ4CjhtBcPrqd96pFKxWNzpUUL9CPcFCxnB2khduzz2GgP2cOpJLPqcokvUtStO1ZkBLRM3JxXI0ejaX14vJmlEhSYcK9VxnUT7GZaaEU4nJS9VNMFkiPu0Y6jAEVV+Njt9go6N0kNhLE0JjWbq74kMR0qNosB0RlgP1KI3Ff/zOqkOL/yMiSTVVJD5ojDlSMdomgPqMUmJ5iNDMJHM3IrIAEtMtEmrZEJwF19eJq2zqluruu5trVK/yvMowiEcwQm4cA51uIEGNIHAEzzDK7xZY+vFerc+5q0FK585gD+wPn8Am/KTYg==</latexit>

|�+i =

16.4 Markus Müller

classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00iAB, and with 50% in |11iAB – the resulting measurement statistics would be the same.
But what happens if the qubits of the Bell state (1) are measured in the X-basis instead, i.e.,
the observable Pauli matrix X = |0ih1| + |1ih0| is measured? The Bell state can be equally
written as

���+
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=
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2

⇣
|00iAB + |11iAB

⌘
=

1p
2

⇣
|++iAB + |��iAB

⌘
(2)

with |±i =
�
|0i ± |1i

�
/
p
2 denoting the eigenstates of X , X |±i = ± |±i. Thus, the mea-

surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |�+iAB can be written as a product of single-qubit states | 1iA and | 2iB,
|�+i 6= | 1iA ⌦ | 2iB – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ⇢S describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(⇢S)

of the state ⇢S is defined by
S(⇢S) := �Tr⇢S log(⇢S) (3)

The density operator ⇢S can be written in terms of its eigenstates | ii, ⇢S =
P

i pi | iih i|,
with pi � 0 and

P
i pi = 1. Then the expression for the von Neumann entropy reduces to

S(⇢S) = �
P

i pi log pi. For the system S in a pure state | i, ⇢S = | i h |, and S(⇢S) = 0.
The reduced density operators, associated to parts A and B of the composite system, ⇢S|A and
⇢S|B, are obtained by performing the partial trace [12] over the respective complementary parts

⇢S|A = TrB(⇢S), ⇢S|B = TrA(⇢S). (4)

For the Bell state of Eq. (1), the reduced density operators correspond to the fully mixed state

⇢S|A =
1

2

⇣
|0ih0|A + |1ih1|A

⌘
, ⇢S|A =

1

2

⇣
|0ih0|B + |1ih1|B

⌘
, (5)

and thus the von Neumann entropies evaluate to S(⇢S|A) = S(⇢S|B) = log 2.
Now, the quantum mutual information of a state ⇢S is given by

I(⇢S) = S(⇢S|A) + S(⇢S|B)� S(⇢S). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00iAB, and with 50% in |11iAB – the resulting measurement statistics would be the same.
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surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |�+iAB can be written as a product of single-qubit states | 1iA and | 2iB,
|�+i 6= | 1iA ⌦ | 2iB – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ⇢S describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(⇢S)

of the state ⇢S is defined by
S(⇢S) := �Tr⇢S log(⇢S) (3)

The density operator ⇢S can be written in terms of its eigenstates | ii, ⇢S =
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i pi | iih i|,
with pi � 0 and
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i pi = 1. Then the expression for the von Neumann entropy reduces to

S(⇢S) = �
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i pi log pi. For the system S in a pure state | i, ⇢S = | i h |, and S(⇢S) = 0.
The reduced density operators, associated to parts A and B of the composite system, ⇢S|A and
⇢S|B, are obtained by performing the partial trace [12] over the respective complementary parts

⇢S|A = TrB(⇢S), ⇢S|B = TrA(⇢S). (4)

For the Bell state of Eq. (1), the reduced density operators correspond to the fully mixed state
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and thus the von Neumann entropies evaluate to S(⇢S|A) = S(⇢S|B) = log 2.
Now, the quantum mutual information of a state ⇢S is given by

I(⇢S) = S(⇢S|A) + S(⇢S|B)� S(⇢S). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |�+iAB can be written as a product of single-qubit states | 1iA and | 2iB,
|�+i 6= | 1iA ⌦ | 2iB – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ⇢S describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(⇢S)

of the state ⇢S is defined by
S(⇢S) := �Tr⇢S log(⇢S) (3)
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with pi � 0 and
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i pi = 1. Then the expression for the von Neumann entropy reduces to
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i pi log pi. For the system S in a pure state | i, ⇢S = | i h |, and S(⇢S) = 0.
The reduced density operators, associated to parts A and B of the composite system, ⇢S|A and
⇢S|B, are obtained by performing the partial trace [12] over the respective complementary parts

⇢S|A = TrB(⇢S), ⇢S|B = TrA(⇢S). (4)
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and thus the von Neumann entropies evaluate to S(⇢S|A) = S(⇢S|B) = log 2.
Now, the quantum mutual information of a state ⇢S is given by

I(⇢S) = S(⇢S|A) + S(⇢S|B)� S(⇢S). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00iAB, and with 50% in |11iAB – the resulting measurement statistics would be the same.
But what happens if the qubits of the Bell state (1) are measured in the X-basis instead, i.e.,
the observable Pauli matrix X = |0ih1| + |1ih0| is measured? The Bell state can be equally
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surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |�+iAB can be written as a product of single-qubit states | 1iA and | 2iB,
|�+i 6= | 1iA ⌦ | 2iB – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ⇢S describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(⇢S)
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S(⇢S) := �Tr⇢S log(⇢S) (3)

The density operator ⇢S can be written in terms of its eigenstates | ii, ⇢S =
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i pi | iih i|,
with pi � 0 and
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i pi = 1. Then the expression for the von Neumann entropy reduces to

S(⇢S) = �
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i pi log pi. For the system S in a pure state | i, ⇢S = | i h |, and S(⇢S) = 0.
The reduced density operators, associated to parts A and B of the composite system, ⇢S|A and
⇢S|B, are obtained by performing the partial trace [12] over the respective complementary parts

⇢S|A = TrB(⇢S), ⇢S|B = TrA(⇢S). (4)

For the Bell state of Eq. (1), the reduced density operators correspond to the fully mixed state
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and thus the von Neumann entropies evaluate to S(⇢S|A) = S(⇢S|B) = log 2.
Now, the quantum mutual information of a state ⇢S is given by

I(⇢S) = S(⇢S|A) + S(⇢S|B)� S(⇢S). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information

16.4 Markus Müller

classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00iAB, and with 50% in |11iAB – the resulting measurement statistics would be the same.
But what happens if the qubits of the Bell state (1) are measured in the X-basis instead, i.e.,
the observable Pauli matrix X = |0ih1| + |1ih0| is measured? The Bell state can be equally
written as

���+
↵
AB

=
1p
2

⇣
|00iAB + |11iAB

⌘
=

1p
2

⇣
|++iAB + |��iAB

⌘
(2)

with |±i =
�
|0i ± |1i

�
/
p
2 denoting the eigenstates of X , X |±i = ± |±i. Thus, the mea-

surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |�+iAB can be written as a product of single-qubit states | 1iA and | 2iB,
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be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ⇢S describing the joint
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and thus the von Neumann entropies evaluate to S(⇢S|A) = S(⇢S|B) = log 2.
Now, the quantum mutual information of a state ⇢S is given by
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For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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a two-qubit system, I(⇢S) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ⇢S = ⇢S|A ⌦ ⇢S|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that
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As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
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For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices
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vanish.
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qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices
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iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that
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If one additionally assumes a stationary autocorrelation function of the noise source
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For an arbitrary initial (pure) state, ⇢(0) = | (0)ih (0)|, with | (0)i = ↵ |0i + � |1i, the state
at time t will be given by an average over the noise realizations
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This allows us to identify this process as the dephasing channel [12]

ES : ⇢S 7! (1�p)⇢S + pZ⇢SZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
p
1�p1 and K1 =

p
pZ

and the identification p =
1
2(1 � e

� 1
2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that
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For an arbitrary initial (pure) state, ⇢(0) = | (0)ih (0)|, with | (0)i = ↵ |0i + � |1i, the state
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This allows us to identify this process as the dephasing channel [12]

ES : ⇢S 7! (1�p)⇢S + pZ⇢SZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
p
1�p1 and K1 =

p
pZ

and the identification p =
1
2(1 � e

� 1
2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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This allows us to identify this process as the dephasing channel [12]
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ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
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Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that
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we identify the Kraus map

From the evaluation for an arbitrary single-qubit state
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coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices
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vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
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This allows us to identify this process as the dephasing channel [12]

ES : ⇢S 7! (1�p)⇢S + pZ⇢SZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
p
1�p1 and K1 =

p
pZ

and the identification p =
1
2(1 � e

� 1
2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary

with

For a small time step

one recovers the quantum master equation in Lindblad form

Coherence
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If one additionally assumes a stationary autocorrelation function of the noise source
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and furthermore a �-correlation of the noise, one obtains that
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Using these properties, one finds
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where we have defined the dephasing rate � =
⌦
[B(0)]

2
↵
.

For an arbitrary initial (pure) state, ⇢(0) = | (0)ih (0)|, with | (0)i = ↵ |0i + � |1i, the state
at time t will be given by an average over the noise realizations

⇢(t) =

Z
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This allows us to identify this process as the dephasing channel [12]

ES : ⇢S 7! (1�p)⇢S + pZ⇢SZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
p
1�p1 and K1 =

p
pZ

and the identification p =
1
2(1 � e

� 1
2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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Focus on bi-partite systems
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Example: 2-qubit entangling gate
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Spatial Correlations in Quantum Dynamics 16.7

gate creates (maximally) correlated output states such as the Bell state of Eq. (1), therefore the
CNOT gate is clearly a correlated quantum dynamics!
Similarly, spatially homogeneous or global (magnetic) field fluctuations, acting with the same
strength on a register of two or more qubits, described by a Hamiltonian

HG(t) =
1

2
B(t)

X

k

Zk (16)

result in spatially correlated dephasing dynamics. This dynamics ES on the qubit register can-
not be described by a product of independent dephasing processes, ES 6= ⌦kEk, with Ek acting
on the k-th qubit. It is left as an exercise to work out the generalization of Eq. (14) for this
scenario of correlated dephasing dynamics. Again, working with suitably chosen input states,
e.g. | (0)i = ⌦k |+ik, should allow one to distinguish between spatially correlated and uncor-
related dephasing.
In fact, this idea holds true in general: any correlation C(OA,OB) = hOA ⌦OBi � hOAihOBi
detected during the time evolution of an initial product state, ⇢S = ⇢A ⌦ ⇢B, witnesses the
correlated character of the dynamics. However, for this to work, one needs to be lucky or have
a priory knowledge about the dynamics and thereby be able to choose suitable observables and
input states, for which correlated dynamics generates non-vanishing correlations in the final
quantum state generated by the dynamics. Furthermore, note that there exist highly correlated
dynamics, which cannot be realized by a combination of local processes, which however do not
generate any such correlation. A simple example is the swap process between two parties. Such
dynamics can either act on internal degrees of freedom, induced, e.g., by the action of a swap
gate acting on two qubits [12], or can correspond to (unwanted) external dynamics, caused,
e.g., by correlated hopping of atoms in an optical lattice [19] or the melting of an ion Coulomb
crystal and subsequent recooling dynamics with a possibly different rearrangement of particles
in trapped-ion architectures [20].

3 Rigorous quantifier for correlations in quantum dynamics

In light of this discussion, let us therefore now discuss a systematic and rigorous method to cap-
ture and quantify spatial correlations in quantum dynamics, not requiring any a-priori knowl-
edge or assumptions about the dynamics taking place on the composite quantum system.

3.1 Choi-Jamiołkowski isomorphism

The central tool of our construction is the Choi-Jamiołkowski isomorphism [21, 22, 12]. This
is a one-to-one correspondence of a given quantum dynamics of a system to an equivalent
representation in the form of a quantum state in an enlarged Hilbert space. As we will see, this
mapping will allow us to use tools developed for the quantification of correlations in quantum
states, as we discussed above in Sec. 1.2, for our purpose of quantifying correlations in the
quantum dynamics taking place in the bi-partite system S = AB. For this mapping, consider a

Spatially correlated, global dephasing on an N-qubit register
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If one additionally assumes a stationary autocorrelation function of the noise source

⌦
B(t+⌧)B(t)

↵
=

⌦
B(⌧)B(0)

↵
, (10)

and furthermore a �-correlation of the noise, one obtains that

⌦
B(⌧)B(0)

↵
=

⌦
[B(0)]

2
↵
�(⌧). (11)

Using these properties, one finds
*Z t

0

B(t
0
)dt

0
�2+

=
⌦
[B(0)]

2
↵
t = �t, (12)

where we have defined the dephasing rate � =
⌦
[B(0)]

2
↵
.

For an arbitrary initial (pure) state, ⇢(0) = | (0)ih (0)|, with | (0)i = ↵ |0i + � |1i, the state
at time t will be given by an average over the noise realizations

⇢(t) =

Z
| (t)ih (t)|P (B) dB = |↵|2 |0ih0|+ |�|2 |1ih1|+ e

� 1
2�t

�
↵�

⇤ |0ih1|+ ↵
⇤
� |1ih0|

�
.

(13)
This allows us to identify this process as the dephasing channel [12]

ES : ⇢S 7! (1�p)⇢S + pZ⇢SZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
p
1�p1 and K1 =

p
pZ

and the identification p =
1
2(1 � e

� 1
2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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gate creates (maximally) correlated output states such as the Bell state of Eq. (1), therefore the
CNOT gate is clearly a correlated quantum dynamics!
Similarly, spatially homogeneous or global (magnetic) field fluctuations, acting with the same
strength on a register of two or more qubits, described by a Hamiltonian

HG(t) =
1

2
B(t)

X

k

Zk (16)

result in spatially correlated dephasing dynamics. This dynamics ES on the qubit register can-
not be described by a product of independent dephasing processes, ES 6= ⌦kEk, with Ek acting
on the k-th qubit. It is left as an exercise to work out the generalization of Eq. (14) for this
scenario of correlated dephasing dynamics. Again, working with suitably chosen input states,
e.g. | (0)i = ⌦k |+ik, should allow one to distinguish between spatially correlated and uncor-
related dephasing.
In fact, this idea holds true in general: any correlation C(OA,OB) = hOA ⌦OBi � hOAihOBi
detected during the time evolution of an initial product state, ⇢S = ⇢A ⌦ ⇢B, witnesses the
correlated character of the dynamics. However, for this to work, one needs to be lucky or have
a priory knowledge about the dynamics and thereby be able to choose suitable observables and
input states, for which correlated dynamics generates non-vanishing correlations in the final
quantum state generated by the dynamics. Furthermore, note that there exist highly correlated
dynamics, which cannot be realized by a combination of local processes, which however do not
generate any such correlation. A simple example is the swap process between two parties. Such
dynamics can either act on internal degrees of freedom, induced, e.g., by the action of a swap
gate acting on two qubits [12], or can correspond to (unwanted) external dynamics, caused,
e.g., by correlated hopping of atoms in an optical lattice [19] or the melting of an ion Coulomb
crystal and subsequent recooling dynamics with a possibly different rearrangement of particles
in trapped-ion architectures [20].

3 Rigorous quantifier for correlations in quantum dynamics

In light of this discussion, let us therefore now discuss a systematic and rigorous method to cap-
ture and quantify spatial correlations in quantum dynamics, not requiring any a-priori knowl-
edge or assumptions about the dynamics taking place on the composite quantum system.

3.1 Choi-Jamiołkowski isomorphism

The central tool of our construction is the Choi-Jamiołkowski isomorphism [21, 22, 12]. This
is a one-to-one correspondence of a given quantum dynamics of a system to an equivalent
representation in the form of a quantum state in an enlarged Hilbert space. As we will see, this
mapping will allow us to use tools developed for the quantification of correlations in quantum
states, as we discussed above in Sec. 1.2, for our purpose of quantifying correlations in the
quantum dynamics taking place in the bi-partite system S = AB. For this mapping, consider a

Test state

… will build up correlations 
under the correlated dynamics

How correlated are these?

Real particle exchange,
correlated hopping

+ + + + + + + + +
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Separate/merge
Swap
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There are highly correlated quantum 
processes that do not create correlations 
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that

⌧
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0
)dt
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

hOA⌦OBi�hOAihOBi signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g., OA = ZA and OB = ZB is suitable, since hZAi = TrA(ZA⇢S|A) = 0,
and similarly for qubit B, whereas hZA ⌦ ZBi = +1. In contrast, for a product state such as
e.g. |0iA ⌦ |0iB, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ⇢S 7! ES(⇢S) =
X

i

Ki ⇢S K
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
P

i K
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ⇢S 7! US ⇢S U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).

second d
2-dimensional bipartite system S

0
= A

0
B

0, essentially a “copy” of system S. Next, let
|�SS0i be the maximally entangled state between S and S

0,

|�SS0i :=
1

d

d2X

j=1

|jjiSS0 =
1

d

dX

k,`=1

|k`iAB ⌦ |k`iA0B0 . (17)

Here, |ji denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d

2-dimensional Hilbert space of S and its “copy” S
0. Similarly, |kiA and |liB

denote the canonical basis of the d-dimensional subsystems A, B, and A
0, B

0. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d

4-dimensional
quantum state

⇢
CJ
S := ES ⌦ 1S0

�
|�SS0ih�SS0 |

�
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S0 on S

0, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ⇢

CJ
S in

the enlarged d
4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

⇢
CJ
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1

2

⇣
|00ih00|SS0 + |11ih11|SS0

⌘
+

1

2
(1�2p)
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|00ih11|SS0 + |11ih00|SS0

⌘
. (19)
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If one additionally assumes a stationary autocorrelation function of the noise source

⌦
B(t+⌧)B(t)

↵
=

⌦
B(⌧)B(0)

↵
, (10)

and furthermore a �-correlation of the noise, one obtains that

⌦
B(⌧)B(0)

↵
=

⌦
[B(0)]

2
↵
�(⌧). (11)

Using these properties, one finds
*Z t

0

B(t
0
)dt

0
�2+

=
⌦
[B(0)]

2
↵
t = �t, (12)

where we have defined the dephasing rate � =
⌦
[B(0)]

2
↵
.

For an arbitrary initial (pure) state, ⇢(0) = | (0)ih (0)|, with | (0)i = ↵ |0i + � |1i, the state
at time t will be given by an average over the noise realizations

⇢(t) =

Z
| (t)ih (t)|P (B) dB = |↵|2 |0ih0|+ |�|2 |1ih1|+ e

� 1
2�t

�
↵�

⇤ |0ih1|+ ↵
⇤
� |1ih0|

�
.

(13)
This allows us to identify this process as the dephasing channel [12]

ES : ⇢S 7! (1�p)⇢S + pZ⇢SZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
p
1�p1 and K1 =

p
pZ

and the identification p =
1
2(1 � e

� 1
2�t). Thus, for long times (t ! 1, p ! 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d

2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA ⌦ EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0ih0|A ⌦ 1B + |1ih1|A ⌦XB (15)

which flips the state of the target qubit (B), |0i $ |1i, if and only if the control qubit (A) is in
the |1i state. For suitably chosen input product states, e.g. | (0)i = |+i1 ⌦ |0i2, this unitary
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).

second d
2-dimensional bipartite system S

0
= A

0
B

0, essentially a “copy” of system S. Next, let
|�SS0i be the maximally entangled state between S and S

0,

|�SS0i :=
1

d

d2X

j=1

|jjiSS0 =
1

d

dX

k,`=1

|k`iAB ⌦ |k`iA0B0 . (17)

Here, |ji denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d

2-dimensional Hilbert space of S and its “copy” S
0. Similarly, |kiA and |liB

denote the canonical basis of the d-dimensional subsystems A, B, and A
0, B

0. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d

4-dimensional
quantum state

⇢
CJ
S := ES ⌦ 1S0

�
|�SS0ih�SS0 |

�
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S0 on S

0, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ⇢

CJ
S in

the enlarged d
4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

⇢
CJ
S =

1

2

⇣
|00ih00|SS0 + |11ih11|SS0

⌘
+

1

2
(1�2p)

⇣
|00ih11|SS0 + |11ih00|SS0

⌘
. (19)
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Construction of the correlation measure

Resource-theory approach: Correlations as a resource

Correlated dynamics = resource to perform whatever task which 
can’t be implemented solely by (composing) uncorrelated dynamics

Spatial Correlations in Quantum Dynamics 16.9

3.2 Construction of a correlation measure

In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a re-
source theoretic approach (see, e.g., [23, 24] where this approach is used in the context of
entanglement theory). The idea is that one may consider correlated dynamics as a resource
to perform whatever task that cannot be implemented solely by (composing) uncorrelated evo-
lutions EA ⌦ EB. Then, suppose that the system S undergoes some dynamics given by the
map ES. Now, consider the (left and right) composition of ES with some uncorrelated maps
LA ⌦ LB and RA ⌦ RB, which act before and after ES, so that the total dynamics is given by
E 0
S = (LA ⌦ LB)ES(RA ⌦RB). It is clear that any task that we can do with E 0

S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E 0

S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1p

2
(|01iAB+ |10iAB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ⇢CJ

S , Eq. (18),

Ī(ES) :=
I(⇢

CJ
S )

4 log d
:=

1

4 log d

⇣
S
�
⇢
CJ
S |AA0

�
+ S

�
⇢
CJ
S |BB0

�
� S

�
⇢
CJ
S

� ⌘
. (20)

Here, S(·) := �Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ⇢

CJ
S |AA0 := TrBB0(⇢

CJ
S ) and ⇢

CJ
S |BB0 := TrAA0(⇢

CJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⌦ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA

0|BB0 (no proof given here).

ii) The quantity Ī(ES) 2 [0, 1]. It is clear that Ī(ES) � 0, moreover it reaches its maximum
value when S(⇢

CJ
S ) is minimal and S

�
⇢
CJ
S |AA0

�
+S

�
⇢
CJ
S |BB0

�
is maximal. Both conditions

are met when ⇢
CJ
S is a maximally entangled state with respect to the bipartition AA

0|BB0,
leading to I(⇢

CJ
S ) = 2 log d

2.
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Fundamental law of the resource theory
The amount of correlations of some dynamics does not increase under 
composition with uncorrelated dynamics 
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Construction of the correlation measure

Resource-theory approach: Correlations as a resource

Spatial Correlations in Quantum Dynamics 16.9

3.2 Construction of a correlation measure

In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a re-
source theoretic approach (see, e.g., [23, 24] where this approach is used in the context of
entanglement theory). The idea is that one may consider correlated dynamics as a resource
to perform whatever task that cannot be implemented solely by (composing) uncorrelated evo-
lutions EA ⌦ EB. Then, suppose that the system S undergoes some dynamics given by the
map ES. Now, consider the (left and right) composition of ES with some uncorrelated maps
LA ⌦ LB and RA ⌦ RB, which act before and after ES, so that the total dynamics is given by
E 0
S = (LA ⌦ LB)ES(RA ⌦RB). It is clear that any task that we can do with E 0

S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E 0

S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1p

2
(|01iAB+ |10iAB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ⇢CJ

S , Eq. (18),

Ī(ES) :=
I(⇢

CJ
S )

4 log d
:=

1

4 log d

⇣
S
�
⇢
CJ
S |AA0

�
+ S

�
⇢
CJ
S |BB0

�
� S

�
⇢
CJ
S

� ⌘
. (20)

Here, S(·) := �Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ⇢

CJ
S |AA0 := TrBB0(⇢

CJ
S ) and ⇢

CJ
S |BB0 := TrAA0(⇢

CJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⌦ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA

0|BB0 (no proof given here).

ii) The quantity Ī(ES) 2 [0, 1]. It is clear that Ī(ES) � 0, moreover it reaches its maximum
value when S(⇢

CJ
S ) is minimal and S

�
⇢
CJ
S |AA0

�
+S

�
⇢
CJ
S |BB0

�
is maximal. Both conditions

are met when ⇢
CJ
S is a maximally entangled state with respect to the bipartition AA

0|BB0,
leading to I(⇢

CJ
S ) = 2 log d

2.

Fundamental law of the resource theory

Correlated dynamics = resource to perform whatever task which 
can’t be implemented solely by (composing) uncorrelated dynamics
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value when S(⇢

CJ
S ) is minimal and S

�
⇢
CJ
S |AA0

�
+S

�
⇢
CJ
S |BB0

�
is maximal. Both conditions

are met when ⇢
CJ
S is a maximally entangled state with respect to the bipartition AA

0|BB0,
leading to I(⇢

CJ
S ) = 2 log d

2.

The amount of correlations of some dynamics does not increase under 
composition with uncorrelated dynamics 

I(E) � I(E 0) par!al orderGood Quantifier: 

*L. Li, K. Bu and Z.-W. Liu, Quantifying the resource content of quantum channels: An operational approach,  arXiv:1812.02572
*Y. Liu and X. Yuan, Operational Resource Theory of Quantum Channels, arXiv:1904.02680
*Z.-W. Liu and A. Winter, Resource theories of quantum channels and the universal role of resource erasure, arXiv:1904.04201.
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Correlation measure for dynamics

S

Bi-partite system:

16.8 Markus Müller

Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).

second d
2-dimensional bipartite system S

0
= A

0
B

0, essentially a “copy” of system S. Next, let
|�SS0i be the maximally entangled state between S and S

0,

|�SS0i :=
1

d

d2X

j=1

|jjiSS0 =
1

d

dX

k,`=1

|k`iAB ⌦ |k`iA0B0 . (17)

Here, |ji denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d

2-dimensional Hilbert space of S and its “copy” S
0. Similarly, |kiA and |liB

denote the canonical basis of the d-dimensional subsystems A, B, and A
0, B

0. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d

4-dimensional
quantum state

⇢
CJ
S := ES ⌦ 1S0

�
|�SS0ih�SS0 |

�
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S0 on S

0, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ⇢

CJ
S in

the enlarged d
4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

⇢
CJ
S =

1

2

⇣
|00ih00|SS0 + |11ih11|SS0

⌘
+

1

2
(1�2p)

⇣
|00ih11|SS0 + |11ih00|SS0

⌘
. (19)

Maximally entangled state:
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0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).
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3.2 Construction of a correlation measure

In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a re-
source theoretic approach (see, e.g., [23, 24] where this approach is used in the context of
entanglement theory). The idea is that one may consider correlated dynamics as a resource
to perform whatever task that cannot be implemented solely by (composing) uncorrelated evo-
lutions EA ⌦ EB. Then, suppose that the system S undergoes some dynamics given by the
map ES. Now, consider the (left and right) composition of ES with some uncorrelated maps
LA ⌦ LB and RA ⌦ RB, which act before and after ES, so that the total dynamics is given by
E 0
S = (LA ⌦ LB)ES(RA ⌦RB). It is clear that any task that we can do with E 0

S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E 0

S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1p

2
(|01iAB+ |10iAB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ⇢CJ

S , Eq. (18),

Ī(ES) :=
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S )

4 log d
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Here, S(·) := �Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ⇢

CJ
S |AA0 := TrBB0(⇢

CJ
S ) and ⇢

CJ
S |BB0 := TrAA0(⇢

CJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⌦ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA

0|BB0 (no proof given here).

ii) The quantity Ī(ES) 2 [0, 1]. It is clear that Ī(ES) � 0, moreover it reaches its maximum
value when S(⇢

CJ
S ) is minimal and S

�
⇢
CJ
S |AA0

�
+S

�
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S |BB0

�
is maximal. Both conditions

are met when ⇢
CJ
S is a maximally entangled state with respect to the bipartition AA

0|BB0,
leading to I(⇢
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S ) = 2 log d
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LA ⌦ LB and RA ⌦ RB, which act before and after ES, so that the total dynamics is given by
E 0
S = (LA ⌦ LB)ES(RA ⌦RB). It is clear that any task that we can do with E 0

S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E 0

S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1p

2
(|01iAB+ |10iAB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ⇢CJ
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here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⌦ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA

0|BB0 (no proof given here).
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Ī(ES) :=
I(⇢

CJ
S )

4 log d
:=

1

4 log d

⇣
S
�
⇢
CJ
S |AA0

�
+ S

�
⇢
CJ
S |BB0

�
� S

�
⇢
CJ
S

� ⌘
. (20)

Here, S(·) := �Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ⇢

CJ
S |AA0 := TrBB0(⇢

CJ
S ) and ⇢

CJ
S |BB0 := TrAA0(⇢

CJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
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i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⌦ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA

0|BB0 (no proof given here).
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Two copies of the quantum system needed?
No… mathematical construction only.
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).
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0, essentially a “copy” of system S. Next, let
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|k`iAB ⌦ |k`iA0B0 . (17)

Here, |ji denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d

2-dimensional Hilbert space of S and its “copy” S
0. Similarly, |kiA and |liB

denote the canonical basis of the d-dimensional subsystems A, B, and A
0, B

0. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d

4-dimensional
quantum state

⇢
CJ
S := ES ⌦ 1S0
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|�SS0ih�SS0 |

�
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S0 on S

0, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ⇢

CJ
S in

the enlarged d
4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

⇢
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1
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<latexit sha1_base64="HcusibRoWfUJN03vpMWebKkddIM=">AAAB/3icbVBNS8NAFHzxs9avqHjysliEeilJKehFKHrxWNHaQhvLZrNtl+4mYXcjlFDwr3jxoCBe/Rve/Ddu2hy0dWBhmHmPNzt+zJnSjvNtLS2vrK6tFzaKm1vbO7v23v69ihJJaJNEPJJtHyvKWUibmmlO27GkWPictvzRVea3HqlULArv9DimnsCDkPUZwdpIPfuwK7AeSpEGTEzKt6foAgUP1Z5dcirOFGiRuDkpQY5Gz/7qBhFJBA014VipjuvE2kux1IxwOil2E0VjTEZ4QDuGhlhQ5aXT+BN0YpQA9SNpXqjRVP29kWKh1Fj4ZjILq+a9TPzP6yS6f+6lLIwTTUMyO9RPONIRyrpAAZOUaD42BBPJTFZEhlhiok1jRVOCO//lRdKqVtxaxXVvaqX6Zd5HAY7gGMrgwhnU4Roa0AQCKTzDK7xZT9aL9W59zEaXrHznAP7A+vwBWTyU4g==</latexit>

dim(S) = d2

16.8 Markus Müller

Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).
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can then be measured by the normalized mutual information, see Eq. (20).
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).
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4N (4N � 1) real parameters

N=1: 12, N=2: 240, N=3: 4032, …



Maximally Correlated Dynamics

Resource theory approach
Maximally correlated dynamics cannot be obtained by 

composing some dynamical map with uncorrelated dynamics

All non-factorable 
unitaries                    satisfy 

this criterion!
U 6= UA ⌦ UB
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Not very discrimina!ve

Consider ins"ad:

Ī(Emax) = max
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Characterization of 

Maximally Correlated Dynamics

Ī(Emax) = 1

Ī(E) = 1 ) E(⇢) = U⇢U†, UU† = 1

Example: despi" #e fact #at it does not crea" correla!ons!Ī(USWAP) = 1
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iii) The fundamental law of the resource theory for correlations in quantum dynamics is sat-
isfied, namely that

Ī(ES) � Ī
�
(LA ⌦ LB)ES(RA ⌦RB)

�
, (21)

stating that the amount of correlations of the dynamics ES decreases or at most stays
the same, if the dynamics is composed with uncorrelated dynamics. Stated differently,
if a process is a composition of a correlated and an uncorrelated part, the amount of
correlations in the composition has to be equal or smaller than the amount of correlation
that is inherent to the correlated part. Here, equality in the above inequality is reached for
composition with uncorrelated unitary dynamics, LA(·) = UA(·)U †

A, LB(·) = UB(·)U †
B,

RA(·) = VA(·)V †
A, and RB(·) = VB(·)V †

B.

Leaving aside the normalization factor 1/(4 log d), the quantifier (20) can be intuitively under-
stood as the amount of information that is needed to distinguish the actual dynamics ES from
the individual dynamics of its parts ES1 ⌦ ES2 [12]. Namely, the information that is lost when
ES1 ⌦ ES2 is taken as an approximation of ES. The normalized quantity Ī 2 [0, 1] quantifies this
information relative to the maximum value it can take on all possible processes.
For clarity, we remark that the use of an ancilla system S

0 is merely underlying the mathe-
matical construction of the isomorphism. It is not required in an experimental determination
of Ī . Rather than reconstructing the Choi-Jamiołkowski state ⇢CJ

S from quantum state tomog-
raphy [12] on the enlarged system SS

0, one can equivalently determine ⇢CJ
S by reconstructing

the dynamics ES by means of quantum process tomography on the physical system S alone.
For a system S of N qubits, due to the Choi-Jamiołkowski isomorphism the number of real
parameters to determine, 4N(4N�1), is in both cases the same and grows exponentially with
the number of qubits.

3.3 Maximally correlated quantum dynamics

Before computing Ī for some cases of physical interest it is worth studying which dynamics
achieve the maximum value Īmax = 1. From the resource theory point of view, these dynamics
can be considered as maximally correlated since they cannot be constructed from other maps
by composition with uncorrelated maps [because of Eq. (21)]. One can show the following
property of maximally correlated dynamics:

Theorem 1. If for a map ES the property that Ī(ES) = 1 holds, it must be unitary ES(·) =

US(·)U †
S, USU

†
S = 1.

Proof. As aforementioned, the maximum value, Ī(ES) = 1, is reached if and only if ⇢CJ
S is a

maximally entangled state with respect to the bipartition AA
0|BB0, | (AA0)|(BB0)i. Then

ES ⌦ 1S0
�
|�SS0ih�SS0 |

�
= | (AA0)|(BB0)ih (AA0)|(BB0)| (22)

is a pure state. Therefore ES must be unitary as the Choi-Jamiołkowski state is pure if and only
if it represents a unitary map.

S SWAP
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|�SS0i with the auxiliary system S

0. This state is just a product of maximally entangled states
between AA

0 and BB
0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:

if and only if this process is correlated with respect to A and B, the total system SS
0 becomes

correlated with respect to the bipartition AA
0|BB0. The degree of correlation of the dynamics

can then be measured by the normalized mutual information, see Eq. (20).

second d
2-dimensional bipartite system S

0
= A

0
B

0, essentially a “copy” of system S. Next, let
|�SS0i be the maximally entangled state between S and S

0,

|�SS0i :=
1

d

d2X

j=1

|jjiSS0 =
1

d

dX

k,`=1

|k`iAB ⌦ |k`iA0B0 . (17)

Here, |ji denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d

2-dimensional Hilbert space of S and its “copy” S
0. Similarly, |kiA and |liB

denote the canonical basis of the d-dimensional subsystems A, B, and A
0, B

0. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d

4-dimensional
quantum state

⇢
CJ
S := ES ⌦ 1S0

�
|�SS0ih�SS0 |

�
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S0 on S

0, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ⇢

CJ
S in

the enlarged d
4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

⇢
CJ
S =

1

2

⇣
|00ih00|SS0 + |11ih11|SS0

⌘
+

1

2
(1�2p)

⇣
|00ih11|SS0 + |11ih00|SS0

⌘
. (19)

=

maximally
entangled
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0, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:
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To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads
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CJ
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1

2
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(Non-)Maximally Correlated Dynamics

Remark: highly correlating dynamics such as the CNOT gate or maps for 
dissipative preparation of Bell-states are not maximally correlated according to   !Ī
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Ī(E) = 1 ) E(⇢) = U⇢U†, UU† = 1

<latexit sha1_base64="JoC8oiOPjVKGnTsdilfDXqH0fNo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx5bsLbQhrLZTtq1m03Y3Qgl9Bd48aAgXv1H3vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnDzpOFcM2i0WsugHVKLjEtuFGYDdRSKNAYCeY3M79zhMqzWN5b6YJ+hEdSR5yRo2VWu6gXHGr7gJknXg5qUCO5qD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhNe+xmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+TzlXVq1U9r1WrNG7yPIpwBudwCR7UoQF30IQ2MEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AQ7xjO0=</latexit>

0

<latexit sha1_base64="VMykZDNl5NJDTtTSu6ShVDeyVyQ=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoY5mAMYHkCHubuWTN3t6xuyeEkF9gY6Egtv4jO/+Nm+QKTXww8Hhvhpl5YSqFsb7/7RXW1jc2t4rbpZ3dvf2D8uHRg0kyzbHJE5nodsgMSqGwaYWV2E41sjiU2ApHtzO/9YTaiETd23GKQcwGSkSCM+ukBu2VK37Vn4OsEpqTCuSo98pf3X7CsxiV5ZIZ06F+aoMJ01ZwidNSNzOYMj5iA+w4qliMJpjMD52SM6f0SZRoV8qSufp7YsJiY8Zx6DpjZodm2ZuJ/3mdzEbXwUSoNLOo+GJRlEliEzL7mvSFRm7l2BHGtXC3Ej5kmnHrsim5EOjyy6ukdVGll1VKG5eV2k2eRxFO4BTOgcIV1OAO6tAEDgjP8Apv3qP34r17H4vWgpfPHMMfeJ8/EHaM7g==</latexit>

1

<latexit sha1_base64="skm7aiG86la/kS6U4QpcCK5/6ck=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU92Ugh6LXjxWtLbQLiWbZtvQJLskWaEs/QlePCiIV/+QN/+NabsHbX0w8Hhvhpl5YSK4sb7/7RXW1jc2t4rbpZ3dvf2D8uHRo4lTTVmLxiLWnZAYJrhiLcutYJ1EMyJDwdrh+Gbmt5+YNjxWD3aSsECSoeIRp8Q66R5f1Prlil/150CrBOekAjma/fJXbxDTVDJlqSDGdLGf2CAj2nIq2LTUSw1LCB2TIes6qohkJsjmp07RmVMGKIq1K2XRXP09kRFpzESGrlMSOzLL3kz8z+umNroKMq6S1DJFF4uiVCAbo9nfaMA1o1ZMHCFUc3croiOiCbUunZILAS+/vEratSquVzG+q1ca13keRTiBUzgHDJfQgFtoQgsoDOEZXuHNE96L9+59LFoLXj5zDH/gff4A7jiNYw==</latexit>

1/2

Spatial Correlations in Quantum Dynamics 16.9

3.2 Construction of a correlation measure

In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a re-
source theoretic approach (see, e.g., [23, 24] where this approach is used in the context of
entanglement theory). The idea is that one may consider correlated dynamics as a resource
to perform whatever task that cannot be implemented solely by (composing) uncorrelated evo-
lutions EA ⌦ EB. Then, suppose that the system S undergoes some dynamics given by the
map ES. Now, consider the (left and right) composition of ES with some uncorrelated maps
LA ⌦ LB and RA ⌦ RB, which act before and after ES, so that the total dynamics is given by
E 0
S = (LA ⌦ LB)ES(RA ⌦RB). It is clear that any task that we can do with E 0

S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E 0

S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1p

2
(|01iAB+ |10iAB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ⇢CJ

S , Eq. (18),

Ī(ES) :=
I(⇢

CJ
S )

4 log d
:=

1

4 log d

⇣
S
�
⇢
CJ
S |AA0

�
+ S

�
⇢
CJ
S |BB0

�
� S

�
⇢
CJ
S

� ⌘
. (20)

Here, S(·) := �Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ⇢

CJ
S |AA0 := TrBB0(⇢

CJ
S ) and ⇢

CJ
S |BB0 := TrAA0(⇢

CJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⌦ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA

0|BB0 (no proof given here).

ii) The quantity Ī(ES) 2 [0, 1]. It is clear that Ī(ES) � 0, moreover it reaches its maximum
value when S(⇢

CJ
S ) is minimal and S

�
⇢
CJ
S |AA0

�
+S

�
⇢
CJ
S |BB0

�
is maximal. Both conditions

are met when ⇢
CJ
S is a maximally entangled state with respect to the bipartition AA

0|BB0,
leading to I(⇢

CJ
S ) = 2 log d

2.

SWAP

What about the 
CNOT-gate?

Ī[(UA ⌦ UB)USWAP(VA ⌦ VB)] = 1

9U 0, such that Ī(U 0) = 1, but U 0 6= (UA ⌦ UB)USWAP(VA ⌦ VB)
9U 0, such that Ī(U 0) = 1, but U 0 6= (UA ⌦ UB)USWAP(VA ⌦ VB)

U 0 = | "#ih#" |+ i(| ##ih"# |+ | #"ih## |+ | ""ih"" |)



Physical Application: Superradiance
Two two-level atoms radiating in the EM vacuum

HS = !0
2 �

z
1 + !0

2 �
z
2

d⇢

dt
= �i[HS , ⇢] +

X

j,k=1,2

ajk

�
�
�
k ⇢�

+
j � 1

2{�
+
j �

�
k , ⇢}

�

Details in the lecture notes

|0�

|1�1 2

ajk = �0 [j0(xjk) + P2(cos ✓jk)j2(xjk)] '
(
�0�jk, if r � 1/!

�0, if r ⌧ 1/!

16.12 Markus Müller

corresponds to the modes of the radiation field and is given by

HE =

X

k

X

�=1,2

!ka
†
�(k)a�(k), (24)

where k and � stand for the wave vector and the two polarization degrees of freedom, respec-
tively. We have taken natural units ~ = c = 1. The dispersion relation in free space is !k = |k|,
and the field operators a†�(k) and a�(k) describe the creation and annihilation of photons with
wave vector k and polarization vector e�. These fulfill k · e� = 0 and e� · e�0 = ��,�0 .
The atom-field interaction is described in dipole approximation by the Hamiltonian

HSE = �
X

j=1,2

⇥
�
�
j d ·E(rj) + �

+
j d

⇤ ·E(rj)
⇤
. (25)

Here, d is the dipole matrix element of the atomic transition, rj denotes the position of the j-th
atom, and the raising and lowering operators �+

j and �
�
j are defined as �+

j = (�
�
j )

†
= |eij jhg|

for its exited |eij and ground |gij states. Furthermore, the electric field operator is given (in
Gaussian units)

E(r) = i

X

k,�

r
2⇡!k

V e�(k)
⇣
a�(k)e

ik·r � a
†
�(k)e

�ik·r
⌘
, (26)

where V denotes the quantization volume. Under a series of standard assumptions known as
the Markovian weak-coupling limit [3] the dynamics of the atoms is governed by a Lindblad
master equation of the form

d⇢S

dt
= L(⇢S) = �i

!
2

�
Z1 + Z2, ⇢S

�
+

X

i,j=1,2

ajk

⇣
�
�
k ⇢S�

+
j � 1

2{�
+
j �

�
k , ⇢S}

⌘
. (27)

After taking the continuum limit ( 1
V
P

k ! 1
(2⇡)3

R
d
3k) and performing the integrals, the coef-

ficients ajk are given by (see e.g. Sec. 3.7.5 of Ref. [3])

ajk = �0

�
j0(xjk) + P2(cos ✓jk)j2(xjk)

�
. (28)

Here, �0 = 4
3!

3|d|2, and j0(x) and j2(x) are spherical Bessel functions [26]

j0(x) =
sin x

x
, j2(x) =

✓
3

x3
� 1

x

◆
sin x� 3

x2
cos x, (29)

and
P2(cos ✓) =

1

2

�
3 cos

2
✓ � 1

�
(30)

is a Legendre polynomial, with

xjk = !|rj�rk| and cos
2
(✓jk) =

|d · (rj�rk)|2
|d|2|rj�rk|2

. (31)

Notice that if the distance between atoms r = |r1 � r2|, is much larger than the wavelength
associated with the atomic transition r � 1/!, we have ajk ' �0�ij and only the diagonal

ajk = �0 [j0(xjk) + P2(cos ✓jk)j2(xjk)] '
(
�0�jk, if r � 1/!

�0, if r ⌧ 1/!
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First Application: Superradiance

Two two-level atoms radiating in the EM vacuum
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Ion-trap quantum computer

Courtesy: Innsbruck ion-trap group

 Second application: Noise characterisation
in a quantum computer



Innsbruck linear ion-trap lab



Vacuum chamber



Ions confined in  
a string by a Paul trap



endcaps 
DC

AC RF fields 

Solution: Effective confinement by combining static and oscillating electric fields.

1b. Quantum Computing with Trapped Ions

• qubits: long-lived internal electronic or spin states

• single qubit gate: laser

• two-qubit gate: phonons as quantum data bus

• measurement: quantum jumps

Friday, April 3, 2009

ions form Coulomb crystals 
(e.g. linear chains)

phonons as information bus: 
entangling quantum gates

small oscillations around 
equilibrium positions: 
collective vibrations 
(phonons)  

laser cooling 

Charged particles can’t be trapped by static electric fields only (Earnshaw’s theorem).

Mechanical analog

Ion Coulomb crystals



Universität Innsbruck 

Loading your desired number of ions



S1/2

D5/2
40Ca+

Qubit  
transi+on

Physical qubits are encoded in (meta-)stable electronic states

70 µm 

R. Blatt group
(Innsbruck)

|1i

|0i

Simplified electronic level scheme

The qubit register



70 µm 

R. Blatt group
(Innsbruck)

               Single-qubit     
               quantum gates 

can be realised by tightly  
focused, near-resonant laser 
beams applied to individual ions

Simplified electronic level scheme

+++ ......

U(�) = exp
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Qubit  
transi+on

Laser

Single-qubit gate operations
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laser pulses

+++

Key idea:

Use collective vibrational modes (phonons) as 
a quantum information bus

Lasers pulses that couple electronic (qubit) states of 
different ions to the collective vibrational modes can 
mediate entangling interactions between two or more qubits
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Fig. 4: Electronic level scheme of 40Ca+. The green and blue squares and circles indicate dif-
ferent qubit encodings, denoted A and B, respectively. Squares are marking the qubit state |1i
whereas the state |0i is highlighted with circles. The corresponding frequency shifts of the tran-
sitions caused by the magnetic field are �2.80MHz/G and +3.36MHz/G for the qubits marked
with green and blue symbols respectively. For configuration 1 described in the enumeration in
the main text for both qubits the encoding marked in green is used. The asymmetry in scenario
2 is introduced by encoding one of the qubits in the states illustrated in blue. For the third
configuration both qubits again use the encoding marked in green and the spontaneous decay
from |0i to |1i is enhanced. Figure from [28].

Let us now discuss how the temporal development of the spatial correlation estimator Ī can be
used to determine the degree of spatial correlations in a two-qubit register. For this, we perform
full quantum process tomography on qubit registers with varying degree of correlations. The
electronic hyperfine level structure of the 40Ca+ (see Fig. 4) is rich enough to allow the experi-
mentalists to choose and investigate the noise characteristics for qubits encoded in various pairs
of computational basis states. Here, the idea is that the degree of noise correlations between
individual qubits can be tuned by encoding them in Zeeman states with differing magnetic field
susceptibility. As a consequence, different sensitivities to noise from magnetic field fluctuations
is expected. Concretely, there exist multiple possibilities to encode a qubit in the Zeeman levels
of the 4S1/2 and 3D5/2 states as shown in Fig. 4. The susceptibility of the qubits to the magnetic
field ranges from �2.80MHz/G to +3.36MHz/G, which allows the experimentalists to tune not
only the coherence time of the individual qubits but also the correlations between qubits, when
magnetic field fluctuations are the dominant source of noise.
Understanding the dephasing dynamics, and in particular noise correlations, in registers con-
taining qubits in different encodings is essential in the context of error mitigation and quantum
error correction: this understanding will be needed to determine the viability of an approach to
build, e.g., functional logical qubits formed of entangled ensembles of physical qubits, which
can be used to fight errors by means of quantum error correction techniques.
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Fig. 5: Dynamics of the spatial correlation quantifier Ī for different qubit encodings.
Three cases are depicted: Both qubits encoded in |4S1/2, mS=�1/2i $ |3D5/2, mS=�5/2i
(blue triangles), one qubit encoded in |4S1/2, mS=�1/2i $ |3D5/2, mS=�5/2i and
|3D1/2, mS=�1/2i $ |3D5/2, mS=�5/2i (green circles) and both qubits subject to uncor-
related dynamics via spontaneous decay (red diamonds). The horizontal axis is normalized to
the coherence time for the first two cases and to the decay time for the third case. Results from
a Monte Carlo based numerical simulations with 500 samples are depicted with shaded areas
in the corresponding color. Figure from [28].

The small quantum register consisting of only two qubits allows one to perform full process
tomography [12] to fully reconstruct the dynamics ES in the two-qubit system. From this, the
correlation measure Ī (see Eq. (20)) can be directly determined. In the present platform, the
amplitude of the magnetic field fluctuations is non-stationary as it depends on the entire lab-
oratory environment, e.g., due to fluctuating currents flowing through wires, which therefore
cannot be controlled accurately. However, the apparatus allows one to engineer a stationary
magnetic field noise as the dominating noise source (a situation where laser and magnetic field
noise have to be taken into account is described in [28]). Thus we could control and tune the
single qubit coherence time. The stationary magnetic field noise is engineered by our experi-
mental colleagues by applying a white-noise current to the coils that generate the magnetic field
at the ions’ positions. The noise amplitude is set such that the coherence time of the qubit en-
coded in

��4S1/2, mS=�1/2
↵

and
��3D5/2, mS=�5/2

↵
is reduced from 59(3)ms to 1.98(7)ms.

The increase of magnetic field noise by a factor of ⇡ 30 ensures that laser phase-noise is neg-
ligible on these timescales. From the measured data, a process matrix fully describing ES was
reconstructed using an iterative maximum likelihood method to ensure trace preservation and
positivity of the process matrix.
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4.3 Experimental determination of spatial dynamical correlations

In the following we will consider dephasing dynamics that is caused by a magnetic field acting
on a string of two ions. The various qubit-states have different susceptibilities to magnetic field
fluctuations, given by the Landé g factors gi of the involved Zeeman substates. The phase that
qubit i accumulates during the time evolution is therefore given by

�i(t) =

Z t

0

d⌧B(⌧)µbgi

with the time-dependent magnitude of the magnetic field B(⌧) and the Bohr magneton µb. The
magnetic field fluctuations can be modeled by multiple random implementations of B(t). The
time evolution for a single implementation can then be expressed as

U(�1) = exp
�
�i�1(�

z
1+g�

z
2)
�

(33)

with the ratio of the Landé factors g=g2/g1. In order to estimate the dynamics under a dephasing
decay, one needs to average the evolution over many noise realizations with random phases.
In the experiment we investigated the following qubit configurations that implement dephasing
and spontaneous decay dynamics:

1. Configuration 1: For the realization of maximally correlated dephasing dynamics, both
qubits are encoded in the

��4S1/2, mS=�1/2
↵

and
��3D5/2, mS=�5/2

↵
states. This en-

coding is referred to as encoding A hereinafter, and corresponds to the green markers in
Fig. 4. Both qubits have a susceptibility to the magnetic field of �2.80MHz/G, leading
to identical susceptibility coefficients (g = 1) (see Eq. (33)).

2. Configuration 2: To introduce an asymmetric dephasing dynamics, one qubit is encoded
in A and the second is encoded in the states

��3D1/2, mS=�1/2
↵

and
��3D5/2, mS=�5/2

↵

respectively. This encoding is referred to as encoding B hereinafter, and corresponds
to the blue markers in Fig. 4. Their different susceptibilities to magnetic field noise of
�2.80MHz/G and +3.36MHz/G introduce unequal dephasing and therefore are expected
to affect correlations between the qubits, corresponding to the susceptibility coefficients
(g = �0.83).

3. Configuration 3: Uncorrelated dynamics can be engineered in this experimental sys-
tem by introducing spontaneous decay. In this scenario, both qubits are encoded in En-
coding A. A laser pulse resonant with the 3D5/2 $ 4P3/2 transition at 854 nm short-
ens the effective lifetime of the exited state by inducing a spontaneous decay to the
4S1/2,mS = �1/2 level via the short-lived 3P3/2,mS = �3/2 level. Since spontaneous
emission of visible photons by the ions at a distance of several micrometers corresponds
to an uncorrelated noise process, as we have seen in Sec. 3, this controllable pump process
implements an uncorrelated noise process that can be modeled as spontaneous decay. The
effective lifetime depends on the laser power and is in our case set to be Tspont = 7(1)µs.
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gate creates (maximally) correlated output states such as the Bell state of Eq. (1), therefore the
CNOT gate is clearly a correlated quantum dynamics!
Similarly, spatially homogeneous or global (magnetic) field fluctuations, acting with the same
strength on a register of two or more qubits, described by a Hamiltonian

HG(t) =
1

2
B(t)

X

k

Zk (16)

result in spatially correlated dephasing dynamics. This dynamics ES on the qubit register can-
not be described by a product of independent dephasing processes, ES 6= ⌦kEk, with Ek acting
on the k-th qubit. It is left as an exercise to work out the generalization of Eq. (14) for this
scenario of correlated dephasing dynamics. Again, working with suitably chosen input states,
e.g. | (0)i = ⌦k |+ik, should allow one to distinguish between spatially correlated and uncor-
related dephasing.
In fact, this idea holds true in general: any correlation C(OA,OB) = hOA ⌦OBi � hOAihOBi
detected during the time evolution of an initial product state, ⇢S = ⇢A ⌦ ⇢B, witnesses the
correlated character of the dynamics. However, for this to work, one needs to be lucky or have
a priory knowledge about the dynamics and thereby be able to choose suitable observables and
input states, for which correlated dynamics generates non-vanishing correlations in the final
quantum state generated by the dynamics. Furthermore, note that there exist highly correlated
dynamics, which cannot be realized by a combination of local processes, which however do not
generate any such correlation. A simple example is the swap process between two parties. Such
dynamics can either act on internal degrees of freedom, induced, e.g., by the action of a swap
gate acting on two qubits [12], or can correspond to (unwanted) external dynamics, caused,
e.g., by correlated hopping of atoms in an optical lattice [19] or the melting of an ion Coulomb
crystal and subsequent recooling dynamics with a possibly different rearrangement of particles
in trapped-ion architectures [20].

3 Rigorous quantifier for correlations in quantum dynamics

In light of this discussion, let us therefore now discuss a systematic and rigorous method to cap-
ture and quantify spatial correlations in quantum dynamics, not requiring any a-priori knowl-
edge or assumptions about the dynamics taking place on the composite quantum system.

3.1 Choi-Jamiołkowski isomorphism

The central tool of our construction is the Choi-Jamiołkowski isomorphism [21, 22, 12]. This
is a one-to-one correspondence of a given quantum dynamics of a system to an equivalent
representation in the form of a quantum state in an enlarged Hilbert space. As we will see, this
mapping will allow us to use tools developed for the quantification of correlations in quantum
states, as we discussed above in Sec. 1.2, for our purpose of quantifying correlations in the
quantum dynamics taking place in the bi-partite system S = AB. For this mapping, consider a

Fully correlated
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Entanglement-based magnetometry 
in a trapped-ion quantum computer

conceived using single-qubit and two-qubit CNOT gates
[25,26], it would be desirable to devise trapped-ion circuits
that exploit MS gates directly and to study how errors
propagate on those circuits to demonstrate fault tolerance.
We address these points by presenting a detailed descrip-
tion of a generic MS-based toolbox for QEC. We apply this
toolbox to the seven-qubit topological color code with
trapped ions, either using a non-fault-tolerant stabilizer
readout with seven data qubits and one additional ancillary
qubit (i.e., 7þ 1-qubit scheme) based on multiqubit or
sequential two-qubit MS gates, or by using fault-tolerant
stabilizer readout via MS-based schemes that realize the
equivalent of the CNOT DiVincenzo-Shor (DVS) protocol
for 7þ 5 qubits [25] or the DiVincenzo-Aliferis (DVA)
protocol for 7þ 4 qubits [26]. Although we have focused
on this particular code, we remark that this trapped-ion
QEC toolbox for stabilizer readout can be generalized to
any other stabilizer QEC code of interest and scaled to
larger-size codes in a modular fashion.
The MS-based stabilizer readout is used, in combination

with some of the elementary operations of Tables II and IV,
as a building block for the development of trapped-ion
QEC protocols in Sec. VI. As already outlined above, we
explore different scenarios according to varying experi-
mental capabilities:

(1) Shuttling-based protocol.— Here, we consider
trapped-ion crystals with either a single or two
species of ions species, i.e., data and ancillary qubits
being encoded in the same or different atomic
species. We develop sequences of crystal-reconfig-
uration operations and stabilizermappings to perform
a full QEC cycle on a single logical qubit.We explore
how the ability of crystal recooling by sympathetic
cooling via the ancillary ion at intermediate stages
affects the performance of the protocol.

(2) Hiding-based protocol.— Here, we consider the
protocols realized in a static ion crystal. Qubits
are selectively addressed by shelving inactive ions
via spectroscopic decoupling and recoupling pulses,
and combined with stabilizer mappings to perform a
full QEC cycle on a single logical qubit. We consider
encoding of data and ancillary qubits in two different
species and the possibility to apply recooling after
the readout.

These QEC protocols are complemented with the error
model introduced in Sec. IV, which improves upon custom-
ary circuit-error models that consider a unique quantum
channel for all elementary operations in a QEC cycle. This
allows us to perform a detailed study that goes beyond
standard, albeit not very realistic, assumptions: (i) We
consider that the different gates (including the identity), the
state preparation, and the measurements do not take the
same amount of time. (ii) We use distinct error channels
affecting the different stages of the QEC protocols. For
instance, idle qubits are subjected to dephasing in a
trapped-ion setup, whereas single- and multiqubit gates
are subjected to depolarizing noise. More importantly,
(iii) the different channels are not all characterized by a
unique error probability. Certainly, single- and multiqubit
gates do not have the same error in any known experimental
platform. We use a microscopic modeling of the ion
crystals to derive the particular expressions or values of
the corresponding error rates for each operation. Therefore,
our treatment not only goes beyond models that do not
consider, or simplify, the occurrence of errors on the
syndrome readout, but it also goes beyond the standard
so-called circuit-level noise model, which typically makes
these over-simplifications.
These sections set the stage for a large-scale numerical

analysis that investigates the performance of such protocols
in Sec. VII. The criterion introduced for beneficial or useful
QEC is used to quantify the three essential requirements
that will need to be met in forthcoming experiments for
trapped-ion QEC: (i) sufficiently small natural physical
error rates from fundamental error sources, (ii) detection
and dynamical correction of errors at a fast enough rate, and
(iii) sufficiently accurate realizations of unavoidably imper-
fect error-correction routines so that there is still an overall
gain of applying (imperfect) QEC procedures.
Finally, in Sec. VIII, we present our conclusions.

FIG. 1. The Sandia HOA2 trap as a QEC platform: In our
envisioned scheme, 40Caþ ions (blue and red dots) are cotrapped
with 88Srþ ions (green dots) in a quantum zone divided into three
storage regions S1, S2, S3 and two manipulations zones M1, M2.
Some of the 40Caþ ions can be used as data qubits to encode
quantum information according to a QEC code (blue dots), while
others (red dots) can be used as ancilla qubits for syndrome
extraction. The 88Srþ ions (green dots) are used as sympathetic
coolants to reduce the number of phonons prior to the entangling
gates. Possible crystal-reconfiguration operations are shown in
the panel in the lower-right corner: (a) splitting of an ion crystal,
(b) shuttling of an ion and subsequent merging with another ion
to form a crystal, and (c) rotation (swapping) of a mixed species
crystal. Schematics of the trap are adapted from a micrograph
in Ref. [21].
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measure magnetic-field gradients while rejecting common-
mode fluctuations [26–28].
Quantum entanglement can be harnessed to extend

sensing capabilities [29,30]. Entangled Greenberger–
Horne–Zeilinger or NOON states can, in principle, yield
a sensitivity beyond the standard quantum limit [31–33].
However, an increased sensitivity also implies an increased
noise-induced decoherence [34]. Hence, the beneficial
effect of entanglement is generally compromised unless
measurement schemes are designed to reject noise in favor
of the desired signal. With trapped ions, entangled
sensor states of the type ðj↑↓iþ eiφj↓↑iÞ=

ffiffiffi
2

p
have been

employed to measure local magnetic-field gradients [35,36]
as well as the magnetic dipole interaction between the
constituents’ valence electrons [37].
In this article, we present a magnetic gradiometer, where

entangled ions are moved to different locations x1 and x2
along the trap axis of a segmented linear Paul trap. The dc
magnetic-field difference ΔBðx1; x2Þ between the ion
locations can be inferred from the phase accumulation rate
of these sensor states via the linear Zeeman effect

Δωðx1; x2Þdc ≡ _φdc ¼
gμB
ℏ

ΔBðx1; x2Þ: ð1Þ

Since the net magnetic moment of the two constituent ions
vanishes, common-mode noise is rejected such that the
coherence time can exceed 20 s [35,36,38,39]. Combined
with the fine-positioning capabilities offered by trapped
ions, this enables magnetic-field sensing in a parameter
regimewhich could previously not be accessed:We sense dc
field differences at around 300 fT precision and 12 pT=

ffiffiffiffiffiffi
Hz

p

sensitivity, and the spatial resolution is limited by the size of
the ion’s ground-state wave function of about 13 nm.
In Sec. II, we describe the procedure for measuring the

relative phase φ of sensor states, apply it to determine phase
accumulation rates Δωðx1; x2Þ in Sec. III, and discuss the
limitations in Sec. IV. An efficient measurement scheme
utilizing Bayesian frequency estimation is presented in
Sec. V. In Sec. VI, we extend our sensing scheme to infer
both dc and ac magnetic-field differences from the mea-
sured phase accumulation rates. Finally, in Sec. VII, we
compare our results to state-of-the-art magnetic-field meas-
urement techniques and discuss applications of our sensor.

II. EXPERIMENTAL PROCEDURE

We trap two 40Caþ ions in a segmented linear Paul trap
[40], featuring 32 control electrode pairs along the trap
axis x. The distance between the center of neighboring
electrodes is 200 μm. A dc trapping voltage of −6 V leads
to an oscillation frequency of the ions of about 1.5 MHz
along the trap axis, corresponding to a 1σ width of the
ground-state wave function of about 13 nm.
A quantizing magnetic field at an angle of 45° to the trap

axis is created by Sm2Co17 permanent magnets, splitting

the ground-state Zeeman sublevels j↓i≡ jS1=2; mj ¼ − 1
2i

and j↑i≡ jS1=2; mj ¼ þ 1
2i by about 2π × 10.4 MHz. The

trap setup is shielded from ambient magnetic-field fluctua-
tions by a μ-metal magnetic shielding enclosure, yielding a
coherence time of about 300 ms [41] in a Ramsey-type
experiment.
Laser cooling, coherent spin manipulations, and read-out

[42] take place in the laser interaction zone (LIZ) of the trap
(Fig. 1). An experimental cycle starts with Doppler laser
cooling a two-ion crystal on the S1=2 ↔ P1=2 cycling
transition near 397 nm. All collective transverse modes
of vibration of the ion crystal are cooled close to the
motional ground state via resolved sideband cooling on the
stimulated Raman transition between j↑i and j↓i. State
initialization to j↑↑i is achieved via frequency-selective
pumping utilizing the narrow S1=2 ↔ D5=2 quadrupole
transition near 729 nm.
A pair of copropagating laser beams, detuned by 2π ×

300 GHz from the cycling transition, serves to drive spin
rotations without coupling to motional degrees of freedom.
After state initialization, a π=2 pulse on both ions creates
the superposition state j↑↑iþ ij↑↓iþ ij↓↑i − j↓↓i. Then,
an entangling geometric phase gate [43] is carried out.
A spin-dependent optical dipole force transiently excites
collective vibrations only for parallel spin configurations,
such that the j↑↑i and j↓↓i states acquire a phase of π=2.
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FIG. 1. Experimental procedure for measurements of inhomo-
geneous magnetic fields. After creation of the sensor state at the
LIZ, the two constituent ions are separated and shuttled to the
desired trap segments L and R. In order to measure the
accumulated phase during the interrogation time T, the ions
are individually shuttled to the LIZ to perform basis rotations that
allow for state read-out via electron shelving and fluorescence
detection in either the X̂1X̂2 or X̂1Ŷ2 basis. For basis rotations,
electron shelving, and fluorescence detection, the relevant energy
levels are shown.
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Fig. 6: Experimental procedure implemented in [29] for measurements of inhomogenous mag-
netic fields in a segmented ion trap. After the creation of the sensor Bell state by means of
single- and two-qubit gates in the laser interaction zone (LIZ), the two constituent ions are
separated and shuttled to the desired trap segments L and R. In order to measure the accumu-
lated phase during the interrogation time T , the ions are individually shuttled back to the LIZ
to perform basis rotations that allow for state read-out via electron shelving and fluorescence
detection in either the X1X2 or Y1Y2 measurement basis. For basis rotations, electron shelving,
and fluorescence detection, the relevant energy levels are shown in the small inset figures at the
right. Figure reproduced from [29].

The key idea of how this works can be understood by considering a fluctuating magnetic field
which acts with exactly the same magnitude, and thus perfectly spatially correlated on all
qubits, as discussed above and described by Hamiltonian of Eq. (16). A single-qubit super-
position state | ik = ↵ |0ik + � |1ik will under such noise dephase over time and end up in a
classical mixture |⇢ik = |↵|2 |0ih0|k + |�|2 |1ih1|k. If we, however, consider instead a Bell state
of two qubits,

| i12 = ↵ |01i12 + � |10i12 , (34)

we find that under the time evolution generated by the collective dephasing Hamiltonian Eq. (16)
such a superposition remains an eigenstate of the time evolution operator at all times. Or in other
words, no relative phase in the superposition state (34) is accumulated. Therefore, under this
correlated dephasing noise, the basis states |01i12 and |10i12 span a two-dimensional so-called
decoherence-free subspace (DFS): this is a subspace of the two-qubit Hilbert space, within
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measurements, i.e., jφðT; x1; x2Þ − φmeasðT; x1; x2Þj < π. In
order to check if the phase has been incremented or
decremented properly, we verify that the residuals of all
points are well below π. Figure 2 shows an example
measurement at maximum ion distance d ¼ 6.2 mm and
the residuals δφ for each point. In this measurement, phases
of over 40 000 rad have been accumulated during inter-
rogation times of up to Tmax ¼ 1.5 s, but the residuals jδφj
of all measurement points are well below π.
The maximum interrogation time Tmax is ultimately

limited by the coherence time Tcoh of the sensor state.
The coherence time is therefore analyzed in the following
section.

IV. COHERENCE TIMES

We characterize the coherence time Tcoh of the sensor
state for two settings: The ions are kept (i) in a common
potential well at a distance of about 4.2 μm and (ii) in
separate harmonic wells at the maximum possible distance
of 6.2 mm. The coherence time is inferred from measure-
ments of the contrast C for varying interrogation times T.
For each interrogation time, we repeat the experimental

procedure 400 times for each of the two measurement
operators.
For case (i), a coherence time Tcoh > 12.5 s is observed

[Fig. 3(a)]. In this regime, residual heating of the radial
modes of motion compromises the fidelity of electron
shelving and therefore the spin read-out. In separate
measurements, we characterized the spin read-out effi-
ciency for the input states j↑↑i and j↓↓i, and confirmed
that the observed contrast loss is entirely caused by
read-out.
For the maximum possible ion distance, a Gaussian

contrast decay is observed, with a coherence time in the
1–2-s range. For Gaussian contrast decay, the best sensi-
tivity for our phase measurement scheme is achieved at an
interrogation time corresponding to a contrast of 0.85
(see Ref. [44]).
The contrast decay at maximum ion distance is presum-

ably caused by a slow drift of the magnetic-field minimum
position along the trap axis. In order to verify our
presumption, we measured this drift consecutively for
two different ion separation distances of d ¼ 6.2 mm
and d ¼ 3.2 mm over the course of 6 hours [Fig. 3(b)].
For the former case, a typical drift rate of 1 Hz=h is
observed. We verified that this drift rate corresponds to a
contrast decay within 2s. For an ion distance of
d ¼ 3.2 mm, the drift rate is suppressed by a factor of
about 1.6 as compared to the maximum ion distance. The
spatial dependence of the observed drift rates is consistent
with movement of the ion trap relative to the magnetic field
in the 200-nm range, equivalent to thermal expansion of our
vacuum chamber due to a temperature change of
roughly 0.1 °C.

V. BAYESIAN FREQUENCY ESTIMATION

In order to speed up the incremental measurement
scheme for determining Δωðx1; x2Þ described in Sec. III,
we implement an adaptive scheme for frequency estimation
based on a Bayesian experiment design algorithm [51,52].
In general, such algorithms control the choice of a

measurement parameter—in our particular case, the inter-
rogation time—which, in each measurement run, guaran-
tees the optimum gain of information on the parameter to be
determined. These algorithms are beneficial in situations
where only a few parameters are to be determined, an
accurate model relating the design parameters to the
measurement outcome holds, and the measurement is
“expensive” in terms of resources such as time.
In Bayesian statistics, for a given phase measurement to

be carried out, the combined result of all previous mea-
surements is expressed with the prior probability distribu-
tion function (PDF) pðΔω;φ0Þ. Initially, we assume a
uniformly distributed prior PDF, limited to a reasonable
parameter range Δω ∈ fΔωmin;Δωmaxg and φ0 ∈ f−π; πg.
After a phase measurement with the outcome fn;mg, the
combined result is described by the posterior PDF,
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FIG. 3. (a) Sensor state contrast C versus interrogation time T at
the maximum ion distance of d ¼ 6.2 mm (red dots) and at an ion
distance of d ¼ 4.2 μm (blue squares). For illustration, the black
curve and gray region indicate a third-order polynomial fit to a
separate read-out fidelity measurement and its confidence bands.
(b) Simultaneous drift of the measured frequency difference for
ion distances d ¼ 6.2 mm (blue circles) and d ¼ 3.2 mm (purple
triangles) over a duration of about 6 hours with an interrogation
time of T ¼ 150 ms. For d ¼ 3.2 mm, the measured drift is
suppressed by a factor of about 1.6 as compared to the maximum
ion distance.
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Fig. 7: (a) Sensor state contrast C as a function of the interrogation time during which the two
ions of the sensor Bell state (34) are exposed to the magnetic fields at their respective positions,
spatially separated by a distance of d = 6.2 mm (red dots) and d = 4.2 µm (blue squares). For
illustration, the black curve and gray region indicate a third-order polynomial fit to a separate
read-out fidelity measurement and its confidence bands (see [29]). (b) Simultaneous drift of the
measured frequency difference for ion distances d = 6.2 mm (blue circles) and d = 3.2 mm
(purple triangles) over a duration of about 6 hours with an interrogation time of T = 150 ms.
Figure reproduced from [29].

which the noise acts trivially and quantum information can be stored and protected for longer
times than in single physical qubits. Alternatively, one can view the state of Eq. (34) as a
minimal “logical qubit” formed of two physical qubits, with effective logical basis states |0iL =

|01i12 and |1iL = |10i12, and which offers protection against spatially correlated dephasing
noise. Using such two-qubit DFS spaces in two ions, quantum information and entanglement
can be preserved for timescales of minutes, as impressively demonstrated already in 2005 [9],
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gate creates (maximally) correlated output states such as the Bell state of Eq. (1), therefore the
CNOT gate is clearly a correlated quantum dynamics!
Similarly, spatially homogeneous or global (magnetic) field fluctuations, acting with the same
strength on a register of two or more qubits, described by a Hamiltonian

HG(t) =
1

2
B(t)

X

k

Zk (16)

result in spatially correlated dephasing dynamics. This dynamics ES on the qubit register can-
not be described by a product of independent dephasing processes, ES 6= ⌦kEk, with Ek acting
on the k-th qubit. It is left as an exercise to work out the generalization of Eq. (14) for this
scenario of correlated dephasing dynamics. Again, working with suitably chosen input states,
e.g. | (0)i = ⌦k |+ik, should allow one to distinguish between spatially correlated and uncor-
related dephasing.
In fact, this idea holds true in general: any correlation C(OA,OB) = hOA ⌦OBi � hOAihOBi
detected during the time evolution of an initial product state, ⇢S = ⇢A ⌦ ⇢B, witnesses the
correlated character of the dynamics. However, for this to work, one needs to be lucky or have
a priory knowledge about the dynamics and thereby be able to choose suitable observables and
input states, for which correlated dynamics generates non-vanishing correlations in the final
quantum state generated by the dynamics. Furthermore, note that there exist highly correlated
dynamics, which cannot be realized by a combination of local processes, which however do not
generate any such correlation. A simple example is the swap process between two parties. Such
dynamics can either act on internal degrees of freedom, induced, e.g., by the action of a swap
gate acting on two qubits [12], or can correspond to (unwanted) external dynamics, caused,
e.g., by correlated hopping of atoms in an optical lattice [19] or the melting of an ion Coulomb
crystal and subsequent recooling dynamics with a possibly different rearrangement of particles
in trapped-ion architectures [20].

3 Rigorous quantifier for correlations in quantum dynamics

In light of this discussion, let us therefore now discuss a systematic and rigorous method to cap-
ture and quantify spatial correlations in quantum dynamics, not requiring any a-priori knowl-
edge or assumptions about the dynamics taking place on the composite quantum system.

3.1 Choi-Jamiołkowski isomorphism

The central tool of our construction is the Choi-Jamiołkowski isomorphism [21, 22, 12]. This
is a one-to-one correspondence of a given quantum dynamics of a system to an equivalent
representation in the form of a quantum state in an enlarged Hilbert space. As we will see, this
mapping will allow us to use tools developed for the quantification of correlations in quantum
states, as we discussed above in Sec. 1.2, for our purpose of quantifying correlations in the
quantum dynamics taking place in the bi-partite system S = AB. For this mapping, consider a
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measurements, i.e., jφðT; x1; x2Þ − φmeasðT; x1; x2Þj < π. In
order to check if the phase has been incremented or
decremented properly, we verify that the residuals of all
points are well below π. Figure 2 shows an example
measurement at maximum ion distance d ¼ 6.2 mm and
the residuals δφ for each point. In this measurement, phases
of over 40 000 rad have been accumulated during inter-
rogation times of up to Tmax ¼ 1.5 s, but the residuals jδφj
of all measurement points are well below π.
The maximum interrogation time Tmax is ultimately

limited by the coherence time Tcoh of the sensor state.
The coherence time is therefore analyzed in the following
section.

IV. COHERENCE TIMES

We characterize the coherence time Tcoh of the sensor
state for two settings: The ions are kept (i) in a common
potential well at a distance of about 4.2 μm and (ii) in
separate harmonic wells at the maximum possible distance
of 6.2 mm. The coherence time is inferred from measure-
ments of the contrast C for varying interrogation times T.
For each interrogation time, we repeat the experimental

procedure 400 times for each of the two measurement
operators.
For case (i), a coherence time Tcoh > 12.5 s is observed

[Fig. 3(a)]. In this regime, residual heating of the radial
modes of motion compromises the fidelity of electron
shelving and therefore the spin read-out. In separate
measurements, we characterized the spin read-out effi-
ciency for the input states j↑↑i and j↓↓i, and confirmed
that the observed contrast loss is entirely caused by
read-out.
For the maximum possible ion distance, a Gaussian

contrast decay is observed, with a coherence time in the
1–2-s range. For Gaussian contrast decay, the best sensi-
tivity for our phase measurement scheme is achieved at an
interrogation time corresponding to a contrast of 0.85
(see Ref. [44]).
The contrast decay at maximum ion distance is presum-

ably caused by a slow drift of the magnetic-field minimum
position along the trap axis. In order to verify our
presumption, we measured this drift consecutively for
two different ion separation distances of d ¼ 6.2 mm
and d ¼ 3.2 mm over the course of 6 hours [Fig. 3(b)].
For the former case, a typical drift rate of 1 Hz=h is
observed. We verified that this drift rate corresponds to a
contrast decay within 2s. For an ion distance of
d ¼ 3.2 mm, the drift rate is suppressed by a factor of
about 1.6 as compared to the maximum ion distance. The
spatial dependence of the observed drift rates is consistent
with movement of the ion trap relative to the magnetic field
in the 200-nm range, equivalent to thermal expansion of our
vacuum chamber due to a temperature change of
roughly 0.1 °C.

V. BAYESIAN FREQUENCY ESTIMATION

In order to speed up the incremental measurement
scheme for determining Δωðx1; x2Þ described in Sec. III,
we implement an adaptive scheme for frequency estimation
based on a Bayesian experiment design algorithm [51,52].
In general, such algorithms control the choice of a

measurement parameter—in our particular case, the inter-
rogation time—which, in each measurement run, guaran-
tees the optimum gain of information on the parameter to be
determined. These algorithms are beneficial in situations
where only a few parameters are to be determined, an
accurate model relating the design parameters to the
measurement outcome holds, and the measurement is
“expensive” in terms of resources such as time.
In Bayesian statistics, for a given phase measurement to

be carried out, the combined result of all previous mea-
surements is expressed with the prior probability distribu-
tion function (PDF) pðΔω;φ0Þ. Initially, we assume a
uniformly distributed prior PDF, limited to a reasonable
parameter range Δω ∈ fΔωmin;Δωmaxg and φ0 ∈ f−π; πg.
After a phase measurement with the outcome fn;mg, the
combined result is described by the posterior PDF,
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FIG. 3. (a) Sensor state contrast C versus interrogation time T at
the maximum ion distance of d ¼ 6.2 mm (red dots) and at an ion
distance of d ¼ 4.2 μm (blue squares). For illustration, the black
curve and gray region indicate a third-order polynomial fit to a
separate read-out fidelity measurement and its confidence bands.
(b) Simultaneous drift of the measured frequency difference for
ion distances d ¼ 6.2 mm (blue circles) and d ¼ 3.2 mm (purple
triangles) over a duration of about 6 hours with an interrogation
time of T ¼ 150 ms. For d ¼ 3.2 mm, the measured drift is
suppressed by a factor of about 1.6 as compared to the maximum
ion distance.
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Fig. 7: (a) Sensor state contrast C as a function of the interrogation time during which the two
ions of the sensor Bell state (34) are exposed to the magnetic fields at their respective positions,
spatially separated by a distance of d = 6.2 mm (red dots) and d = 4.2 µm (blue squares). For
illustration, the black curve and gray region indicate a third-order polynomial fit to a separate
read-out fidelity measurement and its confidence bands (see [29]). (b) Simultaneous drift of the
measured frequency difference for ion distances d = 6.2 mm (blue circles) and d = 3.2 mm
(purple triangles) over a duration of about 6 hours with an interrogation time of T = 150 ms.
Figure reproduced from [29].

which the noise acts trivially and quantum information can be stored and protected for longer
times than in single physical qubits. Alternatively, one can view the state of Eq. (34) as a
minimal “logical qubit” formed of two physical qubits, with effective logical basis states |0iL =

|01i12 and |1iL = |10i12, and which offers protection against spatially correlated dephasing
noise. Using such two-qubit DFS spaces in two ions, quantum information and entanglement
can be preserved for timescales of minutes, as impressively demonstrated already in 2005 [9],

Entanglement-based magnetometry 

Harnessing spatially correlated noise

magn. field 
inhomogeneities
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Correlated Dynamics in Multipartite Setting
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Fig. 8: Schematic illustration of the multipartite correlation measure. (A) Choi-Jamiołkowski
representation of the dynamics. The system is prepared in a product of maximally entangled
states of 2M parties {Sj|S0

j} and the dynamics affects only the subsystems Sj . If and only if
the dynamics are correlated, the bipartitions {SiS

0
i|SjS

0
j} will be entangled, yielding a nonzero

correlation measure Ī . (B) Schematic depiction of the procedure to estimate a lower bound of Ī .
There, the system is initially prepared in a separable state ⇢S1 ⌦ ⇢S2 · · ·⌦ ⇢SM and correlations
in the dynamics show up as correlations C (see Eq. (38)) in the measurement of suitably chosen
observables Oj . Figure reproduced from [28].

dynamics can then be assessed by
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where ⇢
CJ
S |SiS0i = Tr{8Sj 6=iS0j 6=i}(⇢

CJ
S ).

A lower bound for the multipartite setting can be applied as shown in Fig. 8(B), by measuring
correlations. Mathematically the same steps as in the bipartite case [see Eq. (35)] can be applied,
resulting in

Ī(E) � 1

4M ln d

C
2
⇢0(O1, . . . ,OM)

kO1k2 . . . kOMk2 . (37)

Here, ⇢(t) is the joint state after the evolution of an initial product state, O1, . . . ,OM are local
observables for the parties S1, . . . , SM , respectively, and the correlation function is

C⇢(t)(O1, . . . ,OM) = hO1 . . .OMi⇢(t) � hO1i⇢(t) . . . hOMi⇢(t). (38)

This multipartite bound makes investigating correlation dynamics accessible in systems that are
too large for full quantum process tomography, as here the number of measurements increases
only linearly compared to the exponential scaling for full quantum process tomography.
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Lower Bound Estimation
The exact experimental determination of I becomes 

impractical as the number of systems increases

Lower estimators

C2
E(⇢)(X1, . . . , XM ) = hX1 . . . XM iE(⇢) � hX1iE(⇢) . . . hXM iE(⇢)

Ī(E) � 1

4M ln d

C2
E(⇢)(X1, . . . , XM )

kX1k2 . . . kXMk2 , ⇢ =
MO

i=1

⇢i

Operator norm
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Fig. 9: Illustration of one scalable route from macroscopic linear Paul traps (upper left) to-
wards large-scale ion-trap quantum processors. Ions can be stored in segmented traps (upper
right), where ion crystals can be controlled locally, and ions can be split, moved around and
merged with ion-crystals in different trapping regions. This allows one to control increasingly
larger qubit registers with high flexibility. Such linear traps can be coupled via junctions, along
which ions can be moved from one trap into neighboring zones, where they can be stored (S) or
manipulated (M). This will allow one to assemble traps into larger two-dimensional trap arrays,
which can be used to host and control large registers of qubits for quantum error correction and
eventually large-scale fault-tolerant quantum computation.

In summary, based on the mapping of quantum dynamics to quantum states in an enlarged
Hilbert space via the Choi-Jamiołkowski isomorphism, in this lecture we have discussed a rig-
orous and systematic method to quantify the amount of spatial correlations in general quantum
dynamics. Furthermore, we have applied the theoretical concepts developed to paradigmatic
physical models and demonstrated their usefulness for the characterization of noise in experi-
mental quantum processors. We expect that noise characterization techniques such as the ones
discussed in this lecture will be of fundamental importance for the study of dynamics in a large
variety of quantum systems. From a practical and more applied standpoint, such tools are likely
to be essential to make further progress in developing and characterizing increasingly larger and
scalable qubits registers, as shown for trapped ions in Fig. 9, to make the dream of large-scale
quantum computers and simulators become a reality.
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Abstract
Understanding the role of correlations in quantum systems is both a fundamental challenge as well as
of high practical relevance for the control ofmulti-particle quantum systems.Whereas a lot of research
has been devoted to study the various types of correlations that can be present in the states of quantum
systems, in this workwe introduce a general and rigorousmethod to quantify the amount of
correlations in the dynamics of quantum systems. Using a resource-theoretical approach, we
introduce a suitable quantifier and characterize the properties of correlated dynamics. Furthermore,
we benchmark ourmethod by applying it to the paradigmatic case of two atomsweakly coupled to the
electromagnetic radiation field, and illustrate its potential use to detect and assess spatial noise
correlations in quantumcomputing architectures.

1. Introduction

Quantum systems can display awide variety of dynamical behaviors, in particular depending on how the system
is affected by its coupling to the surrounding environment. One interesting feature which has attractedmuch
attention is the presence ofmemory effects (non-Markovianity) in the time evolution. These typically arise for
strong enough coupling between the system and its environment, or when the environment is structured, such
that the assumptions of thewell-knownweak-coupling limit [1–3] are no longer valid.Whereasmemory effects
(or time correlations) can be present in any quantum system exposed to noise, another extremely relevant
feature, whichwewill focus on in this work, are correlations in the dynamics of different parts ofmulti-partite
quantum systems. Since different parties of a partition are commonly, though not always, identifiedwith
different places in space, without loss of generality wewill in the following refer to these correlations between
different subsystems of a larger system as spatial correlations.

Spatial correlations in the dynamics give rise to awide plethora of interesting phenomena ranging from
super-radiance [4] and super-decoherence [5] to sub-radiance [6] and decoherence-free subspaces [7–11].
Moreover, clarifying the role of spatial correlations in the performance of a large variety of quantumprocesses,
such as e.g. quantum error correction [12–17], photosynthesis and excitation transfer [18–28], dissipative phase
transitions [29–33] and quantummetrology [34] has been and still is an active area of research.

Along the last few years, numerousworks have aimed at quantifying up towhich extent quantumdynamics
deviates from theMarkovian behavior, see e.g. [35–43].However,much less attention has been paid to develop
quantifiers of spatial correlations in the dynamics, although someworks e.g. [44, 45] have addressed this issue
for some specificmodels. Thismay be partially due to thewell-known fact that undermany, though not all
practical circumstances, dynamical correlations can be detected by studying the time evolution of correlation
functions of properly chosen observables A and B , acting respectively on the two partiesA andB of interest.
For instance, in the context of quantum computing, sophisticatedmethods towitness the correlated character of
quantumdynamics, have been developed and implemented in the laboratory [45]. Indeed, any correlation
C ( , )A B A B A B= 〈 ⊗ 〉 − 〈 〉〈 〉      detected during the time evolution of an initial product state,

A Bρ ρ ρ= ⊗ , witnesses the correlated character of the dynamics. However, note that there exist highly
correlated dynamics, which cannot be realized by a combination of local processes, which do not generate any
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