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strong correlations: what are they?

cooperative effects that cannot be
described in a single-particle picture

emergent phenomena

more IS different

Philip Warren Anderson

SCIENCE
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emergence in social media

formation of polarized opinion-bubbles

yes yes yes

yes yes yes yes




emergence in solid-state systems

conventional superconductivity
non-conventional superconductivity

BSCC0-2223, photo from wikipedia

G. Zhang and E. Pavarini,
Rapid Research Letters 12, 1800211 (2018)

photo from wikipedia

. magnetic order
orbital order Mott transition

o0
E. Pavarini, E. Koch, A.l. Lichtenstein, PRL 101, 266405 (2008) G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004) , J U L I C H
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strongly correlated systems

systems that retain atomic properties in the solid

Li

Na

Rb

Cs

Fr

La | Ce | Pr

Pm

Sm

Gd

Tb

Dy

Ho

Er

Tm

*Ac Th | Pa

Np

Pu

Cm

Bk

Cf

Es

Fm

Md

Coulomb-induced metal-insulator transition

heavy-Fermions
unconventional superconductivity
spin-charge separation
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the Mott metal-insulator transition

Mott transition

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)
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band metals vs band insulators

single-electron picture: states filled up to Fermi level

DOS
DOS

Fermi level Fermi level

diamond gold

photos from Wikipedia ~ ™ rForscHUNGSZENTRU



the Mott metal-insulator transition

metal in the single-electron picture, insulator in reality

origin: on-site Coulomb repulsion U
comparable with/larger than bandwidth W

U/W
half filling

, )
G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004) J J U LI C H
M
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KCu

one-electron picture
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Experiments: insulator. Above 40 K a paramagnetic insulator.
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Mott systems: it is not just a matter of the gap

enhanced masses
guasiparticles with short lifetimes

local moment behavior

orbital, spin and charge ordering

anomalous superconductivity

#) JULICH

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004) FORSCHUNGSZENTRU



Hubbard model

atomic hoppings atomic

H= 5dZZczacw —tZZC;rGCi,U +UZniTnz¢ — H,+ Hr + Hy
T O 1

(1¢/) ©

at half filling:

1. t=0: collection of atoms, insulator
2. U=0: half-filled band, metal
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Amin Kiani and Eva Pavarini, Phys. Rev. B 94, 075112 (2016) 0 JU LICH
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high-T¢ superconducting cuprates

VOLUME 87, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jury 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with 7', ;;,ax

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,” O. Jepsen, and O. K. Andersen

Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
(Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2p,, and farther orbitals. Materials with higher 7. max have larger hopping ranges and
axial orbitals more localized in the CuO, layers.
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1963

editorial

The Hubbard model at half a century

Models are abundant in virtually all branches of physics, with some achieving iconic status. The Hubbard
model, celebrating its golden jubilee this year, continues to be one of the most popular contrivances of
theoretical condensed-matter physics.

Capturing the essence of a phenomenon
while being simple: the ingredients of a
top model in physics. Since the early days
of quantum mechanics, many models,
Hamiltonians and theories aiming to
provide a deeper understanding of
various properties of condensed matter
have been put forward — with varying
degrees of success and fame. One

truly legendary model is the Hubbard
model, independently conceived by
Martin Gutzwiller', Junjiro Kanamori®
and, of course, John Hubbard?® — their
original papers all appearing in 1963. The
main motivation was the need for a way to
tackle the behaviour of correlated (rather
than non-interacting) electrons in solids.
Initially, the model was introduced to
provide an explanation for the itinerant
ferromagnetism of transition metals, such
as iron and nickel, but the past 50 years
have seen its relevance go far beyond that
original context.

refine his model. His ‘Electron correlations
in narrow energy bands’ would eventually
comprise six installments. ‘Hubbard IIT*
became especially important as it showed
that for one electron per lattice site — the
Hubbard model at half filling — the Mott (or
Mott-Hubbard) transition is reproduced.
This is a type of metal-insulator transition
that could not be understood in terms of
conventional band theory (which predicts
that a half-filled band always results in a
conducting state).

The simplicity of the Hubbard model,
when written down, is deceptive. Not only
had Gutzwiller, Kanamori and Hubbard
already extracted different physics from the
model, it turned out to be a ‘mathematically
hard’ problem: an exact solution has so far
only been obtained for the one-dimensional
case. Today, with ever-increasing computer
power, numerical simulations of the
model are mainstream — particularly
when trying to get a grip on the role of the

NATURE PHYSICS | VOL 9 | SEPTEMBER 2013 | www.nature.com/naturephysics

when the field of cold-atom optical trapping
had advanced so far that experimental
realizations of the Hubbard model could

be achieved. A landmark experiment
demonstrated how a lattice of bosonic

atoms displays a transition from a superfluid
to a Mott insulator?, a result accounted

for by the Bose-Hubbard model (the
Hubbard model for bosons). Many other
variants of the Hubbard model, including
the original model for fermions®, have

been experimentally realized by now, a
development that nicely illustrates how a
model can become the target of experiments
itself — and, more generally, how theoretical
and experimental physics can entangle and
spark further progress.

The simplicity of the Hubbard
model, when written down,
isdeceptive.

523
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Hubbard model

atomic hoppings atomic

—5dzz Cio za_tzz Cio za+UZnZTnZ¢_Hd+HT+HU

(') @

at half filling:

1. t=0: collection of atoms, insulator
2. U=0: half-filled band, metal

how do we solve it?
#) JOLICH
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static mean-field approaches

Hartree-Fock approximation

U’ﬁ,ﬁﬁu — Uu —|-7A17;—

. 1
HMF — Z [8k + U<§ — O'TTL)]TALkU
ko

m =% 0 ferromagnetic solution
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to open a gap™* we must lower the symmetry

* within the one-electron picture

REPLACE THIS

(1) ©

WITH THIS
H Z Z 5dzaczg io Z tiit o Z CioCilo

LET US FIRST DO THIS KEEPING THE ORIGINAL SYMMETRY
#) )0LICH

FORSCHUNGSZENTRUM



static mean-field approaches

Hartree-Fock approximation

ferromagnetic Hartree-Fock

n 1 A
Hypr = Z [&:k -+ U(§ — 0m> Niko
ko

m = 0
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to open a gap™* we must lower the symmetry

* within the one-electron picture

REPLACE THIS

(1) ©

WITH THIS

H § :E :gdzacza za § :thE :Czacz’a

LET US FIRST DO THIS KEEPING THE ORIGINAL SYMMETRY .
#) )0LICH
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electron counting argument

metallic state

half filling

e = —2t|cos k; + cosk,]
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to open a gap™* we must lower the symmetry

* within the one-electron picture

REPLACE THIS

(1) ©

WITH THIS

H § :E :gdzacza za § :tma za 7,0'

REDUCING THE SYMMETRY
#) )0LICH
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static mean-field approaches

Hartree-Fock approximation

ferromagnetic Hartree-Fock
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to open a gap we lower the symmetry

mU=0 mU=2t
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KCu

one-electron picture: metal

Experiments: insulator. Above 40 K a paramagnetic insulator
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methods to lower the symmetry

magnetic/orbital/charge order

spin-glass

Slater insulator

Mott insulators and systems sufficiently close to the Mott
transition have different properties wrt Slater insulators
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1989-1992: dynamical mean-field theory

Hubbard model
—5d22% Cio —tZch w+UZ”zT”w

k-independent self-energy
main difficulty: solve self-consistent quantum impurity problem

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992). J J U LI C H
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1989-1992: dynamical mean-field theory

map LATTICE problem to QUANTUM IMPURITY problem

local self-energy approximation

® W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

® E. Miiller-Hartmann, Z. Phys. B 74, 507 (1989);
Z..Phys. B 76,211 (1989); Int. J. Mod. Phys. B 3, 2169 (1989)

® A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992)

®M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)
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dynamical mean-field theory

_5dzz ¢ w—tzz c w+Uanan
U/W E(w)

W: band width

half filling | .
LHB ﬁ h UHB

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)
Bethe Lattice J JU LICH
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how does it work?
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DMFT for the Hubbard dimer

this is a toy model: coordination number is one

DMFT is exact for =0, U=0 and in the
infinite coordination limit
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the Hubbard dimer

_5d§ nza_

Z (610620 T

o

T
2acla

) -+ Uanan
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=2 {=0: exact diagonalization

IN,S,S.) N S E(N, S)
0,0,0) = 0) 0 0 0
1,1/2,0)1 = cl_10) 1 1/2 £
1,1/2,0)9 = ¢l 10) 1 1/2 €4
2,1,1) = chrcl+]0) 2 1 24
2,1,-1) = chycl,10) 2 1 24
2,1,0) = L5 |eled, +cl ] o) 2 1 24
2,0,000 = 2 |cliel, — el ey ] 10) 2 0 %4
2,0,0); = clrcl,10) 2 0 2q + U
2,0,0), = chycl 10) 2 0 24+ U
3,1/2,0)1 = clychich|0) 3 1/2 3eq+ U
3,1/2,0)9 = chyclict |0) 3 1/2 3eq+ U
4,0,0) = clacl chich |0) 4 0 deg + 2U

#) JOLICH
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«—:2 finite t. exact diagonalization  N=1

1,5,5.)a E.(1,5) da(1,5)
1,1/2,0)4 = %( 1,1/2,0)1 —|1,1/2,0)2)  eq+1 2
1,1/2,0)_ = %( 1,1/2,0)1 +11,1/2,0)2)  eq—1 2
A _ _
Exr=¢€g4+1T k=
U=0 2t

B ) JULICH
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2 finite t. exact diagonalization N=2

half filling (N=2)

2,5,5.)a E.(2,5) do(2, S)

2,0,0)+ = a1]2,0,0)0 — 25(]2,0,0)1 +[2,0,0)2) 2eq + 1 (U + A(t,U)) 1

2,0,0), = %(|2,0,0>1 — 2,0, 0)2) 2eq + U 1




2 finite t. exact diagonalization  N=3
3,5,5.)a E.(3) da(3,S)
3,1/2,0), = \%(1,1/2,@14— 1,1/2,0)) 3eq+ U+t 2
3,1/2,0)_ = %(1,1/2,@1— 1,1/2,0)2) 3eq+U—t 2

Ar
U=0

4y
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—:2 the local Green function, N=2

Lehmann representation

il
o (w)—l 14+ w(t,U) 1 —w(t,U)
"4\, — (Bp(2) —egtt—p) iy, — (Eo(2) — eq—t—p)
E(2)-E(1)— -
B~
N 1 —w(t,U) N 1 +w(t,U)
Wy — (— Ey(2) + U—|—38d+t—,u) WUy, — (— Ey(2) + U—I—Sed—t—,u)

E@)EQR) —— -
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—:2 the local Green function, N=2

14+ w(t,U)
iy — (— Eo(2) + U+3eq—t—p)
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—2  the local Green function

1 1
: — + -
W +u—eqg+t— 23700, iv,) zun+u—€d—t—2"(7T,iVn)>

~" ~

G (0,iv,) GO (m,ivy,)
. U U? 1
Y (k,iv,) =— A : = — .
4 v, +p—eq— 35 — et* 3t
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_2

the local spectral function




—2  the local Green function
U=0 vs finite U

1 1
GV (ivy,) = = — 7
i1 (i 2 Z Wy — ) v, — (eq + FO>ivy) — )

klv N

(e} y 1
L) =3 a1 Gt 27 (ivn) + Fo(ivn) — p)

Ek —

[

N
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—2  the local Green function

local self-energy

| 1 U U? iy + o —eqg — <
EU n) — = 20 7.n EJOJ'n — 2
7 (ivy) 2( (7, ivm) + X7(0, iv >> IR P (s R

non-local self-energy

1 U? 3t

AEU.TL:_EU 7‘n_20- 7.n —
7 (ivy,) 2( (7, ivn) (O’W)) 4 (iVn+M—€d—%)2—(3t)2
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_2

the local Green function

hybridization function

0 t2
F*(ivy,) = :
(i) Wy — (€a — 1)

modified hybridization function
W NON-LOCAL

o (t + AX(ivy))?
F(ivn) v — (ea — p+ 27 (ivn))
4 ocn
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map to a quantum impurity model ?

the Anderson molecule

1 2 1 2

HA = Eq Zﬁsg — tz (CEGCSU + Ciacda) + &4 Zﬁdg + Ungrnay
o (o} o2

RRRRRRRRRRRRRRRRR



A self-consistency  halffilling: N=2

A

Hg(gd, U, t) =

0

0 0 2eq —V2t =2t
Hubbard 0

0

0 —V2t 2e4+U 0
0 3t 0 241U )

o o O O

( cqtes 0 0 0 0 0
0 Eq+e€s 0 0 0 0
A4 0 0 Ed+e€s 0 0 0
HyaUke) =1 0 0 cqte. =3 =3t
Anderson 0 0 0  —V2t 244U 0
\ 0 0 0 =2t 0 2%, |

€s=8d+U/2=,U )
same occupations of Hubbard dimer #) JOLICH
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2 solution: Hubbard vs Anderson
Anderson molecule

7 (ivm) = :

A e — (ea — i+ 27 (i) + ¢ (ivm))
]

Hubbard dimer

7 (ivn) = :

) = (6q — po+ 57 (ivg) + F7 (ivm))
I

4 LOCAL

let us neglect the non-local self-energy
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_2

solution: Hubbard vs Anderson

hybridization function

0 t2
F*(ivy,) = :
(i) Wy — (€a — 1)

modified hybridization function

* NON-LOCAL
(t + AEl(iyn))2
ivp, — (€4 — p+ X7 (ivy))

4 LOCAL

Fe (ivy,) =
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EE— Green function U=4t

vs Hubbard

only local self-energy exact
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—c DMFT for the dimer

H=¢y Z Nig — t Z (CJ{GC% + cgacla) + U Z NirT| @-@
10 o )
map to quantum impurity model (QIM) in local self-energy approximation
g \7
oA — s Z Ngoe — T Z (CLUCSG -+ Ciacda) + &4 Z Ndo + U’ﬁdeTALCu

QIM solver

self-consistency loop | - 11 - jbt . ll .
O_Q ®_© ®_© ) JOLICH
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E(k,w) — Ed(w)

non-local self-energy terms

vS hon-local interaction
Uijij
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2 non-local Coulomb terms

how important are they ?

H =¢, Z Nig — tz (010620 + 020010) +U Z MM

1=1,2

+ Z (V —2Jy — Jy 500/)ﬁ10ﬁ20z — Jy Z (CITCNC%CM + C;-r,TCl-LwC,L-TCu)
oo’ 171!

t, V. Jv

1 2 #) JULICH
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2 non-local Coulomb terms

(224 0 0 0 0 0\
0 24 0 0 0 0
) 0 0 24 O 0 0 N=2 half filling
HLeUD=1 0 0 0 ey vt —ya
Hubbard | o0 0 0 —v2t 244U 0
L0 0 0 v 0 241U )

(2sd+V—3JV 0 0 0 0 0\
0 2eq + V—3Jy 0 0 0 0
Hubbard zy_ 0 0 2q+V—3Jy 0 0 0
0 0 0 2eq +V—Jy =2t V2t
+non-local 0 0 0 VB 9ea4U  —Jy
\ 0 0 0 —V/2t —Jv  2e4+U )

Setting for simplicity Jy» = 0, we can notice that Y™ equals Hy(e;, U’, ), the Hamiltonian of the Jy=V =0
Hubbard dimer, with parameters €/, = ¢4+ V/2 and U'=U—-V. ’ v
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—2 non-local Coulomb terms

U=V: N=2, effective non-correlated dimer

strong-correlation effects typically appear when the local
electron-electron repulsion dominates over non-local terms

if Coulomb interaction independent on site distance, we can
map to (some) effective weakly correlated model
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gquantum-impurity solvers
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—c DMFT for the dimer

H=¢y Z Nig — t Z (CJ{GC% + cgacla) + U Z NirT| @-@
10 o )
map to quantum impurity model (QIM) in local self-energy approximation
g \7
oA — s Z Ngoe — T Z (CLUCSG -+ Ciacda) + &4 Z Ndo + U’ﬁdeTALCu

QIM solver

self-consistency loop | - 11 - jbt . ll .
O_Q ®_© ®_© ) JOLICH
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=2 quantum-impurity solver

HA — &5 Z Nsg —1 Z (C:riacsa + Clacda) T €d Z Ndo + Uﬁdfﬁdi

\ & 7\ ~ 4 A\ 4
VO
Hyath Hyyp Hioc

hybridization-expansion CT-QMC

Z =Tr (e‘ﬂ(ﬁo_“mf/(ﬁ)) *

) o o A g 8 L
V(B) = eB(Ho—pN) ,—=B(Ho+Huyb—pN) _ Z/ dry- - / dtm (—1)mHl_ Hyyn(11)
m Y0 Tm—1 -

m —
7\

~

[ drm™ O™ (1)

only even orders survive (m=2k) o, JULICH
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=2 quantum-impurity solver

bath-impurity decoupling

_Z/dT/dTZd T, 7)

Zbath

bath  d o(T,7) = det (F5 (7, 7))
non-interacting hybridization function

the difficult part: the local trace tf;, (T, T)

see lecture notes J JU LlCH
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some exact limits at half filling

DMFT for the one-band Hubbard model

_Edzzcza za_tzzcza zo—i_UZn@Tn@i_Hd—'—HT—'_HU
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dynamical mean-field theory

#) JULICH
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Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992)



self-consistency loop

_6dzzcza Cio tzzcza ZJ+UZn@TnZ¢_Hd+HT+HU
(i/) ©

» quantum impurity model (QIM)

Zeknkg + Z ( c,wcda + h.c.) + €4 Z Nde + UNgragy

7 \ 7
"~ "~ V a

Hb th thb Hirnp

) 4

QIM solver: QMC, ED, NRG, DMRG,...

self-consistency loop Gaod=Gii | JJULICH

RRRRRRRRRRRRRRRR



a real-system case: VOMo0Oq4

S
J2 S
2
>
(@)
| =
J1 UCJ

Amin Kiani and Eva Pavarini, Phys. Rev. B 94, 075112 (2016) #) JULICH
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a real-system: VOMoO4
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metal-insulator transition

iInsulating phase

ImX(w+i0")=—mp,8(w) for w e[ —A,/2,A,/2]
(235)

and that Re2, has the following low-frequency behavior:

ReE(w+i0+)—U/2=%+O(w). (236)

A. Georges et al., RMP 63, 13 (1996)

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004) , J U LI C H
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comparison to Hartree-Fock (LDA+U)

Hartree-Fock Hamiltonian and bands
ferromagnetic Hartree-Fock

A

. 1
HMF — Z [Ek U(§ — O'm> Nko

ko

self-energy
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ferromagnetic Hartree-Fock

CuO2 2d-tight binding model
e = —2t[cos k, + cos k]
, 1
X (k,ivy,) = U(§ — 0m>
mU=0 mU=2t
5 T+ //\
\ /\\

energy (eV)
o

1
N

\ /;/ \\

rr X M I 0JOL|CH

RRRRRRRRRRRRRRRR

=
X
<



antiferromagnetic HF

CuO2

mU=0

1%
T, T, T
l%

mU=0.5t

Ve

<

X

AN
va

N

N\
AN

X

M

rr

X M

r
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Mott transition: HF vs DMFT

LDA+U LDA+DMFT

Hartree-Fock DMFT




linear response functions
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magnetic susceptibility tensor

Xgi g (T) = (TAS(71,72)ASL (73,74))0,

St (71, 72) Zpa Ciar 71) Pa = —gnp(0’ld:]0"),

two-particle Green functions
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Hubbard model

atomic hoppings atomic

H= 5dZZczacw —tZZC;rGCi,U +UZniTnz¢ — H,+ Hr + Hy

(1¢/) ©

at half filling:

1. t=0: collection of atoms, insulator
2. U=0: half-filled band, metal

#) JOLICH
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U=0: the non-interacting case

Wick’s theorem holds

k+q k,+q igk+q7a’ (ZVn + 7/W'm)
Vn+Wm vn/+a)m
a y
Xo — XO
a V
Vn Vn’
k k'

7:gk:on/’ (ZVn)
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Hubbard model, U=0, n=1

£k = -—1— cos(kya) + cos(k.a)]

%0(a;0)

d=2

MO

X

)

d=3

X

T~350K

M

weakly T dependent (except close to van-Hove singularities/divergencies)

#) JOLICH
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Hubbard model, U=0, n=1

e = —2t|cos(kya) + cos(kya) T~350 K
%0(d;0)
4 -
d=2
L | nesting vector
-2 0) 2
2
proportional to
density of states
(Pauli) 0
r M

X
weakly T dependent (except close to van-Hove singularities/divergencies)

#) JOLICH
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DOS

XR

g=0 finite temperature

d=1 d=2 d=3
YIS
2 0 2 2 0 2 2 0 2
energy (eV)
d=1 d=2 d=3
- — ] L
N -
2000 4000 2000 4000 2000 4000, .
T (K) see my lectures corPeé A}Q@%@!ﬁ%’ﬁj



Hubbard model, atomic limit

Curie susceptibility
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Bethe-Salpeter equation

#) JOLICH
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susceptibility in DMFT

1. perturbation around DMFT solution

. 1 . . .
[XO(q; Zwm)]La,Lv = —B0nn E Z Ggrl;//IFT(k; ZVn)Gg/l\,;,IFT(k + q; 1y, + Zcum)
k
k+q k'+q 1Gk+-qyar (1Vn + iwm)
Vn+Wm Vn'+Wm
a y
Xo — XO
a V
Vn Vn’
k kK
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what about the vertex?
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local-vertex approximation

vertex in BS equation local in infinite dimensions

X(g;iwm)] . 1, = [Xo(@;wm) + xo(q; iwm JL(@@m) X (q; iwn)] 1 1

Y

define local susceptibilities

. 1 ,
[XO (Zwm)]Lff,LfyC — AT Z [XO(q; Zwm)]foc,Lfyc 3

X (iwm)] — Z (q; iwm)]
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local-vertex approximation

2. solve local BS equation

TG - o), ),

local susceptibility: from quantum impurity solver

3. solve g-dependent BS equation

X(@; iwm)l 1 = [xo(g;wm) + Xxo(q; Z'wm)-x(q; twm)] . 1

/Y

q-dependence here from non-interacting part
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VOLUME 69, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JULY 1992

Hubbard Model in Infinite Dimensions: A Quantum Monte Carlo Study

M. Jarrell
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
{Received 5 December 1991)

An essentially exact solution of the infinite-dimensional Hubbard model is made possible by a new
self-consistent Monte Carlo procedure. Near half filling antiferromagnetism and a pseudogap in the
single-particle density of states are found for sufficiently large values of the intrasite Coulomb interac-
tion. At half filling the antiferromagnetic transition temperature obtains its largest value when the in-
trasite Coulomb interaction U == 3.

PACS numbers: 75.10.Jm, 71.10.+x, 75.10.Lp, 75.30.Kz

300 ! & —
o 2000 t -
. Og,
3 @2 L “o
200 + ’ o
o
< O 20.0 : J
=2 = 0.001 0.003 0.010
100 | 3 T
Q
2}
]
S0
0 L . © = S ©
0.08 0.09 0.10 Q.11 0.12 0.13

T
FIG. 3. Antiferromagnetic susceptibility xar(7} vs tempera-
ture 7 when U=1.5 and ¢=0.0. The logarithmic scaling be-
havior is shown in the inset. The data close to the transition

fit the form yxape|7T—7T|" with T,=~0.0866+0.0003 and ” Jl.J LICH

v=—0.99+0.05. The points at /=0 reflect exactly known
limits. FORSCHUNGSZENTRUM



DMFT for 1- and 2- particle GFs

Green Function Susceptibility

k-dependent Dyson equation matrix = g-dependent Bethe-Salpeter equation matrix

G(k;ivy,) = Go(k;ivy) + Go(k;ivy) X (k; ivy,)G(k; ivy,) X(q; iwm) = x0(q; iwm) + X0(q; iwm) L(q; iwm) x(q; iwm)
local self-energy approximation local vertex approximation

Y(ksivy) — X(ivy) I'(q;iwm) = I'(iwn,)

local Dyson equation local Bethe-Salpeter equation

G(ivy) = Go(ivy) + Gol(ivy) X (ivy,)G(ivy,) X (twm ) = x0(twm) + X0 (twm ) L (iwm) x (twm )
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Example: Mott insulators in small t/U limit

In the =0 limit

. 1 U? 1
G n — ) p— _—
i) = o = (o) 2ivn) =+ = -

small &/U limit: approximate form for the self-energy

7“UU2 1

S(iv,) =
(ivp) = p+ T
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Mott insulators: small t/U limit

bubble term

1 1 J 1 J
X0(q; 0) ~ (gup)’ 1 0 1

4\/TUU a iw/TUU ; 4 \/TUU

Jq = 2J[cos g, +cosqy,], Joxt?/U

local magnetic susceptibility

1 6,BU/2
4kgT 1 + ePU/2

Xzz(q; O) — (g:uB)Q

RRRRRRRRRRRRRRRR



[~

Xz2(q;0) =

Bethe-Salpeter equation

1 1 1 1 Jo
RO ORECTTSE [‘”ﬁ v <1 NN
local vertex
! ~ (QMB)21 !

X2, (q;0)]7t =T

Curie-Weiss behavior

)t
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VOMOoOQOyq4

' VOMoO,
U=5, Tgy ~ 191

N A A

1/

0 1000
T(K)

2000

A. Kiani and E. Pavarini, Phys. Rev. B 94, 075112 (2016) 0 JOL|CH
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static and dynamical response

* Ibubble 2 Ul
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A. Kiani and E. Pavarini, Phys. Rev. B 94, 075112 (2016); J. Musshoff and E. Pavarini, to be published.



so what!

the one-band Hubbard model
IS not enough for understanding materials
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from models to materials

heliocentric model (circles)

@

photos from wikipedia



multi-band Hubbard model

RRRRRRRRRRRRRRRR



DMFT for multi-band models
Ztabc cp + = Z Ucdch cdc /C g

cdc d’
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In principle, only more indices

Jolly good show! 2 (ivn)

You conver ged G(ivn)

N
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in practice, QMC-based solvers

computational time

[imited number of orbitals/site
finite temperature

sign problem
some /nteractions are worse than others

some bases are worse than others
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flexible and efficient solvers

H= — S SN b e self-energy matrix in spin-orbital space
W mm’ o 16384 oM —e
+ U it i L
1 8192 | E
+ 5 Z (U — 2J — J5M/)nimaningz o
im#m’oo’ § 4096 |
— J Z (CInTCIn’ oty T CLTclwcm,Tcm, ) ’
mZ=m/ 2048 |
DMFT and cDMFT 024 - - -
. . . 1024 2048 4096 8192 16384
generalized quantum impurity solvers: #CPU
general HF QMC
1 . .
general CT-INT QMC :
general CT-HYB QMC ) TiO3
+ CT-HYB: A. Flesch, E. Gorelov, E. Koch and E. Pavarini 205 |
Phys. Rev. B 87, 195141 (2013)
+ CT-INT: E. Gorelov et al, PRL 104, 226410 (2010) FM PM
+ CT-INT+SO: G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, 0 0 a0 a0 o o a0 o

Phys. Rev. Lett. 116, 106402 (2016)

#) JOLICH

sign problem: smart adapted basis choice



we need minimal material-specific models

realistic models

H Ztabc cp + = Z Uecddre' C cjlc /C g1
cdc d’

5

realistic self-
consistent
quantum-impurity
(Ql) model
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let's take a step backwards
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the theory of almost everything

Born-Oppenheimer approximation, non-relativistic

Kinetic energy potential energy constant
A 1 1 1 Z 1 Z o Loy
He | _- V2 - . (8" - aH o
2; Z+2;\ri—ri/\ ;|ri_Ra|+2a;,‘Ra_Ra’

electron-electron interaction

A

Heqja(rla ro,..., rN) — anja(rla ro,..., I'N)
linear combination of Slater determinants

bad news: the exact solution is not an option
#) JULICH
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good news: it would be anyway useless

On the other hand, the exact solution of a many-body
problem is really irrelevant since it includes a large
mass of information about the system which although
measurable in principle is never measured in practice.

~[..] An incomplete description of the system s
H.J. Lipkin - considered to be sufficient if these measurable
quantities and their behavior are described correctly.

ﬁeqja(rlar27 SR 7rN) — Ea\Ija(rhI.Qa R 7rN)

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction
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ensity-functional theory
1964

PHYSICAL REVIREW VOLUME 136, NUMBLER 3B 9 NOVEMEBR 1964

Inhomogeneous Electron Gas™*

P. Honexserat

Ficole Normale Superienre, Paris, France

AND

W. Kouni

Feole Normale Superienre, Paris, France and Faculié des Sciences, Orsay, France

and

University of California at San Diego, La Jolla, California

(Received 18 JTune 1964)

'I‘I-lis Py L]C&]S tht]l the gmund state of an inter" atine alantenns ano T one avtaraal madantial afed T da

proved that there exists a universal functional of the ¢
pression E= [v(c)n(r)dr+F[x(r)] has asits minimun
»{r). The functional F[#(r)] is then discussed for
{2) 1ir) = @(r/re) with ¢ arbitrary and #¢ — . In bot
relation energy and linear and higher order electronic
also sheds some light on generalized Thomas-Fermi ¢
these methods are presented,

INTRODUCTION

URING thelast decade there has been considerable

progress in understanding the propertics of a
homogencous intcracting clectron gas.! The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.

On the other hand, there has been in existence since
the 1920°s & different approach, represented by the
Thomas-Fermi method? and its refinements, in which
the clectronic density #(r) plays a central rofe and in
which the system of electrong is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems Jike atoms and impurities in metals.

Lately there have been also some important advances
along this second line of approach, such as the work of
Kompanects and Pavlovskii,* Kirzhnits,* Lewis,® Baraft
and Borowitz,® Baraff,” and DuBois and Kivelson.® The
present paper represents 4 contribution in the same area.

1

1965

PHYSICAL REVIEW

VOLUME 140,

NUMBER 4A 15 NOVEMBER 19635

Self-Consistent Equations Including Exchange and Correlation Effects*

W. Koan anp L. J. Spam
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kchn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
Ior the ground state, they lead to seli-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these cquations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
polential differs from that due to Slater by a factor of 4.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods, An appendix deals with a further correction for

systems with short-wavelength density oscillations,

I, INTRODUCTION

N recent years a great deal of attention has been
given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systems (atoms, molecules, solids, ete.) the electronic
density is nonuniform,
It is then a matter of interest to see how properties
of the homogencous gas can be utilized in theoretical

In Secs. ITT and IV, we describe the necessary modifi-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.

Of course, the simple methods which are here pro-
posed in general involve errors. These are of two general
origing?: a too rapid variation of density and, for finite
systems, boundary effects. Refinements aimed at re-
ducing the first type of error are briefly discussed in
Appendiz IT.

IT TYUHF ACROITINT STATERE



1998: Nobel Prize in Chemistry to Walter Kohn

In my view DFT makes two kinds of contribution to the science of multi-
particle quantum systems, including problems of electronic structure of
molecules and of condensed matter:

The first is in the area of fundamental understanding. Theoretical chemists
and physicists, following the path of the Schroedmger equation, have become
accustomed to think in a truncated Hilbert space of single particle orbitals. The
spectacular advances achieved in this way attest to the fruitfulness of this per-
spective. However, hen hlgh accuracy is requlrd SO many Slater deter—
minants are reue | (in 0 calcltos o~ O”)tht‘comrenszo
comes difficult. DFT provides a complementary perspective. It focuses on
uatlis in the real, 3-dimensional cordmteace p1nc1pally on the
electron density n(r) of the groundstate. Other quantities of great interest
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a way out: density-functional theory

1 1 1 Ze 1, Zo T
B 2;vi+2;|ri—rix| izo;|ri—Ra| E:QMV Z|R — R/
from the ground-state wave-function to the electron density

Kohn-Sham auxiliary Hamiltonian

h, = Z [—%V? + UR(rz')- = Z Be("“t)

- = Za ! (r,) —= v r vg\r Vype\T
;V_ /d ‘r ’l"’|+. 6”()_'_ H()"" xc()

(in practice: LDA,GGA,...)
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unexpected successes of DFT

Kohn-Sham eigenvalues as elementary excitations!

d/_\>/

i

/\
—
=
————
T

energy (eV)
©® ® A D O N A O ®

Z r X P N

band structures, material trends, prediction
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but very deep problems remain
KCu

one-electron picture: it is a metal!

Experiments: it is an insulator! and above 40 K a paramagnetic insulator

8
~>

.| ‘/\y\_

) \/ |
T 2] - €9
8 0 [
N S to
o 2 g

-4

6 —

Z r X P N

origin of failures: one-electron picture

E. Pavarini, E. Koch, A.l. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008) W L osCHUNGSZENTRU



electron counting argument

metallic state

one electron per site

7

e = —2t|cos ky + cos k|
2
, N\
. N\
rox M r
t't==0.2 t't==0.4

2 TN

AN VAN

— N -

energy (eV)
o

I X M rr X M I
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how can we exploit the successes of LDA

for strongly correlated materials 7

LDA, GGA & so on: minor differences in this context
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let us go back once more to the basics

N 1 1 Zo 1 Zala
a, = _§§i:v§ +§Z F— —ZZ(; T — R, +§O;/ R, - R

i

electronic Hamiltonian in 2nd quantization

. 1
o4~ Y tacla d 3 G e
ab

aa’bb’
\ 4

N N

Ho Hy

complete one-electron basis set!
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parameters

hopping integrals

Uy = / drs / dry Ba(r1)

Coulomb integrals

bur(ra) T G (r2) (1)
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in theory all basis are identical

In practice some bases are better than others

#) JULICH
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In theory all basis are identical

In practice some bases are better than others

g tabc cb—l— E U.,a'bb ca a,cb,cb

aa’bb’
\ g
WV WV

Hy Hy

Kohn-Sham orbitals

~

N - 1 ~ N
H, A = — E tab clcb + 5 E Udsa' v’ clcl,cb,cb — Hpc
ab aba’b’

\ _J/ \ _J/

Ho=HLDA AHy
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what do the parameters contain?

by == [ G () (52 + () )8 (r)

Hartree
|
vr(r) o — Za r’ n(r) 6EXC[n]:v r) + vg(r) + vee(r
TOR B B R N e IR R
| |
potential exchange-correlation

understand and predict properties
Walter Kohn of solids, molecules, biological

systems, geological systems...
Nobel Prize in Chemistry (1998)

Kohn-Sham equations ,J JU LICH
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weakly-correlated systems

one-electron approximation

Heg ~ S 'H. S ~ H-PA
very good approach for weakly correlated systems
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strongly-correlated systems

E tap Ch cb+ E Ugarvyy €l cb/cb — Hpc
aba’b’

HOZH;;DA AHy

/\_1 A A A
Heff ~ S He S ~ HHubbard—like

J/

minimal model for a given class of phenomena

as system-specific as possible
#) JOLICH
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why LDA Wannier functions?

span exactly the one-electron Hamiltonian
can be constructed site-centered & orthogonal & localized

natural basis for local Coulomb terms
very good for weakly correlated systems

information on lattice and chemistry
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why LDA Wannier functions?

AU
A= Ho + iy — 0PN 4]y —

If long range Hartree and mean-field exchange-correlation
already are well described by LDA (GGA,..), AU is local
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but very deep problems remain

KCuFs;

8
e /\2\_
4 \/ :
3 2 - €g
5 0
g | = tog
4
-6 - <E/
h Z r X P N
) 10LICH

E. Pavarini, E. Koch, A.l. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008)



heavy electrons, light electrons

(O light electrons LDA, GGA, ...

Q heavy electrons —} AU correction, DMFT
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to downfold or not to downfold?

KCuU
— ==

NPan

ETas
\ i/
il

rest

€9

m integrate out light electrons

E. Pavarini, E. Koch, A.l. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008) @ FORSCHUNGSZENTRU



should we downfold light electrons?

no downfolding

more parameters & Hpc

WF more localized

massive downfolding

€9

fewer parameters & no Hpc

o0
. #) JOLICH
WF IeSS Iocal Ized E. Pavarini, E. Koch, A.l. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008) =~ FORSCHUNGSZENTRU M



how important is the basis localization?

local or almost local

strong correlations arise from strong local Coulomb

1
7?”:;9%7{19’ —/drl/er ¢zna 1’1)%;90 (r2)| r, — 2|¢j p’ o’ (1‘2)% n’ a(rl)

77D’L'ma (T)wi’m’a’ (T‘) ~ 5i,i’5(r — frz)

Uz'ji’j// 57, 2’5] 7/
mp m'p’ > T | #) J0LICH
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extreme localization

methods based on space tiling functions inside the sphere?

Bal ey
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screening effects

1
r,g;ﬁ] ' p! —/drlfdr2 ¢zna rl)wjpa (P2)| r, — 2|¢j p’o’ (r2)¢z 'm’ a(rl)

(O light electrons DFT (LDA, GGA,...)

Q heavy electrons _} AU correction, DMFT

screening. approximate schemes such as cRPA, cLDA
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LDA+DMFT

206 Z(')ic - NO YES Jolly good show! E(Zyn)
P ..
: : You converged G(il/n)
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VOLUME 92, NUMBER 17

details matter!

PHYSICAL REVIEW LETTERS

week ending
30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d! Perovskites

E. Pavarini,1 S. Biermann,2 A. Poteryaev,3 AL Lichtenstein,3 A. Georges,2 and O. K. Andersen*

t2g !

08 F  J=068eV
U=5eV

DOS states/evispinband

J=0.68 eV
U=5eV

chemistry plays key role

b 1
é 1=0.64 &V
& o6
w
3
£ 04
%
o]
R 02

0

4 3 2 a4 0 1 2

E(eV)

LaTiO3

J=0.64 eV

U=5eV

YTiO3

3 4 5 6% A 2 A -0 1 2

EleV)

non-cubic hoppings and crystal field A<<W

E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, New. J. Phys 7, 188 (2005)
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what can we do so far?

spectral functions

correlated bands

phase transitions

p (DMFT)

1

many orbitals

o ]

low T
i . . . .
Eos |
IS
JF P
20 30 40 50 60 70 80
T (K)

susceptibilities
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what can we do so far?

orbital order

conductivity

EOab

Sro,RuO,
T=150 K

Fermi surface

realistic Coulomb

spin-orbit

spin waves
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DMFT

dimer strong-correlations = large local U
one band DMFT vs HF

DMFT

multiband

Hartree-Fock
3
it
Zhw)
w
... T, Ty
X
2 (w)
w
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DMFT for materials

basis choice light & heavy electrons
downfolding, localization, linear response functions
double counting & screening 2t
< !
X 1
X
°r; M

X M) )0LICH
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