Lecture on

Topological Semimetals

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart

Autumn School on Correlated Electrons, Jülich

September 2020

Contents

1	Intr	oduction	2
2	Acci	idental band crossings	3
	2.1	Classification of band crossings	4
	2.2	Weyl semimetal	11
	2.3	Dirac nodal-line semimetal	14
3	Sym	metry-enforced band crossings	18
	3.1	Nonsymmorphic symmetries lead to enforced band crossings	19
	3.2	Weyl nodal-line semimetal	21
	3.3	Dirac nodal-line semimetal	26
4	Con	clusions and future directions	28

1. Introduction

$$H(\mathbf{k}) |u_m(\mathbf{k})\rangle = E_m(\mathbf{k}) |u_m(\mathbf{k})\rangle$$

- ullet Bloch Hamiltonian $H({f k})$
- Band structure of bloch bands $\{E_m(\mathbf{k})\}$
- ullet Bloch wave functions $|u_m({f k})
 angle$

Under which conditions can the two $E_m(\mathbf{k})$ and $E_{m'}(\mathbf{k})$ become degenerate at points or lines in the BZ

- (possibly) protected by *symmorphic* crystal symmetry and/or non-spatial symmetry
- exhibits a *local* topological charge $n_{\mathbb{Z}} = \frac{i}{2\pi} \oint \mathcal{F} d\mathbf{k} \in \mathbb{Z}$ \checkmark topological invariant
- only perturbatively stable, removable by large deformation

- (possibly) protected by *symmorphic* crystal symmetry and/or non-spatial symmetry
- exhibits a *local* topological charge $n_{\mathbb{Z}} = \frac{i}{2\pi} \oint \mathcal{F} d\mathbf{k} \in \mathbb{Z}$ \checkmark topological invariant
- only perturbatively stable, removable by large deformation

- (possibly) protected by *symmorphic* crystal symmetry and/or non-spatial symmetry
- exhibits a *local* topological charge $n_{\mathbb{Z}} = \frac{i}{2\pi} \oint \mathcal{F} d\mathbf{k} \in \mathbb{Z}$ \checkmark topological invariant
- only perturbatively stable, removable by large deformation

- (possibly) protected by *symmorphic* crystal symmetry and/or non-spatial symmetry
- exhibits a *local* topological charge $n_{\mathbb{Z}} = \frac{i}{2\pi} \oint \mathcal{F} d\mathbf{k} \in \mathbb{Z}$ \checkmark topological invariant
- only perturbatively stable, removable by large deformation

- (possibly) protected by *symmorphic* crystal symmetry and/or non-spatial symmetry
- exhibits a *local* topological charge $n_{\mathbb{Z}} = \frac{i}{2\pi} \oint \mathcal{F} d\mathbf{k} \in \mathbb{Z}$ \longleftarrow topological invariant
- Bulk-boundary correspondence:

 $|n_{\mathbb{Z}}| = \#$ gapless edge states (or surface states)

2.1 Classification of band crossings

• Approximate band crossing by Dirac Hamiltonian

$$H_D(\mathbf{k}) = \sum_{j=1}^d k_j \gamma_j$$

- gamma matrices: $\{\gamma_i, \gamma_j\} = 2\delta_{ij}\mathbb{1}, \qquad j = 0, 1, \dots, d.$

- energy spectrum:
$$E = \pm \sqrt{\sum_{j=1}^d k_j^2},$$

? are there symmetry preserving mass terms $m\gamma_0$ that open up a gap in the spectrum?

$$\{\gamma_0, \gamma_j\} = 0 \ (j = 1, 2, ..., d)$$
 $E = \pm \sqrt{m^2 + \sum_{j=1}^d k_j^2}$
NO: topologically non-trivial YES: topologically trivia

2.1 Classification of band crossings

- Classification of topological semimetals depends on:
 - symmetry of Hamiltonian (TRS, PHS, SLS)

 \Rightarrow symmetry classes of ten-fold way, spatial symmetries

- co-dimension $p = d d_{FS}$ of Fermi surface (d_{FS} : dimension of Fermi surface)
- how Fermi surface transforms under nonspatial symmetries

(i) Fermi surface is *invariant* under nonspatial symmetries

(ii) Fermi surfaces *pairwise related* by nonspatial symmetries

Classification of accidental band crossings

• Nonspatial symmetries:

time-reversal invariance:
$$T = U_T \mathcal{K}$$

$$T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k}) \qquad T^2 = +1 \qquad T^2 = -1$$

particle-hole symmetry: $C = U_C \mathcal{K}$

$$C^{-1}\mathcal{H}(-\mathbf{k})C = -\mathcal{H}(\mathbf{k}) \qquad C^2 = +1 \qquad C^2 = -1$$

chiral symmetry / sublattice symmetry: $S \propto TC$

 $S\mathcal{H}(\mathbf{k}) + \mathcal{H}(\mathbf{k})S = 0$

$$\{\gamma_i, \mathcal{T}\} = 0, \quad [\gamma_i, \mathcal{C}] = 0, \quad \{\gamma_i, \mathcal{S}\} = 0,$$
$$[\gamma_0, \mathcal{T}] = 0, \quad \{\gamma_0, \mathcal{C}\} = 0, \quad \{\gamma_0, \mathcal{S}\} = 0.$$

• Spatial symmetries:

reflection symmetry:
$$R^{-1}H(-k_1, \tilde{\mathbf{k}})R = H(k_1, \tilde{\mathbf{k}}),$$

 $\{\gamma_1, R\} = 0, \quad [\gamma_j, R] = 0, \text{ where } j = 2, 3, \dots, d,$

$$[\gamma_0, R] = 0.$$

2.1.2 Band crossings at high-symmetry points

 write down d-dim Hamiltonian with minimal matrix dimension, that is invariant under the considered symmetries

$$H_D(\mathbf{k}) = \sum_{j=1}^d k_j \gamma_j$$

2. check whether there exist symmetry allowed mass terms $m\gamma_0$

$$\{\gamma_0, \gamma_j\} = 0 \ (j = 1, 2, \dots, d) \qquad E = \pm \sqrt{m^2 + \sum_{j=1}^d k_j^2}$$

NO: topologically non-trivial **YES:** topologically trivial

3. to check whether single or multiple band crossings are protected, consider multiple copies of $H_D(\mathbf{k})$

$$H_D^{\mathsf{db}} = \sum_{i \in A} k_i \gamma_i \otimes \sigma_z + \sum_{i \in A^c} k_i \gamma_i \otimes \mathbb{1} \qquad A \subseteq \{1, 2, ..., d\}$$

Band crossings at high-symmetry points

• Class A in 2D

 $H_{2D}^A = k_x \sigma_x + k_y \sigma_y$

– can be gapped out by $m\sigma_z \Rightarrow$ trivial

• Class A in 3D

 $H_{3D}^A = k_x \sigma_x + k_y \sigma_y + k_z \sigma_z$

- no mass term exists \Rightarrow topological

$$H_{3D}^{A,\text{db1}} = k_x \sigma_x \otimes \sigma_z + k_y \sigma_y \otimes \sigma_0 + k_z \sigma_z \otimes \sigma_0 \quad (\text{mass terms, e.g., } \sigma_x \otimes \sigma_x \text{ and } \sigma_x \otimes \sigma_y)$$
$$H_{3D}^{A,\text{db2}} = k_x \sigma_x \otimes \sigma_0 + k_y \sigma_y \otimes \sigma_0 + k_z \sigma_z \otimes \sigma_0$$

– no mass term for $H_{3D}^{A,db2} \Rightarrow \mathbb{Z}$ classification

Band crossings at high-symmetry points

Class A + R in 2D

 $H_{2D}^{A+R} = k_x \sigma_x + k_y \sigma_y$

- reflection symmetric $R^{-1}H_{2D}^{A+R}(-k_x,k_y)R = H_{2D}^{A+R}(k_x,k_y)$ $R = \sigma_y$

- mass term $m\sigma_z$ breaks reflection symmetry $(R^{-1}\sigma_z R = -\sigma_z)$

 \Rightarrow topological

Class All in 2D

 $H_{2D}^{\text{AII}} = k_x \sigma_x + k_y \sigma_y$

- time-reversal symmetric with $\mathcal{T} = i\sigma_y \mathcal{K}$
- mass term $m\sigma_z$ breaks time-reversal $(\mathcal{T}^{-1}m\sigma_z\mathcal{T}\neq m\sigma_z)$

 \Rightarrow topological

$$\Rightarrow \text{ topological} - \text{ doubled Hamiltonians:} \qquad H_{2D}^{\text{AII,db}} = \begin{pmatrix} H_{2D}^{\text{AII}} & 0 \\ 0 & H_{2D}^{\text{AII'}} \end{pmatrix}$$

$$H_{2D}^{\text{AII}'} \in \{\pm k_x \sigma_x \pm k_y \sigma_y, \pm k_x \sigma_x \mp k_y \sigma_y\},\$$

- for each $H_{2D}^{AII,db}$ there exist mass terms $\Longrightarrow \mathbb{Z}_2$ classification

Classification of accidental band crossings

Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2], which are listed in the first column. The first and second rows give the co-dimensions $p = d - d_{BC}$ for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry points of the BZ [Fig. 2(b)], respectively.

at high-sym. point	p=8	<i>p</i> =1	<i>p</i> =2	<i>p</i> =3	<i>p</i> =4	<i>p</i> =5	<i>p</i> =6	<i>p</i> =7	Т	С	2
off high-sym. point	p=2	<i>p</i> =3	<i>p</i> =4	<i>p</i> =5	<i>р</i> =6	<i>p</i> =7	p=8	<i>p</i> =1		C	3
A	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	0	0
AIII	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	0	0	1
AI	0	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	+	0	0
BDI	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	+	+	1
D	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	0	+	0
DIII	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	0	_	+	1
AII	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	_	0	0
CII	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	_	_	1
C	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	_	0
CI	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	+	_	1

^a For these entries there can exist bulk band crossings away from high-symmetry points that are protected by \mathbb{Z} invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the \mathbb{Z} invariants.)

 \mathbb{Z}_2 invariants protect only band crossings of dimension zero at high-symmetry points.

Classification of accidental band crossings

Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2], which are listed in the first column. The first and second rows give the co-dimensions $p = d - d_{BC}$ for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry points of the BZ [Fig. 2(b)], respectively.

at high-sym. point	p=8	<i>p</i> =1	<i>p</i> =2	<i>p</i> =3	<i>p</i> =4	<i>p</i> =5	<i>p</i> =6	<i>p</i> =7	Т	C	2
off high-sym. point	p=2	<i>p</i> =3	<i>p</i> =4	<i>p</i> =5	<i>р</i> =6	<i>p</i> =7	p=8	<i>p</i> =1		C	3
A	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	0	0
AIII	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	0	0	1
AI	0	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	+	0	0
BDI	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	+	+	1
D	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	0	+	0
DIII	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	0	_	+	1
AII	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	$2\mathbb{Z}$	_	0	0
CII	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathfrak{a},\mathfrak{o}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0 ^a	0	_		1
С	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	0^{a}	0		0
CI	0 ^a	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2^{\mathrm{a,b}}$	\mathbb{Z}_2^{b}	\mathbb{Z}	0	+	_	1

^a For these entries there can exist bulk band crossings away from high-symmetry points that are protected by \mathbb{Z} invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the \mathbb{Z} invariants.)

 \mathbb{Z}_2 invariants protect only band crossings of dimension zero at high-symmetry points.

2.1.3 Band crossings off high-symmetry points

1. write down d-dim Hamiltonian with $p = d - d_{BC}$, that is invariant under the considered symmetries

$$H_D = \sum_{i=1}^{p-1} \sin k_i \gamma_i + (p-1 - \sum_{i=1}^{p} \cos k_i) \tilde{\gamma}_0$$

2. check whether there exists

- momentum independent mass term Γ

— momentum dependent kinetic term $\sin k_p \gamma_p$

NO: topologically non-trivial YES: topologically trivial

3. To check whether multiple band crossings are protected, consider doubled Hamiltonian

2.2 Weyl semimetal

 \dot{y}

Weyl semimetal

• 2 x 2 Hamiltonian:

$$H_{3D}^A = \sin k_x \sigma_x + \sin k_y \sigma_y + (2 - \cos k_x - \cos k_y - \cos k_z)\sigma_z$$

– no third Pauli matrix \rightarrow topologically stable

• Energy spectrum:

$$E_{\mathbf{k}} = \pm \sqrt{(\sin k_x)^2 + (\sin k_y)^2 + (2 - \cos k_x - \cos k_y - \cos k_z)^2}$$

 \Rightarrow two Weyl points at $(0, 0, \pm \pi/2)$

• Chern number:

$$C(k_z) = \frac{1}{4\pi} \oint_{\mathcal{C}_{k_z}} dk_x dk_y \,\hat{\mathbf{d}}_{\mathbf{k}} \cdot \left[\partial_{k_x} \hat{\mathbf{d}}_{\mathbf{k}} \times \partial_{k_y} \hat{\mathbf{d}}_{\mathbf{k}} \right], \quad \text{with} \quad \hat{\mathbf{d}}_{\mathbf{k}} = \frac{\mathbf{d}(\mathbf{k})}{|\mathbf{d}(\mathbf{k})|},$$

 $d_x(\mathbf{k}) = \sin k_x, d_y(\mathbf{k}) = \sin k_y, \text{ and } d_z(\mathbf{k}) = (2 - \cos k_x - \cos k_y - \cos k_z)$

- guarantees stability of the Weyl points
- leads to Fermi arc surface state

 $\begin{array}{l} \begin{array}{l} \overbrace{h}^{i} & \overbrace{h}^{i} \\ \overbrace{h(\mathbf{k})}^{i}(\mathbf{k}) & \overbrace{h(\mathbf{k})}^{i} \\ \bullet \\ \bullet \\ h(\mathbf{k}) & k \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & \overbrace{h(\mathbf{k})}^{i} \\ \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \end{array} \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \overbrace{h(\mathbf{k})}^{i} & f_{\mathcal{C}_{k_{z}}}^{i} \end{array} \end{array} \end{array} \\ \begin{array}{l$

Weyl semimetal

Quantum Anomaly:

Symmetry of classical action broken by regularization of quantum theory

- chiral charge $e(n_+ n_-)$ is not conserved at the quantum level
- presence of electric and magnetic field changes number of electrons as

$$\frac{d}{dt}n_{\pm} = \pm \frac{e^2}{h^2} \mathbf{E} \cdot \mathbf{B}$$

Lattice BdG \mathcal{H}_{BdG} $= \partial \mathbf{j}_{\mathbf{k}} - \partial \mathbf{j}_{\mathbf{$ 5 $_{0}+\Delta_{t}\boldsymbol{d_{k}}\cdot\boldsymbol{\sigma})\,i\sigma_{y}$ $\overset{(\Delta_t \boldsymbol{a}_k \cdot \boldsymbol{\sigma})}{\triangleright} i\sigma_y$ $\textbf{bw-energy effective Harring ha$ $\left[\begin{array}{c} \mu_{1}^{\mu}(0,k_{y}) \\ \mu_{ex} \\ \mu_{ex}$ and reflection: $R = \sigma_3$ — time-reversal: $T = \sigma_0 \mathcal{K}$ — inversion: $P = \sigma_3$ $\begin{array}{c} (8) \\ (k_{y}\uparrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\uparrow} + c_{nk_{y}\uparrow}^{\dagger}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}c_{nk_{y}\downarrow}) \\ (k_{y}\downarrow c_{nk_{y}\downarrow}c_{nk_{$ \Rightarrow nodal line is stable s $|\psi_{l,k}\rangle$ SOCT. Hye calculate the expectation value of the edge current at zero temperature from the spectrum $\mathbb{Z}_{l,k_y}^{(10)}$ and the wavefunctions $|\psi_{l,k_y}\rangle$ of $H_{k_y}^{(10)}$, $\sum_{i,E_l<0} \langle \psi_{l,k_y} | \mathcal{H}_{3D}^{AI+R,db} \rangle = \sin k_z \sigma_2 \otimes \sigma_0 + \left[2 \lim_{L \neq AD} \sum k_x - \cos k_y - \cos k_z \right] \sigma_3 \otimes \sigma_0$ - consider gap been in $\mathcal{H}_y = -\frac{e}{in} \frac{1}{\mathcal{H}_y} \sum_{i,E_l<0} \sum \langle \psi_{l,k_y} | j_{a,k_y} | \psi_{l,k_y} \rangle$ resence of the superconducting gaps or the edge; (10) $|\psi_{l,k_y}\rangle$ We observe that the current operators presence of the superconducting gaps or the edge; these only enter the course of the course o er: Momentum dependent topological number: $\propto \sum H^{\mu}_{\text{ex}} \rho_1^{\mu} (E, k_y (\sigma_3 \otimes p_0^x \sigma_0)^{-1} \hat{m} (\sigma_3 \otimes p_0^x \sigma_0) \neq \hat{m}$ $\Rightarrow \mathbb{Z}$ classification $\mu = 1$ $\propto \sum H^{\mu}_{\rm ex} \rho_1^{\mu}(E,k_y) \qquad \rho_1^x$ (11)

• Berry phase:

$$P_{\mathcal{L}} = -i \oint_{\mathcal{L}} dk_l \left\langle u_-(\mathbf{k}) \right| \nabla_{k_l} \left| u_-(\mathbf{k}) \right\rangle$$

- In Ca₃P₂ Berry phase is quantized due to: (i) reflection symmetry $z \rightarrow -z$ (ii) inversion + time-reversal symmetry

- $\mathcal{P}(k_{\parallel})$ quantized to $\pi \Rightarrow$ stable line node

Bulk-boundary correspondence:

- surface charge:
$$\sigma_{surf} = \frac{e}{2\pi} \mathcal{P} \mod e$$

Nearly flat 2D surface states connecting Dirac ring

Quantum Anomaly:

Symmetry of classical action broken by regularization of quantum theory

Anomaly in topological semimetals:

Top. semimetals with FS of co-dimension p, generally, exhibit (p+1)-dim anomaly:

• $\mathbf{p} = \mathbf{3}$: (3+1)D chiral anomaly in Weyl semi-metals

• $\mathbf{p} = \mathbf{2}$: (2+1)D parity anomaly in graphene

Is there an anomaly in nodal-line semimetals?

 \implies consider family of 2D subsystems

 \implies study (2+1)D parity anomaly as a function of angle ϕ

Parity anomaly for a 2D subsystem:

Action for (2+1)D Dirac fermions coupled to gauge field A_{μ}

$$S^{\phi} = \int d^3x \, \bar{\psi} \left[i \gamma^{\mu} (\partial_{\mu} + i e A_{\mu}) + m \right] \psi$$
 breaks PT symmetry

 \implies effective action $S^{\phi}_{\text{eff}}[A,0]$ with m=0 is UV divergent

 \implies Pauli-Villars regularization of theory breaks PT symmetry

$$S_{\text{eff}}^{\text{R}}[A] = S_{\text{eff}}[A] - \lim_{M \to \infty} S_{\text{eff}}[A, M]$$

• Pauli-Villars mass term remains finite for $M \to \infty$, yielding Chern-Simons term:

$$S_{CS} = \frac{\mathcal{P}}{8\pi} \int d^3x \,\epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda}$$

• anomalous current from one Dirac point:

$$j^{\mu} = \frac{\mathcal{P}}{4\pi} \epsilon^{\mu\nu\lambda} \partial_{\nu} A_{\lambda}$$

transverse charge response to applied electric field

Anomalous transport within semi-classical response theory:

transverse Drumhead surface states as a momentum filter: current • Consider dumbbell geometry: Ziii i ii $\rightarrow \mathcal{V}$ \mathcal{X} measure anomalous — band structures for $k_x = 0$: current iiiÚ E μ $\mathbf{0}$

 \implies Drumhead surface states act as a filter \implies Transverse current can be measured!

 $\overline{\pi}$ $-\overline{\pi}$

 π

 k_y

 $\pi -\pi$

 k_u

 $-\pi$

 k_{y}

E

 k_v

3. Symmetry-enforced band crossings

Symmetry-enforced band crossings

- protected by *non-symmorphic* crystal symmetry (possibly together with non-spatial sym)
- ullet exhibits local topological charge $\,n_{\mathbb Z}\,$ and *global* topological charge $\,m_{\mathbb Z_2}\,$
- globally stable, movable but *not removable*

 \implies classification tells you that band crossing is symmetry required!

Symmetry-enforced band crossings

- protected by *non-symmorphic* crystal symmetry (possibly together with non-spatial sym)
- ullet exhibits local topological charge $\,n_{\mathbb Z}\,$ and *global* topological charge $\,m_{\mathbb Z_2}\,$
- globally stable, movable but *not removable*

 \implies classification tells you that band crossing is symmetry required!

Symmetry-enforced band crossings

- protected by *non-symmorphic* crystal symmetry (possibly together with non-spatial sym)
- ullet exhibits local topological charge $\,n_{\mathbb Z}\,$ and *global* topological charge $\,m_{\mathbb Z_2}\,$
- Bulk-boundary correspondence:

 $|n_{\mathbb{Z}}| = \#$ gapless edge states (or surface states)

Strategy for discovery of topological semi-metals

(i) Consider 157 non-symmorphic space groups

 \Rightarrow identify those space groups with symmetry-enforced band crossings using symmetry eigenvalues and compatibility between irreps

 $P6_1$ (#169), $P6_3/m$ (#176), $P6_122$ (#178),

(ii) Perform a database search for materials in these space groups

(iii) Compute DFT band structures, topological invariants, surface states, etc.

- to check whether band crossings and surface states are near E_{F}

3.2 How non-symmorphic symmetries lead to enforced band crossings

• screw rotation symmetry:

Nonsymmorphic symmetries lead to enforced band crossings

• G(k) does not commute with σ_3

$$\Rightarrow H(k) = \begin{pmatrix} 0 & q(k) \\ q^*(k) & 0 \end{pmatrix}$$

$$E = \pm |q(k)|$$

- symmetry constraint: $q(k)e^{ik} = q^*(k)$
- show that q(k) must have zero, using contradiction

$$z := e^{ik} \qquad \qquad f(z) := q(k)$$

$$\Rightarrow z = f^*(z)/f(z) = e^{2i\operatorname{Arc}[f(z)]}$$

winds once winds twice $\rightarrow f(z) = q(k)$

 $\Longrightarrow f(z)$, q(k) must vanish at some k by contradiction

ZrlrSn in SG #190

 Glide reflection (rank two):

$$M = (m | \vec{\tau})$$
$$M^2 = \hat{T}$$

- glide reflection symmetry: M_x : $(x, y, z) \rightarrow (-x, y, z + \frac{1}{2})$
- invariant planes: $k_x = 0$ & $k_x = \pi$ due to spin part
- symmetry eigenvalues: $M_x^2 = -\hat{T}_z = -e^{-ik_z} \Rightarrow \text{EVs: } \pm ie^{-ik_z/2}$
- $|\psi(\mathbf{k})\rangle$ in invariant planes are simultaneous eigenstates of M_x

$$M_x \left| \psi_{\pm}(\mathbf{k}) \right\rangle = \pm i e^{-ik_z/2} \left| \psi_{\pm}(\mathbf{k}) \right\rangle$$

$$M_x \left| \psi_{\pm}(\mathbf{k}) \right\rangle = \pm i e^{-ik_z/2} \left| \psi_{\pm}(\mathbf{k}) \right\rangle$$

• add time-reversal symmetry: $T = i\sigma_y \mathcal{K}$

 \implies pairs up states with complex conjugate EVs at the TRIMs

$$M_x \left| \psi_{\pm}(\mathbf{k}) \right\rangle = \pm i e^{-ik_z/2} \left| \psi_{\pm}(\mathbf{k}) \right\rangle$$

• add time-reversal symmetry: $T = i\sigma_y \mathcal{K}$

 \implies pairs up states with complex conjugate EVs at the TRIMs

 \implies Weyl nodal line within mirror plane

• consider *time-reversal* invariant little-group irreps at TRIMs and within mirror plane C':

M: \bar{M}_5 L: $\bar{L}_2\bar{L}_3$, $\bar{L}_4\bar{L}_5$ C': \bar{C}'_3 , \bar{C}'_4

- compatibility relation between irreps tell us how irreps split as we move from $~M,L\longrightarrow C'$

 $\mathbf{D}_M \downarrow \mathcal{G}_{C'} = \mathbf{D}_{C'}$ (subduction)

Irrep\Element	E	M_x			
\overline{M}_5	$ \begin{pmatrix} +1 & 0 \\ 0 & +1 \end{pmatrix} $	$\begin{pmatrix} +i & 0 \\ 0 & -i \end{pmatrix}$			
\overline{L}_2	+1	-1			
\overline{L}_3	+1	-1			
\overline{L}_4	+1	+1			
\overline{L}_5	+1	+1			
\overline{C}'_3	+1	$e^{\frac{i}{2}(\pi+k_z)}$			
\overline{C}'_4	+1	$e^{-\frac{i}{2}(\pi-k_z)}$			

Miller, Love, Pruett 1967

• consider *time-reversal* invariant little-group irreps at TRIMs and within mirror plane C':

M: \bar{M}_5 L: $\bar{L}_2\bar{L}_3$, $\bar{L}_4\bar{L}_5$ C': \bar{C}'_3 , \bar{C}'_4

- compatibility relation between irreps tell us how irreps split as we move from $\ M,L\longrightarrow C'$

• bands need to connect, such that compatibility relations are satisfied

 \implies Weyl nodal line within mirror plane C'

Miller, Love, Pruett 1967

• DFT band structure of ZrIrSn:

— Weyl nodal line characterized by quantized π -Berry phase

• DFT band structure of ZrIrSn:

- Experimental consequences:
- Bulk-boundary correspondence: \implies drumhead surface state
- Large Berry curvature:
 - \implies large anomalous Hall effect
 - \implies anomalous magnetoelectric responses

drumhead surface state

Off-center symmetries:

• Pair of non-symmorphic symmetries

$$G = (g|\vec{\tau}_{\perp}), \quad G' = (g'|\vec{\tau}_{\perp}')$$

with *different* reference points

• • • • •

- off-centered symmetries: (\widetilde{M}_z, P) $\widetilde{M}_z : (x, y, z) \to (x, y, -z + \frac{1}{2})$ $P : (x, y, z) \to (-x, -y, -z)$
- invariant planes: $k_z = 0$ & $k_z = \pi$
- symmetry eigenvalues: $(\widetilde{M}_z)^2 = -1 \Rightarrow \widetilde{M}_z |\psi_{\pm}(\mathbf{k})\rangle = \pm i |\psi_{\pm}(\mathbf{k})\rangle$

$$\widetilde{M}_z P \left| \psi_{\pm}(\mathbf{k}) \right\rangle = e^{ik_z} P \widetilde{M}_z \left| \psi_{\pm}(\mathbf{k}) \right\rangle$$

$$\widetilde{M}_z P \left| \psi_{\pm}(\mathbf{k}) \right\rangle = e^{ik_z} P \widetilde{M}_z \left| \psi_{\pm}(\mathbf{k}) \right\rangle$$

• add time-reversal symmetry: $T = i\sigma_y \mathcal{K}$

$$\widetilde{M}_{z}\left[PT\left|\psi_{\pm}(\mathbf{k})\right\rangle\right] = \mp i e^{ik_{z}} PT\left|\psi_{\pm}(\mathbf{k})\right\rangle \qquad k_{z} \in \{0,\pi\}$$

 \Rightarrow the crossing of two Kramers degenerate bands within the $k_z=\pi$ plane is protected by \widetilde{M}_z

- Dirac nodal line is in fact symmetry enforced
 - \bullet at the TRIMs ${\bf K}$, Bloch states form quartet of mutually orthogonal, degenerate states

 $|\psi_{\pm}(\mathbf{K})\rangle$, $P |\psi_{\pm}(\mathbf{K})\rangle$, $T |\psi_{\pm}(\mathbf{K})\rangle$, $PT |\psi_{\pm}(\mathbf{K})\rangle$

• consider pair of degenerate states:

$$|\psi_{\pm}(\mathbf{K}+\mathbf{k})\rangle \stackrel{P,T}{\longleftrightarrow} |\psi_{\pm}(\mathbf{K}-\mathbf{k})\rangle$$

• DFT calculation of LaBr₃:

- star-shaped nodal line characterized by Wilson loop
- Bulk-boundary correspondence:

 \implies double drumhead surface state

4. Conclusion and outlook

- studied accidental band crossings
- symmetry enforced band crossings
- strategy for materials discovery
- several examples

- Open questions for future research
 - topology of magnets
 - effects of electron-electron correlation
 - need for better topological materials

 \Rightarrow use, e.g., discussed strategy for materials discovery

