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1.  Introduction
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of the Bloch Hamiltonian H(k) 1,

H(k) |um(k)i = Em(k) |um(k)i , (1)

where m represents the band index. The eigenvalues Em(k) in the above equation are called
Bloch bands and the set {Em(k)} is referred to as the band structure of the solid.
In this lecture we are interested in the crossings between two different bands, Em(k) and
Em0(k), say. That is, we want to know under which conditions the the two energies Em(k)

and Em0(k) become degenerate at certain points or lines in the BZ. The main focus will be on
electronic band structures of solids. However, the band crossings discussed here can also occur
in different contexts, for example, for photonic bands of dielectric superlattices [24], for phonon
bands in crystals, for magnon bands in ordered antiferromagnets [25], or for Bogoliubov bands
in superconductors [1, 2].
The remainder of these notes are organized as follows. In Sec. 2.1 we will begin by deriving
a classification of accidental band crossings protected by time-reversal symmetry, particle-hole
symmetry, and/or chiral symmetry. As concrete examples of such accidental band crossings,
we will consider, among others, Weyl and nodal-line semimetals (Secs. 2.2 and 2.3). For these
examples we will discuss the bulk-boundary correspondence, which relates the nontrivial topol-
ogy of the band crossing in the bulk to the appearance of surface states. We will also review
the quantum anomalies that arise in the low-energy descriptions of these semimetals. Sec-
tion 3 is devoted to the study of symmetry-enforced band crossings. We will first explain some
general properties of nonsymmorphic symmetries and show how these can lead to symmetry-
enforced band crossings. Subsequently, two examples of nonsymmorphic band crossing will
be discussed: Weyl lines protected by glide reflection in Sec. 3.2 and Dirac lines protected
by off-center symmetries in Sec. 3.3. For each of these examples, we present some material
realizations and discuss implications for experiments.

2 Accidental band crossings

Accidental band crossings occur, for example, when a hole-like and an electron-like parabolic
band in a two-dimensional material overlap, forming two band crossings, as shown in Fig. 1.
This band crossing is stable if the two bands have a non-trivial topology and/or opposite sym-
metry. In general these accidental crossings share the following features:

• They are protected by symmorphic crystal symmetries and/or nonspatial symmetries.
Here, symmorphic symmetry means a symmetry wich leaves at least one point of the
real-space crystal invariant. Symmorphic symmetries are point-group symmetries of the
crystal, such as rotation or reflection. Nonspatial symmetry refers to a symmetry that
dose not transform different lattice sites into each other. I.e., a symmetry that acts locally
in real space, such as time-reversal or particle-hole symmetry.

1For superconductors the Bloch Hamiltonian should be replaced by a Bogoliubov-de Gennes Hamiltonian.

• Bloch Hamiltonian 

• Band structure of bloch bands

• Bloch wave functions

?
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2.  Accidental band crossings
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

crystal momentum



topological invariant

• only perturbatively stable, removable by large deformation
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I
Fdk 2 Z

Accidental band crossings

=) classification tells you that band crossing is possible
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The contribution j(1)
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corresponds to nearest-neighbor hopping, whereas j(2)
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is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions
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We observe that the current operators presence of the superconducting gaps or the edge;
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• exhibits a local topological charge nZ =
i

2⇡

I
Fdk 2 Z
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=) classification tells you that band crossing is possible

• (possibly) protected by symmorphic crystal symmetry and/or non-spatial symmetry
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2.1  Classification of band crossings
•  Approximate band crossing by Dirac Hamiltonian

Topological Semimetals 5.5

Fig. 2: The classification of stable band crossings depends on how the band crossings trans-
form under nonspatial (antiunitary) symmetries. (a) The band crossing is left invariant under
nonspatial symmetries. (b) Two band crossings are pairwise related by the nonspatial symme-
tries, which map k ! �k.

the Bloch Hamiltonian H(k), Eq. (1), can in general be approximated by a Dirac Hamiltonian,
i.e., by

HD(k) =
dX

j=1

kj�j, (3)

where d is the spatial dimension and �j are gamma matrices obeying the anti-commutation
relations

{�i, �j} = 2�ij , j = 0, 1, . . . , d. (4)

Using Eq. (4), we find that H2
D =

Pd
j=1 k

2
j . Hence, the energy spectrum of HD(k) is given by

E = ±

vuut
dX

j=1

k
2
j , (5)

which exhibits a band crossing at k = 0, where the bands become degenerate with E = 0.
(I.e., the Dirac Hamiltonian has no gap.) The Dirac-matrix Hamiltonian method analyzes the
stability of the gapless Dirac-Hamiltonian (3) against gap opening deformations. That is, one
studies whether there exists a gap-opening mass term m�0, i.e., an additional gamma matrix �0

with {�0, �j} = 0 (j = 1, 2, . . . , d), with which HD(k) can be deformed. If such a mass term
exists, then the band crossing can be removed. I.e., by adding m�0 to HD the spectrum deforms
into E = ±

q
m2 +

Pd
j=1 k

2
j , which has no band crossing anymore at k = 0. This indicates that

the band crossing is topologically trivial. However, if there does not exist an additional gamma
matrix �0, then the band crossing is topologically nontrivial and stable against deformations.
The classification of band crossings is done in terms of the following three characteristics
(cf. Table 1):

(i) Spatial and nonspatial symmetries of the Bloch Hamiltonian H(k).

(ii) The co-dimension p = d� dBC of the band crossing, where dBC is the dimension of the
band crossing. (I.e., dBC = 0 for point crossings, dBC = 1 for line crossings, etc.)

— gamma matrices: 
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? are there symmetry preserving mass terms 
that open up a gap in the spectrum?

NO: YES: topologically trivialtopologically non-trivial
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⇥(k1) =
i

2⇤

⇤

C
F(k)dk2 C (1)

and time-reversal symmetry ky

E = ± |m(k)| (2)

⇤ ⇥i (3)

k = �1 k = �2 (4)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (5)

E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A ⇤ A + ⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

Dirac point

kx

ky



Classification of accidental band crossings
•Nonspatial symmetries:

time-reversal invariance:

particle-hole symmetry:

chiral symmetry / sublattice symmetry:

T = UTK

C = UCK

T 2 = +1 T 2 = �1

C2 = �1C2 = +1

T�1
H(�k)T = +H(k)

S / TC

SH(k) +H(k)S = 0

C�1
H(�k)C = �H(k)

5.6 Andreas P. Schnyder

(iii) How the band crossing transforms under the nonspatial (antiunitary) symmetries, which
map k ! �k. That is, we need to distinguish whether the band crossing is mapped
onto itself under the nonspatial symmetries or not, see Fig. 2. For this reason we need
to differentiate between band crossings at high-symmetry points and off high-symmetry
points of the BZ.

Before performing the classification, let us first discuss how the spatial and nonspatial symme-
tries restrict the form of the Dirac Hamiltonian (3).

2.1.1 Symmetry operations

We consider the classification in terms of both nonspatial and spatial symmetries.

Nonspatial symmetries. Nonspatial symmetries are symmetries that act locally in real space,
i.e., they do not transform different lattice sites into each other. There are three different non-
spatial symmetries that need to be considered: antiunitary time-reversal symmetry (TRS) and
particle-hole symmetry (PHS), as well as chiral (i.e., sublattice symmetry) [2, 29]. Here, “anti-
unitary” refers to the fact that these symmetries can be written as a product of a unitary matrix U

with the complex conjugation operator K. In momentum space, time-reversal and particle-hole
symmetry act on the Bloch (or Bogoliubov-de Gennes) Hamiltonian as

T
�1
H(�k)T = +H(k), and C

�1
H(�k)C = �H(k), (6a)

respectively, where T and C are the antiunitary operators for time-reversal and particle-hole
symmetry. Both T and C can square either to +1 or �1, depending on the type of the symmetry
(see last three columns of Table 1). Chiral symmetry, on the other hand, is implemented by2

S
�1
H(k)S = �H(k), (6b)

where S is a unitary operator. Symmetries (6) define the ten Altland-Zirnbauer (AZ) symmetry
classes (i.e., the “ten-fold way”) [2, 30, 31], which are listed in Table 1. The first column in
Table 1 gives the name of the ten AZ symmetry classes. The labels T , C, and S in the last three
columns indicate the presence (“+”, “�”, and “1”) or absence (“0”) of time-reversal symmetry,
particle-hole symmetry and chiral symmetry, respectively, as well as the sign of the squared
symmetry operators T 2 and C

2.
Combining Eqs. (6) with Eq. (3), we find that when the Dirac Hamiltonian obeys TRS, PHS, or
chiral symmetry, the gamma matrices in Eq. (3) must satisfy

{�i, T } = 0, [�i, C] = 0, {�i,S} = 0, (7)

where i = 1, 2, . . . , d. Similarly, any mass term m�0 that leads to the opening of a gap at the
band crossing must satisfy

[�0, T ] = 0, {�0, C} = 0, {�0,S} = 0. (8)

2Note that combining TRS with PHS yields a chiral symmetry.
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Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2],
which are listed in the first column. The first and second rows give the co-dimensions p =
d� dBC for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry
points of the BZ [Fig. 2(b)], respectively.

at high-sym. point p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7 T C S
off high-sym. point p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

A 0 Z 0 Z 0 Z 0 Z 0 0 0
AIII Z 0 Z 0 Z 0 Z 0 0 0 1
AI 0 0a 0 2Z 0 Za,b

2 Zb
2 Z + 0 0

BDI Z 0 0a 0 2Z 0 Za,b
2 Zb

2 + + 1
D Zb

2 Z 0 0a 0 2Z 0 Za,b
2 0 + 0

DIII Za,b
2 Zb

2 Z 0 0a 0 2Z 0 � + 1
AII 0 Za,b

2 Zb
2 Z 0 0a 0 2Z � 0 0

CII 2Z 0 Za,b
2 Zb

2 Z 0 0a 0 � � 1
C 0 2Z 0 Za,b

2 Zb
2 Z 0 0a 0 � 0

CI 0a 0 2Z 0 Za,b
2 Zb

2 Z 0 + � 1
a

For these entries there can exist bulk band crossings away from high-symmetry points that are protected by Z
invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the Z invariants.)

b
Z2 invariants protect only band crossings of dimension zero at high-symmetry points.

Spatial symmetries. Spatial symmetries are symmetries that act non-locally in position space,
i.e., they transform different lattice sites into each other. Point-group symmetries are an example
of spatial symmetries. Here, we shall focus on reflection symmetries with the unitary operator
R. For concreteness we assume that R lets x ! �x. The invariance of the Bloch Hamilto-
nian (1) under this reflection implies

R
�1
H(�k1, k̃)R = H(k1, k̃), (9)

where k̃ = (k2, . . . , kd) and the unitary reflection operator R can only depend on k1, since it is
symmorphic [cf. Eq. (44)]. Note that for spin-12 particles (e.g., Bloch electrons with spin-orbit
coupling) R transforms the spin degree of freedom as

RŜxR
�1 = Ŝx and RŜy,zR

�1 = �Ŝy,z, (10)

where Ŝi =
~
2 �̂i is the spin operator. Hence, the spin part of R is given by i�x

3. In general, R
contains also an internal part which rearranges the positions of the atoms in the unit cell.
Combining Eq. (9) with Eq. (3), we find that when the Dirac Hamiltonian obeys reflection
symmetry, the gamma matrices in Eq. (3) must satisfy

{�1, R} = 0, [�j, R] = 0, where j = 2, 3, . . . , d, (11)

and the mass term must satisfy [�0, R] = 0.
3The reason to include the factor i here is to ensure that R2 = �1, since R

2 effectively corresponds to a spin
rotation by 2⇡. However, in general, there is a phase ambiguity in the definition of R, since a phase can be absorbed
in the electronic creation/annihilation operators.
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RŜxR
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2.1.2 Band crossings at high-symmetry points

Topological Semimetals 5.5

Fig. 2: The classification of stable band crossings depends on how the band crossings trans-
form under nonspatial (antiunitary) symmetries. (a) The band crossing is left invariant under
nonspatial symmetries. (b) Two band crossings are pairwise related by the nonspatial symme-
tries, which map k ! �k.

the Bloch Hamiltonian H(k), Eq. (1), can in general be approximated by a Dirac Hamiltonian,
i.e., by

HD(k) =
dX

j=1

kj�j, (3)

where d is the spatial dimension and �j are gamma matrices obeying the anti-commutation
relations

{�i, �j} = 2�ij , j = 0, 1, . . . , d. (4)

Using Eq. (4), we find that H2
D =

Pd
j=1 k

2
j . Hence, the energy spectrum of HD(k) is given by

E = ±

vuut
dX

j=1

k
2
j , (5)

which exhibits a band crossing at k = 0, where the bands become degenerate with E = 0.
(I.e., the Dirac Hamiltonian has no gap.) The Dirac-matrix Hamiltonian method analyzes the
stability of the gapless Dirac-Hamiltonian (3) against gap opening deformations. That is, one
studies whether there exists a gap-opening mass term m�0, i.e., an additional gamma matrix �0

with {�0, �j} = 0 (j = 1, 2, . . . , d), with which HD(k) can be deformed. If such a mass term
exists, then the band crossing can be removed. I.e., by adding m�0 to HD the spectrum deforms
into E = ±

q
m2 +

Pd
j=1 k

2
j , which has no band crossing anymore at k = 0. This indicates that

the band crossing is topologically trivial. However, if there does not exist an additional gamma
matrix �0, then the band crossing is topologically nontrivial and stable against deformations.
The classification of band crossings is done in terms of the following three characteristics
(cf. Table 1):

(i) Spatial and nonspatial symmetries of the Bloch Hamiltonian H(k).

(ii) The co-dimension p = d� dBC of the band crossing, where dBC is the dimension of the
band crossing. (I.e., dBC = 0 for point crossings, dBC = 1 for line crossings, etc.)

2. check whether there exist symmetry allowed mass terms
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2.1.2 Band crossings at high-symmetry points

We will now use the Dirac-matrix Hamiltonian method4 to classify band crossings at high-
symmetry points of the BZ, i.e., at time-reversal invariant momenta (TRIMs) of the BZ, e.g.,
the � point. This classification approach consists of the following steps:

1. Write down a d-dimensional gapless Dirac Hamiltonian HD of the form of Eq. (3), that is
invariant under all the considered symmetries. The matrix dimension of the gamma ma-
trices should be minimal, i.e., large enough such that all symmetries can be implemented
in a nontrivial way, but not larger.

2. Check whether there exists a symmetry-allowed mass term m�0, which anticommutes
with HD. If yes, then the band crossing can be gapped out. This indicates that the band
crossing is topologically trivial, which is labelled by “0” in Table 1. If no, then the band
crossing is topologically stable (i.e., protected by the symmetries), which is labelled by
“ or “ 2” in Table 1.

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, we have to consider multiple copies of the Dirac Hamiltonian HD. Doubled
versions of HD can be obtained as

H
db
D =

X

i2A

ki�i ⌦ �z +
X

i2Ac

ki�i ⌦ , (12)

where the first summation is over an arbitrary subset A ✓ {1, 2, ..., d} and the second
summation is over the complement of this subset Ac. We then have to check whether
there exist gap-opening terms for these enlarged Dirac Hamiltonians. If there exists a
mass term for all possible versions of Hdb

D , then the band crossing is classified by a 2

invariant. If the band crossing is stable for an arbitrary number of copies of HD, then it is
classified by a number, see Table 1.

To make this more explicit, let us discuss some specific cases.

Class A in 2D. First, we consider a band crossing in a two-dimensional system without any
symmetries, corresponding to class A in Table 1. The generic low-energy 2 ⇥ 2 Hamiltonian
for such a band crossing at k = 0 reads HA

2D =
P

k  
†
kH

A
2D k, where

H
A
2D = kx�x + ky�y (13)

and  k = (c1k, c2k)T is a spinor with two orbital degrees of freedom. Since this band crossing
can be gapped out by the mass term m�z, it is topologically trivial and therefore unstable. This
is indiacted by a “0” in the fourth column of Table 1.

4This approach is closely related to the problem of Clifford algebra extensions [2, 28], which puts it on a
rigorous footing.
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Class A in 3D. Next, we study a zero-dimensional band crossing in three-dimensions without
any symmetries. This type of band crossing is realized in Weyl semimetals [2, 5, 6]. The low-
energy 2⇥ 2 Hamiltonian takes the form H

A
3D =

P
k  

†
kH

A
3D k, with

H
A
3D = kx�x + ky�y + kz�z. (14)

It is impossible to find a mass term for this Hamiltonian, because there exist only three gamma
matrices of rank 2. (There exists no “fourth Pauli matrix” that anticommutes with H

A
3D.) There-

fore, the band-crossing is stable. To determine whether the Weyl crossing (14) has a or 2

classification, we need to consider all possible doubled versions of HA
3D, cf. Eq. (12). We can

consider, for example, the following doubled version of HA
3D

H
A,db1
3D = kx�x ⌦ �z + ky�y ⌦ �0 + kz�z ⌦ �0, (15)

where ⌦ denotes the tensor product between two Pauli matrices. For this doubled version of
H

A
3D, there exist two mass terms, e.g., �x ⌦ �x and �x ⌦ �y, which gap out the band crossing.

However, there exists another doubled version of HA
3D, namely

H
A,db2
3D = kx�x ⌦ �0 + ky�y ⌦ �0 + kz�z ⌦ �0, (16)

whose band crossing is stable. We find that there does not exist any mass term for H
A,db2
3D ,

which gaps out the band crossing. Since we have found one doubled version of HA
3D which has

a stable (four-fold degenerate) band crossing, we conclude that Weyl band crossings exhibit a
classificaiton. (One can show that there exist also multiple copies of HA

3D with stable band
crossings.) This is indicated by the label “ ” in the fifth column of Table 1.
The Weyl points described by Eq. (14) are monopoles of Berry flux, i.e., they realize hedgehog
defects of the Berry curvature (see Fig. 4). The stability of these Weyl points is guaranteed by
a quantized Chern number (see Sec. 2.2).

Class A + R in 2D. Let us now add reflection symmetry to the game. We consider again a
two-orbital system with the low-energy Hamiltonian H

A+R
2D =

P
k  

†
kH

A+R
2D  k, where

H
A+R
2D = kx�x + ky�y, (17)

which is symmetric under reflection symmetry R
�1
H

A+R
2D (�kx, ky)R = H

A+R
2D (kx, ky), with

R = �y. This Hamiltonian described the low-energy physics of a single Dirac cone of graphene.
We observe that the only possible gap-opening mass term m�z, which anticommutes with
H

A+R
2D , is symmetry forbidden, since it breaks reflections symmetry (R�1

�zR = ��z). Hence,
the band-crossing of HA+R

2D at k = 0 is stable and protected by reflection symmetry. We find
that also the doubled version of HA+R

2D ,

H
A+R,db
2D = kx�x ⌦ �0 + ky�y ⌦ �0, (18)

is stable, since there exists no relfection-symmetric mass term. For example, m̂ = �z ⌦ �x

breaks reflection, since (�y ⌦ �0)�1
m̂(�y ⌦ �0) 6= m̂. Therefore, the reflection-symmetric band

crossing (17) has a classification. This is indicated by the label “M ” in the fifth column of
Table VIII of Ref. [2].

<latexit sha1_base64="KaLzb0Md1RNJ0ot/o/IBKslUtQM=">AAACG3icbVBNS0JBFJ1nX2Zfr1q2GdKgjfKeBLWU2rS0yBRUZN541cH5eMzMq0T8HW36K21aFESroEX/pvFjUdqBgcO599w790QxZ8YGwbeXWlpeWV1Lr2c2Nre2d/zdvVujEk2hQhVXuhYRA5xJqFhmOdRiDUREHKpR/2Jcr96BNkzJGzuIoSlIV7IOo8Q6qeWH+TyWCgtiDLagBYYHt9RgnGtcs27PEq3VfQ5bFbtRXWfjLT8bFIIJ8CIJZySLZii3/M9GW9FEgLSUuz31MIhtc0i0ZZTDKNNIDMSE9kkX6o5KIsA0h5PTRvjIKW3cUdo9afFE/e0YEmHMQESuUxDbM/O1sfhfrZ7YzllzyGScWJB0uqiTcHcpHueE20wDtXzgCKGaub9i2iOaUJeSybgQwvmTF0m1WAhPCmF4VcyWzmd5pNEBOkTHKESnqIQuURlVEEWP6Bm9ojfvyXvx3r2PaWvKm3n20R94Xz9xaqBZ</latexit>

– no mass term exists ) topological

Topological Semimetals 5.9

Class A in 3D. Next, we study a zero-dimensional band crossing in three-dimensions without
any symmetries. This type of band crossing is realized in Weyl semimetals [2, 5, 6]. The low-
energy 2⇥ 2 Hamiltonian takes the form H

A
3D =

P
k  

†
kH

A
3D k, with

H
A
3D = kx�x + ky�y + kz�z. (14)

It is impossible to find a mass term for this Hamiltonian, because there exist only three gamma
matrices of rank 2. (There exists no “fourth Pauli matrix” that anticommutes with H

A
3D.) There-

fore, the band-crossing is stable. To determine whether the Weyl crossing (14) has a or 2

classification, we need to consider all possible doubled versions of HA
3D, cf. Eq. (12). We can

consider, for example, the following doubled version of HA
3D

H
A,db1
3D = kx�x ⌦ �z + ky�y ⌦ �0 + kz�z ⌦ �0, (15)

where ⌦ denotes the tensor product between two Pauli matrices. For this doubled version of
H

A
3D, there exist two mass terms, e.g., �x ⌦ �x and �x ⌦ �y, which gap out the band crossing.

However, there exists another doubled version of HA
3D, namely

H
A,db2
3D = kx�x ⌦ �0 + ky�y ⌦ �0 + kz�z ⌦ �0, (16)

whose band crossing is stable. We find that there does not exist any mass term for H
A,db2
3D ,

which gaps out the band crossing. Since we have found one doubled version of HA
3D which has

a stable (four-fold degenerate) band crossing, we conclude that Weyl band crossings exhibit a
classificaiton. (One can show that there exist also multiple copies of HA

3D with stable band
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any symmetries. This type of band crossing is realized in Weyl semimetals [2, 5, 6]. The low-
energy 2⇥ 2 Hamiltonian takes the form H

A
3D =
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k  

†
kH

A
3D k, with

H
A
3D = kx�x + ky�y + kz�z. (14)

It is impossible to find a mass term for this Hamiltonian, because there exist only three gamma
matrices of rank 2. (There exists no “fourth Pauli matrix” that anticommutes with H

A
3D.) There-

fore, the band-crossing is stable. To determine whether the Weyl crossing (14) has a or 2

classification, we need to consider all possible doubled versions of HA
3D, cf. Eq. (12). We can

consider, for example, the following doubled version of HA
3D

H
A,db1
3D = kx�x ⌦ �z + ky�y ⌦ �0 + kz�z ⌦ �0, (15)

where ⌦ denotes the tensor product between two Pauli matrices. For this doubled version of
H

A
3D, there exist two mass terms, e.g., �x ⌦ �x and �x ⌦ �y, which gap out the band crossing.

However, there exists another doubled version of HA
3D, namely

H
A,db2
3D = kx�x ⌦ �0 + ky�y ⌦ �0 + kz�z ⌦ �0, (16)

whose band crossing is stable. We find that there does not exist any mass term for H
A,db2
3D ,

which gaps out the band crossing. Since we have found one doubled version of HA
3D which has

a stable (four-fold degenerate) band crossing, we conclude that Weyl band crossings exhibit a
classificaiton. (One can show that there exist also multiple copies of HA

3D with stable band
crossings.) This is indicated by the label “ ” in the fifth column of Table 1.
The Weyl points described by Eq. (14) are monopoles of Berry flux, i.e., they realize hedgehog
defects of the Berry curvature (see Fig. 4). The stability of these Weyl points is guaranteed by
a quantized Chern number (see Sec. 2.2).

Class A + R in 2D. Let us now add reflection symmetry to the game. We consider again a
two-orbital system with the low-energy Hamiltonian H

A+R
2D =

P
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†
kH

A+R
2D  k, where

H
A+R
2D = kx�x + ky�y, (17)

which is symmetric under reflection symmetry R
�1
H

A+R
2D (�kx, ky)R = H

A+R
2D (kx, ky), with

R = �y. This Hamiltonian described the low-energy physics of a single Dirac cone of graphene.
We observe that the only possible gap-opening mass term m�z, which anticommutes with
H

A+R
2D , is symmetry forbidden, since it breaks reflections symmetry (R�1

�zR = ��z). Hence,
the band-crossing of HA+R

2D at k = 0 is stable and protected by reflection symmetry. We find
that also the doubled version of HA+R

2D ,

H
A+R,db
2D = kx�x ⌦ �0 + ky�y ⌦ �0, (18)

is stable, since there exists no relfection-symmetric mass term. For example, m̂ = �z ⌦ �x

breaks reflection, since (�y ⌦ �0)�1
m̂(�y ⌦ �0) 6= m̂. Therefore, the reflection-symmetric band

crossing (17) has a classification. This is indicated by the label “M ” in the fifth column of
Table VIII of Ref. [2].
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•  Class AII in 2D
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Class AII in 2D. Next, we study a band crossing in two-dimensions with time-reversal sym-
metry (T 2 = �1), corresponding to class AII in Table 1. The low-energy Dirac Hamiltonian
reads again

H
AII
2D = kx�x + ky�y. (19)

But now we impose time-reversal symmetry (6a) with the operator T = i�yK, which squares
to �1 (class AII). This type of time-reversal symmetric band crossing is realized at the surface
of three-dimensional topological insulators with spin-orbit coupling. The only possible mass
term, which anticommutes with H

AII
2D , is m�z. However, m�z breaks time-reversal symmetry

(since, T �1
m�zT 6= m�z) and is therefore forbidden by symmetry. Hence, Eq. (19) describes

a topologically stable band crossing in class AII. Next, we examine different doubled versions
of HAII

2D , i.e.,

H
AII,db
2D =

 
H

AII
2D 0

0 H
AII
2D

0

!
, (20)

where H
AII
2D

0
2 {±kx�x ± ky�y,±kx�x ⌥ ky�y}, see Eq. (12). (The time-reversal operator for

these double Hamiltonians is T = i�y ⌦ �0K.) It is not difficult to show that for each of the
four versions of HAII,db

2D there exists at least one symmetry-preserving mass term, wich gaps out
the band crossing. For example, for the first version of HAII,db

2D with H
AII
2D

0
= +kx�x+ky�y, the

mass term is �z ⌦ �y. Thus, the band crossings described by H
AII,db
2D is unstable. Therefore, we

conclude that Eq. (19) has a 2 classification, see fourth column of Table 1.

2.1.3 Band crossings off high-symmetry points

In this section we classify band crossings that are located away from high-symmetry points, i.e.,
away from the TRIMs of the BZ, see Fig. 2(b). These band crossings can be moved around in
the BZ, as they are not pinned at the TRIMs. They transform pairwise into each other by the
nonspatial antiunitary symmetries (time-reversal and particle-hole symmetry). For this reason,
we have to take into account the full momentum dependence of the Hamiltonian in the entire
BZ. That is, within the Dirac-matrix Hamiltonian approach, we need to consider the following
type of Hamiltonian [27]

HD =
p�1X

i=1

sin ki�i + (p� 1�
pX

i=1

cos ki)�̃0, (21)

which contains the momentum-dependent mass term �̃0, cf. Eq. (3). The Dirac Hamiltonian (21)
describes dBC-dimensional band crossings (with dBC = d� p), which are located at

k = (0, . . . , 0,±⇡/2, kp+1, . . . , kd). (22)

We observe that the band crossings (22) are located away from the high-symmetry points
(0, 0, 0, . . . , 0), (⇡, 0, 0, . . . , 0), (0, ⇡, 0, . . . , 0), etc. of the BZ. The classification of these band
crossings proceeds in a similar way as in Sec. 2.1.2. It consists of the following steps:
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metry (T 2 = �1), corresponding to class AII in Table 1. The low-energy Dirac Hamiltonian
reads again

H
AII
2D = kx�x + ky�y. (19)

But now we impose time-reversal symmetry (6a) with the operator T = i�yK, which squares
to �1 (class AII). This type of time-reversal symmetric band crossing is realized at the surface
of three-dimensional topological insulators with spin-orbit coupling. The only possible mass
term, which anticommutes with H

AII
2D , is m�z. However, m�z breaks time-reversal symmetry

(since, T �1
m�zT 6= m�z) and is therefore forbidden by symmetry. Hence, Eq. (19) describes

a topologically stable band crossing in class AII. Next, we examine different doubled versions
of HAII

2D , i.e.,

H
AII,db
2D =

 
H

AII
2D 0

0 H
AII
2D

0

!
, (20)

where H
AII
2D

0
2 {±kx�x ± ky�y,±kx�x ⌥ ky�y}, see Eq. (12). (The time-reversal operator for

these double Hamiltonians is T = i�y ⌦ �0K.) It is not difficult to show that for each of the
four versions of HAII,db

2D there exists at least one symmetry-preserving mass term, wich gaps out
the band crossing. For example, for the first version of HAII,db

2D with H
AII
2D

0
= +kx�x+ky�y, the

mass term is �z ⌦ �y. Thus, the band crossings described by H
AII,db
2D is unstable. Therefore, we

conclude that Eq. (19) has a 2 classification, see fourth column of Table 1.

2.1.3 Band crossings off high-symmetry points

In this section we classify band crossings that are located away from high-symmetry points, i.e.,
away from the TRIMs of the BZ, see Fig. 2(b). These band crossings can be moved around in
the BZ, as they are not pinned at the TRIMs. They transform pairwise into each other by the
nonspatial antiunitary symmetries (time-reversal and particle-hole symmetry). For this reason,
we have to take into account the full momentum dependence of the Hamiltonian in the entire
BZ. That is, within the Dirac-matrix Hamiltonian approach, we need to consider the following
type of Hamiltonian [27]

HD =
p�1X

i=1

sin ki�i + (p� 1�
pX

i=1

cos ki)�̃0, (21)

which contains the momentum-dependent mass term �̃0, cf. Eq. (3). The Dirac Hamiltonian (21)
describes dBC-dimensional band crossings (with dBC = d� p), which are located at

k = (0, . . . , 0,±⇡/2, kp+1, . . . , kd). (22)

We observe that the band crossings (22) are located away from the high-symmetry points
(0, 0, 0, . . . , 0), (⇡, 0, 0, . . . , 0), (0, ⇡, 0, . . . , 0), etc. of the BZ. The classification of these band
crossings proceeds in a similar way as in Sec. 2.1.2. It consists of the following steps:

<latexit sha1_base64="v5wM1b5ljw8yp1Adwbx0dl6A5/w="></latexit>

– for each H
AII,db
2D there exist mass terms =) Z2 classification
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Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2],
which are listed in the first column. The first and second rows give the co-dimensions p =
d� dBC for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry
points of the BZ [Fig. 2(b)], respectively.

at high-sym. point p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7 T C S
off high-sym. point p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

A 0 Z 0 Z 0 Z 0 Z 0 0 0
AIII Z 0 Z 0 Z 0 Z 0 0 0 1
AI 0 0a 0 2Z 0 Za,b

2 Zb
2 Z + 0 0

BDI Z 0 0a 0 2Z 0 Za,b
2 Zb

2 + + 1
D Zb

2 Z 0 0a 0 2Z 0 Za,b
2 0 + 0

DIII Za,b
2 Zb

2 Z 0 0a 0 2Z 0 � + 1
AII 0 Za,b

2 Zb
2 Z 0 0a 0 2Z � 0 0

CII 2Z 0 Za,b
2 Zb

2 Z 0 0a 0 � � 1
C 0 2Z 0 Za,b

2 Zb
2 Z 0 0a 0 � 0

CI 0a 0 2Z 0 Za,b
2 Zb

2 Z 0 + � 1
a

For these entries there can exist bulk band crossings away from high-symmetry points that are protected by Z
invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the Z invariants.)

b
Z2 invariants protect only band crossings of dimension zero at high-symmetry points.

Spatial symmetries. Spatial symmetries are symmetries that act non-locally in position space,
i.e., they transform different lattice sites into each other. Point-group symmetries are an example
of spatial symmetries. Here, we shall focus on reflection symmetries with the unitary operator
R. For concreteness we assume that R lets x ! �x. The invariance of the Bloch Hamilto-
nian (1) under this reflection implies

R
�1
H(�k1, k̃)R = H(k1, k̃), (9)

where k̃ = (k2, . . . , kd) and the unitary reflection operator R can only depend on k1, since it is
symmorphic [cf. Eq. (44)]. Note that for spin-12 particles (e.g., Bloch electrons with spin-orbit
coupling) R transforms the spin degree of freedom as

RŜxR
�1 = Ŝx and RŜy,zR

�1 = �Ŝy,z, (10)

where Ŝi =
~
2 �̂i is the spin operator. Hence, the spin part of R is given by i�x

3. In general, R
contains also an internal part which rearranges the positions of the atoms in the unit cell.
Combining Eq. (9) with Eq. (3), we find that when the Dirac Hamiltonian obeys reflection
symmetry, the gamma matrices in Eq. (3) must satisfy

{�1, R} = 0, [�j, R] = 0, where j = 2, 3, . . . , d, (11)

and the mass term must satisfy [�0, R] = 0.
3The reason to include the factor i here is to ensure that R2 = �1, since R

2 effectively corresponds to a spin
rotation by 2⇡. However, in general, there is a phase ambiguity in the definition of R, since a phase can be absorbed
in the electronic creation/annihilation operators.
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⇥(k1) =
i

2⇤

⇤

C
F(k)dk2 C (1)

and time-reversal symmetry ky

E = ± |m(k)| (2)

⇤ ⇥i (3)

k = �1 k = �2 (4)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (5)

E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A ⇤ A + ⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

2.1.3 Band crossings off high-symmetry points

1. write down d-dim Hamiltonian with                         ,  
     that is invariant under the considered symmetries
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p = d� dBC
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Class AII in 2D. Next, we study a band crossing in two-dimensions with time-reversal sym-
metry (T 2 = �1), corresponding to class AII in Table 1. The low-energy Dirac Hamiltonian
reads again

H
AII
2D = kx�x + ky�y. (19)

But now we impose time-reversal symmetry (6a) with the operator T = i�yK, which squares
to �1 (class AII). This type of time-reversal symmetric band crossing is realized at the surface
of three-dimensional topological insulators with spin-orbit coupling. The only possible mass
term, which anticommutes with H

AII
2D , is m�z. However, m�z breaks time-reversal symmetry

(since, T �1
m�zT 6= m�z) and is therefore forbidden by symmetry. Hence, Eq. (19) describes

a topologically stable band crossing in class AII. Next, we examine different doubled versions
of HAII

2D , i.e.,

H
AII,db
2D =

 
H

AII
2D 0

0 H
AII
2D

0

!
, (20)

where H
AII
2D

0
2 {±kx�x ± ky�y,±kx�x ⌥ ky�y}, see Eq. (12). (The time-reversal operator for

these double Hamiltonians is T = i�y ⌦ �0K.) It is not difficult to show that for each of the
four versions of HAII,db

2D there exists at least one symmetry-preserving mass term, wich gaps out
the band crossing. For example, for the first version of HAII,db

2D with H
AII
2D

0
= +kx�x+ky�y, the

mass term is �z ⌦ �y. Thus, the band crossings described by H
AII,db
2D is unstable. Therefore, we

conclude that Eq. (19) has a 2 classification, see fourth column of Table 1.

2.1.3 Band crossings off high-symmetry points

In this section we classify band crossings that are located away from high-symmetry points, i.e.,
away from the TRIMs of the BZ, see Fig. 2(b). These band crossings can be moved around in
the BZ, as they are not pinned at the TRIMs. They transform pairwise into each other by the
nonspatial antiunitary symmetries (time-reversal and particle-hole symmetry). For this reason,
we have to take into account the full momentum dependence of the Hamiltonian in the entire
BZ. That is, within the Dirac-matrix Hamiltonian approach, we need to consider the following
type of Hamiltonian [27]

HD =
p�1X

i=1

sin ki�i + (p� 1�
pX

i=1

cos ki)�̃0, (21)

which contains the momentum-dependent mass term �̃0, cf. Eq. (3). The Dirac Hamiltonian (21)
describes dBC-dimensional band crossings (with dBC = d� p), which are located at

k = (0, . . . , 0,±⇡/2, kp+1, . . . , kd). (22)

We observe that the band crossings (22) are located away from the high-symmetry points
(0, 0, 0, . . . , 0), (⇡, 0, 0, . . . , 0), (0, ⇡, 0, . . . , 0), etc. of the BZ. The classification of these band
crossings proceeds in a similar way as in Sec. 2.1.2. It consists of the following steps:

2. check whether there exists

— momentum independent mass term 

— momentum dependent kinetic term
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1. Write down a d-dimensional Dirac Hamiltonian HD of the form Eq. (21) with p = d �

dBC , which satisfies all the considered symmetries. The rank of the gamma matrices
in Eq. (21) should be large enough, such that all symmetries can be implemented in a
nontrivial way, but not larger.

2. Check, whether

• there exists an additional momentum-independent mass term �̃ , which anticom-
mutes with HD and which is invariant under all symmetries.

• there exists an additional momentum-dependent kinetic term sin kp�p, which anti-
commutes with HD and which respects all symmetries.

If the answer is yes for either of the above two points, then the band crossing can be
gapped out. Hence, the band crossing is topologically trivial (entries labelled by “0”
in Table 1). If the answer is no for both of the above points, then the band crossing is
topologically stable (entries labelled by “ ” or “ 2” in Table 1).

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, consider multiple copies of HD, similar to Eq. (12).

Using this approach it was shown that only -type invariants can ensure the stability of band-
crossings off high-symmetry points [2]. ( 2-type invariants do not give rise to stable band
crossings off high-symmetry points.) To exemplify this, we discuss some specific cases.

2.2 Weyl semimetal

We study the band crossing points of a three-dimensional Weyl semimetal [2, 5, 6], which be-
longs to symmetry class A (cf. Sec. 2.1.2). The Hamiltonian is defined on the cubic lattice and
is given by H

A
3D =

P
k  kH

A
3D k, with (cf. Eq. (21) with p = 3)5

H
A
3D = sin kx�x + sin ky�y + (2� cos kx � cos ky � cos kz)�z, (23)

and the spinor  k = (c1k, c2k), which has two orbital degrees of freedom (e.g., s and p orbitals),
but no spin-degree of freedom, since the semimetal is assumed to be magnetically ordered. The
spectrum of Eq. (23) is given by

Ek = ±

q
(sin kx)2 + (sin ky)2 + (2� cos kx � cos ky � cos kz)2. (24)

H
A
3D exhibits two band crossing points at E = 0 (called Weyl points), which are located at

(0, 0,±⇡/2). As in Sec. 2.1.2, we find that these Weyl nodes are topologically stable, since
there does not exist any fourth gamma matrix of rank two. (I.e., there exist no additional mass
or kinetic terms.) We also find that the doubled version H

A
3D ⌦ �0 has stable band crossigs.

Hence, the classification is of Z type, see third column of Table 1.
5Note that this model has an inversion symmetry, i.e., (�z)�1

H
A
3D(�k)�z = H

A
3D(k), wich ensures that the

two Weyl points are at the same energy.
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NO: YES: topologically trivialtopologically non-trivial

3. To check whether multiple band crossings are protected, consider doubled Hamiltonian



2.2  Weyl semimetal
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Fig. 4: (a) The Weyl points (red spheres) are sources and drains of Berry flux (red arrows). In
the surface BZ there exists a Fermi arc state (yellow), which connects the projection of the two
Weyl points. The blue plane indicates the integration contour Ckz of Eq. (26). (b) Schematic
energy dispersion of the Fermi arc state in the (100) surface BZ. The Fermi arc surface state
(yellow) smoothly connects to the linearly dispersing bulk bands (blue) of the two Weyl points.

to S
2, whose topology is given by the second homotopy group ⇡2(S2) = Z [32].) Let us now

study how C(kz), Eq. (26), changes as a function of kz. Two different regions of kz can be
distinguished:

Trivial region. For |kz| > ⇡/2, the d̂k-vector covers only a small region around the north
pole of S2, i.e., it points mostly upwards. Hence, d̂k does not wrap around S

2, leading to a zero
Chern number C(kz) = 0, see left-hand side of Fig. 3. This follows also from the fact that the
contour C can be continuously shrunk to zero, without crossing through the singularities of the
Weyl points. Thus, the integral (26) must vanish.

Topological region. For |kz| < ⇡/2, however, the d̂k-vector wraps once around the unit
sphere S2. That is, it points along all directions as k sweeps through Ckz , producing a Skyrmion
texture in the kxky-plane, see right-hand side of Fig. 3. As a consequence, the Chern number
is nonzero, i.e., C(kz) = ±1, which endows the Weyl points with a nonzero topological charge
(also know as “chirality”). This agrees with the fact that the contour C cannot be continuously
shrunk to zero, without crossing through the Wey point singularities. Hence, the integral (26)
must be nonzero.

Due to the periodicity of the BZ, we can consider the contour Ckz to enclose either the upper or
the lower part of the BZ, see Fig. 4(a). Both ways of closing the contour must give consistent
results. A contour Ckz with |kz| > ⇡/2, which can be shrunk to zero, can also be viewed
as enclosing both Weyl points. Hence, the Chern numbers of the two Weyl points must add
up to zero, i.e., they must have opposite topological charges, which is a manifestation of the
fermion-doubling theorem [26].
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1. Write down a d-dimensional Dirac Hamiltonian HD of the form Eq. (21) with p = d �

dBC , which satisfies all the considered symmetries. The rank of the gamma matrices
in Eq. (21) should be large enough, such that all symmetries can be implemented in a
nontrivial way, but not larger.

2. Check, whether

• there exists an additional momentum-independent mass term �̃ , which anticom-
mutes with HD and which is invariant under all symmetries.

• there exists an additional momentum-dependent kinetic term sin kp�p, which anti-
commutes with HD and which respects all symmetries.

If the answer is yes for either of the above two points, then the band crossing can be
gapped out. Hence, the band crossing is topologically trivial (entries labelled by “0”
in Table 1). If the answer is no for both of the above points, then the band crossing is
topologically stable (entries labelled by “ ” or “ 2” in Table 1).

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, consider multiple copies of HD, similar to Eq. (12).

Using this approach it was shown that only -type invariants can ensure the stability of band-
crossings off high-symmetry points [2]. ( 2-type invariants do not give rise to stable band
crossings off high-symmetry points.) To exemplify this, we discuss some specific cases.

2.2 Weyl semimetal

We study the band crossing points of a three-dimensional Weyl semimetal [2, 5, 6], which be-
longs to symmetry class A (cf. Sec. 2.1.2). The Hamiltonian is defined on the cubic lattice and
is given by H

A
3D =

P
k  kH

A
3D k, with (cf. Eq. (21) with p = 3)5

H
A
3D = sin kx�x + sin ky�y + (2� cos kx � cos ky � cos kz)�z, (23)

and the spinor  k = (c1k, c2k), which has two orbital degrees of freedom (e.g., s and p orbitals),
but no spin-degree of freedom, since the semimetal is assumed to be magnetically ordered. The
spectrum of Eq. (23) is given by

Ek = ±

q
(sin kx)2 + (sin ky)2 + (2� cos kx � cos ky � cos kz)2. (24)

H
A
3D exhibits two band crossing points at E = 0 (called Weyl points), which are located at

(0, 0,±⇡/2). As in Sec. 2.1.2, we find that these Weyl nodes are topologically stable, since
there does not exist any fourth gamma matrix of rank two. (I.e., there exist no additional mass
or kinetic terms.) We also find that the doubled version H

A
3D ⌦ �0 has stable band crossigs.

Hence, the classification is of Z type, see third column of Table 1.
5Note that this model has an inversion symmetry, i.e., (�z)�1

H
A
3D(�k)�z = H

A
3D(k), wich ensures that the

two Weyl points are at the same energy.
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•  Energy spectrum:
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Fig. 4: (a) The Weyl points (red spheres) are sources and drains of Berry flux (red arrows). In
the surface BZ there exists a Fermi arc state (yellow), which connects the projection of the two
Weyl points. The blue plane indicates the integration contour Ckz of Eq. (26). (b) Schematic
energy dispersion of the Fermi arc state in the (100) surface BZ. The Fermi arc surface state
(yellow) smoothly connects to the linearly dispersing bulk bands (blue) of the two Weyl points.

to S
2, whose topology is given by the second homotopy group ⇡2(S2) = Z [32].) Let us now

study how C(kz), Eq. (26), changes as a function of kz. Two different regions of kz can be
distinguished:

Trivial region. For |kz| > ⇡/2, the d̂k-vector covers only a small region around the north
pole of S2, i.e., it points mostly upwards. Hence, d̂k does not wrap around S

2, leading to a zero
Chern number C(kz) = 0, see left-hand side of Fig. 3. This follows also from the fact that the
contour C can be continuously shrunk to zero, without crossing through the singularities of the
Weyl points. Thus, the integral (26) must vanish.

Topological region. For |kz| < ⇡/2, however, the d̂k-vector wraps once around the unit
sphere S2. That is, it points along all directions as k sweeps through Ckz , producing a Skyrmion
texture in the kxky-plane, see right-hand side of Fig. 3. As a consequence, the Chern number
is nonzero, i.e., C(kz) = ±1, which endows the Weyl points with a nonzero topological charge
(also know as “chirality”). This agrees with the fact that the contour C cannot be continuously
shrunk to zero, without crossing through the Wey point singularities. Hence, the integral (26)
must be nonzero.

Due to the periodicity of the BZ, we can consider the contour Ckz to enclose either the upper or
the lower part of the BZ, see Fig. 4(a). Both ways of closing the contour must give consistent
results. A contour Ckz with |kz| > ⇡/2, which can be shrunk to zero, can also be viewed
as enclosing both Weyl points. Hence, the Chern numbers of the two Weyl points must add
up to zero, i.e., they must have opposite topological charges, which is a manifestation of the
fermion-doubling theorem [26].
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) two Weyl points at (0, 0,±⇡/2)

•  Chern number: 
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Fig. 3: (a),(b) show the regions covered by the dk-vector, Eq. (26), on the unit sphere. (c),
(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.

The stability of the Weyl points is guaranteed by a quantized Chern number

C =
1

2⇡

I

C
F(k)dk, where F(k) = rk ⇥Ak (25)

is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry Berry connection Ak is defined as Ak = ihu�(k)|rk|u�(k)i, with |u�(k)i the
Bloch state of the occupied band. The Weyl points act as sources and drains of Berry curvature,
i.e., the vector field F(k) points inwards at one Weyl point and outwards at the other. The
Chern number (25) measures how much Berry flux passes through the contour C. For contours
that enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
enclose a Weyl point, the Chern number is zero C = 0.
For Hamiltonian (23) the Chern number can be rewritten in the simple form6

C(kz) =
1

4⇡

I

Ckz
dkxdky d̂k ·

h
@kxd̂k ⇥ @ky d̂k

i
, with d̂k =

d(k)

|d(k)|
, (26)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 � cos kx � cos ky � cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S

2, see Figs. 3(a) and 3(b). The Chern number C(kz),
Eq. (26), measures how many times the d̂k-vector wraps around S

2 as k sweeps through the
contour Ckz . (Note that for k restricted to a spherical contour C, d̂k represents a map from S

2

6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
TRIMs [5]. The parity eigenvalues at the � point are opposite to those at all the other TRIMs. From this it follows
that the Chern number C(kz = 0) must be non-zero.

— guarantees stability of the Weyl points 

— leads to Fermi arc surface state
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Fig. 3: (a),(b) show the regions covered by the dk-vector, Eq. (26), on the unit sphere. (c),
(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.

The stability of the Weyl points is guaranteed by a quantized Chern number

C =
1

2⇡

I

C
F(k)dk, where F(k) = rk ⇥Ak (25)

is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry Berry connection Ak is defined as Ak = ihu�(k)|rk|u�(k)i, with |u�(k)i the
Bloch state of the occupied band. The Weyl points act as sources and drains of Berry curvature,
i.e., the vector field F(k) points inwards at one Weyl point and outwards at the other. The
Chern number (25) measures how much Berry flux passes through the contour C. For contours
that enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
enclose a Weyl point, the Chern number is zero C = 0.
For Hamiltonian (23) the Chern number can be rewritten in the simple form6

C(kz) =
1

4⇡

I

Ckz
dkxdky d̂k ·

h
@kxd̂k ⇥ @ky d̂k

i
, with d̂k =

d(k)

|d(k)|
, (26)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 � cos kx � cos ky � cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S

2, see Figs. 3(a) and 3(b). The Chern number C(kz),
Eq. (26), measures how many times the d̂k-vector wraps around S

2 as k sweeps through the
contour Ckz . (Note that for k restricted to a spherical contour C, d̂k represents a map from S

2

6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
TRIMs [5]. The parity eigenvalues at the � point are opposite to those at all the other TRIMs. From this it follows
that the Chern number C(kz = 0) must be non-zero.
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Fig. 4: (a) The Weyl points (red spheres) are sources and drains of Berry flux (red arrows). In
the surface BZ there exists a Fermi arc state (yellow), which connects the projection of the two
Weyl points. The blue plane indicates the integration contour Ckz of Eq. (26). (b) Schematic
energy dispersion of the Fermi arc state in the (100) surface BZ. The Fermi arc surface state
(yellow) smoothly connects to the linearly dispersing bulk bands (blue) of the two Weyl points.

to S
2, whose topology is given by the second homotopy group ⇡2(S2) = Z [32].) Let us now

study how C(kz), Eq. (26), changes as a function of kz. Two different regions of kz can be
distinguished:

Trivial region. For |kz| > ⇡/2, the d̂k-vector covers only a small region around the north
pole of S2, i.e., it points mostly upwards. Hence, d̂k does not wrap around S

2, leading to a zero
Chern number C(kz) = 0, see left-hand side of Fig. 3. This follows also from the fact that the
contour C can be continuously shrunk to zero, without crossing through the singularities of the
Weyl points. Thus, the integral (26) must vanish.

Topological region. For |kz| < ⇡/2, however, the d̂k-vector wraps once around the unit
sphere S2. That is, it points along all directions as k sweeps through Ckz , producing a Skyrmion
texture in the kxky-plane, see right-hand side of Fig. 3. As a consequence, the Chern number
is nonzero, i.e., C(kz) = ±1, which endows the Weyl points with a nonzero topological charge
(also know as “chirality”). This agrees with the fact that the contour C cannot be continuously
shrunk to zero, without crossing through the Wey point singularities. Hence, the integral (26)
must be nonzero.

Due to the periodicity of the BZ, we can consider the contour Ckz to enclose either the upper or
the lower part of the BZ, see Fig. 4(a). Both ways of closing the contour must give consistent
results. A contour Ckz with |kz| > ⇡/2, which can be shrunk to zero, can also be viewed
as enclosing both Weyl points. Hence, the Chern numbers of the two Weyl points must add
up to zero, i.e., they must have opposite topological charges, which is a manifestation of the
fermion-doubling theorem [26].

5.12 Andreas P. Schnyder

Topology and Two Bands Model
1 Empty Flat Band

1 Filled Flat Bandk

�h(k)
�h

2⇡

It is not possible to have a coherent phase 
convention for all points   of the sphere

‣ if         does not cover the whole sphere : single phase 
convention possible. «Standard trivial case»

‣ If         spreads over the whole sphere : 
we need 2 independent phase conventions

! signals a topological property  : the wavefunction 
phase winds by      around the sphere

�h(k)

�h(k)

single phase convention possible

Trivial Band Twisted Band
Chern number � winding of electronic phase 

Topological 
Property

|u
�
k i

|ũ
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Fig. 3: (a),(b) show the regions covered by the dk-vector, Eq. (26), on the unit sphere. (c),
(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.

The stability of the Weyl points is guaranteed by a quantized Chern number

C =
1

2⇡

I

C
F(k)dk, where F(k) = rk ⇥Ak (25)

is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry Berry connection Ak is defined as Ak = ihu�(k)|rk|u�(k)i, with |u�(k)i the
Bloch state of the occupied band. The Weyl points act as sources and drains of Berry curvature,
i.e., the vector field F(k) points inwards at one Weyl point and outwards at the other. The
Chern number (25) measures how much Berry flux passes through the contour C. For contours
that enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
enclose a Weyl point, the Chern number is zero C = 0.
For Hamiltonian (23) the Chern number can be rewritten in the simple form6

C(kz) =
1

4⇡

I

Ckz
dkxdky d̂k ·

h
@kxd̂k ⇥ @ky d̂k

i
, with d̂k =

d(k)

|d(k)|
, (26)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 � cos kx � cos ky � cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S

2, see Figs. 3(a) and 3(b). The Chern number C(kz),
Eq. (26), measures how many times the d̂k-vector wraps around S

2 as k sweeps through the
contour Ckz . (Note that for k restricted to a spherical contour C, d̂k represents a map from S

2

6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
TRIMs [5]. The parity eigenvalues at the � point are opposite to those at all the other TRIMs. From this it follows
that the Chern number C(kz = 0) must be non-zero.

•  Chern number: 
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Fig. 3: (a),(b) show the regions covered by the dk-vector, Eq. (26), on the unit sphere. (c),
(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.

The stability of the Weyl points is guaranteed by a quantized Chern number

C =
1

2⇡

I

C
F(k)dk, where F(k) = rk ⇥Ak (25)

is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry Berry connection Ak is defined as Ak = ihu�(k)|rk|u�(k)i, with |u�(k)i the
Bloch state of the occupied band. The Weyl points act as sources and drains of Berry curvature,
i.e., the vector field F(k) points inwards at one Weyl point and outwards at the other. The
Chern number (25) measures how much Berry flux passes through the contour C. For contours
that enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
enclose a Weyl point, the Chern number is zero C = 0.
For Hamiltonian (23) the Chern number can be rewritten in the simple form6

C(kz) =
1

4⇡

I

Ckz
dkxdky d̂k ·

h
@kxd̂k ⇥ @ky d̂k

i
, with d̂k =

d(k)

|d(k)|
, (26)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 � cos kx � cos ky � cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S

2, see Figs. 3(a) and 3(b). The Chern number C(kz),
Eq. (26), measures how many times the d̂k-vector wraps around S

2 as k sweeps through the
contour Ckz . (Note that for k restricted to a spherical contour C, d̂k represents a map from S

2

6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
TRIMs [5]. The parity eigenvalues at the � point are opposite to those at all the other TRIMs. From this it follows
that the Chern number C(kz = 0) must be non-zero.
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(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.
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is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry Berry connection Ak is defined as Ak = ihu�(k)|rk|u�(k)i, with |u�(k)i the
Bloch state of the occupied band. The Weyl points act as sources and drains of Berry curvature,
i.e., the vector field F(k) points inwards at one Weyl point and outwards at the other. The
Chern number (25) measures how much Berry flux passes through the contour C. For contours
that enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
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and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 � cos kx � cos ky � cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S
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Eq. (26), measures how many times the d̂k-vector wraps around S
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6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
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2.2.1 Fermi arc surface states

We now discuss the surface states of Weyl semimetals, which arise due to the nontrivial topology
of the Weyl points. For this we consider again Hamiltonian (23) restricted to a planar contour
Ckz which is perpendicular to the kz axis [blue plane in Fig. 4(a)]. As we have seen above,
for any contour Ckz with |kz| < ⇡/2 the Chern number is C = ±1. Thus, each of the two-
dimensional Hamiltonians HA

3D,kz(kx, ky) ,with |kz| < ⇡/2, represents a two-dimensional Chern
insulator. These Chern insulators all have chiral edge modes, which on the surface perpendicular
to, e.g., the x direction, have a linear dispersion with E ' vky. Hence, there is a collection of
chiral edge modes on the (100) surface, which all disperse in the same direction. They form an
arc in the surface BZ, connecting the projection of the two Weyl points (yellow arc in Fig. 4).
This arc smoothly connects to the bulk bands, as shown in Fig. 4(b). We note that these arc
states cannot exist in purely two-dimensional systems, as they would contradict the continuity
of the band structure (bands cannot terminate at a point). At surfaces, however, these arc states
are allowed, since their end points smoothly connect with the bulk bands.

2.2.2 The chiral anomaly

Since the two Weyl points of opposite Chern number (i.e., opposite chirality) are separated by
a large momentum in the BZ, one might naively expect that the number of electrons n± at each
Weyl point with C = ±1 are separately conserved. In other words, one might think that besides
the regular electric charge e(n+ + n�), also the chiral charge e(n+ � n�) is conserved. Indeed,
within a classical low-energy description of Weyl semimetals the chiral charge is preserved.
However, at the quantum level this symmetry is broken, giving rise to an anomaly, i.e., the
chiral anomaly [5, 6]. That is, in the presence of electric fields E and magnetic fields B the
number of electrons n± at a given Weyl point is changed as

d

dt
n± = ±

e
2

h2
E ·B. (27)

Therefore, an electric field together with a magnetic field can generate (or destroy) chiral charge,
i.e., they can pump electric charges from one Weyl point to the other, leading to valley polariza-
tions. The total electric charge, however, remains preserved in this process. The chiral anomaly
has a number of experimental consequences, such as anomalous Hall effect and negative mag-
netoresistance [6].

2.3 Dirac nodal-line semimetal

As a second example, we study a nodal-line band crossing in a three-dimensional semimetal
with time-reversal symmetry (class AI) and reflection symmetry [33–35]. The Hamiltonian
is defined on the cubic lattice and is given by H

AI+R
3D =

P
k  

†
kH

AI+R
3D  k, where the spinor

 k = (cpk, cdk)T describes spinless Bloch electrons (no spin-orbit coupling) originating from p
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2.1  Dirac nodal-line semimetal
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

ky
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(a) (b)

Fig. 5: (a) Hamiltonian (28) describes an electron- and a hole-like band, which cross each
other along a nodal loop (red ring). The green line represents the contour L of Eq. (31). The
red area in the surface BZ indicates the region where surface states exist. (b) Schematic energy
dispersion of the drumhead surface state in the (001) surface BZ. The drumhead surface state
(green) smoothly connects to the bulk bands (blue and red) of the nodal ring.

and d orbitals and H
AI+R
3D reads (cf. Eq. (21) with p = 2)7

H
AI+R
3D = sin kz�2 + [2� cos kx � cos ky � cos kz] �3. (28)

The spectrum of this Hamiltonian

Ek = ±�k = ±

q
(2� cos kx � cos ky � cos kz)2 + (sin kz)2, (29)

exhibits a band-crossing at E = 0, which is located along a nodal ring within the kz = 0 plane,
see Fig. 5(a). Such a nodal-line band crossing at the Fermi energy is realized in Ca3P2, CaAgP,
and other materials [2, 15, 33]. Eq. (28) is time-reversal symmetric with the time-reversal oper-
ator T = �0K, and reflection symmetric, R�1

H
AI+R
3D (kx, ky,�kz)R = H

AI+R
3D (kx, ky, kz), with

the reflection operator R = �z. There is also an inversion symmetry, P�1
H

AI+R
3D (�k)P =

H
AI+R
3D (k), with the inversion operator P = �z. We observe that the only possible mass

term m⌧x, which anticommutes with H
AI+R
3D , is symmetry forbidden, since it breaks reflection

symmetry (R�1
m�xR = �m�x) and space-time inversion symmetry [ (T P)�1

m�x(T P) =

7Here, we have included both cos kx and cos ky terms in order to deform the nodal line of Eq. (21) into a nodal
ring.
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�m�x]. Hence, the nodal line band crossing is stable and protected by reflection symmetry and
PT symmetry. However, the band crossing of the doubled version of HAI+R

3D

H
AI+R,db
3D = sin kz�2 ⌦ �0 + [2� cos kx � cos ky � cos kz] �3 ⌦ �0. (30)

is protected only by reflection symmetry but not by PT symmetry, since the mass term m̂ =

�x ⌦ �y is symmetric under PT [(�z ⌦ �0K)�1
m̂(�z ⌦ �0K) = m̂], but breaks R [(�z ⌦

�0)�1
m̂(�z ⌦ �0) 6= m̂]. From this we conclude that nodal rings of type (28) have a Z classi-

fication in the presence of reflection symmetry, but only a Z2 classification in the presence of
PT symmetry.
The topological invariant, which guarantees the stability of the nodal ring, is the Berry phase.
The Berry phase is defined as a one-dimensional contour integral over the Berry connection (for
a related mirror invariant, see Ref. [33])

PL = �i

I

L
dkl hu�(k)|rkl |u�(k)i . (31)

Here, |u�(k)i is the filled Bloch eigenstate of Eq. (28), which is given by

|u�(k)i =
1p

2�k(�k �Mk)

 
�k �Mk

i sin kz

!
, (32)

with Mk = 2�cos kx�cos ky�cos kz. Note that the Berry phase is only defined up to mod 2⇡.
One can show that reflection symmetry R and space-time inversion PT lead to the quantization
of the Berry phase, i.e., PL 2 {0, ⇡} [33]. For contours L that do not interlink with the nodal
ring, the Berry phase (31) is zero, since the contour can be continuously shrunk to a single point.
For a contour L that does interlink with the nodal ring the Berry phase evaluates to PL = ⇡ .
In this case, the contour cannot be continuously shrunk to zero without crossing the nodal ring.
Hence, the nodal ring is stable to small changes in the parameters, as long as mirror or PT

symmetry is not broken.

2.3.1 Drumhead surface state

We now discuss the surface states of nodal-line semimetals, that arise due to the nontrivial
topology of the nodal ring. For this purpose we consider Hamiltonian (28) restricted to a line
contour Lkx,ky , which is perpendicular to the kxky-plane, i.e., along the kz direction [green line
in Fig. 5(a)]. As we have seen above, for any contour Lkx,ky , with cos kx + cos ky > 1, the
Berry phase is P = ⇡. Hence, each of the one-dimensional Hamiltonians HAI+R

3D;kx,ky
(kz), with

cos kx + cos ky > 1, represents a one-dimensional topological insulator with non-zero Berry
phase. These one-dimensional topological insulators all have midgap end states [36]. As a
consequence, there is a collection of end states on the (001) surface, which form a drumhead
that smoothly connects to the projected bulk bands [green area in Fig. 5(b)]. This drumhead state
is not allowed to exist in purely two-dimensional systems, as it would violated the continuity
of the band structure (bands cannot terminate at lines). At a surface, however, such drumhead
states can exist, since their edges smoothly connect to the bulk bands.
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fication in the presence of reflection symmetry, but only a Z2 classification in the presence of
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The topological invariant, which guarantees the stability of the nodal ring, is the Berry phase.
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with Mk = 2�cos kx�cos ky�cos kz. Note that the Berry phase is only defined up to mod 2⇡.
One can show that reflection symmetry R and space-time inversion PT lead to the quantization
of the Berry phase, i.e., PL 2 {0, ⇡} [33]. For contours L that do not interlink with the nodal
ring, the Berry phase (31) is zero, since the contour can be continuously shrunk to a single point.
For a contour L that does interlink with the nodal ring the Berry phase evaluates to PL = ⇡ .
In this case, the contour cannot be continuously shrunk to zero without crossing the nodal ring.
Hence, the nodal ring is stable to small changes in the parameters, as long as mirror or PT

symmetry is not broken.

2.3.1 Drumhead surface state

We now discuss the surface states of nodal-line semimetals, that arise due to the nontrivial
topology of the nodal ring. For this purpose we consider Hamiltonian (28) restricted to a line
contour Lkx,ky , which is perpendicular to the kxky-plane, i.e., along the kz direction [green line
in Fig. 5(a)]. As we have seen above, for any contour Lkx,ky , with cos kx + cos ky > 1, the
Berry phase is P = ⇡. Hence, each of the one-dimensional Hamiltonians HAI+R

3D;kx,ky
(kz), with

cos kx + cos ky > 1, represents a one-dimensional topological insulator with non-zero Berry
phase. These one-dimensional topological insulators all have midgap end states [36]. As a
consequence, there is a collection of end states on the (001) surface, which form a drumhead
that smoothly connects to the projected bulk bands [green area in Fig. 5(b)]. This drumhead state
is not allowed to exist in purely two-dimensional systems, as it would violated the continuity
of the band structure (bands cannot terminate at lines). At a surface, however, such drumhead
states can exist, since their edges smoothly connect to the bulk bands.
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

ky
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(a) (b)

Fig. 5: (a) Hamiltonian (28) describes an electron- and a hole-like band, which cross each
other along a nodal loop (red ring). The green line represents the contour L of Eq. (31). The
red area in the surface BZ indicates the region where surface states exist. (b) Schematic energy
dispersion of the drumhead surface state in the (001) surface BZ. The drumhead surface state
(green) smoothly connects to the bulk bands (blue and red) of the nodal ring.

and d orbitals and H
AI+R
3D reads (cf. Eq. (21) with p = 2)7

H
AI+R
3D = sin kz�2 + [2� cos kx � cos ky � cos kz] �3. (28)

The spectrum of this Hamiltonian

Ek = ±�k = ±

q
(2� cos kx � cos ky � cos kz)2 + (sin kz)2, (29)

exhibits a band-crossing at E = 0, which is located along a nodal ring within the kz = 0 plane,
see Fig. 5(a). Such a nodal-line band crossing at the Fermi energy is realized in Ca3P2, CaAgP,
and other materials [2, 15, 33]. Eq. (28) is time-reversal symmetric with the time-reversal oper-
ator T = �0K, and reflection symmetric, R�1

H
AI+R
3D (kx, ky,�kz)R = H

AI+R
3D (kx, ky, kz), with

the reflection operator R = �z. There is also an inversion symmetry, P�1
H

AI+R
3D (�k)P =

H
AI+R
3D (k), with the inversion operator P = �z. We observe that the only possible mass

term m⌧x, which anticommutes with H
AI+R
3D , is symmetry forbidden, since it breaks reflection

symmetry (R�1
m�xR = �m�x) and space-time inversion symmetry [ (T P)�1

m�x(T P) =

7Here, we have included both cos kx and cos ky terms in order to deform the nodal line of Eq. (21) into a nodal
ring.
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Quantum Anomaly: 
 

       Symmetry of classical action broken by regularization of  quantum theory

Is there an anomaly in nodal-line semimetals?

Anomaly in topological semimetals:
 

       Top. semimetals with FS of co-dimension p, generally, exhibit (p+1)-dim anomaly:

•p = 3: (3+1)D chiral anomaly in Weyl semi-metals

•p = 2: (2+1)D parity anomaly in graphene

?

=) study (2+1)D parity anomaly

as a function of angle �

�
=) consider family of 2D subsystems
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Parity anomaly for a 2D subsystem:
 

       Action for (2+1)D Dirac fermions coupled to gauge field

SCS =
P
8⇡

Z
d3x ✏µ⌫�Aµ@⌫A�

Aµ

=) Pauli-Villars regularization of theory breaks PT symmetry

transverse charge response to applied electric field

Berry phase
SR
e↵[A] = Se↵[A]� lim

M!1
Se↵[A,M ]

• anomalous current from one Dirac point: jµ =
P
4⇡

✏µ⌫�@⌫A�

2

their momenta.

Z2 topological charge and parity anomaly.— We be-

gin our analysis by discussing the relation between the

Z2 topological charge of PT symmetric DNLSMs and

the parity anomaly. The Fermi surface of Dirac nodal-

line semimetals consists of one-dimensional Dirac rings,

which have co-dimension dc = 1 in the three-dimensional

Brillouin zone (BZ). Without loss of generality, we as-

sume that the DNLSM exhibits only a single Dirac ring,

which is located within the kz = 0 plane [see Fig. 1(a)].

Its low-energy Hamiltonian reads [35]

H(k) =
1

⇤
[k

2
0 � (k

2
x+k

2
y)� b

2
k
2
z ]�3+ vzkz�2+m�1, (1)

where for later use we have introduced a small PT break-

ing mass m�1. In a DNLSM material this mass term

could be generated, for example, by inversion breaking

uniaxial strain or pressure. In the absence of m�1 the

Hamiltonian H(k) is PT symmetric with the PT op-

erator P̂ T̂ = �3K̂. The symmetry protection of the

Dirac ring (1) is guaranteed by a quantized Z2 topolog-

ical charge ⌫, which is given by the parity of the Berry

phase along a loop S
1
that interlinks with the Dirac ring

[green loop in Fig. 1(a)]. That is, ⌫ is expressed as

⌫[S
1
] =

1

⇡

Z

S1

d� trA(') mod 2, (2)

where the integration is along the loop S
1
, parametrized

by ' 2 [�⇡,⇡), and A↵�,j = h↵,k|i@kj |�,ki denotes the
Berry connection of the occupied Bloch eigenstates |↵,ki.
PT symmetry ensures that ⌫ can only take on the quan-

tized values 0 and 1. Loops S
1
that interlink with a

Dirac ring have a nontrivial Berry bundle, which results

in a nonzero topological charge ⌫ = 1. In two dimen-

sions, Eq. (2) assures the stability of the Dirac points

in graphene. In fact, since graphene is PT symmetric

and its Dirac points have co-dimension dc = 1, it be-

longs to the same entry in the classification of topological

semimetals as DNLSMs [33].

Guided by this observation, we introduce cylindri-

cal coordinates {k⇢,�, kz} and decompose the (3+1)-

dimensional DNLSM into a family of (2+1)-dimensional

subsystems parameterized by the angle �, as shown in

Fig. 1(a). The subsystems exhibit two Dirac points with

opposite Berry phase [52], each of which is described by a

(2+1)-dimensional quantum field theory with the action

S
�
=

Z
d
3
x  ̄ [i�

µ
(@µ + ieAµ) +m] , (3)

where  is a two-component Dirac spinor coupled to

the electromagnetic gauge field Aµ. Here,  ̄ =  
†
�
0
,

{�µ, �⌫} = 2⌘
µ⌫
, and ⌘

µ⌫
= diag(1,�1,�1). The mass

term m ̄ breaks spacetime inversion symmetry, since

the spinors transform under PT as  ! �
2
�
0
 and

 
† ! � †

�
0
�
2
. In the absence of the mass term m ̄ ,

Figure 1: Dirac ring and drumhead surface states of a Dirac
nodal-line semimetal. (a) The topological charge is de-
fined in terms of a line integral along the green loop. The
blue plane indicates the two-dimensional subsystems that are
parametrized by the angle �. (b) Relationship of the Dirac
ring to the surface states of a topological nodal-line semimetal.
The yellow and blue regions show the bulk and surface BZ,
respectively. Drumhead surface states occur within the red
region, which is bounded by the projected Dirac ring. Within
this region the topological charge ⌫, Eq. (2), takes on the
value ⌫ = 1, while outside this region it is zero.

Eq. (3) is PT symmetric (with (PT )
2

= 1) and can

be viewed as a classical action of (2 + 1)-dimensional

Dirac fields. It is however impossible to quantize this

classical action without breaking the spacetime inversion

symmetry, i.e., PT symmetry is broken by the regular-

ization of the quantum theory. To see this, let us con-

sider the Pauli-Villars regularization of the e↵ective ac-

tion S
�
e↵[A,m] of Eq. (3), which is obtained from the

fermion determinant by integrating out the Dirac spinors.

The e↵ective action with zero mass S
�
e↵[A, 0] needs to

be regularized due to ultraviolet divergences, which can

be achieved by the standard Pauli-Villars method, i.e.,

S
�,reg
e↵ [A] = S

�
e↵[A, 0] � lim

M!1
S
�
e↵[A,M ]. While this reg-

ularization scheme preserves gauge symmetry, it breaks

PT invariance, since the Pauli-Villars mass term M  ̄ 

remains finite in the M ! 1 limit, yielding the Chern-

Simons term [19, 21]

S
�
CS = ⌘

e
2

4⇡

Z
d
3
x ✏

µ⌫�
Aµ@⌫A�, (4)

where ⌘ = ±1 is the sign of the Dirac point Berry phase.

As discussed in Eq. (2), the Berry phase is related to the

topological charge ⌫ via ⌫ = ⌘ mod 2.

From the modern condensed matter viewpoint, the

parity anomaly is attributed to the Z2 topological charge

⌫ of the PT symmetric Dirac point. That is, because of

the topological obstruction from the nontrivial topologi-

cal charge, there exists no PT symmetric lattice ultravi-

olet regularization for a single (2+1)-dimensional Dirac

point. In other words, any lattice regularization has to

involve an even number of nontrivial Dirac points, since

the sum over all topological charges in the BZ torus must

be zero. This is consistent with the Z2 nature of the par-

ity anomaly, since a doublet of (2+1)-dimensional Dirac

• Pauli-Villars mass term remains finite for

M ! 1, yielding Chern-Simons term:

=) e↵ective action S�
e↵[A, 0] with m = 0 is UV divergent

breaks PT symmetry

Dirac nodal-line semimetal



Anomalous transport within semi-classical response theory:

Berry curvature

Anomalous current vanishes after integrating over �Figure 3: current generated in gapped nodal loop system by electrical field in êy (left panel) and êz

(right panel) direction.

which is depicted in Fig. 3.

Electrical field can also be applied in êx or êy direction, the corresponding currents are
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kkEê� ⇥ êE
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We consider angular di↵erential current,
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From above discussion, the integrand approximates delta function, which suggests contribution

around nodal loop dominates. By using kk =
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cos ✓ and kz =
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sin ✓, the integration

becomes,

dj

d�
=

e
2

~
EB

2
kCz�

(2⇡)3

ZZ

S

(
R
Bk

+
⇢

2RBk
cos ✓)

2

(

p
⇢2 +�2)3

⇢

2RBkCz
d⇢d✓ê� ⇥ êE
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where the integration range is ⇢ 2 (0,

p
µ2 ��2), which comes from E 2 (�, µ). With this expres-

sion, we can calculate the currents and conductance with E in di↵erent direction.

Below, we calculate conductance when electrical field are in êx, êy and êx directions.
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Dirac nodal-line semimetal



x y
z

(a)

(b)

In Bloch Hamiltonian is given by,

HB = (mz � 2tk(cos(kxa) + cos(kya))� 2tz cos(kza))�3 � 2tso sin(kza)�2 +��1, (17)

of which the energy spectrum at kz = 0 is plotted in Fig. 4 left panel. � is a small perturbation.

With open boundary condition in êz direction, we can obtain the energy band shown in Fig. 4 right

panel, where the surface states is marked by red line.

This surface state, like the edge states in graphene, can be engineered to select certain states on

nodal loop, just as that in [3].

2.2 Nodal loop filter

Following [3], we construct a similar structure in Fig. 5 to select states on nodal loop. In left and

right cylinder, there are 40 sites along z direction, while in the middle there are only 10 sites. The

surface states in the middle serves as a filter for states on nodal loop. In Fig. 5, there are more states

transported in red region than black region, where dashed line represents Fermi surface.

Figure 5: Construction of an nodal loop filter. In the upper panel, three energy spectrums of left

cylinder, middle cubic and right cylinder in the lower panel.

5

Drumhead surface states as a momentum filter:

• Consider dumbbell geometry:

transverse 
current

4

x y
z

Figure 4: A filter for soft modes along a Dirac nodal loop.

For concreteness, we use the lattice model of DNLSM,

HL(k) = [mz � 2tk(cos kx + cos ky)

� 2tz cos kz]�3 � 2tso sin kz�2 +��1. (6)

When 0 < (mz � 2tz)/2tk < 2 and � = 0, there exists a
single nodal loop centred at the origin of the kx-ky plane
with kz = 0. We place the DNLSM on the dumbbell
geometry, as illustrated in Fig.4(a), such that the mid-
dle bridge is appropriately confined for the z-dimension
while the other two dimensions are extensive, which con-
nects the two relatively unconfined Weight plates. The
confinement in the middle bridge implies that the trans-
port in this part mainly comes from the drumhead states
when the chemical potential is set close to the band cross-
ing level of the bulk nodal loop, and thereby a filter is
realized for soft modes from distinct regions along the
nodal loop as explained in the following. When apply-
ing voltage along the x-direction illustrated in Fig.4(a),
electric currents are induced from the left plate to the
right, which are dominated by carriers of quasi particles
excited mainly from the (two disconnected) arcs perpen-
dicular to the exerted electric field. Therefore, cross sec-
tions with kx = 0 of the spectra are plotted, respectively,
for the three parts of the dumbbell, noting that carri-
ers are mainly excited from arcs as neighborhoods of the
two points of minimal gap in Fig.4(b) i on the nodal
loop. However, from the spectrum in Fig.4(b)ii, only
quasi particles from the right (red) arc are able to propa-
gate through drumhead modes across the middle bridge,
namely a filter for soft modes from distinct parts of the
nodal line has been realized by utilizing the drumhead
states of the DNLSM.
Propagating across this filter, the remaining currents

are populated by quasi particles from the right arc in the

left plate, which, according to Eq.(5), have components
toward z-direction. Thus, net electric charge is accu-
mulating on the upper surface of the right plate, and
a voltage has been developing for the upper and lower
surface of the right plate, which can be detected as the
experimental signature of the nodal topological physics
of the DNLSM. The voltage is related to the geometry
of the nodal loop in momentum space, which determines
the amount of modes that can be excited by the electric
field. When the nodal loop is approximately a circle, the
voltage �V at the leading order is linearly proportional
to the radius R of the circle,

�V / R, (7)

which may be examined experimentally.

Discussions

⇤ y.zhao@fkf.mpg.de
† a.schnyder@fkf.mpg.de
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Figure 2: Topological currents in a Dirac nodal-line
semimetal. The red arrows indicate the Berry curvature⌦(k),
Eq. (6), in the presence of a small PT breaking mass term
m�1. The green arrows represent the transverse topological
current jt,�, Eq. (7), that is induced by an external electric
field applied along (a) the ŷ direction and (b) the ẑ direction.

points coupled to gauge fields can be quantized without

breaking PT symmetry.

To conclude, in the process of quantizing the clas-

sical action (3) we have broken PT symmetry due to

the Chern-Simons term (4). Thus, although the parity

anomaly strictly speaking occurs only in (2+1) dimen-

sions, it also appears in (3+1)-dimensional DNLSMs.

Topological transport in DNLSMs.— Next we discuss

the anomalous transport phenomena that are associated

with the parity anomaly. Varying the Chern-Simons

term (4) with respect to the electromagnetic gauge field

Aµ yields the anomalous transverse current

j
µ
t,� = ⌘

e

4⇡
✏
µ⌫�

@⌫A� (5)

for a single Dirac cone in a given (2+1)-dimensional sub-

system. Thus, electromagnetic fields projected onto a

two-dimensional subsystem induce a topological current,

which flows transverse (i.e., perpendicular) to the ap-

plied field. Since the energy bands of DNLSMs are, to a

first approximation, nondispersive along the � direction,

one might expect that the electromagnetic response of

DNLSMs in the presence of a small PT breaking term is

dominated by this topological current. However, for each

two-dimensional subsystem there are two Dirac points

that contribute to the transverse current with opposite

signs ⌘ = ±1. Since these two contributions cancel out

to zero, the topological current can only be measure by a

device that filters electrons based on their momenta, as

we will explain below.

But before doing so, let us give a second derivation of

the transverse topological currents in terms of semiclas-

sical response theory [8]. In the presence of an electric

field, the semiclassical equations of motion for Bloch elec-

trons contain an anomalous velocity proportional to the

Berry curvature. This gives rise to a transverse Hall-like

current [7, 8], given by jt =
e2

~
R

d3k
(2⇡)3 f(k) E ⇥ ⌦(k),

where f(k) is the Fermi-Dirac distribution function, E
denotes the electric field, and ⌦(k) represents the Berry

curvature of the Bloch eigenstate |↵,ki, which is defined

as⌦(k) = rk⇥h↵,k|irk|↵,ki. From a symmetry analy-

sis it follows that the Berry curvature in a gapped system

vanishes identically, unless either time-reversal or inver-

sion symmetry are broken. Indeed, using Eq. (1) with

m = 0 we find that ⌦(k) is zero in the entire BZ, except

at the Dirac nodal line, where it becomes singular, i.e.,

⌦(k) = ⇡�(k⇢ � k0)�(kz)ê�. To regularize this divergent

Berry curvature, PT symmetry needs to be broken, for

example, by uniaxial strain, pressure, disorder, or cir-

cularly polarized light, which leads to a small non-zero

mass m�1 in Eq. (1) and, consequently, a well-behaved

Berry curvature. For the conduction band ⌦(k) is given
by [47]

⌦(k) =
mvzk⇢/⇤

[(
2k0
⇤ q⇢)

2 + v2zk
2
z +m2]

3
2

ê�, (6)

where we have neglected terms of higher order in q⇢ and

kz. Here, q⇢ = k⇢ � k0 is the radial distance from the

Dirac ring. As shown in Fig. 2 the Berry curvature is

peaked at (q⇢, kz) = (0, 0) and points in opposite direc-

tions at opposite sides of the Dirac ring. The latter is

a consequence of time-reversal symmetry, which requires

that ⌦(k) = �⌦(�k).
From Eq. (6) we can now compute the transverse cur-

rent contributed by states with momentum angle � by

performing the momentum integral only over the two

cylindrical coordinates k⇢ and kz. Assuming that the

chemical potential EF = µ lies within the conduction

band, just above the gap opened by m�1, we obtain

the following �-dependent Hall current at zero tempera-

ture [47]

jt,� ' e
2

~
k0

8⇡2

✓
1� m

µ

◆
E⇥ ê�, (7)

where we have neglected terms of orderm
2
. Interestingly,

when the chemical potential µ is bigger than the gap

energy m, the transverse current jt,� is dominated by the

first term, which is universal as it follows from the parity

anomaly. Indeed, the first term of Eq. (7) is consistent

with Eq. (5) as it di↵ers only by the di↵erential element

(k0/2⇡)d� of the cylindrical coordinate system. Figure 2

displays the distribution of the transverse currents jt,�
(green arrows) along the Dirac ring for a constant electric

field applied along the ŷ and ẑ directions. We observe

that carriers on opposing sides of the Dirac ring flow into

opposite directions transverse to the electric field. This

leads to an accumulations of charge on opposite surfaces

of the DNLSM.

Dumbbell device.— From the above analysis it is now

clear that the parity anomaly in DNLSMs gives rise to

Dirac nodal-line semimetal



3.  Symmetry-enforced band crossings



Symmetry-enforced band crossings

• globally stable, movable but not removable 

• exhibits local topological charge          and global topological charge 

• protected by non-symmorphic crystal symmetry (possibly together with non-spatial sym)

=) classification tells you that band crossing is symmetry required!
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)
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cnky↓

)

(8)

+ λ cos ky
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)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣
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〉
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ky
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We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
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µ
1 (E, ky) ρx

1 (11)
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=) classification tells you that band crossing is symmetry required!



Symmetry-enforced band crossings

• exhibits local topological charge          and global topological charge 

• protected by non-symmorphic crystal symmetry (possibly together with non-spatial sym)

En
er

gyFestkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

crystal momentum
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• Bulk-boundary correspondence:

|nZ| = #gapless edge states (or surface states)



Strategy for discovery of topological semi-metals
(i) Consider 157 non-symmorphic space groups

) identify those space groups with symmetry-enforced band crossings

AuF3LaBr3

using symmetry eigenvalues and compatibility between irreps

In2Se3

The Space Group List Project
by Frank Hoffmann

P1 (#1)

Gilmarite Chancalthite

P1  (#2) P2 (#3)

Thomasclarkite

P21 (#4) C2 (#5) Pm (#6) Pc (#7) Cm (#8) Cc (#9) P2/m (#10) P21/m (#11) C2/m (#12) P2/c (#13) P21/c (#14)

Alloclasite
Dioxo-((S)-N-salicylidene-3-

aminopyrrolidine)-vanadium(v) BaBe2Si2O7 Tashelgite Gerstleyite FeMo2S4 Muthmannite CaSb2 Augelite Ferberite B8S16

P2221 (#17)C2/c (#15) P222 (#16) P21212 (#18) P212121 (#19) C2221 (#20) C222 (#21) F222 (#22) I222 (#23) I212121 (#24) Pmm2 (#25) Pmc21 (#26) Pcc2 (#27) Pma2 (#28)

Jadeite
Pottasium-L-alaninato-

dichloridoplatinate Cs2O(B2O3)9 La3InS6 NaAlCl4 K2AgS Godlevskite NaAg(NO2)2 NaFeS2 GaAs Carbocernaite
(1R,2R)-1,2-Diaminocyclohexane 

(2R,3R)-2,3-butanediol
2,5-Bis(5-bromo-2-
thienyl)-thiophene Krennerite

Pca21 (#29) Pnc2 (#30) Pmn21 (#31) Pba2 (#32) Pna21 (#33) Pnn2 (#34) Cmm2 (#35) Cmc21 (#36) Ccc2 (#37) Amm2 (#38) Abm2 (#39) Ama2 (#40) Abc2 (#41) Fmm2 (#42)

Cobaltite Terskite Enargite Minyulite Wakabayashilite Li2TiTeO6 KNbW2O9 Spertiniite ZP-4 Ca2Na2(CO3)3
2,5-bis(4-Bromobenzylidene)-

cyclopentanone

LiBH4
(at 2.4 Gpa) Si2CN4 CH2I2

Iba2 (#45)Imm2 (#44) Ima2 (#46) Pmmm (#47) Pnnn (#48) Pccm (#49) Pban (#50) Pmma (#51) Pnna (#52) Pmna (#53) Pcca (#54) Pbam (#55) Pccn (#56) Pbcm (#57)

Edenharterite

Fdd2 (#43)

AgNO2 Banalsite Batisite Ta4O (µ2-Oxo)-bis(Cl2- bis(1-H3C-
imidazole)-oxo-rhenium(v) CsPr(MoO4)2 Retzian BaThBr6 SnWO4 FeNbTe2 AgClO2 Reinerite Valentinite BaTiOF4

Pnnm (#58) Pmmn (#59) Pbcn (#60) Pbca (#61) Pnma (#62) Cmcm (#63) Cmca (#64) Cmmm (#65) Cccm (#66) Cmma (#67) Ccca (#68) Fmmm (#69) Fddd (#70) Immm (#71) Ibam (#72) Ibca (#73) Imma (#74)

Cu(NH3)4(NO3)2 Pasavaite CuNb2O6 Hambergite Avogadrite Ferruccite Tuhualite MgVO3 Cordierite Johachidolite Magnesiocarpholite La2NiO4.15 Thenardite VNi2 Leningradite Chesnokovite Weberite

P4 (#75) P41 (#76) P42 (#77) P43 (#78) I4 (#79) I41 (#80) P4 (#81) I4 (#82) P4/m (#83) P42/m (#84) P4/n (#85) P42/n (#86) I4/m (#87) I41/a (#88) P422 (#89) P4212 (#90)

Na0.1WO3 Percleveite Pinnoite Sr2As2O7 WOBr4 NbO2 Zr(P2S6) In(PS4) BaLa4Cu5O13 Sr2Fe0.97Mo0.94O5.81 PCl4SbF6 NaSb(OH)6 Sr2Ni(WO6) Na(AlH4) [Pt4(µ-OCOCH3)4-
(µ-OCOC5H4FeCp)4] Ba(VO)Cu4(PO4)4

P4122 (#91) P41212 (#92) P4222 (#93) P42212 (#94) P4322 (#95) P43212 (#96) I422 (#97) I4122 (#98) P4mm (#99) P4bm (#100) P42cm (#101) P42nm (#102) P4cc (#103) P4nc (#104)

Mg2(TiO4) Cristobalite [AsPh4][Ce(S2PMe2)4]
Zinc(II) 4,4‘-Bipyridine-

2,6,2‘,6‘-tetracarboxylate Na2S Li(AlSi2O6) Ekanite CPF-1 BaTiO3 Na0.5Bi0.5TiO3 [Me4N][Cu2(NCS)3] S4N2 VOSe2O5 HgTlBa2CuOx

More information at
crystalsymmetry.wordpress.com

P42mc (#105) P42bc (#106) I4mm (#107) I4cm (#108) I41md (#109) I41cd (#110) P42m (#111) P42c (#112) P421m (#113) P421c (#114) P4m2 (#115) P4c2 (#116) P4b2 (#117) P4n2 (#118) I4m2 (#119) I4c2 (#120)

BaGe2P2 NaZn(OH)3 Sm2Cu4Sn5 Rb5Nb3OF18 NbP Cu2(WS4)Be(BH4)2 CuFeSe2 (NF4)(BF4) Na3(PS4) Hf2CuSb3 KNbF6 Pb3O4 Fe(NH3)6AgSbS4 KMnTe2 Be(SO4)(H2O)4

I42m (#121) I42d (#122) P4/mmm (#123) P4/mcc (#124) P4/nbm (#125) P4/nnc (#126) P4/mbm (#127) P4/mnc (#128) P4/nmm (#129) P4/ncc (#130) P42/mmc (#131) P42/mcm (#132) P42/nbc (#133) P42/nnm (#134)P42/mbc (#135) P42/mnm (#136) P42/nmc (#137)

Jasmundite Ice XII PbTiO3 (550 °C) TaTe4 CaNa2As4O12 BaAl2Se4 Phosgenite Fluorapophyllite PbO (red) Bi2CuO4 CaPt2O4 NiZn(CN)4 Mn2(Te2O5)2 CuSn(OH)6 SeO2 Rutile HgI2

P42/ncm (#138) I4/mmm (#139) I4/mcm (#140) I41/amd (#141) I41/acd (#142) P3 (#143) P31 (#144) P32 (#145) R3 (#146) P3 (#147) R3 (#148) P312 (#149) P321 (#150) P3112 (#151) P3121 (#152) P3212 (#153)

AuI Indium Al2Cu CeSiO4 (Sr1.9Ba0.1)IrO4 Simpsonite SheldrickiteStillwellite-Ce Mg(SO3)(H2O)6 K2TeO3 Dolomite RbGe(IO6) Sr3(TaGa3Si2O14) Muscovite 3T Berlinite CrCl3

P3221 (#154) R32 (#155) P3m1 (#156) P31m (#157) P3c1 (#158) P31c (#159) R3m (#160) R3c (#161) P31m (#162) P31c (#163) P3m1 (#164) P3c1 (#165) R3m (#166) R3c (#167) P6 (#168)

Quartz Tincalconite Fencooperite Galeite RuCl3 LiNaSO4 Tourmaline Proustite Li2ZrF6 Coquimbite Portlandite Fluocerite-(La) PCN-6 Calcite K2Ta4F4O9

P61 (#169) P65 (#170) P62 (#171) P64 (#172) P63 (#173) P6 (#174) P6/m (#175) P63/m (#176) P622 (#177) P6122 (#178) P6522 (#179) P6222 (#180) P6422 (#181) P6322 (#182)

Al2S3 NaCoPO4 Sr(S2O6)(H2O)4 Ca (S2O6)(H2O)4 Nepheline LiNaCO3

catena-[2,2'-(biphenyl-4,4'-
diyldiimino)dibenzene-1,3,5-triol] Fluorapatite

tetracosakis(µ2-Methoxo)-
dodecakis(µ2-proline)-dodeca-

iron(iii) dodecaperchlorate AgF3 LaBTB Rhabdophane-(Ce) β-Eucryptite Ca(Ta,Nb)4O11

P6mm (#183) P6cc (#184) P63cm (#185) P6m2 (#187) P6c2 (#188) P62m (#189) P62c (#190) P6/mmm (#191)P6/mcc (#192) P63/mcm (#193) P63/mmc (#194) P23 (#195) F23 (#196) I23 (#197) P213 (#198)

AuCN AlPO-5 KNiCl3

P63mc (#186)

KCaF(CO3)AgI BaTi(Si3O9) Na2O2 SrBe3O4 AlB2 Beryl ZrI3 Graphite Ba(AuF6)2
tetrakis((18-Crown-6)-
thallium) MnCl4 (TlCl4)2

Bi2O3 Langbeinite

I213 (#199) Pm3 (#200) Pn3 (#201) Fm3 (#202) Fd3 (#203) Im3 (#204) Pa3 (#205) Ia3 (#206) P432 (#207) P4232 (#208) F432 (#209) F4132 (#210) I432 (#211) P4332 (#212) P4132 (#213) I4132 (#214)

K2Pb2O3 Sr3C60 MgSn(OH)6 K2Pb(Cu(NO2)6) Dodecasil Na1-xWO3 Pyrite Yttria BIF-9-Cu Be3P2 PCN-20 Te(OH)6 NiHg4 LiFe5O8 C(NH2)3)2(SO4) Gd3Cl3C

P43m (#215) F43m (#216) I43m (#217) P43n (#218) F43c (#219) I43d (#220) Pm3m (#221) Pn3n (#222) Pm3n (#223) Pn3m (#224) Fm3m (#225) Fm3c (#226) Fd3m (#227) Fd3c (#228) Im3m (#229) Ia3d (#230)

Co3L2(tpt)2 Fe3O4 Zeolite Rho Sodalite Mn3B7O13I
Katoite 

hydrogarnet ZIF-71-RHO Co-Squarate V6SnSi (NH4)[(Mo12O36)(AsO4)Mo(MoO)] NaCl LTA Spinel (Cr(NH3)6)(CuCl5) BaCuO2 Ba3(Al(OH)6)2

Crystal structures drawn with VESTA
K. Momma and F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272-1276

The Space Group List Project
by Frank Hoffmann

P1 (#1)

Gilmarite Chancalthite

P1  (#2) P2 (#3)

Thomasclarkite

P21 (#4) C2 (#5) Pm (#6) Pc (#7) Cm (#8) Cc (#9) P2/m (#10) P21/m (#11) C2/m (#12) P2/c (#13) P21/c (#14)

Alloclasite
Dioxo-((S)-N-salicylidene-3-

aminopyrrolidine)-vanadium(v) BaBe2Si2O7 Tashelgite Gerstleyite FeMo2S4 Muthmannite CaSb2 Augelite Ferberite B8S16

P2221 (#17)C2/c (#15) P222 (#16) P21212 (#18) P212121 (#19) C2221 (#20) C222 (#21) F222 (#22) I222 (#23) I212121 (#24) Pmm2 (#25) Pmc21 (#26) Pcc2 (#27) Pma2 (#28)

Jadeite
Pottasium-L-alaninato-

dichloridoplatinate Cs2O(B2O3)9 La3InS6 NaAlCl4 K2AgS Godlevskite NaAg(NO2)2 NaFeS2 GaAs Carbocernaite
(1R,2R)-1,2-Diaminocyclohexane 

(2R,3R)-2,3-butanediol
2,5-Bis(5-bromo-2-
thienyl)-thiophene Krennerite

Pca21 (#29) Pnc2 (#30) Pmn21 (#31) Pba2 (#32) Pna21 (#33) Pnn2 (#34) Cmm2 (#35) Cmc21 (#36) Ccc2 (#37) Amm2 (#38) Abm2 (#39) Ama2 (#40) Abc2 (#41) Fmm2 (#42)

Cobaltite Terskite Enargite Minyulite Wakabayashilite Li2TiTeO6 KNbW2O9 Spertiniite ZP-4 Ca2Na2(CO3)3
2,5-bis(4-Bromobenzylidene)-

cyclopentanone

LiBH4
(at 2.4 Gpa) Si2CN4 CH2I2

Iba2 (#45)Imm2 (#44) Ima2 (#46) Pmmm (#47) Pnnn (#48) Pccm (#49) Pban (#50) Pmma (#51) Pnna (#52) Pmna (#53) Pcca (#54) Pbam (#55) Pccn (#56) Pbcm (#57)

Edenharterite

Fdd2 (#43)

AgNO2 Banalsite Batisite Ta4O (µ2-Oxo)-bis(Cl2- bis(1-H3C-
imidazole)-oxo-rhenium(v) CsPr(MoO4)2 Retzian BaThBr6 SnWO4 FeNbTe2 AgClO2 Reinerite Valentinite BaTiOF4

Pnnm (#58) Pmmn (#59) Pbcn (#60) Pbca (#61) Pnma (#62) Cmcm (#63) Cmca (#64) Cmmm (#65) Cccm (#66) Cmma (#67) Ccca (#68) Fmmm (#69) Fddd (#70) Immm (#71) Ibam (#72) Ibca (#73) Imma (#74)

Cu(NH3)4(NO3)2 Pasavaite CuNb2O6 Hambergite Avogadrite Ferruccite Tuhualite MgVO3 Cordierite Johachidolite Magnesiocarpholite La2NiO4.15 Thenardite VNi2 Leningradite Chesnokovite Weberite

P4 (#75) P41 (#76) P42 (#77) P43 (#78) I4 (#79) I41 (#80) P4 (#81) I4 (#82) P4/m (#83) P42/m (#84) P4/n (#85) P42/n (#86) I4/m (#87) I41/a (#88) P422 (#89) P4212 (#90)

Na0.1WO3 Percleveite Pinnoite Sr2As2O7 WOBr4 NbO2 Zr(P2S6) In(PS4) BaLa4Cu5O13 Sr2Fe0.97Mo0.94O5.81 PCl4SbF6 NaSb(OH)6 Sr2Ni(WO6) Na(AlH4) [Pt4(µ-OCOCH3)4-
(µ-OCOC5H4FeCp)4] Ba(VO)Cu4(PO4)4

P4122 (#91) P41212 (#92) P4222 (#93) P42212 (#94) P4322 (#95) P43212 (#96) I422 (#97) I4122 (#98) P4mm (#99) P4bm (#100) P42cm (#101) P42nm (#102) P4cc (#103) P4nc (#104)

Mg2(TiO4) Cristobalite [AsPh4][Ce(S2PMe2)4]
Zinc(II) 4,4‘-Bipyridine-

2,6,2‘,6‘-tetracarboxylate Na2S Li(AlSi2O6) Ekanite CPF-1 BaTiO3 Na0.5Bi0.5TiO3 [Me4N][Cu2(NCS)3] S4N2 VOSe2O5 HgTlBa2CuOx

More information at
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P42mc (#105) P42bc (#106) I4mm (#107) I4cm (#108) I41md (#109) I41cd (#110) P42m (#111) P42c (#112) P421m (#113) P421c (#114) P4m2 (#115) P4c2 (#116) P4b2 (#117) P4n2 (#118) I4m2 (#119) I4c2 (#120)

BaGe2P2 NaZn(OH)3 Sm2Cu4Sn5 Rb5Nb3OF18 NbP Cu2(WS4)Be(BH4)2 CuFeSe2 (NF4)(BF4) Na3(PS4) Hf2CuSb3 KNbF6 Pb3O4 Fe(NH3)6AgSbS4 KMnTe2 Be(SO4)(H2O)4

I42m (#121) I42d (#122) P4/mmm (#123) P4/mcc (#124) P4/nbm (#125) P4/nnc (#126) P4/mbm (#127) P4/mnc (#128) P4/nmm (#129) P4/ncc (#130) P42/mmc (#131) P42/mcm (#132) P42/nbc (#133) P42/nnm (#134)P42/mbc (#135) P42/mnm (#136) P42/nmc (#137)

Jasmundite Ice XII PbTiO3 (550 °C) TaTe4 CaNa2As4O12 BaAl2Se4 Phosgenite Fluorapophyllite PbO (red) Bi2CuO4 CaPt2O4 NiZn(CN)4 Mn2(Te2O5)2 CuSn(OH)6 SeO2 Rutile HgI2

P42/ncm (#138) I4/mmm (#139) I4/mcm (#140) I41/amd (#141) I41/acd (#142) P3 (#143) P31 (#144) P32 (#145) R3 (#146) P3 (#147) R3 (#148) P312 (#149) P321 (#150) P3112 (#151) P3121 (#152) P3212 (#153)

AuI Indium Al2Cu CeSiO4 (Sr1.9Ba0.1)IrO4 Simpsonite SheldrickiteStillwellite-Ce Mg(SO3)(H2O)6 K2TeO3 Dolomite RbGe(IO6) Sr3(TaGa3Si2O14) Muscovite 3T Berlinite CrCl3

P3221 (#154) R32 (#155) P3m1 (#156) P31m (#157) P3c1 (#158) P31c (#159) R3m (#160) R3c (#161) P31m (#162) P31c (#163) P3m1 (#164) P3c1 (#165) R3m (#166) R3c (#167) P6 (#168)

Quartz Tincalconite Fencooperite Galeite RuCl3 LiNaSO4 Tourmaline Proustite Li2ZrF6 Coquimbite Portlandite Fluocerite-(La) PCN-6 Calcite K2Ta4F4O9

P61 (#169) P65 (#170) P62 (#171) P64 (#172) P63 (#173) P6 (#174) P6/m (#175) P63/m (#176) P622 (#177) P6122 (#178) P6522 (#179) P6222 (#180) P6422 (#181) P6322 (#182)

Al2S3 NaCoPO4 Sr(S2O6)(H2O)4 Ca (S2O6)(H2O)4 Nepheline LiNaCO3

catena-[2,2'-(biphenyl-4,4'-
diyldiimino)dibenzene-1,3,5-triol] Fluorapatite

tetracosakis(µ2-Methoxo)-
dodecakis(µ2-proline)-dodeca-

iron(iii) dodecaperchlorate AgF3 LaBTB Rhabdophane-(Ce) β-Eucryptite Ca(Ta,Nb)4O11

P6mm (#183) P6cc (#184) P63cm (#185) P6m2 (#187) P6c2 (#188) P62m (#189) P62c (#190) P6/mmm (#191)P6/mcc (#192) P63/mcm (#193) P63/mmc (#194) P23 (#195) F23 (#196) I23 (#197) P213 (#198)

AuCN AlPO-5 KNiCl3

P63mc (#186)

KCaF(CO3)AgI BaTi(Si3O9) Na2O2 SrBe3O4 AlB2 Beryl ZrI3 Graphite Ba(AuF6)2
tetrakis((18-Crown-6)-
thallium) MnCl4 (TlCl4)2

Bi2O3 Langbeinite

I213 (#199) Pm3 (#200) Pn3 (#201) Fm3 (#202) Fd3 (#203) Im3 (#204) Pa3 (#205) Ia3 (#206) P432 (#207) P4232 (#208) F432 (#209) F4132 (#210) I432 (#211) P4332 (#212) P4132 (#213) I4132 (#214)

K2Pb2O3 Sr3C60 MgSn(OH)6 K2Pb(Cu(NO2)6) Dodecasil Na1-xWO3 Pyrite Yttria BIF-9-Cu Be3P2 PCN-20 Te(OH)6 NiHg4 LiFe5O8 C(NH2)3)2(SO4) Gd3Cl3C

P43m (#215) F43m (#216) I43m (#217) P43n (#218) F43c (#219) I43d (#220) Pm3m (#221) Pn3n (#222) Pm3n (#223) Pn3m (#224) Fm3m (#225) Fm3c (#226) Fd3m (#227) Fd3c (#228) Im3m (#229) Ia3d (#230)

Co3L2(tpt)2 Fe3O4 Zeolite Rho Sodalite Mn3B7O13I
Katoite 

hydrogarnet ZIF-71-RHO Co-Squarate V6SnSi (NH4)[(Mo12O36)(AsO4)Mo(MoO)] NaCl LTA Spinel (Cr(NH3)6)(CuCl5) BaCuO2 Ba3(Al(OH)6)2

Crystal structures drawn with VESTA
K. Momma and F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272-1276

The Space Group List Project
by Frank Hoffmann
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Gilmarite Chancalthite
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Alloclasite
Dioxo-((S)-N-salicylidene-3-

aminopyrrolidine)-vanadium(v) BaBe2Si2O7 Tashelgite Gerstleyite FeMo2S4 Muthmannite CaSb2 Augelite Ferberite B8S16

P2221 (#17)C2/c (#15) P222 (#16) P21212 (#18) P212121 (#19) C2221 (#20) C222 (#21) F222 (#22) I222 (#23) I212121 (#24) Pmm2 (#25) Pmc21 (#26) Pcc2 (#27) Pma2 (#28)

Jadeite
Pottasium-L-alaninato-

dichloridoplatinate Cs2O(B2O3)9 La3InS6 NaAlCl4 K2AgS Godlevskite NaAg(NO2)2 NaFeS2 GaAs Carbocernaite
(1R,2R)-1,2-Diaminocyclohexane 

(2R,3R)-2,3-butanediol
2,5-Bis(5-bromo-2-
thienyl)-thiophene Krennerite

Pca21 (#29) Pnc2 (#30) Pmn21 (#31) Pba2 (#32) Pna21 (#33) Pnn2 (#34) Cmm2 (#35) Cmc21 (#36) Ccc2 (#37) Amm2 (#38) Abm2 (#39) Ama2 (#40) Abc2 (#41) Fmm2 (#42)

Cobaltite Terskite Enargite Minyulite Wakabayashilite Li2TiTeO6 KNbW2O9 Spertiniite ZP-4 Ca2Na2(CO3)3
2,5-bis(4-Bromobenzylidene)-

cyclopentanone

LiBH4
(at 2.4 Gpa) Si2CN4 CH2I2

Iba2 (#45)Imm2 (#44) Ima2 (#46) Pmmm (#47) Pnnn (#48) Pccm (#49) Pban (#50) Pmma (#51) Pnna (#52) Pmna (#53) Pcca (#54) Pbam (#55) Pccn (#56) Pbcm (#57)

Edenharterite

Fdd2 (#43)

AgNO2 Banalsite Batisite Ta4O (µ2-Oxo)-bis(Cl2- bis(1-H3C-
imidazole)-oxo-rhenium(v) CsPr(MoO4)2 Retzian BaThBr6 SnWO4 FeNbTe2 AgClO2 Reinerite Valentinite BaTiOF4

Pnnm (#58) Pmmn (#59) Pbcn (#60) Pbca (#61) Pnma (#62) Cmcm (#63) Cmca (#64) Cmmm (#65) Cccm (#66) Cmma (#67) Ccca (#68) Fmmm (#69) Fddd (#70) Immm (#71) Ibam (#72) Ibca (#73) Imma (#74)
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(ii) Perform a database search for materials in these space groups

(iii) Compute DFT band structures, topological invariants, surface states, etc.

, , , ….

— to check whether band crossings and surface states are near EF 



3.2  How non-symmorphic symmetries lead 
to enforced band crossings
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(a) (b)

Fig. 8: This figure illustrates two nonsymmorphic symmetries: A glide reflection in panel (a)
and a two-fold screw rotation in panel (b).

In the band structure of materials with nonsymmorphic symmetries, the operators G = {g|t}

can enforce band degeneracies in the g-invariant space of the BZ, i.e., on lines or planes which
satisfy gk = k. In these g-invariant spaces, the Bloch states |um(k)i can be constructed in such
a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. To derive the
G-eigenvalues of the Bloch states |um(k)i, we observe that

G
n = ±e

�ipk·a
, (36)

which follows from Eq. (35). Hence, the eigenvalues of G are

G | m(k)i =

(
e
i⇡(2m+1)/n

e
�ipk·a/n

| m(k)i , for spin 1/2,
e
i2⇡m/n

e
�ipk·a/n

| m(k)i , for spin 0,
(37)

where m 2 {0, 1, . . . , n� 1}. Because of the phase factor e�ipk·a/n in Eq. (37) the eigensectors
of G can switch, as k moves along the g-invariant space. From this it follows that pairs of
bands must cross at least once within the invariant space8. With this we have found the basic
mechanism that leads to symmetry-enforced band degeneracies [16–19],
Let us now explain in more detail how a screw rotation leads to a symmetry-enforced band
crossing in a simple one-dimensional system with two atoms per unit cell. In momentum space
such a system is described by a two-band Hamiltonian H(k). The screw rotation symmetry (⇡
rotation, followed by half translation) takes the form [16]

G(k)H(k)G�1(k) = H(k), G(k) =

 
0 e

�ik

1 0

!
, (38)

where the exponential factor e�ik accounts for the fact that one of the two atoms is moved to
the next unit cell. Here, we consider the case of spin-0 quasiparticles (Bloch electrons without

8Here we assume that here are no additional degeneracies due to other symmetries.
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(a) (b)

Fig. 8: This figure illustrates two nonsymmorphic symmetries: A glide reflection in panel (a)
and a two-fold screw rotation in panel (b).

In the band structure of materials with nonsymmorphic symmetries, the operators G = {g|t}

can enforce band degeneracies in the g-invariant space of the BZ, i.e., on lines or planes which
satisfy gk = k. In these g-invariant spaces, the Bloch states |um(k)i can be constructed in such
a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. To derive the
G-eigenvalues of the Bloch states |um(k)i, we observe that

G
n = ±e

�ipk·a
, (36)

which follows from Eq. (35). Hence, the eigenvalues of G are

G | m(k)i =

(
e
i⇡(2m+1)/n

e
�ipk·a/n

| m(k)i , for spin 1/2,
e
i2⇡m/n

e
�ipk·a/n

| m(k)i , for spin 0,
(37)

where m 2 {0, 1, . . . , n� 1}. Because of the phase factor e�ipk·a/n in Eq. (37) the eigensectors
of G can switch, as k moves along the g-invariant space. From this it follows that pairs of
bands must cross at least once within the invariant space8. With this we have found the basic
mechanism that leads to symmetry-enforced band degeneracies [16–19],
Let us now explain in more detail how a screw rotation leads to a symmetry-enforced band
crossing in a simple one-dimensional system with two atoms per unit cell. In momentum space
such a system is described by a two-band Hamiltonian H(k). The screw rotation symmetry (⇡
rotation, followed by half translation) takes the form [16]

G(k)H(k)G�1(k) = H(k), G(k) =

 
0 e

�ik

1 0

!
, (38)

where the exponential factor e�ik accounts for the fact that one of the two atoms is moved to
the next unit cell. Here, we consider the case of spin-0 quasiparticles (Bloch electrons without

8Here we assume that here are no additional degeneracies due to other symmetries.
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Fig. 8: This figure illustrates two nonsymmorphic symmetries: A glide reflection in panel (a)
and a two-fold screw rotation in panel (b).

In the band structure of materials with nonsymmorphic symmetries, the operators G = {g|t}

can enforce band degeneracies in the g-invariant space of the BZ, i.e., on lines or planes which
satisfy gk = k. In these g-invariant spaces, the Bloch states |um(k)i can be constructed in such
a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. To derive the
G-eigenvalues of the Bloch states |um(k)i, we observe that

G
n = ±e

�ipk·a
, (36)

which follows from Eq. (35). Hence, the eigenvalues of G are

G | m(k)i =

(
e
i⇡(2m+1)/n

e
�ipk·a/n

| m(k)i , for spin 1/2,
e
i2⇡m/n

e
�ipk·a/n

| m(k)i , for spin 0,
(37)

where m 2 {0, 1, . . . , n� 1}. Because of the phase factor e�ipk·a/n in Eq. (37) the eigensectors
of G can switch, as k moves along the g-invariant space. From this it follows that pairs of
bands must cross at least once within the invariant space8. With this we have found the basic
mechanism that leads to symmetry-enforced band degeneracies [16–19],
Let us now explain in more detail how a screw rotation leads to a symmetry-enforced band
crossing in a simple one-dimensional system with two atoms per unit cell. In momentum space
such a system is described by a two-band Hamiltonian H(k). The screw rotation symmetry (⇡
rotation, followed by half translation) takes the form [16]

G(k)H(k)G�1(k) = H(k), G(k) =

 
0 e

�ik

1 0

!
, (38)

where the exponential factor e�ik accounts for the fact that one of the two atoms is moved to
the next unit cell. Here, we consider the case of spin-0 quasiparticles (Bloch electrons without

8Here we assume that here are no additional degeneracies due to other symmetries.

•  screw rotation symmetry:
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spin-orbit coupling), hence G(k) does not contain a spin part. Now, since G
2(k) = �0e

�ik the
eigenvalues of G are ±e

�ik/2, i.e., we can label the two bands of H(k) by the eigenvalues of
G(k)

G | ±(k)i = ±e
�ik/2

| ±(k)i , (39)

cf. Eq. (37) with n = 2 and p = 1. We see that the eigenvalues are momentum dependent and
change from ± at k = 0 to ⌥ at k = 2⇡, as we go through the BZ. Hence, the two eigenspaces
get interchanged and the bands must cross at least once, see Fig. 7.
It is also possible to mathematically prove that there needs to be at least one crossing [16].
The proof is by contradiction. First, we observe that G(k) does not commute with �3 (it anti-
commutes). Therefore, H(k) cannot contain a term proportional to �3, since it is symmetry
forbidden. Moreover, we can drop terms proportional to the identity, since they only shift the
energy of the eigenstates, but do not alter the band crossings. For this reason the Hamiltonian
can be assumed to be off-diagonal and can be written as

H(k) =

 
0 q(k)

q
⇤(k) 0

!
. (40)

With this parametrization, the spectrum of H(k) is symmetric around E = 0 and is given by
E = ±|q(k)|. For this reason, any band crossing must occur at E = 0. Applying the symmetry
constraint (38), we find that q(k) must satisfy

q(k)eik = q
⇤(k). (41)

We now need to show that any periodic function q(k) satisfying the constraint (41) must have
zeros, corresponding to a band crossing point. To see this, we introduce the complex variable
z := e

ik and the complex function f(z) := q(k). From Eq. (41) it follows that zf(z) = f
⇤(z).

Assuming that f(z) is nonzero on the unit circle S
1, then

z = f
⇤(z)/f(z), (42)

which, however, leads to a contradiction. This is because for z 2 S
1 the two sides of Eq. (42)

both define functions from S
1 to S

1. But the left hand side has winding number 1, while the right
hand side has even winding number, since f

⇤(z)/f(z) = e
2iArc[f(z)]. Thus, f(z) and q(k) must

vanish at some k by contradiction. Therefore, there most be a band crossing point somewhere
in the BZ.

3.2 Weyl nodal-line semimetal

Next we discuss how a glide reflection symmetry can enforce two-fold degeneracies along a
line. Materials with these line degeneracies are called Weyl nodal-line semimetals. For con-
creteness, we consider a system with spin-orbit coupling, which is invariant under the hexagonal
SG 190 (P 6̄2c). This SG contains a glide reflection symmetry of the form

Mx : (x, y, z) ! (�x, y, z + 1
2)i�x, (43)

•  eigenvalues: 
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Fig. 7: Nonsymmorphic symmetries lead to symmetry-enforced band crossings. The color
shading indicates how the eigenvalue of the nonsymmorphic symmetry changes as a function of
crystal momentum. Note that one needs to go through the BZ twice (or n times), in order to get
back to the same eigenvalue.

be measure by a device that filters electrons based on their momenta [34]. Alternatively, the
topological currents can be induced and probed by axial gauge fields, which couple oppositely
to electrons with opposite momenta [35].

3 Symmetry-enforced band crossings
In this section we study symmetry-enforced band crossings that are movable (but not removable)
[16–22]. These movable band crossings, which are required to exist by symmetry alone, exhibit
the following properties:

• They are protected by nonsymmorphic crystal symmetries, possibly together with non-
spatial symmetries. A nonsymmorphic symmetry is a symmetry G = {g, t}, which
combines a point-group symmetry g with a translation t by a fraction of a Bravais lattice
vector (see Sec. 3.1).

• Symmetry-enforced band crossings are characterized by a global topological charge,
which measures the winding of the eigenvalue of G as we go through the BZ. As shown
in Fig. 7, one needs to go twice (or n times) through the BZ in order to get back to the
same eigenvalue.

• Symmetry-enforced band crossings are globally stable. That is, they cannot be removed,
even by large symmetry-preserving deformations. They are required to exist by symmetry
alone, independent of any other material details (e.g, chemical composition or energetics
of the bands).
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spin-orbit coupling), hence G(k) does not contain a spin part. Now, since G
2(k) = �0e

�ik the
eigenvalues of G are ±e

�ik/2, i.e., we can label the two bands of H(k) by the eigenvalues of
G(k)

G | ±(k)i = ±e
�ik/2

| ±(k)i , (39)

cf. Eq. (37) with n = 2 and p = 1. We see that the eigenvalues are momentum dependent and
change from ± at k = 0 to ⌥ at k = 2⇡, as we go through the BZ. Hence, the two eigenspaces
get interchanged and the bands must cross at least once, see Fig. 7.
It is also possible to mathematically prove that there needs to be at least one crossing [16].
The proof is by contradiction. First, we observe that G(k) does not commute with �3 (it anti-
commutes). Therefore, H(k) cannot contain a term proportional to �3, since it is symmetry
forbidden. Moreover, we can drop terms proportional to the identity, since they only shift the
energy of the eigenstates, but do not alter the band crossings. For this reason the Hamiltonian
can be assumed to be off-diagonal and can be written as

H(k) =

 
0 q(k)

q
⇤(k) 0

!
. (40)

With this parametrization, the spectrum of H(k) is symmetric around E = 0 and is given by
E = ±|q(k)|. For this reason, any band crossing must occur at E = 0. Applying the symmetry
constraint (38), we find that q(k) must satisfy

q(k)eik = q
⇤(k). (41)

We now need to show that any periodic function q(k) satisfying the constraint (41) must have
zeros, corresponding to a band crossing point. To see this, we introduce the complex variable
z := e

ik and the complex function f(z) := q(k). From Eq. (41) it follows that zf(z) = f
⇤(z).

Assuming that f(z) is nonzero on the unit circle S
1, then

z = f
⇤(z)/f(z), (42)

which, however, leads to a contradiction. This is because for z 2 S
1 the two sides of Eq. (42)

both define functions from S
1 to S

1. But the left hand side has winding number 1, while the right
hand side has even winding number, since f

⇤(z)/f(z) = e
2iArc[f(z)]. Thus, f(z) and q(k) must

vanish at some k by contradiction. Therefore, there most be a band crossing point somewhere
in the BZ.

3.2 Weyl nodal-line semimetal

Next we discuss how a glide reflection symmetry can enforce two-fold degeneracies along a
line. Materials with these line degeneracies are called Weyl nodal-line semimetals. For con-
creteness, we consider a system with spin-orbit coupling, which is invariant under the hexagonal
SG 190 (P 6̄2c). This SG contains a glide reflection symmetry of the form

Mx : (x, y, z) ! (�x, y, z + 1
2)i�x, (43)
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•  glide reflection symmetry:

•  invariant planes: 

Mx : (x, y, z) ! (�x, y, z + 1
2 )

kx = 0 & kx = ⇡

•  symmetry eigenvalues: 

Mx | ±(k)i = ±ie�ikz/2 | ±(k)i

M2
x = �T̂z = �e�ikz

•             in invariant planes are simultaneous eigenstates of

due to spin part

Mx| (k)i

=)

) EVs: ± ie�ikz/2
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to satisfy gt = t. This is because any component of t that is152

not invariant under g can be removed by a suitable choice of153

reference for g. In this section, we focus on these types of154

nonsymmorphic symmetries, which we call “conventional.”155

(The case in which there are additional symmetries whose156

points of reference are different from g will be discussed in157

Sec. III.) Applying such a nonsymmorphic symmetry n times158

yields an element of the lattice translation group [28,49], i.e.,159

Gn = {gn|nt} = −p Ta, p ∈ {1,2, . . . ,n − 1}, (2.1)

where g is an n-fold point-group symmetry and Ta is the160

translation operator for the Bravais lattice vector a. The minus161

sign on the right-hand side of Eq. (2.1) originates from gn,162

which equals −1 for Bloch electrons with non-negligible163

spin-orbit coupling.164

In the band structure of nonsymmorphic materials, the oper-165

ators G = {g|t} can lead to the protection of band degeneracies166

in the g-invariant space of the BZ, which satisfies gk = k. In167

these symmetry invariant lines and planes of the BZ, the Bloch168

states |ψm(k)⟩ can be constructed in such a way that they are169

simultaneous eigenfunctions of both G and the Hamiltonian.170

From Eq. (2.1) it follows that the eigenvalues of G are171

G|ψm(k)⟩ = eiπ (2m+1)/ne−ipk·a/n|ψm(k)⟩, (2.2)

where m ∈ {0,1, . . . ,n − 1}. Due to the momentum-dependent172

phase factor e−ipk·a/n in Eq. (2.2) the eigensectors of G can be173

interchanged, as k is moved across the g-invariant space of174

the BZ. As a consequence, provided there are no additional175

degeneracies due to other symmetries, pairs of bands must176

cross at least once within the invariant space. This is the177

basic mechanism that leads to the protection of type-(i) band178

degeneracies [34–39], which we are now going to discuss179

for the hexagonal space groups. The relevant nonsymmorphic180

symmetries that need to be considered for this purpose are as181

follows: sixfold screw rotations C6,p of the form182

C6,p : (x,y,z) →
(
x − y,x,z + p

6

)(√
3

2 σ0 − i
2σz

)
, (2.3)

and twofold glide mirrors M of the form183

M : (x,y,z) →
(
− x,y,z + 1

2

)
iσx, (2.4)

where the Pauli matrices σi operate in spin space. (See Fig. 1184

for the definition of the coordinate system.) The screw rotations185

C6,p protect nodal points within rotation invariant lines, while186

the glide mirrors M guarantee the stability of nodal lines within187

mirror invariant planes.188

A. Weyl nodal points189

Nodal points occur along the$-%-A andM-U -L lines of the190

hexagonal BZ, which are left invariant by the screw rotations191

C6,p and C3
6,p, respectively. Let us discuss these two cases192

separately. It should be noted that nodal points discussed in193

this section can in certain cases be part of Weyl nodal lines.194

An example of this is presented in Sec. IV A 1.195

1. M-U-L196

The M-U -L line is defined as the segment k = (π,0,kz),197

with kz ∈ [0,π ], which connects the two time-reversal invari-198

ant momenta (TRIMs) M and L along the kz direction; see199

FIG. 1. Left: bulk Brillouin zone for the hexagonal space groups,
showing symmetry labels for high-symmetry lines and points. Right:
surface Brillouin zone for surfaces perpendicular to the (010)
direction.

Fig. 1. This line segment is left invariant under the twofold 200

rotation C3
6,p, up to a reciprocal-lattice translation. Hence, the 201

Bloch bands |ψm(k)⟩ within this segment can be chosen to be 202

simultaneous eigenstates of C3
6,p with eigenvalues 203

C3
6,p|ψ± (k)⟩ = ± ie−ipkz/2|ψ± (k)⟩, (2.5)

which follows from Eq. (2.2) with n = 2 and a = (0,0,1). 204

Due to the presence of spin-orbit coupling, the energy bands 205

|ψm(k)⟩ are in general nondegenerate, except at TRIMs (i.e., 206

at M and L), where time-reversal symmetry enforces Kramers 207

degeneracies. From Eq. (2.5), we find that at the M point 208

C3
6,p has eigenvalues ± i for all p, while at the L point the 209

eigenvalues are ± i for p even and ± 1 for p odd. At the M and 210

L points, time-reversal symmetry pairs up bands whose C3
6,p 211

eigenvalues are complex-conjugate pairs. Therefore, Kramers 212

partners at the M point have opposite C3
6,p eigenvalues, while 213

at the L point they have the same eigenvalues for p odd and 214

opposite eigenvalues for p even. In the absence of additional 215

symmetries, this leads to the band connectivity diagrams shown 216

in Fig. 2. For p odd, we see that there are four bands forming 217

a connected group, which must cross at least once, leading to 218

FIG. 2. Band connectivity diagrams for the M-U -L line of the
hexagonal BZ, which is left invariant under the screw rotation C3

6,p.
Panels (a) and (b) show the connectivities in the presence of a C3

6,p

symmetry with p odd and even, respectively. The color scale indicates
the screw rotation eigenvalues (2.5) of the Bloch bands for (a) p = 1
and (b) p = 2. The bands are Kramers degenerate at the time-reversal
invariant momenta M and L.
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to satisfy gt = t. This is because any component of t that is152

not invariant under g can be removed by a suitable choice of153

reference for g. In this section, we focus on these types of154

nonsymmorphic symmetries, which we call “conventional.”155

(The case in which there are additional symmetries whose156

points of reference are different from g will be discussed in157

Sec. III.) Applying such a nonsymmorphic symmetry n times158

yields an element of the lattice translation group [28,49], i.e.,159

Gn = {gn|nt} = −p Ta, p ∈ {1,2, . . . ,n − 1}, (2.1)

where g is an n-fold point-group symmetry and Ta is the160

translation operator for the Bravais lattice vector a. The minus161

sign on the right-hand side of Eq. (2.1) originates from gn,162

which equals −1 for Bloch electrons with non-negligible163

spin-orbit coupling.164

In the band structure of nonsymmorphic materials, the oper-165

ators G = {g|t} can lead to the protection of band degeneracies166

in the g-invariant space of the BZ, which satisfies gk = k. In167

these symmetry invariant lines and planes of the BZ, the Bloch168

states |ψm(k)⟩ can be constructed in such a way that they are169

simultaneous eigenfunctions of both G and the Hamiltonian.170

From Eq. (2.1) it follows that the eigenvalues of G are171

G|ψm(k)⟩ = eiπ (2m+1)/ne−ipk·a/n|ψm(k)⟩, (2.2)

where m ∈ {0,1, . . . ,n − 1}. Due to the momentum-dependent172

phase factor e−ipk·a/n in Eq. (2.2) the eigensectors of G can be173

interchanged, as k is moved across the g-invariant space of174

the BZ. As a consequence, provided there are no additional175

degeneracies due to other symmetries, pairs of bands must176

cross at least once within the invariant space. This is the177

basic mechanism that leads to the protection of type-(i) band178

degeneracies [34–39], which we are now going to discuss179

for the hexagonal space groups. The relevant nonsymmorphic180

symmetries that need to be considered for this purpose are as181

follows: sixfold screw rotations C6,p of the form182

C6,p : (x,y,z) →
(
x − y,x,z + p

6

)(√
3

2 σ0 − i
2σz

)
, (2.3)

and twofold glide mirrors M of the form183

M : (x,y,z) →
(
− x,y,z + 1

2

)
iσx, (2.4)

where the Pauli matrices σi operate in spin space. (See Fig. 1184

for the definition of the coordinate system.) The screw rotations185

C6,p protect nodal points within rotation invariant lines, while186

the glide mirrors M guarantee the stability of nodal lines within187

mirror invariant planes.188

A. Weyl nodal points189

Nodal points occur along the$-%-A andM-U -L lines of the190

hexagonal BZ, which are left invariant by the screw rotations191

C6,p and C3
6,p, respectively. Let us discuss these two cases192

separately. It should be noted that nodal points discussed in193

this section can in certain cases be part of Weyl nodal lines.194

An example of this is presented in Sec. IV A 1.195

1. M-U-L196

The M-U -L line is defined as the segment k = (π,0,kz),197

with kz ∈ [0,π ], which connects the two time-reversal invari-198

ant momenta (TRIMs) M and L along the kz direction; see199

FIG. 1. Left: bulk Brillouin zone for the hexagonal space groups,
showing symmetry labels for high-symmetry lines and points. Right:
surface Brillouin zone for surfaces perpendicular to the (010)
direction.

Fig. 1. This line segment is left invariant under the twofold 200

rotation C3
6,p, up to a reciprocal-lattice translation. Hence, the 201

Bloch bands |ψm(k)⟩ within this segment can be chosen to be 202

simultaneous eigenstates of C3
6,p with eigenvalues 203

C3
6,p|ψ± (k)⟩ = ± ie−ipkz/2|ψ± (k)⟩, (2.5)

which follows from Eq. (2.2) with n = 2 and a = (0,0,1). 204

Due to the presence of spin-orbit coupling, the energy bands 205

|ψm(k)⟩ are in general nondegenerate, except at TRIMs (i.e., 206

at M and L), where time-reversal symmetry enforces Kramers 207

degeneracies. From Eq. (2.5), we find that at the M point 208

C3
6,p has eigenvalues ± i for all p, while at the L point the 209

eigenvalues are ± i for p even and ± 1 for p odd. At the M and 210

L points, time-reversal symmetry pairs up bands whose C3
6,p 211

eigenvalues are complex-conjugate pairs. Therefore, Kramers 212

partners at the M point have opposite C3
6,p eigenvalues, while 213

at the L point they have the same eigenvalues for p odd and 214

opposite eigenvalues for p even. In the absence of additional 215

symmetries, this leads to the band connectivity diagrams shown 216

in Fig. 2. For p odd, we see that there are four bands forming 217

a connected group, which must cross at least once, leading to 218

FIG. 2. Band connectivity diagrams for the M-U -L line of the
hexagonal BZ, which is left invariant under the screw rotation C3

6,p.
Panels (a) and (b) show the connectivities in the presence of a C3

6,p

symmetry with p odd and even, respectively. The color scale indicates
the screw rotation eigenvalues (2.5) of the Bloch bands for (a) p = 1
and (b) p = 2. The bands are Kramers degenerate at the time-reversal
invariant momenta M and L.
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FIG. 13. Band connectivity diagrams for SG 178 (P 6122) for (a)
the !-"-A line and (b) the M-U -L line, which are left invariant
under the screw rotations C6,1 and C3

6,1, respectively. The bands at the
TRIMs are labeled by (real pairs of) double-valued irreps of the screw
rotations. The colors in (a) represent the double-valued irreps at the
!-"-A line.

to connect the irreps at the two TRIMs ! and A (or M822

and L) through the irreps at !-"-A (or M-U -L), such that823

the compatibility relations are satisfied. This yields band824

connectivity diagrams that are identical to the ones derived825

in Sec. II A.826

Next, we consider SGs 178–182, for which the double-827

valued little-group irreps at the TRIMs are either complex828

and one-dimensional or pseudoreal and two-dimensional. For829

example, for SG 178 (P 6122), in which AuF3 crystalizes,830

we find that all little-group irreps at the ! and M points831

are pseudoreal, while at the A and L points there exist832

both complex and pseudoreal irreps. Pseudoreal irreps are833

time-reversal invariant by themselves, whereas complex irreps834

need to be paired up into complex-conjugate pairs to form835

time-reversal invariant irreps [28,54]; cf. Fig. 13. As before,836

the decomposition of these irreps, as we move from a TRIM to837

a point on the !-"-A (or M-U -L) line, can be deduced from838

Eq. (2.8) or the BANDREP program on the BCS. We find that839

the little-group irreps of !-"-A (M-U -L) switch partners as840

we move from ! to A (M to L), leading to a nontrivial band841

connectivity diagram with a minimum number of five (one)842

crossings; see Fig. 13. A similar analysis can be applied to the843

SGs 179-182, which yields identical results as in Sec. II A.844

Finally, we examine the compatibility relations for the two845

SGs 188 (P 6̄c2) and 190 (P 6̄2c), which exhibit protected Weyl846

nodal lines. Here, we need to study how the time-reversal847

invariant irreps at the TRIMs decompose as we move from848

a TRIM to a nearby point in a mirror invariant plane. We find849

that the little-group irreps at ! and M are pseudoreal, while at850

A and L they are complex. Hence, the time-reversal invariant851

irreps at A and L are formed by the direct sum of complex-852

conjugate pairs, cf. Figs. 14 and 15. Interestingly, at the A point853

there are both two-dimensional and four-dimensional time-854

reversal invariant irreps. The compatibility relations for SG855

188 between the little-group irreps at !/A (M/L) and the kxkz856

plane are shown Fig. 14(a) [Fig. 14(b)]. The corresponding857

plots for SG 190 are presented in Figs. 15(a) and 15(b).858

Using these compatibility relations, we now construct band859

connectivity diagrams for a path within a mirror invariant plane860

that connects two TRIMs, see Figs. 14(c), 14(d), 15(c), and861

15(d). For SG 188 we observe that for any mirror-invariant862

FIG. 14. (a), (b) Compatibility relations for SG 188 (P 6̄c2)
between the little-group irreps at !, A, and D; and M , L, and D,
respectively. Here, D denotes the kxkz plane. Note that the little-group
irreps at ! and M decompose in the same way as we move from !/M

to the kxkz plane. (c), (d) Band connectivity diagrams for SG 188 for
(c) a path within the kxkz plane connecting !/M to A and (d) a path
within the kxkz plane connecting !/M to L.

FIG. 15. (a), (b) Compatibility relations for SG 190 (P 6̄2c)
between the little-group irreps at !, A, and C; and M , L and C ′,
respectively. Here, C and C ′ denote the kx = 0 and kx = π planes,
respectively. (c), (d) Band connectivity diagrams for SG 190 for (c) a
path within the kx = 0 plane connecting ! to A, and (d) a path within
the kx = π plane connecting M to L.
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Irrep\Element E Mx

M5

0

@+1 0

0 +1

1

A

0

@+i 0

0 �i

1

A

L2 +1 �1

L3 +1 �1

L4 +1 +1

L5 +1 +1

C
0
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i
2 (⇡+kz)

C
0
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TABLE II: Double valued irreps of SG 190 (P 6̄2c) at the TRIMs M and L and within the mirror plane

kz = ⇡, denoted by C
0. The irreps for C 0 have momentum-dependent phases due to the partial translation

of the glide reflection Mx. Here, we use the same convention as in Ref. 66 for the labelling of the irreps.

we first need to determine the little group irreps at the TRIMs M and L, and within the mirror

plane kx = ⇡, which is denoted by C 0. Table II lists the double-valued irreps without time-

reversal. We find that at the M point there is only one double-valued irrep, namely M5, which

is two-dimensional and pseudoreal. At the L point there are four different irreps: L2, L3, L4,

and L5, which are one-dimensional and complex. The irreps for C 0 are all one-dimensional and

have k-dependent phases due to the partial translation of the glide reflection Mx, Eq. (3.9). At

the TRIMs M and L we need to construct time-reversal symmetric irreps (i.e., real irreps) using

Table II. Pseudoreal irreps are time-reversal symmetric by themselves, whereas complex irreps

need to be paired up into complex-conjugate pairs to form time-reversal symmetric irreps [67, 68].

Hence, at the L point we need to pair L2 with L3 and L4 with L5, see Fig. 10(a). In agreement with

Kramers theorem, all time-reversal symmetric irreps at M and L are two-dimensional, leading to

two-fold degeneracies. These two-dimensional irreps decompose into one-dimensional irreps as

we move from a TRIM to a point within the mirror plane. The compatibility relations tell us how

this occurs.

As a next step, we therefore need to derive the compatibility relations between the little-group

irreps at M and L, and C 0. This can be achieved by using the following relation between the

31
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FIG. 13. Band connectivity diagrams for SG 178 (P 6122) for (a)
the !-"-A line and (b) the M-U -L line, which are left invariant
under the screw rotations C6,1 and C3

6,1, respectively. The bands at the
TRIMs are labeled by (real pairs of) double-valued irreps of the screw
rotations. The colors in (a) represent the double-valued irreps at the
!-"-A line.

to connect the irreps at the two TRIMs ! and A (or M822

and L) through the irreps at !-"-A (or M-U -L), such that823

the compatibility relations are satisfied. This yields band824

connectivity diagrams that are identical to the ones derived825

in Sec. II A.826

Next, we consider SGs 178–182, for which the double-827

valued little-group irreps at the TRIMs are either complex828

and one-dimensional or pseudoreal and two-dimensional. For829

example, for SG 178 (P 6122), in which AuF3 crystalizes,830

we find that all little-group irreps at the ! and M points831

are pseudoreal, while at the A and L points there exist832

both complex and pseudoreal irreps. Pseudoreal irreps are833

time-reversal invariant by themselves, whereas complex irreps834

need to be paired up into complex-conjugate pairs to form835

time-reversal invariant irreps [28,54]; cf. Fig. 13. As before,836

the decomposition of these irreps, as we move from a TRIM to837

a point on the !-"-A (or M-U -L) line, can be deduced from838

Eq. (2.8) or the BANDREP program on the BCS. We find that839

the little-group irreps of !-"-A (M-U -L) switch partners as840

we move from ! to A (M to L), leading to a nontrivial band841

connectivity diagram with a minimum number of five (one)842

crossings; see Fig. 13. A similar analysis can be applied to the843

SGs 179-182, which yields identical results as in Sec. II A.844

Finally, we examine the compatibility relations for the two845

SGs 188 (P 6̄c2) and 190 (P 6̄2c), which exhibit protected Weyl846

nodal lines. Here, we need to study how the time-reversal847

invariant irreps at the TRIMs decompose as we move from848

a TRIM to a nearby point in a mirror invariant plane. We find849

that the little-group irreps at ! and M are pseudoreal, while at850

A and L they are complex. Hence, the time-reversal invariant851

irreps at A and L are formed by the direct sum of complex-852

conjugate pairs, cf. Figs. 14 and 15. Interestingly, at the A point853

there are both two-dimensional and four-dimensional time-854

reversal invariant irreps. The compatibility relations for SG855

188 between the little-group irreps at !/A (M/L) and the kxkz856

plane are shown Fig. 14(a) [Fig. 14(b)]. The corresponding857

plots for SG 190 are presented in Figs. 15(a) and 15(b).858

Using these compatibility relations, we now construct band859

connectivity diagrams for a path within a mirror invariant plane860

that connects two TRIMs, see Figs. 14(c), 14(d), 15(c), and861

15(d). For SG 188 we observe that for any mirror-invariant862

FIG. 14. (a), (b) Compatibility relations for SG 188 (P 6̄c2)
between the little-group irreps at !, A, and D; and M , L, and D,
respectively. Here, D denotes the kxkz plane. Note that the little-group
irreps at ! and M decompose in the same way as we move from !/M

to the kxkz plane. (c), (d) Band connectivity diagrams for SG 188 for
(c) a path within the kxkz plane connecting !/M to A and (d) a path
within the kxkz plane connecting !/M to L.

FIG. 15. (a), (b) Compatibility relations for SG 190 (P 6̄2c)
between the little-group irreps at !, A, and C; and M , L and C ′,
respectively. Here, C and C ′ denote the kx = 0 and kx = π planes,
respectively. (c), (d) Band connectivity diagrams for SG 190 for (c) a
path within the kx = 0 plane connecting ! to A, and (d) a path within
the kx = π plane connecting M to L.
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FIG. 13. Band connectivity diagrams for SG 178 (P 6122) for (a)
the !-"-A line and (b) the M-U -L line, which are left invariant
under the screw rotations C6,1 and C3

6,1, respectively. The bands at the
TRIMs are labeled by (real pairs of) double-valued irreps of the screw
rotations. The colors in (a) represent the double-valued irreps at the
!-"-A line.
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crossings; see Fig. 13. A similar analysis can be applied to the843

SGs 179-182, which yields identical results as in Sec. II A.844
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invariant irreps at the TRIMs decompose as we move from848
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that the little-group irreps at ! and M are pseudoreal, while at850

A and L they are complex. Hence, the time-reversal invariant851

irreps at A and L are formed by the direct sum of complex-852

conjugate pairs, cf. Figs. 14 and 15. Interestingly, at the A point853

there are both two-dimensional and four-dimensional time-854

reversal invariant irreps. The compatibility relations for SG855

188 between the little-group irreps at !/A (M/L) and the kxkz856

plane are shown Fig. 14(a) [Fig. 14(b)]. The corresponding857

plots for SG 190 are presented in Figs. 15(a) and 15(b).858

Using these compatibility relations, we now construct band859

connectivity diagrams for a path within a mirror invariant plane860

that connects two TRIMs, see Figs. 14(c), 14(d), 15(c), and861

15(d). For SG 188 we observe that for any mirror-invariant862

FIG. 14. (a), (b) Compatibility relations for SG 188 (P 6̄c2)
between the little-group irreps at !, A, and D; and M , L, and D,
respectively. Here, D denotes the kxkz plane. Note that the little-group
irreps at ! and M decompose in the same way as we move from !/M

to the kxkz plane. (c), (d) Band connectivity diagrams for SG 188 for
(c) a path within the kxkz plane connecting !/M to A and (d) a path
within the kxkz plane connecting !/M to L.

FIG. 15. (a), (b) Compatibility relations for SG 190 (P 6̄2c)
between the little-group irreps at !, A, and C; and M , L and C ′,
respectively. Here, C and C ′ denote the kx = 0 and kx = π planes,
respectively. (c), (d) Band connectivity diagrams for SG 190 for (c) a
path within the kx = 0 plane connecting ! to A, and (d) a path within
the kx = π plane connecting M to L.
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•  DFT band structure of ZrIrSn:

L M

H K

— Weyl nodal line characterized by quantized    -Berry phase⇡

Weyl nodal-line semimetal



•  DFT band structure of ZrIrSn:

— Bulk-boundary correspondence:      

— Large Berry curvature:    

=) drumhead surface state

5

kx
ky

E

FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta kx and ky. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
[*Add label “(d)”. Add numbers to kx, ky, and E axes in
lower right panel *]

Semi-infinite slab. computed using iterative Greens
function.
The presence and absence of the surface modes on

the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z ⇡

�⇡

X

Ej<0

hukz,j |@kz |ukz,jidkz (2.7)

The integral path we choose is along kz with kx, ky

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is kz-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.
Cite Vanderbilt and King-Smith [59], give formula for

surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N⇡

MZei@R = e
iP1 , (2.8)

where @R = i
R ⇡
0

P
Ej<0huk,j |R†

k(@kRk)|uk,jidk and k ⌘
kz. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as Rk. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ +N

⇡
MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case Rk in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between NMZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any kx and
ky from the tight-binding Hamiltonian cite Hamiltonian
equation and N

⇡
MZ = 3 as shown in fig. 3 (d). Therefore,

computing N
0
MZ + N

⇡
MZ can also show the value of the

Berry phase by Eq. (2.8). For spinful system @R can be
ignored.
In generic reflection systems, @R is kx, ky-independent

when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only kz. Hence, the location of reflection protected Fermi
ring indicates the change of NMZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas NMZ is an integer. That is, only
the change of NMZ is able to capture multiple protected
Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.
[*Mention all symmetries that lead to quantization of

Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

 drumhead surface state

•  Experimental consequences:

=) large anomalous Hall e↵ect

=) anomalous magnetoelectric responses

Weyl nodal-line semimetal



LaBr3  

• Pair of non-symmorphic symmetries

with different reference points

G = (g|~⌧?), G0 = (g0|~⌧ 0?)

3.2  Dirac nodal-line semimetal

Off-center symmetries:



•  off-centered symmetries:

•  invariant planes: 

•  symmetry eigenvalues: 

fMz : (x, y, z) ! (x, y,�z + 1
2 ) P : (x, y, z) ! (�x,�y,�z)

kz = 0 & kz = ⇡

(fMz, P )

(fMz)
2 = �1 ) fMz | ±(k)i = ±i | ±(k)i

fMzP | ±(k)i = eikzP fMz | ±(k)i

Dirac nodal-line semimetal



fMzP | ±(k)i = eikzP fMz | ±(k)i

•  add time-reversal symmetry: T = i�yK

fMz [PT | ±(k)i] = ⌥ieikzPT | ±(k)i

) the crossing of two Kramers degenerate bands

within the kz = ⇡ plane is protected by fMz

kz 2 {0,⇡}

Dirac nodal-line semimetal



•at the TRIMs      , Bloch states form quartet of    
 mutually orthogonal, degenerate states

— Dirac nodal line is in fact symmetry enforced

•consider pair of degenerate states:

| ±(K)i , P | ±(K)i , T | ±(K)i , PT | ±(K)i

K

| ±(K+ k)i  ! | ±(K� k)i
P, T

opposite fMz eigenvalue

Dirac nodal-line semimetal



• DFT calculation of LaBr3:

— star-shaped nodal line characterized by Wilson loop
— Bulk-boundary correspondence:

=) double drumhead surface state

Dirac nodal-line semimetal



4. Conclusion and outlook

•  Open questions for future research

— studied accidental band crossings 
 
— symmetry enforced band crossings

— strategy for materials discovery

— several examples

— topology of magnets
 
— effects of electron-electron correlation

— need for better topological materials
<latexit sha1_base64="gSihi+nNrLIA2Z+yx6Wtx1KotZs="></latexit>

) use, e.g., discussed strategy for materials discovery


