Group-Theoretical Classification of Superconducting States

David Sénéchal

Département de physique Université de Sherbrooke

Autumn School on Correlated Electrons

Forschungszentrum Jülich September 24, 2020

Outline

- Pairing and superconductivity
 - Bloch vs Wannier vs orbital bases
 - Separation of variables, **d**-vector, etc.
 - Mean-field description
- Quick overview of group theory
 - common point groups
 - representations, character tables, projection operators
 - Landau approach to the transition
- Single-band superconductors (e.g. with C_{4v} symmetry)
 - Relation between nodal lines and symmetry
- Multi-band superconductors (e.g. Sr_2RuO_4)
- Superconductors with spin-orbit coupling

Pairing and superconductivity

Pairing operator : $\hat{\Delta} = \int d^3 \mathbf{x} \ d^3 \mathbf{x}' \ \Delta_{\sigma\sigma'}(\mathbf{x} - \mathbf{x}') \Psi_{\sigma}(\mathbf{x}) \Psi_{\sigma'}(\mathbf{x}')$ pairing function Antisymmetry imposes $\Delta_{\sigma\sigma'}(\mathbf{x} - \mathbf{x}') = -\Delta_{\sigma'\sigma}(\mathbf{x}' - \mathbf{x})$

Superconductivity : condensation of Cooper pairs : $\langle \hat{\Delta} \rangle \neq 0$

or rather $\int d^{3}y \Delta_{\sigma\sigma'}(\vec{y}) \Psi_{\sigma}(\vec{x}' + \frac{1}{2}\vec{y}) \Psi_{\sigma'}(\vec{x}' - \frac{1}{2}\vec{y})$ $\lim_{|\mathbf{x} - \mathbf{x}'| \to \infty} \langle \Delta^{\dagger}(\mathbf{x}) \overline{\Delta}(\mathbf{x}') \rangle \neq 0$

In this talk : we do not care why... (no discussion of mechanisms)

Bloch basis

annihilates an electron of spin σ & momentum **k** in band *a* Bloch wavefunction $\Psi_{\sigma}(\mathbf{x}) = \sum_{\mathbf{k},a,\sigma} d_{a,\sigma}(\mathbf{k}) \varphi_{\mathbf{k},a}(\mathbf{x})$ where $\{d_{a,\sigma}(\mathbf{k}), d_{b,\sigma'}^{\dagger}(\mathbf{k}')\} = (2\pi)^{3} \delta(\mathbf{k} - \mathbf{k}') \delta_{a,b} \delta_{\sigma,\sigma'}$ $H_{0} = \sum_{\mathbf{k},a,\sigma} \varepsilon_{a}(\mathbf{k}) d_{a,\sigma}^{\dagger}(\mathbf{k}) d_{a,\sigma}(\mathbf{k})$ noninteracting Hamiltonian is diagonal

pairing function in the Bloch basis

$$\hat{\Delta} = \sum_{a\sigma,b\sigma'} (\mathbf{k}) d_{a\sigma}(\mathbf{k}) d_{b\sigma'}(-\mathbf{k})$$

k,a,b,σ,σ' (assumes pair has no net momentum)

$$\Delta_{a\sigma,b\sigma'}(\mathbf{k}) = -\Delta_{b\sigma',a\sigma}(-\mathbf{k})$$

antisymmetry

Wannier basis

annihilates an electron of spin σ & orbital m at site \mathbf{r} Wannier wavefunction Interaction is diagonal

$$\Psi_{\sigma}(\mathbf{x}) = \sum_{\mathbf{r},m,\sigma} \overset{\bullet}{c}_{\mathbf{r},m,\sigma} \overset{\bullet}{w}_{m,\sigma}(\mathbf{x} - \mathbf{r}) \quad \text{where} \quad \{c_{\mathbf{r},m,\sigma}, c_{\mathbf{r}',m',\sigma'}^{\dagger}\} = \delta_{\mathbf{r},\mathbf{r}'} \delta_{m,m'} \delta_{\sigma,\sigma'}$$

annihilates an electron of spin σ , orbital m and momentum ${f k}$

$$H_{0} = \sum_{\mathbf{r},\mathbf{r}',m,m',\sigma} t_{\mathbf{r},\mathbf{r}'}^{m,m'} c_{\mathbf{r},m,\sigma}^{\dagger} c_{\mathbf{r}',m',\sigma} = \sum_{\mathbf{k},m,m',\sigma} t^{m,m'}(\mathbf{k}) c_{m,\sigma}^{\dagger}(\mathbf{k}) c_{m',\sigma}(\mathbf{k}) \qquad (= \text{Bloch basis if } N_{b} = 1)$$

otherwise diagonalize $t^{m,m'}(\mathbf{k}) \longrightarrow \varepsilon_a(\mathbf{k})$ and $d_{a,\sigma}(\mathbf{k}) = \sum_m V_{a,m}(\mathbf{k})c_{m,\sigma}(\mathbf{k})$ **k** - dependent unitary matrix

$$\hat{\Delta} = \sum_{\mathbf{r},\mathbf{r}',m,m',\sigma,\sigma'} \Delta_{\mathbf{r}m\sigma,\mathbf{r}'m'\sigma'} C_{\mathbf{r}m\sigma} C_{\mathbf{r}'m'\sigma'}$$
pairing function in the Wannier basis

$$\Delta_{\mathbf{r}m\sigma,\mathbf{r}'m'\sigma'} = -\Delta_{\mathbf{r}'m'\sigma',\mathbf{r}m\sigma}$$

$$\hat{\Delta} = \sum_{\mathbf{k},m,m',\sigma,\sigma'} \Delta_{m\sigma,m'\sigma'}(\mathbf{k})c_{m\sigma}(\mathbf{k})c_{m'\sigma'}(-\mathbf{k})$$
pairing function in the orbital basis

$$\Delta_{m\sigma,m'\sigma'}(\mathbf{k}) = -\Delta_{m'\sigma',m\sigma}(-\mathbf{k})$$

Separation of variables

Orbital basis :
$$\Delta_{m,\sigma;m',\sigma'}(\mathbf{k}) = \sum_{\substack{\alpha\beta\gamma \\ \uparrow}} \psi_{\alpha\beta\gamma} f^{\alpha}(\mathbf{k}) O_{mm'}^{\beta} S_{\sigma\sigma'}^{\gamma}$$
pairing amplitudes
Bloch basis :
$$\Delta_{a,\sigma;b,\sigma'}(\mathbf{k}) = \sum_{\substack{\alpha\beta\gamma \\ \alpha\beta\gamma}} \chi_{\alpha\beta\gamma}^{\downarrow} f^{\alpha}(\mathbf{k}) B_{ab}^{\beta}(\mathbf{k}) S_{\sigma\sigma'}^{\gamma}$$

$$d_{a,\sigma}(\mathbf{k}) = \sum_{m} V_{a,m}(\mathbf{k}) c_{m,\sigma}(\mathbf{k})$$

The basis functions $f^{\alpha}(\mathbf{k})$, $O^{\beta}_{mm'}$, $B^{\beta}_{ab}(\mathbf{k})$, $S^{\gamma}_{\sigma\sigma'}$ must transform according to **irreducible representations** of the symmetry group

Spatial and spin parts

$$\Delta_{m,\sigma;m',\sigma'}(\mathbf{k}) = \sum_{\alpha\beta\gamma} \psi_{\alpha\beta\gamma} f^{\alpha}(\mathbf{k}) O^{\beta}_{mm'} S^{\gamma}_{\sigma\sigma}$$

Spatial part :

$$f(\mathbf{k}) = \sum_{\mathbf{r}} f_{\mathbf{r}} e^{i\mathbf{k}\cdot\mathbf{r}} \qquad (\alpha \to \mathbf{r})$$

Spin part :

$$S_{\sigma\sigma'} = d_{\gamma}(\hat{\mathbf{d}}_{\gamma})_{\sigma\sigma'}$$
 $\hat{\mathbf{d}}_{\gamma} = i(\tau_{\gamma}\tau_2)$ « **d** » - vector

$$\hat{\mathbf{d}}_{0} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad |\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle \qquad \begin{array}{c} \text{spin 0} \\ \text{singlet (antisymmetric)} \\ \hat{\mathbf{d}}_{x} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad |\downarrow\downarrow\downarrow\rangle - |\uparrow\uparrow\rangle \\ \hat{\mathbf{d}}_{y} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \qquad i (|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle) \\ \hat{\mathbf{d}}_{z} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad |\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle$$

Mean field approximation

Bloch basis, spin singlet :

$$H_{MF} = \sum_{\mathbf{k},a,\sigma} \varepsilon_a(\mathbf{k}) d_{a,\sigma}^{\dagger}(\mathbf{k}) d_{a,\sigma}(\mathbf{k}) + \sum_{\mathbf{k},a,b} \bar{\Delta}_{ab}(\mathbf{k}) \left[d_{a\uparrow}(\mathbf{k}) d_{b\downarrow}(-\mathbf{k}) - d_{a\downarrow}(\mathbf{k}) d_{b\uparrow}(-\mathbf{k}) \right]$$

Nambu representation : $\Psi(\mathbf{k}) = \left(d_{1\uparrow}(\mathbf{k}), ..., d_{N_b\uparrow}(\mathbf{k}), d_{1\downarrow}^{\dagger}(-\mathbf{k}), ..., d_{N_b\downarrow}^{\dagger}(-\mathbf{k})\right)$

$$H_{MF} = \sum_{\mathbf{k}} \Psi^{\dagger}(\mathbf{k}) \mathscr{H}(\mathbf{k}) \Psi(\mathbf{k}) \quad \text{where} \quad \mathscr{H}(\mathbf{k}) = \begin{pmatrix} \epsilon(\mathbf{k}) & \Delta(\mathbf{k}) \\ \Delta^{\dagger}(\mathbf{k}) & -\epsilon(-\mathbf{k}) \end{pmatrix}$$

$$N_b \times N_b \text{ matrix}$$

One band (
$$N_b = 1$$
) : eigenvalues $\xi(\mathbf{k}) = \pm \sqrt{\varepsilon^2(\mathbf{k}) + \Delta^2(\mathbf{k})}$
 \mathbf{k} -dependent gap function

Many bands ($N_b > 1$) : more complicated

Group theory I

A group G is a set $\{a, b, c, ...\}$ endowed with a multiplication law satisfying the following constraints:

- 1. Group multiplication is **associative**: (ab)c = a(bc).
- 2. There is a **neutral element** *e* such that $ea = ae = a, \forall a \in G$
- 3. Each element *a* has an **inverse** a^{-1} such that $aa^{-1} = a^{-1}a = e$

It is implicit that if $a, b \in G$, then $ab \in G$ (closure under the group multiplication)

Most groups of interest for us are finite subgroups of the O(3) (the group of orthogonal matrices of dimension 3)

Common point groups

Example : C_{4v}

Table 1: A simple example of group representation for C_{4v} : the matrices act on the coordinates (x, y). C_n is a rotation by $2\pi/n$ in the x-y plane. σ_x , σ_y , σ_d and $\sigma_{d'}$ are reflexions across the planes x = 0, y = 0, x = -y and x = y, respectively.

group theory II : representations

$$\mathcal{R}: G \to GL(d)$$
regular $d \times d$ matrices
$$a \to R(a) \qquad R(ab) = R(a)R(b)$$

Conjugacy classes : *a* and *b* are **conjugate** if $b = c^{-1}ac$ for some $c \in G$ *a* and *b* are then « the same type » of transformation

Reducible representation : \exists basis such that $R(a) = R^{(1)}(a) \oplus R^{(2)}(a)$, $\forall a \in G$

$$R(a) = \begin{pmatrix} R^{(1)}(a) & 0\\ 0 & R^{(2)}(a) \end{pmatrix}$$

We care about irreducible representations

Character tables : example of $C_{4\nu}$

Character of class in a representation : $\chi(a) = \operatorname{tr} R(a)$

	е	2 <i>C</i> ₄	C_2	$\sigma_{x,y}$	$\sigma_{d,d'}$	basis functions
A_1	1	1	1	1	1	1
A_2	1	1	1	-1	-1	\mathscr{R}_z , $xy(x^2-y^2)$
B_1	1	-1	1	1	-1	$x^2 - y^2$
B_2	1	-1	1	-1	1	xy
E	2	0	-2	0	0	$[\mathscr{R}_{x},\mathscr{R}_{y}], [x,y]$

Orthogonality of rows :

$$\sum_{\mu}^{K} \frac{g_i}{g} \chi_i^{(\mu)*} \chi_j^{(\mu)} = \delta_{ij}$$

(sum over irreps)

Orthogonality of columns :

$$\sum_{i}^{K} \frac{g_i}{g} \chi_i^{(\nu)*} \chi_i^{(\mu)} = \delta_{\mu\nu}$$

(sum over classes)

 $g_i = #$ of elements in class ig = # of elements in group

Character tables : simpler example of C_{2v}

		е	C_2	σ_x	σ_y	basis functions
even-even	A_1	1	1	1	1	1, z, $x^2 + y^2$
odd-odd	A_2	1	1	-1	-1	\mathscr{R}_{z} , xy
even-odd	B_1	1	-1	1	-1	x , \mathscr{R}_{y} , xz
odd-even	B_2	1	-1	-1	1	y , \mathscr{R}_{x} , yz

Tensor products of representations

e.g. momentum e.g. orbital

$$\Delta_{m,\sigma;m',\sigma'}(\mathbf{k}) = \sum_{\alpha\beta\gamma} \psi_{\alpha\beta\gamma} f^{\alpha}(\mathbf{k}) O^{\beta}_{mm'} S^{\gamma}_{\sigma\sigma'}$$

$$R_{i\mu,j\nu}(a) = R^{(1)}_{ij}(a) R^{(2)}_{\mu\nu}(a) \quad \text{or} \quad R(a) = R^{(1)}(a) \otimes R^{(2)}(a)$$

$$R^{(\mu)} \otimes R^{(\nu)} = \bigoplus_{\rho} C^{\rho}_{\mu\nu} R^{(\rho)}$$

products of irreducible representations are generally **reducible** (Clebsch-Gordan series)

$$\chi_i(R^{(\mu)} \otimes R^{(\nu)}) = \chi_i^{(\mu)} \chi_i^{(\nu)} = \sum_{\rho} C^{\rho}_{\mu\nu} \chi_i^{(\rho)}$$

characters of tensor products are products of characters

$$C^{\rho}_{\mu\nu} = \sum_{i=1}^{K} \frac{g_i}{g} \chi_i^{*(\rho)} \chi_i^{(\mu)} \chi_i^{(\nu)}$$

from

$$\sum_{\mu}^{K} \frac{g_i}{g} \chi_i^{(\mu)*} \chi_j^{(\mu)} = \delta_{ij}$$

Projection operator :

$$P^{(\mu)} = \sum_{a \in G} \frac{d_{\mu}}{g} \chi^{(\mu)^{*}}(a) R(a)$$

Projects states in the tensor product space onto the irreducible representation labelled μ

Schur's lemma

- Consider a reducible representation $R = R_1 \oplus R_2$, acting on space $V = V_1 \oplus V_2$
- Suppose the Hamiltonian obeys the symmetry : HR(a) = R(a)H
- If R_1 and R_2 are not equivalent, then $H = H_1 \oplus H_2$ is **block diagonal**

Main use of group theory : classification of energy levels and selection rules

The Landau free energy

$$\Delta_{m,\sigma;m',\sigma'}(\mathbf{k}) = \sum_{r} \psi_r \, \Delta_{m,\sigma;m',\sigma'}^{(r)}(\mathbf{k})$$

single index r for the product basis functions

Landau free energy functional, compatible with the symmetries of the system :

 $f[\psi] = a_{rs}(T)\bar{\psi}_r\psi_s + b_{rspq}(T)\bar{\psi}_r\bar{\psi}_s\psi_p\psi_q + \cdots$

The representation with the first negative eigenvalue as T is lowered wins...

Single-band superconductor with C_{4v} symmetry

basis functions (spatial part) :
$$f^{\mathbf{r}}(\mathbf{k}) = e^{i\mathbf{k}\cdot\mathbf{r}}$$

on-site pairing $|\mathbf{r}| = 0$: (1)
first-neighbor pairing $|\mathbf{r}| = 1$: $\left(e^{ik_x}, e^{ik_y}, e^{-ik_x}, e^{-ik_y}\right)$
second-neighbor pairing $|\mathbf{r}| = \sqrt{2}$: $\left(e^{i(k_x+k_y)}, e^{i(k_x-k_y)}, e^{-i(k_x+k_y)}, e^{-i(k_x-k_y)}\right)$

	spin state	distance	gap functions	
A_1	singlet	0	1	« s-wave »
A_2	singlet	$\sqrt{5}$	$\sin k_x \sin k_y (\cos k_x - \cos k_y)$	« f-wave »
B_1	singlet	1	$\cos k_x - \cos k_y$	
B_2	singlet	$\sqrt{2}$	$\sin k_x \sin k_y$	<pre></pre>
Ε	triplet	1	$[\sin k_x, \sin k_y]$	« p-wave »

$$P^{(\mu)} = \sum_{a \in G} \frac{d_{\mu}}{g} \chi^{(\mu)^{*}}(a) R(a)$$

Single-band SC with C_4 symmetry : nodes

polar plots at constant |k|

 $d_{x^2-y^2}$

 B_2 d_{xy}

E:

 p_x

 $\sin k_x$

 p_y

 $\sin k_v$

 $|p_x \pm i p_y|$

time-reversal symmetry breaking

Relation between nodes and symmetry

 B_1 : The spatial part is odd under the diagonal mirror \longrightarrow node at $\pm 45^{\circ}$

 B_2 : The spatial part is odd under σ_x and $\sigma_y \longrightarrow$ nodes along x and y

 A_2 : The spatial part is odd under all mirrors \longrightarrow nodes along x and y and at $\pm 45^{\circ}$

$$\xi(\mathbf{k}) = \pm \sqrt{\varepsilon^2(\mathbf{k}) + \Delta^2(\mathbf{k})}$$

- In the one-band case : nodes are set by symmetry (i.e. representation).
- This is no longer true in the multi-band case.

	е	$2C_4$	C_2	$\sigma_{x,y}$	$\sigma_{d,d'}$	basis functions
A_1	1	1	1	1	1	1
A_2	1	1	1	-1	-1	\mathscr{R}_z , $xy(x^2-y^2)$
B_1	1	-1	1	1	-1	$x^2 - y^2$
B_2	1	-1	1	-1	1	xy
E	2	0	-2	0	0	$[\mathscr{R}_x, \mathscr{R}_y], [x, y]$

Sr_2RuO_4 (D_{4h} symmetry, 3 bands)

Ru
$$t_{2g}$$
 orbitals : d_{yz} , d_{xz} , d_{xy}

 $c_{m,\sigma}(\mathbf{k}) \to c'_{m,\sigma}(\mathbf{k}) = \sum_{m'} U_{mm'}(g) c_{m',\sigma}(g\mathbf{k})$

(no spin orbit coupling)

$$U(C_4) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad U(\sigma_x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad U(\sigma_z) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

D_{4h} character table

		е	$2C_{4}$	<i>C</i> ₂	$2C_2'$	$2C_2''$	i	$2S_4$	σ_z	$\sigma_{x,y}$	$\sigma_{d,d'}$	basis functions
	A_{1g}	1	1	1	1	1	1	1	1	1	1	1
	A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	\mathscr{R}_z , $xy(x^2-y^2)$
	B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1	$x^2 - y^2$
)	B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1	xy
	E_{g}	2	0	-2	0	0	2	0	-2	0	0	$[\mathscr{R}_x, \mathscr{R}_y], z[x, y]$
	A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	$xyz(x^2-y^2)$
	A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Z
)	B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1	xyz
	B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1	$z(x^2-y^2)$
	E_u	2	0	-2	0	0	-2	0	2	0	0	[x, y]

orbital part

$$\hat{\mathbf{a}}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \hat{\mathbf{b}}_{x} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \hat{\mathbf{c}}_{x} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\hat{\mathbf{a}}_{y} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \hat{\mathbf{b}}_{y} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \qquad \hat{\mathbf{c}}_{y} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$\hat{\mathbf{a}}_{z} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \hat{\mathbf{b}}_{z} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \hat{\mathbf{c}}_{z} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $O_{mn} = \mathbf{a} \cdot \hat{\mathbf{a}}_{mn} + \mathbf{b} \cdot \hat{\mathbf{b}}_{mn} + \mathbf{c} \cdot \hat{\mathbf{c}}_{mn}$

 $O_{mm'} \rightarrow \sum_{n,n'} U_{mn}(g) U_{m'n'}(g) O_{nn'} \text{ or } O \rightarrow U(g) O U^T(g)$

Sr_2RuO_4 : singlet pairing functions

irrep	pairing function	irrep	pairing function		irrep	pairing function
A _{1g}	$\hat{\mathbf{a}}_{z}$ $\hat{\mathbf{a}}_{x} + \hat{\mathbf{a}}_{y}$ $\hat{\mathbf{b}}_{z} x y$ $z(\hat{\mathbf{b}}_{x} y - \hat{\mathbf{b}}_{y} x)$	B _{2g}	$\hat{\mathbf{a}}_{z} x y$ $x y (\hat{\mathbf{a}}_{x} + \hat{\mathbf{a}}_{y})$ $\hat{\mathbf{b}}_{z}$ $z (\hat{\mathbf{b}}_{x} x - \hat{\mathbf{b}}_{y} y)$	_	A_{2u} B_{1u}	$\hat{\mathbf{c}}_{z} x y z (x^{2} - y^{2})$ $\hat{\mathbf{c}}_{x} y - \hat{\mathbf{c}}_{y} x$ $\hat{\mathbf{c}}_{z} z (x^{2} - y^{2})$ $\hat{\mathbf{c}}_{x} x \hat{\mathbf{c}}_{z} x \hat{\mathbf{c}}_{z} x \hat{\mathbf{c}}_{z} x \hat{\mathbf{c}}_{z} x \hat{\mathbf{c}}_{z} x \hat{\mathbf{c}}_{z} \mathbf$
A _{2g}	$\hat{\mathbf{a}}_{z}xy(x^{2}-y^{2})$ $xy(\hat{\mathbf{a}}_{x}-\hat{\mathbf{a}}_{y})$ $\hat{\mathbf{b}}_{z}(x^{2}-y^{2})$ $z(\hat{\mathbf{b}}_{x}x+\hat{\mathbf{b}}_{y}y)$	Eg	$\hat{\mathbf{a}}_{z}z(x,y)$ $z(\hat{\mathbf{a}}_{x}x,\hat{\mathbf{a}}_{y}y)$ $z(\hat{\mathbf{a}}_{x}y,\hat{\mathbf{a}}_{y}x)$ $\hat{\mathbf{b}}_{z}z(x,y)$	_	B_{2u} E_u	
B _{1g}	$\hat{\mathbf{a}}_{z}(x^{2}-y^{2})$ $\hat{\mathbf{a}}_{x}-\hat{\mathbf{a}}_{y}$ $\hat{\mathbf{b}}_{z}xy(x^{2}-y^{2})$ $z(\hat{\mathbf{b}}_{x}y+\hat{\mathbf{b}}_{y}x)$	A_{1u}	$(\mathbf{b}_{x},\mathbf{b}_{y})$ $\hat{\mathbf{c}}_{z}z$ $\hat{\mathbf{c}}_{x}x+\hat{\mathbf{c}}_{y}y$		-	$ x \to \sin k_x y \to \sin k_y z \to \sin k $

Sr₂RuO₄ : triplet pairing functions

irrep	pairing function	irrep	pairing function	_	irrep	pairing function
٨	$\hat{\mathbf{c}}_z x y (x^2 - y^2)$		$\mathbf{\hat{a}}_z x y z (x^2 - y^2)$			$\mathbf{\hat{a}}_z z(x^2 - y^2)$
<i>A</i> _{1g}	$z(\hat{\mathbf{c}}_x y - \hat{\mathbf{c}}_y x)$	4	$xyz(\mathbf{\hat{a}}_x - \mathbf{\hat{a}}_y)$		ת	$z(\mathbf{\hat{a}}_x - \mathbf{\hat{a}}_y)$
٨	$\mathbf{\hat{c}}_{z}$	A_{1u}	$\hat{\mathbf{b}}_z z(x^2 - y^2)$	B_{2u}		$\mathbf{\hat{b}}_z x y z (x^2 - y^2)$
л _{2g}	$z(\mathbf{\hat{c}}_x x + \mathbf{\hat{c}}_y y)$		$\hat{\mathbf{b}}_x x + \hat{\mathbf{b}}_y y$			$\mathbf{\hat{b}}_{x}y + \mathbf{\hat{b}}_{y}x$
D	$\mathbf{\hat{c}}_{z}xy$		â _z z			$\mathbf{\hat{a}}_{z}(x,y)$
D_{1g}	$z(\mathbf{\hat{c}}_x y + \mathbf{\hat{c}}_y x)$	٨	$z(\mathbf{\hat{a}}_x + \mathbf{\hat{a}}_y)$			$(\mathbf{\hat{a}}_x x, \mathbf{\hat{a}}_y y)$
D	$\hat{\mathbf{c}}_{z}(x^{2}-y^{2})$	A_{2u}	$\mathbf{\hat{b}}_{z}xyz$		E_u	$(\mathbf{\hat{a}}_x y, \mathbf{\hat{a}}_y x)$
D _{2g}	$z(\mathbf{\hat{c}}_x x - \mathbf{\hat{c}}_y y)$		$\mathbf{\hat{b}}_{x}y - \mathbf{\hat{b}}_{y}x$			$\hat{\mathbf{b}}_{z}(x,y)$
E	$\hat{\mathbf{c}}_z z(x,y)$		$\hat{\mathbf{a}}_{z}xyz$			$z(\hat{\mathbf{b}}_x, \hat{\mathbf{b}}_y)$
E_g	$(\mathbf{\hat{c}}_x, \mathbf{\hat{c}}_y)$	B	$xyz(\hat{\mathbf{a}}_x + \hat{\mathbf{a}}_y)$			
		D_{1u}	$\mathbf{\hat{b}}_{z}z$			
			$\hat{\mathbf{b}}_x x - \hat{\mathbf{b}}_y y$			

Sr_2RuO_4 : generic nodes

Nodes are not set by symmetry

Case of the diagonal mirror :

$$\Delta_{\nu}(k_x, k_y, k_z) \to \Delta_{\nu}'(k_x, k_y, k_z) = \mathcal{U}(\sigma_d)_{\nu\nu'}\Delta_{\nu'}(k_y, k_x, k_z)$$
this index labels basis

this index labels basis vectors in orbital space

In
$$B_{1g}$$
 representation : $\Delta'_{\nu}(k_x, k_y, k_z) = -\Delta_{\nu}(k_x, k_y, k_z)$

or
$$[\mathscr{U}(\sigma_d)\Delta(k_x,k_x,k_z)]_{\nu} = -\Delta_{\nu}(k_x,k_x,k_z)$$
 along the diagonal

One-orbital case : $\mathcal{U} = 1$ and therefore $\Delta_{\nu}(k_x, k_x, k_z) = 0$

Case of Sr_2CuO_4 :

 Δ could be an eigenvector of \mathscr{U} with eigenvalue -1, such as $\hat{\mathbf{a}}_x - \hat{\mathbf{a}}_y$ then no condition is imposed on $\Delta_{\nu}(k_x, k_x, k_z)$

Spin-orbit interaction

A model with Rashba spin-orbit coupling and C_{4v} symmetry (square lattice):

$$H_0 = \sum_{\mathbf{k}} C_{\mathbf{k}} \left[\varepsilon(\mathbf{k}) + \kappa(\tau_y \sin k_x - \tau_x \sin k_y) \right] C_{\mathbf{k}} \quad \text{where} \quad C_{\mathbf{k}} = (c_{\mathbf{k}\uparrow}, c_{\mathbf{k}\downarrow})$$

Spatial and spin transformations are intertwined : $c_{\mathbf{r},\sigma} \rightarrow c'_{\mathbf{r},\sigma} = \sum_{\sigma'} S_{\sigma\sigma'}(g) c_{g\mathbf{r},\sigma'}$

In particular, for the
$$\frac{\pi}{2}$$
 rotation : $S(C_4) = \cos\frac{\pi}{4} + i\sigma_z \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1+i & 0\\ 0 & 1-i \end{pmatrix}$

the reflexion σ_x maps (k_x, k_y) into $(-k_x, k_y)$. $\longrightarrow S^{\dagger} \tau_x S = \tau_x$ and $S^{\dagger} \tau_y S = -\tau_y$

Hence $S(\sigma_x) = i\tau_x$

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Spin-orbit interaction (cont.)

Simplest basis functions compatible with this representation :

Irrep	Basis functions
A_1	$\hat{\mathbf{d}}_0$, $(\hat{\mathbf{d}}_x \sin k_y - \hat{\mathbf{d}}_y \sin k_x)$
A_2	$\mathbf{\hat{d}}_x \sin k_x + \mathbf{\hat{d}}_y \sin k_y$
B_1	$\hat{\mathbf{d}}_0(\cos k_x - \cos k_y)$, $\hat{\mathbf{d}}_x \sin k_y + \hat{\mathbf{d}}_y \sin k_x$
B_2	$\mathbf{\hat{d}}_x \sin k_x - \mathbf{\hat{d}}_y \sin k_y$
E_1	$\mathbf{\hat{d}}_{z}[\sin k_{x},\sin k_{y}]$

Singlet and triplet functions may belong to the same representation

Under
$$\sigma_x : k_y \to k_y$$
, $k_x \to -k_x$, $\hat{\mathbf{d}}_x \to \hat{\mathbf{d}}_x$, $\hat{\mathbf{d}}_y \to -\hat{\mathbf{d}}_y$
Under $\sigma_d : k_y \to k_x$, $k_x \to k_y$, $\hat{\mathbf{d}}_x \to -\hat{\mathbf{d}}_y$, $\hat{\mathbf{d}}_y \to -\hat{\mathbf{d}}_x$
Under $C_4 : k_y \to -k_x$, $k_x \to k_y$, $\hat{\mathbf{d}}_x \to \hat{\mathbf{d}}_y$, $\hat{\mathbf{d}}_y \to -\hat{\mathbf{d}}_x$

	е	$2C_4$	C_2	$\sigma_{x,y}$	$\sigma_{d,d'}$	basis functions
A_1	1	1	1	1	1	1
A_2	1	1	1	-1	-1	\mathscr{R}_z , $xy(x^2-y^2)$
B_1	1	-1	1	1	-1	$x^2 - y^2$
B_2	1	-1	1	-1	1	xy
Ε	2	0	-2	0	0	$[\mathscr{R}_x, \mathscr{R}_y], [x, y]$

Conclusions

- Group theory allows a classification of pairing functions
 - Tools : projection operators and character tables !
- Weak coupling : the Bloch basis is more natural
- Intermediate to strong coupling : the orbital basis is more natural
- Multi-orbital case : nodes are not set by symmetry alone

Thank you!

Questions ?

14