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Contents

1 Quantum computing science is everywhere 2

2 My main thesis 3

3 Electron theory for qubits 4
3.1 Other spin-orbit terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 A few thoughts about electron-electron interaction for spin qubits 13

E. Pavarini and E. Koch (eds.)
Simulating Correlations with Computers
Modeling and Simulation Vol. 11
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13.2 David DiVincenzo

1 Quantum computing science is everywhere

In this small lecture, I will first comment on the generalities of quantum computing, and then
plunge into some particulars.
Quantum computing continues to evolve as a science. It is now entering a phase where some
concrete applications are seriously anticipated. Highly technological projects are underway in
various companies and large organizations, and very ambitious efforts to assemble the unique
and complex hardware required have borne some fruit. The 53-qubit device of the Google
laboratory, and now the 56-qubit device of the Chinese Academy of Sciences, has executed a
few algorithms that, to a very limited extent, were difficult for conventional computers. Tenta-
tive plans are drawn up for executing some additional algorithms, for example from quantum
chemistry, for which these new machines may be capable of some modest successes.
We have, however, not reached the stage where truly society-changing computations are per-
formable on any existing quantum computer. One issue is sheer size: estimates can be made of
the size of quantum computer that would be transformative, and these estimates are generally in
the millions of qubits. This is still far short of the bit-counts in even modest conventional com-
puters of today, but it is a big, and expensive, leap from the unique Google and CAS processors.
The optimistic timelines (I draw from IBM’s projections here) for getting there involve many,
many years of additional work.
Much of this work is a clearly engineering effort, required to make a unique, high precision
piece of hardware at 10, 000 times the present scale. Work on quantum computers have reached
such a highly technological stage.
But, looking at IBM and others, we see reasons for the field cannot be purely one involving
systems engineering. No qubit in use today meets the precision requirements needed to make
the 10, 000-fold leap. To tell the story for the superconducting qubits of the Google/CAS/IBM
machines, they have in about 20 years improved in the quality of operation by about 6 orders of
magnitude. However, the consensus is that about another 2 orders of magnitude are needed.
The improvements that I have just referred to require pure quantum physics insights. This is
connected with a realization that we had 20 years ago, and that remains the focal point of our
struggle: quantum physics has the property that it can, under the right circumstances, predict
physical properties to fantastically high precision. But these circumstances are also fantastically
difficult to bring into being.
One can see this as related to the struggle that we have had in crystal physics in the last
100 years. We have a wonderfully complete understanding of band theory, Fermi surfaces,
van-Hove singularities, thermal conductivity, and a host of other properties. But the things we
predict were quite hard to realize: materials are no perfect crystals, it takes a lot of work to
make them so.
On the quantum computer side, the big stumbling block has been the many manifestations of
decoherence. Quantum mechanics predicts in wonderful detail what happens to a two-level
system when you apply forces to it, if it is isolated from everything else. We can tell less well
what happens when you take account of the environment. But we know enough about this to
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say that it creates a no-go condition for quantum computing.
So, quantum theorists have been forced to tell the growers (or better synthesizers, because it
is both the materials and the devices that you make from them) to achieve conditions that are
unquestionably very hard, and to not even be able to tell them what the exact target is. It is a
fortunate thing that progress has been possible under these conditions. It has been iterative and
slow, but at least it has been steady.
In the area of superconducting qubits, we might have been persuaded to say that 30 years ago
there was already not really that much more to learn about the physics of superconductivity
in Aluminium. The trouble was, this physics knowledge said that it would be possible to
make ideal quantum two-level systems with Aluminium, with its superconductivity and with
the Josephson effect made possible by tunnel junctions of AlOx. All derivations could have
been confidently done on the basis of material given in lectures at the time.
It initially didn’t work at all. The things left out about the actual state of these devices made
reality completely different from the model. It exposed our ignorance of the physics that really
went on when you put an Aluminium junction into a circuit.
But over the last 20 years, we have gradually learned. Our models have been extended, experi-
ments have become more sophisticated. Interestingly, this didn’t require much new work from
the crystal grower, the important sources of imperfections were not so much in her domain.

2 My main thesis

The thesis that I announce based on these observations is that progress on quantum computers,
including from the pure engineering point of view, requires all the physics knowledge that we’ve
got and that we know how to make. In short, quantum computing science is all of physics theory.
Let me take as examples the other lectures of this school. In most cases, I can see an application
for these efforts that have a chance to impact the efforts to build a quantum computer. Let me
go through them:

• The Hubbard model. This is the fundamental model on which we base our thinking about
spin qubits. It is also a good model to think about in working on algorithms for quantum
simulation.

• Frustrated magnetism. This topic connects with ideas of topological order in eigenstates,
and therefore with problems in quantum error correcting codes.

• Quantum chemistry. This is a topic for devising quantum algorithms and quantum simu-
lations.

• Calculating with Green functions. This has been taken up in other work on quantum
simulation, notably in the work of Jim Freericks, who has lectured in several of these
schools in years past. See his article [1].

• Second quantization. The language used throughout quantum information science.
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• Superconductivity. This is one of the most basic topological states of matter. Protection
from dissipation and decoherence is very fundamental here.

• Entanglement. It goes without saying that this is the cornerstone of most thinking in
quantum information science.

My premise for the rest of these lecture notes is that since quantum information science needs
all of theoretical physics, I will just proceed to give a few living examples of how we need all
details of our understanding to make progress on the problems of quantum computing, including
those in the most engineering directions.
My examples will be in the area of semiconductor physics.

3 Electron theory for qubits

I will go through a small case study of a “correlation” effect in electronic qubits that has many
consequences, some good and some bad, for the quality of the qubits. The qubit I have in mind
is that defined by the electron spin of extra carriers in semiconductors. The “correlation” effect
is that which arises from spin-orbit interaction.
One should immediately object that I have a strange definition of “correlation” here, since spin-
orbit is a single-electron term in the Hamiltonian. This is a good objection: in the right basis,
the electron problem with spin-orbit but without electron-electron interaction still has eigen-
states that are single Slater determinants, so there is always a way in which the computational
problem for this setting is “easy”. On the other hand, there is an important new correlation:
with spin-orbit interaction, the spin and orbital degrees of freedom are entangled, while they
occur in an unentangled product state in the absence of spin-orbit coupling. This entangle-
ment already occurs at the single-particle level: the single-particle states from which the single
Slater determinant eigensolutions are constructed are already entangled between spin and orbit.
This entanglement varies dramatically from one part of the single-particle spectrum to another,
which is very consequential for electron-qubit physics.
Recall the general situation from relativistic quantum mechanics: Foldy and Wouthuijsen de-
rived a series in 1/c for the effective Hamiltonian. The terms to be added to the Pauli-Schrö-
dinger Hamiltonian are

− p4

8m3c2
, mass-velocity term (1)

− e~
8m2c2

∇ · E , Darwin term (2)

− e~
8m2c2

σ ·
(
E×p− p×E

)
, spin-orbit term. (3)

The first two terms are quantitatively important but do not change the entanglement structure of
the electron state, while the last term does, so we will continue with this term in the following.
First, we slightly rewrite the spin-orbit term in the conventional way

Hso = −
~

4m2c2
σ ·∇V (r)×p. (4)
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Three things to note: 1) V (r) is now a potential energy, not a voltage; 2) The form here given
doesn’t look hermitian, since in general pi doesn’t commute with ∂jV , but the situation is saved
because ∇ ×∇V = 0; 3) the replacement is not correct if E is time dependent, but the effect
of this error is negligible at ordinary frequencies.
I always find it informative to analyze how big a term is for atomic matter. Given that the
characteristic scale of pi is ~/a0 and the characteristic scale of ∇V is Eh/a0, we rewrite Eq. (4)
as

Hso =
Eh
4

(
1

4πε0

e2

~c

)2

σ · ∇V (r)

Eh/a0
× p

~/a0
=
Eh
4
α2σ · ∇V (r)

Eh/a0
× p

~/a0
. (5)

Here the Rydberg constant Eh = ~2/ma20, the Bohr radius a0 = 4πε0~2/me2, and the fine
structure constant α = 1

4πε0
e2

~c ≈ 1/137. The appearance of the square of the fine structure
constant signals the smallness of the term for atomic matter. However, we will see that under
some circumstances, this term is nevertheless fully entangling.

3.1 Other spin-orbit terms

I referred to Eq. (4) as the spin-orbit term. But there are in fact many others that could occur.
In this generous way of looking at things, we will call any Hamiltonian term a spin-orbit term
if it involves both the electron coordinate, or momentum, and its spin. An example would be

iα18Eh σx e
y/y0 tanh

(
pz
p0

)(
x

x0

)7

σz + h.c. (6)

Very few such expressions will pass muster as being physically interesting. There are two major
exceptions, that is, two other spin-orbit terms are worth our attention:

1. First is the “micromagnet” term:

− gµB σ ·B(r) (7)

There is nothing fundamental one can say about the size or importance of this term, since
it requires engineering a spatial dependence to the applied magnetic field. With the use
of micromagnets, its effect can indeed be significant in laboratory experiments on spin
qubits.

2. Next is the magnetic dipole-dipole interaction:

µ0g
2µ2

B

16π|r|3
(
3(σ1·r̂) (σ2·r̂)− σ1·σ2

)
, r = r1−r2 (8)

This can indeed lead to spin-orbit entanglement – the barely-bound p states of 129Xe2 is
the cleanest example that I know of. While we often use Eq. (8) in the case where one
or the other of the spins are nuclear, it is also a perfectly good Hamiltonian for the pure
electron problem. In this setting, it is not to be confused with the Heisenberg exchange
Hamiltonian Jσ1 ·σ2), which is merely an effective Hamiltonian that describes electrons
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in particular orbital configurations. The dipole-dipole interaction Eq. (8), by contrast, is
“fundamental” – at least as fundamental as the normal spin-orbit interaction. Like that,
it has the status of a leading relativistic correction. To see this, we “de-dimsionalize”
Eq. (8) using atomic units. The new replacement we must employ is Maxwell’s relation
µ0 = 1

ε0c2
. With this, the de-dimensionalized form of the overall factor in the electronic

dipole-dipole interaction is

µ0g
2µ2

B

16π|r|3
=
g2

16

Eh
(r/a0)3

4

4πε0c2
µ2
b

Eha30
=
g2

16

Eh
(r/a0)3

α2. (9)

Thus, just like the normal spin-orbit term, the dipolar term is second order in the fine
structure constant.

Given that it is of the same order, why does it not emerge as a term in the Foldy-
Wouthuijsen series? The answer is that is a two-electron spin-orbit term, which can never
emerge from the one-particle Dirac equation. It is understood that it emerges from the
same sort of analysis (as a series in α) applied to the two-particle relativistic wave equa-
tion, the Bethe-Salpeter equation. The dipolar term, along with another novel orbit-orbit
term, emerges from this. The derivation via the Breit equation is also informative, but
less rigorous.

Now let’s turn to the consequences of spin-orbit coupling in a semiconductor that hosts a spin
qubit. The relevant semiconductors, the various group-IV and III-V compound semiconductors
like GaAs, have a rather universal structure near the Fermi energy. All these semiconductors
have full cubic symmetry, so that the electron states at the center of the Brillouin zone have high
symmetry. The relevant irreducible representations at the Gamma point are isomorphic to those
for full spherical symmetry.
Thus, the states at the Gamma point, in the absence of spin-orbit, have a conserved orbital
angular momentum L. It happens that the states near the Fermi energy always have L = 1, in
~ units, at the top of the valence band (which can host hole qubits), and the first state of the
conduction band is always L = 0. Around an origin of high symmetry, we can rewrite the
spin-orbit Hamiltonian as in atomic physics

V (r) ≈ V (|r|) (10)

∇V ≈ r̂
∂V

∂r
(11)

Hso ∝
1

r

∂V

∂r
σ ·
(
r×p

)
=

1

r

∂V

∂r
σ · L. (12)

An aside: it is sometimes said that the atomic spin-orbit operator is σ · L. This is misleading;
1
r
∂V
∂r

is an operator too, on the position Hilbert space! When this is replaced by a “spin-orbit
constant”, it should rather be understood as a matrix element between specific radial orbital
pairs.
Thus, the situation with the top of the valence band is the same as with the p-state in an atom: the
total angular momentum, J = S+L = 1

2
σ+L is conserved. The angular momentum addition
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rules say that the angular momentum states are J = 3/2 and J = 1/2, due to the composition
rule for irreducible representations 1

2
⊗ 1 = 1

2
⊕ 3

2
. This also means that the p-states, which

would be 6-fold degenerate (3 orbital times 2 spin), split up into a 4-fold degenerate set of states
J = 3

2
, and a two-fold pair J = 1

2
.

In semiconductors of interest the J = 3
2

states are always the higher ones, and thus define the
valence-band edge. The J = 1

2
states are, rather prosaically, referred to as the “split-off band”.

the spin-orbit splitting between these multiplets, ∆, is one of the important band parameters in
semiconductors. We will see below the crucial role that it plays in the behavior of electron [sic]
spin qubits.
Note that this lifting of valence-band degeneracy comes along with there being strong spin-
orbit entanglement in these states. For example, one of the eigenstates in the J = 3

2
space,

made non-degenerate by a magnetic field in the (100) crystal direction, is∣∣∣∣32 , 12
〉

=
1√
3

(
ψp+(r)χ↓ +

√
2ψpz(r)χ↑

)
. (13)

Here ψp+(r) is the k = 0 Bloch state constructed from the orbital px + ipy, ψpz(r) is the
different orbital Bloch state constructed from the pz orbital, and χ↓ and χ↑ are the orthogonal
spin wavefunctions that can also be denoted

(
0
1

)
and

(
1
0

)
. Thus, the “weak” spin-orbit interaction

can, in this circumstance, result in an almost maximally entangled wavefuction.
We will pursue this interesting topic much further, but note that the J = 3

2
states come with two

different effective masses, so that away from the Gamma point they disperse into two pairs of
states. A remaining two-fold degeneracy is guaranteed by Kramers’ theorem plus the inversion
symmetry in the point group. Because of these two different masses, the top of the valence band
is further split if the crystal is strained, as happens in the formation of heterostructures.
The bottom of the conduction band, the place where we normally put electrons in order to make
spin qubits, is at first glance immune from the large effect of spin-orbit interaction. The state is
essntially of the simple form ∣∣∣∣12 , 12

〉
≈ ψs(r)χ↓, (14)

with basically no spin-orbit entanglement. But I say “basically” because the spin-orbit Hamil-
tonian still couples this state perturbatively to other eigenstates.
This, in some cases, produces a significant physical effect. This is very evident in the effective
g-factor of these states, in other words, the splitting between the |1/2, 1/2〉 and |1/2,−1/2〉 due
to a magnetic field, Without spin-orbit interaction this splitting is gµBB, with a g factor always
equal to g = 2 + α/2π (that is, a fraction of a percent above 2, with additional, even smaller
terms of higher order in α). The fine structure constant α appears here due to a distinct vacuum
relativistic effect, the coupling of the electron to the quantized electromagnetic field.
But spin-orbit effects in crystalline matter modify this dependence dramatically. First, the Zee-
man splitting in no longer rigorously linear in B, there are B2, etc. terms. But more dramatic
and significant is the departure of g far from 2. This can be analyzed by perturbation theory. The
most significant contributors are couplings to the six valence band states. A beautiful formula
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emerges from this, due to Laura Roth in 1959 [2]

g = 2− 2∆

3Eg + 2∆

(
m

meff

− 1

)
. (15)

(This is ignoring the Schwinger correction α/2π, which is almost always far smaller.) Here∆ is
the valence band spin-orbit splitting discussed a above,Eg is the band gap of the semiconductor,
and meff is the effective mass of the conduction band electrons. These latter two parameters are
not primarily determined by spin-orbit interaction, while ∆ is only non-zero when spin-orbit is
included.
The parameters on the right-hand side of the Roth formula are all accurately known from exper-
iment. For example, ∆ = 44, 295, 341, 380, 930 (in meV) for Si, Ge, GaAs, InAs, and ZnTe,
respectively. Plugging these in gives for GaAs gRGaAs = 0.09, and for InAs gRInAs = −14.9. The
Zeeman splittings are also readily measured, and the experimental values are gGaAs = −0.44,
and for gInAs = −15. While not being precisely accurate, Roth’s analysis correctly predicts
the dramatic departures of the Zeeman splitting from its non-relativistic value, and the trend of
increasing departure when going to heavier elements.
The important message of this formula is that the g factor depends, potentially strongly, on
details of the orbital electronic structure. One can imagine, based on the kind of perturbation
theory involved, that the result will depend on where we are in k-space. To get ahead of our
story somewhat, this tells us something of what will happen when we form a quantum dot:
depending on the size of the dot, the resulting wavefunction will sample a greater or lesser part
of this k space – thus, the g factor will depend on the degree of confinement. This variation,
while not particularly large in, e.g., Si, has been observed recently and is definitely a source of
concern for applications as qubits.
While the derivation of the Roth formula is a bit time consuming, I will give a flavor of this
kind of band perturbation for the simpler problem of the band effective masses that appear
in her formula. This formula has nothing to do with spin-orbit, so we revert to the regular
Schrödinger equation.
When we substitute the Bloch function

Φnk(r) = eik·runk(r) (16)

in the Schrödinger equation(
p2

2m
+ V (r)

)
Φnk(r) = Enk(r)Φnk(r), (17)

we get the wave equation for the periodic part of the Bloch function,(
p2

2m
+

~2k2

2m
+

~
m
k · p+ V (r)

)
unk(r) = Enk(r)unk(r). (18)

The new term here is referred to as the “cay-dot-pee” perturbation; although it is not really a
perturbation, Eq. (18) is just an exact rewriting of Eq. (17).



Quantum Computing 13.9

The procedure is as follows: one obtains solutions for k = 0, un0(r) and En0. Then one treats
the k ·p term (together with the simple k2 term) using perturbation theory to get the dispersion.
Around k = 0 the lowest order perturbation result is quadratic in |k|. The band curvature gives
the effective mass. The simple formula for this is

1

meff

=
1

m
+

2

m2

∑
n′ 6=n

∣∣k̂ · 〈un0|p|un′0〉
∣∣2

En0−En′0
. (19)

In our high symmetry situation, meff is independent of the direction of the unit vector k̂.
We can note that, generically, large contributions to 1/meff will occur (so that meff will have a
small magnitude) if the energy gap is small.
With spin-orbit interaction, our Schrödinger equation Eq. (17) becomes(

p2

2m
+ V (r) +

~
4m2c2

p · (σ×∇V )

)
eik·runkσ(r) = Enkσ(r)e

ik·runkσ(r). (20)

The band energies E and the periodic part of the Bloch wavefunction u have acquired spin
labels σ. As above, one obtains a k · p-style Schrödinger equation for the u function(

H0 +
~2k2

2m
+

~
m
k · p+

~2

4m2c2
k · (σ×∇V )

)
unkσ(r) = Enkσ(r)unkσ(r). (21)

Here H0 is the whole Hamiltonian for the k = 0 states, including the spin-orbit contributions;
often this is left as a separate term to be treated, along with the k-dependent terms, with pertur-
bation theory. We will again look at what happens to the conduction band in, e.g., GaAs. The
approach is as for the effective mass: take into account the effect of other bands perturbatively.
Since the conduction band is two spin states, we get not a single corrected dispersion, but an
effective 2×2 Hamiltonian

Heff =
~2k2

2m∗
+ γ~2

(
σxkx

(
k2y−k2z

)
+ cyclic permutation x→y→z→x

)
. (22)

The form here is universal for s-bands in crystals with a form of cubic symmetry, with only
γ depending on details of the perturbation matrix elements; but for full cubic symmetry (i.e.,
including inversion symmetry, e.g., in Si and Ge) γ = 0. This set of terms is called “Dresselhaus
spin-orbit coupling”.
A few interesting notes about this term: 1) While it respects cubic symmetry, it does not have
full rotational symmetry, so the band dispersion is not isotropic. 2) Except along high-symmetry
directions, the energy splitting of the two spin states is nonzero with a quantization axis that is
a function of k. 3) There is a superficially similar term, called the Rashba spin-orbit coupling,
that is not intrinsic to the crystal structure, but is activated by additional applied magnetic fields.
This Rashba coupling produces a variety of interesting effects, but in the interests of space will
not go into them here.
We are now going to see how this affects the electrons that are confined to quantum dots, for the
purpose of making spin qubits. I will state without proof the use of effective Hamiltonians like



13.10 David DiVincenzo

Eq. (22) when we consider the envelope function approximation. When we describe an electron
as being confined to a quantum dot, we have in mind that the Bloch function is modulated by a
slowly varying envelope wavefunction

ψenv ,nσ(r)e
ik0·runk0σ(r). (23)

Here k0 is the extremum of the band, i.e., k0 = 0 for the examples we have been discussing.
The envelope-function theory shows that to apply the effective Hamiltonian to ψenv alone to get
an eigenvalue equation, the prescription is to elevate k to operator status with the replacement
k→ i∇. You are probably very familiar with this in the case of the simple effective mass term,
where we say that the kinetic energy operator in the effective mass approximation is just

− ~2∇2

2meff

. (24)

With spin-orbit interaction, we just make this replacement everywhere in Eq. (22).
We will now explore what consequences this has for the control of two spin-qubits. We will
follow the derivation of Kavokin [3]. We will assume the Hamiltonian consists of Eq. (22),
along with a spatial confining potential. This potential is assumed smooth on the scale of the
lattice constant. Notationally we will write this double quantum dot Hamiltonian as

H(r,k) = Heff (k) + Vconf (r). (25)

This notation indicates, as suggested above, that the envelope coordinate r and the crystal mo-
mentum k will function as conjugate variables. “conf” refers to “confinement”.
We will solve the two-electron problem. Importantly, we will proceed with first quantization,
which flexibly deals with undetermined and non-orthogonal space orbitals. In first quantization
the two electron Hamiltonian is

Htot =
2∑
i=1

H(ri,ki) + C(r1−r2). (26)

C is some screened electron-electron interaction whose details will not be important here.
One can proceed with a Heitler-London (two-orbital) calculation which, in the absence of spin-
orbit, gives the familiar Heisenberg exchange expression for the effective qubit-qubit interaction
(calculated in [4])

H2qu = J SA · SB. (27)

Here we specialize to a double-well confinement potential, with distinct wells A and B. We ex-
pect that with two electrons, electron one will occupy the A well, and electron two will occupy
the B well, and vice versa. Note we are again using the first quantized language. In second
quantization we should just say that the state is obtained from the vacuum (i.e., filled semicon-
ductor bands) by applying a creation operator for spatial orbital A, and a creation operator for
spatial orbital B, with the spin content of the orbital left for the present unspecified.
Kavokin begins by specializing the Dresselhaus contribution Eq. (22). We consider quantum
dots that are strongly confined in one direction (z direction). This means that we will only
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consider dynamics in the xy plane. It also means that, if we think in terms of expectation
values, we expect that the strong confinement will mean that 〈k2z〉 � 〈k2x〉, 〈k2y〉. Thus, we
approximate Eq. (22) by

H =
~2k2

2m∗
+ Vconf (r) + γ~2

(
−σxkx〈k2z〉+ σyky〈k2z〉

)
= −~2∇2

2m∗
+ Vconf (r) + ia

(
−σx∇x + σy∇y

)
, (28)

where a = γ~2〈k2z〉.
I now proceed, following closely Sec. IV of [3]. Again with our mindset of first-quantization,
we write a wavefunction basis states involving “electron 1” and “electron 2”, providing for the
possibility of antisymmetrization

ΨA(1)ΨB(2)χ
σ1
1 χ

σ2
2 and ΨA(2)ΨB(1)χ

σ′
1

1 χ
σ′
2

2 . (29)

Note that unlike in second quantization, the spin functions χ are associated with electron num-
ber 1, 2 and not with spatial orbitalA,B. Also, (1, 2) is shorthand for (r1,2). The σ’s are indices
for the spin basis states ↑ and ↓, and are not to be confused with Pauli matrices. Observe that
these are 8 basis functions overall, but we will come back to a 4D space due to antisymmetriza-
tion.

We now proceed with Heitler-London. The sleight of hand here involves recognizing that or-
bitals A and B are almost, but not quite, orthogonal, so that where their non-orthogonality is
crucial for the leading-order term, it is accounted for; but other parts of the calculation are done
as if the orbitals are orthogonal.

We will get matrix elements for the basis above. The two-electron Hamiltonian is split into two
parts

Htot = H0 +H1 (30)

H0 =
2∑
i=1

(
−~2∇2(i)

2m∗
+ Vconf (ri)

)
+ C(r1−r2). (31)

H1 = i
2a

~

2∑
i=1

(
−Sx(i)∇x(i) + Sy(i)∇y(i)

)
. (32)

In Heitler London the key matrix element is the off-diagonal one

〈ΨA(1)ΨB(2)χσ11 χσ22 |H0|ΨA(2)ΨB(1)χ
σ′
1

1 χ
σ′
2

2 〉 = J δσ1,σ′
1
δσ2,σ′

2
. (33)

This gives the usual exchange constant J of the Heisenberg model Eq. (27). Note that it is only
nonzero if orbitals A and B are nonorthogonal.
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The interesting new spin-orbit contribution is

〈ΨA(1)ΨB(2)χσ11 χσ22 |H1|ΨA(2)ΨB(1)χ
σ′
1

1 χ
σ′
2

2 〉
= i〈ΨA|ΨB〉〈σ2|b · S2|σ′2〉δσ1,σ′

1
− i〈ΨB|ΨA〉〈σ1|b · S1|σ′1〉δσ2,σ′

2
, (34)

b ≡ 2a

~

 −〈ΨA|∇x|ΨB〉
〈ΨA|∇y|ΨB〉

0

 . (35)

The minus sign in Eq. (34) comes from the fact that the matrix elements comprising the vector
b are real and antisymmetric (Anti-Hermitian) in A,B. We give a 3D version of the vector
b because there are other spin-orbit terms, e.g., the ‘Rashba’ spin-orbit coupling, for which
z-components of this vector are recovered.
One is now to infer the effective spin Hamiltonian that this leads to, and see how the effective
interaction departs from the Heisenberg form. We simplify Eq. (35) further, by setting the
coordinate system in spin space so that the z spin axis is parallel to the vector b. Then we can
write

〈ΨA(1)ΨB(2)χσ11 χσ22 |Htot|ΨA(2)ΨB(1)χ
σ′
1

1 χ
σ′
2

2 〉 =
(
J + iΩ |b| (S2z−S1z)

)
δσ1,σ′

1
δσ2,σ′

2

≈ J ′ei(γ/2)(S1z−S2z)δσ1,σ′
1
δσ2,σ′

2
(36)

Here Ω is the real number 〈ΨA|ΨB〉, J ′ =
√
J2 + (Ω|b|)2 and γ = arctan (Ω|b|/J). Typically

J ′ ≈ J and γ � π, but I will review Kavokin’s estimates at the end, indicating that this will not
be an entirely negligible effect.
Finding eigensolutions to the full Hamiltonian (all the interesting spin dependence comes from
the “exchange integral” Eq. (36)), we can write these down by requiring antisymmetry. These
are constructed in precise analogy to the case of no spin-orbit (γ=0), with the change of sign
characterizing the antisymmetry appearing in one of two factors, according to the quantum
number I

ΦIM = 1
2
(ΨA(1)ΨB(2)e

i(γ/2)(S1z−S2z) + (−1)IΨA(2)ΨB(1)e−i(γ/2)(S1z−S2z))ζIM (37)

Here ζIM are the usual spin eigenfunctions of the two-particle system, i.e., the triplets (I = 1,
M = −1, 0, 1), and the singlet (I = 0, M = 0). Our last task is to understand what effective
two-spin Hamiltonian will produce such states as eigenstates. To understand how this works,
I show the singlet case of these states in a more explicit notation, in which the spin operators
have been applied to the state

Φ00=
1

2

(
ΨA(1)ΨB(2)

(
eiγ/2| ↑1↓2〉−e−iγ/2| ↓1↑2〉

)
+ΨA(2)ΨB(1)

(
e−iγ/2| ↑1↓2〉−eiγ/2| ↓1↑2〉

))
.

(38)
Note this does not factorize into a spin part and a space part, but the total is clearly antisymmetric
with respect to 1↔ 2.
We will take a next step that will give us an effective wavefunction for the spins alone. It is based
on the following premise: we suppose that the A and B orbitals are disjoint in space (clearly



Quantum Computing 13.13

not exactly true in reality, since they have a finite inner product Ω), and that the wavefunction
has no double-occupancy character. Then we see that the first term of wavefunction Eq. (38)
is only nonzero if electron 1 is in the A quantum dot, and electron 2 is in the B quantum dot.
Then, the spin state associated with this first term is

Ψspin = eiγ/2| ↑A↓B〉 − e−iγ/2| ↓A↑B〉. (39)

Note the crucial change of labeling 1, 2 → A,B motivated by our argument. If we apply the
same reasoning to the second term of Eq. (38), noting that it is only nonzero if electron 1 is in
the B quantum dot, and electron 2 is in the A quantum dot (note the reversal from above). We
then transcribe the spin wavefunction of this term as

e−iγ/2| ↑B↓A〉 − eiγ/2| ↓B↑A〉, (40)

which is in fact exactly the same (after rearranging) as Ψspin . The same observations go through
for the triplet states. This encourages us to look for an effective Hamiltonian with only spin
operators which has Eq. (39) as an eigenstate. The answer is

Hspin = exp
(
iγ
2
(SAz−SBz)

)
SA · SB exp

(
−iγ

2
(SAz−SBz)

)
= S′A · S′B. (41)

So this is a kind of Heisenberg exchange, except that the coordinate system has been rotated, so
there are two different frames of reference used at theA site and theB site. Let me comment that
the line of argument just given is basically a switchover from first-quantized to second-quantized
thinking, since it changed from “which electron is where?” to “where are the electrons?”. It has
the limitation that it is only proper if the A and B orbitals are orthogonal; I note that Eq. (41) is
not even Hermitian if A and B are non-orthogonal.
Finally, I mention Kavokin’s calculations for the size of this effect. He estimates:

1. quantum dots in GaAs, 10 nm heterostructure: γ ≈ 0.1

2. shallow donors, bulk GaAs: γ ≈ 0.01

3. donors near oxide interface in Si: γ ≈ 0.03

This just serves to illustrate that this is not necessarily a very small effect.

4 A few thoughts about electron-electron interaction for
spin qubits

I will here briefly discuss the electronic structure of the double quantum dot from another angle.
We have taken into account electron-electron interaction in the calculation done above. More
generally, how do interaction effects enter the electron problem for the quantum dot? Is there a
basically one-electron picture that is close to the truth?
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For this I explain some of the insights of [5]. In this work we retreat from the problem of
spin-orbit interaction, considering only the electronic structure of few-electron dots in the non-
relativistic limit.
Let me review some of the most basic facts about multi-electron eigenstates. I will state the
facts in both first- and second-quantization.
If there are no e-e interactions, then eigenstates are single spin-orbital Slater determinants.
Not to be confused with the spin-orbit interaction, spin-orbital functions are single-electron
functions of both space and spin. In the nonrelativistic case there will be functions like the
kind we have seen above, single products like ΨAσ = ΨA(1)χ1. (If we were doing spin-orbit
coupling, these would be entangled spin and space functions.) Then a single Slater determinant
of two electrons would have the form∣∣∣∣∣ ΨA(1)χ1 ΨB(1)χ

′
1

ΨA(2)χ2 ΨB(2)χ
′
2

∣∣∣∣∣ (42)

Here I use the convention that in a Slater determinant, the rows are indexed by electron number,
and the columns are indexed by the distinct spin-orbital (which may involve a repetition of the
spatial orbital). This seems to immediately contradict the observation that two electron systems
have triplet eigenstates of the form∣∣∣∣∣ ΨA(1) ΨB(1)

ΨA(2) ΨB(2)

∣∣∣∣∣ (|↑A↓B〉+ | ↓A↑B〉), (43)

split off from the other triplets in the presence of a magnetic field. This appears to be, and
indeed is, a sum of two spin-orbital Slater determinants. But there is no contradiction here, as
this state is degenerate with the singlet state (even in a magnetic field), so each determinant is
separately an eigenstate. It is only if we also insist that we have eigenstates that are labelled by
total spin that superpositions become necessary.
Note that the equivalent statement in second quantization is that an eigenstate can be formed by
applying, to the vacuum, two spin-orbital creation operators

a†Aχa
†
Bχ′ |0〉. (44)

We will be considering two and four electron systems. We will not get further than the story of
a single quantum dot. For this, the “vacuum” will be the filled valence band, and all calculations
will be done at the level of the envelope function (“effective mass theory”). But the gigantic
complication of many-electron theory is that the eigenstates are not single Slater determinants.
But the Slater determinants form a complete, orthonormal basis for the many-electron Hilbert
space. This means that the general form for these eigenstates is, using the second-quantized
notation,

′∑
i,j

cij a
†
ia
†
j|0〉. (45)

Here the sums run over the orthogonal spin-orbitals i, j. The prime is a reminder that the i = j

term gives nothing, since (a†)2 = 0.
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In quantum chemistry the terms in Eq. (45) are called configurations, and using a set of basis
functions like this is called the configuration-interaction (CI) technique. Convergence in this
technique is difficult, the only useful calculations use a computer.
In [5] we have done a fairly large calculation for a harmonically confined quantum dot in a
magnetic field, with two or four electrons. Here the number of single-particle eigenstates used
is 50, meaning that the CI basis has

(
50
2

)
or
(
50
4

)
elements. Bases of these size were apparently

necessary for good convergence.
We describe now a step which leads to a much more powerful starting basis. This is called the
Natural Orbital (NO) method due to Löwdin.
Suppose we have chosen a spin sector to examine, e.g., the singlet; thus, we are left with just
orbital determinants such as in Eq. (43). Löwdin’s procedure involves first obtaining the first-
order density matrix of the N -particle orbital wavefunction

ρ(r′, r) = N

∫
dr2...drN ψ

∗(r′, r2, ...rN)ψ(r, r2, ...rN). (46)

He next notes that if there were no e-e interactions and the eigenstate was a single Slater deter-
minant, the first-order density matrix would be given by a simple sum over the single-particle
orbitals in that determinant

ρ(r′, r) =
∑
α

φ∗α(r
′)φα(r). (47)

But very generally, as a symmetric, positive semi-definite function of r and r’, the first order
density matrix has a spectral decomposition

ρ(r′, r) =
∑
α

ρα φ
∗
(NO),α(r

′)φ(NO),α(r). (48)

This set of “natural orbitals” φ(NO) is in general quite different from any approximate single
particle orbital, and should provide a CI expansion that is more rapidly convergent. Note that
the “NO occupation numbers” ρα ≥ 0, and obey the sum rule

∑
α ρα = N .

We find that a relatively small number of NOs (i.e., somewhat larger thanN ) capture most of the
weight of Eq. (48). So, if we had been lucky enough to be given (say by some wizard Merlin)
these NO functions, we could have done a very compact CI expansion with good convergence
on the full many-body answer.
Our calculation in [5] is for a harmonically confined quantum dot for GaAs (in the sense of using
the effective mass of the conduction band) in a heterostructure-confined structure, so it is a 2D
calculation. A large CI basis is used for convergence. We do calculations for two electrons and
for four electrons, fixing the spin state to be singlet and then triplet, as in Eq. (43). For the two
electron case there is nothing more to be said about the spin state, but for four electrons there
are several alternatives for making these spin states. We do it in shell-style, where the lowest
two orbitals are “paired” (that is, in their own singlet), while the highest occupied orbitals have
the freedom to be singlet or triplet.
Figure 1 just shows the Hartree-Fock one-particle spectrum for this dot, indicating the range
of magnetic field of interest. The quantum numbers are those of the so-called “Fock-Darwin”
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Fig. 1: Single-particle energy levels of the quantum dot, in the Hartree-Fock approximation.

Fig. 2: Weights of natural orbitals for the four settings considered here.

states. In all four cases, the full CI calculation is done, and then the natural orbitals are extracted
from the first-order density matrix as above. These give new orbitals which are indicated by a
tilde; they can still be put in one-to-one correspondence with the Hartree-Fock orbitals. Figure 2
shows the results for these four cases. It shows percentages, we can multiply by the electron
number N to talk about the number of electrons in different orbitals. The N = 2 singlet case
shows that 2 × 0.89 = 1.98 of the electron weight is in the lowest orbital, doubled since both
spin states can be occupied. In theN = 2 triplet case, 0.988 electrons are in each of the two first
orbitals, as expected from the Pauli exclusion principle. The quality of the N = 4 case is only
a bit less ideal: in the singlet case 4× 0.442 = 1.768 electrons are a singlet in the first “shell”,
with the second shell with 1.762 occupancy. This leaves 0.47 of an electron “unaccounted for”,
in the sense that multiple Slater determinants are necessary to capture the effect of this much of
the weight in the many-electron wavefunction. Finally, the story is similar for theN = 4 triplet:
1.776 electrons are in the core singlet, and 0.97 electrons each in the two next orbitals. 0.284 is
“unaccounted for”. It is understandable that the single Slater determinant is a little better for
the triplet cases, since the antisymmetric orbital wavefunction does a better job of keeping the
electrons out of each other’s way and avoiding effects due to the Coulomb interaction.
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Fig. 3: Charge density of the four quantum-doty settings considered here, with full interaction
effects.

Finally, this numerical study uncovered an important fact about the natural orbitals: to very good
approximation, they are just the non-interacting Fock-Darwin orbitals with a simple rescaling
of the radial coordinate. The natural orbital is in almost all cases blown-up compared with the
Hartree-Fock orbitals – interactions push the electrons away from the center. This expansion
is about 40% for the lowest-energy orbital, and is about half that for the next orbitals that
participate in the N = 2, 4 states discussed above.
A concluding word about this study is that interaction effects are not so overwhelming, causing
a definite renormalization of the Hartree-Fock picture but leaving it qualitatively intact. This is
somewhat at odds with the general experience that very low-density electron systems have the
largest departures from single electron physics (think of the Wigner crystal). But fortunately
for our quantum-dot qubits, the mental picture of single-electron physics is shown to work quite
well.
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