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1 Introduction

Exactly solvable models are of paramount importance to test the quality of approximations
used in various theoretical methods. Having at hand the exact solution of a given problem
can allow one to observe possible problems of a given approximation, to get insights into the
origin of them, and, ideally, to suggest possible solutions. Several models can be used for this
purpose. Here we will concentrate on the Hubbard model. This model is widely used to deal
with the physics of strongly correlated materials. Since the model can be solved exactly for
small cluster sizes, it is very useful for theoretical investigations. Of course care must be taken
when extrapolating conclusions to realistic systems. In this chapter we will use it to scrutinize
approximations used in many-body perturbation theory based on Green functions. We will
concentrate on the one-body Green function (1-GF) at zero temperature and at equilibrium,
which corresponds to the electronic Hamiltonian Ĥ = T̂ + V̂ + Ŵ , with T̂, V̂, and Ŵ the
kinetic-energy operator, the operator corresponding to an external time-independent potential
(for example the external potential of the nuclei), and the electron-electron interaction operator,
respectively. The 1-GF is a powerful quantity since it contains a wealth of information about a
physical system, such as the expectation value of any single-particle operator over the ground
state, the ground-state total energy and the spectral function (which is related to photoemission
spectra). It can be obtained by solving a Dyson equation of the formG = G0+G0ΣG, whereG0

is the non-interacting one-body Green function and the self-energy Σ is an effective potential
which contains all the many-body effects of the system under study. In practice Σ needs to
be approximated and a well-known approximation is the so called GW approximation (GWA)
in which the self-energy reads Σ = vH + iGW , where vH is the classical Hartree potential,
and W the dynamically screened Coulomb potential. The GWA works well for many systems,
but it also suffers from some shortcomings, such as self-screening (i.e. the fact that an electron
screens itself, which is unphysical) and wrong atomic limit (i.e. the fact that the GWA does not
capture the so-called strong correlation). These errors of the GWA and possible solutions will
be illustrated using the Hubbard dimer.

Notation

We will use combined space-spin-time coordinates of the type (1) ≡ (x1, t1) ≡ (r1, s1, t1) and
(1+) = (x1, t

+
1 ) with t+1 = t1 + δ (δ→0+). Moreover, to keep a light notation, integration over

indices not present on the left-hand side of an equation is implied.

2 Theoretical background: the GW approximation & beyond

Much of the success of many-body perturbation theory based on Green functions [1] is due
to the simplicity to access photoemission spectra through the one-body Green function. As
illustrated in Fig. 1 photoemission is about absorption and emission of single electrons and it is
a unique source of information about electronic structure and excitations in materials. We will
focus precisely on this observable in the rest of the chapter.
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Fig. 1: Schematic picture of direct (PES) and inverse photoemission spectroscopies (IPSE).
In PES (IPES) one samples the occupied (unoccupied) energy levels εPESk = EN

0 −EN−1
k

(εIPESk = EN+1
k −EN

0 ) of the system.

Let us consider the following many-body Hamiltonian in second quantization

Ĥ =

∫
dx ψ̂†(x)h(r)ψ̂(x) +

1

2

∫∫
dxdx′ ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)vc(x,x

′), (1)

where ψ̂ and ψ̂† are field operators, vc is the Coulomb potential, and h(x) = −∇2
r/2 + vext(r)

is the one-body part of the Hamiltonian, which comprises the kinetic term and a local external
potential. At zero temperature the time-ordered equilibrium 1-GF can be written in terms of its
Lehmann representation in frequency space as

G(x,x′;ω) = lim
η→0+

(∑
m

BA
m(x,x′)

ω − (EN+1
m −EN

0 ) + iη
+
∑
n

BR
n (x,x′)

ω − (EN
0 −EN−1

n )− iη

)
, (2)

where BA
m(x,x′) = 〈ΨN0 |ψ̂(x)|ΨN+1

m 〉〈ΨN+1
m |ψ̂†(x′)|ΨN0 〉 and BR

n (x,x′) = 〈ΨN0 |ψ̂†(x′)
∣∣ΨN−1

n 〉
〈ΨN−1

n |ψ̂(x)
∣∣ΨN0 〉, |ΨN0 〉 andE0 are the many-body ground-state wavefunction and energy of the

N -electron system, respectively, and |ΨN±1
m 〉 and EN±1

m are the many-body wavefunctions and
corresponding energies of the (N ±1)-electron system. This definition of the 1-GF makes clear
its connection to the charged excitations of the system, which are measured in photoemission
experiments. It is indeed convenient to define the spectral function in terms of the imaginary
part of the 1-GF according to

A(x,x′;ω) =
1

π
sign(µ−ω) ImG(x,x′;ω)

=
∑
m

BA
m(x,x′)δ

(
ω − (EN+1

m −EN
0 )
)

+
∑
n

BR
m(x,x′)δ

(
ω − (EN

0 −EN−1
n )

)
, (3)

where µ is the chemical potential. Of course the definition (2) is not very useful for determining
the 1-GF, since it relies on the knowledge of many-body wavefunctions, which is precisely what
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one wants to avoid when using theories based on simpler physical quantities, such as the 1-GF.
Therefore the development of approximate methods to calculate the 1-GF has been an active
research topic in many-body physics since the sixties, and many routes have been explored
in order to find increasingly accurate GFs. A very popular class of methods is based on the
solution of an integral equation for the 1-GF, namely,

G(1, 2) = G0(1, 2) +G0(1, 3)Σ(3, 4)G(4, 2) , (4)

where G0 is the noninteracting 1-GF and Σ the self-energy. A good starting point to make
approximations to the self-energy is to use Hedin’s equations, which are often solved within
the so-called GW approximation (GWA) to the self-energy [2], where G is the one-particle
Green function andW the dynamically screened Coulomb potential. Within this approximation
one neglects so-called vertex corrections, which take into account the fermionic nature of the
system, and one treats the system and its response classically (besides exchange). This becomes
clear by starting from the following exact expression for the self-energy [3, 4]

Σ(11′) = vH(1)δ(11′) +Σx(11′) + ivc(1
+2)G(13)Ξ(35; 1′4)L(42; 52+), (5)

with vH(1) = −i
∫
d2 vc(12)G(22+) the Hartree potential, Σx(11′) = ivc(1

+1′)G(11′) the
exchange contribution to the self-energy, Ξ(35; 1′4) = δΣ(31′)

δG(45)
the effective interaction, and

L(42; 52) = δG(45)
δUext (2)

∣∣∣
Uext=0

the time-ordered “response” of the system to an external perturba-

tion Uext . This way to write the self-energy directly displays the physics behind it, i.e., the
description of a particle interacting with the system: the particle can scatter against the density
of the system (Hartree term), it can exchange with another particle of the system (exchange
term), it can do something to the system (last term), i.e., it can have an effective interaction
with the system (Ξ), the system responds (L), and the particle feels this response through the
Coulomb interaction (vc). There are two crucial ingredients in Eq. (5), namely the response of
the system L and the effective interaction Ξ . Combining approximations to these two quanti-
ties, various approximations to the self-energy can be created. In situations where the screening
is important one can treat L accurately and use a rough approximation to the induced potential
Ξ , whereas in situations where the quantum nature of the interaction is important1 one would
concentrate onΞ , although L andΞ are of course in principle linked through the Bethe-Salpeter
equation [5] and one might wish to keep them approximately consistent.

2.1 GW

Neglecting the variation of Σxc = Σ − vH in Ξ , i.e., keeping only the classical interaction vc,
one obtains Σxc(11′) = Σx(11′) + ivc(12)G(11′)vc(1

′4)χ(42), with χ(42) = −iL(42; 42) the
time-ordered response function. Hence one gets a screening contribution with respect to Σx:
this is the GW form, with W = vc + vcχvc, which can also be written as W = vc + vcPW

1The atomic limit of the Hubbard molecule is an example where the correlation part of the interaction is crucial;
see later.
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Fig. 2: Model system for removal and addition energies from Ref. [10]: first an electron is
added to/removed from box 1 occupied by zero/one electron; in a second step an electron is
added to box 2 in presence of the electron in box 1 (see text).

with the polarizability P = χ(1 + vcχ)−1. At this stage it has not been specified yet how
to calculate the screening: different approximations to the screening will give the various GW
flavors, e.g.GWRPA, in which P = −iGG, and beyond.2 If one keeps an approximateΣxc inΞ ,
one goes beyond GW and includes so-called vertex corrections. The GW approximation works
well for systems where the screening is important; instead in systems which show atomic-like
physics, such as transition-metal oxides, the GWA shows difficulties or even failures [3, 7–15].
More accurate approximations are then needed. One way to go beyond the standard methods is
to try to correct some basic shortcomings that plague them. Here we will focus on the following
two errors GW suffers from:

• Self-screening error
This error [16, 10, 17] can be illustrated by considering an empty box with a potential V0,
as depicted in Fig. 2. The problem of adding a particle to the empty box can be solved
exactly by the independent-particle Schrödinger equation(

−∇
2

2
+ V0(x1)

)
φ1(x1) = ε1φ1(x1). (6)

The total energy difference between the system with N = 0 and N+1 = 1 particles
is given by the eigenvalue ε1. This situation is described exactly by the GWA (the same
holds for any other commonly used approach, like DFT or Hartree-Fock, since the density
of the system is zero). Problems arise when looking at the reverse problem, namely to
extract the particle from the box, since now there is a non-vanishing charge density in
the box. Again, Eq. (6) correctly describes the total energy difference between N = 1

and N−1 = 0 particles. Also Hartree-Fock (HF) is exact, as one can easily verify,
since there is the exact cancellation between the Hartree and the Fock terms because
the density is built with just the state φ1 one is looking at. It then becomes clear that
GW does not give the exact result, since the exchange term that in HF cancelled the
Hartree self-interaction is now screened, and the cancellation is no longer perfect. If we

2In this case the nature of the screening is always test-charge-test-charge [6].
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had W = vc (no screening) we would be back to the exact HF result. However, the
screening is in general non-zero, since it depends on the density of the system, which
is non-zero for a particle in a box. Therefore, it becomes clear that GW suffers from a
self-screening problem: the particle that is extracted from the system screens itself, which
makes the approach non-symmetric with respect to the case where the particle is added
to the empty box. In other words, when the quasiparticle eigenvalue is used to represent
a total energy difference, the energy of the system has changed after one has first added
and then extracted one electron.

• Atomic limit:
Another very important diagnostic tool is the study of the atomic limit. This limit corre-
sponds to pulling apart the atoms of a system, so that the overlap between wavefunctions
on different atoms is negligible. In particular H+

2 and H2 dissociations have been ex-
tensively studied in order to trace errors in the approximations used in DFT and MBPT.
The study of the H2 dissociation within GW shows that this approximation is not size-
consistent, i.e., the total energy in the atomic limit is not equal to the sum of the total
energies of the two isolated atoms [8, 9]. Also the description of the spectrum can be ex-
pected to be problematic, and this can be understood as follows: the GW approximation
takes into account only the Hartree, exchange, and induced Hartree potentials to describe
an interacting system and its response to an additional electron or hole, i.e., besides ex-
change it gives a classical description of the system and of its response. This means for
the example H+

2 that an additional electron sees half an electron on each atom at any dis-
tance between the two atoms; this results in only one type of addition energy, as we will
later show using the Hubbard dimer at 1/4 filling. In reality, instead, one has the same
probability of finding the whole electron on one or the other atom, resulting in two types
of addition energies depending if the additional electron is added to an empty or to an
occupied atom.

2.2 Vertex corrections

We can now formulate vertex corrections with the aim to correct the problems of self-screening
and wrong atomic limit that GW suffers from. If one keeps an approximate Σxc in Ξ of Eq. (5)
one goes beyond GW and includes vertex corrections. The question is which approximate Σxc

to consider.

2.2.1 Vertex corrections from DFT

By approximating Σxc by the exchange-correlation potential of DFT, vxc , one gets the expres-
sion Σxc(1, 1

′) = Σx(1, 1
′) + ivc(1, 2)G(1, 1′) [vc(1

′, 4) + fxc(1
′, 4)]χ(4, 2), where fxc = δvxc

δρ
;

this leads toΣxc=iGW̃, with a modified screened Coulomb interaction W̃=vc+(vc+fxc)χvc [6].
This is a test-charge test-electron screened Coulomb interaction (TC-TE) instead of a test-
charge test-charge W , and it expresses the fact that an additional particle in the system can-
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not be described as a classical charge. This approximate xc self-energy can be rewritten as
Σxc = iGWΓ with Γ = 1 + fxcP a two-point vertex and P the irreducible polarizability.3

The fxc that appears makes the one-electron case exact, since for this case fxc = −vc from
which Σxc = iGvc, which exactly cancels the Hartree term for one electron. In the simple
case of one electron, hence, this simple vertex correction removes the self-screening and yields
the exact result for the highest occupied state. It seems reasonable to generalize these intuitive
findings to the case of more bands. In fact, we know that the KS potential yields often a quite
good description for all valence bands, not only the highest occupied one. In these cases one
should expect that the test-charge test-electron approximation for the self-energy derived above
is the method of choice to describe valence bands. Of course, the exact KS potential and kernel
are not known, but one might use LDA as a first approximation. For conduction states that are
spatially distinct from valence states or with different spin, which are modelled by a second
electron added to a second separate box in Fig. 2, one can argue that one should rather use
GW [10]. The effectiveness of this approach has yet to be investigated and it is an interesting
outlook. Preliminary results on silicon indicate that this kind of vertex corrections appear to
affect just the quasiparticle energies [18].

2.2.2 Vertex corrections from the T-matrix approximation

As we will show using the Hubbard dimer, the vertex corrections which cure the self-screening
problem are not sufficient to improve the description of the atomic limit, precisely because
the two problems have a different nature; therefore, a more complex vertex is needed to fix
both. For the spectral function in the atomic limit what matters is that the electron in the
system and the electron added to the system “see” each other. In other words it is the quan-
tum nature of the electron interaction that is important. Starting from the exact expression for
the self-energy, Eq. (5), one could use the rough approximation L(4, 2; 5, 2) ' L0(4, 2; 5, 2)

for the response of the system but concentrate on a clever approximation for Ξ . To this end
one can introduce an effective 4-point interaction T such that, similar to GW, Σ(1, 1′) =

iG(4′, 2′)T (1, 2′; 1′, 4′). T is linked to Ξ through the functional derivative of the self-energy
as Ξ(3, 5; 1′, 4) = iT (3, 5; 1′, 4) + iG(4, 2) δT (3,2;1′,4)

δG(4,5)
. Neglecting δT (3,2;1′,4)

δG(4,5)
, in analogy with

what one usually does in the framework of Bethe-Salpeter calculations based on GW [19–21],
Eq. (5) becomes an integral equation for GT

Σ(1, 1′) = iG(4′, 2′)T (1, 2′; 1′, 4′)

= vH(1) δ(11′) +Σx(11′)− vc(12)G(1, 3)G(42)G(25)T (3, 5; 1′, 4). (7)

Since G(4′, 2′)T (1, 2′; 1′, 4′) cannot be inverted to find T, several choices of T make the correct
Σ. A possible solution is

T pp(1, 2; 1′, 4) =− vc(1, 2) δ(1, 1′) δ(4, 2) + vc(1, 2) δ(2, 1′) δ(4, 1)

+ ivc(1, 2G(1, 3)G(2, 5)T pp(3, 5; 1′, 4), (8)

3This can be obtained by considering that W = vc + vcχvc and χvc = PW .
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Fig. 3: Schematic representation of the physical contents of GW (a), pp T-matrix (b), and eh
T-matrix for particles with collinear spins from Ref. [3].

which defines the particle-particle (because the kernel G(1, 3)G(2, 5) in the correlation part
describe two propagating electrons or holes) T-matrix [22, 23]. One can, moreover, decompose
T pp into a direct term (Hartree-like contribution) T pp1 = −vc + ivcGGT

pp
1 and an exchange

term (exchange-like contribution) T pp2 = vc + ivcGGT
pp
2 . Another possible solution of Eq. (7)

is the electron-hole T-matrix, defined as

T eh(1, 5; 1′, 2) =− vc(1′, 2) δ(1, 1′) δ(5, 2) + vc(1
′, 2) δ(1, 2) δ(1′, 5)

+ ivc(1, 2)G(1, 3)G(4, 2)T eh(3, 5; 1′, 4), (9)

where now the kernel G(1, 3)G(4, 2) in the correlation part describes an electron and a hole.
The structure of the T-matrix self-energy is hence very close to the structure of GW: one has a
“particle-particle-screened” interaction T (or an “electron-hole-screened” interaction T in case
of the electron-hole T-matrix, but where the electron-hole excitations involved are different by
those involved in GW (see Fig. 3)). Based on (5), we can now directly compare the different
approximations. Both GW and T-matrix allow one to describe physical processes involving
three particles: the particle which is added to the system and the electron-hole pair that it cre-
ates. Ideally, one would propagate the three particles together, which can be numerically heavy.
Therefore one chooses to propagate a pair and to treat the third particle in a kind of mean-field
of the other two. This is illustrated in Fig. (3): in GW one propagates together the electron-hole
pair created by the additional particle, whereas in the T-matrix one propagates together the addi-
tional electron (additional hole) and the excited electron (hole left behind) (pp T-matrix) or the
additional electron (additional hole) and the hole left behind in the electron excitation (excited
electron) (eh T-matrix).
As shown in Fig. 3 the additional particle with a given spin couples with a second, excited,
particle (electron or hole) that can have spin up or down. In the GWA, electron and hole have
necessarily the same spin. The T-matrix approximation contains instead also spin-flips.
In general none of the three possibilities (GWA, particle-particle or electron-hole T-matrix) will
give an exhaustive description. This reflects the dilemma of how to decide which two-particle
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Fig. 4: Diagrams corresponding to the self-energy obtained with the first iteration of the
screened T-matrix. The diagrams, from left to right, represent the Hartree, GW, and second-
order screened exchange (SOSEX) terms, respectively.

correlation to privilege in the description of a (at least) three-particle problem. It suggests to
work with combinations.

The success of the GWA is due to the screening of the Coulomb interaction with respect to
Hartree-Fock. In the T-matrix one uses a rough approximation for the screening, i.e. L ≈ L0.
One can go beyond this approximation and include the Hartree potential or even a local part of
the xc self-energy, Σ loc

xc (1) δ(1, 1), in the variation δG−1/δUext contained in L = δG/δUext =

−G (δG−1/δUext)G. This yields L(4, 2; 5, 2) ' G(4, 7) ε−1(7, 2)G(7, 5) where ε−1 is a test-
charge test-charge screening function ε−1 = 1 + vcχ if only the Hartree part is included, oth-
erwise at least a partially test-charge test-electron screening ε−1 = 1 +

(
vc+

δΣloc
xc

δρ

)
χ [6]. This

makes the expression much more, though not fully, consistent: now ε−1 contains a large part
of the derivative of the self-energy, that is also considered in the effective interaction, and L
contains the screening of the formerly independent propagators GG, that is itself based on the
two-particle correlation function. One arrives then at a screened version of the T-matrix (re-
ferred to as Ts in the following), where the bare Coulomb potential in the correlation part of the
(unscreened) T-matrix is replaced by the screened one. The pp screened T-matrix reads

Ts(1, 2; 1′, 4) =− vc(1, 2) δ(1, 1′) δ(4, 2) + vc(1, 2) δ(2, 1′) δ(4, 1)

+ iW (1, 2)G(1, 3)G(2, 5)Ts(3, 5; 1′, 4). (10)

One can write a similar equation also for the eh screened T-matrix. The first iteration of the pp
and eh screened T-matrix equations produces the same self-energy, which contains the Hartree
and GW contributions, and a term corresponding to the second-order screened exchange (SO-
SEX) (see Fig. 4). We hence can conclude that GW is contained in this screened T-matrix
approach, which moreover contains higher-order terms, which can be identified as vertex cor-
rections. For short-range interactions, where screening is not important, the screened T-matrix
reduces to the T-matrix, which is suitable for treating short-range correlation. For long-range
interaction, where, instead, screening is important, we find that the screened T-matrix behaves
more like GW (in its first iteration, indeed, it gives GW and SOSEX, which is actually already
used to improve GW), which is capable of taking into account long-range correlation. Therefore
the screened T-matrix should be able to capture the physics of systems with effective short-range
interactions as well as of systems with effective long-range interactions.
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3 The Hubbard dimer

The Hubbard Hamiltonian can be obtained from the many-body Hamiltonian in (1) in which
the field operators are expressed in the atomic basis (we will consider only one basis function
per atom). Retaining only the diagonal elements of the Coulomb interaction (indicated as U )
and indicating as −t and ε0 the off-diagonal and diagonal elements, respectively, of the kinetic
energy operator, one arrives at

Ĥ = −t
∑
〈i,j〉

∑
σ

ĉ†iσ ĉjσ + U
∑
i

ĉ†i↑ĉi↑ ĉ
†
i↓ĉi↓ + ε0

∑
i

∑
σ

ĉ†iσ ĉiσ + V̂0 . (11)

Here c†iσ and ciσ are the creation and annihilation operators for an electron at site (atomic posi-
tion) i with spin σ, while U is the on-site (spin-independent) interaction, −t is the hopping en-
ergy, and ε0 the orbital energy. The summation

∑
〈i,j〉 is restricted to the nearest-neighbor sites.

The Hamiltonian further contains a potential V0 that can be chosen to fix the zero-energy scale.
The model does not contain a long-range interaction, hence everything linked to non-locality is
not treated, but we can suppose that these kind of issues are well treated by Hartree-Fock, GW,
etc. Moreover, to keep the discussion simple, we will consider only sites that have the same
energy, thus neglecting any inhomogeneity which can mimic the role of the crystal potential
in a solid [24]. The physics of the Hubbard model arises from the competition between the
hopping term, which prefers to delocalize electrons, and the on-site interaction, which favors
localization. The ratio U/t is a measure for the relative contribution of both terms and is the
intrinsic, dimensionless coupling constant of the Hubbard model. Depending on this ratio the
system is a metal or an insulator.
This model can be solved exactly for small clusters. In the following we will consider a
“molecule” made up of two equivalent sites, each with one orbital. We will look at the one-
and two-electron cases (quarter and half filling, respectively) in order to cover a wide physics.

3.1 Exact solution

In order to calculate the exact 1-GF for the Hubbard dimer we start from its Lehmann represen-
tation (2) and we project it onto the (orthonormal) one-electron site basis {ϕi(x)}, such that4

G(x1, x2;ω) =
∑

ij Gij(ω)ϕi(x1)ϕ∗j(x2) and

Gijσ(ω) = lim
η→0+

(∑
m

〈ΨN0 |ĉi|ΨN+1
m 〉〈ΨN+1

m |ĉ†j|ΨN0 〉
ω − (EN+1

m −EN
0 ) + iη

+
∑
n

〈ΨN0 |ĉ
†
j

∣∣ΨN−1
n 〉〈ΨN−1

n |ĉi
∣∣ΨN0 〉

ω − (EN
0 −EN−1

n )− iη

)
, (12)

with the indices i, j running over the sites. The ground-state wavefunction and energy |ΨN0 〉 and
EN

0 of the N -electron system as well as the wavefunctions and energies |ΨN±1
m 〉 and EN±1

m of

4This expression for the 1-GF comes naturally by using the following basis transformation for the field oper-
ators: ψ̂(x) =

∑
i ĉiϕi(x) and ψ̂†(x) =

∑
i ĉ
†
iϕ
∗
i (x), where ĉi and ĉ†i are annihilation and creation operators,

respectively.
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the (N±1)-electron system can be obtained by diagonalizing the Hamiltonian for N−1, N , and
N+1 electrons, separately (as shown in Appendix A).

3.1.1 N = 1

• One site
In the limit t → 0 the two-site Hubbard model should represent two isolated atoms [25,
26]. In order to compare this limiting case with the solution of an isolated atom, we
calculate the exact 1-GF for the case of a one-site Hubbard model with one electron. We
choose as ground state the spin-up configuration | ↑ 〉 which has energy ε0 (equivalently,
the spin-down configuration could be chosen). There is only one state with N−1 = 0

electrons, i.e., the vacuum | 〉 with energy 0, and only one state with N+1 = 2 electrons,
i.e., | ↑↓〉 with energy ε0 + U . Moreover, note that, since we consider a spin-independent
Hamiltonian, the 1-GF in (12) is diagonal in spin. Therefore the exact one-particle Green
function reads

G↑ =
1

ω − ε0 − iη
, G↓ =

1

ω − U − ε0 + iη
. (13)

There is only a removal energy, ω = ε0, and an addition energy, ω = ε0 + U , for this
system. Note that by taking U = 0 in (13) one gets the non-interacting G0.
The exact self-energy can be obtained from the Dyson equation Σ(ω)=G−1

0 (ω)−G−1(ω)

Σ(ω) =

(
0 0

0 U

)
, (14)

which reflects the fact that the electron in the ground-state can interact only with an addi-
tional spin-down electron.

• Two sites
Using the information in Tables 1-2 of the Appendix A we can build the 1-GF at quarter
filling. The 1-GF has the following structure

G(ω) =


G↑11 G↑12 0 0

G↑21↑ G↑22 0 0

0 0 G↓11 G↓12

0 0 G↓21 G↓22

 . (15)

with

G↑ij(ω) =
(−1)i−j

2

(
1

ω − (ε0+t) + iη
+

(−1)i−j

ω − (ε0−t)− iη

)
, (16)

and
G↓ij(ω) =

(−1)i−j

4

(
1

ω − (ε0+t) + iη
+

1

ω − (ε0+t+U) + iη

)

+
1

2

 1
a2

(
1 + 4t

(c−U)

)2

ω −
(
ε0+t− c−U

2

)
+ iη

+

1
b2

(
1− 4t

(c+U)

)2

ω −
(
ε0+t+ c+U

2

)
+ iη

, (17)
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where c =
√

16t2 + U2, a =

√
2
(

16t2

(c−U)2
+ 1
)

, and b =

√
2
(

16t2

(c+U)2
+ 1
)

. The one-

particle Green function is spin-diagonal; the spin-down block has only the electron part,
whereas the spin-up block has both electron and hole parts. This is consistent with the
fact that with a spin-up electron in the ground state one can have only spin-up holes. Note
also that G11↑ = GU=0

11↑ and G12↑ = GU=0
12↑ , whereas

GU=0
ij↓ (ω) =

(−1)i−j

2

(
1

ω − (ε0+t) + iη
+

(−1)i−j

ω − (ε0−t) + iη

)
. (18)

One can interpret the poles of the Green function using a simple molecular picture with
the energies of the bonding and antibonding orbitals at ε0 − t and ε0 + t, respectively,
and with the spin-up electron in the bonding orbital. If U = 0 one can remove (add) a
spin-up (spin-down) electron from (to) the bonding orbital (ω = ε0 − t), and one can add
a spin-up/spin-down electron to the antibonding orbital (ω = ε0 + t). When the on-site
electron-electron interaction U is switched on, the energy for the addition of a spin-down
electron to the bonding state evolves to ω = ε0 + t + (U−c)/2, and the addition energy
to the antibonding state is split into ω = ε0 + t and ω = ε0 + t + U . The addition
of a spin-down electron, furthermore, can excite the system, giving rise to the satellite
ω = ε0 + t+ (U+c)/2.

We now discuss two limiting cases, which are directly related to the importance of corre-
lation: the noninteracting limit and the atomic limit.

– noninteracting limit: U → 0

Of course in this limit one retrieves the noninteracting Green function. The spectral
weight of the pole ω = ε0+t+(c+U)/2, which becomes ω = ε0+3t, is suppressed.
Note that ω = ε0 + 3t deviates from the antibonding peak by an energy ∆ = 2t,
which is a pole of the polarizability P (as shown later in Eq. (22)): this pole of
the Green function involves hence an excitation of the system, which justifies the
identification of the related peak as a satellite.

– atomic limit: t→ 0

We first notice that for t = 0 the ground state energy goes to E0 = ε0 so that it
approaches degeneracy with the other doublet state in the N = 1 spin-up subspace
(see Table 1 in Appendix A). However for any small but finite t this degeneracy
is lifted. In this limit the poles of the Green function reduce to the addition and
removal energies of two isolated atoms, one with one electron and the other one
empty [25, 26]. Indeed the spin-up poles retain the same equal weight (±1/2) and
go towards ω = ε0, which can be interpreted as the removal energy of an atom
with a spin-up electron and the addition energy of an empty atom, respectively. The
spin-down poles ω = ε0 + t and ω = ε0 + t− (c− U)/2, and ω = ε0 + t + U and
ω = ε0 + t+ (c+U)/2 (satellite) merge at ω = ε0 and ω = ε0 +U , respectively, all
with equal weight (±1/4) (see Appendix A). These two energies can be interpreted
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as the energy for the addition of a spin-down electron to an empty atom and to an
atom with a spin-up electron, respectively.

The self-energy Σ(ω) = G−1
0 (ω)−G−1(ω), has the following structure

Σ(ω) =


0 0 0 0

0 0 0 0

0 0 Σ↓11 Σ↓12

0 0 Σ↓12 Σ↓11

. (19)

The self-energy has only a spin-down part, i.e., the electron in the system interacts only
with spin-down electrons. This is in line with the fact that our system consists of one
electron with spin up. When we add a second electron to the system, it can have spin
up or spin down. If the second electron has spin up, the two electrons are locked in a
configuration where two different sites are occupied, and therefore there is no interaction.
If the second electron has spin down, the two electrons can interact.

3.1.2 N = 2

Using the information in Tables 1-3 of the Appendix A we can build the 1-GF at half filling. It
has the structure given in Eq. (15), with the components gives by

Gσ
ij(ω) =

(−1)i−j

2a2

( (
1 + 4t/(c−U)

)2

ω −
(
ε0 − t+ (c+U)/2

)
+ iη

+
(−1)i−j

(
1− 4t/(c−U)

)2

ω −
(
ε0 + t+ (c+U)/2

)
+ iη

)

+
1

2a2

( (
1 + 4t/(c−U)

)2

ω −
(
ε0 + t− (c−U)/2

)
− iη

+
(−1)i−j

(
1− 4t/(c−U)

)2

ω −
(
ε0 − t− (c−U)/2

)
− iη

)
, (20)

which enjoys a nice spin symmetry G↑ij = G↓ij . We can now study the limits U → 0 and t→ 0.

• noninteracting limit: U → 0

In this limit the ground state becomes |Ψ0〉 = 1
2

(
| ↑ , ↓ 〉−| ↓ , ↑ 〉 + | ↑↓ , · 〉+| · , ↑↓ 〉

)
(where |1, 2〉, with occupations of the sites 1, 2 given by · , ↑, ↓ , ↑↓ indicate Slater deter-
minants) with energy E0 = 2(ε0 − t), and the one-particle Green function reduces to the
noninteracting one

GU=0
ijσ (ω) =

(−1)i−j

2

(
1

ω − (ε0+t) + iη
+

(−1)i−j

ω − (ε0−t)− iη

)
. (21)

Note that this is the same as the one for the spin-up block of the one-electron case.

• atomic limit: t→ 0

In the atomic limit there are no double occupancies (Heitler-London limit), therefore the
two electrons, one with spin up and the other with spin down, are localized one on one
site and the other on the other site with equal probability, i.e. the ground state is the singlet
|Ψ0〉 = 1√

2

(
|↑ , ↓ 〉 − |↓ , ↑ 〉

)
. The spectral function thus shows, for each spin, two peaks
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with the same spectral weight (1/2), one for the removal of an electron (peak at ε0), and
one for the addition of a second electron (peak at ε0 + U ), which represents the removal
and addition energies, respectively, of an isolate atom with one electron.

As far as the self-energy is concerned, unlike for the case at half filling, it has a spin-up and
spin-down block, with the two blocks being the same. This again reflects the fact that the system
is symmetric with respect to spin.

3.2 GW

The GW equations, as well as all the other approximations to the self-energy, should, in prin-
ciple, be solved self-consistently, since the self-energy is a functional of the one-body Green
function. In this chapter, however, we will not use self-consistency. In particular for GW we will
use G0 to build W and Σ: Σ = vH + iG0W0, with vH = −ivcG0 and W0 = [1 + ivcG0G0]−1vc.
This approach is called G0W0 or one-shot GW, and it is often used in practice (although one
uses aG0 that already contains part of the interaction through a suitable single-particle Hamilto-
nian, like KS, HF, or quasiparticle self-consistent GW), since a fully self-consistent procedure is
computationally demanding, especially for large systems. Besides this, it is important to stress
that the failures of GW we discuss in this chapter are not solved by self-consistency since they
are rooted in the fundamental structure of the GW approximation.

3.2.1 N = 1

• One site
The RPA polarizability P (ω) = −i

∫
dω′

2π
G(ω+ω′)G(ω′) is zero, consistent with the fact

that the system has only one state (the site orbital) in which it could be excited, which
would however require a spin-flip, which is not allowed. Therefore there is no response
of the system, and thus the screened potential equals the bare Coulomb potential, W = U.
The GW self-energy, therefore, is equal to the exact one, and, consequently, also the
Green function. Therefore, together with the fact that GW is also exact for the empty
atom, for two separate one-site Hubbard models the GWA yields the exact solution, con-
trary to the t → 0 limit of the two sites, as we will show in the following. This shows
again the relation of the GWA to the classical description of the system charge: for the
one-site Hubbard model, where the electron is well confined, the classical description
of the system works well (i.e. one knows where the electron is). For the two-site Hub-
bard model, where, instead, the electron shows its quantum nature, this classical picture
fails. This is in line with the size-consistency problem GW suffers from [8, 9] and it is
analogous to what is observed in DFT [27].

• Two sites
The RPA polarizability P = −iGG is given by

P ↑ij(ω) =
(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
. (22)
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Note that, since we have only one electron with spin up in the ground state the polarizabil-
ity is not zero only for the spin-up block. Moreover the same result is obtained whether
the noninteracting or exactG is used, since they are equal for the spin-up block. The RPA
screened interaction W (ω) =

(
1− UP (ω)

)−1
U becomes

Wij(ω) = Uδij + (−1)i−j
U2t

ω2 − h2
, (23)

with h2 = 4t2 + 2Ut. The self-energy Σ(ω) = vH + i
2π

∫
dω′G(ω+ω′)W (ω′)eiω

′η, has
the following structure,

Σ(ω) =


Σ11↑ Σ12↑ 0 0

Σ12↑ Σ11↑ 0 0

0 0 Σ11↓ Σ12↓

0 0 Σ12↓ Σ22↓

. (24)

A striking difference with respect to the exact self-energy in Eq. (19) is the nonzero
elements of the spin-up block. Moreover, since G↑ = G0↑, G0W0, G0W, GW0, and GW
(with G the exact Green function) give the same expression for the spin-up self-energy.
As we will discuss in the following this is a direct consequence of the self-screening error
in the GWA.
The 1-GF can be obtained from

GGW (ω) =
(
G−1

0 (ω)−Σ(ω)
)−1

. (25)

It reads

GGW
ij↑ (ω) = (−1)i−j

(
1
4

+ 2t+h
4A

ω−ω+
1 +iη

+
1
4
− 2t+h

4A

ω−ω−1 −iη

)
+

1
4
− 2t+h

4A

ω−ω+
2 +iη

+
1
4

+ 2t+h
4A

ω−ω−2 −iη
, (26)

GGW
ij↓ (ω) = (−1)i−j

(
1
4
+2t−h+U/2

4B

ω−ω+
3 +iη

+
1
4
−2t−h+U/2

4B

ω−ω−3 +iη

)
+

1
4
−2t+h−U/2

4C

ω−ω+
4 +iη

+
1
4
+2t+h−U/2

4C

ω−ω−4 +iη
,

(27)

where

A =

√(
h+2t

)2
+

2U2t

h
, B =

√(
h−2t−U

2

)2

+
2U2t

h
, C =

√(
h+2t−U

2

)2

+
2U2t

h

and the poles are at

ω
+/−
1 =

(
2ε0 − h± A

)
/2 , ω

+/−
2 =

(
2ε0 + h± A

)
/2 ,

ω
+/−
3 =

(
2ε0 + h+ U/2±B/2

)
, ω

+/−
4 =

(
2ε0 + h+ U/2± C

)
/2 .

We can now study the noninteracting limit and the atomic limit.
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Fig. 5: Two-site Hubbard model at quarter filling from Ref. [10]: comparison between exact
(solid lines) and GW (dashed lines) renormalized excitation energies ω/t as function of U/t,
with ε0 = t = 1 eV. The thin lines represent weak satellites, which appear with increasing
interaction U . The labels on the left of the figure refer to the exact energies, with ω̃1 = ω̃4 =
ε0 + t, ω̃2 = ε0 − t, ω̃3 = ε0 + t+ U , ω̃5 = ε0 + t+ U/2 + c/2, and ω̃6 = ε0 + t+ U/2− c/2,
whereas the labels on the right refer to the GW energies.

– noninteracting limit: U → 0

In this limit the interacting GW Green function reduces of course to the noninter-
acting one, with the poles ω+

1 , ω−2 , ω+
3 , ω−3 , and ω−4 collapsing to the bonding and

antibonding energies ω = ε0 − t and ω = ε0 + t, respectively. The poles ω−1 , ω+
2 ,

and ω+
4 , instead, collapse to ω = ε0 − 3t and ω = ε0 + 3t with zero intensity. Note

also that the energies ω = ε0 − 3t and ω = ε0 + 3t deviate from the bonding and
antibonding peaks, respectively, by ±2t, which are the poles of the RPA polariz-
ability P . This means that these energies arise from excitations of the system. The
poles ω−1 , ω+

2 , and ω+
4 can be, therefore, identified as satellites.

– atomic limit: t→ 0

In this limit all the spin-up poles acquire an equal weight (±1/4) and go towards
ω = ε0, in agreement with the exact solution. The unphysical poles, and hence the
self-screening problem, cannot be detected in the atomic limit because the excitation
energy 2t→ 0. The spin-down poles ω+

3 and ω+
4 (satellite) go towards ω = ε0 + U

2
,

each with weight (±1/2), whereas ω−3 and ω−4 merge at ω = ε0 with zero weight.
This is in contrast with the exact solution where the four poles go towards ω = ε0

and ω = ε0 + U with equal weight (±1/4). The error stems from the fact that the
GW self-energy is static in this limit (it consists of the Hartree potential U/2 only
for the spin-down block). The exact atomic-limit self-energy, instead, has an extra
term that is frequency-dependent, namely

Σ↓ij(ω) = δij
U

2

(
1 +

U

2(ω−ε0)− U + iη

)
.
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Fig. 6: Two-site Hubbard model at quarter filling: comparison between exact (black continuous
line) and GW (red dashed, green dash-dotted, and black continuous lines for t = 1, 0.1, and 0,
respectively) spectral function (removal part) at U = 4 and ε0 = t.

This self-energy shows, in addition to the Hartree potential, a frequency-dependent
term that creates the extra pole ω = ε0 + U besides the only pole ω = ε0 of the
noninteracting Green function (for t→ 0). The appearance of the peak ω = ε0 + U

is an effect of “strong correlation”. One can understand that the problems of GW
in the atomic limit arise from the interpretation of the charge density: in GW, it is
treated as a classical charge distribution, namely half an electron on each atom in
the limit t → 0, that responds to the additional electron or hole. Instead, it should
rather express the probability for an electron to be on one or the other atom, so that
the additional electron can meet an empty or occupied atom with equal probability,
which leads to the peak splitting.

In Fig. 5 we compare the GW and exact addition/removal energies. The GW approx-
imation yields two satellites more than the exact solution, namely, ω−1 and ω+

2 . These
satellites come from the poles of the spin-up Green function and are produced by the
frequency-dependent spin-up self-energy. This is a consequence of the self-screening
problem the GWA suffers from. The direct consequences of the self-screening error on
photoemission spectra are illustrated in Fig. 6, where we reported the spectral function
A(ω) for the spin-up channel. We see that the exact result shows only one peak, which
corresponds to the site energy ε0, whereas the GW approximation gives in general spuri-
ous peaks at any value of the hopping, except at t = 0. This is due to the fact that one and
the same electron can be used twice; for example, once to be removed, and at the same
time to screen this perturbation. At t = 0, instead, the electron does not hop between the
two sites, therefore there is no screening in the system, W = vc and we retrieve the HF
exact result. The spectral function for the spin-down channel at quarter filling is reported
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Fig. 7: Spectral function at quarter filling: exact (lower panel) vs. GW (middle panel), pp
T-matrix, and screened pp T-matrix (upper panel).

in Fig. 7. The GWA produces a spectral function profile in good agreement with the exact
one at moderately strong interaction U/t (middle left panel). In the atomic limit (middle
right panel), instead, GW produces only one peak.

The inclusion of an explicit vertex in the self-energy, namely a two-point Γ = δ + fxcP

for valence bands and, e.g., Γ = δ for the well separated conduction bands, removes by
construction the self-screening error for the one-electron case. Indeed, using this vertex it
is clear that the self-energy remains unchanged for the spin-down block, whereas for the
spin-up block Σxc = −vH . Therefore, we arrive at

Σ(ω) =


0 0 0 0

0 0 0 0

0 0 Σ↓11 Σ↓12

0 0 Σ↓12 Σ↓22

, (28)

with Σ11↓ and Σ12↓ within the GW approximation. We now get a self-energy with the
same structure as the correct one. It is clear that now the spin-up block of the one-particle
Green function equals the noninteracting Green function, like the exact one. For the spin-
down block we get four poles as in the exact case, although they still differ from the exact
values by the GW error.

We point out that it is essential to use a three-point vertex in order to get the correct
number of poles. Indeed, by using the two-point vertex Γ = δ+fxcP both for valence and
conduction bands, one would get a zero self-energy for the spin-down block. Therefore
the spin-down Green function would equal the noninteracting one, which has only two
poles instead of four as the exact interacting Green function: there would be no satellites
since there would be no screening.
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One can readily understand that these vertex corrections will not correct the wrong atomic
limit of GW, since the two problems have a different nature; therefore a more complex
vertex, able to introduce an additional frequency-dependence in Σ, is needed to fix both.

3.2.2 N = 2

In order to calculate the one-body Green function within the GWA (G0W0), we need the fol-
lowing ingredients,

P σ
ij(ω) =

(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
, (29)

Wij(ω) = Uδij + (−1)i−j
2U2t

ω2 − h′ 2
, (30)

Σσ
ij(ω) =

U

2
δij +

U2t

2h′

(
1

ω − (ε0+t+h′) + iη
+

(−1)i−j

ω − (ε0−t−h′)− iη

)
, (31)

with h′2 = 4t2 + 4tU . The one-body Green function hence reads

GGW
ijσ = (−1)i−j

 1
4

+
h′+2t+U

2

4A′

ω−ω+
1 + iη

+
1
4
− h′+2t+U

2

4A′

ω−ω−1 − iη

+
1
4

+
−h′−2t+U

2

4B′

ω−ω+
2 + iη

+
1
4
− −h

′−2t+U
2

4B′

ω−ω−2 − iη
(32)

with

A′ =

√(
2t+ h′ +

U

2

)2

+
4U2t

h′
, B′ =

√(
2t+ h′ − U

2

)2

+
4U2t

h′
,

and

ω
+/−
1 =

1

2

(
2ε0 − h′ +

U

2
± A′

)
, ω

+/−
2 =

1

2

(
2ε0 + h′ +

U

2
±B′

)
.

We can now study the two limits U → 0 and t→ 0.

• noninteracting limit: U → 0

In this limit h′ ≈ 2t, therefore the poles ω+
1 and ω−2 collapse to the poles ofG0, ω = ε0+2t

and ω = ε0 − 2t, whereas ω−1 and ω+
2 collapse to ω = ε0 − 3t and ω = ε0 + 3t. These

last two poles have zero intensity at U = 0 and deviate from the bonding/antibonding
energies by ±2t (poles of P ), which justify their identification as satellites.

• atomic limit: t→ 0

In the limit t→ 0 we have h′ ≈ 0, from where it follows that the poles ω+
1 and ω+

2 merge
at ω = ε0 + U

2
, whereas the poles ω−1 and ω−2 go towards ω = ε0. This is in contrast with

the exact solution where the poles go towards the poles of the isolated atom (ω = ε0 and
ω = ε0 + U ). This can again be understood considering that GW treats the charge/spin
density as a classical charge distribution, namely an half electron with half spin up and
half an electron with half spin down on each atom that respond to the additional electron
or hole in the atomic limit.
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Fig. 8: Spectral function at half filling: exact (lower panel) vs. GW (middle panel) and screened
pp T-matrix (upper panel).

The spectral function at half filling is reported in Fig. 8: for moderately strong interaction (mid-
dle left panel), GW performs quite well (although the position of the satellites is overestimated),
whereas at strong correlation (middle right panel), no gap is observed.5

Finally, we compare the LUMO at quarter filling with the HOMO at half filling. The LUMO in
the N -electron system should be equal to the HOMO in the N+1-electron system. This occurs
for the exact case, and it is the pole at ω = ε0 +t−(c−U)/2. Within the GW approximation the
two energies, namely ω−4 at quarter filling and ω−2 at half filling, are different. The difference
stems from the different polarizability P , which is used to build the screening for the N and
N+1 cases. This simply shows again that the problem arises from the use of a TC-TC screening,
which depends only on the charge density of the system but not on the charge that is to be
screened. Indeed, the removal of an electron from the N+1-electron system should be screened
by N electrons only—which can be expressed through vertex corrections. The source of this
error comes from the fact that direct and exchange interactions are not treated on equal footing
in GW.

3.3 T-matrix

Also for the T-matrix approximation we adopt the same protocol adopted for the GWA, namely
we use G0 to build T and Σ. Projected in the (orthonormal) site-basis of the Hubbard model the

5We note that the Hubbard dimer at half filling enjoys an interesting symmetry (particle-hole symmetry) [28]
by setting ε0 = −U/2 and V0 = U in the Hubbard Hamiltonian. With this choice the exact 1-GF has the same
expression as in (20) but with ε0 = −U/2. For the GW and T-matrix 1-GF one has to set ε0 = 0. For U 6= 0
the particle-hole symmetry is lost in the GW and T-matrix approximations due to the use of G0. We enforce this
symmetry by dropping the terms U/2 in the poles and corresponding weights of the GW and T-matrix 1-GF.
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(unscreened) T-matrix becomes

T σσ
′

ilkj (ω) = −iδilδjk

(
T̄ σσ

′

1,ij (ω)− δσσ′T̄ σσ1,ij(ω)
)
, (33)

with T̄ σσ′
1 (ω) =

(
1 + ULσσ

′
0 (ω)

)−1
U , from which

Σσ
ij(ω) = −i

∫
dν

2π
Gσ̄
ji(ν) T̄ σσ̄ij (ω±ν). (34)

Here σ̄ indicates a spin opposite to σ, the sign ‘+’ refers to the particle-particle contribution for
which Lσσ

′,pp
0,ij (ω) = −i

∫
dω′

2π
Gσ
ij(ω

′)Gσ′
ij (ω−ω′)e−iω′η, and the sign ‘−’ refers to the electron-

hole contribution for which Lσσ
′,eh

0,ij (ω) = −i
∫
dω′

2π
Gσ
ij(ω

′)Gσ′
ij (ω

′−ω)eiω′η. More details on the
spin and time structure of the T-matrix can be found in Refs. [3, 4].
The screened T-matrix approximation is more difficult to handle, because the screened interac-
tion is frequency dependent. However, in the atomic limit t→ 0 there is no screening in the sys-
tem and the screened T-matrix reduces to the unscreened one. For t > 0 we assume that for the
model used here the major contribution to the T-matrix arises from the on-site screened interac-
tion. This is dominated by the bare interaction U, which justifies to take the screened interaction
in its static (ω = 0) limit. In this case the structure of the screened T-matrix is the same as for the
unscreened T-matrix with the onsite screened Coulomb interaction W = U − (1+δN,2)U2t/h2,
with h2 = 4t2 + 2Ut(1+δN,2) and N the total number of electrons in the system, replacing U.
We notice that with this approximation, in particular assuming a staticW, the screened T-matrix
will not reduce anymore to the unscreened T-matrix in the atomic limit.

3.3.1 N = 1

• One site
In this case the particle-particle correlator Lσσ

′,pp
0 (ω) = −i

∫
dω′

2π
Gσ(ω′)Gσ′

(ω−ω′)e−iω′η

is zero and T = U . The self-energy, therefore, is equal to the exact one, and, conse-
quently, also the Green function

• Two sites
In order to calculate the one-body Green function within the pp T-matrix approximation
(G0Tpp0 ), we need the following ingredients,

Lσσ̄,ppij (ω) = −1

4

(
1

ω − 2(ε0+t) + iη
+

(−1)i−j

ω − 2ε0 + iη

)
, (35)

T̄ σσ̄,ppij (ω) = Uδij +
U2

4

(
1

ω − 2ε0 − U
2
− 2t+ iη

+
1

ω − 2ε0 − U
2

+ iη

)
, (36)

from which the self-energy reads

Σ↑ij = 0, (37)

Σ↓ij =
U

2
δij +

U2

8

(
1

ω − ε0 − U
2
− 3t+ iη

+
(−1)i−j

ω − ε0 − U
2
− t+ iη

)
, (38)
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Fig. 9: Two-site Hubbard model at quarter filling from Ref. [3]: comparison between the exact
spin-down renormalized addition energies ωa/t (solid lines) as function of U/t (left panel) and
Log(U/t) (right panel) and the results obtained from GW (dashes), particle-particle (solid lines,
equal to the exact result), electron-hole (crosses), and 1st iteration unscreened T-matrix (cir-
cles). In the atomic limit the spectral function, i.e., the peak positions and weights, is illustrated
on the right-hand side, upon multiplying by t and taking the t→ 0 limit.

which equals the exact self-energy. Of course this self-energy produces the exact 1-GF.
Note that the unscreened T-matrix approximation does not suffer from the self-screening
problem of GW, as one can expect since no screening is involved.

The eh T-matrix gives a self-energy with the same structure as the pp T-matrix (hence
no self-screening), but with poles that are shifted by U from the exact ones, so that one
cannot retrieve the exact result.

Moreover, since the pp T-matrix gives the exact results, it becomes clear that its screened
version worsens the results, except in the atomic limit, where W → vc and one has
to get back the unscreened T-matrix results. As already discussed, this is not the case
within the static approximation to W we are considering here. However, even with an
approximate W the pp screened T-matrix is better than GW as shown in Fig. 9, where
the renormalized addition energies ωa/t for the spin-down channel are reported vs. U/t.
Particularly interesting is the spectral function at U/t → ∞: unlike the GWA, the T-
matrix approximation “sees” where the electron is, although only the pp T-matrix “sees”
well. Indeed, the eh T-matrix yields two peaks with the correct spectral weight, but at the
wrong position, namely ε0 +U/

√
2 and ε0−U/

√
2. Therefore, it is clear that in the case
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of the Hubbard dimer with one electron, the particle-particle contribution to the T-matrix
describes the essential physics.

Also note from Fig. 9 that the eh T-matrix and the pp T-matrix give the same results at the
first iteration, since Σeh,(1) = Σpp,(1). In particular, in the atomic limit their first iteration
shows two peaks in the spin-down spectral function, although they are not correctly lo-
cated and they do not have the same spectral weight. It hence contains the right physics,
although the results are still poor. Finally the spectral function calculated using the pp
screened T-matrix is shown in Fig. 7: although introducing screening in the pp T-matrix
corrupts the exact result, the spectral function profile is in good agreement with the ex-
act one and of similar quality as the GWA at moderately strong interaction U/t (upper
left panel). In the atomic limit (middle right panel), instead, the screened pp T-matrix is
superior to GW.

3.3.2 N = 2

In this case neither the pp nor the eh unscreened T-matrix reproduce the exact result. In partic-
ular, in the case of the pp T-matrix approximation we get

Lσσ̄,ppij = −1

4

(
1

ω − 2(ε0+t) + iη
− 1

ω − 2(ε0−t)− iη

)
, (39)

T σσ̄,ppij (ω) = Uδij +
U2t

2h̄

(
1

ω − 2ε0 − h̄+ iη
− 1

ω − 2ε0 + h̄− iη

)
, (40)

Σσ
ij(ω) =

U

2
δij +

U2t

4h̄

(
1

ω − ε0 − t− h̄+ iη
+

(−1)i−j

ω − ε0 + t+ h̄− iη

)
, (41)

with h̄2 = 4t2 + 2tU . The one-body Green function hence reads

GT pp

ijσ = (−1)i−j

 1
4

+
h̄+2t+U

2

4A′′

ω−ω+
1 + iη

+
1
4
− h̄+2t+U

2

4A′′

ω−ω−1 − iη

+
1
4

+
−h̄−2t+U

2

4B′′

ω−ω+
2 + iη

+
1
4
− −h̄−2t+U

2

4B′′

ω−ω−2 − iη
(42)

with

A′′ =

√(
2t+ h̄+

U

2

)2

+
2U2t

h̄
, B′′ =

√(
2t+ h̄− U

2

)2

+
2U2t

h′
,

and

ω
+/−
1 =

1

2

(
2ε0 − h̄+

U

2
± A′′

)
, ω

+/−
2 =

1

2

(
2ε0 + h̄+

U

2
±B′′

)
.

Similar equations hold for the eh T-matrix approximation and the pp and eh (statically) screened
T-matrix approximation. The pp T-matrix performs rather well over a wide U/t range as one can
see in Fig. 10. In particular the satellite energies are better described than in GW. The energies
calculated using the electron-hole unscreened T-matrix (not shown in the figure), instead, show
divergencies. Finally, the screened pp T-matrix is overall superior to the GW and unscreened
T-matrix in the selected U/t range in the left panel of Fig. 10. In the U/t → ∞ limit, all
approximations studied are rather poor. Interestingly if one looks at the first iteration, both
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Fig. 10: Two-site Hubbard model at half filling from Ref. [3]: comparison between the exact
renormalized addition/removal energies ω/t (solid lines) as function of U/t (left panel) and
Log(U/t) (right panel) and the results obtained from GW (dashes) and particle-particle (dots)
and screened T-matrix (triangles). In the atomic limit the spectral function, i.e., the peak po-
sitions and weights, is illustrated on the right-hand side, upon multiplying by t and taking the
t→ 0 limit.

the particle-particle and electron-hole contributions to the T-matrix give the exact results for
all t. Finally the spectral function calculated using the pp screened T-matrix is shown in Fig. 8
where one can better appreciate the superiority of the pp screened T-matrix approximation (at
least for the description of satellite energies) with respect to the GWA at moderately strong
interaction U/t (upper left panel). In the atomic limit (middle right panel), instead, the screened
pp T-matrix fails just as GW.

Why is the pp T-matrix approximation exact for one electron in the atomic limit, and not for
two electrons? To derive the unscreened T-matrix we used the approximation δG

δUext
≈ GG. In

the case of one electron this is not an approximation, but it is the exact time-ordered response,
and therefore the (pp) unscreened T-matrix yields the exact result for one electron. This is not
the case for two electrons for which δG

δUext
≈ GG is a rough approximation, and one needs to

include some screening. The screened matrix indeed improves over the unscreened T-matrix for
two electrons even with an approximate RPA screening; such approximate screening is instead
dramatic for one electron and a more accurate screening is needed (as pointed out above the
exact screening would yield the unscreened T-matrix and hence an exact result for one electron).
One should hence use a screened T-matrix with a screened interaction adapted to the system.
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4 Conclusions and outlook

In this chapter we discussed the importance of vertex corrections in relation to two major short-
comings of the GW approximation to the self-energy: the self-screening error and the incorrect
atomic limit. Because of the self-screening, the GWA produces extra unphysical removal and
addition energies in the spectrum of the Hubbard dimer with one electron. We showed that this
error can be corrected by a two-point vertex Γ = δ+fxcP , derived from time-dependent density
functional theory, but it should be used only for the valence state, for which it produces exact
results. For the conduction state, instead, this two-point vertex produces fewer poles than the
exact solution. In fact, it seems to be more reasonable to stick to the TC-TC description of the
screening for the conduction state, with Γ = δ, which yields the correct number of energies, al-
though the values are still different from the exact ones. One could extrapolate these findings for
the case of more bands in the situation where the valence bands are similar and the conduction
bands are localized elsewhere or with different spin. The comparison with the exact solution
for the two-site Hubbard model sheds light on another feature of the GW approximation: in the
atomic limit (t → 0) the GW solution for the two-site model does not reduce to the solution
for two isolated sites; this is caused by the description of the electrons as an average charge
distribution, instead of a probability. The approximate three-point vertex, which cures the self-
screening problem and yields the correct number of poles in the one-particle Green function,
is not sufficient to correct the atomic limit. To correct the atomic limit we have derived a ver-
tex function from a screened version of the T-matrix approximation. The screened T-matrix, in
which Hartree and exchange terms are treated on an equal footing, reduces to the T-matrix in the
atomic limit when a dynamically screened interaction is used, which gives the exact result for
the Hubbard dimer at quarter-filling; even with an approximateW it is better than GW at quarter
filling, whereas at half filling it is overall superior to both the pp T-matrix and GW over a wide
U/t range. This means that the vertex corrections derived from this version of the pp screened
T-matrix can improve over GW. In the atomic limit at half-filling, however, the screened T-
matrix performs as badly as GW. It remains hence to understand “Why, in the atomic limit, is
the pp screened T-matrix exact for one electron but not for two electrons? Which approxima-
tions we use in the derivation of the T-matrix self-energy is harmless for the one-electron case,
but dramatic for the two-electron case? And why? Will realistic systems be more forgiving than
the Hubbard dimer when the screened pp T-matrix approximation is used?”
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A Solutions for 2±1 electrons

To treat the case at 1/4 and 1/2 filling we need to diagonalize the two-site Hamiltonian for one,
two, and three electrons. Since the Hamiltonian conserves particle number we can diagonalize
it separately for the various N sectors. The eigenstates of the system will be linear combinations
of Slater determinants, which are denoted by the kets |1 , 2〉, with occupations of the sites 1 and
2 given by ·, ↑, ↓, ↑↓. We choose V0 = 0, so that the vacuum state ζN=0〉 = | · , · 〉 has zero
energy for the dimer. Moreover, the following convention as to fermionic ordering is used

| ↑↓ , ↑↓ 〉 = c†2↓c
†
2↑c
†
1↓c
†
1↑|01 02〉. (43)

A.1 One electron

In the case of one electron, the basis vectors are | ↑ , · 〉, | ↓ , · 〉, | · , ↑ 〉, and | · , ↓ 〉. In this basis
the Hamiltonian matrix reads

H =


ε0 0 −t 0

0 ε0 0 −t
−t 0 ε0 0

0 −t 0 ε0

, (44)

and we get the eigenvalues Ei and corresponding eigenvectors in Table 1.

Ei | ↑ , · 〉 | ↓ , · 〉 | · , ↑ 〉 | · , ↓ 〉
ε0 − t 0 1/

√
2 0 1/

√
2

ε0 − t 1/
√

2 0 1/
√

2 0
ε0 + t 0 1/

√
2 0 −1/

√
2

ε0 + t 1/
√

2 0 −1/
√

2 0

Table 1: Eigenvalues and corresponding eigenvectors for the one-electron sector.

A.2 Two electrons

In the case of two electrons, the basis vectors are | ↑ , ↓ 〉, | ↓ , ↑ 〉, | ↑ , ↑ 〉, | ↓ , ↓ 〉, | ↑↓ , · 〉, and
| · , ↑↓ 〉. In this basis the Hamiltonian matrix reads

H =



2ε0 0 0 0 −t −t
0 2ε0 0 0 t t

0 0 2ε0 0 0 0

0 0 0 2ε0 0 0

−t t 0 0 2ε0+U 0

−t t 0 0 0 2ε0+U


, (45)

which yields the eigenvalues Ei and corresponding eigenvectors in Table 2, where

c =
√

16t2+U2 a =

√
2

(c−U)

√
16t2 + (c−U)2 , b =

√
2

(c+U)

√
16t2 + (c+U)2 .
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Ei | ↑ , ↓ 〉 | ↓ , ↑ 〉 | ↑ , ↑ 〉 | ↓ , ↓ 〉 | ↑↓ , · 〉 | · , ↑↓ 〉
2ε0 + (U−c)/2 4t

a(c−U)
− 4t
a(c−U)

0 0 1/a 1/a

2ε0 + (U+c)/2 − 4t
b(c+U)

4t
b(c+U)

0 0 1/b 1/b

2ε0 + U 0 0 0 0 −1/
√

2 1/
√

2
2ε0 0 0 0 1 0 0
2ε0 0 0 1 0 0 0
2ε0 1/

√
2 1/

√
2 0 0 0 0

Table 2: Eigenvalues and corresponding eigenvectors for the two-electron sector.

The first three solutions are singlets, the last three triplets. The first singlet is the ground state.
It is interesting to consider the limits U → 0 and U → ∞ or t → 0. The expansion of the
coefficients for these limits are:
U → 0:

c ≈ 4t

(
1 +

U2

32t2

)
(46)

so 1
c−U ≈

1
4t(1+U2/32t2−U/4t) ≈

1
4t

(
1 + U

4t
− U2

32t2
+ U2

16t2

)
≈ 1

4t

(
1 + U

4t
+ U2

32t2

)
and

a =
√

2
√

16t2/(c− U)2 + 1 ≈
√

2

√
(1 +

U

4t
+

U2

32t2
)2 + 1 ≈ 2

√
1 + U/4t+ U2/16t2

≈ 2
(
1 + U/8t+ U2/32t2 − U2/128t2

)
(47)

b =
√

2
√

16t2/(c+ U)2 + 1 ≈
√

2

√
(1− U

4t
+

U2

32t2
)2 + 1

≈ 2
√

1− U/4t+ U2/16t2 ≈ 2
(
1− U/8t+ 3U2/128t2

)
(48)

In the non-interacting (U = 0) case, we have hence a weight of 1/2 for double occupation.
For U →∞

c ≈ U

(
1 +

8t2

U2

)
(49)

a ≈
√

2
√
U2/4t2 + 1 ≈ U√

2t

(
1 + 2t2/U2

)
(50)

b ≈ −a (51)

In particular we get a(c−U) ≈ U√
2t

(1 + 2t2/U2) 8t2/U = 8t√
2
(1+2t2/U2) so that the co-

efficients on the single occupations are ±1/
√

2, whereas double occupancies are impossible
(Heitler-London limit).
For t → 0 we have the same expansion as for U → ∞ since the ratio t/U is what matters;
the only peculiarity is the fact that the ground state energy goes to zero, so that it approaches
degeneracy with the threefold degenerate triplet states (case t = 0). (However for any small but
finite t the ground state is the singlet S = 0).
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A.3 Three electrons

The basis vectors for three electrons are | ↑ , ↑↓ 〉, | ↓ , ↑↓ 〉, | ↑↓ , ↑ 〉, and | ↑↓ , ↓ 〉, and the
Hamiltonian matrix, the same as for one electron but with negative (hole) hopping

H =


3ε0+U 0 t 0

0 ε0+U 0 t

t 0 ε0+U 0

0 t 0 ε0+U

. (52)

This yields eigenvalues Ei and corresponding eigenvectors in Table 3.

Ei |↑ , ↑↓ 〉 |↓ , ↑↓ 〉 |↑↓ , ↑ 〉 |↑↓ , ↓ 〉
3ε0−t+ U 0 −1/

√
2 0 1/

√
2

3ε0−t+ U −1/
√

2 0 1/
√

2 0
3ε0+t+ U 0 1/

√
2 0 1/

√
2

3ε0+t+ U 1/
√

2 0 1/
√

2 0

Table 3: Eigenvalues and corresponding eigenvectors for the three-electron sector.
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[19] W. Hanke and L.J. Sham, Phys. Rev. B 21, 4656 (1980)

[20] G. Strinati, Phys. Rev. B 29, 5718 (1984)



4.30 Pina Romaniello

[21] G. Strinati, Phys. Rev. Lett. 49, 1519 (1982)

[22] V.M. Galitskii, Zh. Eksp. Teor. Fiz. 34, 251 (1958) [Sov. Phys. JETP 7, 104 (1958)]

[23] L.P. Kadanoff and G. Baym: Quantum Statistical Mechanics
(W.A. Benjamin, New York, 1964)

[24] M. Vanzini, L. Reining, and M. Gatti, Eur. Phys. J. B 91, 192 (2018)

[25] J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963)

[26] J. Hubbard, Proc. R. Soc. London, Ser. A 277, 237 (1964)

[27] A.J. Cohen, P. Mori-Sanchez, and W.T. Yang, Science 321, 792 (2008)

[28] G. Stefanucci and R. van Leeuwen:
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(Cambridge University Press, 2013)


	Introduction
	Theoretical background: the GW approximation & beyond
	GW
	Vertex corrections

	The Hubbard dimer
	Exact solution
	GW
	T-matrix

	Conclusions and outlook
	Solutions for 2+/-1 electrons
	One electron
	Two electrons
	Three electrons


