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which can be decomposed into kinetic TC and potential UC

contributions (see Eqs. (75) and (76) in Sec. 5). Addi-
tionally, all practical calculations generalize the preceding
formulas for arbitrary spin using spin-DFT [BH72].

For just one particle (N = 1), there is no electron-electron
repulsion, i.e., Vee = 0. This means

EX = �UH, EC = 0, (N = 1), (19)

i.e., the self-exchange energy exactly cancels the Hartree
self-repulsion. Since there is no interaction, F 0[n] = T [n] =
TS[n], and for one electron we know the explicit functional:

TS = TW =

Z
d3r |rn|2/(8n), (20)

which is called the von Weisacker functional[W35]. For two
electrons in a singlet (N = 2),

EX = �UH/2, TS = TW, (N = 2), (21)

but the correlation components are non-zero and non-trivial.
Many popular forms of approximation exist for EXC[n],

the most common being the local density approximation
(LDA)[KS65; BH72; PW92], the generalized gradient ap-
proximation (GGA)[P86; B88; LYP88; PCVJ92; PBE96], and
hybrids of GGA with exact exchange from a Hartree-Fock
calculation[B93; PEB96; AB99; HSE06]. The computa-
tional ease of DFT calculations relative to more accurate
wavefunction methods usually allows much larger systems
to be calculated, leading to DFT’s immense popularity to-
day[PGB15]. However, all these approximations fail in the
paradigm case of stretched H2, the simplest example of a
strongly correlated system[B01; CMY08; HCRR15].

B. The Hubbard model

The Hubbard Hamiltonian is possibly the most studied,
and simplest, model of a strongly correlated electron system.
It was initially introduced to describe the electronic prop-
erties of narrow-band metals, whose conduction bands are
formed by d and f orbitals, so that electronic correlations be-
come important[H63; F13]. The model was used to describe
ferromagnetic, antiferromagnetic and spin-spiral instabili-
ties and phases, as well as the metal-insulator transition in
metals and oxides, including high-Tc superconductors[Dc94;
LNW06]. The Hubbard model is both a qualitative version of
a physical system depending on what terms are built in[A87;
Sb90] and also a testing-ground for new techniques since
the simpler forms of the Hubbard model are understood very
well[Hb89; BSb89; BSW89; H93].

The model assumes that each atom in the lattice has a
single orbital. The Hamiltonian is typically written as [M93;
Hc96; EFGK05; Te05]

Ĥ =
X

i,�

vi� n̂i��
X

i j �

⇣
tij ĉ

†
i�

ĉj � + h.c.
⌘
+
X

i

Ui n̂i" n̂i#

(22)

where at its simplest the on-site energies are all equal vi� = 0
as well as the Coulomb integrals Ui = U . Further, the
hopping integrals tij typically couple only nearest neighbor
atoms and are equal to a single value t.

We note that here the interaction is of ultra-short range,
so that two electrons only interact if they are on the same
lattice site. Further, they must have opposite spins to obey
the Pauli principle. Simple examples of building in more
complicated physics include using next-nearest-neighbor hop-
pings or nearest neighbors Coulomb integrals for high-Tc

cuprate calculations and magnetic properties[LH87; DM95;
DN98], and varying on-site potentials used to model con-
fining potentials[RNKH08]. Also, adding more orbitals per
site delivers multi-band Hubbard models, where Coulomb
correlations may be added to some or all of the orbitals. The
Hubbard model has an analytical solution in one dimension,
via Bethe ansatz techniques[LW68; LW03].

If the Hubbard U is small enough, a paramagnetic mean-
field (MF) solution provides a reasonable description of
the model in dimensions equal or higher than two. As an
example, the Hubbard model in a honeycomb lattice can
describe correctly a number of features of gated graphene
samples[H06]. However, for large U or in one dimension,
more sophisticated approaches are demanded, which go
beyond the scope of this article[LW68; F13].

We describe briefly the well-known broken-symmetry MF
solution, where the populations of up- and down-spin elec-
trons can di↵er. The standard starting point for the MF
solution neglects completely quantum fluctuations:

(n̂i" � ni") (n̂i# � ni#) = 0, (MF ) (23)

where ni� = hn̂i�i, so that

V̂ MF

ee
=

X

i

U (ni" n̂i# + ni# n̂i" � ni" ni#) . (24)

The MF hamiltonian is then just an e↵ective single-particle
problem

ĤMF =
X

i�

ĥe↵
i�
, (25)

ĥe↵
i�

= vMF

i�
n̂i� � t

X

j

(ĉ†
i�
ĉj� + h.c.), (26)

where vMF

i�
= vi� + U ni�̄. This ĤMF can be easily diago-

nalized if one assumes space-homogeneity of the occupations
ni,� = n�. For large U , the broken symmetry solution (of-
ten ferromagnetic) has lower energy than the paramagnetic
solution.

C. The two-site Hubbard model

We now specialize to a simple Hubbard dimer model
with open boundaries, but we allow di↵erent on-site spin-
independent energies by introducing a third term that pro-
duces asymmetric occupations,

Ĥ = �t
X

�

(ĉ†1� ĉ2�+h.c)+U
X

i

n̂i" n̂i#+
X

i

vin̂i (27)
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1.2 Hubbard dimer DFT on Hubbard Dimer

FIG. 2. Exact ground-state energy of the Hubbard dimer
as a function of �v for several values of U. The qualitative
behavior changes as �v passes through U.

state energy [25] is shown in Fig. 2. Simple limits include
the symmetric case

E = �
p
1 + (U/2)2 + U/2, �n = 0 SYM (3)

An expansion of the square root in the symmetric case
in powers of U has a radius of convergence of 2, while
the opposite expansion in 1/U has a radius of 1/2. Thus
there is a well-defined critical point at U =2, below which
perturbation in the electron-electron coupling strength
converges, i.e., the system is weakly correlated, and above
which it is strongly correlated. Another simple limit is the
non-interacting (tight-binding) case (U =0)

E = �
p

1 +�v2, �n = �2
�vp

1 +�v2
(U=0) (4)

which is given by the blue curve in the figure. We see from
the figure that, on a broad scale, E ⇡ �(�v�U)⇥(�v�
U). Explicit formulas exist for all the excited-state energies,
wavefunctions, and densities also. Approximations in
many di↵erent limits are given in the many appendices of
Reference [25].

We can also extract any other property we wish from the
analytic solution, such as the one-electron density (here the
occupations). Fig. 3 shows the ground-state density as a
function of �v for several values of U. For any U, n2 = n1

when �v = 0. The blue line is essentially the tight-binding
solution. In that case, as �v increases, the occupation
di↵erence rapidly increases towards 2. Then, as we turn on
U, this increase becomes less and less rapid. By the time U
reaches 10, the occupations remain close to balanced until
�v becomes close to 10, when (on the scale of �v), it
rapidly flips to close to 2.

FIG. 3. Ground-state occupation of the Hubbard dimer as
function of �v for several values of U.

Takeaway: We take the 2-site Hubbard model as
our Hamiltonian, and apply DFT concepts directly
to it. Here, it is not a simple model for a more
realistic Hamiltonian. Analytic solutions are trivial,
and we can plot any properties we wish.

2. DENSITY FUNCTIONAL THEORY

We have now defined the machinery required to
understand the central theorems of DFT through the lens
of the Hubbard dimer. The theorems discussed in this
section, like their real-space counterparts, are exact and
apply directly to ground-state calculations (we will cover
time-dependent DFT later). Most DFT calculations are
used to determine the ground-state electronic energy of
a system, or more specifically, determine the energy of a
system as a function of nuclear coordinates. In this section,
we will discuss the underlying principles of these calculations
by examining their role at the most fundamental level, in
their simplest form.
The Hohenberg-Kohn theorem[53] is actually three

theorems in sequence. These were proved in a simple
proof-by-contradiction argument based on the Rayleigh-Ritz
variational principle for the wavefunction. Later, the more
direct and more general constrained search approach was
given by Levy [54] and Lieb [13].

2.1. Hohenberg-Kohn I

HKI proves that the (usual) map of �v ! �n is
invertible, i.e., �n is a single-valued function of �v for
a given U. This is obvious from Fig. 3 (and its inversion,
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2.1 Hohenberg-Kohn I DFT on Hubbard Dimer

FIG. 4. Ground-state potential di↵erence as a function of �n
for several values of U .

Fig. 4), and in the TB case

�v =
�np

4��n2
(U=0). (5)

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y
axes reversed. Clearly, for any given value of U, there is a
unique �v.

A much-stated (but often out of context) corollary of
this is that all properties of the system are (implicitly)
functionals of n1. While this is true, almost all research in
DFT focuses on the ground-state energy functional, because
it is so useful, and we have few useful approximations
for others (e.g., for the first excited-state energy, but see
discussion in TDDFT section). Recently, machine learning
methods have been trained to find some of these other
functionals [55, 56].

2.2. Hohenberg-Kohn II

HKII states that the function below exists and is
independent of �v:

FU(n1) = min
 !n1

h |T̂ + V̂ee| i = max
�v

⇢
E(�v)��v�n/2

�
.

(6)

where the minimum is over all antisymmetrized normalized
2-electron wavefunctions whose occupation of site 1 is n1.
The middle expression is the constrained search definition
due to Levy [57]. The rightmost form is due to Lieb [13].
Either definition works here. This FU functional was termed
universal by HK, by which they simply meant that it does
not depend on the �v of your given system, i.e., it is a
pure density functional. The phrase, often appearing in the
literature, that F is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-
state energy for the dimer, there is no explicit analytic
formula for F. It is trivial to calculate F numerically and
F is shown in the Fig. 5. In the special case of U = 0, it is

FIG. 5. Universal part of the energy function(al) of a Hubbard
dimer as a function of n1 for several values of U. As U
increases, F tends to U |1�n1|.

easy,

FU=0(n1) = TS(n1) = �
p

n1(2� n1). (7)

Here we have attached the subscript S to remind us that
U = 0, so this is the kinetic energy function for a single
Slater determinant, and is indistinguishable from the blue
line of Fig. 5.

2.3. Hohenberg-Kohn III

HKIII states that there is a variational principle for the
ground-state energy directly in terms of the density alone:

E(�v) = min
n1

⇢
FU(n1) +�v�n/2

�
. (8)

This bypasses all the di�culties of approximating the
wavefunction (but of course buries them in the definition
of FU). Usually, the minimum can be found from the Euler
equation

dFU(n1)

dn1
� �v

2
= 0, (9)

and the unique n1(�v) is the one that satisfies this
equation.
This allows us to find a solution to the many-body

problem, without ever calculating the wavefunction. Given
an expression for FU(n1), either exact or approximate, for
any value of �v, one can solve Eq. (9) above to find the
corresponding �v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1)

provides approximate solutions to all many body problems
(every value of �v).
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in the next section.
However, these are not explicit functionals of the density,

but rather they are post-calculation corrections to a stan-
dard TDDFT calculation with an adiabatic kernel. To con-
vert them to density functionals, we express x as a function
of ⇢ by using the relationship x = �@f/@⇢ and the ground-
state density functional F(⇢, u) described in Appendix C 2.
We expand the functional in powers of u as described in
Appendix C 2 a and find

x '
⇢

r
+ ⇢u+

5

8
⇢ r

3
u
2 +

1

4
⇢ r

2
�
1� 4 ⇢2

�
u
3
. (34)

where r =
p
1� ⇢2. This is then used to eliminate x in

Eqs. (33) power by power, yielding:

a
WC2(⇢) =

1

4 r

✓
1 +

1

8
r
4
u
2

◆
,

b
WC2(⇢) =

✓
3 ⇢ r

4

◆2

u
2

✓
1 +

4

3
r (1� 3 ⇢2)u

◆
,(35)

⌫
WC2

f
(⇢) =

2

r
+ 2 ⇢2 u+

1

4
r
3 (1 + 9 ⇢2)u2

.

D. When is a system strongly correlated?

In this section, we discuss the concept of strong correla-
tion in the context of density functional theory, with special
emphasis on the di↵erences from many-body theory. The
key point is that, because the exact KS system reproduces
the exact density of the system, even when correlations are
strong, it can be a much closer mimic of the true system
than the traditional many-body starting point, namely a
self-consistent Hartree-Fock approximation, depending on
what property is of interest. For example, when correlations
are strong, the lowest-energy self-consistent HF approxima-
tion breaks spin symmetry (the unrestricted solution, UHF),
whereas the KS wavefunction always remains a singlet, no
matter how strong correlation is (using the exact ground-
state functional). Thus the greatest di↵erences occur just
as correlations become strong.

The first issue to address is how to decide when our dimer
is strongly correlated. The most studied case is the symmet-
ric case (x = 0). Here, it is clear that a Taylor expansion in
small u has a radius of convergence of u = 2 (branch cut at
u = 2i), while a similar expansion in 1/u also converges up
to 1/2. Thus u = 2 is very definitively the dividing point
between weak and strong correlation.

But DFT is primarily concerned with inhomogeneous sys-
tems, which for our dimer means asymmetry, so our defini-
tion must be generalized to all values of x. When the poten-
tial is highly asymmetric, does this categorization change?
In fact, it does so, in an extremely important fashion.

In Fig. 7, we plot a contour of the square overlap of
the exact ground-state KS wavefunction with the exact in-
teracting wavefunction as a function of z̄ and ū. We have
chosen the value

p
3/2 ⇡ 0.86, as this yields precisely u = 2

(ū = 1/
p
2) when x = 0. We have also colored in the re-

gion where Mott-Hubbard physics dominates (dark blue)

FIG. 7: Physical regimes in the Hubbard dimer: Dark blue is
the pure Mott-Hubbard regime (limited error of approxima-
tions around MH limit), while pale blue is the pure weakly
correlated regime (limited error of appoximation about the
WC limit). The solid black line is the contour of 86% overlap
between the many-body and Kohn-Sham wavefunctions.

and the region where weak correlation approximations work
(pale blue). These will be quantified below. For now, the
important lessons of Fig. 7 are first that most of the phase
diagram is colored pale blue and second that the variable
on the x-axis is x/u, i.e., the asymmetry divided by the in-
teraction. In fact, if this ratio is greater than 1, the dimer
is always weakly correlated, i.e., the black borderline never
crosses x = u, no matter how strong the interaction. (The
edge of the pale blue region simply delineates a contour of
finite error for the WC approximation, as described below).
This is because, in the ground state, both electrons sit on
one site, despite the strength of the interaction.

E. Mott-Hubbard regime and expansions

To capture the physics described above, we introduce a
new variable

z =
x

u
=

�v

U
. (36)

This is the onsite potential di↵erence, but measured on the
scale of the interaction. We show below that this is a more
useful variable than x in considering strong correlation. A
similar variable was used in Ref. [76] in their analysis of a
Hubbard model of LiF. We also define the reduced variables,

ū =
u

p
4 + u2

, z̄ =
z

p
1 + z2

(37)

that run from zero to one as u and x span their whole range
from zero to infinity. Here, u = 2 corresponds to ū = 1/

p
2,

while x = u corresponds to z̄ = 1/
p
2.
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1.1 Background DFT on Hubbard Dimer

the Hubbard dimer is a wonderful teaching tool for basic
concepts, as so many of its exact results can be derived
analytically.

The first use of this material came in a conversation
between KB and Duncan Haldane at a meeting sponsored
by the US Department of Energy. Duncan asked KB to
explain this DFT business, and he suggested the dimer as
the minimal relevant model. After 45 minutes of tough
argument, Haldane said “That’s the first time I’ve ever really
understood this Kohn-Sham scheme. Thanks.” Within 2
years, he was awarded a share in a Nobel Prize in physics
[15]. While correlation is not causation, Haldane did not
win his share until after he understood KS-DFT with the
aid of this simple model!

However, it is important to note that the benefits of this
type of analysis are not solely limited to those working in
theoretical physics. In the fields of theoretical chemistry and
material science, for instance, where ground-state electronic
energies are often required to be extremely accurate [16–18],
there has been growing technological interest in the study of
both chemically complex and strongly correlated materials
[19, 20]. This chapter was partly designed with these
fields in mind, serving as a resource for any computational
scientist who wishes to better comprehend the limitations of
their computational methods. Throughout this text, there
will be various highlighted sections dedicated to examples,
exercises, and key concepts to aid the reader in applying
what is learned in this study to their own endeavors.

There are now a huge number of diverse introductions
to DFT, with many di↵erent perspectives. These include
a simple tutorial for anyone with knowledge of quantum
mechanics [21], a very long online textbook with lots of
nasty problems [22], a many-body introduction [23], and
even video lectures [24]. But this chapter is specifically
aimed at explaining the most essential concepts, and why
strongly correlated systems are more challenging in DFT.
All the Hubbard material appears in two long review articles,
one on the ground state theory [25] and a second on
linear-response TDDFT [26]. The Hubbard dimer has
been recently used to explore e↵ects in other aspects of
DFT, such as magnetic DFT [27], ensemble DFT [28], and
thermal DFT [29].

Takeaway: DFT appears deceptively simple to
understand. It is much trickier than people realize.
This chapter provides a unique explanation of basic
ideas using a simple model.

1.1. Background

We work in the non-relativistic non-magnetic Born-
Oppenheimer approximation, using Hartree atomic units
(e2 = ~ = me = 1). The Hamiltonian for the electrons
is simple and known exactly

Ĥ = T̂ + V̂ee + V̂, (1)

where T̂ is their kinetic energy, V̂ee is the electron-electron
Coulomb repulsion, and V̂ is the one-body potential, equal
to a sum of Coulomb attractions to the ions in an isolated
molecule or solid. We let N be the number of electrons.
A first-principles approach to this problem is to feed a

computer a list of nuclear types and positions and, following
a recipe, it spits out various properties of the electronic
system. In quantum chemistry [30], the recipe is called a
model chemistry [31, 32] if both the method (e.g. Hartree-
Fock) and the basis set are specified.
We contrast this with traditional approaches in condensed

matter [33]. Often a model Hamiltonian is written down,
hoping that it describes the dominant physical e↵ects. For
most interesting problems, standard approaches to solving
this Hamiltonian will fail, i.e., be hopelessly inadequate
or require near-infinite computer resources. An inspired
approximation may be found that works well enough,
and so the underlying physics can be explained. Well
enough will usually mean that with good estimates of the
model parameters, qualitative and even semi-quantitative
agreement is found with key properties of interest.
Each of these are excellent approaches, especially for the

purposes they were designed for. Modern DFT calculations
of weakly correlated materials (and molecules) are of the
first-principles type, and often yield atomic positions within
1-2 hundredths of an Ångstrom and phonon frequencies
within 10%, without any materials-specific input, an
impossibility with a simple model Hamiltonian. On the
other hand, with standard approximations, DFT calculations
always fail whenever a bond such as H2 is stretched, and
correlations become strong [34]. Even simple Mott-Hubbard
physics is beyond such methods (and we shall see why in
this chapter), or Kondo physics (but see Reference [35]).
But more and more of modern materials research requires

the intelligent application of both approaches, and many
methods, such as DFT+U [36] or dynamical mean field
theory (DMFT) [37–40] are being developed to bridge the
gap. Many of the materials of greatest practical interest to
energy research (such as for batteries [19] or photovoltaics
[20]) include a moderate level of correlation that require a
pure DFT approach to be enhanced, by adding vital missing
ingredients of the physics.
The US and Britain are friends ‘separated by a common

language’ [41]. This is essentially true of the mass of
confusion between traditional many-body theory and DFT.
In DFT, we use the same words as in MBT, but giving them
di↵erent meanings, simply because we enjoy confusing folks.
Finally, we mention an intermediate Hamiltonian between

the dazzling complexity of the real physical and chemical
world and the beautiful simplicity of the Hubbard model. A
great challenge to studying the e↵ects of strong correlation
has been the di�culty in producing highly accurate
benchmark data. Molecular electronic structure calculations
are much simpler than materials calculations, and quantum
chemistry has long been able to provide highly accurate
answers for many small molecules at or near equilibrium
[32], as well as the complete binding energy curves of others
[42]. But this is much harder to do for materials. Recent
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illustrations of this di�culty are the careful bench-marking
of model Hamiltonians (such as an 8⇥8 Hubbard lattice)
using highly accurate many-body solvers [43], the amount of
computation needed to find an accurate cohesive energy of
the benzene crystal [44], and the celebration of merely being
able to agree on approximate DFT results with a variety of
solid-state codes [45].

To overcome this di�culty, about 10 years ago, a
mimic of realistic electronic structure calculations was
established [46]. This mimic uses potentials that are defined
continuously in space (i.e., not a lattice model) but are
one-dimensional. In fact, ultimately, a single exponential
was chosen [47], whose details mimic those of the popular
soft Coulomb potential. With about 20 grid points per
‘atom’, standard density-matrix renormalization (DMRG)
methods [48, 49] could then rapidly produce extremely
accurate ground-state energies and densities for chains of
up to about 100 atoms [46]. By living in 1D, not only is
DMRG very e�cient, but the thermodynamic limit (of the
number of atoms going to infinity with fixed interatomic
spacing) is also reached much more quickly than in 3D.
Moreover, the parameters were chosen so that standard
density functional approximations, such as the local density
approximation [50], succeeded and failed in ways that were
qualitatively similar to those in the real world [51]. We will
refer to this 1D laboratory for further demonstration of some
of the simple results shown in this chapter.

Takeaway: DFT is ideally suited to produce
useful accuracy for ground-state energetics of
realistic Hamiltonians. Many-body theory is more
often used to produce approximate answers to
model Hamiltonians, and often focuses on response
properties. Both are useful in their own fields and,
increasingly, interesting problems require input from
both.

1.2. Hubbard dimer

The Hubbard model (in 1, 2 or 3D) [52] is the standard
model for studying the e↵ects of strong correlation on
electrons. By default, it implies an infinite periodic array
of sites. For our demonstration, we simply need two sites.
We have N = 2 and the ground-state is always a singlet.
The Hamiltonian (in 2nd quantization) is

Ĥ = �t

X

�

⇣
ĉ
†
1� ĉ2� + h.c.

⌘
+ U

X

i

n̂i" n̂i# +
X

i

vin̂i .

(2)

The kinetic term is just hopping between the sites, and is the
discretization of the kinetic operator on the lattice, with the
diagonal elements set to 0. The electron-electron repulsion
is just an onsite U, while the one-body operator is just an
on-site potential, v1 and v2.

In this chapter, we imagine a world in which Eq. (1) is
replaced by Eq. (2), i.e., as if the many-body problem to

FIG. 1. Two distinct regimes of the asymmetric Hubbard
dimer. On the left, the charging energy is much greater than
the di↵erence in on-site potentials, and the left- and right-
occupation numbers are similar. On the right, the situation
is reversed, and the occupation on the left is much greater
than that of the right.

be solved is simply that of Eq. (2). So, for us, the Hubbard
dimer is not an approximation to anything. We will choose
the values of U, t, and vi as we wish, to explore various
regimes in the model. Any question concerning the origins
of these values in terms of realistic orbitals and matrix
elements is irrelevant to our work here.
Since a constant in the potential is just a shift in the

energy, we set v2 =�v1 and use the parameter �v= v2�v1

as the sole determinant of the potential of our system.
Similarly, withN =2, n2 =N�n1, and we use�n=n2�n1

as the single parameter characterizing the ground-state
density. Thus ground-state DFT in this model is simply site-
occupation function theory (SOFT) and density functionals
are replaced by simple functions of a single variable, �n.
Finally, we choose t=1/2 and report all variables in units
of 2t, as one can scale all energies by a constant.
Di↵erent physics appears depending on the ratio of U to

�v, i.e., on-site repulsion versus inhomogeneity, see Fig. 1.
When U ��v, the system is strongly correlated, with both
site occupations close to 1, despite any inhomogeneity. For
�v � U, the system is weakly correlated, and the on-site
U is insu�cient to stop one occupation becoming much
greater than the other.
For those with a chemical inclination, this is a minimal

basis model for a diatomic with 2 electrons (with some
matrix elements and orbital overlap ignored). For H2,
�v = 0, but t decreases as the separation between the
nuclei is increased, so that U (in units of 2t) grows
exponentially. The ground-state is close to a single Slater
determinant near equilibrium (U⌧1), so that Hartree-Fock
(HF) is a reasonable approximation. But U�1 when
very stretched, so that the ground-state is now a Heitler-
London wavefunction, and (restricted) HF is very poor. The
highly unsymmetric case corresponds to HeH+, where both
electrons reside on the He side, as long as �v remains larger
than U as the bond is stretched.
There are well-known analytic solutions for all states of

the 2-site Hubbard model and the behavior of the ground-
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FIG. 4. Ground-state potential di↵erence as a function of �n
for several values of U .

Fig. 4), and in the TB case

�v =
�np

4��n2
(U=0). (5)

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y
axes reversed. Clearly, for any given value of U, there is a
unique �v.

A much-stated (but often out of context) corollary of
this is that all properties of the system are (implicitly)
functionals of n1. While this is true, almost all research in
DFT focuses on the ground-state energy functional, because
it is so useful, and we have few useful approximations
for others (e.g., for the first excited-state energy, but see
discussion in TDDFT section). Recently, machine learning
methods have been trained to find some of these other
functionals [55, 56].

2.2. Hohenberg-Kohn II

HKII states that the function below exists and is
independent of �v:

FU(n1) = min
 !n1

h |T̂ + V̂ee| i = max
�v

⇢
E(�v)��v�n/2

�
.

(6)

where the minimum is over all antisymmetrized normalized
2-electron wavefunctions whose occupation of site 1 is n1.
The middle expression is the constrained search definition
due to Levy [57]. The rightmost form is due to Lieb [13].
Either definition works here. This FU functional was termed
universal by HK, by which they simply meant that it does
not depend on the �v of your given system, i.e., it is a
pure density functional. The phrase, often appearing in the
literature, that F is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-
state energy for the dimer, there is no explicit analytic
formula for F. It is trivial to calculate F numerically and
F is shown in the Fig. 5. In the special case of U = 0, it is

FIG. 5. Universal part of the energy function(al) of a Hubbard
dimer as a function of n1 for several values of U. As U
increases, F tends to U |1�n1|.

easy,

FU=0(n1) = TS(n1) = �
p

n1(2� n1). (7)

Here we have attached the subscript S to remind us that
U = 0, so this is the kinetic energy function for a single
Slater determinant, and is indistinguishable from the blue
line of Fig. 5.

2.3. Hohenberg-Kohn III

HKIII states that there is a variational principle for the
ground-state energy directly in terms of the density alone:

E(�v) = min
n1

⇢
FU(n1) +�v�n/2

�
. (8)

This bypasses all the di�culties of approximating the
wavefunction (but of course buries them in the definition
of FU). Usually, the minimum can be found from the Euler
equation

dFU(n1)

dn1
� �v

2
= 0, (9)

and the unique n1(�v) is the one that satisfies this
equation.
This allows us to find a solution to the many-body

problem, without ever calculating the wavefunction. Given
an expression for FU(n1), either exact or approximate, for
any value of �v, one can solve Eq. (9) above to find the
corresponding �v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1)

provides approximate solutions to all many body problems
(every value of �v).
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FIG. 2. Exact ground-state energy of the Hubbard dimer
as a function of �v for several values of U. The qualitative
behavior changes as �v passes through U.

state energy [25] is shown in Fig. 2. Simple limits include
the symmetric case

E = �
p
1 + (U/2)2 + U/2, �n = 0 SYM (3)

An expansion of the square root in the symmetric case
in powers of U has a radius of convergence of 2, while
the opposite expansion in 1/U has a radius of 1/2. Thus
there is a well-defined critical point at U =2, below which
perturbation in the electron-electron coupling strength
converges, i.e., the system is weakly correlated, and above
which it is strongly correlated. Another simple limit is the
non-interacting (tight-binding) case (U =0)

E = �
p

1 +�v2, �n = �2
�vp

1 +�v2
(U=0) (4)

which is given by the blue curve in the figure. We see from
the figure that, on a broad scale, E ⇡ �(�v�U)⇥(�v�
U). Explicit formulas exist for all the excited-state energies,
wavefunctions, and densities also. Approximations in
many di↵erent limits are given in the many appendices of
Reference [25].

We can also extract any other property we wish from the
analytic solution, such as the one-electron density (here the
occupations). Fig. 3 shows the ground-state density as a
function of �v for several values of U. For any U, n2 = n1

when �v = 0. The blue line is essentially the tight-binding
solution. In that case, as �v increases, the occupation
di↵erence rapidly increases towards 2. Then, as we turn on
U, this increase becomes less and less rapid. By the time U
reaches 10, the occupations remain close to balanced until
�v becomes close to 10, when (on the scale of �v), it
rapidly flips to close to 2.

FIG. 3. Ground-state occupation of the Hubbard dimer as
function of �v for several values of U.

Takeaway: We take the 2-site Hubbard model as
our Hamiltonian, and apply DFT concepts directly
to it. Here, it is not a simple model for a more
realistic Hamiltonian. Analytic solutions are trivial,
and we can plot any properties we wish.

2. DENSITY FUNCTIONAL THEORY

We have now defined the machinery required to
understand the central theorems of DFT through the lens
of the Hubbard dimer. The theorems discussed in this
section, like their real-space counterparts, are exact and
apply directly to ground-state calculations (we will cover
time-dependent DFT later). Most DFT calculations are
used to determine the ground-state electronic energy of
a system, or more specifically, determine the energy of a
system as a function of nuclear coordinates. In this section,
we will discuss the underlying principles of these calculations
by examining their role at the most fundamental level, in
their simplest form.
The Hohenberg-Kohn theorem[53] is actually three

theorems in sequence. These were proved in a simple
proof-by-contradiction argument based on the Rayleigh-Ritz
variational principle for the wavefunction. Later, the more
direct and more general constrained search approach was
given by Levy [54] and Lieb [13].

2.1. Hohenberg-Kohn I

HKI proves that the (usual) map of �v ! �n is
invertible, i.e., �n is a single-valued function of �v for
a given U. This is obvious from Fig. 3 (and its inversion,

4
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FIG. 4. Ground-state potential di↵erence as a function of �n
for several values of U .

Fig. 4), and in the TB case

�v =
�np

4��n2
(U=0). (5)

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y
axes reversed. Clearly, for any given value of U, there is a
unique �v.

A much-stated (but often out of context) corollary of
this is that all properties of the system are (implicitly)
functionals of n1. While this is true, almost all research in
DFT focuses on the ground-state energy functional, because
it is so useful, and we have few useful approximations
for others (e.g., for the first excited-state energy, but see
discussion in TDDFT section). Recently, machine learning
methods have been trained to find some of these other
functionals [55, 56].

2.2. Hohenberg-Kohn II

HKII states that the function below exists and is
independent of �v:

FU(n1) = min
 !n1

h |T̂ + V̂ee| i = max
�v

⇢
E(�v)��v�n/2
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.

(6)

where the minimum is over all antisymmetrized normalized
2-electron wavefunctions whose occupation of site 1 is n1.
The middle expression is the constrained search definition
due to Levy [57]. The rightmost form is due to Lieb [13].
Either definition works here. This FU functional was termed
universal by HK, by which they simply meant that it does
not depend on the �v of your given system, i.e., it is a
pure density functional. The phrase, often appearing in the
literature, that F is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-
state energy for the dimer, there is no explicit analytic
formula for F. It is trivial to calculate F numerically and
F is shown in the Fig. 5. In the special case of U = 0, it is

FIG. 5. Universal part of the energy function(al) of a Hubbard
dimer as a function of n1 for several values of U. As U
increases, F tends to U |1�n1|.

easy,

FU=0(n1) = TS(n1) = �
p

n1(2� n1). (7)

Here we have attached the subscript S to remind us that
U = 0, so this is the kinetic energy function for a single
Slater determinant, and is indistinguishable from the blue
line of Fig. 5.

2.3. Hohenberg-Kohn III

HKIII states that there is a variational principle for the
ground-state energy directly in terms of the density alone:

E(�v) = min
n1

⇢
FU(n1) +�v�n/2

�
. (8)

This bypasses all the di�culties of approximating the
wavefunction (but of course buries them in the definition
of FU). Usually, the minimum can be found from the Euler
equation

dFU(n1)

dn1
� �v

2
= 0, (9)

and the unique n1(�v) is the one that satisfies this
equation.
This allows us to find a solution to the many-body

problem, without ever calculating the wavefunction. Given
an expression for FU(n1), either exact or approximate, for
any value of �v, one can solve Eq. (9) above to find the
corresponding �v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1)

provides approximate solutions to all many body problems
(every value of �v).
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functionals of n1. While this is true, almost all research in
DFT focuses on the ground-state energy functional, because
it is so useful, and we have few useful approximations
for others (e.g., for the first excited-state energy, but see
discussion in TDDFT section). Recently, machine learning
methods have been trained to find some of these other
functionals [55, 56].
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Either definition works here. This FU functional was termed
universal by HK, by which they simply meant that it does
not depend on the �v of your given system, i.e., it is a
pure density functional. The phrase, often appearing in the
literature, that F is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-
state energy for the dimer, there is no explicit analytic
formula for F. It is trivial to calculate F numerically and
F is shown in the Fig. 5. In the special case of U = 0, it is
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U = 0, so this is the kinetic energy function for a single
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2.3. Hohenberg-Kohn III

HKIII states that there is a variational principle for the
ground-state energy directly in terms of the density alone:

E(�v) = min
n1

⇢
FU(n1) +�v�n/2
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. (8)

This bypasses all the di�culties of approximating the
wavefunction (but of course buries them in the definition
of FU). Usually, the minimum can be found from the Euler
equation

dFU(n1)

dn1
� �v

2
= 0, (9)

and the unique n1(�v) is the one that satisfies this
equation.
This allows us to find a solution to the many-body

problem, without ever calculating the wavefunction. Given
an expression for FU(n1), either exact or approximate, for
any value of �v, one can solve Eq. (9) above to find the
corresponding �v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1)

provides approximate solutions to all many body problems
(every value of �v).
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Takeaway: The HK theorems prove the existence
of an exact variational principle for the ground-state
energy based on the density, not the wavefunction,
but give no information on how to approximate it.
This is an (almost) useless statement in practice.
But to any unbeliever in DFT, one can always tell
them (to go look at) FU.

3. KOHN-SHAM DFT

The original DFT, called Thomas-Fermi theory [58, 59],
tried to approximate FU(n1) directly, but such direct
approximations have never been accurate enough for most
electronic structure calculations. A tremendous step
forward occurred when Kohn and Sham considered a
fictitious system of non-interacting fermions with the same
ground-state density as the true many-body one [60]. In
our case, this is just the TB problem, for which we already
have explicit solutions.

They wrote the F function in terms of quantities that
could easily be calculated in such a system:

FU(n1) = TS(n1) + UH(n1) + EXC(n1). (10)

Here, TS is just the TB hopping energy of Eq. (4), and
the Hartree energy is just the mean-field electron-electron
repulsion

UH =
U

2

�
n
2
1 + n

2
2

�
, (11)

which is an explicit function of the occupations. Then EXC,
the exchange-correlation (XC) energy (about which, much
more, later) is simply everything else, i.e., EXC is defined
by Eq. (10). It is then trivial to show, from the Euler
equation, that the TB potentials that will reproduce the
exact occupations are

vS,i = vi + Uni +
@EXC

@ni
. (12)

The first correction to vi is the Hartree potential, while the
second is the XC potential. These KS TB equations must
be solved self-consistently, as the potentials depend on the
occupations. Once converged, the final densities can be
used to extract the total energy of the MB system, via

E = TS+UH+EXC+V = "�UH+EXC��vXC�n/2 , (13)

where " is the eigenvalue in the TB KS calculation. Again,
just like in the HK case, once EXC(n1) is given (either
approximate or exact), the KS equations can be solved
for any electronic system and a ground-state energy and
occupation extracted.

The wondrous improvement due to the KS scheme is
that only a small fraction of the total energy (the XC
part) need be approximated. Many of the most important
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quantum e↵ects, such as screening, shell structure, binding
energies, etc. are mostly accounted for by the quantum
e↵ects of the one-body system. Finally, a very simple,
intuitive approximation suggested by KS themselves (the
local density approximation (LDA) [50, 61]) produced far
better results than they expected (but with binding energy
errors too large for quantum chemistry taste).
Fig. 6 gives us some sense of how this works, for �v = 1.

Then, if U = 0, most occupation is on the left. For U = 2,
the repulsion makes the occupations more equal. The KS
potential is simply that TB potential that produces those
(many-body) occupations. So it must be a smaller potential
di↵erence than the real potential. One can see that the
Hartree potential will typically overestimate repulsion, while
XC corrects that to give the exact answer. Finally, when U

is ramped up to 5, the occupations become very close to
equal, and the KS potential di↵erence becomes very small.
Traditionally, EXC is separated into an exchange and a

correlation contribution. The exchange contribution is then
defined as

EX = h�S|V̂ee|�Si � UH, (14)

where �S is the KS wavefunction, and EX is always negative.
Then one can show correlation is just

EC = h |Ĥ| i � h�S|Ĥ|�Si (15)

and, by the variational principle, is also never positive.
These definitions (almost) match those of quantum
chemistry [62], except that in KS-DFT, all orbitals come
from a single potential, while in HF orbitals are freely
chosen to minimize the HF energy. But there are some
surprises relative to the traditional many-body expansion.
For example, because of the definitions, EX includes some
‘self-exchange’, i.e., it is non-zero even for a single electron
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Takeaway: The HK theorems prove the existence
of an exact variational principle for the ground-state
energy based on the density, not the wavefunction,
but give no information on how to approximate it.
This is an (almost) useless statement in practice.
But to any unbeliever in DFT, one can always tell
them (to go look at) FU.
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The original DFT, called Thomas-Fermi theory [58, 59],
tried to approximate FU(n1) directly, but such direct
approximations have never been accurate enough for most
electronic structure calculations. A tremendous step
forward occurred when Kohn and Sham considered a
fictitious system of non-interacting fermions with the same
ground-state density as the true many-body one [60]. In
our case, this is just the TB problem, for which we already
have explicit solutions.

They wrote the F function in terms of quantities that
could easily be calculated in such a system:

FU(n1) = TS(n1) + UH(n1) + EXC(n1). (10)

Here, TS is just the TB hopping energy of Eq. (4), and
the Hartree energy is just the mean-field electron-electron
repulsion
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2.1 Hohenberg-Kohn I DFT on Hubbard Dimer

FIG. 4. Ground-state potential di↵erence as a function of �n
for several values of U .

Fig. 4), and in the TB case

�v =
�np

4��n2
(U=0). (5)

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y
axes reversed. Clearly, for any given value of U, there is a
unique �v.

A much-stated (but often out of context) corollary of
this is that all properties of the system are (implicitly)
functionals of n1. While this is true, almost all research in
DFT focuses on the ground-state energy functional, because
it is so useful, and we have few useful approximations
for others (e.g., for the first excited-state energy, but see
discussion in TDDFT section). Recently, machine learning
methods have been trained to find some of these other
functionals [55, 56].

2.2. Hohenberg-Kohn II

HKII states that the function below exists and is
independent of �v:

FU(n1) = min
 !n1

h |T̂ + V̂ee| i = max
�v

⇢
E(�v)��v�n/2

�
.

(6)

where the minimum is over all antisymmetrized normalized
2-electron wavefunctions whose occupation of site 1 is n1.
The middle expression is the constrained search definition
due to Levy [57]. The rightmost form is due to Lieb [13].
Either definition works here. This FU functional was termed
universal by HK, by which they simply meant that it does
not depend on the �v of your given system, i.e., it is a
pure density functional. The phrase, often appearing in the
literature, that F is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-
state energy for the dimer, there is no explicit analytic
formula for F. It is trivial to calculate F numerically and
F is shown in the Fig. 5. In the special case of U = 0, it is

FIG. 5. Universal part of the energy function(al) of a Hubbard
dimer as a function of n1 for several values of U. As U
increases, F tends to U |1�n1|.

easy,

FU=0(n1) = TS(n1) = �
p

n1(2� n1). (7)

Here we have attached the subscript S to remind us that
U = 0, so this is the kinetic energy function for a single
Slater determinant, and is indistinguishable from the blue
line of Fig. 5.

2.3. Hohenberg-Kohn III

HKIII states that there is a variational principle for the
ground-state energy directly in terms of the density alone:

E(�v) = min
n1

⇢
FU(n1) +�v�n/2

�
. (8)

This bypasses all the di�culties of approximating the
wavefunction (but of course buries them in the definition
of FU). Usually, the minimum can be found from the Euler
equation

dFU(n1)

dn1
� �v

2
= 0, (9)

and the unique n1(�v) is the one that satisfies this
equation.
This allows us to find a solution to the many-body

problem, without ever calculating the wavefunction. Given
an expression for FU(n1), either exact or approximate, for
any value of �v, one can solve Eq. (9) above to find the
corresponding �v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1)

provides approximate solutions to all many body problems
(every value of �v).
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Takeaway: The HK theorems prove the existence
of an exact variational principle for the ground-state
energy based on the density, not the wavefunction,
but give no information on how to approximate it.
This is an (almost) useless statement in practice.
But to any unbeliever in DFT, one can always tell
them (to go look at) FU.

3. KOHN-SHAM DFT

The original DFT, called Thomas-Fermi theory [58, 59],
tried to approximate FU(n1) directly, but such direct
approximations have never been accurate enough for most
electronic structure calculations. A tremendous step
forward occurred when Kohn and Sham considered a
fictitious system of non-interacting fermions with the same
ground-state density as the true many-body one [60]. In
our case, this is just the TB problem, for which we already
have explicit solutions.

They wrote the F function in terms of quantities that
could easily be calculated in such a system:

FU(n1) = TS(n1) + UH(n1) + EXC(n1). (10)

Here, TS is just the TB hopping energy of Eq. (4), and
the Hartree energy is just the mean-field electron-electron
repulsion
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which is an explicit function of the occupations. Then EXC,
the exchange-correlation (XC) energy (about which, much
more, later) is simply everything else, i.e., EXC is defined
by Eq. (10). It is then trivial to show, from the Euler
equation, that the TB potentials that will reproduce the
exact occupations are

vS,i = vi + Uni +
@EXC

@ni
. (12)

The first correction to vi is the Hartree potential, while the
second is the XC potential. These KS TB equations must
be solved self-consistently, as the potentials depend on the
occupations. Once converged, the final densities can be
used to extract the total energy of the MB system, via

E = TS+UH+EXC+V = "�UH+EXC��vXC�n/2 , (13)

where " is the eigenvalue in the TB KS calculation. Again,
just like in the HK case, once EXC(n1) is given (either
approximate or exact), the KS equations can be solved
for any electronic system and a ground-state energy and
occupation extracted.

The wondrous improvement due to the KS scheme is
that only a small fraction of the total energy (the XC
part) need be approximated. Many of the most important

FIG. 6. KS DFT view of an asymmetric half-filled Hubbard
dimer as a function of U . The on-site potential di↵erence �v
is shown in black and the KS on-site potential di↵erence �vS
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quantum e↵ects, such as screening, shell structure, binding
energies, etc. are mostly accounted for by the quantum
e↵ects of the one-body system. Finally, a very simple,
intuitive approximation suggested by KS themselves (the
local density approximation (LDA) [50, 61]) produced far
better results than they expected (but with binding energy
errors too large for quantum chemistry taste).
Fig. 6 gives us some sense of how this works, for �v = 1.

Then, if U = 0, most occupation is on the left. For U = 2,
the repulsion makes the occupations more equal. The KS
potential is simply that TB potential that produces those
(many-body) occupations. So it must be a smaller potential
di↵erence than the real potential. One can see that the
Hartree potential will typically overestimate repulsion, while
XC corrects that to give the exact answer. Finally, when U

is ramped up to 5, the occupations become very close to
equal, and the KS potential di↵erence becomes very small.
Traditionally, EXC is separated into an exchange and a

correlation contribution. The exchange contribution is then
defined as

EX = h�S|V̂ee|�Si � UH, (14)

where �S is the KS wavefunction, and EX is always negative.
Then one can show correlation is just

EC = h |Ĥ| i � h�S|Ĥ|�Si (15)

and, by the variational principle, is also never positive.
These definitions (almost) match those of quantum
chemistry [62], except that in KS-DFT, all orbitals come
from a single potential, while in HF orbitals are freely
chosen to minimize the HF energy. But there are some
surprises relative to the traditional many-body expansion.
For example, because of the definitions, EX includes some
‘self-exchange’, i.e., it is non-zero even for a single electron
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the exchange-correlation (XC) energy (about which, much
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by Eq. (10). It is then trivial to show, from the Euler
equation, that the TB potentials that will reproduce the
exact occupations are

vS,i = vi + Uni +
@EXC

@ni
. (12)

The first correction to vi is the Hartree potential, while the
second is the XC potential. These KS TB equations must
be solved self-consistently, as the potentials depend on the
occupations. Once converged, the final densities can be
used to extract the total energy of the MB system, via
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where " is the eigenvalue in the TB KS calculation. Again,
just like in the HK case, once EXC(n1) is given (either
approximate or exact), the KS equations can be solved
for any electronic system and a ground-state energy and
occupation extracted.
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quantum e↵ects, such as screening, shell structure, binding
energies, etc. are mostly accounted for by the quantum
e↵ects of the one-body system. Finally, a very simple,
intuitive approximation suggested by KS themselves (the
local density approximation (LDA) [50, 61]) produced far
better results than they expected (but with binding energy
errors too large for quantum chemistry taste).
Fig. 6 gives us some sense of how this works, for �v = 1.

Then, if U = 0, most occupation is on the left. For U = 2,
the repulsion makes the occupations more equal. The KS
potential is simply that TB potential that produces those
(many-body) occupations. So it must be a smaller potential
di↵erence than the real potential. One can see that the
Hartree potential will typically overestimate repulsion, while
XC corrects that to give the exact answer. Finally, when U

is ramped up to 5, the occupations become very close to
equal, and the KS potential di↵erence becomes very small.
Traditionally, EXC is separated into an exchange and a

correlation contribution. The exchange contribution is then
defined as

EX = h�S|V̂ee|�Si � UH, (14)

where �S is the KS wavefunction, and EX is always negative.
Then one can show correlation is just

EC = h |Ĥ| i � h�S|Ĥ|�Si (15)

and, by the variational principle, is also never positive.
These definitions (almost) match those of quantum
chemistry [62], except that in KS-DFT, all orbitals come
from a single potential, while in HF orbitals are freely
chosen to minimize the HF energy. But there are some
surprises relative to the traditional many-body expansion.
For example, because of the definitions, EX includes some
‘self-exchange’, i.e., it is non-zero even for a single electron
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di↵erence than the real potential. One can see that the
Hartree potential will typically overestimate repulsion, while
XC corrects that to give the exact answer. Finally, when U

is ramped up to 5, the occupations become very close to
equal, and the KS potential di↵erence becomes very small.
Traditionally, EXC is separated into an exchange and a

correlation contribution. The exchange contribution is then
defined as

EX = h�S|V̂ee|�Si � UH, (14)

where �S is the KS wavefunction, and EX is always negative.
Then one can show correlation is just
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surprises relative to the traditional many-body expansion.
For example, because of the definitions, EX includes some
‘self-exchange’, i.e., it is non-zero even for a single electron
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(where EX is �UH and EC = 0). DFT approximations
which do not satisfy these conditions for all one-electron
densities are said to have self-interaction errors [63].
Moreover, ‘higher-order exchange e↵ects’ are all lumped
into the correlation energy. In any event, for our 2-electron
problem, in a spin singlet, EX = �UH/2, but no simple
relation exists for larger N.

The traditional Hartree-Fock approximation comes from
expanding the electron-electron interaction to first order,
which means neglecting EC, and then minimizing the
energy. In full DFT terms, for our 2-electron system,

F
HF

= TS +
1

2
UH, (16)

or in KS-DFT terms

E
HF
XC

= �UH/2 . (17)

Thus, solving the TB equation self-consistently with
Eq. (17) produces the minimum for the total energy using
F

HF of Eq. (16).
In Fig. 7, we show the contributions to the KS potential

for a sequence of di↵erent U values, as a function of the
occupation. The e↵ect of repulsion is to always oppose
the potential di↵erence, making the KS potential di↵erence
smaller. In the first, U is small, and correlation is of order
U

2 (see Reference [25]). Thus the correlation contribution
is negligible (red and green overlap) and HF is an excellent
approximation. In the middle, U = 1 is moderate, and
now we begin to see the di↵erence correlation makes in the
potential. Moreover, its e↵ect is to make �vHXC deviate
from a straight line. Finally, for strong correlation, the
HXC potential (almost) exactly is equal and opposite to the
one-body potential. Again, the HX contribution has much
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Comments

• Ground-state DFT is a machinery for extracting 
ground-state electronic energies 

• Almost all calculations use KS scheme plus 
approximate XC

• 99% of all applications of gsDFT are to find E 
as function of nuclear coordinates

• Even the density can be extracted from E
• Uses about 30% of NSERC’s supercomputers
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„j(r) = ‘j„j(r),
Nÿ

j=1

|„j(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d
3
r

n(rÕ)

|r ≠ rÕ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a Accurate exchange-correlation
potentials and total-energy components for
the helium isoelectronic series, C. J.

Umrigar and X. Gonze, Phys. Rev. A 50,

3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39
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KS energy componentsKohn-Sham energy components

The KS kinetic energy is the kinetic energy of the KS orbitals

TS[n] =
1
2

Nÿ

i=1

⁄
d

3
r |Ò„i(r)|2 > 0

The Hartree (aka Coulomb aka electrostatic) repulsive self-energy of
a charge density is

U[n] =
1
2

⁄
d

3
r

⁄
d

3
r

Õ n(r) n(rÕ)

|r ≠ rÕ| > 0

The exchange energy is

EX = ≠1
2

ÿ

‡

ÿ

i,j
occ

⁄
d

3
r

⁄
d

3
r

Õ „ú
i‡(r)„ú

j‡(rÕ)„i‡(rÕ)„j‡(r)
|r ≠ rÕ| < 0

EC is everything else, < 0
Kieron (UC Irvine) ABC of ground-state DFT Virtual Winter School 16 / 34
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EC = (T-TS) + (Vee-U-EX)



Basic points

• In general, KS scheme yields E
• No formal meaning for KS eigenvalues
• KS eigenvalues are NOT quasiparticle excitations
• Often, KS DOS interpreteted as spectral function
• Often, this is roughly correct, with largest error at 

gap
• Exact formula relates E to Eval sum.
• Knowledge of exact Exc does NOT give non-gs

properties, eg excitations

Mon Sep 20, 2021 Correl 21 18



Simple points about KS calculations
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Simple points about KS calculations

The total energy is not the sum of the orbital energies:

E ”=
Nÿ

i=1

‘i

If some approximation is used for EXC, then energy can go below the
exact ground-state energy.
Any given formula for EXC, no matter where it came from, produces a
non-empirical scheme for all electronic systems.
The KS scheme, even with the exact functional, yields only E and
n(r) (and anything that can be deduced from them).
In principle, from HK, all properties are determined by n(r), but in
reality, we only know one really well.

Kieron (UC Irvine) ABC of ground-state DFT Virtual Winter School 17 / 34



KS properties
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KS gap
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Fundamental gap
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Hubbard Dimer: The fundamental gap 13 of 44

Then Egs does not match the true gap, even with the exact
XC functional[SP08; BGM13]. We write

Eg = Egs +�XC (70)

where �XC 6= 0, and is called the derivative discontinuity
contribution to the gap (for reasons that will be more appar-
ent later)[Pb85; Pb86]. In general, �XC appears to always
be positive, i.e., the KS gap is smaller than the true gap.
In semiconductors with especially small gaps, such as ger-
manium, approximate KS gaps are often zero, making the
material a band metal, but an insulator in reality. The classic
example of a chain of H atoms becoming a Mott-Hubbard
insulator when the bonds are stretched is demonstrated
unambiguously in Ref. [SWWB12].

While this mismatch occurs for all systems, it is especially
problematic for DFT calculations of insulating solids. For
molecules, one can (and does) calculate the gap (called the
chemical hardness in molecular systems[PY89]) by adding
and removing electrons. But with periodic boundary con-
ditions, there is no simple way to do this for solids. Even
with the exact functional, the KS gap does not match the
true gap, and there’s no easy way to calculate Eg in a
periodic code. In fact, popular approximations like LDA
and GGA mostly produce good approximations to the KS
gap, but yield �XC = 0 for solids. Thus there is no easy
way to extract a good approximation to the true gap in
such DFT calculations. The standard method for producing
accurate gaps for solids has long been to perform a GW
calculation[AG98], an approximate calculation of the Green’s
function, and read o↵ its gap. This works very well for
most weakly correlated materials[SKF06]. Such calculations
are now done in a variety of ways, but usually employ KS
orbitals from an approximate DFT calculation. Recently,
hybrid functionals like HSE06[HSE06] have been shown to
yield accurate approximate gaps to many systems, but these
gaps are a mixture of the quasiparticle (i.e., fundamental)
gap, and the KS gap. Their exchange component produces
the fundamental gap at the HF level, which is typically a
significant overestimate, which then compensates for the
‘too small’ KS gap. While this balance is unlikely to be
accidental, no general explanation has yet been given.

B. Hubbard dimer gap

For our half-filled Hubbard dimer, we can easily calculate
both the N±1-electron energies, the former via particle-hole
symmetry from the latter[CFb12]. In Fig. 11, we plot �I,
�A, ✏HOMO, and ✏LUMO for U = 1 when 2 t = 1, as a
function of �v. We see that A (and even sometimes I)
can be negative here. (This cannot happen for real-space
calculations, as electrons can always escape to infinity, so
a bound system always has A � 0.) The HOMO level is
always at �I according to Eq. (68) but the LUMO is not at
�A. Here it is smaller than �A, and we find this result for
all values of U and �v. The true gap is I �A, but the KS
gap is ✏LUMO + I, which is always smaller. Thus �XC � 0,
just as for real systems.

FIG. 11. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 1 and 2 t = 1.

FIG. 12. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 5 and 2 t = 1.

Fig. 11 is typical of weakly correlated systems, where �XC

is small but noticeable. In Fig. 12, we repeat the calculation
with U = 10 t, where now Eg � Egs at �v = 0, but we
still see the di↵erence become tiny when �v > U . In both
figures, �XC is the di↵erence between the red line and the
green dashed line. In all cases, �XC � 0, and this has always
been found to be true in real-space DFT, but has never been
proven in general.

C. Green’s functions

To end this section, we emphasize the di↵erence between
the KS and many-body approaches to this problem by cal-
culating their spectral functions[ORR02]. We define the
many-body retarded single-particle Green’s function as

Gij��0(t�t0) = �i ✓(t�t0)h 0|{ĉi�(t), ĉ†j�0(t0)} | 0i (71)

Hubbard Dimer: The fundamental gap 12 of 44

pushes the two occupation numbers closer, and so their KS
on-site potential di↵erence is smaller. Again, the red curve
is larger in magnitude than the green, showing that HF does
not suppress the density di↵erence quite enough. In our final
panel, U = 20 t, and the e↵ects of strong correlation are
clear. Now there is a huge di↵erence between black and
blue curves. Because U is so strong, the density di↵erence is
close to zero for most n1, making the blue curve almost flat
except at the edges. In the KS scheme, this is achieved by
the red curve being almost flat, except for a sudden change
of sign near n1 = 1. These e↵ects give rise to the �vS

values shown in Fig. 2. This e↵ect is completely missed in
HF.

FIG. 10. Plot of �vC for di↵erent U and 2 t = 1.

To emphasize the role of correlation, in Fig. 10, we
plot the correlation potential alone, which is the di↵erence
between the red and green curves in Fig. 9. Values from
the blue curves for �v = 2 were used to make Fig. 2. �vC

is an odd function of n1. In the weak- and strong-coupling
limits we can write down simple expressions for �vC (see
B 2):

�vC ⇡ 5U2�n

32 t
(1� (�n/2)2)3/2 (U ⌧ 2 t) (61)

�vC ⇡ U(1� |�n/2|) sgn(�n) (U � 2 t). (62)

These correspond to the 1st and 4th panels in Fig. 10. For
small U , it is of order U2 (see B), and has little e↵ect. As
U increases, it becomes proportional to U , and becomes
almost linear in U , with a large step near n1 = 1. If we
now compare this figure with Fig. 8, we see that it is simply
the derivative of the previous EC(n1) curve, as stated in Eq.
(60).

The self-consistent KS equations, Eqs. (57) and (58),
have, in this case, precisely the same form as those of
restricted HF (or mean-field theory), Eqs. (26) and (36),
but with whatever additional dependence on n1 occurs due
to �vC(n1). When converged, the ground-state energy is
found simply from:

E(n1) = TS(n1) + Vext(n1) + UH(n1) + EXC(n1). (63)

The energy can alternatively be extracted from the KS orbital
energy via Eq. (16):

E = 2✏S + (EC ��vC�n/2� EHX), (64)

where the second term is the double-counting correction.
But note the crucial di↵erence here. We consider HF an
approximate solution to the many-body problem whereas
DFT, with the exact correlation function(al), yields the
exact energy and on-site occupation, but not the exact
wavefunction.

4. THE FUNDAMENTAL GAP

Now that we have carefully defined what exact KS DFT
is for this model, we immediately apply this knowledge to
investigate a thorny subject on the border of many-body
theory and DFT, namely the fundamental gap of a system.

A. Background in real space

Begin with the ionization energy of an N -electron system:

I = E(N � 1)� E(N) (65)

is the energy required to remove one electron entirely from
a system. We can then define the electron a�nity as the
energy gained by adding an electron to a system, which is
also equal to the ionization energy of the (N + 1)-electron
system:

A = E(N)� E(N + 1). (66)

In real-space, I and A � 0. For systems which do not bind
an additional electron, such as the He atom, A = 0. The
charge, or fundamental, gap of the system is then

Eg = I �A, (67)

and for many materials, Eg can be used to decide if they are
metals (Eg = 0) or insulators (Eg > 0)[K64]. The spectral
function of the single-particle Green’s function has a gap
equal to Eg. For Coulombic matter, Eg has always been
found to be non-negative, but no general proof has been
given.
Now we turn to the KS system of the N -electron sys-

tem. We denote the highest occupied (molecular) orbital as
✏HOMO and the lowest unoccupied one as ✏LUMO. Then the
DFT version of Koopmans’ theorem[PPLB82; PL83; SS83;
AP84; AB85; CVU10] shows that

✏HOMO = �I, (68)

by matching the decay of the density away from any finite
system in real space, in the interacting and KS pictures.
However, this condition applies only to the HOMO, not to
any other occupied orbitals, or unoccupied ones. The LUMO
level is not at �A, in general. Define the KS gap as

Egs = ✏LUMO � ✏HOMO. (69)
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the blue curves for �v = 2 were used to make Fig. 2. �vC

is an odd function of n1. In the weak- and strong-coupling
limits we can write down simple expressions for �vC (see
B 2):

�vC ⇡ 5U2�n

32 t
(1� (�n/2)2)3/2 (U ⌧ 2 t) (61)

�vC ⇡ U(1� |�n/2|) sgn(�n) (U � 2 t). (62)

These correspond to the 1st and 4th panels in Fig. 10. For
small U , it is of order U2 (see B), and has little e↵ect. As
U increases, it becomes proportional to U , and becomes
almost linear in U , with a large step near n1 = 1. If we
now compare this figure with Fig. 8, we see that it is simply
the derivative of the previous EC(n1) curve, as stated in Eq.
(60).

The self-consistent KS equations, Eqs. (57) and (58),
have, in this case, precisely the same form as those of
restricted HF (or mean-field theory), Eqs. (26) and (36),
but with whatever additional dependence on n1 occurs due
to �vC(n1). When converged, the ground-state energy is
found simply from:

E(n1) = TS(n1) + Vext(n1) + UH(n1) + EXC(n1). (63)

The energy can alternatively be extracted from the KS orbital
energy via Eq. (16):

E = 2✏S + (EC ��vC�n/2� EHX), (64)

where the second term is the double-counting correction.
But note the crucial di↵erence here. We consider HF an
approximate solution to the many-body problem whereas
DFT, with the exact correlation function(al), yields the
exact energy and on-site occupation, but not the exact
wavefunction.

4. THE FUNDAMENTAL GAP

Now that we have carefully defined what exact KS DFT
is for this model, we immediately apply this knowledge to
investigate a thorny subject on the border of many-body
theory and DFT, namely the fundamental gap of a system.

A. Background in real space

Begin with the ionization energy of an N -electron system:

I = E(N � 1)� E(N) (65)

is the energy required to remove one electron entirely from
a system. We can then define the electron a�nity as the
energy gained by adding an electron to a system, which is
also equal to the ionization energy of the (N + 1)-electron
system:

A = E(N)� E(N + 1). (66)

In real-space, I and A � 0. For systems which do not bind
an additional electron, such as the He atom, A = 0. The
charge, or fundamental, gap of the system is then

Eg = I �A, (67)

and for many materials, Eg can be used to decide if they are
metals (Eg = 0) or insulators (Eg > 0)[K64]. The spectral
function of the single-particle Green’s function has a gap
equal to Eg. For Coulombic matter, Eg has always been
found to be non-negative, but no general proof has been
given.
Now we turn to the KS system of the N -electron sys-

tem. We denote the highest occupied (molecular) orbital as
✏HOMO and the lowest unoccupied one as ✏LUMO. Then the
DFT version of Koopmans’ theorem[PPLB82; PL83; SS83;
AP84; AB85; CVU10] shows that

✏HOMO = �I, (68)

by matching the decay of the density away from any finite
system in real space, in the interacting and KS pictures.
However, this condition applies only to the HOMO, not to
any other occupied orbitals, or unoccupied ones. The LUMO
level is not at �A, in general. Define the KS gap as

Egs = ✏LUMO � ✏HOMO. (69)
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pushes the two occupation numbers closer, and so their KS
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of sign near n1 = 1. These e↵ects give rise to the �vS

values shown in Fig. 2. This e↵ect is completely missed in
HF.
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U increases, it becomes proportional to U , and becomes
almost linear in U , with a large step near n1 = 1. If we
now compare this figure with Fig. 8, we see that it is simply
the derivative of the previous EC(n1) curve, as stated in Eq.
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but with whatever additional dependence on n1 occurs due
to �vC(n1). When converged, the ground-state energy is
found simply from:
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The energy can alternatively be extracted from the KS orbital
energy via Eq. (16):
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where the second term is the double-counting correction.
But note the crucial di↵erence here. We consider HF an
approximate solution to the many-body problem whereas
DFT, with the exact correlation function(al), yields the
exact energy and on-site occupation, but not the exact
wavefunction.
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Now that we have carefully defined what exact KS DFT
is for this model, we immediately apply this knowledge to
investigate a thorny subject on the border of many-body
theory and DFT, namely the fundamental gap of a system.

A. Background in real space

Begin with the ionization energy of an N -electron system:

I = E(N � 1)� E(N) (65)

is the energy required to remove one electron entirely from
a system. We can then define the electron a�nity as the
energy gained by adding an electron to a system, which is
also equal to the ionization energy of the (N + 1)-electron
system:

A = E(N)� E(N + 1). (66)

In real-space, I and A � 0. For systems which do not bind
an additional electron, such as the He atom, A = 0. The
charge, or fundamental, gap of the system is then

Eg = I �A, (67)

and for many materials, Eg can be used to decide if they are
metals (Eg = 0) or insulators (Eg > 0)[K64]. The spectral
function of the single-particle Green’s function has a gap
equal to Eg. For Coulombic matter, Eg has always been
found to be non-negative, but no general proof has been
given.
Now we turn to the KS system of the N -electron sys-

tem. We denote the highest occupied (molecular) orbital as
✏HOMO and the lowest unoccupied one as ✏LUMO. Then the
DFT version of Koopmans’ theorem[PPLB82; PL83; SS83;
AP84; AB85; CVU10] shows that

✏HOMO = �I, (68)

by matching the decay of the density away from any finite
system in real space, in the interacting and KS pictures.
However, this condition applies only to the HOMO, not to
any other occupied orbitals, or unoccupied ones. The LUMO
level is not at �A, in general. Define the KS gap as

Egs = ✏LUMO � ✏HOMO. (69)
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Then Egs does not match the true gap, even with the exact
XC functional[SP08; BGM13]. We write

Eg = Egs +�XC (70)

where �XC 6= 0, and is called the derivative discontinuity
contribution to the gap (for reasons that will be more appar-
ent later)[Pb85; Pb86]. In general, �XC appears to always
be positive, i.e., the KS gap is smaller than the true gap.
In semiconductors with especially small gaps, such as ger-
manium, approximate KS gaps are often zero, making the
material a band metal, but an insulator in reality. The classic
example of a chain of H atoms becoming a Mott-Hubbard
insulator when the bonds are stretched is demonstrated
unambiguously in Ref. [SWWB12].

While this mismatch occurs for all systems, it is especially
problematic for DFT calculations of insulating solids. For
molecules, one can (and does) calculate the gap (called the
chemical hardness in molecular systems[PY89]) by adding
and removing electrons. But with periodic boundary con-
ditions, there is no simple way to do this for solids. Even
with the exact functional, the KS gap does not match the
true gap, and there’s no easy way to calculate Eg in a
periodic code. In fact, popular approximations like LDA
and GGA mostly produce good approximations to the KS
gap, but yield �XC = 0 for solids. Thus there is no easy
way to extract a good approximation to the true gap in
such DFT calculations. The standard method for producing
accurate gaps for solids has long been to perform a GW
calculation[AG98], an approximate calculation of the Green’s
function, and read o↵ its gap. This works very well for
most weakly correlated materials[SKF06]. Such calculations
are now done in a variety of ways, but usually employ KS
orbitals from an approximate DFT calculation. Recently,
hybrid functionals like HSE06[HSE06] have been shown to
yield accurate approximate gaps to many systems, but these
gaps are a mixture of the quasiparticle (i.e., fundamental)
gap, and the KS gap. Their exchange component produces
the fundamental gap at the HF level, which is typically a
significant overestimate, which then compensates for the
‘too small’ KS gap. While this balance is unlikely to be
accidental, no general explanation has yet been given.

B. Hubbard dimer gap

For our half-filled Hubbard dimer, we can easily calculate
both the N±1-electron energies, the former via particle-hole
symmetry from the latter[CFb12]. In Fig. 11, we plot �I,
�A, ✏HOMO, and ✏LUMO for U = 1 when 2 t = 1, as a
function of �v. We see that A (and even sometimes I)
can be negative here. (This cannot happen for real-space
calculations, as electrons can always escape to infinity, so
a bound system always has A � 0.) The HOMO level is
always at �I according to Eq. (68) but the LUMO is not at
�A. Here it is smaller than �A, and we find this result for
all values of U and �v. The true gap is I �A, but the KS
gap is ✏LUMO + I, which is always smaller. Thus �XC � 0,
just as for real systems.

FIG. 11. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 1 and 2 t = 1.

FIG. 12. Plot of �A, �I, ✏HOMO, and ✏LUMO as a function
of �v with U = 5 and 2 t = 1.

Fig. 11 is typical of weakly correlated systems, where �XC

is small but noticeable. In Fig. 12, we repeat the calculation
with U = 10 t, where now Eg � Egs at �v = 0, but we
still see the di↵erence become tiny when �v > U . In both
figures, �XC is the di↵erence between the red line and the
green dashed line. In all cases, �XC � 0, and this has always
been found to be true in real-space DFT, but has never been
proven in general.

C. Green’s functions

To end this section, we emphasize the di↵erence between
the KS and many-body approaches to this problem by cal-
culating their spectral functions[ORR02]. We define the
many-body retarded single-particle Green’s function as

Gij��0(t�t0) = �i ✓(t�t0)h 0|{ĉi�(t), ĉ†j�0(t0)} | 0i (71)
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3.3 Mind the gap DFT on Hubbard Dimer

FIG. 9. Spectral function of the symmetric dimer for U = 1
and �v = 0. The physical MB peaks are plotted in blue, the
KS in red. Here I = 0.1, A = �1.1, and "LU = 0.9.

FIG. 10. Same as Fig. 9, but now U = 5. Here I = �0.3,
A = �4.7, and "LU = 1.3. Note that the KS gap remains
unchanged by the alteration of U because �n = 0 in both
cases.

On the other hand, Fig. 10 shows the same system with
a larger U value. Now the strong KS peaks are not in the
right place and are noticeably too large. Moreover, the blue
peaks with no KS analogs are a substantial contribution.
Finally, in the inhomogeneous case, the potential asymmetry
overcomes the e↵ects of the Hubbard U. In Fig. 11, we see
that for �v = 2 and U = 1, the KS spectral function is
almost identical to the true one.
Lastly, we finish this section illustrating the relevance of

this discussion to the thermodynamic limit. The canonical
example of the Mott-Hubbard transition is a chain (or
lattice) of H atoms. Each atom has one electron, so the
bands of the KS potential are always half-filled, with no gap
at the Fermi energy. Thus the gap is always zero and the KS
band structure suggests it’s a metal. This may be true at

FIG. 11. Same as Fig. 9, but now U = 1, �v = 2. Here
I = 0.27, A = �1.27, and "LU = 1.25.

FIG. 12. Exact gaps for chains of N soft hydrogen atoms
with atomic separation b = 4 (error bars are less than symbol
sizes). The upper curve is a quadratic fit of exact gaps of the
largest six systems and extrapolates to a finite value Eg ⇡
0.33. The exact Kohn-Sham gaps, in contrast, extrapolate to
zero showing that for N ! 1 the true KS system is metallic
(lower curve is a linear fit of exact KS gaps of the largest six
systems). Taken from Reference [46].

moderate separations of the atoms, but as the separation
is increased, the electrons must localize on atoms, and it
must become a Mott insulator.
Fig. 12 shows the gap, calculated for chains of well-

separated 1D H atoms of increasing length [46]. By
performing the calculation with finite systems, i.e., without
periodic boundary conditions, we calculate the gap for each
N by adding and removing electrons, as in Eq. (20), and
then take the limit as N ! 1. On the other hand, we
extract the exact ground-state density from our DMRG
calculation at each N, and find the corresponding exact KS
potential for each N. We could then as easily extrapolate
the KS gap, from the HO and LU, showing that indeed
the KS gap vanishes in the thermodynamic limit – exactly
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Mott-Hubbard gap

• Classic prototype of 
condensed matter

• Infinite chain of H atoms
• When lattice spacing is 

large, must be an 
insulator

• But with one electron 
per site, always a band 
metal

interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.
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TDDFT 

• Based on very different theorem (RG84)
• Applies to any time-dependent one-body 

perturbation
• In general, XC potential functional of initial-

state and history of density
• Usually start from non-degenerate ground-

state, so HK theorem says only depends on 
n(r,t)

• See work of Neepa Maitra (recent review).
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Linear response TDDFT 

• Apply to weak external uniform E-field
• Yields Gross-Kohn formula for density-density 

response function

• Poles of response function are optical 
excitations

• Need XC kernel.
• For finite systems, w=0 given by gsDFT.
• Used mostly to get low-lying single excitations 

of molecules (error about 0.3 eV)
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DFT on Hubbard Dimer

4. TIME-DEPENDENT DFT (TDDFT)

Our last main section is about time-dependent density
functional theory (TDDFT) [86–89]. While this uses many
of the forms and conventions of ground-state DFT, it is
in fact based on a very di↵erent theorem from the HK
theorems. When applied to the linear response of a system
to a dynamic electric field, it yields the optical transitions
(and oscillator strengths) of that system. It has become
the standard method for extracting low-level excitations in
molecules, where traditional quantum chemical calculations
are even more demanding than those for the ground state.

The Runge-Gross theorem [90] states that, for a
given initial wavefunction, statistics, and interaction, the
time-dependent density uniquely determines the one-body
potential. In principle, this can be used for any many-
electron time-dependent problem, including those in strong
laser fields [86]. In practice, such calculations are limited
by the accuracy of the approximations and whether the
observable of interest can be extracted directly from the
one-electron density. One constructs TD KS equations,
defined to yield the exact time-dependent one-electron
density. Because TDDFT applies to the time-dependent
Schrödinger equation, the XC functional di↵ers from that of
ground-state DFT in general, and has a time-dependence.

Our interest will be only in the linear-response regime. In
that case, one can derive a crucial result, which we give in
operator form, called the Gross-Kohn equation [91]

�(!) = �S(!) + �S(!) ⇤ (fH + fXC(!)) ⇤ �(!), (22)

where �(!) is the dynamic density-density response function
of the system, and �S is its KS counterpart. The kernel, f,
is the functional derivative of the time-dependent potential.
Thus, fH is the Hartree contribution, while fXC(!) is the
XC correction.

Eq. (22) is a Dyson-like equation for the polarization.
If we set fXC = 0, it is the standard random-phase
approximation, the Coulomb interaction simply dressing the
bare interaction, and producing all the bubble diagrams.
But things get a little weird when we assert that inclusion
of fXC(!) produces the exact response of the system,
for all frequencies. From a many-body viewpoint, this is
suspicious, as these are a closed set of equations without
coupling to 4-point functions. But the logic is sound and
exactly analogous to the ground-state: there exists such a
function that could be considered as defined by Eq. (22).

The excitations of a system are given by poles of
its response function. Simple analysis (exactly that of
RPA) yields a matrix equation that corrects KS transition
frequencies to the true transition frequencies, where the
matrix elements involve fH + fXC. With standard ground-
state approximations, folks have merrily calculated mostly
low-lying valence transitions from the ground-state of many
molecules [92], finding accuracies a little lower than those
of ground-state DFT [93], and computational costs that are
comparable. This has been invaluable for larger molecules,
where many excitations of the same symmetry may overlap,

and so TDDFT yields a semiquantitative signature that can
be easily matched with experiment [94].
However, not all is well in paradise. Almost immediately,

it was noticed that the use of a ground-state approximation
is simply the static limit of the corresponding kernel, and can
be easily shown to produce only single excitations. While
useful workarounds were created for some cases, it was also
found that going to higher-order response does not solve
the problem. And many of the most exciting transitions in
biochemistry are double excitations.

Takeaway: Time-dependent DFT applies DFT
methods to time-dependent problems. Within
linear response, this yields exact expressions for the
dynamic polarization, but at the cost of introducing
a new functional, the frequency-dependent XC
kernel. Ignoring its frequency dependence yields
useful accuracy for low-lying molecular excitations
with standard functionals. TDDFT is now standard
for calculating optical response of molecules and
materials.

4.1. Hubbard dimer

Happily we care only about Hubbard dimers, where
everything is much simpler. First, we note our Hubbard
dimer, in the singlet space, has just three states: the
ground-state, the first excited state, which has a single
excitation, and the second excited state, which is a double
excitation out of the ground-state. Since there are no spatial
degrees of freedom, our �(!) is the Fourier transform of
�n(t)/�v(0), which is just a scalar, with !-dependence

�n(!) =
a1

!2 � !
2
1

+
a2

!2 � !
2
2

, (23)

where !i denotes the transition frequency and ai is related
to its oscillator strength [26]. Thus � has poles at each of
the transition frequencies. Fig. 13 shows the value of each of
these transitions as a function of �v for U = 1. The double
excitation is a little above the single for the symmetric case,
but grows linearly with �v. The single remains about the
same, and even dips, until �v = U, and then begins to
grow itself. Here we can use our model system to examine
one of the key mysteries of practical TDDFT: Where did all
the higher excitations go?
First we do an exact ground-state KS calculation, as

in the previous sections. Thus the exact KS system
is a tight-binding problem with e↵ective potential, �vS,
defined to yield the exact ground state �n. This yields
two eigenvalues, the lower symmetric combination and the
higher asymmetric combination. The KS ground-state has
the lower one doubly occupied. There do exist KS analogs
of the many-body states. The single excitation has one
electron excited to the higher level, the double has both.
Fig. 14 adds the KS transitions to Fig. 13, showing that they
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4.1 Hubbard dimer DFT on Hubbard Dimer

FIG. 13. Transition frequencies of the first and second
excitations as a function of �v for U = 1.

FIG. 14. Same as Fig. 13, but with KS transitions (depicted
in blue). For �v > U, the KS transition is a very good
approximation to the true transition.

loosely follow the accurate transitions, but are significantly
di↵erent.

In the KS response function, �S, the matrix elements of
the density operator between ground and double excitation
are zero, since both KS orbitals are di↵erent, so the Slater
determinants are not coupled by a single density operator.
Hence, such states have no numerator, eliminating any poles
that might have arisen in the denominator, i.e.,

�S(!) =
as

!2 � !2
s

. (24)

Thus the second KS transition, the double, does not appear
at all in the response function! It’s position is correctly
marked in Fig. 14, but cannot be seen in �S.

By requiring the poles occur at the right places, one
finds (in general) a matrix equation in the space of single
excitations for the true transitions, whose elements are
determined by the kernel. Here, this is one dimensional,
yielding

!
2
= !

2
S
+ 2!S fHXC(!)

2

1 +�v2
S

. (25)

The adiabatically exact approximation (AE) is to use
the exact ground-state functional here to calculate fHXC.

FIG. 15. Same as Fig. 13, but with the adiabatically exact
approximation (AE, pink dashes).

FIG. 16. Frequency dependence of exact (black) and Kohn-
Sham susceptibilities (blue) and exchange-correlation kernel
(red) for U = �v = 1. Poles marked by dashed vertical
lines, as a function of frequency ⌫. The red line shows the
exchange-correlation kernel.

This corrects the single KS transition and is shown in
Fig. 15. This works extremely well to capture almost all
the di↵erence with the KS transition, yielding very accurate
excitations. This becomes even better for �v greater than
U , where the corrections virtually vanish (just as in Fig. 11
for the spectral function).
But Eq. (25) just has one solution if the !-dependence

in the kernel is neglected. On the other hand, if there is
strong frequency dependence in the kernel, new transitions,
not in the KS system, may appear. In fact, we know that
is precisely what happens, as the physical system does have
a double excitation. To understand how standard TDDFT
fails, we note that we can calculate the exact kernel by
finding �(!) from many-body calculations, �S(!) by the
techniques of the earlier section, inverting and subtracting

fHXC(!) = �
�1
S

(!)� �
�1

(!) . (26)

Fig. 16 shows the singular frequency-dependence of the
kernel from Eq. (26), which allows Eq. (25) to have an
additional solution.
However, while all this provides insight into how the exact
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4. TIME-DEPENDENT DFT (TDDFT)

Our last main section is about time-dependent density
functional theory (TDDFT) [86–89]. While this uses many
of the forms and conventions of ground-state DFT, it is
in fact based on a very di↵erent theorem from the HK
theorems. When applied to the linear response of a system
to a dynamic electric field, it yields the optical transitions
(and oscillator strengths) of that system. It has become
the standard method for extracting low-level excitations in
molecules, where traditional quantum chemical calculations
are even more demanding than those for the ground state.

The Runge-Gross theorem [90] states that, for a
given initial wavefunction, statistics, and interaction, the
time-dependent density uniquely determines the one-body
potential. In principle, this can be used for any many-
electron time-dependent problem, including those in strong
laser fields [86]. In practice, such calculations are limited
by the accuracy of the approximations and whether the
observable of interest can be extracted directly from the
one-electron density. One constructs TD KS equations,
defined to yield the exact time-dependent one-electron
density. Because TDDFT applies to the time-dependent
Schrödinger equation, the XC functional di↵ers from that of
ground-state DFT in general, and has a time-dependence.

Our interest will be only in the linear-response regime. In
that case, one can derive a crucial result, which we give in
operator form, called the Gross-Kohn equation [91]

�(!) = �S(!) + �S(!) ⇤ (fH + fXC(!)) ⇤ �(!), (22)

where �(!) is the dynamic density-density response function
of the system, and �S is its KS counterpart. The kernel, f,
is the functional derivative of the time-dependent potential.
Thus, fH is the Hartree contribution, while fXC(!) is the
XC correction.

Eq. (22) is a Dyson-like equation for the polarization.
If we set fXC = 0, it is the standard random-phase
approximation, the Coulomb interaction simply dressing the
bare interaction, and producing all the bubble diagrams.
But things get a little weird when we assert that inclusion
of fXC(!) produces the exact response of the system,
for all frequencies. From a many-body viewpoint, this is
suspicious, as these are a closed set of equations without
coupling to 4-point functions. But the logic is sound and
exactly analogous to the ground-state: there exists such a
function that could be considered as defined by Eq. (22).

The excitations of a system are given by poles of
its response function. Simple analysis (exactly that of
RPA) yields a matrix equation that corrects KS transition
frequencies to the true transition frequencies, where the
matrix elements involve fH + fXC. With standard ground-
state approximations, folks have merrily calculated mostly
low-lying valence transitions from the ground-state of many
molecules [92], finding accuracies a little lower than those
of ground-state DFT [93], and computational costs that are
comparable. This has been invaluable for larger molecules,
where many excitations of the same symmetry may overlap,

and so TDDFT yields a semiquantitative signature that can
be easily matched with experiment [94].
However, not all is well in paradise. Almost immediately,

it was noticed that the use of a ground-state approximation
is simply the static limit of the corresponding kernel, and can
be easily shown to produce only single excitations. While
useful workarounds were created for some cases, it was also
found that going to higher-order response does not solve
the problem. And many of the most exciting transitions in
biochemistry are double excitations.

Takeaway: Time-dependent DFT applies DFT
methods to time-dependent problems. Within
linear response, this yields exact expressions for the
dynamic polarization, but at the cost of introducing
a new functional, the frequency-dependent XC
kernel. Ignoring its frequency dependence yields
useful accuracy for low-lying molecular excitations
with standard functionals. TDDFT is now standard
for calculating optical response of molecules and
materials.

4.1. Hubbard dimer

Happily we care only about Hubbard dimers, where
everything is much simpler. First, we note our Hubbard
dimer, in the singlet space, has just three states: the
ground-state, the first excited state, which has a single
excitation, and the second excited state, which is a double
excitation out of the ground-state. Since there are no spatial
degrees of freedom, our �(!) is the Fourier transform of
�n(t)/�v(0), which is just a scalar, with !-dependence

�n(!) =
a1

!2 � !
2
1

+
a2

!2 � !
2
2

, (23)

where !i denotes the transition frequency and ai is related
to its oscillator strength [26]. Thus � has poles at each of
the transition frequencies. Fig. 13 shows the value of each of
these transitions as a function of �v for U = 1. The double
excitation is a little above the single for the symmetric case,
but grows linearly with �v. The single remains about the
same, and even dips, until �v = U, and then begins to
grow itself. Here we can use our model system to examine
one of the key mysteries of practical TDDFT: Where did all
the higher excitations go?
First we do an exact ground-state KS calculation, as

in the previous sections. Thus the exact KS system
is a tight-binding problem with e↵ective potential, �vS,
defined to yield the exact ground state �n. This yields
two eigenvalues, the lower symmetric combination and the
higher asymmetric combination. The KS ground-state has
the lower one doubly occupied. There do exist KS analogs
of the many-body states. The single excitation has one
electron excited to the higher level, the double has both.
Fig. 14 adds the KS transitions to Fig. 13, showing that they
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KS excitations

• Optical excitation of the KS ground-state
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FIG. 13. Transition frequencies of the first and second
excitations as a function of �v for U = 1.

FIG. 14. Same as Fig. 13, but with KS transitions (depicted
in blue). For �v > U, the KS transition is a very good
approximation to the true transition.

loosely follow the accurate transitions, but are significantly
di↵erent.

In the KS response function, �S, the matrix elements of
the density operator between ground and double excitation
are zero, since both KS orbitals are di↵erent, so the Slater
determinants are not coupled by a single density operator.
Hence, such states have no numerator, eliminating any poles
that might have arisen in the denominator, i.e.,

�S(!) =
as

!2 � !2
s

. (24)

Thus the second KS transition, the double, does not appear
at all in the response function! It’s position is correctly
marked in Fig. 14, but cannot be seen in �S.

By requiring the poles occur at the right places, one
finds (in general) a matrix equation in the space of single
excitations for the true transitions, whose elements are
determined by the kernel. Here, this is one dimensional,
yielding

!
2
= !

2
S
+ 2!S fHXC(!)

2

1 +�v2
S

. (25)

The adiabatically exact approximation (AE) is to use
the exact ground-state functional here to calculate fHXC.

FIG. 15. Same as Fig. 13, but with the adiabatically exact
approximation (AE, pink dashes).

FIG. 16. Frequency dependence of exact (black) and Kohn-
Sham susceptibilities (blue) and exchange-correlation kernel
(red) for U = �v = 1. Poles marked by dashed vertical
lines, as a function of frequency ⌫. The red line shows the
exchange-correlation kernel.

This corrects the single KS transition and is shown in
Fig. 15. This works extremely well to capture almost all
the di↵erence with the KS transition, yielding very accurate
excitations. This becomes even better for �v greater than
U , where the corrections virtually vanish (just as in Fig. 11
for the spectral function).
But Eq. (25) just has one solution if the !-dependence

in the kernel is neglected. On the other hand, if there is
strong frequency dependence in the kernel, new transitions,
not in the KS system, may appear. In fact, we know that
is precisely what happens, as the physical system does have
a double excitation. To understand how standard TDDFT
fails, we note that we can calculate the exact kernel by
finding �(!) from many-body calculations, �S(!) by the
techniques of the earlier section, inverting and subtracting

fHXC(!) = �
�1
S

(!)� �
�1

(!) . (26)

Fig. 16 shows the singular frequency-dependence of the
kernel from Eq. (26), which allows Eq. (25) to have an
additional solution.
However, while all this provides insight into how the exact
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excitations. This becomes even better for �v greater than
U , where the corrections virtually vanish (just as in Fig. 11
for the spectral function).
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in the kernel is neglected. On the other hand, if there is
strong frequency dependence in the kernel, new transitions,
not in the KS system, may appear. In fact, we know that
is precisely what happens, as the physical system does have
a double excitation. To understand how standard TDDFT
fails, we note that we can calculate the exact kernel by
finding �(!) from many-body calculations, �S(!) by the
techniques of the earlier section, inverting and subtracting
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Fig. 16 shows the singular frequency-dependence of the
kernel from Eq. (26), which allows Eq. (25) to have an
additional solution.
However, while all this provides insight into how the exact
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Adiabatically exact TDDFT for single

• Use exact ground-state XC in KS-TDDFT
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FIG. 13. Transition frequencies of the first and second
excitations as a function of �v for U = 1.

FIG. 14. Same as Fig. 13, but with KS transitions (depicted
in blue). For �v > U, the KS transition is a very good
approximation to the true transition.
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In the KS response function, �S, the matrix elements of
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Thus the second KS transition, the double, does not appear
at all in the response function! It’s position is correctly
marked in Fig. 14, but cannot be seen in �S.
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lines, as a function of frequency ⌫. The red line shows the
exchange-correlation kernel.

This corrects the single KS transition and is shown in
Fig. 15. This works extremely well to capture almost all
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excitations. This becomes even better for �v greater than
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for the spectral function).
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This corrects the single KS transition and is shown in
Fig. 15. This works extremely well to capture almost all
the di↵erence with the KS transition, yielding very accurate
excitations. This becomes even better for �v greater than
U , where the corrections virtually vanish (just as in Fig. 11
for the spectral function).
But Eq. (25) just has one solution if the !-dependence

in the kernel is neglected. On the other hand, if there is
strong frequency dependence in the kernel, new transitions,
not in the KS system, may appear. In fact, we know that
is precisely what happens, as the physical system does have
a double excitation. To understand how standard TDDFT
fails, we note that we can calculate the exact kernel by
finding �(!) from many-body calculations, �S(!) by the
techniques of the earlier section, inverting and subtracting
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Fig. 16 shows the singular frequency-dependence of the
kernel from Eq. (26), which allows Eq. (25) to have an
additional solution.
However, while all this provides insight into how the exact
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What this means

• Linear-response TDDFT yields optical 
excitations

• Can consider KS spectrum as excellent starting 
point for optical excitations (not quasiparticle 
excitations)

• Ground-state XC typically gives excellent 
correction to KS excitations

• But always small error due to missing frequency 
dependence
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What happened to double excitation?

• Double (and higher order) excitations missing 
from adiabatic linear response KS TDDFT

• KS response function has zero numerator at 
double excitation pole

• No prediction in adiab TDDFT
• But must be present in exact response function
• Due to dynamic part of kernel, i.e., frequency-

dependence, i.e., time-dependence
• Missed when TDDFT performed with gs XC
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Can see exact frequency dependence
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FIG. 13. Transition frequencies of the first and second
excitations as a function of �v for U = 1.

FIG. 14. Same as Fig. 13, but with KS transitions (depicted
in blue). For �v > U, the KS transition is a very good
approximation to the true transition.

loosely follow the accurate transitions, but are significantly
di↵erent.

In the KS response function, �S, the matrix elements of
the density operator between ground and double excitation
are zero, since both KS orbitals are di↵erent, so the Slater
determinants are not coupled by a single density operator.
Hence, such states have no numerator, eliminating any poles
that might have arisen in the denominator, i.e.,

�S(!) =
as

!2 � !2
s

. (24)

Thus the second KS transition, the double, does not appear
at all in the response function! It’s position is correctly
marked in Fig. 14, but cannot be seen in �S.

By requiring the poles occur at the right places, one
finds (in general) a matrix equation in the space of single
excitations for the true transitions, whose elements are
determined by the kernel. Here, this is one dimensional,
yielding
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The adiabatically exact approximation (AE) is to use
the exact ground-state functional here to calculate fHXC.

FIG. 15. Same as Fig. 13, but with the adiabatically exact
approximation (AE, pink dashes).

FIG. 16. Frequency dependence of exact (black) and Kohn-
Sham susceptibilities (blue) and exchange-correlation kernel
(red) for U = �v = 1. Poles marked by dashed vertical
lines, as a function of frequency ⌫. The red line shows the
exchange-correlation kernel.
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Relatively unexplored territory

• Relatively little study of XC kernel for strong 
correlation

• See TDDFT review for approximate forms and 
interpolation from weak to strong

• Don’t know of general functional for this
• Could be tested on stretched molecules
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Context of strongly correlated materials

• Often KS used as starting point for more 
sophisticated approaches, e.g., GGA+U or 
dynamical mean-field theory

• Often KS orbitals interpreted as quasi-particle 
excitations, i.e., approximations to peaks in 
spectral function.

• But results must depend on choice of XC 
approximation

• Most advances in DFT these days aimed at 
improving ground-state energy

• KS potentials in general highly inaccurate, but yield 
accurate densities
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To really calculate G with TD
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`Lies’ in electronic structure

• Not actual lies, just misconceptions

• KS eigenvalues are quasiparticle excitations
• KS band gap should match true gap
• Good energies imply good potentials
• More accurate energies mean more accurate 

potentials and/or densities
• Our approximate functionals work for all 

external potentials
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Summary

• You can learn a lot of the principles of DFT 
from studying simple models

• Does NOT yield insight into approximations, eg
BALDA etc not real LDA.

• Fundamental issue:  How much do DFT 
approximations effect many-body results? 
(Often not much for materials, I can guess why)

• Actually, in general HK fails on a lattice!  See 
Penz and van Leeuwen arXiv:2106.15370
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Q&A
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DFT on Hubbard Dimer

Takeaway: This chapter has illustrated a variety
of key conceptual points about DFT on a simple
model system. Anyone who can answer the exercises
will have absorbed 90% of the material, and should
be well-qualified to understand exactly what a DFT
calculation does, and does not, tell you. In the
twenty-first century, with so many DFT calculations
being performed in so many di↵erent fields, the
phrase “Oh, that’s just mean-field theory” should no
longer have any place in scientific discussions about
DFT results.
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Appendix A: Exercises

If you have followed the logic throughout this tutorial,
you will enjoy sorting out these little questions. If you want
solutions, please email either of the authors, with a brief
note about your current status and interests.

1. State which aspect of Fig. 4 illustrates the HKI
theorem.

2. What geometrical construction gives you the
corresponding ground-state potential for a given n1

in Fig. 5?

3. Study the extreme edges (n1 = 0 and 2) of Fig. 5.
What interesting qualitative feature is barely visible,
and why must it be there?

4. What feature must always be present in Fig. 5 near
n1 = 1? Explain.

5. How can you be sure that, no matter how large U

becomes, FU(n1) is never quite U |1�n1|?

6. Assuming the blue line is essentially that of U = 0,
use geometry on Fig. 3 to find �vS for U = 5.

7. What is the relation, if any, between each of the blue
plots in the three panels of Fig. 7? Explain.

8. What is the relation, if any, between each of the red
plots in the three panels of Fig. 7? Explain.

9. Why is the green line almost the mirror image of the
black line in the U = 10 panel of Fig. 7? Could it be
the exact mirror image? Explain.

10. From Fig. 8, using E(N) about N = 2, determine the
locations of the largest peaks of Fig. 9 and compute
the gap between them.

11. Sketch how Fig. 8 must look if U = 10 and �v = 0.

12. What is the relation between the two blue lines in
Fig. 14? Explain.

13. Give a rule relating the numbers of vertical lines of
di↵erent color in Fig. 16.
Explain its significance.

14. Recall the definition of the kernel from section 4.
Using this, derive fH and fX, and draw them on
Fig. 16. Explain where double excitations must come
from for 2 electrons.

15. Using formulas and figures from both sections, deduce
the results of Fig. 15 in the absence of correlation
(Hint: You will need to solve the Hartree-Fock self-
consistent equations), and comment on the relative
errors. This is a little more work than the other
exercises.
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Takeaway: This chapter has illustrated a variety
of key conceptual points about DFT on a simple
model system. Anyone who can answer the exercises
will have absorbed 90% of the material, and should
be well-qualified to understand exactly what a DFT
calculation does, and does not, tell you. In the
twenty-first century, with so many DFT calculations
being performed in so many di↵erent fields, the
phrase “Oh, that’s just mean-field theory” should no
longer have any place in scientific discussions about
DFT results.
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Appendix A: Exercises

If you have followed the logic throughout this tutorial,
you will enjoy sorting out these little questions. If you want
solutions, please email either of the authors, with a brief
note about your current status and interests.

1. State which aspect of Fig. 4 illustrates the HKI
theorem.

2. What geometrical construction gives you the
corresponding ground-state potential for a given n1

in Fig. 5?

3. Study the extreme edges (n1 = 0 and 2) of Fig. 5.
What interesting qualitative feature is barely visible,
and why must it be there?

4. What feature must always be present in Fig. 5 near
n1 = 1? Explain.

5. How can you be sure that, no matter how large U

becomes, FU(n1) is never quite U |1�n1|?

6. Assuming the blue line is essentially that of U = 0,
use geometry on Fig. 3 to find �vS for U = 5.

7. What is the relation, if any, between each of the blue
plots in the three panels of Fig. 7? Explain.

8. What is the relation, if any, between each of the red
plots in the three panels of Fig. 7? Explain.

9. Why is the green line almost the mirror image of the
black line in the U = 10 panel of Fig. 7? Could it be
the exact mirror image? Explain.

10. From Fig. 8, using E(N) about N = 2, determine the
locations of the largest peaks of Fig. 9 and compute
the gap between them.

11. Sketch how Fig. 8 must look if U = 10 and �v = 0.

12. What is the relation between the two blue lines in
Fig. 14? Explain.

13. Give a rule relating the numbers of vertical lines of
di↵erent color in Fig. 16.
Explain its significance.

14. Recall the definition of the kernel from section 4.
Using this, derive fH and fX, and draw them on
Fig. 16. Explain where double excitations must come
from for 2 electrons.

15. Using formulas and figures from both sections, deduce
the results of Fig. 15 in the absence of correlation
(Hint: You will need to solve the Hartree-Fock self-
consistent equations), and comment on the relative
errors. This is a little more work than the other
exercises.
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