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Well, that’s tine but ...

.. what 1s entanglement good for?

. how to define entanglement in systems of
1dentical particles (e.g., electrons)?

. how to quantify 1t for total states that are
not pure anymore, l.e., WX — p

“mixedness of p4/p could be due to mixedness
of p rather than an indicator of entanglement ]



goal of this lecture:

answering all these questions
(In a rather comprehensive manner)



0) Physical relevance of entanglement

B 1n general: fascinating phenomenon
— relevant for our understanding of physics

m provides important insights into behaviour and
properties of quantum systems: quantum phase
transitions, electronic structure, ...

m Diagnostic tool for describing many-body
quantum states
— 1mproving numerical methods



m  Key resource for realizing quantum information
processing tasks:

® quantum cryptography

® quantum teleportation

® superdense coding

® (possibly even) quantum computing

‘ operationally meaningtul quantification
of entanglement is essential!



Recent situation:

&

restriction to distinguish.
particles (no electrons)

often rather abstract &
mathematical

@

quantification often tlawed

dubious application ot QI'T
concepts 1n general
(hype about entanglement)



Our goal:

strengthening the connection

between QI and QMB:

Entanglement




Timely!:

Entanglement

strengthening
connection

2nd quantum revolution:
controlling atoms & molecules — realizing QI taks
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1) Quantum states and their geometry



Simplest example: the qubit

system with a 2-dim. Hilbert space H = C*

— pick orthonormal basis states: |0),|1)

Hermitian matrices in C?*?: A = 5 (ol + - 7)

with Pauli matrices:

(01 (0 i (10
=t o) TG oo0) P01



Remark: Dirac versus matrix representation

inner product:

(A.B) =Try[ATB] = Y (o|A'Blo) = » AL B,

o=0,1 o.7=0,1



density matrices:
(Hermitian, positive semi-definite and trace-normalized

to unity)

L
,():5(ll+(1=-r_7)

with @ € R?, |a| < 1



Bloch representation:

RS
P Q
|U><(}| Bloch
But wait: North & South pole / ball

aren’'t orthogonal !?

0 11|



Exercise 2.3

Prove that for a qubit the following statements on density matrices p expressed as
(5) are equivalent:

1. plies on the boundary of the convex space of density matrices

3. pis aprojector, i.e., p = p*

4. The spectrum (i.e., the set of eigenvalues) of p reads {0. 1} .




General case

system with a d-dim. Hilbert space H

space of density operators (matrices):

DE{,&:HMHMT:,&AﬁﬁOhT’r[ﬁ}zl}

e D 1sconvex
e extremal points: pure states, i.e., p° = p = [U) V]
e inner product: (A, B) = Try|A! D]

— notion of geometry



2) Quantum information formalism



From now on we consider a multipartite
(for simplicity bipartite) quantum system

total Hilbert space: Hip =Hao® Hp
total algebra of observables: Aap = A1 @ Ap

notion ot reduced states:
<:~1 & T‘B>!5‘AB — Tl‘[pﬂB(*:l & IB)]
— TFA[,OAA} : \V/}i - AA

defines pa = Trp|pap|



Correlation function:

Coap(AB) = (A® B)pup — (A)pa(B) s

PAB

observation:

C, (A, B)=0 % C, (A, B)=0, VA, B



Definition 2.1 (Uncorrelated States) Let Hip = Ha @ Hp be the Hilbert space and
Aip = As®RAp the algebra of observables of a bipartite system AB, with local Hilbert
spaces H . p and local algebras A, p. A state pyp on Hap is called uncorrelated, if
and only if

<:1 ® B>,“5’AB — <‘:1>PA<B>IJB ; (27)

for all local observables Ae A, Be Ap. The set of uncorrelated states is denoted by
Dy and states pap ¢ Dy are said to be correlated.

measure of (total) correlation:

](pAB) = giléiel%)DS(PABHGAB)

= S(pasllpa ® pB) .

with the quantum relative entropy:

S(pllo) = Tr[p(log(p) — log(a))]



KRey result (universal bound on correlation tunction):

Con(A B) < /2log(2) |AllF |1 Bllr VI(pas)

in particular, this implies

I(pag) =0 = C,, (A, B)=0, VA, B



Key fact 2.1

Quantum information tools such as measures of different correlation types provide
universal insights into the structure of multipartite quantum states. This means
that they do not refer to any specific choice of observables but lead instead to
statements (such as Eq. (31)) which are valid in general.




How about classical combinations
(mixture) of uncorrelated states?

) o ()
PAB = ZMPAJ D Pp

1t 1s apparently correlated,

but 1s 1t also entangled?

No!



Definition 2.2 (Separable States) A state p,p is called separable/non-entangled if p o g

can be expressed as a convex linear combination ( “classical mixture”) of uncorrelated
states, that is pap € Conv(Dy) = Dy, Otherwise a state is called entangled.

measure of entanglement

(quantum relative entropy of entanglement):

FE(pap)= min S(pap|loas)

TAB EDSEP

“Notoriously difficult to calculate!]



Complete geometric picture

— Uncorrelated @@ Separable 7 Entangled




3) Application to fermions



termionic Hilbert space

m ]-particle Hilbert space HW

®  N-fermion Hilbert space

HO = AV = Ay [
d
B Fock space F(H,) = 69 AN [H D]

N=0

QN




Subsystems of fermionic systems (?)

antisymmetry superselection rule for
contributes number parity would apply

= unphysical



Tensor product in fermionic Fock space

Fap=F(H) = FH) o FH) = Fi @ Fp

700 Ty Mgt - Tg) [, Moy ) A @ M1, M2 - 14) B

e ¢ o o o o
SR 2

n general:

Hi=HYasHn” = F)=FHDY) e FHP)



caveat: number parity superselection rule

“nature does not allow one to mix even

and odd particle number states”

algebra of observables A # B(F)
observables block-diagonal w.r.t. @ Hy, © Hy

N even N odd

stronger superselection rules possible:

m no creation of fermions: particle number SSR

m exp. limited set of measurements/operations

— A smaller (— Dy larger)



indeed, just to recall:

Definition 2.1 (Uncorrelated States) Let Hap = Ha ® Hp be the Hilbert space and
Aip = As®Ap the algebra of observables of a bipartite system AB, with local Hilbert
spaces ‘H 4/p and local algebras A4 /B A state pap on H 4p is called uncorrelated, if
and only if

<:1 & B>l3’AB — <‘:1>PA<B>IJB - (27)

for all local observables Ae Ay, B € Ap. The set of uncorrelated states is denoted by
Dy and states pap ¢ Dy are said to be correlated.




Violation of the number parity superselection rule (P-SSR) would make superlu-
minal signalling possible in contradiction to the laws of special relativity.

Fermionic Modes

[A,B] # 0!
)

Measurements
influence each other




Key fact 2.3

Correlation and entanglement are relative concepts. They depend not only on the
particular division of the total system into two (or more) subsystems but also on
the underlying superselection rules (SSRs), which eventually defines the physical
local algebras of observables A 4/ and the global algebra A, ® Ap.

Key fact 2.4

By ignoring the fundamentally important SSRs, one may radically overestimate
the true physical correlation and entanglement in a quantum state.




4) Examples



A single fermion

state | W) = (\L) + |R))

%\

mode correl ation/entanglement:

W) = (\1 0) +10,1))
/1
L R




A single fermion

state [U) = - (|L) + |R))

2

Sl

mode correlation/entanglement:

W) =—=(|1,0) + [0, 1))

= pr= 3 [|0) (0] + 1) (1]]

really correlated /entangled?




Nol!:
WY W| = %[\1, 0)(1,0]+]0,1%0, 1|+]1,0)0, 1|+[0, 1)1, 0]]

_ 1 [\LOXL 0] + 10, 1)0, 1‘]

WY W
UKL, o= 3

= |UXT|is mode-corelated w.rt. L <> R
but not mode-entangled

note:

(unnecessary) embedding of H and A , respectively,

can be quite misleading




Orbital entanglement in molecules

two relevant partitions:

m orbital 7 <> remaining orbitals

m orbital 7 <> orbital j

molecular ground state |WUy)
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le-orbital entanglement /correlation:
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orbital-orbital entanglement & correlation:
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Further reading

Lecture notes/proceedings by Erik & Eva

Extended lecture notes (soon on the arXiv)

publications:
|L.Ding, CS, J. Chem. Theory Comput. 16, 4159 (2020)]

|L.Ding, S.Mardazad, S.Das, S.Szalay, U.Schollwéck, Z.Zimboras, CS,
J. Chem. Theory Comput. 17, 79 (2021)]

+ forthcoming papers



International Symposium on Correlated Electrons
Symcorrel21

October 5th - 7th, 2021 (online)
Deadline: this week Friday!




JOIN OUR TEAM

Several postdoc & PhD positions available

— check out our group website!



Thank you



