Essential introduction to NEGF methods for real-time simulations

1

<u>Gianluca Stefanucci</u>

(1) Università di Roma Tor Vergata, Italy(2) INFN, Sezione Università di Roma Tor Vergata, Italy

Strongly correlated systems ?

Spectrum

Strongly correlated systems ?

Spectrum

Extra difficulties in nonequilibrium

More than just one state... how many? It depends on the time-dependent perturbation

Different states may experience different correlation effects

No equilibrium shortcuts: everything changes in time

 $\hat{U}(t,t') =$

(forward evolution)

From the group property: $\hat{U}(t,t')\hat{U}(t',t) = \hat{1}$

 $\hat{U}(t',t) = \lim_{\delta \to 0} e^{\mathrm{i}\delta\hat{H}(t_0)} e^{\mathrm{i}\delta\hat{H}(t_1)} \dots e^{\mathrm{i}\delta\hat{H}(t_{N-1})} e^{\mathrm{i}\delta\hat{H}(t_N)} = \bar{\mathcal{T}} \left\{ e^{-\mathrm{i}\int_t^{t'} d\bar{t}\,\hat{H}(\bar{t})} \right\}$

(backward evolution)

Time-dependent averages

Let's try again

$$O(t) = \langle \Phi_g | \hat{U}(-\infty, t) \hat{O} \hat{U}(t, -\infty) | \Phi_g \rangle$$
$$= \langle \Phi_g | \bar{\mathcal{T}} \left\{ e^{-i \int_t^{-\infty} d\bar{t}' \, \hat{H}(\bar{t}')} \right\} \hat{O} \, \mathcal{T} \left\{ e^{-i \int_{-\infty}^t d\bar{t} \, \hat{H}(\bar{t})} \right\} | \Phi_g \rangle$$

Time-dependent averages

Times on the contour: $z = t_{-}$ (forward branch) $z = t_{+}$ (backward branch) **Operators on the contour:** $\hat{O}(t_{-}) = \hat{O}(t_{+}) \equiv \hat{O}(t)$ CONTOUR $O(t) = \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-\mathrm{i} \int_{\gamma} d\bar{z} \, \hat{H}(\bar{z})} \hat{O}(z) \right\} | \Phi_g \rangle$ IDEA $-\infty$ Pay attention to the ordering $O(t) = \langle \Phi_a | \hat{U}(-\infty, t) \hat{O} \hat{U}(t, -\infty) | \Phi_a \rangle$ of times $= \langle \Phi_g | \bar{\mathcal{T}} \left\{ e^{-\mathrm{i} \int_t^{-\infty} d\bar{t}' \, \hat{H}(\bar{t}')} \right\} \hat{O} \, \mathcal{T} \left\{ e^{-\mathrm{i} \int_{-\infty}^t d\bar{t} \, \hat{H}(\bar{t})} \right\} | \Phi_g \rangle$

Time-dependent averages

Times on the contour: $z = t_{-}$ (forward branch) $z = t_{+}$ (backward branch) **Operators on the contour:** $\hat{O}(t_{-}) = \hat{O}(t_{+}) \equiv \hat{O}(t)$ CONTOUR $O(t) = \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-i \int_{\gamma} d\bar{z} \, \hat{H}(\bar{z})} \hat{O}(z) \right\} | \Phi_g \rangle$ IDEA $\hat{H}_{\eta}(\bar{t})$ $\hat{H}(\bar{t})$ $+\infty$ $-\infty$ t_+ t $\hat{\hat{H}}(\bar{t}')$ $\hat{H}_n(\bar{t}')$ Examples: $z = t_{-}$

$$\begin{split} \mathcal{O}(t) &= \langle \Phi_g | \underbrace{\bar{\mathcal{T}} \left\{ e^{-\mathrm{i} \int_{\infty}^{-\infty} d\bar{t}' \, \hat{H}(\bar{t}') \right\}}_{\hat{U}(-\infty,\infty)} \underbrace{\mathcal{T} \left\{ e^{-\mathrm{i} \int_{t}^{\infty} d\bar{t} \, \hat{H}(\bar{t}) \right\}}_{\hat{U}(\infty,t)} \hat{O} \underbrace{\mathcal{T} \left\{ e^{-\mathrm{i} \int_{-\infty}^{t} d\bar{t} \, \hat{H}(\bar{t}) \right\}}_{\hat{U}(t,-\infty)} | \Phi_g \rangle \\ &= \langle \Phi_g | \hat{U}(-\infty,t) \hat{O} \hat{U}(t,-\infty) | \Phi_g \rangle \end{split}$$

NEGF

NEGF is a nonperturbative approach to calculate time-dependent averages

The fundamental bit is the contour Green's function

$$G_{ij}(z,z') \equiv \frac{1}{i} \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-i \int_{\gamma} d\bar{z} \, \hat{H}(\bar{z})} \hat{d}_i(z) \hat{d}_j^{\dagger}(z') \right\} | \Phi_g \rangle$$

If z is earlier than z' (lesser Green's function)

Probability amplitude that a hole created in i at time t is found in j at time t'

$$G_{ij}(z,z') = -\frac{1}{i} \langle \Phi_g | \hat{U}(-\infty,t') \, \hat{d}_j^{\dagger} \, \hat{U}(t',t) \, \hat{d}_i \, \hat{U}(t,-\infty) | \Phi_g \rangle \equiv G_{ij}^{<}(t,t')$$

If z is later than z' (greater Green's function)

Probability amplitude that an electron created in j at time t' is found in i at time t

$$G_{ij}(z,z') = \frac{1}{i} \langle \Phi_g | \hat{U}(-\infty,t) \hat{d}_i \hat{U}(t,t') \hat{d}_j^{\dagger} \hat{U}(t',-\infty) | \Phi_g \rangle \equiv G_{ij}^{>}(t,t')$$

What can we get from G?

Time-dependent average of one-body operators $\hat{O} = \sum_{ij} O_{ij} \hat{d}_i^{\dagger} \hat{d}_j$ $O(t) = \sum_{ij} O_{ij} \langle \Phi_g | \hat{U}(-\infty, t) \hat{d}_i^{\dagger} \hat{d}_j \hat{U}(t, -\infty) | \Phi_g \rangle = -i \sum_{ij} O_{ij} G_{ji}^{<}(t, t)$

Time-dependent average of interaction energy (two-body operator)

$$E_{\rm int}(t) = \frac{1}{4i} \sum_{ij} \left[i \left(\frac{d}{dt} - \frac{d}{dt'} \right) \delta_{ij} - 2h_{ij}(t) \right] G_{ji}^{<}(t,t') \Big|_{t=t'}$$

Momentum-resolved photoemission current

$$I_{\mathbf{k}}(t) = 2\sum_{ij} \int d\bar{t} \operatorname{Re}\left[\Sigma_{ij,\mathbf{k}}(t,\bar{t})G_{ji}^{<}(\bar{t},t)\right]$$

How do we get G?

Starting point — Inside the contour ordering the operators commute, e.g.,

$$\mathcal{T}_{\gamma}\left\{\hat{H}_{0}(z)\hat{H}_{\mathrm{int}}(z')\right\} = \mathcal{T}_{\gamma}\left\{\hat{H}_{\mathrm{int}}(z')\hat{H}_{0}(z)\right\}$$

Back to the definition $\hat{H}(z) = \hat{H}_0(z) + \hat{H}_{\rm int}(z)$ $G_{ij}(z,z') \equiv \frac{1}{i} \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-i \int_{\gamma} d\bar{z} \, \hat{H}(\bar{z})} \hat{d}_i(z) \hat{d}_j^{\dagger}(z') \right\} | \Phi_g \rangle$ $= \frac{1}{i} \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-\mathrm{i} \int_{\gamma} d\bar{z} \, \hat{H}_0(\bar{z})} e^{-\mathrm{i} \int_{\gamma} d\bar{z} \, \hat{H}_{\mathrm{int}}(\bar{z})} \hat{d}_i(z) \hat{d}_j^{\dagger}(z') \right\} | \Phi_g \rangle$ $=\frac{1}{\mathrm{i}}\sum_{n=0}^{\infty}\frac{(-\mathrm{i})^{n}}{n!}\int_{\gamma}dz_{1}\dots dz_{n}$ $\times \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-\mathrm{i} \int_{\gamma} d\bar{z} \, \hat{H}_0(\bar{z})} \hat{H}_{\mathrm{int}}(z_1) \dots \hat{H}_{\mathrm{int}}(z_n) \hat{d}_i(z) \hat{d}_j^{\dagger}(z') \right\} | \Phi_g \rangle$

How do we get G?

Starting point — Inside the contour ordering the operators commute, e.g.,

$$\mathcal{T}_{\gamma}\left\{\hat{H}_{0}(z)\hat{H}_{\mathrm{int}}(z')\right\} = \mathcal{T}_{\gamma}\left\{\hat{H}_{\mathrm{int}}(z')\hat{H}_{0}(z)\right\}$$

Go back to the definition $\hat{H}(z) = \hat{H}_{0}(z) + \hat{H}_{int}(z)$ $G_{ij}(z, z') \equiv \frac{1}{i} \langle \Phi_{g} | \mathcal{T}_{\gamma} \left\{ e^{-i \int_{\gamma} d\bar{z} \hat{H}(\bar{z})} \hat{d}_{i}(z) \hat{d}_{j}^{\dagger}(z') \right\} | \Phi_{g} \rangle$ $= \frac{1}{i} \langle \Phi_{g} | \mathcal{T}_{\gamma} \left\{ e^{-i \int_{\gamma} d\bar{z} \hat{H}_{0}(\bar{z})} e^{-i \int_{\gamma} d\bar{z} \hat{H}_{int}(\bar{z})} \hat{d}_{i}(z) \hat{d}_{j}^{\dagger}(z') \right\} | \Phi_{g} \rangle$

$$G_{ij}(z,z') = \frac{1}{i} \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{\gamma} dz_1 \dots dz_n$$
$$\times \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-i \int_{\gamma} d\bar{z} \, \hat{H}_0(\bar{z})} \hat{H}_{int}(z_1) \dots \hat{H}_{int}(z_n) \hat{d}_i(z) \hat{d}_j^{\dagger}(z') \right\} | \Phi_g \rangle$$

How do we get G?

Same expansion as the standard time-ordered Green's function !!!

Only difference is: time t \rightarrow contour time z

Dyson equation on the contour

$$G(z, z') = G_0(z, z') + \int_{\gamma} dz_1 dz_2 G_0(z, z_1) \Sigma(z_1, z_2) G(z_2, z')$$
$$= G_0(z, z') + \int_{\gamma} dz_1 dz_2 G(z, z_1) \Sigma(z_1, z_2) G_0(z_2, z')$$

$$G_{ij}(z,z') = \frac{1}{\mathrm{i}} \sum_{n=0}^{\infty} \frac{(-\mathrm{i})^n}{n!} \int_{\gamma} dz_1 \dots dz_n$$
$$\times \langle \Phi_g | \mathcal{T}_{\gamma} \left\{ e^{-\mathrm{i} \int_{\gamma} d\bar{z} \, \hat{H}_0(\bar{z})} \hat{H}_{\mathrm{int}}(z_1) \dots \hat{H}_{\mathrm{int}}(z_n) \hat{d}_i(z) \hat{d}_j^{\dagger}(z') \right\} | \Phi_g \rangle$$

The Kadanoff-Baym equations

Intermezzo: the self-energy

$$= \delta(z, z') \sum_{mn} \left(v_{imnj} - v_{imjn} \right) \rho_{nm}(t) = \delta(z, z') V_{\text{HF}, ij}(t)$$

$$G(z, z^+) = G^<(t, t) = i\rho(t)$$

Intermezzo: the self-energy

 $= i^{2} \sum_{rpn} \sum_{mqs} v_{irpn} v_{mqsj} \left[-G_{nm}(z, z') G_{sr}(z', z) G_{pq}(z, z') + G_{nq}(z, z') G_{sr}(z', z) G_{pm}(z, z') \right]$

$$\Sigma(z, z') \to \Sigma^{\leq}(t, t')$$

 $G_{nm}(z,z')G_{sr}(z',z)G_{pq}(z,z') \to G_{nm}^{\leq}(t,t')G_{sr}^{\geq}(t',t)^{\leq}G_{pq}^{\leq}(t,t')$

Back to KBE

19

$$i\frac{d}{dt}G^{<}(t,t') = h(t)G^{<}(t,t') + \int^{t}_{0}d\bar{t}\Big[\Sigma^{>}(t,\bar{t}) - \Sigma^{<}(t,\bar{t})\Big]G^{<}(\bar{t},t') - \int^{t'}_{0}d\bar{t}\Sigma^{<}(t,\bar{t})\Big[G^{>}(\bar{t},t') - G^{<}(\bar{t},t')\Big]$$

$$-i\frac{d}{dt'}G^{<}(t,t') = G^{<}(t,t')h(t') + \int^{t} d\bar{t} \Big[G^{>}(t,\bar{t}) - G^{<}(t,\bar{t})\Big]\Sigma^{<}(\bar{t},t') \\ - \int^{t'} d\bar{t} \ G^{<}(t,\bar{t})\Big[\Sigma^{>}(\bar{t},t') - \Sigma^{<}(\bar{t},t')\Big]$$

Time-stepping numerical solution scales like the number of time steps N (for t) x N (for t') x N (for the integral) = N^3

Back to KBE

$$i\frac{d}{dt}G^{<}(t,t') = h(t)G^{<}(t,t') + \int^{t}_{0}d\bar{t}\Big[\Sigma^{>}(t,\bar{t}) - \Sigma^{<}(t,\bar{t})\Big]G^{<}(\bar{t},t') - \int^{t'}_{0}d\bar{t}\Sigma^{<}(t,\bar{t})\Big[G^{>}(\bar{t},t') - G^{<}(\bar{t},t')\Big]$$

$$-i\frac{d}{dt'}G^{<}(t,t') = G^{<}(t,t')h(t') + \int^{t} d\bar{t} \Big[G^{>}(t,\bar{t}) - G^{<}(t,\bar{t})\Big]\Sigma^{<}(\bar{t},t') \\ - \int^{t'} d\bar{t} \ G^{<}(t,\bar{t})\Big[\Sigma^{>}(\bar{t},t') - \Sigma^{<}(\bar{t},t')\Big]$$

Subtraction and evaluation in t=t'

$$i\left(\frac{d}{dt} + \frac{d}{dt'}\right)G^{<}(t,t')\Big|_{t=t'} - \left[h(t), G^{<}(t,t)\right] = I(t) + I^{\dagger}(t)$$
$$-\frac{d}{dt}\rho(t) - i\left[h(t), \rho(t)\right] = \int^{t} d\bar{t}\left[\Sigma^{>}(t,\bar{t})G^{<}(\bar{t},t) - \Sigma^{<}(t,\bar{t})G^{>}(\bar{t},t)\right]$$
$$+h.c.$$

To summarize

For the GKBA we can generate an eom for the density matrix for *any* self-energy approximation

Time-stepping algorithm to solve NEGF+GKBA eom scales like N²

GKBA is exact at the mean-field level

Is this really the ultimate limit?

GKBA partially neglects self-consistency since diagrams are calculate with mean-field-like G's

Back to the collision integral

$$I(t) = \int^t d\bar{t} \left[\Sigma^{>}(t,\bar{t})G^{<}(\bar{t},t) - \Sigma^{<}(t,\bar{t})G^{>}(\bar{t},t) \right]$$

Using the 2-nd order self-energy previoulsy derived

$$\chi^{0,>}_{\substack{pq\\rs}}(t,t')w_{\substack{qj\\sm}}\chi^{0,<}_{\substack{jl\\mn}}(\bar{t},t)$$

$$\left[\Sigma^{>}(t,\bar{t})G^{<}(\bar{t},t)\right]_{il} = i^{2}\sum_{rpn}v_{irpn}\sum_{jmqs}(v_{qmsj}-v_{mqsj})G^{>}_{nm}(t,\bar{t})G^{<}_{sr}(\bar{t},t)G^{>}_{pq}(t,\bar{t})G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t},t)G^{<}_{jl}(\bar{t}$$

Highlight the mathematic structure:

$$w_{\substack{qj\\sm}} \equiv v_{mqsj} - v_{qmsj} = w_{\substack{jq\\ms}}^* \qquad \qquad \chi_{\substack{pq\\rs}}^{0,\gtrless}(t,t') \equiv -\mathrm{i}G_{pq}^\gtrless(t,t')G_{sr}^\lessgtr(t',t)$$

$$I_{il}(t) = -i \sum_{rpn} v_{irpn} \mathcal{G}_{pl}(t)$$
$$\mathcal{G}(t) = -i \int^{t} d\bar{t} \left[\chi^{0,>}(t,\bar{t}) \boldsymbol{w} \chi^{0,<}(\bar{t},t) - \chi^{0,<}(t,\bar{t}) \boldsymbol{w} \chi^{0,>}(\bar{t},t) \right]$$

The \mathcal{G} in GKBA

$$\begin{aligned}
\boldsymbol{\mathcal{G}}(t) &= -i \int^{t} d\bar{t} \left[\boldsymbol{\chi}^{0,>}(t,\bar{t}) \, \boldsymbol{w} \, \boldsymbol{\chi}^{0,<}(\bar{t},t) - \boldsymbol{\chi}^{0,<}(t,\bar{t}) \, \boldsymbol{w} \, \boldsymbol{\chi}^{0,>}(\bar{t},t) \right] \\
\underbrace{\boldsymbol{t} \geq \boldsymbol{t}'}_{\boldsymbol{\gamma}_{rs}^{0,>}(t,t') = i \sum_{a} G_{pa}^{\mathrm{R}}(t,t') (\rho_{aq}(t') - \delta_{aq}) \sum_{b} \rho_{sb}(t') G_{br}^{\mathrm{A}}(t',t) \\
P_{pa}^{\mathrm{R}}(t,t') &= i G_{pa}^{\mathrm{R}}(t,t') G_{br}^{\mathrm{A}}(t',t) \\
P_{pa}^{\mathrm{Pa}}(t,t') &= i G_{pa}^{\mathrm{R}}(t,t') G_{br}^{\mathrm{A}}(t',t) \\
\underbrace{\boldsymbol{t} \leq \boldsymbol{t}'}_{bs} \\
\chi_{prs}^{0,>}(t,t') &= i \sum_{a} (\rho_{pa}(t) - \delta_{pa}) G_{aq}^{\mathrm{A}}(t,t') \sum_{b} G_{sb}^{\mathrm{R}}(t',t) \rho_{br}(t) \\
\end{aligned}$$

 $-G_{sr}^{<}(t',t)$

 $G_{pq}^{>}(t,t')$

The \mathcal{G} in GKBA

$$\boldsymbol{\mathcal{G}}(t) = -\mathrm{i} \int^{t} d\bar{t} \left[\boldsymbol{\chi}^{0,>}(t,\bar{t}) \, \boldsymbol{w} \, \boldsymbol{\chi}^{0,<}(\bar{t},t) - \boldsymbol{\chi}^{0,<}(t,\bar{t}) \, \boldsymbol{w} \, \boldsymbol{\chi}^{0,>}(\bar{t},t) \right]$$

In short for all times

$$\boldsymbol{\chi}^{0,>}(t,t') = \boldsymbol{P}^{\mathrm{R}}(t,t')\boldsymbol{\rho}^{(2)>}(t') - \boldsymbol{\rho}^{(2)>}(t)\boldsymbol{P}^{\mathrm{A}}(t,t')$$
$$\rho_{aq}^{(2)>}(t') \equiv (\rho_{aq}(t') - \delta_{aq})\rho_{sb}(t')$$

Mutatis mutandis

$$\chi^{0,<}(t,t') = \mathbf{P}^{\mathrm{R}}(t,t') \boldsymbol{\rho}^{(2)<}(t') - \boldsymbol{\rho}^{(2)<}(t) \mathbf{P}^{\mathrm{A}}(t,t')$$
$$\rho_{aq}^{(2)<}(t) \equiv \rho_{aq}(t) (\rho_{sb}(t) - \delta_{sb})$$

$$\mathcal{G}(t) = i \int^{t} d\bar{t} \, \boldsymbol{P}^{R}(t,\bar{t}) \boldsymbol{\Psi}(\bar{t}) \boldsymbol{P}^{A}(\bar{t},t)$$
$$\boldsymbol{\Psi}(t) = \boldsymbol{\rho}^{(2)>}(\bar{t}) \boldsymbol{w} \boldsymbol{\rho}^{(2)<}(\bar{t}) - \boldsymbol{\rho}^{(2)<}(\bar{t}) \boldsymbol{w} \boldsymbol{\rho}^{(2)>}(\bar{t})$$

Time-linear ODE scheme (Joost, Schlünzen, Bonitz PRL 2019)

$$\begin{aligned}
\mathcal{G}(t) &= i \int^{t} d\bar{t} \, P^{R}(t, \bar{t}) \Psi(\bar{t}) P^{A}(\bar{t}, t) \\
\Psi(t) &= \rho^{(2)>}(\bar{t}) w \rho^{(2)<}(\bar{t}) - \rho^{(2)<}(\bar{t}) w \rho^{(2)>}(\bar{t})
\end{aligned}$$

$$\begin{aligned}
\mathbf{i} \frac{d}{dt} P^{R}(t, \bar{t}) &= h^{(2)}(t) P^{R}(t, \bar{t}) \\
P^{R}(t^{+}, t) &= \mathbf{i} \mathbf{1}
\end{aligned}$$

$$\begin{aligned}
\mathbf{U} \text{sing} \\
\frac{d}{dt} \int^{t} d\bar{t} \, f(t, \bar{t}) &= f(t^{+}, t) + \int^{t} d\bar{t} \, \frac{d}{dt} f(t, \bar{t}) \\
&= i \frac{d}{dt} \mathcal{G}(t) &= -\Psi(t) + h^{(2)}(t) \mathcal{G}(t) - \mathcal{G}(t) h^{(2)}(t) \\
&= i \frac{d}{dt} \rho(t) &= h(t) \rho(t) - \rho(t) h(t) - \mathbf{i} \left(I(t) + I^{\dagger}(t)\right) \\
&= I_{il}(t) &= -\mathbf{i} \sum_{rpn} v_{irpn} \mathcal{G}_{pl} t \end{aligned}$$

$$\begin{aligned}
\mathbf{U} \text{sing} \\
&= \frac{d}{dt} \int^{t} d\bar{t} f(t, \bar{t}) = f(t^{+}, t) + \int^{t} d\bar{t} \, \frac{d}{dt} f(t, \bar{t}) \\
\end{aligned}$$

PHYSICAL REVIEW LETTERS 127, 036402 (2021)

Fast Green's Function Method for Ultrafast Electron-Boson Dynamics

Daniel Karlsson¹, Robert van Leeuwen¹, Yaroslav Pavlyukh¹, Enrico Perfetto¹, and Gianluca Stefanucci^{3,4} ¹Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland ²Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany ³Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy ⁴INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

Electron self-energy due to phonons $\Sigma_{pq}(t, t)$ $\lambda_{sa}^{v}(t')$ $G_{rs}(t,t')$ $G_{as}(t,t')$

Phonon self-energy due to electrons

 $\lambda_{sr}^{\tilde{v}}(t')$ $G_{rn}(T)$

How do the eom change ???

$$i\frac{d}{dt}\rho(t) = h(t)\rho(t) - \rho(t)h(t) - i\left(I(t) + I^{\dagger}(t)\right)$$
$$I_{il}(t) = -i\sum_{rpn} v_{irpn} \mathcal{G}_{pl}(t)$$

$$i\frac{d}{dt}\mathcal{G}(t) = -\Psi(t) + h^{(2)}(t)\mathcal{G}(t) - \mathcal{G}(t)h^{(2)}(t)$$
$$\downarrow_{h^{(2)}_{\text{eff}}} \qquad \downarrow_{h^{(2)}_{\text{eff}}}$$
$$h^{(2)}_{\text{eff}} \qquad h^{(2)}_{\text{eff}}$$
$$h^{(2)}_{\text{eff}}(t) \equiv h^{(2)}(t) - \left(\rho^{(2),>}(t) - \rho^{(2),<}(t)\right)w$$

Photoinduced dynamics in organic molecule

Photoinduced dynamics in organic molecule

36

Photoinduced dynamics in organic molecule

Carrier and phonon relaxation

Conclusions

- Exceptional reduction in computational scaling of NEGF simulations
- Several nonperturbative approximations available
- Unifying method for electron-electron and electronboson interations
- Possibility of merging NEGF with DFT for firstprinciples simulations
- Plenty of room for studying new nonequilibrium correlated phenomena

Advert

PostDoctoral Fellowship in Condensed Matter Theory

Università di Roma

Ultrafast electron dynamics with NEGF

If you are interested just drop me an email: gianluca.stefanucci@roma2.infn.it

DEADLINE: October 30-th