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Why to simulate chemistry on quantum devices?

@ The size of the Hilbert space needed for the description of a studied system grows
exponentially with the system size - curse of dimensionality.

@ For example, the exact N-electron k-orbital wave function expansion:

E n; = N

i

nyny...n,

[ni) € {lempty), [1), 1), I},
we]: Z 1/)"1"2"'"" n1n2...nk>
k

Dimension of the Hilbert space increases exponentially with a system size: O(4")
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Why to simulate chemistry on quantum devices?

@ The size of the Hilbert space needed for the description of a studied system grows
exponentially with the system size - curse of dimensionality.

@ For example, the exact N-electron k-orbital wave function expansion:

E n; N

i

nyny...n,

[ni) € {lempty), [1), 1), I},
we]: Z 1/)"1"2"'"" n1n2...nk>
k

Dimension of the Hilbert space increases exponentially with a system size: O(4")
@ in PVDZ basis set:

100 dets = ~ 107 dets = ~ 10" dets
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Two questions which naturally pop up:

@ Do we really need the exact solution?

@ Do not most of the relevant wave functions lie in some low-entangled corner of the
Hilbert space which would allow efficent parametrization (e.g. tensor networks)?
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Weak versus strong correlation

Ve = Var + Veorr

o Weakly correlated (or single reference) regime:
> WUyp - good approximation to W), Weorr is supposed to be small

» DFT can accurately treat hundreds of atoms, CCSD(T) with spectroscopic accuracy

o Strongly correlated (or multireference) regime:
> Coefficients in determinant expansion of W, are large, the mean field approach fails!

> Strongly correlated states arise when there is near degeneracy in underlying orbitals

@ For near degenerate orbitals, we generally need the exact solution.

@ Moreover, there are probably no efficient classical parametrizations, we need FCl!
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Solution: Quantum Chemistry on Quantum Computers

L. Veis (J. Heyrovsky Institute) 6/41



Quantum computing in a nutshell
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Basics of quantum computing: qubits

@ Quantum unit = qubit

) =a0) +811), |af+|8]° =1,

\A computational basis

0)=<é), |1)=((1)>, therefore |1j)>:<g)

@ When going to n qubits, we work with 2" dimensional Hilbert space, e.g.

w=(3)o(3)=(8) m=(2)=()-(
o-(1)=(3)-

@ A general two qubit’s state has the form

OO0 ©OOHO
v

OO0 OO0~

%) = a|00) + B]01) + ~|10) + 4]11).
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Basics of quantum computing: qubits

@ Multi-qubit states can be

Product states Entangled states
1 1
—(]00) +101)) =10) ® —(|0) + |1 —(|00) + |11
f(|>|>) \)\/§(|>\>) ﬁ(|>|>)
> can be written as tensor products of > ‘“spooky action at a distance”

subsystem wave functions > key ingredients in quantum computing

@ Qubits are usually initialized in a |zero) state = |0...0).

o Computational basis states encode decimal numbers in their binary form:

—100

convention: third qubit second qubit first qubit
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Basics of quantum computing: gates

@ Since time evolution of quantum systems must be unitary = quantum gates are
unitary operators.

o Every multi-qubit operation can be decomposed into single and entangling two-qubit
gates.
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Basics of quantum computing: gates

@ Since time evolution of quantum systems must be unitary = quantum gates are
unitary operators.

o Every multi-qubit operation can be decomposed into single and entangling two-qubit
gates.
> Pauli gates:

(1 3) (0 d)
(3 1)

> Rotations about x, y, z axes:

R.(6) = ei0X/2. R,(0) = ea'ewz, R.(0) = o—i02/2

Bloch sphere rep-
resentation:

0 ; 0
= cos = |[0)+€® sin =|1
[4) cos2\ y+e'? sin 2\ )

» Hadamard gate: |0) — % (IO) + |1>)

1 1 1
=i (3 1)
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Basics of quantum computing: gates

@ Since time evolution of quantum systems must be unitary = quantum gates are
unitary operators.

o Every multi-qubit operation can be decomposed into single and entangling two-qubit
gates.

> Pauli gates: > Controlled NOT (CNOT):

X (0 1Yy (0 i 1o o0 o
oo ooy — 01 0 0
0 0 (0 1
z:( 1o ) —o— o oll o

0o -1
> Rotations about x, y, z axes: 00) — [00)
Ra(60) = e "X/, R,(0) = ™"V /? Ry(0) = e~/ lo1) — |o1)
[10) — |11)
Bloch sphere rep- [11) —  [10)

resentation:

0 ; 0
= cos = |[0)+€® sin =|1
[4) cos2\ y+e'? sin 2\ )

» Hadamard gate: |0) — % (IO) + |1>)

Had =

1
V2
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Basics of quantum computing: measurements

o Final element of quantum circuits is a measurement.
@ Measurement is destructive.

@ Observables O are represented by Hermitian matrices, we can measure the
expectation value of O, i.e. (O) = (¥|O|¢) by averaging over many measurements.

o Measuring in the computational basis of i™" qubit: (1| Z;|4).

Strings of fermionic second quantized operators can be represented as strings of
Pauli operators (we will see later) - we need to measure also in X and Y bases =
bases transformations, e.g.

N . 1 1 1 1 1 1
Measuring in X basis: %(1 _1)‘5(1) _ (0)
0

1

) ] Fad (i) -
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Basics of quantum computing: graphical notation

wire carrying a qubit

measurement: projection onto |0) and |1)

9

single qubit unitary gate U

la)

controlled-NOT operation |g2) —e—

lg1) —b—
controlled-U operation |q2)

)
qubits ordering convention: |gns ... q2q1) lgn)

|q2)

lq1)
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Quantum simulation introduction

@ Analog quantum simulation: mapping of a Hamiltonian onto a tunable purpose
specific quantum device (not discussed here).

@ Digital quantum simulation: quantum algorithm decomposed to single and
two-qubit gates and implemented on a universal quantum computer.

@ System to qubits mapping:
[(t =0)) = |1q) H — Hq

@ Time evolution via e~ tHg

polynomial

Hq = Z hj, however [hj, h] #0
J
itH, *’fz hj ihit /N N 2
e tHe — ¢ il = (H e~ hit/ ) + O(t°/N) Trotter approx.
j

© Measurement of desired quantities (e.g. spin correlation functions)
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Quantum simulation introduction - Ising Hamiltonian

Hig = > JsZiZi+ Y BIX;

(i,j) ... nearest-neighbor
(i.j) i

@ Simple system to qubits mapping: |a) = (0), |3) = |1), Hising = Hq.

o After Trotterization: e BiXi%t and e YiZZ4°% \here 6t = t/N.

R (2B;ét)

L. Veis (J. Heyrovsky Institute)
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Quantum simulation introduction - Ising Hamiltonian

Hising = Z JiZiZ; + Z Bi X; (i,j) ... nearest-neighbor

(i.j) i
@ Simple system to qubits mapping: |a) = (0), |3) = |1), Hising = Hq.

o After Trotterization: e BiXi%t and e i%4°%  where 6t = t/N.

Z®Z<

1
0
1
0 -1 0 o | |01
0
0

R (2B;ét)
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Quantum simulation introduction - Ising Hamiltonian

Hising = Z JiZiZ; + Z Bi X; (i,j) ... nearest-neighbor

(i.j) i
@ Simple system to qubits mapping: |a) = (0), |3) = |1), Hising = Hq.

o After Trotterization: e BiXi%t and e i%4°%  where 6t = t/N.

zgZz <c1) —01>®(c1> —01)
1 0 0 0\ [00)
3 0 -1 0 0 01)
= lo o -1 0] 10
. 0 0 0 1 11)
R (2B;5t)
lq;)
lgi) —H R.(2J;6t) Hp—

L. Veis (J. Heyrovsky Institute) 14 /41



Quantum simulation introduction - Ising Hamiltonian

o) {Had - ]

10) —{Had ~ —

10) —{Had e e e
Lem Mot

10) —Had H— R} »

o Initial Hadamard gates align the spins along the x axis.

Uj = CNOT R.(24;6t)CNOT™ R, (2B;6t)
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Quantum chemistry in a nutshell
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Basics of quantum chemistry - the Hartree-Fock method

@ The electronic structure Hamiltonian (employing the Born-Oppenheimer

approximation):
v o1 1 Z
+5) -> :
2 24—l 4= —Ry|
I#] Iy

o The first step: Hartree-Fock (HF, mean-field) approximation:

@ N-electron problem = one-electron problem:

Slater determinant:
f(x1)xi(x1) = eixi(x1)

Ixixz - --xn) =
Xl)_*** VI (x1)
Z'”‘R" xila)  xa(e) . xa(w)
1| xe(x)  xelx2) ... xa(xw)
VIF (xq) = Z/X’ (1 Pr2)xi(x2)dx2, \/n1
xn(x)  xw(x2) .. xw(xw)
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Basics of quantum chemistry - basis sets

o Analytic solution of HF equations is generally not possible = solved numerically:

Xi(%) —2"—s ahy(r) = Z Cui Dulr)

integrated out
loptimized during HF-SCF

o Natural step: expand in H-atom one-electron wave functions

¢(r) = Ra(r)Yim(6, ¢)

Slater type orbitals (STOs): Gaussian type orbitals (GTOs):
RSTO(r) x e ¢ RGTO(r) = e "
difficult for integration O(M*) Hamiltonian terms
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Basics of quantum chemistry - basis sets

@ Recently there has been some interest in the plane wave basis
¢k(r) o eikr

and its dual form (Fourier transform), which leads to diagonal two-electron
interaction and thus less Hamiltonian terms O(M?)

@ However for molecules, about 100 times more plane waves than GTOs is necessary
(for a given accuracy).

Since the number of Hamiltonian terms directly influences the cost of quantum
algorithms, the goal is to have the most compact basis with the minimum number of
Hamiltonian terms.

o Alternative to basis set methods: grid based methods (basis of § functions at given
positions {|r)}):

V) = Z (X1, X2, ... XN )A(|X1, X2, . . . Xn)), [xi) = |ri}|o7)

Classical scaling: P3N x 2V
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Basics of quantum chemistry - correlation energy

@ Electrons are not properly correlated at the Hartree-Fock level.
@ The Hartree-Fock solution in a complete basis is certainly not exact!

@ The exact wave function - full configuration interaction (FCI):

W), = c|®) +Z Flo7) + >

a<b
i<j

(bab

o Correlation energy:

AE., — EFCHim. _ pHFim.
about 1% of the Hartree-Fock energy, but in absolute values huge effect!

@ Concept of “chemical accuracy” ~ 1 kcal/mol (1.6 - 1072 Hartree), reaction rates
within on order of magnitude (at room temperature)

v efAET/kBT
o Calculated by post-HF methods:

W) = Q[®PnF)
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Basics of quantum chemistry - second quantization

@ Properties of determinants — algebraic properties of creation and annihilation

operators.
T

@ ap, creates an electron in pt spin orbital, aq destroys an electron in g™ spin orbital

@ Fermionic anti-commutation rules:

T _ T T,
{ap,aq} = apag+agap = dpq,
_ Toaty
{ap7aq} = {apvaq} =0
Notice Pauli exclusion principle satisfaction: a; a; =0

@ Slater determinants are represented in the occupation basis:

Ix1x2 -

L. Veis (J. Heyrovsky Institute)

X) = 101, -, 0py -, o)

Op = {07 1}

H in a minimal basis: |0g10g) 0yt 0uy)

o dyr =1100) = Q;Ta;¢|>

agi|1100>

agﬁ;ﬁ;ﬂ} = _agTTag‘La;d) =
—al (1—al a)l) =—al]) =
—|1000)
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Basics of quantum chemistry - second quantization

@ Action of creation and annihilation operators on general determinants:

p—1
ap|o1, ...y Opy ... 0Mm) = 60,,,1(—1)2/':1 “Not,...,0,®1,...,0m),
t Sl
aploi,...,0p,...,0M) = Og,0(—1)&i=t Vo1,...,0,®1,...,0um),

@ Second quantization: proper anti-symmetry of a wave function is maintained by
properties of creation and annihilation operators applied on it.

o First quantization: operators applied on a wave function retain its anti-symmetry,
which must be explicitelly created during initialization.

o Electronic Hamiltonian in second quantization:

1
H= Z hpqabaq + 3 Z(pq|rs)af,af,asa,

Pq pqrs

v? Z Xp(x1)* Xq(x2)* xr(x1)xs(x2)
hog = [ xp(x)" [ — — — § ———— ) xq(x1)dx1  (palrs) = £ ! R dxpdxo
2 [r1 — Ryl [r1 — 12|
!
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Basics of quantum chemistry - Configuration Interaction method

@ The configuration interaction (Cl) is a variational method, which unlike HF is not
restricted to a single Slater determinant

Qc=c+ Z Co ...linear form

C1 = E C,fe7 ala,-,
ia
b
G = E c; a}:aZaja;,

a<b
i<j

variational params.
@ Recall that FCl is exact within a given orbital basis, however only up to 20 orbitals
are feasible.
@ Restricted Cl: CIS (singles), CISD (singles, doubles).

@ The consequences of linear wave operator: slow convergence with excitation rank
and size-nonextensivity.
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Basics of quantum chemistry - Coupled Cluster method

@ The coupled cluster (CC) wave operator has an exponential form

Qcc:eT T:ZTa

. = E t,-aal aj,
ia
T = g t aa ab ajai,

a<b
i<j

CC amplitudes
@ Exponential ansatz: faster convergence with excitation rank, size-extensivity
- t
o Not variational, because (W|H|W) = (duele” He' |®pe) would lead to oo

commutator series

Instead: H|W) = E|V) = Ee'|dug) —— P ——— (®urle” THe' |bue) = E

HF |

o Amplitude equations: (¢*\e7THeT\¢HF> = E(®"|Ppr) = 0, where &* = ¢)f7¢3by
etc.
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Quantum chemistry to quantum computing mappings

@ The task is to encode fermionic Hamiltonians and wave functions onto register of
qubits (say distingushible spins).
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First quantized mappings for grid based approaches

W) = g%, xn)A(x X, oxw),[x) = [6)oy)

Cpin / spatial
2

State of a single particle: ~ P3 amplitudes
State of N particles: (2P*)¥ = P3N x 2V
Let's have P = 2™ = 26™ DN ymplitudes

(3m+ 1)N qubits can store the wave function

@ Simple example: 2 spinless fermions on a four-point 1D grid

@ 4 points can be represented by 2 qubits: |0) = |00), |1) = |01), |2) = |10},
13) = [11).

S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, X. Yuan, Rev. Mod. Phys. 92, 015003 (2020)
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First quantized mappings for grid based approaches

o We distinguish two wave functions: ‘n" and ‘u’

1 1 1 1
= =0+ 1)+ —=[2) + —=|3
|pn) ﬁ' ) \@| ) \/§| ) \/gl )
1 1 1 1
W= —=[0) + —=[1) + —=[2) + —=|3
|pu) \/gl ) \/gl ) 7 ) ﬁ' )
@ We need to initialize the anti-symmetric wave function
90 = 5 (Ionaluds — lulen),) =
= =5 (11210 — 10010, + 11,13), = 1310, +

+ 12)410); = 10)412); +12)413), — |3>1\2>z)

—iHdt

@ Then the time evolution, i.e. e can follow (discussed a bit later)

o Favourable scaling (quadratic potential), easy to generalize for equal treatment of
nuclei and electrons (beyon Born-Oppenheimer).

@ High number of qubits required (to represent a grid).
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First quantized mappings for basis set approaches

@ We need N[log, M] qubits to represent N electrons in M basis functions (ordered
from 0...00) to |1...11)).

@ Let's recall H minimal basis example:

|gr) = 100) = [0), |gy) = [01) = [1),

@ Again anti-symmetrization is necessary:

ur) = [10) = [2), and |uy) = [11) = [3)

1
|PrF) = E(|0>1|1>2 —[1),10),)
V) = olgrgy) + Blupuy) = %(|0>1|1>2 - |1>1|0>2) + %(‘2>1‘3>2 - ‘3>1|2>2)

The Hamiltonian obtained by projection onto the single-particle basis:

N M N M
H=3"3" habolibnali +3 3 D (ealrsl) el (sl el

i=1 p,q=1 i#j p,q,r,s

@ Each term can be expressed as a string of Pauli operators, O(N*M?®) terms
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Second quantized mappings

o Goal: express second-quantized operators of indistinguishable electrons in terms of
Pauli operators acting on distiguishable qubits.
o Jordan-Wigner (JW) mapping:

» Qubits encode occupation

lor...om) = lam ... q1), ap € {0,1}

> Representation of second-quantized operators:

p—1 p—1
a) = (@4) ©Ql, a= <®Z,> ® Qp
j=1 j=1

ensure proper phase /

“parity of the state”

» Q=10)(1] = (X +iY)/2 and Qf =|1)(0] = (X — iY)/2 decrease and increase
occupation of a given spin orbital

H:Zhjﬁy:Ztho{, o e(,X,Y,2)
J J i

= e—iHét
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Jordan-Wigner mapping

@ Example of one-electron part of Hy,

Hy = Z hpqazaq = Z hppa;ap + Z (hpqazaq + hqpaz;ap)
Pq P

p<q

o Diagonal terms after JW:

h
hppa;ap = hpr;/ Qy = hpp‘1>p/ <0‘p/|0>p/<1|p/ = hpp‘1>p/<1‘p/ = %(Ip’ - Zp’)
. —ihpp &t
e e NG

o Off-diagonal terms after JW:

h
hpqa;aq + hqpazap = % [Xp’ O Ly g Xy + Yy @ Ly g ® Yq’}
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Jordan-Wigner mapping

@ exp[—idt(Z ® ... ® Z)] is diagonal in the computational basis with the phase shift
et on the diagonal.

@ The sign of this phase shift depends on the parity of the corresponding basis state
(“4" if the number of ones in the binary representation is odd, “-" otherwise).

R TR —

@ The X and Y gates action on p’ and q’ qubits realized by change of the basis (e.g.
Hadamard).

@ The quantum gates overhead: O(M). Parity is not stored locally.
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Alternative mappings

o Patity mapping:
P

lor...om) = |gm ... q1), Qp = [Zo;](mod 2)

i=1

Now the parity is stored locally and the occupation of spin-orbitals non-locally.

If the occupation of the first spin orbital is changed = parities of all have to be
updated. No gain, O(M) overhead!

Bravyi-Kitaev (BK) mapping:

Combines locality of occupation and parity information.

The qubits store partial sums of occupation numbers:

lor...om) = [qum ... q1), Ao = [Zﬂpqoq‘| (mod 2)

q=1

HOR R
= OoRr O
== OO

61 - [1]7 B .
By = (52' 0 ) N
2 A By

@ By this approach, the overhead is O(log, M).
32/41
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Quantum algorithms for chemical problems

@ Quantum phase estimation algorithm

@ Variational quantum-classical algorithms

S



Quantum Fourier Transform

@ Important subroutine of quantum phase estimation is the efficient Quantum Fourier
Transform (QFT).

o Classical discrete Fourier transform: (xo,...,xn—1) = (Yo,...,Yn—1)
1 N—1
2mijk /N
Yk = —F= E Xj
VN “
Jj=0
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Quantum Fourier Transform

@ Important subroutine of quantum phase estimation is the efficient Quantum Fourier
Transform (QFT).

o Classical discrete Fourier transform: (xo,...,xn—1) = (Yo,...,Yn—1)
LN_I  2mijk/N
NG JZ:O:XJ
PECAER T N T )
JN n J ) J nJn—1...J1

. N-1_ .
o Alternatively: Uqrr ijo xilf) Zk o ylk
@ QFT can be performed with O(n2) number of gates = exponential speedup, since

classical FFT: O(Nlog, N = n2")

@ QFT cannot be used as an efficient replacement of FFT, only as a subroutine.

L. Veis (J. Heyrovsky Institute) 34/41



Phase estimation algorithm (PEA)

o Let's have the eigen-problem of a unitary operator U
Ulu)y = €?|u), ¢ €(0,1)...phase

o For simplicity: ¢ = 0.¢1¢2 ... pm = % + % +... 4+ ‘;—n’? ¢i € {0,1}

|0) < Had - F [ ém)
o Quantum register: [0)°" ® |u) 10) Had N QR 192)
~—— |0y —{Had 1 - — 1)
read-out system 1 = -
|u) U2° H U21 EPE [ (A — |u)
1
gy = = (o + ) (10 + ) (104 1) 1)
2M—1
- 1 2mi2M—1g 2mi2M—2¢ 27206 _ 1 2rijh |+
- ﬁ<\0>+e D) (10) +e ). (10)+e \1>)|U>,ﬁze i 7y )
j=0
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Initial state preparation

@ We certainly do not know the exact eigenstate

|¢init> = Z Ci‘Ui>

i

@ Due to the linearity of QM, the success probability is proportional to \c,-|2

@ PEA can be used for ground as well as excited states, but needs some reasonable
approximation to the target state (QMA-complexity of a general problem).

@ Adiabatic state preparation

> Starting with trivial Hinit (e.g. Hartree-Fock) and register in the ground state and
slowly varying to Hexact:

H= (1 - t/T)Hinit + (t/T)Hexact t:0—T

@ Initial states provided by conventional polynomially scaling computational methods:
Cl, CASSCF, DMRG, etc.
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Hamiltonian time evolution

@ In case of Hamiltonian diagonalization, we take

U= efiHT

T ... time-like parameter assuring ¢ € (0,1)

e~i™H ~ Fourier transform
) e e | . energy
|w|n|t> "time evolution" ¢|n|t> T—E

o Trotterization is not the only approach for approximating time evolution, more
sophisticated algorithms exist.

@ The overall scaling is low polynomial in M (depends on many aspects and still
improving).

o PEA-based approaches require long quantum circuits = quantum error correction,
not a near-term goal.
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Hamiltonian time evolution for grid-based approaches

@ We explicitely do not have the Pauli operator structure of the Hamiltonian as in
previous examples.

o We have the grid-based (i.e. position) representation of the wave function.

H=T(p)+ V(r)

@ Again the split-operator approach:
efiHét _ efiTét efiV6t + O(étz)

diagonal in a momentum repr. <—/ diagonal in a position repr.

[4(68)) = " ™"1y(0)) ~ QFTe TP QFT e~ 1%|y(0))
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Variational quantum-classical algorithms

@ VQE - variational quantum eigensolver
@ Promising alternative to PEA for NISQ (Noisy Intermediate-Scale Quantum) devices

o Variational energy minimization:
E = min (W(6)|H|w(6))
f

> state preparation, measurement of <\II(§)|H|\IJ(§)> on a quantum computer

> optimization of 6 on a classical computer
» employes the exponential capacity of quantum registers, however, the number of 6
must be polynomial
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Variational quantum-classical algorithms

JW or BW mapping
%

o Second-quantized reprezentation of H linear combination of

products of Pauli operators

E@) =) b (vO)[[lv®) olelix vz}
j i
l-el. and 2-el. integrals

o Each measurement requires fresh W(6).

o Classical gradient or gradient-free optimization of ]

@ VQE trades long coherent circuits of PEA for short circuits and loads of
measurements.

@ The overall scaling is again low polynomial in M (advanced methods for number of
measurements reduction, still improving)

—

Possible parametrizations V() (ansatze):

@ Unitary coupled clusters

R — @ Hardware-efficient ansatz
u@)=e > Parametrized gate set optimal for a
given device

> Clasically intractable > For first experiments

> State preparation like time evolution
> Not exact!
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Take home messages

@ Advanced computational methods for quantum computers with exponential
speed-up exist!

@ Most of them have been also experimentally realized.
o Efficient exact diagonalization via phase estimation - long term goal.

@ Variational quantum-classical approaches for near term devices.
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