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1 Introduction

Dynamical mean-field theory (DMFT) [1] has been combined with density functional theory
(DFT), commonly referred to as LDA+DMFT [2], which is regarded as a major breakthrough
in the description of strongly correlated materials since it allows for a realistic description of
the electronic structure of materials with strong dynamical correlations ranging from strongly
correlated metals to Mott-Hubbard insulators. Starting from a DFT electronic structure as a
background, a model Hamiltonian containing the strongly correlated manifold is constructed by
making a tight-binding fit to the DFT bandstructure. This is usually done by using maximally
localized Wannier functions [3]. The single-particle Hamiltonian is then complemented by a
Hubbard-U term describing the onsite interaction between the strongly correlated states and a
double-counting (DC) term is subtracted. This yields the DFT+DMFT Hamiltonian

Ĥ =
∑

Ri,R′j,σ

ĉ†Riσ
(
HDFT

Ri,R′j,σ −HDC
Ri,R′j,σ

)
ĉR′jσ +

1

2

∑

R,ijkl,σσ′

ĉ†Riσ ĉ
†
Rjσ′ U

σσ′

ijkl ĉRlσ′ ĉRkσ, (1)

where Ri label an atomic site R and an orbital i whereas σ labels the spin. The onsite effective
Coulomb interaction U is defined as

Uσσ′

ijkl =

∫
d3rd3r′ φσ∗i (r)φσ

′∗
j (r′)U(r, r′)φσk(r)φ

σ′

l (r
′). (2)

The problem defined by the Hamiltonian (1) can then be solved by using the DMFT machinery.
By mapping the lattice problem to an impurity problem, this method captures the essential
physics of local correlations responsible for many phenomena in strongly correlated systems,
not accessible within the one-particle description. Notable among these are the Mott metal-to-
insulator transition and Kondo effects, which are beyond static theories. The combination of
DMFT and DFT opens up wider possibilities of investigating electronic properties of strongly
correlated materials than is possible within earlier static theories such as the DFT+U scheme.
It provides a coherent description of metal and insulator on equal footing.
The basic assumption of local self-energy, however, hinders applications of this scheme to phe-
nomena involving long-range correlations such as charge disproportionation and superconduc-
tivity, as well as phenomena involving coupling to long-range charge and spin fluctuations.
Even in iron, a seemingly simple system, it has been found that its Curie transition tempera-
ture TC from paramagnetic to ferromagnetic ordering is greatly overestimated when computed
within DMFT. The predicted value of TC of iron by DMFT is 1900 K, almost twice as large as
the experimental value of 1043 K [4]. It is likely that this large discrepancy has its origin in the
long-range part of the self-energy. Also, there is evidence from photoemission experiments [5]
for a strong momentum dependence of the mass renormalization of iron. Another phenomenon
for which a nonlocal self-energy is expected to play an important role is the non-Fermi-liquid
behavior in two dimensions arising from the van Hove singularity [6].
This local self-energy assumption is one of the fundamental problems inherent in DFT+DMFT.
The other is the issue of double counting, inherited from the DFT+U scheme. There is also
the problem of determining the Hubbard U, which is often treated as adjustable, making the
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method less predictive when applied to real materials. In recent years, however, it has become
possible to compute the Hubbard U for real materials using a number of methods such as the
constrained LDA (cLDA) [7] or the constrained random-phase approximation (cRPA) [8].
There are thus two main aspects of DFT+DMFT which should be improved: the assumption of
local self-energy and the problem of double counting. The assumption of the self-energy being
local is expected to be valid when the correlated electrons are highly localized such that the local
Coulomb interaction far exceeds the nonlocal one. As the correlated electrons become more
itinerant, one anticipates that the nonlocal interaction becomes more significant and accordingly
the importance of the nonlocal components of the self-energy increases. The second aspect, the
double-counting problem, is a long-standing one, which was already recognized in the earlier
LDA+U method. The problem arises from the nonlinear dependence on the density of the Kohn-
Sham exchange-correlation energy, which renders it difficult, if not impossible, to remove the
contribution from the density of the correlated electrons only.
One approach to address the above two issues is the combination of the GW method and ex-
tended DMFT (GW+EDMFT) [9,10], the former replaces the Kohn-Sham DFT. Being a Green
function method, it is possible to remove the double-counting correction precisely. Moreover,
the GW method was originally conceived to treat extended systems such as the electron gas
so that it naturally incorporates nonlocal or long-range self-energies. Seen from the point of
view of GW, the GW+EDMFT method can be regarded as a route of going beyond RPA by
including vertex corrections in the form of local correlations.

2 GW method

In this section, the GW approximation (GWA) [11–13], which may be regarded as the back-
ground electronic structure in the GW+EDMFT method, is elaborated. The screened interac-
tion, which is an essential part of the GW+EDMFT method, is discussed first in detail. The
detailed derivations of the self-energy and response functions are given in Appendix A. In our
notation, r is a combined variable for space and spin: r = (r, σ), and an integer represents
space, spin, and time: n = (rn, tn). Atomic units are used throughout where

m = } = e = a0 = 1. (3)

2.1 Screened interaction W

The screened interaction is an essential part of GWA as well as in the GW+EDMFT scheme.
Due to the Coulomb repulsion and the exchange interaction, electrons tend to avoid each other,
resulting in the formation of a screening hole around each electron. This leads to an effective
screened interaction between an electron and the other electrons in the system, which is much
smaller than the bare interaction, especially in metals. It is the density response functions that
determine the screened interaction.
Within GWA, only the linear density response function is needed. Higher-order density re-
sponse functions correspond to vertex corrections. The linear response theory can be estab-
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lished by applying an external time-dependent field Vext to a system of electrons. The induced
density to linear order in the applied field is given by

ρind(1) =

∫
d2 R(1, 2)Vext(2) , (4)

where R is the linear density response function. This induced density in turns generates an
induced back potential, with v the bare interaction,

Vind(1) =

∫
d2 v(1−2) ρind(2) , (5)

which screens the applied potential

Vtot(1) = Vext(1) + Vind(1) . (6)

The screened or total potential in terms of the linear response function is then given by

Vtot(1) = Vext(1) +

∫
d2 v(1−2) ρind(2)

= Vext(1) +

∫
d2 d3 v(1−2)R(2, 3)Vext(3)

=

∫
d3
[
δ(1−3) +

∫
d2 v(1−2)R(2, 3)

]
Vext(3) . (7)

The quantity in the square bracket can be identified as the inverse dielectric matrix

ε−1(1, 3) =
δVtot(1)

δVext(3)
= δ(1−3) +

∫
d2 v(1−2)R(2, 3) . (8)

Applying the above formula to the instantaneous Coulomb potential

v(1−2) = v(r1−r2) δ(t1−t2) (9)

as the applied perturbing field yields the screened Coulomb interaction

W (1, 2) =

∫
d3 ε−1(1, 3) v(3−2) = v(1−2) +

∫
d3 d4 v(1−4)R(4, 3) v(3−2) , (10)

or in matrix form
W = ε−1v = v + vRv . (11)

Thus, W (1, 2) may be interpreted as a screened potential at space-time point 1 of a test charge
located at space-time point 2. Fourier transforming Eq. (10) with respect to t = t1−t2 yields

W (r1, r2;ω) = v(r1−r2) +
∫
dr3dr4 v(r1−r4)R(r4, r3;ω)v(r3−r2) . (12)

There are two limiting cases of interest. The static screened interaction W (r1, r2;ω=0) can be
seen as the time-average of W (r1, r2; t), as follows from the definition of the Fourier transform.
Equivalently, from Eq. (12), it is the screened interaction of the static bare interaction v(r1−r2)
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(without δ(t1−t2)). At the other end of the limit, W (r1, r2;ω→∞) approaches the bare interac-
tion v(r1−r2) since R(ω) decays asymptotically as ∼ 1/ω2 as can be seen from Eq. (90). This
simply means that at very high frequency the electrons cannot react sufficiently fast to the rapid
variation of the applied potential so that screening is ineffective.
The screened interaction via the linear density response encodes the charge excitation spectrum
of the system, as can be seen in Eq. (12). Thus, when the applied frequency matches a collective
charge excitation (plasmon) energy of the system, a resonance peak in the imaginary part of W
is expected to appear.
The correlation part of the screened interaction is the second term on the right-hand side of (12),

W c(ω) = v R(ω) v . (13)

Since the Coulomb interaction v is frequency independent, the spectral representation of W c is
identical in form to that of R(ω) as in Eq. (91) of Appendix A

W c(r1, r2;ω) =

∫ 0

−∞
dω′

B(r1, r2;ω
′)

ω − ω′ − iη +

∫ ∞

0

dω′
B(r1, r2;ω

′)

ω − ω′ + iη
, (14)

where
B(ω) = v S(ω) v = − 1

π
sign(ω) ImW (ω) , (15)

with S given in Eq. (92). Since S(ω) is anti-symmetric, so is B(ω):

B(−ω) = −B(ω) . (16)

2.2 Random-phase approximation

It is unrealistic to calculate the exact response functions for real systems since it would require
computation of the exact excited states of the many-electron system. This necessitates approx-
imations, as commonly the case in many-electron theory. A practical and highly successful
approximation is the random-phase approximation (RPA) [14]. As discussed later, it can be
understood as the time-dependent Hartree approximation since it takes into account only the
change in the Hartree potential with respect to the time-dependent perturbing field.
In the Green function formalism, the response function is expressed as in Eq. (88), and using
the identity δG = −GδG−1G as in Eq. (84), we find

R(1, 2) = i

∫
d3 d4 G(1, 3)

δG−1(3, 4)

δVext(2)
G(4, 1+) . (17)

Using δG−1/δVext as in Eq. (85) we obtain

R(1, 2) = −i
∫
d3 d4 G(1, 3)

([
δ(3−2) + δVH(3)

δVext(2)

]
δ(3−4) + δΣ(3, 4)

δVext(2)

)
G(4, 1+) . (18)

RPA corresponds to neglecting the term δΣ/δVext in (18) yielding

R(1, 2) = −i
∫
d3 G(1, 3)

[
δ(3−2) + δVH(3)

δVext(2)

]
G(3, 1+)

= P (2, 1) +

∫
d3 d4 P (1, 3) v(3−4)R(4, 2) . (19)
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Fig. 1: Feynman diagrams for the screened interaction in the random-phase approximation and
the self-energy within the GW approximation. Figures courtesy of Fredrik Nilsson.

where
P (1, 2) = −iG(1, 2)G(2, 1+). (20)

Thus, in RPA only the change in the Hartree potential is taken into account and for this reason
it can be regarded as the time-dependent Hartree approximation.
In frequency space, the polarization P in RPA is given by

P (r1, r2;ω) = −i
∫
dω′

2π
G(r1, r2;ω+ω

′)G(r2, r1;ω
′) . (21)

Replacing G by G0 given in Eq. (109) yields

P 0(r1, r2;ω) =
occ∑

n

unocc∑

n′

(
φn(r2)φ

∗
n′(r2)φ

∗
n(r1)φn′(r1)

ω − (εn′−εn−iδ)
− φn(r1)φ

∗
n′(r1)φ

∗
n(r2)φn′(r2)

ω + (εn′−εn−iδ)

)
. (22)

2.3 GW self-energy

Within the GW approximation [11–13], the self-energy is given by

Σ(1, 2) = iG(1, 2)W (2, 1) , (23)

where W is the screened Coulomb interaction, usually calculated within RPA. Using the con-
volution theorem, the Fourier transform into frequency space yields

Σ(r1, r2;ω) = i

∫
dω′

2π
G(r1, r2;ω+ω

′)W (r2, r1;ω
′) eiηω

′
. (24)

The screened interaction and the corresponding GW self-energy within RPA are shown in
Fig. 1.
GWA has been found to be very successful in providing an accurate electronic structure for
weakly to moderately correlated systems, whose valence electrons usually originate from s- or
p-orbitals. Being based on perturbation theory, GWA is not expected to be able to describe the
Mott metal-to-insulator transition in strongly correlated systems. To see the problem with the
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GWA consider the expression for the imaginary part of the Green function, which is propor-
tional to the spectral function:

ImG(ω) =
ImΣ(ω)

(
ω−ε−ReΣ(ω)

)2
+
(
ImΣ(ω)

)2 . (25)

In order to open up a gap from a metallic state, ImΣ(ω), which is inversely proportional to the
quasiparticle life-time, should become infinite around the Fermi level so that the quasiparticle
weight present in the metal at the Fermi level is removed. The transition from a metal to a Mott
insulator poses a fundamental difficulty because the GW self-energy varies as ω2 around the
Fermi level, characteristic of a Fermi liquid, as shown below. From Eq. (14) and using (16)

∂

∂ω
W c(r1, r2;ω)

∣∣∣∣
ω=0

= −
∫ 0

−∞
dω′

B(r1, r2;ω
′)

(−ω′ − iη)2 −
∫ ∞

0

dω′
B(r1, r2;ω

′)

(−ω′ + iη)2

= +

∫ ∞

0

dω′
B(r1, r2;ω

′)

(ω′ − iη)2 −
∫ ∞

0

dω′
B(r1, r2;ω

′)

(−ω′ + iη)2
= 0, (26)

SinceB(ω) is proportional to ImW (ω) and recognizing thatB(0) = 0, it follows from Eqs. (113)
and (114) that for small ω the imaginary part of the self-energy behaves as

Γ (ω) ∝ ω2. (27)

This implies that the GW self-energy cannot not open up a Mott gap starting from a metallic
band structure.

3 GW+EDMFT method

The problem with GWA in treating strongly correlated systems such as Mott insulators moti-
vates the combination of GWA and extended DMFT (EDMFT). On the other hand, from the
point of view of DMFT, GWA provides a route for taking into account nonlocal self-energy,
missing in DMFT or EDMFT.

3.1 G0W 0+DMFT

It is instructive to first consider the combination of the one-shot GWA, Σ = iG0W 0, with
the standard DMFT. This combination may be seen as a simple extension of the DFT+DMFT
scheme, in which the background DFT electronic structure is replaced by the GW one. Apart
from improving the band structure, the double-counting problem inherent in the DFT+DMFT
scheme is avoided. However, there are different ways of removing the double-counting term
when self-consistency is not imposed. Either one removes the local projection of the lattice
GW self-energy or one removes the impurity GW self-energy. These two double-counting
forms are not strictly the same.
In the G0W 0+DMFT scheme the self-energy is given by

Σ̂(ω) =
∑

knn′

|ψkn〉ΣGW
nn′ (k, ω) 〈ψkn′ |+

∑

mm′

|φm〉
(
Σimp
mm′(ω)−ΣDC

mm′(ω)
)
〈φm′| . (28)
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Here ψkn are the DFT eigenstates and φm the localized orbitals, e.g., the maximally localized
Wannier orbitals constructed from the correlated states. ΣGW

nn′ is the GW self-energy obtained
from a one-shot GW calculation based on the DFT band structure and Σimp the impurity self-
energy calculated with a dynamical U computed using the constrained RPA (cRPA) method.
ΣDC
mm′ is the double-counting correction, defined as

ΣDC
mm′(ω) = i

∑

m1m2

∫
dω′

2π
Gloc
m1m2

(ω+ω′)W loc
mm1m2m′(ω

′) , (29)

where Gloc
m1m2

is the local projection of the DFT Green function expressed in the localized
orbitals. In Matsubara frequencies,

ΣDC
mm′(iωn) = −

∑

m1m2

1

β

∑

k

Gloc
m1m2

(iωn+iνk)W
loc
mm1m2m′(iνk) , (30)

where ωn and νk are, respectively, the fermionic and bosonic Matsubara frequencies, and β is
the inverse temperature. The two different ways of subtracting the double-counting term arise
from the ambiguity in W loc when it is not determined self-consistently. If W loc is calculated
from the impurity problem one has

W loc(ω) =
(
1− U(ω)P loc(ω)

)−1
U(ω), (31)

in which P loc is the local projection of the RPA polarization within the correlated subspace
and U(ω) is obtained from cRPA. This definition of W loc corresponds to the fully screened
interaction of the impurity model computed within GWA. On the other hand, W loc can also be
defined to be the local projection of the lattice W onto the correlated subspace

W loc(ω) =
∑

k

W (ω,k) , (32)

which is not necessarily the same as the one in Eq. (29), when self-consistency is not imposed.
In Fig. 2 the quasiparticle bandstructure and the k-integrated spectra of a prototypical corre-
lated metal SrVO3 within the G0W 0+DMFT scheme are shown and compared with the re-
sults obtained from the one-shot G0W 0 and LDA+DMFT. The one-shot G0W 0 quasiparticle
dispersion shows a band narrowing compared with that of LDA, as expected. The G0W 0 oc-
cupied band width of 0.8 eV, while a significant improvement over the LDA band width, is
still too large compared with the value measured in photoemission experiment, which is about
0.6 eV [16]. In contrast, the LDA+DMFT calculations, which have been performed using a
frequency-dependent U, result in an occupied band width of only 0.4 eV, which is significantly
smaller than the experimental value as can be seen in Fig. 2. There is a very large band nar-
rowing compared with the starting LDA bandstructure. This band narrowing is significantly
stronger than in the standard LDA+DMFT with a static U [17]. One may then conclude that
the frequency dependence of U effectively enhances correlations, which would correspond to a
larger static U. The G0W 0+DMFT scheme, on the other hand, brings the quasiparticle disper-
sion in close agreement with experiment with an occupied band width of slightly smaller than
0.6 eV. It is interesting to observe that a nonlocal self-energy tends to increase the band width
while a local self-energy narrows the band width.
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Fig. 2: Quasiparticle bandstructure (left) and k-integrated spectral function (right) of
SrVO3 within the G0W 0+DMFT scheme, compared with the results based on G0W 0 and
LDA +DMFT with dynamic U. The figures are taken from Sakuma et al. [15].

3.2 Extended DMFT

In order to develop the full GW+EDMFT scheme it is necessary to extend DMFT in order to
take into account long-range interactions. The G0W 0+DMFT scheme described in the previous
section does not take into account self-consistency in the local screened interaction. As in
the original DMFT, self-consistency is only imposed on the local Green function, which may be
regarded as a one-particle correlation function. The concept of DMFT, however, is more general
and can be extended to higher-order correlation functions. A natural step beyond the original
DMFT is to impose self-consistency on the local screened interaction Wloc or equivalently the
local (charge) response function, which is a two-particle correlation function. This extended
DMFT (EDMFT) [9] furnishes a means to solve an extended Hubbard model with nonlocal
interactions using the framework of DMFT. As in the original DMFT, the auxiliary system is the
Anderson impurity model but in addition to the hybridization function (Weiss field)∆(τ), which
determines the local Green function, another “Weiss field”, U(τ), is needed to determine the
local screened interaction Wloc. In this case U(τ) plays the role of a dynamic effective impurity
interaction in such a way that when it is screened by the impurity polarization reproduces at self-
consistency the local projection of the lattice screened interaction. Thus, U(τ) is analogous to
G(τ), which when “screened” by the impurity self-energy reproduces at self-consistency the
local projection of the lattice Green function. It can then be seen that the impurity polarization
is analogous to the impurity self-energy.

The effective impurity action is given by

Simp = −
∫ β

0

dτdτ ′
∑

σ

d∗σ(τ)G−1(τ−τ ′) dσ(τ ′) +
∫ β

0

dτdτ ′ n↑(τ)U(τ−τ ′)n↓(τ ′) , (33)

where

−
(
∂

∂τ
− µ

)
G(τ−τ ′)−

∫ β

0

dτ ′′∆(τ−τ ′′)G(τ ′′−τ ′) = δ(τ−τ ′), (34)
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or in frequency space
G−1(iωn) = iωn + µ−∆(iωn). (35)

The self-consistency condition in EDMFT requires self-consistency in both the local Green
function and the local screened interaction:

Gloc = Gimp, Wloc = Wimp, (36)

where
Wimp(ω) = U(ω) + U(ω)Pimp(ω)Wimp(ω), (37)

and Wloc is the local projection of the lattice screened interaction W obtained from the equation

W (ω) = U + UP (ω)W (ω), (38)

where P is the lattice polarization. U is the bare interaction which may contain long-range
(offsite) components. Comparison with the Dyson equation for the Green function,

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (39)

shows that the polarization P is the analog of the self-energy whereas W is the analog of the
Green function, whereas U plays the role of the bare propagator G0. For the Hubbard model
with onsite interactions we have Uij = Uδij which yields U = U by construction and in this
case EDMFT reduces to the regular DMFT. For a system with offsite interactions this is not
the case. The effects of the long-range interactions are taken into account in the dynamically
screened effective impurity interaction U(ω). In real materials U will be the bare Coulomb
interaction v(r−r′).

3.2.1 Self-consistency loop in EDMFT

To initiate the self-consistency loop in EDMFT, the local polarization and the local self-energy
are, respectively, set to Pimp and Σimp

Ploc = Pimp, Σloc = Σimp. (40)

The basic assumption of EDMFT, in which the lattice self-energy and the lattice polarization
are approximated by their local values, is applied

Pk = Ploc, Σk = Σloc. (41)

From the Dyson equation the lattice Green function Gk and the lattice screened interaction Wk

are computed

Gk = G0
k +G0

k Σk Gk , (42)

Wk = Uk + Uk Pk Wk , (43)
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from which the local Green function and the local screened interaction are obtained

Gloc =
∑

k

Gk, Wloc =
∑

k

Wk. (44)

Applying the EDMFT self-consistency condition,

Gimp = Gloc, Wimp = Wloc, (45)

allows us to construct the fermionic Weiss field G and the effective impurity interaction (bosonic
Weiss field) U from the Dyson equations

Gimp = G + GΣimpGimp → G = Gimp

(
1 +ΣimpGimp

)−1
, (46)

Wimp = U + U PimpWimp → U = Wimp

(
1 + PimpWimp

)−1
. (47)

G and U provide an input for solving the impurity problem with the action defined in Eq. (33),
yielding a new Gimp and the impurity charge susceptibility χimp. A new impurity self-energy
and a new impurity polarization are extracted as

Σimp = G−1 −G−1imp, (48)

Pimp = χimp

(
1 + U χimp

)−1
. (49)

The last equation is formally equivalent to

Pimp = U−1 −W−1
imp (50)

but it is numerically preferable since it avoids possible singularities in U−1 and W−1
imp.

The loop is now continued until the EDMFT self-consistency condition in Eq. (36) is fulfilled.
The concept of DMFT is quite general and it is possible to extend the self-consistency condition
on local quantities to a three-particle correlation function, such as the one formulated in the
TRILEX approach [18], and to higher-order correlation functions.

3.3 GW+EDMFT

We are now in the position to construct the full GW+EDMFT scheme [9,10]. The formal func-
tional derivation is given in Appendix B. As in EDMFT, two propagators are now at disposal:
the fermionic one-particle Green function G and the bosonic screened interaction W. These
two propagators constitute the basic variables in the free-energy functional Ψ (see Appendix
B). The lattice self-energy Σ and polarization P are no longer approximated by the correspond-
ing local impurity quantities but they now in addition contain nonlocal components from the
GW self-energy. The self-energy is then given by

Σ(k, iωn) = Σimp(iωn) +ΣGW
nonloc(k, iωn). (51)

Similarly, the polarization is given by

P (k, iωn) = Pimp(iωn) + PGW
nonloc(k, iωn). (52)
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Σimp and Pimp are, respectively, the EDMFT impurity self-energy and polarization. The above
two expressions are free from double counting since both ΣGW

nonloc and PGW
nonloc contain no local

components, which have been subtracted out from the corresponding lattice quantities

ΣGW
nonloc(k, iωn) = ΣGW (k, iωn)−ΣGW

loc (iωn) (53)

PGW
nonloc(k, iωn) = PGW (k, iωn)− PGW

loc (iωn) . (54)

The lattice Green function and screened interaction are calculated from Σ and P using the
Dyson equations

G = G0 +G0ΣG, (55)

W = v + vPW , (56)

where G0 is the Hartree Green function and v is the bare interaction.

3.4 Multitier GW+EDMFT scheme

To apply the full GW+EDMFT scheme described in the previous sections to real materials,
due to computational complexity it is inevitable to adopt approximations. Fortunately, in most
correlated materials, for which the GW+EDMFT scheme is designed, it is usually the case that
the electronic structure can be separated into correlated and noncorrelated bands. Although
the separation is arbitrary, physical consideration imposes a strong constraint on the choice of
correlated bands, which are typically partially filled narrow bands across or around the chemical
potential originating from localized states of 3d- or 4f -orbitals.
In the multitier GW+EDMFT scheme [19, 20], the Hilbert space is decomposed into a cor-
related subspace and the rest. A concrete example is provided by the prototypical correlated
metal SrVO3 in which the narrow partially filled t2g band is naturally chosen as the correlated
subspace. GW+EDMFT self-consistency is performed only in the correlated subspace whereas
contribution to the self-energy from the rest of the Hilbert space is accounted for by a one-shot
GW. There is a physical motivation for this strategy. It is known that fully self-consistent GW
alone tends to worsen the one-shot results (in comparison with experiment). Within the corre-
lated subspace, however, the detrimental effects of self-consistency on the GW self-energy are
expected to be counteracted by vertex corrections in the form of the EDMFT self-energy.
It is possible to introduce an intermediate subspace I, containing an additional few bands
around the Fermi level considered to be important for the low-energy physics. The intermediate
subspace then includes a set of correlated bands crossing the Fermi energy and, in addition, a
few more weakly correlated bands which hybridize with the correlated bands. The correlated
subspace C is spanned by the narrow bands that cannot be accurately described by GWA. In this
case, the GW+EDMFT self-consistency is performed within the intermediate subspace I. In
Fig. 3 the different subspaces and tiers are illustrated. Together with the three subspaces there
are three different tiers that work on the respective subspace. In tier III the full space is treated
within the one-shot GWA (G0W 0-approximation).
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Full bands
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FULL BANDS INTERMEDIATE CORR.
LOCAL

Fig. 3: Upper panel: Schematic figure of the subspaces in multitier GW+EDMFT, reproduced
from Nilsson et al. [19]. Lower panel: Schematic figure of how the tiers work on the different
subspaces, reproduced from Boehnke et al. [20].

In practice, one starts with a DFT bandstructure and performs a one-shot GW calculation on
the entire Hilbert space (tier III) yielding a self-energy ΣG0W 0. A calculation of the bare effec-
tive interaction, U(ω), within the intermediate subspace is also performed using the constrained
random-phase approximation (cRPA) method. The effective bare propagator (G0

k) and interac-
tion (Uq) on the intermediate subspace are then computed as

G0
k
−1 = iωn + µ− εKS

k︸ ︷︷ ︸
G−1

KS,k

+VXC,k −
(
ΣG0W 0

k −ΣG0W 0

k

∣∣
I

)

︸ ︷︷ ︸
Σr

k

∣∣
I

(57)

U−1q =v−1q −
(
PG0G0

q − PG0G0

q

∣∣
I

)

︸ ︷︷ ︸
P r
q

. (58)

Here εKS
k are the Kohn-Sham (KS) DFT eigenenergies, VXC,k the exchange-correlation poten-

tial, ΣG0W 0

k the one-shot GW self-energy, vq the bare Coulomb interaction and PG0G0

q the RPA
polarization computed from the Kohn-Sham bandstructure. The notation A

∣∣
I

means that all in-
ternal sums when computing the quantity A are restricted to the intermediate subspace. U is the
effective Coulomb interaction on the intermediate subspace computed using cRPA andG0 is the
analogous downfolding for the single-particle Green function. The exchange-correlation poten-
tial is removed from the Kohn-Sham Green function and replaced by theG0W 0 self-energy. The
exact double counting ΣG0W 0|I is known and thus the scheme is free from the double-counting
problem.
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Fig. 4: Self-consistency flow chart of the multitier GW+EDMFT scheme. Reproduced from
Nilsson et al. [19].

The bare propagators G0 and U are computed only once and used in subsequent self-consistent
GW+EDMFT calculation within the intermediate subspace. At each iteration the GW self-
energy within the intermediate subspace (tier II) is computed, while the local part of the self-
energy within the correlated subspace C is computed using the EDMFT impurity solver (tier
I). The two self-energies are then summed with the double counting removed. The screened
interaction W is computed in a similar fashion in which the polarization plays the role of the
self-energy. This yields the final equations for the single particle Green functionG and screened
interaction W

G−1k = G0
k
−1

︸ ︷︷ ︸
TIER III

−
(
ΣGW

k

∣∣
I
−ΣGW

∣∣
C,loc

+∆VH|I
)

︸ ︷︷ ︸
TIER II

−Σimp
∣∣
C,loc︸ ︷︷ ︸

TIER I

. (59)

W−1
q = U−1q︸︷︷︸

TIER III

−
(
PGG
q

∣∣
I
− PGG

∣∣
C,loc

)

︸ ︷︷ ︸
TIER II

−P imp
∣∣
C,loc︸ ︷︷ ︸

TIER I

. (60)

ΣGW
k is the self-energy computed within the self-consistent GWA and Σimp the local impurity

self-energy computed within EDMFT. ∆VH|I is the change of the Hartree potential within the
intermediate subspace. ΣGW

∣∣
C,loc

and PGG
∣∣
C,loc

are, respectively, the double counting for the
self-energy and the polarization in tier II.
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Fig. 5: LDA bandstructures of SrMoO3 and SrVO3 with t2g bands crossing the Fermi level.
Figures courtesy of Fredrik Nilsson.

The impurity EDMFT self-energy and polarization provide local vertex corrections within the
correlated subspace through, respectively, Σimp

∣∣
C,loc

and P imp
∣∣
C,loc

at each iteration in the self-
consistency cycle in tier II. This feature, a feedback between local and nonlocal correlations
both on the single-particle and two particle level, is not accounted for in one-shot GW+DMFT.
The self-consistency cycle is illustrated in Fig. 4.

3.5 Applications to cubic perovskites SrMoO3 and SrVO3

Application of the GW+EDMFT method to real materials is illustrated for the case of cubic
perovskites SrMoO3 and SrVO3. In Fig. 5 the LDA bandstructure for the two compounds are
shown. Both compounds have an open d-shell, split into the t2g and eg components by the
crystal field, with the eg bands lying higher in energy and unoccupied. As can be seen in the
figure, the t2g-band of SrMoO3 is wider than that of SrVO3 since the 4d-orbitals of Mo are more
spread than the 3d-orbitals of V. It is then expected that SrMoO3 is less correlated than SrVO3

and as such these compounds provide an interesting testing ground for GW+EDMFT.
LDA+DMFT calculations cannot reproduce the satellite structures of SrMoO3 unless U is cho-
sen to be unrealistically large. This suggests that the satellites may be of different nature from
the commonly assumed Hubbard bands and it was proposed that they could be plasmons arising
from long-range charge fluctuations [21].
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Fig. 6: Spectral functions of SrMoO3 and SrVO3 calculated using GW+EDMFT. For SrMoO3

comparison is made with LDA and one-shot GW as well as with experiment. For SrVO3 com-
parison is made with one-shot and fully self-consistent GW. The lower figures show the imag-
inary part of the screened interaction. The figures are reproduced from Boehnke et al. [20] and
Nilsson et al. [19]. The experimental spectra for SrMoO3 is taken from Wadati et al. [21].

Contrary to SrMoO3 the electronic structure of SrVO3 can be reproduced relatively well within
LDA+DMFT with a suitable choice of U [17]. Experimentally, a significantly renormalized
quasiparticle peak compared with the LDA bandwidth as well as upper and lower satellite struc-
tures can be observed. SrVO3 has therefore been commonly thought of as a strongly correlated
metal with upper and lower Hubbard bands.

It has however been found that the spectral function of SrVO3 can be well reproduced within
the cumulant expansion [22]. The cumulant expansion describes long-range charge fluctuations
(plasmons) but cannot account for the strong local correlations giving rise to Hubbard bands.
This raises the question concerning the physical origin of the satellites in SrVO3, whether they
are collective excitations or atomic in origin. This issue can neither be addressed by DMFT nor
the cumulant method since the former accounts only local correlations but ignores long-range
charge fluctuations whereas the latter is a theory constructed to describe a coupling between
electrons and bosonic excitations such as plasmons and phonons. GW+EDMFT, on the other
hand, accounts for these two aspects of local and nonlocal correlations and is therefore well
suited to investigate the nature of the satellites in SrVO3.
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In Fig. 6 the t2g-spectral functions for SrMoO3 and SrVO3 and ImW computed using the mul-
titier GW+EDMFT method are shown. In these calculations the intermediate subspace (and
hence the self-consistency) was restricted to the t2g-bands. Information about collective charge
excitations in ImW is manifested as peaks at the excitation energies. From Fig. 6 it is quite evi-
dent that these excitations are present in both SrMoO3 and SrVO3. In SrMoO3 these long-range
charge fluctuations give rise to a shoulder structure in the spectral function. This conforms
with the suggestion by Wadati et al. [21] that the shoulder structure is of plasmonic origin al-
though the satellite position and weight are lower compared with experiment. However, oxygen
vacancies can lead to an overestimation of the satellite weight [23] in these materials.
More revealing is the results for SrVO3. The feedback from long-range screening included in
the self-consistency cycle reduces the effective impurity interaction U substantially. It is clear
from Fig. 6 that the self-consistently computed U for SrVO3 is much too small to account for
the satellites as Hubbard bands, whose separation is approximately given by U(0). Similar
to SrMoO3, long-range charge fluctuations give rise to a peak in ImW which in turn yields
plasmon satellites in the spectral function. Thus, these calculations strongly suggest that SrVO3

is a moderately correlated metal with plasmon satellites rather than Hubbard bands of atomic
origin. It is worth noting that the quasiparticle renormalization in GW+EDMFT is slightly
underestimated compared with experiment, which points to the important role of nonlocal vertex
corrections beyond GW+EDMFT.
GW+EDMFT has also been applied to investigate screening from eg-states and antiferromag-
netic correlations in d(1,2,3)-perovskites [24] as well as normal state of Nd1−xSrxNiO2 [25].
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Appendices

A Derivation of the GW approximation

In this Appendix, the GW approximation is derived in detail. The derivations have been carried
out for zero temperature, but extension to finite temperature is quite straightforward.
In the occupation number representation, the electronic part of the Hamiltonian is given by

Ĥ =

∫
dr ψ̂†(r)h0(r) ψ̂(r) +

1

2

∫
drdr′ ψ̂†(r) ψ̂†(r′) v(r−r′) ψ̂(r′) ψ̂(r) , (61)

where
h0 = −

1

2
∇2 + V (r) and v(r−r′) = 1

|r− r′| . (62)

ψ̂(r) is the field operator which annihilates an electron at r and ψ̂†(r) is its conjugate which
creates an electron at r. In our notation, r is a combined variable for space and spin: r = (r, σ)

and an integer represents space, spin, and time: n = (rn, tn). Atomic units are used throughout,
where

m = } = e = a0 = 1. (63)

The atomic unit of energy is Hartree and one Hartree is equal to 2 Rydberg or about 27.2 eV.

A.1 Equation of motion

We will define and work out the self-energy using the equation of motion approach. From the
equation of motion of the field operator

i
∂ψ̂H(1)

∂t1
=
[
ψ̂H(1), Ĥ

]
, (64)

one obtains
(
i
∂

∂t1
− h0(1)

)
G(1, 2) + i

∫
d3 v(1−3)G(2)(1, 2, 3, 3+) = δ(1−2), (65)

where
v(1−2) = v(r1−r2) δ(t1−t2) , (66)

and G(2) is the two-particle Green function defined as

G(2)(1, 2, 3, 4) = (−i)2
〈
Ψ0

∣∣T ψ̂H(1) ψ̂
†
H(2) ψ̂H(3) ψ̂

†
H(4)

∣∣Ψ0

〉
. (67)

The notation 3+ means (r3, t+3 ).
The equation of motion of the two-particle Green function will in turn generate the three-particle
Green function and so forth resulting in a hierarchy of ever increasing order of Green functions.
The mass operator M is introduced to truncate the hierarchy:

i

∫
d3 v(1−3)G(2)(1, 2, 3, 3+) = −

∫
d3M(1, 3)G(3, 2) . (68)
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The self-energy Σ is defined to be the mass operator with the mean-field Hartree potential VH
removed

Σ(1, 2) =M(1, 2)− VH(1) δ(1−2) , (69)

where
VH(1) =

∫
d3 v(1−3)ρ(3) . (70)

The equation of motion of the Green function then becomes
(
i
∂

∂t1
− h(1)

)
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1−2) , (71)

where h includes the Hartree potential

h = h0 + VH. (72)

From the equation of motion in Eq. (71) the inverse Green function is given by

G−1(1, 2) =

(
i
∂

∂t1
− h(1)

)
δ(1−2)−Σ(1, 2) . (73)

This expression will be used to construct an iterative equation for the self-energy.

A.2 Self-energy

Instead of following the conventional diagrammatic approach of many-body perturbation the-
ory (see, e.g., Fetter and Walecka [26]), the self-energy can be conveniently derived using the
functional derivative method [11,12]. By applying a time-dependent probing field ϕ(rt) the re-
sponse of the Green function with respect to this probing field can be related to the self-energy.
Once derivatives are taken, the field is set to zero. In the presence of an external field it is
suitable to work in the interaction representation and define the Green function as

iG(1, 2) =

〈
Ψ0

∣∣T Ŝψ̂D(1) ψ̂
†
D(2)

∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉 (74)

where ψ̂D(1) is the field operator in the interaction (Dirac) picture

ψ̂D(rt) = eiĤt ψ̂(r) e−iĤt. (75)

It is to be noted that the above field operators are independent of the probing field ϕ(rt). The
operator Ŝ is defined as

Ŝ = ÛD(∞,−∞), (76)

where
ÛD(t, t

′) = T e−i
∫ t
t′ dτφ̂(τ) (77)

is the time-evolution operator in the interaction picture, with

φ̂(t) =

∫
d3r ρ̂D(rt)ϕ(rt) , (78)
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where ρ̂D(rt) is the density operator. The definition of G in Eq. (74) reduces to the usual
definition when ϕ = 0.
We will now take the functional derivative of G with respect to ϕ. In order to do this it is only
necessary to work out the functional derivative of Ŝ with respect to ϕ since the field operators
in the Dirac picture do not depend on ϕ:

δŜ

δϕ(3)
=

δ

δϕ(3)
T e−i

∫
d4 ρ̂D(4)ϕ(4) = −i T Ŝ ρ̂D(3) . (79)

We obtain from Eq. (74)

i
δG(1, 2)

δϕ(3)
=− i

〈
Ψ0

∣∣T Ŝ ρ̂D(3) ψ̂D(1) ψ̂
†
D(2)

∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉

+
i
〈
Ψ0

∣∣T Ŝ ψ̂D(1) ψ̂
†
D(2)

∣∣Ψ0

〉〈
Ψ0

∣∣T Ŝ ρ̂D(3)]
∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉2 . (80)

The two-particle Green function in the interaction picture is defined according to

G(2)(1, 2, 3, 4) = (−i)2
〈
Ψ0

∣∣T Ŝ ψ̂D(1) ψ̂
†
D(2) ψ̂D(3) ψ̂

†
D(4)

∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉 , (81)

and obtain
δG(1, 2)

δϕ(3)
= iG(1, 2)ρ(3)−G(2)(1, 2, 3, 3+). (82)

This relation is fundamental because it expresses the two-particle Green function, and hence the
self-energy through Eqs. (68) and (69), as a linear response of the one-particle Green function
with respect to the probing field.
A formal expression for the self-energy can now be written down by substitutingG(2) in Eq. (68)
with the expression in Eq. (82)

Σ(1, 2) = i

∫
d3 d4 v(1−3)δG(1, 4)

δϕ(3)
G−1(4, 2)

= −i
∫
d3 d4 v(1−3)G(1, 4)δG

−1(4, 2)

δϕ(3)
, (83)

where in the second line the following identity has been used

GG−1 = 1→ δGG−1 +GδG−1 = 0→ δG = −GδG−1G . (84)

From the equation of motion in (71) one finds, keeping in mind that the probing field ϕ is
present in h,

δG−1(4, 2)

δϕ(3)
= −

(
δ(4−3) + δVH(4)

δϕ(3)

)
δ(4−2)− δΣ(4, 2)

δϕ(3)
. (85)

This expression together with Eq. (83) yields an iterative equation for the self-energy, which
facilitates an expansion of the self-energy in powers of the Coulomb interaction. Since

VH(4) =

∫
d5 v(4−5)ρ(5) , (86)
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we have
δVH(4)

δϕ(3)
=

∫
d5 v(4−5) δρ(5)

δϕ(3)
=

∫
d5 v(4−5)R(5, 3) , (87)

where R is the time-ordered linear density response function

R(1, 2) =
δρ(1)

δϕ(2)
= −iδG(1, 1

+)

δϕ(2)
. (88)

From Eq. (80) we find, with 2→ 1+ and after setting ϕ = 0→ Ŝ = 1, the time-ordered linear
density response function is given by

iR(1, 2) =
〈
Ψ0

∣∣T ρ̂(1) ρ̂(2)
∣∣Ψ0

〉
− ρ(1) ρ(2) . (89)

The spectral representation can be obtained by inserting a complete set of N -electron eigen-
states of the Hamiltonian and performing a Fourier transformation yielding

R(r1, r2;ω) =
∑

n

(〈
Ψ0

∣∣∆ρ̂(r1)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r2)

∣∣Ψ0

〉

ω − (En−E0) + iη
−
〈
Ψ0

∣∣∆ρ̂(r2)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r1)

∣∣Ψ0

〉

ω + (En−E0)− iη

)
,

(90)
where

∆ρ̂(r) = ρ̂(r)− ρ(r) .

For analytical treatment it is useful to write the density response function in terms of its spectral
representation as

R(r1, r2;ω) =

∫ 0

−∞
dω′

S(r1, r2;ω
′)

ω − ω′ − iη +

∫ ∞

0

dω′
S(r1, r2;ω

′)

ω − ω′ + iη
, (91)

where S is the spectral function given by

S(r1, r2;ω) =
∑

n

〈
Ψ0

∣∣∆ρ̂(r1)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r2)

∣∣Ψ0

〉
δ(ω−En+E0) , (92)

defined to be anti-symmetric in frequency,

S(−ω) = −S(ω) .

The above spectral function is valid for systems with time-reversal symmetry (no magnetic
field) for which

〈
Ψ0

∣∣∆ρ̂(r1)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r2)

∣∣Ψ0

〉
=
〈
Ψ0

∣∣∆ρ̂(r2)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r1)

∣∣Ψ0

〉
. (93)

The density response functions are central quantities in the calculation of the self-energy. Iter-
ation of Eq. (83) together with (85) generates increasingly higher order density response func-
tions, which determine the self-energy. The iteration starts by setting δΣ/δϕ = 0 yielding the
well-known GW approximation.
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A.3 Self-energy expansion in the screened interaction

It is possible to reformulate the iterative equation for the self-energy in Eqs. (83) and (85) in
terms of the screened interaction W instead of the bare interaction v [11,12]. Instead of varying
the bare probing field ϕ, one varies the total screened potential Vtot in Eq. (6).
The linear density response function is reformulated by introducing the polarization function
P , defined as the linear response function with respect to the total potential Vtot

P (1, 2) =
δρ(1)

δVtot(2)
. (94)

In terms of the polarization function, the induced density becomes

ρind(1) =

∫
d2 P (1, 2)Vtot(2) . (95)

Equating Eqs. (4) and (95) and using Eq. (6) for Vtot and Eq. (5) for Vind one finds

R(1, 2) = P (1, 2) +

∫
d3 d4 P (1, 4) v(4−3)R(3, 2) . (96)

The response function R is related to the polarization function as

R(1, 2) =
δρ(1)

δϕ(2)
=

∫
d3

δρ(1)

δVtot(3)

δVtot(3)

δϕ(2)
=

∫
d3 P (1, 3) ε−1(3, 2) (97)

and Eq. (56) for the screened interaction can be written as

W (1, 2) = v(1−2) +
∫
d3 d4 v(1−3)P (3, 4)W (4, 2) . (98)

Using the chain rule for functional derivatives, the iterative equation for the self-energy can now
be written in terms of the screened interaction W

δG−1(4, 2)

δϕ(3)
=

∫
d5
δG−1(4, 2)

δVtot(5)

δVtot(5)

δϕ(3)
= −

∫
d5

(
δ(5−4) δ(4−2) + δΣ(4, 2)

δVtot(5)

)
ε−1(5, 3),

(99)
where the second line has been obtained from the definition of ε−1 in Eq. (8) and from Eq. (73).
Substituting the above expression for δG−1/δϕ into Eq. (83) yields

Σ(1, 2) = iG(1, 2)W (2, 1) + i

∫
d4 d5 G(1, 4)W (5, 1)

δΣ(4, 2)

δVtot(5)
, (100)

where W is given in Eq. (56). This iterative equation clearly displays the expansion of the self-
energy in powers of the screened interaction W as the equation is iterated. The first term is the
well-known GW approximation.
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A.4 GW approximation

Fourier transformation of
Σ(1, 2) = iG(1, 2)W (2, 1) (101)

yields, using convolution theorem,

Σ(r1, r2;ω) = i

∫
dω′

2π
G(r1, r2;ω + ω′)W (r2, r1;ω

′) eiηω
′
. (102)

Using the spectral representation of G,

G(r1, r2;ω) =

∫ µ

−∞
dω′

Ah(r1, r2 ;ω
′)

ω − ω′ − iδ +

∫ ∞

µ

dω′
Ae(r1, r2; ω

′)

ω − ω′ + iδ
, (103)

one finds for the exchange part

Σx(r1, r2) = iv(r1−r2)
∫
dω′

2π

∫ µ

−∞
dω1

Ah(r1, r2;ω1) e
iηω′

ω + ω′ − ω1 − iδ
= −v(r1−r2)

∫ µ

−∞
dω1A

h(r1, r2;ω1) .

(104)
The factor exp(iηω′) ensures that the contour is closed along a semicircle above the real axis so
that only poles below the chemical potential corresponding to occupied states are picked up.
For the correlation part we find, using the spectral representation of W c in Eq. (14), dropping
the space variables for clarity,

Σc(ω) =

∫ µ

−∞
dω1

∫ ∞

0

dω2
Ah(ω1)B(ω2)

ω + ω2 − ω1 − iδ
−
∫ ∞

µ

dω1

∫ 0

−∞
dω2

Ae(ω1)B(ω2)

ω + ω2 − ω1 + iδ
. (105)

The spectral representation of the correlation part of the self-energy has the same form as that
of the Green function and can be written as

Σc(r1, r2;ω) =

∫ µ

−∞
dω′

Γ h(r1, r2;ω
′)

ω − ω′ − iδ +

∫ ∞

µ

dω′
Γ e(r1, r2;ω

′)

ω − ω′ + iδ
, (106)

where

Γ h(ω) =
1

π
ImΣc(ω)Θ(µ−ω) , (107)

Γ e(ω) = − 1

π
ImΣc(ω)Θ(ω−µ) . (108)

If we use a noninteracting Green function

G0(r1, r2;ω) =
occ∑

n

φn(r1)φ
∗
n(r2)

ω − εn − iδ
+

unocc∑

n

φn(r1)φ
∗
n(r2)

ω − εn + iδ
, (109)

corresponding to

Ah(r1, r2;ω) =
occ∑

n

φn(r1)φ
∗
n(r2) δ(ω−εn) , (110)

Ae(r1, r2;ω) =
unocc∑

n

φn(r1)φ
∗
n(r2) δ(ω−εn) , (111)
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where the one-particle states {φn} with eigenvalues {εn} are usually chosen to be the Kohn-
Sham orbitals or Bloch states, then the exchange potential reduces to the familiar expression

Σx(r1, r2) = −v(r2−r1)
occ∑

n

φn(r1)φ
∗
n(r2). (112)

The spectral functions of the correlation part of the self-energy become

Γ h(r1, r2;ω ≤ µ) =
occ∑

n

φn(r1)φ
∗
n(r2)B(r2, r1; εn−ω)Θ(εn−ω) , (113)

Γ e(r1, r2;ω > µ) =
unocc∑

n

φn(r1)φ
∗
n(r2)B(r2, r1;ω−εn)Θ(ω−εn) . (114)

The correlation part of the self-energy can then be obtained from the spectral representation in
Eq. (106).
The above expression shows that collective charge excitations (plasmons) embodied in B(ω),
proportional to ImW, are transferred to ImΣ. Through the Dyson equation these plasmon
excitations are coupled to the Green function and appear as satellites in the spectral function.
This explicitly describes a clear picture of the coupling between the electrons and the collective
charge excitations in the system, which is illustrated in the Feynman diagram in Fig. 1. An
added electron or hole represented by the Green function line interacts with the system and
induces a collective charge excitation or a plasmon which is reabsorbed at a later time. This
coupling to the plasmon excitation renormalizes the noninteracting Green function via the self-
energy, resulting in a heavier effective mass and the transfer of quasiparticle weight to the
satellite region.

B Functional derivation of GW+EDMFT

The Hamiltonian of a many-electron system moving in some external potential vext is given by

Ĥ = Ĥ0 + V̂ , (115)

where
Ĥ0 =

∫
dr ψ̂†(r)h0(r) ψ̂(r) , (116)

h0(r) = −
1

2
52 +vext(r), (117)

V̂ =
1

2

∫
drdr′ ψ̂†(r) ψ̂†(r′) v(r−r′) ψ̂(r′) ψ̂(r) . (118)

r labels position and spin variables: r = (r, σ) and v(r−r′) = 1/|r−r′|. The interaction term
of the Hamiltonian can be rewritten as

V̂ =
1

2

∫
drdr′ ρ̂(r) v(r−r′)

(
ρ̂(r′)− δ(r−r′)

)
, (119)
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where the second term is the unphysical self-interaction term. V̂ can be expressed in terms of
the density fluctuation operator,

∆ρ̂(r) = ρ̂(r)− ρ(r), (120)

as
V̂ = ∆V̂ +

∫
dr VH(r)ρ̂(r)− EH −

1

2

∫
drdr′ δ(r−r′) v(r−r′) ρ̂(r), (121)

where
∆V̂ =

1

2

∫
drdr′∆ρ̂(r) v(r−r′)∆ρ̂(r′), (122)

VH(r) =

∫
dr′ v(r−r′) ρ(r′), (123)

and
EH =

1

2

∫
drdr′ ρ(r) v(r−r′) ρ(r′). (124)

The Hartree potential VH can be incorporated into the one-particle part of the Hamiltonian Ĥ0

and the Hartree energy EH can be absorbed into the chemical potential. The self-interaction
term can also be included in Ĥ0 and it will eventually cancel out of physical observables.
In the functional integral formalism, one evaluates at each time slice ε = β/M [27]

e−ε(Ĥ−µN) = e−ε(Ĥ0−µN̂+V̂ ) ∼ e−ε(Ĥ
′
0−µN̂)e−ε∆V̂ , (125)

where Ĥ ′0 includes the one-particle residue V̂−∆V̂. Using the Hubbard-Stratonovich transfor-
mation, which is essentially a Gaussian integral formula for operators, one has

∫ ∏

i

(
dθi√
2π

)
e−

1
2
θAθ+θĴ =

1√
detA

e
1
2
ĴA−1Ĵ . (126)

Applying this operator identity one obtains

e−ε∆V̂ = e−ε
1
2

∫
drdr′∆ρ̂(r)v(r−r′)∆ρ̂(r′). (127)

Associating Ĵ → i∆ρ̂, A−1 → εv and θ → εφ, one finds

e−ε∆V̂ = [det(εv−1)]1/2
∫

dφ√
2π

e−ε
1
2

∫
drdr′φ(r)v−1(r−r′)φ(r′)+iε

∫
drφ(r)∆ρ̂(r), (128)

where φ is an auxiliary bosonic field which is real (not a Grassmann variable).
The partition function is given by

Z =

∫
D[ψ∗ψ] e−S(ψ∗,ψ), (129)

where a correspondence between the annihilation and creation field operators and the Grass-
mann variables has been made as follows:

ψ̂(x)→ ψ(x), ψ̂†(x)→ ψ∗(x). (130)
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The label x represents position, spin and imaginary time variables: x = (r, τ) = (r, σ, τ). The
Coulomb interaction is written as

v(x−x′) = v(r−r′) δ(τ−τ ′). (131)

The action is given by

S(ψ∗, ψ) =

∫
dxψ∗(x)

(
∂

∂τ
− µ+ h0(x)

)
ψ(x)+

1

2

∫
dxdx′ ψ∗(x)ψ∗(x′) v(x−x′)ψ(x′)ψ(x).

(132)
Using the Hubbard-Stratonovich transformation described above the action can be naturally
decomposed as a sum of three terms

S(ψ∗, ψ, φ) = SF(ψ
∗, ψ) + SB(φ) + SBF(ψ

∗, ψ, φ), (133)

where

SF(ψ
∗, ψ) =

∫
dxψ∗(x)

(
∂

∂τ
− µ+ h0(x) + VH(x)

)
ψ(x), (134)

SB(φ) =
1

2

∫
dxdx′ φ(x) v−1(x−x′)φ(x′), (135)

SBF(ψ
∗, ψ, φ) = −i

∫
dx φ(x)

(
ψ∗(x)ψ(x)− ρ(x)

)
. (136)

SF and SB correspond, respectively, to the fermion and boson mean-field actions. SBF is the
interaction term between the bosonic and fermionic fields. Implicit in this last term is the
presence of the Coulomb interaction, which can be brought out by making a transformation
φ = vφ̃, yielding a more intuitive expression

SBF(ψ
∗, ψ, φ̃) =

∫
dxdx′ φ̃(x′) v(x′−x)

(
ψ∗(x)ψ(x)− ρ(x)

)
. (137)

The partition function after the Hubbard-Stratonovich transformation becomes

Z =

∫
D[ψ∗, ψ, φ] e−SF(ψ

∗,ψ)−SB(φ)e−SBF(ψ
∗,ψ,φ). (138)

Using the coupling constant integration technique, the contribution to the thermodynamic po-
tential Ω = − lnZ from the SBF coupling term can be calculated

Zα =

∫
D[ψ∗, ψ, φ] e−SF(ψ

∗,ψ)−SB(φ) e−αSBF(ψ
∗,ψ,φ). (139)

∂Ωα

∂α
= −∂ lnZα

∂α
= − 1

Zα

∂Zα
∂α

=
〈
SBF(ψ

∗, ψ, φ)
〉
α
, (140)

Ω −Ω0 =

∫ 1

0

dα
∂Ωα

∂α
=

∫ 1

0

dα
〈
SBF(ψ

∗, ψ, φ)
〉
α
. (141)

Introducing source potentials JF and JB which couple, respectively, to the fermion and boson
fields one finds

Z[JF, JB] =

∫
D[ψ∗, ψ, φ] e−SF(ψ

∗,ψ)−SB(φ)−ψ∗JFψ+ 1
2
φJBφ e−SBF(ψ

∗,ψ,φ). (142)
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W

G

G
A B

︸ ︷︷ ︸
GW part

− a b

︸ ︷︷ ︸
double counting

+

+ +

+ + · · ·
︸ ︷︷ ︸

impurity diagrams

Fig. 7: The GW+EDMFT approximation to the Ψ -functional. The first diagram corresponds
to GWA and the second diagram the double counting. Lower-case indexes are restricted to the
same unit cell, and thus correspond to diagrams accounted for in the impurity problem. The
figure is taken from Boehnke et al. [20].

Consider first the case when SBF = 0, i.e., no coupling between the bosonic and fermionic
fields. SF can be associated with a thermodynamic potential ΩF and its Legendre transform

ΓF [G] = ΩF[JF]− JFG = Tr lnG− Tr (G−10 G− 1), (143)

where

G−10 (x, x′) = −
(
∂

∂τ
− µ+ vext(x) + VH(x)

)
δ(x−x′). (144)

For the bosonic part,

ZB[JB] =

∫
D[φ] e− 1

2
φ(v−1−JB)φ =

(
det(v−1− JB)

)−1/2
, (145)

where the Gaussian integral formula for real variables has been used. Defining the boson prop-
agator

W (x, y) =
〈
φ(x)φ(y)

〉
=

2

ZB

δZB

δJB(x, y)
= 2

δ lnZB

δJB(x, y)
. (146)

and using the identity
ln detM = Tr lnM, (147)

one finds
lnZB[JB] = −

1

2
ln det

(
v−1− JB

)
= −1

2
Tr ln

(
v−1− JB

)
, (148)

W [JB] = 2
δ lnZB[JB]

δJB
=
(
v−1− JB

)−1 → JB[W ] = v−1−W−1, (149)

ΩB[JB] = − lnZB[JB] =
1

2
Tr lnW−1 = −1

2
Tr lnW. (150)

One then obtains

ΓB[W ] = ΩB[JB] +
1

2
Tr (JBW ) = −1

2
Tr lnW +

1

2
Tr
(
v−1W − 1

)
, (151)

which shows that ΓB, the Legendre transform of ΩB, is indeed a functional of W.
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Taking into account the coupling term SBF yields

Γ [G,W ] = ΓF[G] + ΓB[W ] + Ψ [G,W ], (152)

where from Eq. (141)

Ψ [G,W ] =

∫ 1

0

dα 〈SBF(ψ
∗, ψ, φ)〉α . (153)

Functional derivative with respect to G yields the Dyson equation for G

δΓ [G,W ]

δG
=
δΓF[G]

δG
+
δΨ [G,W ]

δG
(154)

−JF = G−1 −G−10 +
δΨ [G,W ]

δG
, (155)

with the fermion self-energy

Σ[G,W ] =
δΨ [G,W ]

δG
+ JF. (156)

Similarly, functional derivative with respect to the boson propagator W yields

δΓ [G,W ]

δW
=
δΓB[W ]

δW
+
δΨ [G,W ]

δW
(157)

1

2
JB = −1

2
W−1 +

1

2
v−1 +

δΨ [G,W ]

δW
, (158)

with the boson self-energy or polarization

P [G,W ] = −2δΨ [G,W ]

δW
+ JB. (159)

For JF = JB = 0, which correspond to the extrema of Γ [G,W ] we find the Dyson equations
for G and W

δΓ [G,W ]

δG
= 0→ G = G0 +G0ΣG, (160)

δΓ [G,W ]

δW
= 0→ W = v + v P W. (161)

The EDMFT approximation corresponds to an onsite approximation to G and W

ΨEDMFT = Ψ [GRR,WRRRR]. (162)

GWA, on the other hand, corresponds to the first-order diagram in Ψ

ΨGW = −1

2
TrGWG . (163)

This yields the total GW+EDMFT functional in Fig. 7

ΨGW+EDMFT = ΨGW + ΨEDMFT +
1

2
Tr(GRRWRRRRGRR), (164)

where the last term is the double-counting term.
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