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1 Introduction

Pump-probe experiments with short laser pulses allow to excite condensed matter systems and
to spectroscopically analyze the subsequent dynamics of their microscopic degrees of free-
dom over a wide range of timescales, from fast electronic processes below one femtosecond to
the picosecond dynamics of the crystal lattice and of collective orders like superconductivity.
Femtosecond pulses are nowadays available in a large spectrum of photon energies, and many
complementary probing techniques have been brought to the ultrafast time domain: For exam-
ple, time- and angular-resolved photoemission (trARPES) can probe the momentum-dependent
electronic structure, time-resolved Xray scattering can reveal the evolution of the crystal lattice,
and resonant inelastic Xray scattering (RIXS) based on intense Xray pulses from free electron
laser sources can give access to low energy magnetic and orbital excitations. Such experiments
have opened up a field of research in condensed matter physics with many facets [1–3]: On
the one hand, the hope is that a real-time observation of dynamical processes can reveal the in-
teraction between microscopic degrees of freedom more directly than conventional equilibrium
probes. On the other hand, many experiments have shown that an excitation of correlated solids
far out of equilibrium can give rise to states that are not simply related to equilibrium phase
diagram, which suggests the possibility for a controlled engineering of the collective behavior
in solids on ultrafast timescales.

In general, we can distinguish two classes of pathways used to establish new equilibrium states.
First, the redistributions of electron populations between different bands and orbitals can trigger
a nontrivial dynamics. This redistribution is often loosely referred to as photo-doping, although
it does not imply a change of the total electron count (like in chemical doping), but only a
change of the electron count in a certain subset of bands. Such photo-excitation processes have
been shown to, e.g., induce a metal-insulator transition in VO2 on timescales below 100 fs [4],
lead to the enhancement of excitonic condensates [5], or trigger photo-induced non-thermal
phase transitions like the photo-induced melting of antiferromagnetic order [6]. In strongly
correlated electron systems, photo-doping can have a direct impact on the electronic structure,
due to a shift of the bands, the formation or destruction of coherent quasiparticles, and the ul-
trafast modification of relevant interaction parameters due to screening, such as the Hubbard U
(see Sec. 4.1). The second pathway relies on a direct effect of the laser field while a system
is driven. This includes the idea of nonlinear phononics [7], where the anharmonic coupling
to strongly driven phonon modes is used to steer the crystal lattice, but also the magnetic and
electronic properties of solids. More generally, the period-averaged dynamics of a periodically
driven system can be understood in terms of a so-called Floquet Hamiltonian, which can dif-
fer significantly from the un-driven Hamiltonian in the presence of nonlinearities. A prominent
example of this so-called Floquet engineering, which is more routinely used in cold atom exper-
iments [10], is the generation of topologically nontrivial bands by circularly polarized light in
graphene [8, 9], and there are many theoretical proposals towards Floquet engineering of inter-
acting quantum systems, such as a manipulation of superconducting pairing or spin-exchange
interactions [2, 3]. In a solid, however, heating processes from the drive are usually inevitable,
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so that properties of the driven state rely both on the field-induced modification of the Hamilto-
nian, and on the effect of non-thermal electron populations similar to photo-doping.
The theoretical description of such non-equilibrium processes must therefore capture the joint
evolution of the spectrum (density of states) and the distribution functions, which mutually de-
pend on each other in a correlated system. The Keldysh formalism provides the framework to
discuss many-body physics for transient and steady-state non-equilibrium situations. Techni-
cally, many-body approaches which are rooted in a diagrammatic formalism can be generalized
to the time-domain by replacing imaginary-time arguments by a time variable on a more general
real-time contour. In particular, this holds for dynamical mean-field theory (DMFT) [11–14]
and its extensions, which in equilibrium present a versatile approach to obtain the electronic
structure of correlated electrons. The numerical evaluation of the resulting equations in real-
time is however far more challenging, as discussed below. In the context of DMFT, the main
challenge is the non-perturbative solution of the quantum impurity problem: Real-time Quan-
tum Monte Carlo techniques have to cope with the notorious dynamical sign problem, while
wave-function based techniques such as matrix product state evolutions suffer from the full
exponentially large dimension of the relevant Hilbert space (see Sec. 3.2). In spite of that, non-
equilibrium DMFT is applied to an increasing set of topics in particular related to the study
of photo-induced dynamics in Mott insulators, e.g., to understand light-induced phases such as
hidden states with spin and orbital order [15] or superconductivity [16], or the investigation of
strong-field phenomena such as strong-field localization and high-harmonic generation [17,18].
The purpose of this lecture is to explain the foundations of non-equilibrium DMFT and some
of its extensions, more than giving a summary of recent applications. As such, the lecture has a
significant overlap with a previous lecture in this school [19]. Nevertheless, in order to provide a
self-contained set of notes we will repeat some of the basic concepts. Compared to the previous
lecture, the present notes do not contain details of the solution of integral equations for real-
time non-equilibrium Green functions (there is now a detailed technical report on this in the
literature [20]), but instead include a chapter on the GW+DMFT formalism out of equilibrium,
which is a promising route towards first principles simulations of correlated electron systems
out of equilibrium.

2 Keldysh formalism

This chapter recapitulates basis aspects of the Keldysh formalism. For a more detailed review,
the reader might consider the textbooks by Kamenev [21], Stefanucci and van Leeuwen [22], or
Ref. [14].

2.1 The L-shaped time contour
Time evolution operator

We consider a system which at initial time t0 is in a given quantum state, or more generally a
statistical mixture ρ =

∑
nwn|ψn〉〈ψn| of states |ψn〉 with probabilities wn. In the follow-
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ing, we will assume the latter to be the thermal Gibbs ensemble for a given Hamiltonian,
ρ = e−βH(t0)/Z. For times t > t0, the system then evolves according to a time-dependent
Hamiltonian H(t). Taking the expectation value of an observable O in the time-evolved state
and averaging over initial states gives

〈O(t)〉 =
∑
n

wn〈ψn| U(t0, t)O U(t, t0)|ψn〉 = Tr ρU(t0, t)O U(t, t0) , (1)

with the time-evolution operator U(t, t′) from time t′ to t. For t > t′ (forward evolution), the
latter is given by (~ = 1 throughout these notes)

U(t, t′) = Tt e
−i

∫ t
t′ dt̄H(t̄), (2)

where Tt is the time-ordering operator which brings operators at later time to the left. The
action of the time-ordering can be read in two ways: First, by splitting the time-interval [t′, t]

in N →∞ infinitesimal time-steps (t0 ≡ t′, t1, ..., tN = t), over which the Hamiltonian can be
taken to be constant, we have

Tt e
−i

∫ t
t′ dt̄H(t̄) = Tt lim

N→∞

N∏
j=1

e−i(tj−tj−1)H(tj) = lim
N→∞

e−i(tN−tN−1)H(tN ) · · · e−i(t1−t0)H(t1), (3)

i.e., the time-ordering operator brings the evolution over the infinitesimal time-steps [tj, tj+1] in
the correct order. Alternatively, we can expand the exponent in Eq. (2) in a Taylor series and
apply the time-ordering to the individual terms,

Tt e
−i

∫ t
t′ dt̄H(t̄) =

∞∑
n=0

(−i)n

n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtn Tt

(
H(t1) · · ·H(tn)

)
(4)

= 1 +
∞∑
n=1

(−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtnH(t1) · · ·H(tn). (5)

This expression is recognized as iterative solution of the integral equation for the evolution
operator, U(t, t′) = 1 +

∫ t
t′
dt1H(t1)U(t1, t

′).

L-shaped time-contour and contour-ordered correlation functions

With an analogous notation, the backward time-evolution can be expressed using the anti time-
ordering operator Tt̄ that brings operators at later time to the right, U(t′, t) = Tt̄ e

−i
∫ t
t′ dt̄H(t̄)

for t′ < t. Finally, writing the density matrix ρ in terms of the imaginary time evolution with
H(τ) ≡ H(0), the expectation value Eq. (1) becomes

Tr ρU(t0, t)O U(t, t0) =
1

Z
Tr
(
Tτe

−
∫ β
0 dτH(τ)

)(
Tt̄e
−i

∫ 0
t dtH(t)

)
O
(
Tte
−i

∫ t
0 dtH(t)

)
. (6)

(Here and in the following we set t0 = 0 without loss of generality). The three time-ordered
exponentials in this expression can be combined into a single time-ordering along the L-shaped
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Fig. 1: The Keldysh contour C, ranging from time 0 to a maximum time tmax, back to time 0, and
finally to −iβ on the imaginary-time branch. Times on the upper and lower real-time branch
are denoted by t+ and t−, respectively. Both t+ and t− are real, and the index ± serves only to
distinguish backward and forward time-evolution. The arrows denote the time-ordering along
C from “earlier” to “later” contour times.

time contour C, which extends from 0 to some maximum time tmax in forward direction, back
to 0, and finally to −iβ in the imaginary direction (see Fig. 1). Hence, Eq. (6) becomes

〈O(t)〉 =
1

Z
TrTC e

−i
∫
C dtH(t)O(t), (7)

with the contour-ordering operator

TCA(t)B(t′) =

{
A(t)B(t′) t later than t′ on C
ξB(t′)A(t) t′ later than t on C.

(8)

The sign ξ is −1 if the permutation of A and B involves an odd number of permutations
of fermion creation of annihilation operators, and +1 otherwise. The sign is not relevant
in Eq. (7), but only for the definition of correlation functions below. Equations (7) and (3)
are then understood in the same way: splitting the contour in N → ∞ infinitesimal steps
(t0 ≡ 0+, t1, ..., tN = −iβ), with to = t+ being the time argument of the operator O, the
operator TC in the expression

TC

(
e−i

∫
C dtH(t)O(t)

)
= TC

( N∏
j=1

e−i(tj−tj−1)H(tj)O(to)
)

(9)

orders the evolution over the infinitesimal timesteps [tj, tj−1] and O such that Eq. (6) is recov-
ered.
Analogous to Eq. (7), we naturally define multi-point contour-ordered correlation functions,
such as the two-point function 1

Z
TrTC e

−i
∫
C dtH(t)A(t)B(t′). In short, we will use the notation

1

Z
TrTC e

−i
∫
C dtH(t)A(t)B(t′) · · · = 〈TCÂ(t)B̂(t′) · · · 〉H , (10)

where 〈· · · 〉H = 1
Z

Tr e−βH(0) · · · is the initial state expectation value, and an operator Ô(t)

(with a hat) is understood in the Heisenberg picture, Ô(t) = U(0, t)O U(t, 0). When all time
arguments are on the imaginary branch of C, contour-ordered correlation functions are identical
to the imaginary-time correlation functions considered in the Matsubara formalism〈

TCÂ(−iτ)B̂(−iτ ′) · · ·
〉
H

=
1

Z
TrTτe

−i
∫ β
0 dτ̄H(τ̄)A(τ)B(τ ′). (11)
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Keldysh action

The discrete time formulation (9) shows that contour-ordered expectation values can be repre-
sented as a path integral, in full in analogy to imaginary-time ordered expectation values. In
particular, for a normal-ordered Hamiltonian H[c†, c] in terms of creation and annihilation op-
erators c and c† (suppressing for simplicity single-particle labels for spin, orbital, momentum),
the coherent state path integral for the partition function (or rather, any generating function for
contour-ordered expectation values) is given by

Z = TrTC e
−i

∫
C dtH(t) =

∫
D[c̄, c]eiS[c̄(t),c(t)] , S =

∫
C
dt
(
c̄(t)i∂tc(t)−H[c̄, c]

)
, (12)

with anti-periodic or periodic boundary conditions

c(0+) = ±c(−iβ) (13)

for bosons or fermions, respectively. This expression is understood in the usual way as the
N → ∞ continuum limit of the path integral on a discretized time contour with timesteps
t0 = 0+, ..., tN = −iβ, and action

SN =
N∑
n=1

δtn

(
ic̄n

c̄n − cn−1

δtn
−H[c̄n, cn−1]

)
, cn ≡ c(tn), δtn = tn − tn−1. (14)

One should check that the exponent iS reduces to the usual imaginary time action

iS = −
∫ β

0

dτ
(
c̄(τ)∂τc(τ) +H[c̄(τ), c(τ)]

)
(15)

when t = −iτ is restricted to the vertical branch of C.
With the action (12), contour-ordered expectation values have a path integral representation

TrTC e
−i

∫
C dt̄H(t̄)A(t)B(t′) · · · =

∫
D[c̄, c]eiSA(t)B(t′) · · · , (16)

where on the right-hand side operators O(t) ≡ O[c̄(t), c(t)] are understood in their coherent
state representation. In the following, we will use the notation〈

A(t)B(t′) · · ·
〉
S

=
1

Z

∫
D[c̄, c]eiSA(t)B(t′) · · · (17)

for contour-ordered expectation values related to an action S.
It should be stressed that in spite of the imaginary contribution from the real-time branches
of C, the path integral is convergent for both bosons and fermions. For example, the action
iS = i

∫
C dt c̄(t)(i∂t − ε)c(t) for a single bosonic degree of freedom (H = εc†c) defines a

convergent Gaussian integral, other than the path integral for a pure real-time path which would
be marginally convergent. With this, field theoretical techniques like the formulation of effective
actions and the Hubbard Stratonovich decoupling, as well as Wick’s theorem and the derivation
of perturbation theory carry over from the imaginary-time Matsubara formalism to the Keldysh
formalism on the L-shaped contour C by a simple replacement of the time variable.
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2.2 Contour-ordered Green functions
Definition and relation to other representations

The most important two-point correlation function for the formulation of many-body methods
is the Green function

Gjj′(t, t
′) = −i

〈
cj(t)c̄j′(t

′)
〉
S

= −i
〈
TC ĉj(t)ĉ

†
j′(t
′)
〉
H
. (18)

Here j denote single particle labels, such as orbital, spin, and lattice site. The contour-ordered
Green function does not only naturally appear in the context of diagrammatic perturbation the-
ory, but it also contains all information on experimentally accessible single-particle observables.
Before formulating many-body theory, we therefore explain how to relate the contour-ordered
Green functions to the Green functions which are conventionally used for the description of
systems in equilibrium.
(i) When both time arguments are on the vertical branch, we have

Gj,j′(−iτ,−iτ ′) = iGM
j,j′(τ−τ ′), (19)

whereGM
j,j′(τ−τ ′) = −

〈
Tτ ĉj(τ)ĉ†j′(τ

′)
〉
H

is the imaginary time-ordered Matsubara Green func-
tion. This relation will be in particular important below to relate expressions in the Matsubara
and Keldysh formalism. (ii) When one time argument is on the lower and one the other on
the upper real-time contour, the contour ordering implies a fixed operator ordering. The two
possible orderings are

Gj,j′(t−, t
′
+) = −i

〈
cj(t)c

†
j′(t
′)
〉
≡ G>

j,j′(t, t
′), (20)

Gj,j′(t+, t
′
−) = −iξ

〈
c†j′(t

′)cj(t)
〉
≡ G<

j,j′(t, t
′), (21)

with ξ = 1 (ξ = −1) for Bosons (Fermions). These two functions therefore represent the
propagation of an additional particle (G>) or a hole (G<) in the time-evolving system. Finally,
(iii), of relevance below are the retarded and advanced Greens functions

GR
j,j′(t, t

′) = Θ(t−t′)
(
G>
j,j′(t, t

′)−G<
j,j′(t, t

′)
)
, (22)

GA
j,j′(t, t

′) = Θ(t′−t)
(
G<
j,j′(t, t

′)−G>
j,j′(t, t

′)
)
. (23)

Spectroscopic interpretation

The Green functions G> and G< have a direct interpretation in terms of spectroscopic probes
that add or remove electrons, such as tunnelling experiments and (inverse) time-resolved pho-
toemission spectroscopy [23]. In an idealized description of such an experiment, we couple a
probe orbital f to a given orbital j of the system, by adding the termH ′ = s(t−tp)eiω(t−tp)f †cj+

h.c. to the Hamiltonian, where the function s(t−tp)eiω(t−tp) is a time-dependent probe field with
probe frequency ω and probe envelope s(t−tp) centered around some probe time tp. For elec-
tron addition (removal) the probe orbital is assumed to be filled (empty) at time t = −∞, and
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the signal I> (I<) is given by the change
∣∣〈f †f〉t=∞ − 〈f †f〉t=−∞∣∣ after and before the probe.

Straightforward time-dependent perturbation theory leads to the expression

I
>(<)
jj (ω, tp) =

∫
dt dt′ eiω(t−t′)(±i)G>(<)

j,j (tp+t, tp+t
′) s(t)s(t′)∗ +O(s4). (24)

The upper (lower) sign refers to electron addition (removal); Eq. (24) is stated for fermions. This
equation will be used below for the interpretation of non-equilibrium Green functions within a
spectral representation.

Relation to equilibrium Green functions

In equilibrium, translational invariance in time implies that real-time propagators X(t, t′) de-
pend only on the time-difference, and can be represented using the Fourier transform X(ω) =∫
dt eiωtX(t, 0). Within the spectroscopic interpretation with an infinitely long probe pulse

(s(t) = const.), Eq. (24) gives I>(<)
j (ω) ∝ ±iG>(<)

jj (ω), so that the electron and hole prop-
agator can be interpreted in terms of the electron addition and removal spectrum, respec-
tively. A straightforward expansion in (many-body) energy eigenstates (Lehmann represen-
tation) shows that the Green functions (20) and (21) are related to a single spectral density
Aj,j′(ω) = − 1

π
ImGR

j,j′(ω+i0) and the Fermi function f(ω) (again, the relations are stated for
fermions)

G>
j,j′(ω) = 2πiAj,j′(ω)f(−ω), (25)

G<
j,j′(ω) = −2πiAj,j′(ω)f( ω). (26)

The electron removal spectrum is therefore given by the spectral density A(ω) multiplied with
an occupation function f(ω) that gives the probability to find a state at ω to be occupied, while
the electron addition spectrum is given by the same spectrum and the probability to find the state
unoccupied, f(−ω) = 1− f(ω). It should be emphasized that this relation holds for any sys-
tem in thermal equilibrium, also an interacting one. The distribution function f(ω) is entirely
universal, i.e., it does not depend on any details of the Hamiltonian but only on temperature.
This universal relation is analogous to the fluctuation-dissipation theorem, which gives a uni-
versal relation between response functions and time-dependent autocorrelation functions which
is valid for any system in thermal equilibrium.
Moreover, the Lehmann representation expansion shows that the spectral function is related to
the Matsubara Green function by the analytical relation

GM
j,j′(τ) = −

∫
dωAj,j′(ω)e−ωτf(−ω). (27)

This highlights how, in equilibrium, it is in principle sufficient to solve the system on the imag-
inary branch of the contour. The knowledge of G(τ) would suffice to determine the spectrum,
so that the equilibrium theory is complete in terms of the imaginary time propagators. In prac-
tice, however, extracting real frequency information from imaginary time Green functions is an
ill-conditioned problem (analytical continuation).
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Green functions in a time-evolving state: Wigner representation

In a time-evolving state, time-translational invariance is lost, so that both spectral and occupa-
tion functions depend on two time-arguments separately. It is still often convenient to introduce
a partial Fourier representation: A symmetric choice is the Wigner transform for a function
X(t, t′), with average time tav = (t+t′)/2 and a relative time trel = t−t′, and a Fourier trans-
form with respect to trel,

X(tav, ω) =

∫
dtrel e

iωtrel X(tav+trel/2, tav−trel/2). (28)

For example, the Wigner transforms G<,>(t, ω) are then naturally related to time-resolved elec-
tron addition and removal experiments: With a Gaussian probe profile S(t) = exp(−t2/2τ 2)

with duration τ , Eq. (24) gives

I
>(<)
j (ω, t) ∝

∫
dω′ dt′ (±i)G>(<)

jj (t+t′, ω+ω′) e−t
′2/τ2e−ω

′2τ2 , (29)

i.e., an average of G>(<)
jj (t, ω) over a window of width δt = τ in time and δω = 1/τ in

frequency which satisfies energy-time uncertainty.1

In analogy to Eqs. (25) and (26), we can parametrize G>(<)(t, ω) in terms of a time-dependent
spectral function and a time-dependent occupation function

G<(ω, t) = 2πiA(ω, t) F (ω, t), (30)

G>(ω, t) = −2πiA(ω, t)
(
1−F (ω, t)

)
, (31)

omitting orbital indices for simplicity (A and F are matrices in orbital space). This repre-
sentation emphasizes that the real-time Keldysh formalism provides a set of equations which
describe the joint evolution of the spectral and distribution functions, as outlined in the intro-
duction. This fact can also be turned into an approximate time-evolution scheme in terms of
a quantum Boltzmann equation [24] which is an approximate equation of motion for a time-
dependent occupation function, supplemented with certain approximations for the spectrum.
One should note, however, that while ±iG>(<)(t, ω) is real (hermitian), it is not necessarily
positive and cannot directly be interpreted in terms of a phase space probability in time and
frequency. Only after averaging over an energy-time uncertainty window we obtain a positive
quantity, see Eq. (29) above. This is analogous to the Wigner phase space density W (x, p) as
function of position and momentum, which becomes a phase space probability distribution only
after suitably averaging over the conjugate variables x and p. Although the Wigner represen-
tation is often convenient to represent the time evolution, for numerical evaluation the (t, t′)

1Note that this does not mean thatG(t, t′) would be measurable only up to time-frequency uncertainty. Instead,
Eq. (24) shows that in principle the full time dependence can be retrieved from experiment. For example, to
measure G<(t, t′) in a given time window, we choose an orthonormal basis φn(t) for time-dependent functions
in that interval, and expand −iG<(t, t′) =

∑
n,n′ φ∗n(t)gn,n′φn′(t′). The matrix gn,n′ is hermitian and positive

definite. A probe pulse S(t) = φn(t) then measures the diagonal components, I< = gn,n. A probe pulse
S(t) = φn(t) + eiϕφm(t) gives I< = gn,n + gm,m + e−iϕgn,m + eiϕgn,m, so that off-diagonal components gn,m
can be obtained by scanning the phase difference ϕ [25].
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representation is therefore often more suitable, because it allows for a causal time-propagation
algorithm even on short timescales whereA and F cannot be understood as positive distribution
functions.

Causal property of contour-ordered functions

Finally, we note an important property of contour-ordered correlation functions which will
be used below. The values of the contour-ordered function G(t, t′) with t and t′ on different
branches of C are not all independent, because the largest real-time argument can be shifted
between the upper to the lower contour branch. For example, for t′ < t,

G(t+, t
′
+) =

1

Z
Tr e−βH(0) U(0, t)U(t, tmax)︸ ︷︷ ︸

C−

U(tmax, t)cU(t, t′)c†U(t′, 0)︸ ︷︷ ︸
C+

= G(t−, t
′
+). (32)

The brackets indicate the part of the contour-ordered operator TCe−i
∫
C dtH(t) along the upper and

lower branch, respectively. Because the time-evolution between t and tmax along the upper and
lower branch cancel, c can be shifted between the two branches. The redundancy which follows
from Eq. (32) can be used to represent the contour-ordered Green functions in terms of fewer
components; in particular, real time components can always be represented in terms of G< and
G>, hence the knowledge of the contour-ordered Green function is precisely equivalent to the
knowledge of time-dependent spectral and distribution functions.

2.3 Perturbation theory
Equation of motion and inverse Green functions

The action (12) for the noninteracting Hamiltonian H(t) = ε(t)c†c can be written as a quadratic
form S =

∫
dtdt′ c̄(t)δC(t, t

′)(i∂t − ε)c(t′). Here δC(t, t′) is the delta-function consistent with
the contour integral, i.e.,

∫
C dt

′ δC(t, t
′)g(t′) = g(t) for any function g(t) on C. This quadratic

action is to be understood as the continuum limit of a discrete form S =
∑

a,a′ c̄aAaa′ca′ where
a, a′ label all orbital and discrete time indices. Gaussian integration for the discrete action yields
the moments

〈cac̄a′〉S =
1

Z

∫
D[c̄, c]eiScac̄a′ =

1

Z

∫
D[c̄, c]e−

∑
b,b′ c̄b(−iAbb′ )cb′cac̄a′ = (iA−1)a,a′ . (33)

i.e., the Greens function Gaa′ = −i〈cac̄a′〉S and A are inverse matrices in time. Reinstating
the continuum limit, the equation A · G = 1 yields the equation of motion for the free Green
function G, ∫

C
dt̄ δC(t, t̄)(i∂t̄ − ε)G(t̄, t′) =

(
i∂t − ε(t)

)
G(t, t′) = δC(t, t

′). (34)

In the derivation of this equation one should note that in contrast to the inverse of the discrete
matrixA, the differential equation (34) does not have a unique solution unless a proper boundary
condition is specified. This boundary condition is provided by the relation

G(0+, t) = ξG(−iβ, t), G(t, 0+) = ξG(t,−iβ), (35)
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with the Bose (Fermi) sign ξ, which follows from the (anti)-periodic boundary condition (13)
of c and c̄ in the path integral.
From now on we use a continuum notation assuming that all operations take place within the
space of (anti)-periodic functions. Multiplication of two contour functions corresponds to con-
volution along C,

[A ∗B](t, t′) =

∫
C
dt̄ A(t, t̄)B(t̄, t′), (36)

and the inverse A−1(t, t′) of a function A(t, t′) is understood as the differential or integral equa-
tion

∫
C dt̄ A

−1(t, t̄)A(t̄, t′) =
∫
C dt̄ A(t, t̄)A−1(t̄, t′) = δC(t, t

′) with the boundary condition (35)
(additional matrix multiplication in orbital indices implied).

Wick’s theorem

Wick’s theorem is a consequence of Gaussian integrals, and it therefore holds for contour-
ordered functions as well as for imaginary time-ordered functions: For a quadratic action iS0 =

−
∑

a,a′ c̄a(−iAaa′)ca′ , the n-point expectation values factorize in two-point functions,

〈c1 · · · cnc̄n′ · · · c̄1′〉S0 =
∑
π

ξπ〈c1c̄π(1)′〉S0 · · · 〈cnc̄π(n)′〉S0 . (37)

where π runs over all permutations of the numbers (1, ..., n), and ξπ is the sign of the permuta-
tion for fermions and 1 for bosons, i.e., the right hand side of the expression is the determinant
(permanent) of the matrix Mij = 〈cj c̄j′〉S for fermions (bosons). Wick’s theorem therefore
directly implies a factorization of contour-ordered correlation functions for a noninteracting
Hamiltonian H0,

(−i)n
〈
TC ĉ(t1) · · · ĉ(tn)ĉ†(t′n) · · · ĉ†(t′1)

〉
H0

=
∑
π

ξπG0(t1, t
′
π(1)) · · ·G0(tn, t

′
π(n)) (38)

in terms of the Green function G0(t, t′) = −i
〈
TC ĉ(t)ĉ

†(t′)
〉
H0

.
For illustration, let use the factorization of contour-ordered correlation functions to analyze the
function

χR(t, t′) = −iΘ(t−t′)
〈
[Ô(t), Ô(t′)]

〉
H
, (39)

which gives the response of the operator O to a time dependent field coupling to O (Kubo
relation). In the Matsubara formalism, the response is obtained from the analytical continua-
tion of the imaginary-time ordered correlation function χ(τ) = −

(〈
Tτ Ô(τ)Ô(0)

〉
− 〈O〉2

)
;

taking a noninteracting fermionic system H =
∑

a εac
†
aca and a single particle observable

O =
∑

ab oabc
†
acb, one would, after some algebra, obtain the convolution of the unoccupied den-

sity of states A>a (ω) = Aa(ω)f(−ω) and the occupied density of states A<a (ω) = Aa(ω)f(ω),

− 1

π
ImχR(Ω+) =

∑
a,b

|oab|2
∫
dω
(
A>b (ω+Ω)A<a (ω)− A>b (ω−Ω)A<a (ω)

)
. (40)
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For Ω > 0, the two parts of the expression naturally describe energy absorption and emission
when going from an occupied state a to and unoccupied state b. The same expression can be
obtained in a relatively straightforward manner from the Keldysh formalism. We start from the
contour-ordered correlation function χ(t, t′) = −i

(〈
TCÔ(t)Ô(t′)

〉
−
〈
Ô(t)

〉〈
Ô(t′)

〉)
, which is

related to the response function by

χR(t, t′) = Θ(t−t′)
(
χ(t−, t

′
+)− χ(t+, t

′
−)
)
. (41)

Application of Wick’s theorem for general contour arguments (t, t′) directly gives

χ(t, t′) = −i
∑
ab,cd

oabocd
〈
TC ĉ

†
a(t)ĉd(t

′)
〉
H0

〈
TC ĉb(t)ĉ

†
c(t
′)
〉
H0

= −i
∑
ab

|oab|2Gaa(t, t
′)Gbb(t

′, t).

where in the second step we used that Gab = δabGaa. Using G(t+, t
′
−) = G<(t, t′) and

G(t−, t
′
+) = G>(t, t′), we can read off

χ(t−, t
′
+) = −i

∑
ab

|oab|2G>
aa(t, t

′)G<
bb(t
′, t) , χ(t+, t

′
−) = −i

∑
ab

|oab|2G<
aa(t, t

′)G>
bb(t
′, t),

after which the spectral representation (30) and (31) directly yields Eq. (40) by inverse Fourier
transform. This exercise should highlight how working with contour-ordered Green functions
in equilibrium is equivalent to and working with imaginary time Green functions and doing an
analytical continuation.

Diagrammatic perturbation theory

Because Wick’s theorem applies for contour-ordered correlation functions as well as for imagi-
nary time-ordered functions, the construction of diagrammatic perturbation theory does not de-
pend on the time contour, and is formally the same for Matsubara Green functions and contour-
ordered Green functions. Green functions are represented in terms of connected diagrams G
representing products of the noninteracting Green function G0 and the interaction V. Because
the Keldysh formalism is obtained from the Matsubara formalism by just replacing the time
contour, one can translate a diagram for GM(τ−τ ′) in terms of the noninteracting Green func-
tion GM

0 (τ) and the interaction V (τ) to the Keldysh formalism by using the following rules:

(1) For all correlation functions (X ≡ G, G0, V ), replace XM(τi−τj) by
−iX(ti, tj), where the arguments represent either external arguments τ
and τ ′ or internal arguments, which are later integrated over [cf. Eq. (19)].

(2) Replace internal integrals
∫ β

0

dτj by i
∫
C
dtj .

(3) Replace δ(τ−τ ′) by the contour delta function −iδC(t, t′).

(42)

For example, let us illustrate these rules for the retarded interaction (omitting spin and site
indices for simplicity)

SMV =

∫ β

0

dτdτ ′ c̄(τ+)c(τ)V (τ−τ ′) c̄(τ ′+)c(τ ′), (43)
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=

+τ1

τ2τ+
2

τ1τ2

τ τ′ 

G(τ − τ′ )
V(τ1 − τ2)

G0(τ − τ1)G0(τ − τ′ ) +τ τ′ τ τ′ τ′ τ

Fig. 2: Leading diagrams for the expansion of the Green function G(τ) = −
〈
Tτc(τ)c†(0)

〉
in

terms of the interaction terms (43), corresponding to the Hartree (left diagram) and Fock (right
diagram) self energy.

in the imaginary-time formalism, where the superscript + means that the time argument is
infinitesimally later. The last two diagrams in Fig. 2, obtained by expanding e−SMV to leading
order in the expression G(τ) = −〈Tτc(τ)c†〉, reads in the Matsubara formalism

G(τ − τ ′) = −
∫
dτ1dτ2 G0(τ−τ1)G0(τ1−τ2)G0(τ2−τ ′)V (τ1−τ2)

+

∫
dτ1dτ2 G0(τ−τ1)G0(τ2−τ+

2 )G0(τ1−τ ′)V (τ1−τ2), (44)

Hence in the Keldysh formalism we have

G(t, t′) = i

∫
C
dt1dt2 G0(t, t1)G0(t1, t2)G0(t2, t

′)V (t1, t2)

− i
∫
C
dt1dt2 G0(t, t1)G0(t2, t

+
2 )G0(t1, t

′)V (t1, t2),

where, using rules (i) and (ii) above, the overall sign is determined from a factor (−i) on the left-
hand side (one propagator) and a factor (−i)4i2 (four propagators, two integrals) on the right-
hand side. An instantaneous interaction is V (τ−τ ′) = δ(τ−τ ′)U is replaced by −iV (t, t′) =

−iδC(t, t′)U(t) using rules (i) and (iii).
As in the Matsubara formalism, we introduce the self-energy Σ(t, t′), which is the sum of all
one-particle irreducible diagrams without external Green functions legs, from which the Green
function is obtained by the Dyson equation. The latter is replaced from the Matsubara contour,

G(τ−τ ′) = G0(τ−τ ′) +

∫ β

0

dτ1dτ2G0(τ−τ1)Σ(τ1−τ2)G(τ2−τ ′) (45)

using again rules (i) and (ii), to the integral equation on C,

G(t, t′) = G0(t, t′) +

∫
C
dt1dt2G0(t, t1)Σ(t1, t2)G(t2, t

′). (46)

For example, the first order self energy (Hartree and Fock) can be read off Eq. (44),

ΣH(τ−τ ′) = δ(τ−τ ′)
∫
dτ1V (τ−τ1)G(τ1−τ+

1 ) (47)

ΣF (τ−τ ′) = −V (τ−τ ′)G(τ, τ ′), (48)
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where in the first line the argument τ+
1 is infinitesimally later than τ1, so that G(τ1−τ+

1 ) =

〈c†c〉 ≡ n is the density. In the Keldysh formalism, the above rules give

ΣH(t, t′) = −iδC(t, t′)
∫
C
dt1V (t, t1)G(t1, t

+
1 ) (49)

ΣF (t, t′) = iV (t, t′)G(t, t′). (50)

In the first line, −iG(t1, t
+
1 ) = n(t) is again the density. For an instantaneous interaction

V (τ−τ ′) = δ(τ−τ ′)U, the Hartree diagram is thus ΣH(t, t′) = δ(t, t′)Un(t). A more inter-
esting exercise is to rewrite the contribution for a retarded interaction. In this case, for t on the
real-branch of C the contour integral can be rewritten as∫
C
dt1V (t, t1) (−i)G(t1, t

+
1 ) =

∫
C
dt1V (t, t1)n(t1) =

∫ ∞
−∞

dt1
(
V (t, t1,+)−V (t, t1,−)

)
n(t1),

where we have shifted the imaginary branch of C to t = −∞, and assumed that V (t, t′) decays
sufficiently fast; in the last step, the contour integral is written explicitly in terms of integrals
over the upper and lower branch, with opposite integration direction. Finally, using the causality
property (32), which allows to shift the larger of the two arguments t and t1 freely between the
upper/lower contour, the integral is transformed to∫

dt1n(t1)Θ(t−t1)
(
V (t1,+, t−)−V (t1,−, t+)

)
=

∫
dt1V

R(t, t1)n(t1). (51)

The Hartree self energy is therefore given by

ΣH(t, t′) = δC(t, t
′)

∫
dt1V

R(t, t1)n(t1) ≡ δC(t, t
′)Vmf(t), (52)

which is a time-dependent mean-field potential Vmf(t); one can see that the retarded interaction
is the response function that determines the mean-field potential at time t due to the density at
time t1.

Numerical solution of the Dyson equation

For a given self-energy, the Dyson equation (46) must be solved in order to obtain the Green
function. Writing Eq. (46) in short as G = G0 + G0 ∗ Σ ∗ G, it can be reformulated in
the form G−1 = G−1

0 − Σ, with the inverse operator in time as introduced below Eq. (36).
For the noninteracting problem H0 =

∑
ab c
†
ahab(t)cb, the inverse Green function is G−1

0 =

δC(t, t
′)
(
i∂t − h(t)

)
[cf. Eq. (34)], so that the Dyson equation can be formulated as an integral

differential equation on C,(
i∂t − h(t)

)
G(t, t′)−

∫
C
dt̄ Σ(t, t̄)G(t̄, t′) = δC(t, t

′) (53)

(omitting orbital and spin indices, i.e., G, h, Σ are understood as matrices in orbital space).
Equation (53) and the equivalent Eq. (46) are integral and integro-differential equations on C,
which in most cases must be solved numerically (Kadanoff-Baym equations). It is important
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to note that one can obtain the solution in a time-stepping manner: With an equidistant time
grid (tn = nδt), let us denote the nth timeslice of the two-time function X(t, t′) to include all
elements where one argument is nδt and the other is eithermδtwithm ≤ n or on the imaginary
time branch; timeslice n = −1 is simply the Matsubara component of X (both time arguments
on the imaginary time branch). Causality then implies that G on timeslice n can be computed
from G on all timeslices m < n and Σ on all timeslices m ≤ n as an input. Moreover, the
self-energy Σ[G] must be a causal functional of G, which implies that Σ on timeslice n can be
evaluated in terms of G (or G0) on timeslices m ≤ n. Hence the typical evolution algorithm
will proceed in two steps:

(1) Initial state simulation: Solve the problem on the imaginary time axis, in order to deter-
mine the Matsubara components of Σ and G.

(2) Timestepping: For each n ≥ 0, do the following: (i) ExtrapolateΣ from timeslice n−1 to
timeslice n. (ii) Compute G on timesline n by solving the Dyson equation. (iii) Compute
Σ on timeslice n using G on timesline m ≤ n. Iterate (ii) and (iii) until convergence.

Having in mind that G basically contains the information on spectral and distribution function,
one can again see that the Keldysh formalism provides a joint equation of motion for spec-
tral and distribution functions, which is nonlinear (because Σ is a nonlinear functional of G)
and non-Markovian, i.e., the propagation depends on all the history. The actual implemen-
tation depends on the parametrization of the Green functions. Detailed implementations are
described, e.g., in Refs. [26] and [20]. The latter is the basis for the open source code NESSi
http://www.nessi.tuxfamily.org, which provides a high-order accurate solution of
various integral equations on C, as well as basic routines to construct diagrams from contour-
ordered Green functions.
In spite of being just a linear equation, the solution of the Dyson equation can provide a severe
numerical bottleneck, in particular for multi-orbital simulations. Determination of G for each
element of a timeslice n requires a convolution integral over all previous times. Hence the
numerical effort to solve the Dyson equation up to time n scales like O(n3). More serious is
the requirement to keep G and/or Σ at all previous timeslices in memory: For example, for
a realistic simulation with L = 10 bands in an energy window of 10 eV over a time window
of 1 ps=1000 fs, we can expect that the timestep δt should resolve the inverse of the largest
energy scale, δt � ~/10 eV≈ 0.1 fs, so that the simulation would extend over at least n = 104

timesteps (probably more). With each element G(t, t′) being an L×L matrix in orbital space,
this corresponds to 1010 complex numbers or, more than 100 GB. As one of such objects must be
kept for each momentum in a suitably discretized Brillouin zone, realistic materials simulations
would quickly reach the limit of current day computational capabilities.
Clearly, the equidistant discretization is far from optimal, and there are several directions dis-
cussed in the present literature to overcome these limitations. A simple possibility is to im-
plement a systematic truncation of the memory kernel Σ(t, t′) within the time-stepping proce-
dure [27]. In this way, simulations up to n = 106 timeslices could be performed within DMFT
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simulations [28,29] for certain parameters. In this case, the numerical effort scales linearly with
n, and the memory is constant. Another promising route is to explore different compact rep-
resentations of the two-time functions, such as hierarchical storage formats [30]. Beyond that,
also approximate solutions of the integral equations, such as the Generalized Kadanoff-Baym
Ansatz [31] or Quantum Boltzmann equations [32, 33] have the potential to extend simulations
over a large number of timesteps n at a linear cost O(n1) in computation and a constant cost
O(n0) in memory.

3 Non-equilibrium DMFT and beyond

3.1 Non-equilibrium DMFT

Non-equilibrium DMFT formalism

DMFT approximates only the spatial correlations in a mean-field manner, but accurately treats
local temporal fluctuations. The main approximation is the locality of the self-energy, which
becomes exact in the limit of infinite coordination number [34]. The formulation of DMFT
within the Keldysh and the Matsubara framework differs only by the choice of the time contour,
and all arguments regarding the derivation of DMFT, such as the cavity method [11] and power
counting arguments for the locality of the self-energy, can be transferred one-to-one from imag-
inary time to C. We therefore only briefly summarize the formalism. For clarity, the DMFT
equations in this section are all stated for the single-band Hubbard model in the spin-symmetric
phase; orbital indices can easily be added.
With a spatially local self energy Σij = δijΣjj , lattice Green functions are obtained by solving
the Dyson equation

G−1
jj′(t, t

′) =
(
i∂t + µ

)
δC(t, t

′)δjj′ − δjj′Σjj(t, t
′)− δC(t, t′)vij(t), (54)

where vij(t) are the hopping matrix elements, which contain the external laser fields. To ob-
tain a best local approximation to the self-energy, one can imagine to start from the skeleton
expansion Σ̂[G] of the self energy, i.e., a diagrammatic expansion in terms of the fully dressed
propagator G, and then restrict the expansion for Σjj to the terms which contain only the local
propagator Gjj , but are otherwise summed up to all orders in the interaction. Due to the locality
of the interaction, these local contributions to the skeleton expansion can be generated by solv-
ing an impurity model with a single interacting site and an arbitrary noninteracting environment
(bath). Because the functional form of the skeleton expansion does not depend on the nonin-
teracting part of the action, the functional dependence of the impurity self-energy Σimp[Gimp]

on the impurity Green function is the same as the functional dependence of the local lattice
self energy Σjj[Gjj] on the local Green function. Hence, the impurity self-energy serves as an
approximation for the lattice self-energy,

Σjj′(t, t
′) = δjj′Σimp(t, t

′), (55)
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as long as the bath is designed such that the self-consistency condition

Gimp(t, t
′)

!
= Gjj(t, t

′). (56)

is satisfied. (For simplicity of notation, we also assume translational invariance in space.) For
this construction, the impurity model must have the same local interaction as the lattice model,
and a general quadratic contribution to the action,

Simp =

∫
C
dtdt′

(∑
σ

c̄σ(t)G−1
σ (t, t′)cσ(t)− U(t) c̄↑(t)c↑(t)c̄↓(t)c↓(t)δC(t, t

′)
)
, (57)

G−1(t, t′) =
(
i∂t + µ

)
δC(t, t

′)−∆(t, t′), (58)

which describes one site of the lattice embedded in an environment with hybridization function
∆(t, t′). This is the action of a time-dependent Anderson Impurity Hamiltonian. From the
action one obtains the interacting impurity Green function

Gimp(t, t
′) = −i

〈
c(t)c̄(t′)

〉
Simp

, (59)

and the impurity self-energy is set by the impurity Dyson equation

G−1
imp(t, t

′) = G−1(t, t′)−Σimp(t, t
′). (60)

Equations (54) through (60) provide the closed set of equations for non-equilibrium DMFT,
and the auxiliary quantity ∆(t, t′) can be eliminated when the local lattice Green function Gjj

equals the corresponding impurity quantity.
The actual implementation of the self-consistency depends on the algorithm used to solve the
impurity model. Keeping in mind that the self-consistent equations are integral equations in
time, one should bring them to a form that is numerically most stable. For example,G−1 is an in-
tegral operator which has a singular contribution δC(t, t′)i∂t on the time diagonal [cf. Eq. (34)],
Eq. (60) cannot be directly solved for Σimp on a given time grid after Gimp has been calculated.
Instead, one can e.g., extract the function Z = (i∂t+µ−Σimp)

−1 by solving the linear equation

Gimp = Z ∗ (1 +∆ ∗Gimp) (61)

for Z (this equation is equivalent to (60) and (58)), and then use Z to solve Eq. (54) for the
lattice Green function in its equivalent integral form (1− Z ∗ v) ∗G = Z.

3.2 Impurity solvers

The most challenging part of the DMFT equations is the solution of the auxiliary problem, i.e.,
the determination of the Green function (59) from the action (57) with a given hybridization
function∆(t, t′). Like in equilibrium DMFT, the action (57) can be mapped to a single impurity
Anderson impurity model (SIAM)

HSIAM = Uc†↑c↑c
†
↓c↓ +

∑
p,σ

εp,σ a
†
pσapσ +

∑
p,σ

(
Vp(t)a

†
p,σcσ + h.c.

)
, (62)
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with time-dependent hybridization Vp(t) to bath orbitals labelled by p. In fact, one can see that
the hybridization function ∆SIAM representing the discrete bath in the SIAM is given by

∆SIAM(t, t′) =
∑
p

Vp(t)gp(t, t
′)V ∗p (t′), (63)

with the isolated Green function gp of a single site of the bath [35]. Hence the parameters Vp
can be determined by a simple fit of the analytical expression ∆SIAM(t, t′) to the hybridization
obtained from the DMFT self-consistency. The most efficient way to make use of this discrete
representation has been to compute the time-dependent Green functions using a many-body
wave function |Ψ(t)〉 in a matrix product state (MPS) representation [36]. However, while a
MPS representation is efficient for ground states which satisfy an area-law entanglement, the
time-propagated state can often not be represented efficiently, leading to an exponential increase
of computational resources with the simulated time. This has restricted simulations so far to
relatively short times [37]. Moreover, it turns out to be necessary to increase the number of bath
orbitals in the representation (63) for large time in order to ensure that ∆SIAM(t, t′) decays as a
function of relative time, as required for a continuum bath. To ensure such a decay, one could
couple the bath orbitals themselves to simple reservoirs that can be treated within a Lindblad
equation. This would increase the computational cost, as it requires a propagation of the many-
body density-matrix instead of the wave function, but it would allow to keep the number of
auxiliary bath sites fixed for long time simulations. Such an open system representation for the
non-equilibrium SIAM has been used so far only to solve DMFT for non-equilibrium steady
states [38].

An alternative to the discrete bath representation are Quantum Monte Carlo (QMC) techniques,
which can give numerically exact results in equilibrium [39]. A direct extension of QMC al-
gorithms by extending the time contour from the imaginary to the L-shaped contour suffers
from a severe phase problem and is restricted to very short times. There are interesting and
fundamental problems related to in the short-time dynamics, such as dynamical phase transi-
tions [40], but in order to study the photo-induced dynamics in most materials few hopping
times are often not yet sufficient. More promising real-time QMC algorithms are formulated in
the spirit of diagrammatic Monte Carlo methods, such as the so called inchworm algorithm [41]
which samples the self-energy in the strong coupling expansion, or is vertex generalization, the
recently proposed slime-mold algorithm [42]. So far the high numerical cost has prevented an
application of these approaches within real-time DMFT simulations, but recent developments in
particular towards non-equilibrium steady state DMFT promise that real-time Quantum Monte
Carlo may soon be used to simulate the photo-induced dynamics of correlated solids.

Most applications of non-equilibrium DMFT to describe photo-induced dynamics in solids have
been based on a perturbative solution of the impurity model, such as adaptations of the iterated
perturbation theory [11], or alternatively a systematic expansion in ∆(t, t′) [43]. In this so-
called strong-coupling expansion one splits the action S into the local part Sat =

∫
C dtHat(t),

with the atomic HamiltonianHat that contains the local interaction, and the time-nonlocal terms
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Sn−l. The latter can have a very general form, such as

Sn−l =
∑
γ

∫
C
dt1dt2 φ̄γ(t)∆γ(t, t

′)ψγ(t
′), (64)

where γ sums over all hybridization and interaction channels, and ψ and φ̄ are general opera-
tors. In the single impurity Anderson model, e.g., γ ≡ σ, φ̄γ ≡ c̄σ, ψγ ≡ cσ, but the general
formulation also allows for inter-orbital hybridizations in multi-band systems, anomalous hy-
bridizations in superconducting systems,

∫
C dt1dt2

(
c↑(t)∆cc(t, t

′)c↓(t
′) + c̄↓(t)∆c̄c̄(t, t

′)c̄↑(t
′)
)
,

retarded density-density interactions
∑

σσ′

∫
C dt1dt2 nσ(t)Vσ,σ′(t, t

′)nσ(t′) (here φ̄σ,σ′ ≡ c̄σcσ
and ψσ,σ′ ≡ c̄σ′cσ′), or electron-phonon interactions (ψ = cσb, cσ b̄ etc., acting in a local space
of electrons and phonons). The strong-coupling expansion is expected to work well in the Mott
phase, as it can be formulated for an arbitrary local part of the Hamiltonian, and it defines
a conserving approximation (which respects conservation laws of energy and particle number
also in the approximate solution of the time-evolution). In particular the lowest order (the so
called non-crossing approximation, NCA) has been used extensively to study the dynamics of
Mott-insulators within DMFT. The technical details of this expansion on the Keldysh contour
are explained in Refs. [43] and [14] as well as in earlier notes of this lecture series [19].

3.3 Multi-band DMFT+GW
Extensions and Limitations of DMFT

The main limitation of DMFT is the local approximation to the self-energy. As in equilibrium
DMFT, non-equilibrium variants have been formulated for both cluster extensions and diagram-
matic extensions of DMFT. Cluster extensions are in particular important to keep short range
correlations of spin and charge on the scale of few lattice sites, which can have a pronounced
influence on the short time dynamics. For example, photo-excited carriers in a Mott insula-
tor, as described in a one band Hubbard model, can loose kinetic energy on the timescale of
few inverse hopping times due to the interaction with short-range antiferromagnetic order [44],
i.e., the background of spin fluctuations serves a an efficient heat bath for the electronic quasi-
particles, which can act much faster than the cooling of photo-excited carriers by coupling to
phonons.
Another limitation of plain DMFT is the restriction to local interactions. An important con-
sequence of non-local interactions in the solid is the feedback of the long-range Coulomb in-
teractions on the parameters of the model Hamiltonians due to dynamical screening. For large
excitation densities, or interactions involving many bands, one can expect a sizeable renormal-
ization of the Hubbard U via screening, which may even close a Mott gap. The question of
screening is also closely related to the determination of parameters for time-dependent models
from ab-initio theory. The combination of a non-equilibrium Green function approach such as
DMFT with time-dependent density functional theory encounters the double counting problem,
which is even harder to solve out of equilibrium than in equilibrium simulations. An interesting
perspective is therefore the combination of non-equilibrium GW with DMFT [45, 46], which
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can be formulated in a consistent functional language. This formalism is presented in the next
chapter, following mainly Ref. [47].

The GW+DMFT formalism

For simplicity we consider a system with several orbitals per unit cell, but only density-density
interactions. The most general Hamiltonian is

H =
∑
j,j′

∑
a,b

Jj,a;j′,a′c
†
j,acj′,a′ +

1

2

∑
j,j′

∑
a,a′

vj,a;j′,a′nj,anj′,a′ ≡ H0 +HV (65)

where j and j′ label the unit cells, and a, a′ are combined spin/orbital indices, J is the hopping
matrix, and v the interaction. The action is therefore

S =

∫
d1d2 c̄(1)G−1

0 (1, 2) c(2)− 1

2

∫
d1d2 n(1)V (1, 2)n(2) ≡ S0 + SV , (66)

where we have introduced a combined notation 1 ≡ (t1, j1, a1) for time, space and orbital
indices, with

∫
d1 =

∫
C dt1

∑
j1,a1

, and δ(1, 2) = δC(t1, t2)δj1,j2δa1,a2 , as well as the interac-
tion matrix V (1, 2) = vj1,a1;j2,a2 δC(t1, t2), and the noninteracting Green function G−1

0 (1, 2) =

(i∂t1 + µ) δ(1, 2) − J(1, 2). The first step is to decouple the interaction using a Hubbard-
Stratonovich transformation using a real field ϕ(1) and the Gaussian identity

eiSV =
1

Zϕ

∫
D[ϕ] eiSϕe−

∫
d1ϕ(1)n(1), Sϕ = −1

2

∫
d1d2 ϕ(1)V −1(1, 2)ϕ(2). (67)

Here V −1 is inverse in site, orbital, and time,
∫
d1̄V −1(1, 1̄)V (1̄, 1′) = δ(1, 1′). It is worthwhile

to note that the Gaussian integral over ϕ in Eq. (67) is convergent: Using the rules Eq. (42), the
action iSϕ reduces to iSϕ = −1

2

∫ β
0
dτ
∑

j,a,j′,a′ ϕj,a(τ)(v−1)j,a;j′,a′ϕj′,a′(τ) on the Matsubara
branch, which defines a convergent integral if the matrix v is positive definite (repulsive inter-
action).
After the Hubbard-Stratonovich decoupling, the system is described by electrons interacting
with a fluctuating bosonic field ϕ, with the effective action

Seff[c, c̄, ϕ] = Sϕ[ϕ] + S0[c̄, c] + i

∫
d1 ϕ(1)n(1), (68)

in the sense that the partition function is Zeff =
∫
D[c̄, c]

∫
D[ϕ]eiSeff[c,c̄,ϕ]. In the new represen-

tation, we then introduce the propagators W of the interaction as well as the electronic density
correlation functions χ,

W (1, 1′) = i
〈
ϕ(1)ϕ(1′)

〉con
Seff

(69)

χ(1, 1′) = −i
〈
n(1)n(1′)

〉con
Seff

(70)

with the connected correlation function 〈AB〉con = 〈AB〉−〈A〉〈B〉. The Hubbard Stratonovich
transformation implies the exact relation

〈ϕ(1)〉 = i

∫
d1̄ V (1, 1̄)〈n(1̄)〉 ≡ iVmf(1) (71)

W (1, 1′) = V (1, 1′) +

∫
d1̄d2̄ V (1, 1̄)χ(1̄, 2̄)V (2̄, 1′), (72)
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which shows that ϕ(1) takes the role of a fluctuating mean field, and its propagatorW is the fully
screened interaction. We can now use the action (68) and formulate the diagrammatic perturba-
tion theory for the electronic (G) and bosonic (W ) propagators in terms of the electron-boson
interaction eiSn−ϕ = e−

∫
d1n(1)ϕ(1), where the noninteracting propagators are the noninteract-

ing Green function G0 and the bare interaction V. We introduce self-energies Σ[G,W ] and
Π[G,W ] for the electrons and bosons,

W−1 = V −1 −Π[W,G], G−1 = G−1
0 −Σ[W,G]. (73)

(Π is called the polarization function). The perturbation theory is formulated in terms of a
self-consistent skeleton expansion, i.e., the propagators in the self-energies do not contain self-
energy insertions. From the action, the lowest-order approximation would be [cf. Eqs. (47) and
(48)]

Σ(1, 1′) = iG(1, 1′)W (1, 1′)− i〈ϕ(1)〉 δ(1, 1′) ≡ ΣGW (1, 1′)− i〈ϕ(1)〉 δ(1, 1′), (74)

Π(1, 1′) = −iG(1, 1′)G(1′, 1) ≡ ΠGW (1, 1′). (75)

The second term in Σ, together with the exact relation (71), is just the Hartree mean-field po-
tential −i〈ϕ(1)〉 δ(1, 1′) = Vmf(1) δ(1, 1′). The terms ΣGW and ΠGW define the celebrated
GW approximation, which was developed by Hedin [48]: In this approximation the electronic
self-energy is expanded to leading order in the fully screened interaction, and the polariza-
tion is approximated by the Lindhard function expressed in terms of the renormalized electron
propagators. While this approach is understood to be an accurate approximation in electronic
structure calculations of weakly correlated materials, (superior to standard density functional
approximations), it fails to describe the effect of strong local correlations, such as the Mott tran-
sition. To overcome this limitation, one can therefore combine the idea of DMFT with the GW
approximation [45, 46]:
Let us assume that we can identify a certain subset C of orbitals which are considered to be
strongly correlated, so that within that subset we would like to use a more accurate approxima-
tion for the self-energy and the polarization. In the spirit of DMFT, one can aim to add on top of
the self-energy and polarization defined in Eqs. (74) and (75) a nonperturbative self-energyΣcorr

and polarization Πcorr which (i), act only on the correlated orbitals, (ii) are local in space, and
(iii) are given by all contributions to the skeleton expansion which contain only the space-local
propagators of the correlated manifold at the same site. In other words, we set

(Σcorr)j,a′;j,a′(t, t
′) =

δj,j′Σloc,cor[Gloc,cor,Wloc,cor]a′;a′(t, t
′) a, a′ ∈ C

0 otherwise
, (76)

and analogous for Πcorr, where here we define the local propagators in the correlated subspace
a, a′ ∈ C as

(Gloc,cor)a,a′(t, t
′) = Gj,a;ja′(t, t

′), (Wloc,cor)a,a′(t, t
′) = Wj,a;ja′(t, t

′). (77)
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Like in conventional DMFT, we then introduce an electron-boson impurity model as an auxil-
iary device to evaluate these local contributions. The impurity action is

Simp =

∫
C
dtdt′

∑
a,a′∈C

c̄a(t)G−1
a,a′(t, t

′)ca′(t
′)− 1

2

∑
a,a′∈C

∫
C
dtdt′ ϕa(t)W−1

a,a′(t, t
′)ϕa′(t

′)

+ i
∑
a∈C

∫
C
dt ϕa(t)ha(t)(t) + i

∑
a∈C

∫
C
dt ϕa(t)na(t). (78)

Here G, W and h essentially define the noninteracting propagators of electrons and bosons in
the impurity model; they are free parameters, which will be fixed by self-consistency conditions
below. The last term is the electron-boson interaction, which is the same as in the lattice ac-
tion (68). From the impurity model we measure the impurity correlation functions

〈
ϕa(t)

〉
imp,

(Wimp)a,a′(t, t
′) = i

〈
ϕa(t)ϕa′(t

′)
〉con

imp and (Gimp)a,a′(t, t
′) = −i

〈
ca(t)c̄a′(t

′)
〉

imp, and use the
Dyson equation (understood as matrix equation in time and in the space C)

W−1
imp =W−1 −Πimp, (79)

G−1
imp = G−1 −

(
Σimp(t, t

′)− iδ(1, 1′)〈ϕ(1)〉imp

)
. (80)

Here, we have treated the Hartree self-energy separately. If then we request a self-consistency
between impurity quantities and local lattice quantities on the correlated subspace,

Gimp
!

= Gloc,cor, Wimp
!

= Wloc,cor,
〈
ϕa(t)

〉
imp =

〈
ϕj,a(t)

〉
imp for a ∈ C, (81)

it is guarantied that Σimp and Πimp provide the sum of all local diagrams. Finally adding the
correlated and GW self-energies gives the full approximation to the lattice self-energy,

Σ(1, 1′) =
[
iG(1, 1′)W (1, 1′)− iGloc,cor(1, 1

′)Wloc,cor(1, 1
′)
]

+Σimp(1, 1
′)− iδ(1, 1′)〈ϕ(1)〉,

(82)

Π(1, 1′) =
[
− iG(1, 1′)G(1, 1′) + iGloc,cor(1, 1

′)Gloc,cor(1, 1
′)
]

+Πimp. (83)

Here in the GW self-energy and polarization we have subtracted the local contribution, which
is already contained in Σimp and Πimp respectively. Moreover, from the impurity model we take
only the contribution beyond the Hartree mean-field term, because 〈ϕ(1)〉 is the same in the
impurity and lattice due to the self-consistency.
This completes the description of the theory: One can start with a guess for the free parameters
W , G [or ∆], and h, solve the impurity model to extract Σimp and Πimp, calculate the lattice
self energies and polarization from Eqs. (82) and (83), from that calculate the lattice G and W ,
extract their local contributions, use the self-consistency condition to obtain a new guess for
W , G, and h. In the actual implementation [47], there are some differences: First, the impurity
model is transformed to a purely electronic model by integrating out the phonons,

Simp =

∫
C
dtdt′

∑
a,a′∈C

c̄a(t)G̃−1
a,a′(t, t

′)ca′(t
′)− 1

2

∑
a,a′∈C

∫
C
dtdt′ na(t)Wa,a′(t, t

′)na′(t
′),
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with the exact relations (cf. Eqs. (71) and (72))

Wimp(t, t
′) =W +WχimpW , 〈ϕ〉imp = i

∫
d1′W(1, 1′)〈n(1′)〉. (84)

Hence 〈ϕ〉imp and Wimp can be obtained by measuring χimp and 〈n〉imp. This can be done, e.g.,
with the strong coupling equation as described around Eq. (64). Moreover, in the real-time
Keldysh formalism, we again avoid directly solving for the inverse operators in discrete time
(as in Eq. (79)), but transform all equations to well-behaved integral equations (see also the
discussion around Eq. (61)). Finally, the bosonic propagators have time-local contributions,
such as an instantaneous interaction V δC(t, t′), which must be kept separately in the real time
formalism. For a detailed discussion of these technical points, the reader is referred to Ref. [47].

4 Photodoping in Mott and charge-transfer insulators

4.1 Overview

In a Mott or charge-transfer insulator, electrons in a partially filled band get localized due to the
Coulomb interaction. They still keep active spin and orbital degrees of freedom, leading to a
large variety of magnetically and orbitally ordered low temperature phases, which can turn into
unconventional metallic states or superconductors upon doping. DMFT and its extensions have
been instrumental in the understanding of this physics, and non-equilibrium DMFT is therefore
a natural starting point to investigate the non-equilibrium phenomena induced in Mott insulators
driven by strong laser fields. The most straightforward way to excite the Mott insulator is to use
a short laser pulse that is resonant to the charge gap. This will impulsively create mobile charge
carriers, such as doubly occupied sites (“doublons”) and holes in a single band Mott insulator,
and will be followed by a sequence of dynamical processes:
Immediate response of the electronic structure: In a correlated electron system, the redis-
tribution of charges between different orbitals leads to an almost immediate response of the
electronic spectrum. Since the kinetic energy of photo-excited charges after an impulsive ex-
citation is often high, the electrons will not form coherent quasiparticles on the shortest times,
but the metallic character of the photo-excited state will become manifest in the formation of
incoherent spectral weight within the Mott or charge-transfer gap. In a multi-band system, the
inter-band Coulomb interaction can give rise to band shifts, and moreover the mobile charges
will change the dynamic screening environment and therefore also interactions like the Hubbard
U in the valence band. Below, we will discuss the change of the Hubbard U in a photo-excited
charge-transfer insulator, which has been predicted theoretically [49,50] and recently measured
using time-resolved Xray absorption [51].
Thermalization: Thermalization of a system implies that the properties of the system eventu-
ally approach the properties of a system in equilibrium, at a temperature Tf such that the total
energy equals the thermal energy expectation value Eth(Tf ) at temperature Tf , 〈H(t)〉 ≡ Etot

!
=

Eth(Tf ). In a correlated electron system, one can expect that the electronic system can thermal-
ize before passing on a substantial fraction of its energy to other degrees of freedom (phonons),
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leading to the formation of a correlated electron liquid at high temperature, which subsequently
cools down by coupling to the lattice. While such a “hot electron picture” is quite obvious and
has been employed ever since in the investigation of photo-induced solids, the correlated nature
of the state brings in few nontrivial aspects: The high-temperature state, with temperature of the
order of the electronic band width, can have peculiar spectral and transport properties, such as
bad metallic behavior [52, 28]. In equilibrium, the same state would not be accessible because
also the lattice would have to be heated, and such high temperature correlated fermion liquids
are therefore rather accessible in cold atom quantum simulators [53]. The understanding of their
dynamics at short times and high energies offers the opportunity for a detailed and systematic
comparison of theory and experiment.
Prethermal photo-doped states: In the presence of the Mott or charge-transfer gap, full ther-
malization can be inhibited for relatively long times. The thermalization of a single-band photo-
doped Mott insulator has been analyzed within DMFT in Ref. [54], by calculating the double
occupancy and the spectral functions after the pulse. One finds that the double occupancy in-
creases during the pulse, and subsequently shows an exponential relaxation to a new final value,
from which the thermalization time can be extracted. This timescale strongly depends on U, and
ranges from few hopping times (few femtoseconds for a typical eV bandwidth) in the correlated
metal, to thousands of hopping times in the Mott phase. The fast thermalization in a small gap
Mott insulator has been experimentally investigated in 1T-TaS2 [55]. At large U, instead, the
double occupancy D can be viewed as an almost conserved quantity, so that one can expect
the electronic state to be described as a quasi-thermal state with a thermodynamic variable D
in addition to the total particle number N and the total energy E. In fact, simulations for the
one-band Hubbard model show that the system quickly establishes a distribution function with
a universal form, given by a Fermi function with separate chemical potentials in the upper and
lower Hubbard band [28]. This universal form hints at a description in terms of few additional
slow variables. Upon energy transfer to the lattice (or to spins [44] and other degrees of free-
dom), the state may acquire a low temperature but still have a substantial fraction of additional
doubly occupied sites and holes, i.e, it is a cold correlated liquid of spins (singly occupied
sites), holes and doublons. The quasi-steady properties of such photo-doped states may support
phases different from those in the equilibrium phase diagram. They can be explored by taking
the equilibrium states of a suitable model in which D is turned into an exactly conserved quan-
tity (for the Hubbard model, this is a generalized the t-J model, in which charge recombination
processes are projected out [57, 16]). Alternatively, one can try to work within the Hubbard
model and establish the quasi-steady state as a true steady state under the application of suitable
reservoirs [56]. In both cases, for the Hubbard model, η-pairing superconductivity is found for
strong photo-excitation [57, 16].

4.2 Electronic structure in a photo-excited charge-transfer insulator

Finally, we briefly review the first application of the non-equilibrium GW+DMFT to a realistic
material simulation [49]. We focus on a three-band model for a charge-transfer insulator. It
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Fig. 3: Left: 3-band Emery model for a charge-transfer insulator. Right: p and d spectral
functions in equilibrium, as obtained with GW+DMFT. Adapted from Ref. [49]

.

describes a two-dimensional cubic lattice with two ligand orbitals px and py and one d orbital per
unit cell (see Fig. 3, left). We take into account a nearest neighbor p-d hopping tpd = 0.4 eV, a
direct d-d hopping tdd = −0.1 eV, a charge-transfer energy (energy difference εp−εd = −2 eV),
a inter-site p-d density-density interaction Vpd = 2 eV, and a local Hubbard interaction on the
d orbitals, Udd = 8 eV. The parameters are determined to best match the spectrum for the
cuprate LSCO. With 5 electrons per unit cell, the system has a nominally half-filled d band,
which is split into upper and lower Hubbard band due to the large Udd. The model is solved in
and out of equilibrium with the GW+DMFT formalism (see Sec. 3.2), using the non-crossing
approximation as an impurity solver (Sec. 3.3). The local spectral function in equilibrium (β =

5) is shown in Fig. 3, right panel; one can clearly distinguish the upper and lower Hubbard band
in the d-related spectrum, where the lower Hubbard band hybridizes with the p bands.
We now simulate the time-dependent spectral and occupation functions during and after the
excitation of the system with a short electric field pulse. The pulse couples to the model via
both a Peierls phase and dipolar matrix elements (for details see [47]). The electric field has the
form

E(t) = E0e
−4.6(t−t0)2/t20 sin(Ω(t−t0)), (85)

with a frequency Ω that is varied below mostly resonant to the charge-transfer gap, and a du-
ration of roughly two cycles (t0 = 4π/Ω). It is polarized along the (11) direction, and the
amplitude is adapted to achieve a certain excitation density.
Figure 4a) shows the spectrum shortly after an excitation with about 5% photo-doping (mea-
sured by the change of the double occupancy after the pulse). Time-resolved spectra are ob-
tained from the Wigner transformAα(ω, t) = − 1

π
ImGR

α (t, ω+i0) for α = p, d. One can clearly
see a shift and broadening of all bands. To further elucidate the origin of these band structure
changes, one can switch off the nonlocal GW self-energies and polarizations, and keep only the
Hartree and Fock self-energies (HF+DMFT) in the simulation. In this case, the band shifts on
the d band can mainly be understood as a consequence of the mean-field p-d interaction, which
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Fig. 4: a) Spectra after photo-excitation of the Emery model in equilibrium (black lines) and
shortly after the excitation (40 fs, red). The pulse frequency Ω = 6 eV is resonant to an excita-
tion across the gap, and the excitation density (change in the doubly occupancy on the d-sites)
is about 5%. One finds a significant broadening and shift of the bands. b) Same parameters, but
taking only the static Hartree and Fock diagrams beyond DMFT into account. Adapted from
Ref. [49]

.

implies a shift of the d level given by δεd = Vpd δ〈nd〉 depending on the change δ〈nd〉 of the
p occupation. The result is shown in Fig. 4b). The center of mass shift of the upper Hubbard
band turns out to be about a factor two larger in the GW+DMFT simulation as compared to
the HF+DMFT simulation. This shows a significant quantitative role of the dynamic screening
processes due to the long-range interaction, which are captured by the GW formalism. In the
language of GW+DMFT, one can understand these screening processes in turns of a reduction
of the onsite interaction U in the photo-excited state. Similar band shifts after photo-excitation
have been reported for LSCO using XAS from a core level [51], which have also been inter-
preted as a dynamic screening of the Hubbard U. Because of the strong core-valence excitonic
character of the final state in XAS, XAS cannot directly be linked to the single-particle spectral
function presented in the present study. To get a quantitative interpretation of the experiment
it would be interesting to compute the XAS within GW+DMFT, along the lines presented in
Ref. [58].

In addition to the quantitative relevance of the dynamic screening processes, we observe that
the spectrum is strongly broadened in the GW+DMFT simulation, while band shifts are more
or less rigid within HF+DMFT. The reason is that the interaction of electrons with the nonlocal
dynamic charge fluctuations, which is captured by the GW diagrams, opens a new scattering
channel in the photo-doped state. For the same reason, also the dynamics of the occupation
functions is very different in the two cases (not shown here, see Ref. [49]): The interaction
of electrons with charge fluctuations leads to a rapid relaxation of the photo-doped electron
and hole distributions to the bottom of the upper Hubbard band and the top of the hybrid p/d
bands, respectively, whereas this relaxation would require the coupling to an additional bath
of phonons in the HF+DMFT simulation. Hence, we see that keeping the dynamical nonlocal
fluctuations is essential for an accurate description of photo-doped states.
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5 Outlook

In these notes we have reviewed the theoretical basis for a description of correlated electron sys-
tems out of equilibrium using the non-equilibrium extension of DMFT and GW+DMFT. While
such simulations have been used to understand many aspects of photo-exited states in solids, a
desirable future development will be to bring the non-equilibrium formalism to a similar level
of quantitative predictive power as the equilibrium DMFT formalism. The main challenge in
this direction is the solution of the impurity problem. There are currently no non-perturbative
impurity solvers which work at long times. While low-order variants of the strong-coupling
expansion, such as NCA, can be applied very flexibly within the Mott phase, they become in-
creasingly inaccurate for correlated metallic phases. An interesting perspective are given by the
application of the non-perturbative methods (QMC [41] and Hamiltonian-based solvers [35]). In
the near future, it might in particular become feasible to use these non-perturbative techniques
for a study of non-equilibrium steady states, which then can provide an effective description
of long-lived photo-excited phases [16, 56], or be elevated to study slow time-evolution using
quantum Boltzmann equations based on steady-state DMFT [32].
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