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11.2 Karsten Held

1 Introduction

With the success of dynamical mean-field theory (DMFT) [1–3] in calculating strongly corre-
lated electron systems, there have been attempts from the very beginning [4] to systematically
extend DMFT. The aim is here to keep the good description of DMFT for local electronic
correlations, but also to capture non-local correlations beyond.

Indeed, the local DMFT correlations are doing an excellent job in describing a quasiparticle
renormalization with a weight Z that is uniform in momentum space – a surprisingly good
approximation for many transition metal-oxides and heavy fermion systems; as well as the
Mott-Hubbard metal-insulator transition that emerges for Z → 0 [2]. Furthermore, all kinds of
orders (magnetic, orbital, charge density wave . . .) are quite well captured in three-dimensional
systems up to the vicinity of the phase transition. Here, close to the phase transition, the mean-
field nature of DMFT surfaces, among others, in form of mean-field critical exponents. Non-
local correlations are here essential for describing the proper critical behavior. With a diverging
correlation length, long-range correlations feed back to the self-energy which thus becomes
non-local.

The DMFT approach has been covered already in various other chapters of this Autumn School
[3], and the present chapter will thus focus instead on non-local electronic correlations beyond
DMFT. When are such non-local correlations important?

A lot of our insight into physical phenomena stems from weak coupling perturbation theory.
Even though such an approach is certainly not applicable to strongly correlated electron sys-
tems, it often nonetheless provides for some qualitative understanding. One example, where
non-local correlations enter the self-energy are spin-fluctuations. These can be calculated at
weak coupling in the random-phase approximation (RPA) which is discussed in quantum field
theory textbooks. The RPA is the geometric series of all ladder diagrams with no, one, two
etc. Coulomb interaction lines, as illustrated in Fig. 1 (top). The figure just shows one term
of the sum, where “. . .” indicates that all orders in U are included. The RPA can be used to
calculate the magnetic susceptibility, Fig. 1 (top, without dashed line). As we will see later, the
poles of this susceptibility constitute bosonic quasiparticle excitations coined magnons or, in
the paramagnetic phase, paramagnons.

Now, when we add the dashed black line in Fig. 1 (top), we obtain a self-energy Feynman
diagram. It describes the coupling of the electron to the spin-fluctuations. We can also call it the
electron-(para)magnon interaction. As spin-fluctuations are very non-local we get – whenever
spin-fluctuations become important – contributions from diagrams with lattice sites i 6= j 6= k in
Fig. 1 (top). Such self-energy diagrams are certainly not contained in DMFT, which sums up all
local contributions of Feynman diagrams for the self-energy. Hence, whenever spin fluctuations
become large, we must expect important corrections to the DMFT self-energy. Indeed this is
not restricted to spin fluctuations, but depending on what kind of spin combination the particle
and the hole in the RPA ladder have, one can also obtain the coupling of electrons to charge,
orbital etc. fluctuations.
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Fig. 1: Top: Feedback of spin fluctuations (paramagnons) calculated in RPA to the self-energy.
Bottom: In diagrammatic extensions of DMFT such physics is taken into account but with the
bare interaction U (red wiggled line) replaced by a local vertex calculated from an impurity
model (light gray box). Depending on the flavor of the diagrammatic extension of DMFT dif-
ferent local vertices are employed. Reproduced from [5].

That means non-local correlations are certainly relevant whenever spin, charge etc. fluctuations
are important. An obvious regime where this is the case is the vicinity of a second-order phase
transition as already mentioned. Here the magnetic, charge etc. susceptibility diverges and sig-
nificant changes to the DMFT solution are thus to be expected. For low dimensional systems we
will get corrections also further away from the phase transition. The Mermin-Wagner theorem
prohibits long-range order with a continuous symmetry breaking in two-dimensions at finite
temperature. Hence, antiferromagnetic order is restricted to zero temperature. However, above
this zero-temperature antiferromagnetic phase, we have now strong antiferromagnetic fluctua-
tions in a wide temperature range, even with exponentially large correlation lengths. DMFT
has been developed with the limit of dimension d = ∞ in mind, see [1] and Chapter “Why
calculate in infinite dimensions?” by D. Vollhardt [3]. Hence, also from this perspective it is
not surprising that we need to expect larger corrections to DMFT for low dimensional systems.

On the other hand, we would like to keep the success of DMFT in describing a major part of
electronic correlations rather well: the local correlations. Two major routes to do so have been
developed to this end, see Fig. 2 for an illustration. Cluster extensions of DMFT [6] put the
DMFT concept of locality onto a cluster (instead of a single site) that is embedded in a DMFT
bath. For a single site cluster this is just DMFT. Illustrated in Fig. 2 is a two-site cluster where
thus non-local correlations between the two red sites of the cluster are captured. Such two site
clusters can, e.g., describe the formation of a spin singlet between two electrons on the two
sites. For a four site cluster also d-wave superconductivity can be described. However such
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Fig. 2: Left: In cluster extensions, a couple of sites (here two marked in red) are embedded
in a dynamical mean field which can be formulated through the self energy Σ. Restricted to a
single site, DMFT is obtained; extended to the full lattice the exact solution is recovered. Right:
In diagrammatic extensions, the locality of DMFT is put to the next level, the two-particle
level. Local two-particle building blocks Λ are connected by non-local Green function lines
Gij , resulting in a non-local full vertex F or susceptibility χ. When restricting Gij to its local
contribution Gii, DMFT is recovered. Adapted from [7].

small clusters tend, in practice, to largely overestimate the physics that is compatible with the
cluster such as the spin singlet formation and d-wave superconductivity for a two and four site
cluster, respectively. While one can go to clusters of size 10×10, a proper finite size scaling
remains challenging. This is even more true for realistic multi-orbital calculations that are
restricted to a handful of sites.

The other route extends DMFT [5] Feynman diagrammatically. Here, the concept of locality
is not extended to a cluster but instead to the n-particle vertex. For n = 1 we have the one-
particle vertex which is nothing but the self-energy. And a local self-energy is just the DMFT
approximation. For n = 2, i.e., the two-particle level, we start instead with a local two-particle
vertex and construct from it the non-local full vertex F, see Fig. 2 (right), as well as the non-
local self-energy and Green function. This is the level most commonly applied nowadays.
Similarly as for the cluster extensions there are different flavors depending on which local vertex
and which connecting Green functions are taken. At the end of the day, most of these different
flavors are very similar, at least as long as they take the two-particle, four-point vertex as a
starting point. Other approaches start from a three-point local vertex which is a more severe
approximation. For an overview and comparison, see the review [5].
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The originary method, called dynamical vertex approximation (DΓA) [8], considers the vertex
in terms of real fermions as local. A second widely applied approach is the dual fermion (DF)
approach [9]. Also within DΓA different flavors are used. In its most complete form, the fully
irreducible vertex Λ is approximated to be local. Then the parquet equations are needed to
construct F and the self-energy Σ. A local Λ is an excellent approximation, even for the two-
dimensional Hubbard model in the superconducting doping regime [10]. In the ladder DΓA
variant, the irreducible vertex Γ` in a certain channel ` such as the particle-hole (ph) channel
is considered to be local. In this case, the Bethe-Salpeter equation is sufficient to calculate F
along the same lines as in the RPA, only now with Γ` instead of U as a building block, i.e the
light gray box in Fig. 1 (bottom) is Γ` in this case. The ladder variant is numerically much less
expensive. It is sufficient if a certain channel dominates, but does not capture the coupling of
different channels into each other.

One can also extend the concept of locality to higher n-particle vertices. The n = 3-particle
vertex level, for example, has been employed for estimating the error of the n = 2-particle
calculations [11]. For n→∞ the exact solution is recovered.

Turning back to Fig. 1, we see that such diagrammatic extensions are well suited to describe
spin-fluctuations and their feedback to the fermionic self-energy. The same physics as is qual-
itatively described in RPA, is now captured for strongly correlated electrons since the local
Λ already encodes non-perturbatively all DMFT correlations. The Bethe-Salpeter ladder of
Fig. 1 is precisely the same as is also used to calculate the DMFT susceptibility, cf. the Chap-
ter “DMFT for linear response functions” by E. Pavarini [3]. What is not covered in DMFT
is how these spin-fluctuations impact the self-energy as well as self-consistency effects, i.e.,
how the changed Σ modifies G or that the local Γ` itself becomes different from DMFT. These
self-consistency effects lead to a dampening of the spin-fluctuations compared to the mean-field
DMFT solution, up to the point of fulfilling the Mermin-Wagner theorem in two-dimensions.

Diagrammatic extensions of DMFT have been highly successful: (i) The critical behavior in
the vicinity of (quantum) phase transition could be described for the first time in electronic
models, a topic which was covered already excessively in the Autumn School 2018 [12], see
also the review [5]. (ii) It was realized that the two-dimensional square lattice Hubbard model
with perfect nesting is insulating all the way down to zero interaction [13], correcting earlier
cluster DMFT results. (iii) The pseudogap and d-wave superconductivity can be described in
the two-dimensional Hubbard model, a topic which we will cover in the following chapters.
(iv) A new polariton, the π-ton has been discovered in model calculations [14]. (v) Realistic
materials calculations are possible and have been pursued, e.g., for SrVO3 [15].

In the following, we will first introduce one of the diagrammatic extensions of DMFT, the
DΓA, in Sec. 2. Simplifications when using the ladder variant of DΓA are outlined in Sec. 3.
The Hubbard model is introduced in Sec. 4 and its justification for cuprates and nickelates is
discussed. Physical results regarding spin fluctuations, the pseudogap and superconductivity
are discussed in Sec. 5, Sec. 6, and Sec. 7, respectively. Finally, Sec. 8 provides a conclusion
and outlook.
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Fig. 3: Dyson equation connecting the Green function and self energy Σ (single blue line:
non-interacting G0; double blue line: interacting G). The pair of scissors indicates that these
diagrams are one-particle reducible (i.e., cutting one G0 line separates the Feynman diagram
into two parts). From [12].

2 Dynamical vertex approximation

The aim of the present section is to provide the reader with the basic idea of the dynamical ver-
tex approximation. It builds upon a similar chapter of a preceding Jülich Autumn School [12].
A more detailed description for a second reading can be found in the review [5]. Further infor-
mation on how to calculate the superconducting critical temperature Tc and how to include the
asymptotic form of the vertex, can be found in [16].
The basic idea of the dynamical vertex approximation (DΓA) is a resummation of Feynman
diagrams, not order by order of the Coulomb interaction as in conventional perturbation theory,
but in terms of their locality. That is, we assume the fully irreducible n-particle vertex to be
local and from this building block we construct further diagrams and non-local correlations.
The first level (n = 1) is then just the DMFT which corresponds to all local Feynman diagrams
for the self-energy Σ. Note that Σ is nothing but the fully irreducible n = 1-particle vertex.
One particle-irreducibility here means that cutting one Green function line does not separate
the Feynman diagram into two pieces. Indeed such reducible diagrams must not be included
in the self-energy since it is exactly these diagrams that are generated from the Dyson equation
(Fig. 3) which, resolved for G, reads

Gkν =
(
1/G0

kν −Σkν

)−1 (1)

for momentum k, Matsubara frequency ν and non-interacting Green function G0
kν . Here and

in the following, single blue lines denote non-interacting Green functions G0 and double blue
lines indicate interacting Green functions G. Fig. 3 further shows how one-particle reducible
diagrams are generated through the Dyson equation. Hence these must not be contained in
the Feynman diagrams that constitute Σ, to avoid a double counting. That means, Σ must be
one-particle reducible in terms of G0. 1

On the next level, for n = 2, we assume the locality of the two-particle fully irreducible vertex
Λ. For the two-particle vertex, fully irreducible means that cutting two Green function lines

1In terms of G the skeleton diagrams for Σ are also two-particle reducible. But that is another story that is
connected with the way how Σ enters G.
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Fig. 4: Parquet decomposition of the full (reducible) vertex F into the fully irreducible vertex Λ
and two-particle reducible diagrams Φ` in the three channels. The two pairs of scissors indicate
the reducibility of the three Φ`’s. Each two-fermion Feynman diagram belongs to one and only
one of the three Φ`’s or to Λ.

does not separate the diagram into two pieces. There are three different kinds (channels) ` of
reducible vertices Φ` and a fourth, Λ, that is fully irreducible. Most importantly each diagram
falls in one and only one of those four subgroups. Thus the full vertex F, containing all di-
agrams, can be written as the sum those. This decomposition of the vertex is called parquet
decomposition and is graphically displayed in Fig. 4.
The reason why there are three distinct reducible parts Φ` is that say leg 1 may stay connected
with leg 2, 3, or 4 when cutting two Green function lines as indicated in Fig. 4. These three
possible channels ` are denoted as particle-hole (ph), transversal particle-hole (ph) and particle-
particle (pp). The irreducible vertex of each channel is just the complement: Γ` = F − Φ`. It
is important to note that each reducible diagram is contained in one and only one of these
channels. One can show this by contradiction: otherwise cutting lines in two channels would
result in a diagram with one incoming and two outgoing lines, which is not possible because of
the conservation of (fermionic) particles.
There is a set of six exact equations, also called the “parquet equations” [17,5] to the confusion
of the common student, that allows us to calculate from a given Λ the six quantities: full vertex
F , self-energy Σ, Green function G and the three reducible vertices Φ`.
(1) The first equation is the actual parquet equation [Fig. 4, Eq. (2)]

F νν′ω
r,kk′q = Λνν

′ω
r,kk′q + Φνν

′ω
ph,r,kk′q + Φνν

′ω
ph,r,kk′q

+ Φνν
′ω

pp,r,kk′q (2)

where r ∈ {c, s} is the symmetric/antisymmetric spin combination, i.e., Fc/s = F↑↑ ± F↑↓ and
similarly for other vertices.2 The name indicates that Fc and Fs give rise to the charge and spin
fluctuations, respectively.
(2-4) Three of the six “parquet” equations are the Bethe-Salpeter equation in the three chan-
nels `. In [Fig. 5, Eq. (3)] we here only reproduce the ` = ph channel; again with r ∈ {c, s} for

2This assumes SU(2) symmetry, if this is broken altogether four spin combinations need to be taken into ac-
count.
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Fig. 5: Bethe-Salpeter equation in the particle-hole channel, ` = ph, allowing us to calculate F
from the irreducible vertex in Γph in this channel. The rightmost term produces the particle-hole
reducible diagrams denoted as Φph in Fig. 4; Γph = Λ+ Φph + Φpp.

a symmetric/antisymmetric spin combination3

F νν′ω
r,kk′q = Γ νν′ω

r,ph,kk′q +
∑
k1ν1

F νν1ω
r,kk1q

Gk1ν1 G(k1+q)(ν1+ω) Γ
ν1ν′ω
ph,r,k1k′q

; (3)

One often combines frequency ν and momentum k to a four vector k = (k, ν). We do not
do so in this Chapter for the equations, but in the figures k represents (k, ν). Further it is
important to choose a momentum-frequency convention for the vertices and stick to it. Because
of energy and momentum conservation we only need three momenta and frequencies for the
four points 1, 2, 3, 4 of the two-particle vertices in Fig. 4. Unless noted otherwise, we use the
ph convention which is the natural one for the ph channel and already used in Fig. 5. That
is, the 1, 2, 3, 4 frequency-momenta of Fig. 4 are related to Fig. 5 as follows: k1 = k, k4 = k′,
k2 = k+q, and—because of energy-momentum conservation— k3 = k′+q. The Bethe-Salpeter
equations in the other channels have the same structure just with another Γ`, ` = ph or pp, with
another way to connect the building blocks (see Fig. 4), and with another natural (diagonal)
frequency-momentum q.
(5) The fifth equation is the Dyson equation that we already introduced [Fig. 3, Eq. (1)].
(6) Finally, the sixth equation is the Schwinger-Dyson equation [Fig. 6, Eq. (4)] which reads

Σkν =
Un

2
− U

2

∑
k′,q

∑
ν′,ω

(
F νν′ω
c,kk′q − F νν′ω

s,kk′q

)
G(k+q)(ν+ω)Gk′ν′ G(k′+q)(ν′+ω) (4)

and connectsΣ and F . Here we consider a single-orbital and a local interaction U that connects
opposite spins. For this reason only F↑↓ = (Fc−Fs)/2 enters. The first term is simply the
Hartree(-Fock) term, which is not included in Fig. 6 and where n is the average number of
electrons per site in the paramagnetic phase.
This set of six exact parquet equations allows us to determine the six quantities F , Φ`, Σ, and
G, as well as Γ` = F−Φ`. If we knew the exact Λ, we could determine all of these quantities
exactly, as well as associated one- and two-particle physics. Unfortunately, we do not know
the exact Λ. Hence we need some approximation. If we approximate Λ by the bare Coulomb
interaction U, we obtain the parquet approximation [17]. We can do better than this, and in

3We implicitly assume a proper normalization of the momentum and Matsubara frequency sums, i.e.,∑
k =̂

1
NK

∑
k and

∑
ν =̂

1
β

∑
ν , where Nk is the number of momentum points and β = 1/T the inverse tem-

perature.
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Fig. 7: Lowest order Feynman diagrams that contribute to the fully irreducible vertex Λ.

DΓA we approximate Λ by all local Feynman diagrams. Quantum Monte Carlo simulations
show that this is an excellent approximation [10]. Indeed Λ is very compact. All two-particle
reducible diagrams are generated from it and the first irreducible diagram that enters Λ besides
the bare Coulomb interaction is of fourth order, see Fig. 7. So to speak the irreducible diagrams
Λ form a skeleton from which many more diagrams are generated. Because of this, it is more
local than Γ` and, in particular, much more local than F , Σ or G.

This local irreducible Λ is “summed up” in practice by solving an Anderson impurity model,
similar as in DMFT but now we calculate the two-particle Green function of the impurity model
and from this Λ. For example, we can use continuous-time quantum Monte Carlo simulations
in the hybridization expansion see “QMC impurity solvers” by P. Werner [3], e.g., using the
w2dynamics package [18] which allows us to calculate all two-particle responses using worm
sampling [19].

In principle, one can then further turn to the n = 3-particle level etc.; and, for the n → ∞-
particle fully irreducible local vertex DΓA one recovers the exact solution. As a matter of
course determining the n= 3-particle vertex becomes already cumbersome. But it may serve
at least as an error estimate [11] if one is truncating the scheme at the two-particle vertex level.
Also completely new physics, that is hitherto not understood, may be hiding behind diagrams
generated from the n= 3-particle irreducible vertex. Some physical processes such as Raman
scattering naturally require three-particle vertex functions.
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In the present section we have learned about the fully fledged parquet DΓA. It is unbiased with
respect to all three channels ` and thus treats antiferromagnetic or charge fluctuations in the
ph-channel on a par with e.g., superconducting fluctuations or weak localization corrections in
the pp channel. It also mixes the different channels. For two channels this mixing generates,
with some fantasy, a traditional parquet floor like pattern with ladder rungs in one direction
intermixed by ladder rungs in the orthogonal direction etc., hence the name. Being unbiased
definitely is a great advantage. For example, in [14] we were looking for weak localization
corrections to the optical conductivity in the pp channel and excitons that live in the ph chan-
nel. Instead we found that for strongly correlated systems that host strong alternating spin or
charge fluctuations, the ph channel is actually dominant for the optical conductivity, against all
expectations.

The drawback of the full parquet solution is that we deal with three momenta and three frequen-
cies. Even on a rather coarse discretization grid, we thus easily end up with Terabytes of data.
In the Bethe-Salpeter equation (3) the bosonic momentum q and frequency ω decouple, so that
it can be well distributed on several computer cores without the need to communicate. However,
this natural q and ω is channel dependent (see [5]), i.e., different for the three channels of Fig. 4.
Hence, when we add the three channels in the parquet equation (2), we mix different momenta,
requiring a lot of communication between different cores, which –say– have previously solved
the Bathe-Salpeter equation in different channels. Network traffic thus becomes the compu-
tational bottleneck on a supercomputer for parquet DΓA. Efforts to mitigate this problem are
the truncated unity basis for momentum space [20], the intermediate representation (IR) for
frequency space [21], and the single boson exchange decomposition [22].

3 Ladder dynamical vertex approximation

If we know that a certain channel is dominating, we can restrict ourselves to this particular chan-
nel and neglect the others and the mixing of different channels through the parquet equation.
Since Φph and Φph are related by crossing symmetry (invariance of exchanging the two incom-
ing lines [5]) both of these channels contribute to F in the same way, albeit with a crossing-
symmetry exchanged frequency and momentum combination. Hence, both channels must be
included in general.4 In this case, we hence only need to solve the Bethe-Salpeter equation (3)
and can consider a local Γph as input. For a bare interaction U, the Bethe-Salpeter equation
(3) yields diagrams as in Fig. 8(a). If we improve on this and use a local Γph we get the lad-
der DΓA approach and the diagrams of Fig. 8(b). From these diagrams (plus the contribution
from the crossing-symmetrically related ph channel) we get F , and from F in turn through the
Schwinger-Dyson equation (4) the self-energy.

4When we eventually connect F with altogether four Green functions to a susceptibility with a single bosonic
momentum and frequency [see Eq. (6) and Fig. 12 below)], the q = (π, π, . . .) susceptibility is dominated in
case of antiferromagnetic spin fluctuations by the ph channel, whereas the q = (0, 0, . . .) optical susceptibility
(conductivity) is dominated by the transversal particle-hole channel (π-tons [14]).
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Γpp

Fig. 8: (a) Spin fluctuations as calculated from the Bethe-Salpeter ladder diagrams in terms
of the bare Coulomb interaction U in RPA. (b) Same as (a) but now calculated in ladder DΓA
from the local irreducible vertex in the ph channel: Γ ≡ Γph. (c) These antiferromagnetic spin
fluctuations enter as Γpp (via the parquet equation) in the particle-particle channel. This leads
to the binding of two electrons into a Cooper pair, and if this bosonic Cooper pair Bose-Einstein
condensates to superconductivity. From [25].

If we want to calculate superconducting fluctuations in ladder DΓA we can plug the antiferro-
magnetic spin fluctuations as a superconducting pairing glue (which is nothing but Γpp) into the
pp channel. This is so-to-speak a poor man’s one-step parquet calculation. We get the ph and ph
spin fluctuations into the pp channel, but we do not feed back the pp fluctuations to the ph and
ph channel. For details on the superconducting calculations and also regarding the treatment of
high frequencies, see [16].

A self-consistency with respect to the recalculation of the Green function entering the Bethe-
Salpeter equation (3) is possible [23]. Different schemes have been proposed as well for a self-
consistency with respect to Γ (or Λ) starting with [24], for an overview see [5]. A simpler and
widely used approach is to do, instead, a so-called Moriyaesque λ-correction [5]. It essentially
adds a mass to the paramagnons (dampens the antiferromagnetic spin fluctuations). This mass
is fixed by a sum-rule for the susceptibility, and automatically warranties the correct high-
frequency asymptotics of the self-energy. This λ-correction has been introduced to mimic the
self-consistency and represents a considerable simplification of the calculations. For a further-
going discussion see [5, 25].

The advantage of the ladder DΓA is that –as long as we do not couple the ladders through the
parquet equations– the ladder only depends on a single frequency-momentum q instead of three
(q,k,k′). Hence numerically much lower temperatures, larger frequency grids and finer momen-
tum grids are feasible. Also realistic multi-orbital ab initio DΓA calculations are possible with
the ladder DΓA version [15]. The results presented in the following have been obtained by
ladder DΓA with a Moriyaesque λ-correction.
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4 Hubbard model, cuprates and nickelates

In this Chapter, we consider the one-band Hubbard model in two or three-dimensions

H = −
∑
ij,σ

tij c
†
iσcjσ + U

∑
i

ni↑ni↓. (5)

It consists of two terms: (i) a hopping term tij between sites i and j, which we restrict in the
following to a nearest neighbor t, next-nearest neighbor t′ and next-next-nearest neighbor t′′;
and (ii) a local Coulomb repulsion U. Here c†iσ (ciσ) creates (annihilates) an electron on site i
with spin σ in second quantization and niσ = c†iσciσ.
The Hubbard model is the quintessential model for strongly correlated electron systems, similar
as the Ising model for statistical physics or the Drosophila fly for genetics. For tij = 0, we have
just a collection of atoms and a spectra with peaks at ±U/2 for half-filling. For U = 0, there is
no interaction and we can solve the tight-binding Hamiltonian by Fourier transforming tij to εk
in momentum space. Then, just occupying all single-particle states up to the Fermi energy gives
the ground state. But, if we switch on U the electrons become correlated, the expectation value
〈niσnjσ′〉 6= 〈niσ〉〈njσ′〉. In particular local double occupations 〈ni↑ni↓〉 are heavily reduced
compared to the non-interacting, uncorrelated value.
While a screened interaction can –to a good approximation– often be replaced by the purely
local interaction U, materials require typically the consideration of more bands than the single-
band Hubbard model. This is even the case when we restrict ourselves to the low-energy orbitals
around the Fermi energy. An important exception are cuprate and nickelate superconductors.
The arguably simplest cuprate and nickelate crystal structure is the “infinite-layer”5 structure
displayed in Fig. 9 (A) and (B). Since the valence of the spacer cations is Ca+2 and Nd(La)+3,
the formal oxidation state is Cu+2 and Ni+1, respectively, so that both cuprates and nickelates
are in a formal 3d9 configuration. After such basic chemistry considerations, the first step to get
an idea of the relevant orbitals is doing a density functional theory (DFT) calculation.
Fig. 10 shows that for the cuprates a single 3dx2−y2-orbital is crossing the Fermi level. It gives
rise to the single hole-like Fermi surface sheet displayed in the lower left panel of Fig. 10. This
Cu 3dx2−y2-band and Fermi surface can well be described with proper hopping parameters t, t′

and t′′. But now we need to include the effect of electronic correlations. These are indicated
by the dashed arrows and the side panels of Fig. 10(A): the Cu 3dx2−y2-band splits into an
upper and lower Hubbard band. Since the oxygen orbitals are just a few eV below the Fermi
energy, these oxygen orbitals end up above the lower Hubbard band. As a consequence we
have a charge transfer insulator according to the scheme of Zaanen-Sawatzky-Allen and not a
Mott insulator, which one might have expected from the splitting into Hubbard bands. That
is, if we dope cuprates, and we need to do so to have a superconductor, the holes go into the
oxygen bands. Hence, in the case of cuprates, an Emery model description which incorporates
the copper 3dx2−y2-band and oxygen px and py bands as visualized in Fig. 9(C) is the most
appropriate low-energy model. Nonetheless, the majority of theoretical papers studying the

5The two distinct layers displayed in Fig. 9 are repeated on top of each other ad infinitum.
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Fig. 9: Crystal structure of (A) a characteristic cuprate, CaCuO2, and (B) the nickelate NdNiO2.
The Cu(Ni)O2 layers are separated by Ca(Nd) spacing layers in this “infinite-layer” structure.
Also shown are the relevant low-energy orbitals in both cases. (C) Cuprates are charge transfer
insulators so that the oxygen orbitals need to be included for an accurate microscopic descrip-
tion. The simplest such model is the Emery model with copper 3dx2−y2 , oxygen px and py
orbitals. As indicated there is a hopping tpd between Cu and O sites, and tpp between O sites;
double occupations are suppressed by the interaction U on the Cu sites just as in the Hubbard
model. (D) For nickelates we have a Ni-3dx2−y2-band and a A-pocket derived from the Nd 5dxy
band crossing the Fermi energy. Both are largely decoupled but we need to calculate, e.g., by
DFT+DMFT, how many holes go into the Ni-3dx2−y2-band Hubbard model and how many go
into the A-pocket reservoir. From [26].

cuprates use the single-band Hubbard model. This is to some extend justified by the fact that
oxygen-hole spin and copper spin form a Zhang-Rice singlet, which can be described effectively
by the Hubbard model. Also in experiment, there is a single Fermi surface as in Fig. 10(C) of
mixed oxygen and copper character.
In case of the nickelates, these oxygen bands are instead at a considerably lower energy. Hence
the lower Hubbard band is now above the oxygen band and we would have a Mott insulator –
if it was not for the Nd(La) 4d-bands.6 These Nd(La) 4d bands are closer to the Ni 3d-bands

6We here show LaNiO2 since it is slightly easier to calculate than NdNiO2 in DFT because it has no 4f -
electrons. Experimentally, La1−xSr(Ca)xNiO2 is also a nickelate superconductor with a Tc comparable to NdNiO2.
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Fig. 10: (A,B) Electronic structures of (A) CaCuO2 and (B) LaNiO2 as calculated in DFT. The
side panels indicate the effect of electronic correlations and the color bars the center of energy
of the most important bands. (C) and (D) DFT Fermi surface corresponding to (A) and (B),
respectively. From [26].

than the unoccupied Ca and Cu s bands are to the Cu bands. Hence they briefly cross the Fermi
level around the Γ and A momentum, which leads to the formation of pockets around these
momenta, see Fig. 10(D). The charge transferred to the Nd(La) pockets also leads to a self-
doping of the Ni 3dx2−y2-band, even for the parent compound Nd(La)NiO2 which has about
0.05 holes per Ni. In such a situation, a quasi-particle peak develops as indicated in the side
panel of Fig. 10 (B) with a quasiparticle mass enhancement m∗/m = 1/Z calculated to be
about five [27]. A further correlation effect is that the Γ -pocket is shifted above the Fermi level,
at least for larger Sr-doping and for LaNiO2.

Altogether this leaves us with two relevant bands as displayed in Fig. 9(B): the Ni 3dx2−y2-
band and the Nd(La)-derived A-pocket. Both bands do not hybridize and can hence, to a first
approximation, be considered as decoupled. The expectation is that the more strongly correlated
Ni 3dx2−y2-band is responsible for the superconductivity. Using Occam’s razor, i.e., if we try to
identify the most simple model, we end up with a one-band Hubbard model for the Ni 3dx2−y2-
band and a decoupled reservoir (A-pocket) that must be taken into account for translating the
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Fig. 11: Translation of Sr-doping to the occupation of the Ni 3dx2−y2-band (blue line; right
y-axis) and corresponding effective mass enhancement m∗/m (black line; left y-axis) as calcu-
lated by DFT+DMFT for (A) La1−xSrxNiO2 and (B) Nd1−xSrxNiO2. From [27] (Supplemental
Material).

Sr-doping of Nd(La)1−xSrxNiO2 into the actual hole doping of this Hubbard model. Otherwise
the A-pocket is merely a passive bystander. This simple model is illustrated in Fig. 9(D).

The hopping parameters of the nickelate Hubbard model can be obtained from a Wannier func-
tion projection onto the Ni 3dx2−y2-band: t = 0.395 eV, t′/t = −0.25, t′′/t = 0.12 [27]. Fur-
ther, the interaction strength U can be calculated by constrained random phase approximation
(cRPA, see Chapter “The GW+EDMFT method” by F. Aryasetiawan [3]). Considering the fact
that U is frequency(ω)-dependent in cRPA and –within the relevant energy range– on average
slightly larger than U(ω=0), one obtains U ≈ 8t from cRPA. For further details see [27].

The translation from Sr-doping to the occupation of the 3dx2−y2-band has been calculated in
DFT+DMFT7 including all five Nd and all five Ni d bands in DMFT. Fig. 11 (blue curve)
shows the results: One sees that roughly 50% of the holes (there is one hole per Sr) go into
the 3dx2−y2-band and the remaining 50% go into the pockets. For larger Sr-dopings, at around
25%, the curve flattens because here the Ni 3d3z2−r2 orbital approaches the Fermi level and
accommodates holes as well. The one-band Hubbard model DMFT calculation gives a very
similar spectrum as the full DFT+DMFT calculations with 5+5 Nd+Ni orbitals. Also the ef-
fective mass plotted in Fig. 11 (black curve) agrees [27]. Altogether this hints that the simple
Hubbard model is a good approximation for nickelates; experimental results are also consistent
with this picture so-far.

7For the DFT+DMFT method, see the Chapter “LDA+DMFT for strongly correlated materials” by A. Lichten-
stein [3]
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Fig. 12: The susceptibility χ consists of the bare bubble χ0 (first term on the right hand side)
and vertex corrections that can be calculated from the full vertex F .

5 Spin fluctuations

Spin fluctuations as visualized in Fig. 8(a,b) enter the full vertex F but subsequently also the
susceptibility which is connected to F as (Fig.12)

χr,qω =
∑
kν

Gkν G(k+q)(ν+ω)︸ ︷︷ ︸
≡χ0

qω

−
∑
kk′νν′

Gkν G(k+q)(ν+ω) F
νν′ω
r,k+k′qGk′ν G(k′+q)(ν+ω) (6)

for r = c/s i.e., the spin and charge susceptibility, respectively. As before, we restrict ourselves
to the paramagnetic phase for simplicity. The first term on the right hand side of Eq. (6) is just
the bare bubble contribution χ0, obtained directly from two (interacting) Green functions; the
second term are vertex corrections calculated form F. The minus sign is a matter of definition
of F. When F is calculated in RPA as in Fig. 8(a), we have Γr = ±U for r = c/s and obtain a
geometric sum, which eventually yields

χRPA
r,qω =

χ0
qω

1± Uχ0
qω

(7)

where the +/- is for r = c/s.
For certain ω’s and q’s Eq. (7) [and Eq. (6)] develops poles. We call these bosonic excitations
(para)magnons. The ω-q energy-momentum dispersion relation of these quasiparticles follows
the position of the poles.
The minus sign in Eq. (7) already indicates that spin fluctuations are generally stronger in a
Hubbard model. This can change if additional non-local interactions V are included. These
trigger a transition from an antiferromagnetic spin to a charge density wave order for ZV > U

in mean field (Z: number of neighbors; V : nearest neighbor Coulomb repulsion). Which
magnetic order dominates in RPA, solely depends on the q for which χ0

qω=0 is strongest. Close
to half-filling, we often have Fermi surfaces where for a k on the Fermi surface (ν = 0) also
k+q = (π, π, . . .) is at or close to the Fermi surface. Then both Gkν=0 and G(k+(π,π,...))(ν+ω)=0

are large in Eq. (6), and the antiferromagnetic susceptibility χ0
q=(π,π,...)ω=0 is maximal. Of

course, this is just the weak coupling picture. For larger Coulomb interactions we form large
magnetic moments and the change of physics is reflected in vertex F corrections beyond RPA.
More recently it could be demonstrated [25] that the local vertex Γr=m is suppressed compared
to the RPA Γs = −U value. This is shown in Fig. 13 (left). This suppression, in particular
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Fig. 13: Left: Difference of the local ph vertex in the magnetic channel from −U, i.e.,
δΓm = Γs − (−U) vs. the two fermionic Matsubara frequencies νn = i(2n+1)πT and ν ′n′
at zero bosonic frequency ω = 0. At small frequencies, Γs,ph and associated spin fluctuations
are suppressed. Right: This suppression also leads to a suppression of the non-local pp vertex
Γpp, i.e., the superconducting pairing glue, at small frequencies. It is obtained from antifer-
romagnetic spin fluctuations (i.e., from the local Γs corresponding to the left panel and the
Bethe-Salpeter equation, see Sec. 7). Right inset: Γpp as calculated in RPA. From [25] where
further details and parameters can be found.

that at the relevant small frequencies, leads to reduced spin fluctuations. Consequently, the
superconducting pairing as calculated along the line of Fig. 8(b,c) is suppressed as well, see
Fig. 13 (right). Its origin are local particle-particle excitations that enter Γs and reduce it along
the side diagonal frequencies ν = −ν ′.
This reduction of the DΓA spin susceptibility is key for a good description of antiferromagnetic
spin fluctuations, which are grossly overestimated in RPA for somewhat larger Coulomb inter-
actions U. In fact, it was shown that qualitatively and quantitatively the DΓA susceptibility
excellently agrees with other recent numerical calculations [28].
From the susceptibility one can obtain the correlation length ξ. Fourier-transformed to real
space r and time, the (equal-time) magnetic susceptibility behaves as

χsr =
〈
S(r)S(0)

〉
∼
(
|r|

ξ

)−1/2
e
−|r|
ξ (8)

at large distances r. Here, S(r) denotes the spin operator of the electrons at position (lattice site)
r. Fig. 14 shows this spin-spin correlations or susceptibility of the Hubbard model. Clearly,
an alternating (antiferromagnetic) correlation is visible. At high temperatures (left panel), the
correlation length is short and correlations quickly decay. In two dimensions we get, however,
an exponential increase of the correlation length with 1/T in DΓA [13] which is the reason
behind the very large correlation length of Fig. 14 (right panel). While a correlation length of
ξ = 4 lattice sites (left panel) can still be covered in cluster extensions of DMFT and lattice
quantum Monte Carlo methods, the rapidly increasing correlation length at lower temperatures
quickly puts a numerical limit to such cluster approaches.
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Fig. 14: Antiferromagnetic correlation function χs,r normalized to its r = 0 value vs. distance
r for the two dimensional Hubbard model along the x-direction (t′ = t′′ = 0, U = 0.5(4t);
all energies are here in units of 4t). The left and right panel show two different temperatures,
T = 0.025(4t) (left) and T = 0.025(4t) (right), where largely different correlation lengths (ξ)
are observed. From [13].

At a three dimensional phase transition, the susceptibility diverges with critical exponent ν:
ξ ∼ (T−Tc)−ν , and similarly χr,Qω=0 ∼ (T−Tc)−γ with a critical exponent γ. These critical
exponents could be calculated in DΓA and DF for the first time for correlated electronic models,
a topic that has been covered in a preceding Jülich Autumn School [12].

In practice, the correlation length is not calculated from fitting χsr. Instead one fits it Fourier-
transform χs,qω=0 in momentum space. For large correlation lengths and in the vicinity of its
maximum at the dominating wave vector Q,8 the susceptibility is of the Ornstein-Zernike form

χs,qω=0 ∼
1

(q−Q)2 + ξ−2
. (9)

That is, the inverse correlation length ξ−1 corresponds to the width of the susceptibility around
its peak at q = Q.

In two dimensions, the Mermin-Wagner theorem is fulfilled and there is no long range anti-
ferromagnetic order for finite temperature in the DΓA and with the diagrammatic extension of
DMFT [5]. In three-dimensions the antiferromagnetic phase transition temperature Tc is re-
duced compared to DMFT, as shown in Fig. 15. Also the critical behavior in the vicinity of the
phase transition is not any longer of mean-field type as in DMFT. Instead the critical exponents
well agree9 with those of the Heisenberg model [5, 12] for half-filling, as to be expected from
universality.

8For example, Q = (π, π) for the two-dimensional Hubbard model at half-filling.
9within the numerical error bars in the studied critical temperature regime
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Fig. 15: Phase diagram of the half-filled three-dimensional Hubbard model on a cubic lattice
with nearest-neighbor hopping t comparing various methods for the phase transition from the
paramagnetic metallic (PM) and insulating (PI) phase to the antiferromagnetic insulating phase
(AF). From [5] where further details and the abbreviation of the various methods can be found.

6 Pseudogap

Besides the susceptibility, spin fluctuations also impact the electronic self-energy, as already
indicated in Fig. 1. The effect of F on the self-energy Σ can be directly calculated via the
Schwinger-Dyson Eq. (4) [Fig. 6]. Physically, this corresponds to electron-(para)magnon scat-
tering which can reduce the lifetimes of the quasiparticles. An alternative way to write the
Schwinger-Dyson equation and to express the fermion-boson interaction is shown in Fig. 16.
Here, simply the F and two Green functions from Fig. 6 have been combined to γ, i.e., mathe-
matically

γνωr,kq =
∑
k′ν′

Fr,kk′qGk′ν′ G(k′+q)(ν′+ω) (10)

so that the Schwinger-Dyson equation becomes

Σkν =
Un

2
− U

2

∑
qω

(
γνωc,kq−γνωs,kq

)
G(k+q)(ν+ω) . (11)

Now, we can rewrite this further by merging U -reducible diagrams into an effective interaction
Wr, in the spirit of Hedin’s GW method (we will not go into further details here and refer the
reader to the Chapter “ The GW+EDMFT method” by F. Aryasetiawan [3], and to [22]). Beyond
GW, here also spin fluctuations are included in Ws. This is displayed in Fig. 16 (right). The
remaining U -irreducible γ̃ can be interpreted as the fermion-boson interaction andW as a boson
propagator. In the case of GW these bosons are plasmons (charge fluctuations), while for the
one-band Hubbard model (para)magnons (spin fluctuations) dominate. Such a reformulation of
the Feynman diagrams is also the idea of the single boson exchange (SBE) approach [22], which
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γ

Fig. 16: Schwinger-Dyson equation to calculate the self-energy Σ rewritten in terms of U and
γ or W and γ̃.

has been used recently to rewrite the DF and DΓA parquet equations. Much of the physics is
already contained in the boson propagators W so that the remaining fully irreducible parts of
the SBE parquet formalism decay much faster in frequency and momentum.
Particularly strong spin fluctuations, as they occur for the Hubbard model in two dimensions,
can give rise to a physical phenomenon called pseudogap. Theoretically, this pseudogap has
been established in numerical simulations and in weak coupling calculations. Experimentally,
it has been observed for cuprate superconductors, both in the spectrum as well as in transport
measurements. This kind of physics is naturally included in DΓA and other diagrammatic
extensions of DMFT.
Fig. 17 shows the Fermi surface of the two-dimensional Hubbard model for typical hopping
parameters of Cu(Ni) 3dx2−y2 orbitals in cuprates (nickelates). If we want to calculate the self-
energy for a momentum k on the Fermi surface, it will be effected by spin fluctuations. These
effects can be calculated via Eq. (11) [Fig. 16]. In Fig. 17 three particular points of the Fermi
surface are displayed: The antinodal momentum on the Fermi surface (PG) is close to (π, 0).
Here, the pseudogap first opens in experiment and in numerical calculations for the Hubbard
model at strong coupling. The nodal momentum (ARC) along the diagonal where an ARC-like
part of the Fermi surface survives after the opening of the pseudogap around PG [see Fig. 19
(rightmost panel) below]. Finally, the hot spot (HS) which is the point of the Fermi surface
where k+ (π, π) lies on the Fermi surface as well. At weak coupling, the pseudogap opens first
at the HS.
The spin-fermion coupling of Fig. 16 leads to an additional contribution to the self-energy on top
of the local DMFT self-energy. In the Bethe-Salpeter equation Eq. (4) or equivalently Eq. (11),
the vertex F respectively γ – or in Fig. 16 (right) W– are dominated by spin-fluctuations for
the two-dimensional Hubbard model. These spin fluctuations are strongly peaked around the
antiferromagnetic weave vector Q = (π, π) and can be modeled approximately by the Ornstein-
Zernicke form Eq. (9) around Q. Hence the spin-fermion contribution to the self-energy can
approximately written as (see [29])

Σk ν=iδ ∝ γ̃T
∑
q

G(k+q) ν=iδ

(q−Q)2 + ξ−2
, (12)

employing the rapid decay of γ̃ with bosonic frequency ω and restricting ourselves to the Fermi
energy (ν = iδ, δ → 0)10. Further one can replace G by G0 so that Eq. (12) can also be

10One can approximate this, at the cost of some additional broadening, by the lowest Matsubara frequency
ν0 = iπT .
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Fig. 17: Typical Fermi surface of the t-t′-t′′ Hubbard model. The blue and red colors denote the
occupied and unoccupied part of the Brillouin zone, respectively. The circle (PG), square (ARC)
and diamond (HS) denote specific momenta k that are discussed in the text. The corresponding
momenta k + (±π,±π) connected to these by the antiferromagnetic wave vector Q = (π, π)
are also plotted, as circles with typical inverse correlation lengths ξ−1 as radius. The upper left
quadrant shows the parts of the Fermi surface that are “heated” (red) and “cooled” (blue), i.e.,
become less and more coherent because of Imγ̃ (see text). From [29].

employed as an ansatz for the spin-fermion self-energy or for fitting the pseudogap with only
two fee parameters [γ̃ and ξ; if Q is known].
The sum of Eq. (12) is dominated by q ≈ Q where the antiferromagnetic spin fluctuations are
strongest. In weak coupling theory γ̃ = 1, and we get a damping, i.e., an imaginary part of
the self-energy whenever G(k+Q)0 has a sizable imaginary part. This is the case whenever we
have spectral weight A(k+Q)ν = − 1

π
ImG(k+Q)ν for (real frequency) ν = 0. For G = G0, i.e.,

without dampening, this is only possible if k + Q is on the Fermi surface, too. Deviations by
about the inverse correlation length (circles in Fig. 17) are possible, as then antiferromagnetic
correlations are still sizable (which is the essence of the Ornstein-Zernicke form).
The condition that, for a considered k on the Fermi surface, also k + Q is on the Fermi surface
is exactly fulfilled for the hot spots (HS) in Fig. 17. At weak coupling, the prefactors of Eq. (12)
are small and we need very long correlation lengths ξ to get a sizable imaginary part of the self-
energy. Hence, here the pseudogap opens first at the hot spots.
At strong coupling the typical inverse correlation lengths are as displayed in Fig. 17 for the
onset of the pseudogap. Numerical calculations (see Figs. 18, 19 below) and experiment show
that the pseudogap opens first at the part of the Fermi surface marked as “PG” in Fig. 17. One
reason for this might be that with the shorter correlation length, i.e., larger ξ−1, the large spectral
contribution of the van Hove singularity at (π, 0)11 becomes relevant.

11and cubic-symmetrically related momenta
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Fig. 18: Imaginary part of the DΓA self-energy vs. index n of the Matsubara frequency νn =
i(2n+1)πT , in the pseudogap region for a typical Hubbard model. Parameters: U = 8, t′ =
−0.2, t′′ = 0.1, T = 0.05 (all in units of t), and 10% hole doping. Clearly the self-energy is very
different for the two momenta plotted, i..e, in the nodal direction of the Fermi surface and in
the anti-nodal direction. The downturn of the anti-nodal self-energy indicates the development
of a pole and thus a splitting of the spectral function away from the Fermi energy. Figure by
courtesy of Paul Worm.

A second mechanism has been identified in [29]: the spin-fermion interaction γ̃ develops an
imaginary part because of particle-hole asymmetry at strong U. Hence we also get an imaginary
part for Σ in Eq. (12) from the real part of the Green function G(k+q) ν=0,

ReGk ν=iδ =
µ− εk − ReΣk ν=iδ(

δ − ImΣ(k) ν=iδ

)2
+
(
µ− εk − ReΣk ν=iδ

)2 . (13)

This real part is displayed as false color in Fig. 17 for the non-interacting Green function (Σ=0).
It has opposite sign (blue vs. red in Fig. 17) for the occupied (unoccupied) part of the Brillouin
zone, where εk + ReΣk ν=iδ < (>)µ; µ is the chemical potential.
Hence, for the PG momentum where we scatter into the blue occupied part in Fig. 17 the
imaginary part of the DMFT self-energy is enhanced by non-local correlations. This part of the
Fermi surface is hence strongly dampened and eventually develops a pseudogap. In contrast, for
the ARC momentum the imaginary part of the DMFT self-energy is even reduced (in absolute
terms). The ARC quasiparticles are so-to-speak “cooled”, i.e., become even more coherent
because of spin fluctuations. This dichotomy is another mechanism that opens the pseudogap
first in the nodal (PG) region and not at the hot spot (HS) if we are at strong coupling.
Fig. 18 shows the typical momentum differentiation that we obtain for the self-energy in the
pseudogap region. The self-energy in the nodal and anti-nodal region is largely different. In
the nodal direction, ImΣk,ν ∼ −ν with the slope corresponding to the quasiparticle weight
Z at this momentum. At the opening of the pseudogap, for momenta in the PG region, the
self-energy first develops a large imaginary part, limν→0 ImΣk,ν . This corresponds to a strong
dampening or extremely short life times of quasiparticles in this region. In Fig. 18 this would
mean a flat curve for small frequencies. Eventually, the self-energy develops a pole, and we
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Fig. 19: DΓA spectrum at the Fermi energy for different dopings of nickelate superconductors
throughout the Brillouin zone (i.e, x- and y-axis are the kx and ky momentum ranging from −π
to π, and the false color show the spectral function at the Fermi energy ν = 0). From [27].

can see in Fig. 18 the onset of such a pole as the downturn of ImΣk,ν for small Matsubara
frequencies.

This is akin to the Mott insulator where the self-energy behaves as

Σk,ν =
U2

4ν
(14)

However, now this pole only occurs in the PG momentum regime, and the origin are spin fluc-
tuations not Mott-Hubbard physics. Consequently the prefect or, being given by the spin fluc-
tuation strength, is smaller than U2

4
. In the PG regime, the spectrum is hence gapped because

of this pole structure (or strongly suppressed if Im is only large), whereas the ARC region still
shows spectral weight.

Let us now turn to the nickelate superconductors. Fig. 19 shows the spectrum of the Ni
3dx2−y2 band12 for nickelates as calculated by DΓA for the effective Hubbard model (see Sec. 4
where also the parameters can be found). The parent compound NdNiO2, corresponding to
n3dx2−y2

= 0.95 (rightmost panel) has a pseudogap in the antinodal (PG) region, indicated by
missing spectral weight in Fig. 19. This DΓA prediction still awaits an experimental confir-
mation; angular resolved photoemission experiments are urgently needed but have not been
successfully done yet.

For making nickelates superconducting, one needs to dope this 3dx2−y2 band, e.g., to n3dx2−y2
=

0.80 or 0.85. For these superconducting dopings, we have a clear Fermi surface throughout the
Brillouin zone in Fig. 19 and no pseudogap.13

12There are additional Nd pockets, see Sec. 4.
13As a technical remark, the spectrum has been calculated from Akν0 = −1/π Gkν0 at the lowest Matsub-

ara frequency ν0 = iπT , which leads to some additional broadening (smearing) but avoids the error-prone and
cumbersome analytical continuation.
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7 Superconductivity

Next we turn to the task of calculating the superconducting order and critical temperature Tc
from the antiferromagnetic spin fluctuations. The general procedure has already been indicated
in Fig. 8(c). More specifically, the first step is the calculation of the full vertex F from Γph
(plus the crossing symmetrically related ph channel), by summing the Bethe-Salpeter ladder
diagrams in this channel(s). This calculation includes spin and charge fluctuations, but in the
Hubbard model spin fluctuations prevail. In the second step, we insert these spin fluctuations
into the pp channel. That is, we calculate Γpp = Λ+Φph +Φph. Since no pp reducible diagrams
have yet been included (except for the local ones), we can also rewrite this as Γpp = F −Φlocal

pp .
From this Γpp we can next recalculate F including superconducting fluctuations via the Bethe-
Salpeter equation in the pp channel. This is akin to the Schwinger-Dyson Eq. (3) in the ph
channel, except that we have to properly rotate the momenta and to use Γpp instead of Γph.
Similarly as in RPA [Eq. (7)], we get a superconducting (SC) susceptibility of the form

χSC,q=0ω=0 =
∑
kk′νν′

χ0
(

1 + Γpp,q=0ω=0 χ
0
)−1

(15)

Here, we are interested in the instability at ω = 0 and the coupling of two fermions with
momentum k and −k into a Cooper pair as in Fig. 8(c), i.e., a total momentum q = 0 in the pp
channel14. The generalized15 bare bubble susceptibility at ω = 0 and q = 0 is

χ0
kk′νν′ = Gk′ν′ G−k−ν δ(k−k′) δν,ν′ (16)

and the double underlines denote matrices with respect to kν and k′ν ′.
In order to obtain superconductivity, i.e., a diverging χSC,q=0ω=0 one of the eigenvalues λ of the
matrix−Γpp,q=0ω=0 χ

0 has to approach λ = 1. For electron-phonon mediated superconductivity

this is simple since the electron-phonon coupling gives rise to an attractive (negative) Γpp. For
the repulsive Hubbard model, this is much more difficult to achieve since Γpp also includes the
repulsive (positive) Coulomb interaction +U. Nonetheless, an attraction can be mediated by
antiferromagnetic spin fluctuations through retardation (ν, ν ′) and non-locality (k, k′). The k,
k′ structure of the diverging (λ → 1) eigenvector (or the corresponding real space structure)
determines the symmetry of the superconducting symmetry breaking and gap (s-wave, d-wave
etc.). For phonons with an across the board attraction, one gets s-wave superconductivity. For
the spin fluctuations in the Hubbard model d-wave is more favorable to avoid the large local
repulsion +U.16

The Mermin-Wagner theorem also applies for superconductivity, where in two dimensions and
at finite temperatures only the Nobel-prize-winning topological Berezinskii-Kosterlitz-Thouless

14This q is not to be confused with that in the ph channel which is peaked around Q = (π, π) and corresponds
to another combination of the external legs of the four-point vertex F .

15without kk′νν′ summation
16For the d-wave, Γpp mediates between momenta k and k′ on the Fermi surface, for which the superconducting

eigenvalue has opposite sign.
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Fig. 20: Superconducting Tc vs. year of discovery for various important superconductors. After
the copper age, there has been an iron age, and now we are in the nickel age. From [31].

(BKT) transition is possible. At first glance, this is a contradiction to the observed superconduc-
tivity in cuprates and nickelates. However, these materials are not perfectly two-dimensional
but layered quasi-two-dimensional materials. In this situation, and with the strongly increasing
correlation length around the BKT transition, even a tiny coupling in the inter-layer direction
will trigger superconductivity, a little bit below the BKT transition. In the DΓA calculation,
a self-consistency is necessary to (possibly) get a BKT transition. Without the self-consistent
feedback of the superconducting fluctuations, we eventually get a mean-field kind of supercon-
ducting transition and a finite Tc which is closer to experiment than the ideal two-dimensional
calculation with BKT transition.

As for superconducting materials, the three years ago discovered nickelate superconductors [30]
have led to enormous theoretical and experimental efforts. One therefore also speaks of the
nickel age for superconductivity, see Fig. 20. Also shown are hydrogen-based superconductors
that are phonon-mediated and have a Tc above room temperature, but only under the enor-
mous pressure of a diamond anvil cell. Hence the challenge is to increase Tc for the uncon-
ventional (i.e., not phonon-mediated) correlated superconductors or to reduce the pressure for
the hydrogen-based superconductors. Here, the nickelates have a Tc that is still quite substan-
tially below that of the cuprates. While one can expect Tc to further increase somewhat with
new and better synthesized nickelate films, one should not expect a room temperature nickelate
superconductor. The high hope is instead that nickelates and cuprates are very similar but also
decisively distinct, an ideal situation to discriminate the essentials from the incidentals for high-
temperature superconductivity. The iron pnictides are instead pretty far away from the cuprate
or nickelate physics.
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Fig. 21: Superconducting phase diagram Tc vs. Sr-doping (lower x-axis) and vs. doping of the
3dx2−y2-orbital (upper x-axis) as calculated for Nd1−xSrxNiO2 in DΓA [27]. At the time of
the calculation a single experimental data point (“a priori” [30]) was available. The first ex-
perimental superconducting dome (“a posteriori” [32]) showed already reasonable agreement.
With cleaner films (“defect free” [33]) the agreement has become breathtaking, in particular
if one considers how challenging it is to calculate Tc reliably. Also the pentalayer nickelate
(Tc ≈ 13 K, 20% holes in the 3dx2−y2 orbital [34]) well matches the Tc of DΓA and the shown
infinite layer experiment. Adapted from [27].

In Sec. 4, we have already pointed out that the nickelates can be described by a one-band
Hubbard model with an appropriately adjusted doping; and in Fig. 19 we have shown the thus
calculated spectrum with a pseudogap for the (non-superconducting) parent compound NdNiO2.

For this nickelate Hubbard model, we find [27] (not surprisingly) d-wave superconductivity
in ladder DΓA. The superconducting Tc vs. doping is plotted in Fig. 21 as a function of Sr-
doping. Actually the theoretical calculation was a prediction here since, when three years ago
superconductivity in nickelates has been discovered [30], only a single Tc at 20% doping was
available at first because of the difficulties to synthesize Nd1−xSrxNiO2 in the low oxidation
state Ni+1. With the recent progress to synthesize clean superconducting nickelate films [33],
the theoretical predicted phase diagram has been spectacularly confirmed in experiment, see
Fig. 21.

The physical reason that we see in Fig. 21 a superconducting dome is two-fold: The downturn
at large doping is because antiferromagnetic spin-fluctuations get weaker further and further
away from half-filling. The down-turn at small doping, towards half-filling, on the other hand
is a consequence of the pseudogap which develops in this doping region, see Fig. 19. Thus, the
electron propagators in Fig. 8(c) loose coherence in a larger part of the Fermi surface, and the
superconducting susceptibility is suppressed despite considerable spin fluctuations.
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Recently also a pentalayer nickel12 has been synthesized [35], which has very similar hopping
parameters [34]. Its Tc = 14 K agrees with DΓA and with the Tc of the infinite layer nickelates
shown in Fig. 21. Here, DMFT indicates that pentalayer nickelates have no pockets [34] and
thus a doping of 0.2 holes per site in the 3dx2−y2-orbital. The absence of pockets in pentalayer
nickelates further corroborates the picture of a decoupled reservoir that is not relevant for su-
perconductivity as advocated in Fig. 9. Altogether the DFT+DMFT and DΓA calculations for
nickelates and the experiments for the different nickelates provide for a consistent picture [34].
This gives us some hope that we might finally be able to actually calculate and predict super-
conducting Tc’s, the arguably biggest challenge of solid state theory.

8 Conclusion and outlook

Diagrammatic extensions of DMFT are very appealing in several ways: They combine the good
description of DMFT with the, to the best of our knowledge, most important non-local physics.
In this Chapter we have focused on spin fluctuations and how they mediate superconductivity,
but other fluctuations such as charge fluctuations, weak localization corrections, excitons –you
name it– are treated on an equal footing. Also (quantum) criticality can be described, a topic
that has been discussed in an earlier Jülich Autumn School [12]. Diagrammatic extensions of
DMFT are also very appealing since they merry quantum field theoretical with its qualitative
understanding and numerics which is unavoidable for a quantitative description of strongly
correlated electrons systems.
Different variants of diagrammatic extensions of DMFT exist and, for the sake of brevity, we
have concentrated here on the first (and widely employed) variant: the dynamical vertex approx-
imation. All variants have in common that they calculate a local vertex and construct non-local
correlations from this vertex diagrammatically. In regions of the phase diagram where non-local
correlations are short range, results are similar as for cluster extensions of DMFT. However,
the diagrammatic extensions also offer the opportunity to study long-range correlations, which
is key for (quantum) criticality but also important in other situations, as well as to calculate
materials with many orbitals [15].
There is still plenty of room for improvement: starting from (i) various self-consistencies, us-
ing (ii) a cluster instead of a single site as a starting point, (iii) compactifying the vertex with
the intermediate representation (IR) in frequency space [21], the truncated unity in momentum
space [20] and the single-boson exchange [22] in Feynman diagram space, and thus allowing
for parquet DΓA calculations at lower temperatures. Another development has been (iv) the
calculation of the underlying two-particle vertices directly for real frequencies, which is pos-
sible using the numerical renormalization group (NRG) method, see Chapter “The physics of
quantum impurity models” by J. von Delft [3].
In this Chapter, we have concentrated on antiferromagnetic spin fluctuations, how they open
a pseudogap and how they mediate superconductivity. The Tc predicted for nickelates agrees
well with experiment – actually much better than what we dared to hope for. This gives us some
confidence that we are on the right track to better model and understand superconductivity, that
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we eventually have the tools to predict Tc for new materials. While many theoreticians in the
many-body community consider antiferromagnetic spin fluctuations to be at the origin of high
temperature superconductivity, the mechanism for unconventional superconductivity remains
hotly debated. Maybe through a careful analysis and predictions we can now prove that this is
indeed the microscopic mechanism for high-temperature superconductivity.
Diagrammatic extensions of DMFT such as the DΓA also offer the opportunity to study many
other phenomena and to do materials calculations. Phenomena such as changes of the topology
in strongly correlated are hitherto hardly understood, a Berezinskii-Kosterlitz-Thouless transi-
tion in two-dimensions could possibly be described, or Luttinger or spin Peierls physicists in
one dimension. All of this leaves plenty of opportunities for the next generation of physicists.
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[16] M. Kitatani, R. Arita, T. Schäfer, and K. Held, arXiv:2203.12844 (2022)

[17] N.E. Bickers: Theoretical Methods for Strongly Correlated Electrons
(Springer, 2004), chap. 6, pp. 237–296

http://www.cond-mat.de/events/correl22
http://www.cond-mat.de/events/correl18


11.30 Karsten Held

[18] M. Wallerberger, A. Hausoel, P. Gunacker, A. Kowalski, N. Parragh, F. Goth, K. Held, and
G. Sangiovanni, Comput. Phys. Commun. 235, 388 (2019)

[19] P. Gunacker, M. Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni, and K. Held,
Phys. Rev. B 92, 155102 (2015)

[20] C.J. Eckhardt, C. Honerkamp, K. Held, and A. Kauch, Phys. Rev. B 101, 155104 (2020)

[21] M. Wallerberger, H. Shinaoka, and A. Kauch, Phys. Rev. Research 3, 033168 (2021)

[22] F. Krien, A. Valli, and M. Capone, Phys. Rev. B 100, 155149 (2019)

[23] J. Kaufmann, C. Eckhardt, M. Pickem, M. Kitatani, A. Kauch, and K. Held,
Phys. Rev. B 103, 035120 (2021)

[24] T. Ayral and O. Parcollet, Phys. Rev. B 94, 075159 (2016)
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