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The analytic continuation of Monte Carlo data may appear as an exercise in achieving the un-
achievable. To understand why, let us consider the example of a fermionic finite-temperature
Matsubara Green function G(τ). For imaginary times τ ∈ [0, β] it is related to the spectral
function ρ(ω) by the integral equation

G(τ) = − 1

2π

∫ ∞
−∞

e−ωτ

1 + e−βω
ρ(ω) dω .

While calculating G(τ) from ρ(ω) is a straightforward integral, the inverse problem is hard.
This is not because we have to solve a Fredholm equation of the first kind, the difficulty rather
arises from the remarkable insensitivity of the imaginary-time data on changes in the spectral
function. To illustrate this, we write the spectral function as a sum of delta-peaks wi δ(ω−εi),
for which the imaginary-time Green function becomes a linear combination of exponentials

G(τ) = − 1

2π

∑
i

wi
(
1−nFD(εi)

)
e−εiτ = − 1

2π

∑
i

wi nFD(εi) e+εi(β−τ),

where we have introduced the Fermi-Dirac distribution nFD(ε) = 1/
(
e+βε+1

)
. While a peak at

zero energy simply contributes a constant toG(τ), the contribution of peaks at large frequencies,
|ε| � 0, is only noticeable close to τ = 0 or β, while inside the interval (0, β) it becomes
exponentially small. To reconstruct the spectral function reliably over the entire ω-range, we
thus need to know G(τ) very accurately very close to the boundaries of the interval (0, β).
Numerical simulations can give, however, only a finite number of data points,G(τj). Obviously,
this does not provide enough information to reconstruct a continuous spectral function: we
expect that there are many different spectral functions ρ(ω) that reproduce a given set of data
points {G(τj)}. Such a problem without a well-defined solution is called ill posed [1]. If we
insist on obtaining a unique result, we need to add constraints, e.g., by including additional
information about what kind of solution we consider reasonable. In addition, Monte Carlo data
are noisy. When reconstructing the spectral function, we thus need to take the accuracy of the
data into account and quantify how reliable the result is, given the noise in the input. Both types
of information, the estimate of the reliability of the data and our expectations about a reasonable
solution of the inverse problem, can be handled using Bayesian reasoning [2].
In the following we will introduce the analytic properties that allow the continuation of Green
and correlation functions. We then describe how to quantify the statistical errors in the numer-
ical data and to set up the inverse problem. In the main part we use this to give an overview
of methods to solve the inverse problem. The most straightforward approach simply performs
a least-squares fit to the data points. We explain why this approach is ill posed and how it fails
spectacularly. We then discuss the idea of regularization by introducing assumptions about a
reasonable solution. This makes the problem well posed, but dependent on prior information.
The effect of the prior information included in the regularizer can be quantified using Bayesian
techniques. We discuss how they are used to argue for the different flavors of the Maximum
Entropy method. Finally we introduce the average spectrum method which tries to avoid in-
troducing prior information by calculating ρ(ω) as a functional integral over the space of all
possible spectral functions.
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1 Setting the stage

1.1 Analytic continuation

A system at finite temperature with time-independent Hamiltonian H is described as an ensem-
ble of eigenstates, H|n〉 = En|n〉, weighted by their Boltzmann factor. The expectation value
of an operator A is thus given by

〈A〉 =

∑
n e
−βEn〈n|A|n〉∑
n e
−βEn

=
1

Z
Tr
(
e−βHA

)
. (1)

For a canonical ensemble the trace is over the N -electron Hilbert space. For a grand-canonical
ensemble we get the same expression when measuring energies relative to the chemical poten-
tial, i.e., choosing µ = 0, and taking the trace over the entire Fock space.
Time correlation functions can be calculated using the Heisenberg picture〈
A(t0+t)B(t0)

〉
=

1

Z
Tr e−βH eiH(t0+t)Ae−iH(t0+t) eiHt0Be−iHt0 =

〈
A(t)B

〉
=
〈
AB(−t)

〉
,

(2)
where the t0-independence follows from the cyclic property of the trace TrABC = TrCAB.
Monte Carlo techniques are ideal to evaluate the high-dimensional sums needed to calculate
such traces [3]. But since the time-evolution leads to complex coefficients, Monte Carlo sam-
pling will have to fight with a serious phase-problem. This can be avoided using a Wick rotation,
i.e., working in imaginary time. For this we need to analytically continue (2). This is straight-
forward: simply replace t in the analytic expression by the complex variable ζ = t−iτ and
determine for what values of ζ the result is well defined. This is most easily done using the
spectral representation, i.e., evaluating the trace in the basis of eigenfunctions〈
A(t−iτ)B

〉
=

1

Z
Tr e(it+τ−β)HA e−(it+τ)HB =

1

Z

∑
n,m

e(it+τ−β)En e−(it+τ)Em〈n|A|m〉〈m|B|n〉.

(3)
For systems with a finite number of states the sum is always analytic, while for systems whose
spectrum is not bounded from above, we need β ≥ τ ≥ 0 to maintain absolute convergence.
Thus (2) can be analytically continued to a stripe below the real axis

{
ζ ∈ C

∣∣−β ≤ Im ζ ≤ 0
}

.
We can then use quantum Monte Carlo to sample the function CAB(τ) :=

〈
A(−iτ)B

〉
for

τ ∈ [0, β]. The analytic continuation back to the real axis is a bit less obvious, since QMC
only gives us the function values, i.e., the left hand side of (3) for t = 0, but not the explicit
functional form on the right hand side, for which we would have to know all eigenenergies
and matrix elements. We can, however, define a spectral function that neatly contains all the
required information by taking the Fourier transform∫ ∞

−∞
dt eiωt

〈
A(t)B

〉
=

2π

Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉 δ
(
ω − (Em−En)

)
=: ρAB(ω) (4)

in terms of which we can write (3) as〈
A(t−iτ)B

〉
=

1

2π

∫ ∞
−∞

dω e−(it+τ)ωρAB(ω) . (5)
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For the special case t = 0 this gives us an integral equation directly relating ρAB(ω) to CAB(τ)

CAB(τ) =
1

2π

∫ ∞
−∞

dω e−ωτρAB(ω) , (6)

which is, however, not suited for practical calculations since the integral kernel, exp(−ωτ),
diverges for ω → −∞. We can get around this problem by modifying the kernel, dividing it by
a function that makes it finite, and correspondingly multiplying the spectral function to leave
the integral unchanged

C(τ) =
1

2π

∫ ∞
−∞

dω
e−ωτ

µ(ω)
µ(ω)ρAB(ω)︸ ︷︷ ︸

=:ρ̃(ω)

. (7)

A suitable kernel modification would be µ(ω) = 1 ± e−βω, which makes the kernel finite for
ω → −∞ as long as τ ≤ β, while keeping it finite for ω → +∞. To analytically continue
CAB(τ) = 〈A(−iτ)B〉 to the real axis we then solve the integral equation (with finite kernel)

CAB(τ) =
1

2π

∫ ∞
−∞

dω
e−ωτ

1± e−βω
ρ̃±AB(ω) (8)

for ρ̃±AB(ω) and use ρAB(ω) = ρ̃±AB(ω)/(1±e−βω) in (5) to calculate the analytical continuation
on the real axis. For the plus sign 1/(1±e−βω) is related to the Fermi-Dirac function nFD(−ω) =

1−nFD(ω), while for minus to the Bose-Einstein function −nBE(−ω) = nBE(ω)−1.
It is reasonable to expect that ρ̃±AB(ω) is a spectral function in its own right. Reordering the
spectral representation (4), we can write it as

ρ̃±AB(ω) = ρAB(ω)± ρAB(ω) e−βω

= ρAB(ω)± 2π

Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉 δ
(
ω − (Em−En)

)
e−β(Em−En)

= ρAB(ω)± ρBA(−ω) . (9)

Comparing with (3) and (4) we see that ρ̃±AB(ω) is the spectral function of

iG±AB(t) :=
〈
A(t)B

〉
±
〈
B(−t)A

〉
=
〈
A(t)B

〉
±
〈
BA(t)

〉
=
〈
[A(t), B]±

〉
, (10)

which, for t > 0, is the retarded correlation function GR±
AB(t) = Θ(t)G±AB(t), with Θ the step

function, Θ(t>0) = 1 and Θ(t<0) = 0. As discussed above, the first term can be analytically
continued to

{
ζ ∈ C

∣∣−β ≤ Im ζ ≤ 0
}

, while the second term can be continued to the stripe of
width β above the real axis. It is thus natural to define the Matsubara function

−GM±
AB (τ) :=

〈
T ±τ A(−iτ)B(0)

〉
(11)

with the imaginary-time ordering T ±τ A(−iτ)B(0) = Θ(τ)A(−iτ)B(0)∓Θ(−τ)B(0)A(−iτ)

taking care of selecting the appropriate analytic term for the given τ . This introduces a discon-
tinuity at τ = 0

GM±
AB (0+)−GM±

AB (0−) = −
〈
[A, B]±

〉
. (12)
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From the cyclic property of the trace in (3), it follows that the Matsubara functions for positive
and negative τ are related (anti)symmetrically, i.e. for τ ∈ (0, β)

GM±
AB (β − τ) = −

〈
A(−i(β−τ))B

〉
= −

〈
B(−iτ)A

〉
= −

〈
BA( iτ)

〉
= ∓GM±

AB (−τ). (13)

For τ ∈ (0, β] we obviously have (remember the sign introduced in (11))GM±
AB (τ) = −CAB(τ),

so that from (8) we obtain

GM±
AB (τ) = − 1

2π

∫ ∞
−∞

dω
e−ωτ

1± e−βω
ρ̃±AB(ω) for τ ∈ [0, β]. (14)

It is convenient to choose the sign in the kernel modification to obtain a simple relation for the
sum rule, which directly follows from the spectral representation, using |n〉〈n| = 1

1

2π

∫ ∞
−∞

dω ρ̃±AB(ω) =
〈
[A, B]±

〉
. (15)

For observables and bosonic operators we thus choose the commutator, while for fermionic
Green functions it is more convenient to choose the anticommutator.
For the special case B = A† we find

ρ̃±
AA†

(ω) =
2π

Z

∑
n,m

(
e−βEn ± e−βEm

) ∣∣〈n|A|m〉∣∣2 δ(ω − (Em−En)
)
, (16)

which is obviously non-negative for the fermionic case, for the bosonic sign choice it is non-
negative for ω = (Em−En) > 0, non-positive for ω < 0, and vanishes at least linearly at ω = 0.
We can thus define a non-negative function ρ̃−AB(ω)/ω which is regular at ω = 0

lim
ω→0

ρ̃−AB(ω)

ω
=

2πβ

Z

∑
n,m

e−βEn
∣∣〈n|A|m〉∣∣2 δ(En−Em) (17)

so that we can rewrite (14) with non-negative functions as

GM+
AA†

(τ) = − 1

2π

∫ ∞
−∞

dω
e−ωτ

1 + e−βω
ρ̃+
AA†

(ω) (18)

GM−
AA†

(τ) = − 1

2π

∫ ∞
−∞

dω
ω e−ωτ

1− e−βω
ρ̃−
AA†

(ω)

ω
, (19)

which, when A is an annihilator, applies to the diagonal elements of Green functions.
When A is an observable, we see from (9) that ρ̃−AA(ω) = −ρ̃−AA(−ω), so that we can restrict
the integral to ω > 0

GM−
AA (τ) = − 1

2π

∫ ∞
0

dω
ω
(
e−ωτ + e−ω(β−τ)

)
1− e−βω

ρ̃−AA(ω)

ω
when A hermitian. (20)

We could actually cancel the factor ω in the integrand since ρ̃−AA(ω ≥ 0) is non-negative by
itself, but when calculating susceptibilities it is common to keep it, since it shows the behavior
for ω → 0, (17), more clearly.
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1.2 Analytic properties of the integral equations

We can gain some insight into the integral equations (18) and (19) by realizing that they are
intimately related to the Euler and Bernoulli polynomials [4]. Introducing the reduced variables
x = βω and y = τ/β ∈ [0, 1] and the functions f(x) = ρ̃±(x/β)/β (scaled to conserve the
sum rule) and g(y) = GM±(βy) we obtain, for the fermionic case

g(y) = − 1

2π

∫ ∞
−∞

dx
e−xy

1 + e−x
f(x) , (21)

from which we see that, for fixed kernel, the spectral function is spread out over an ever wider
range as we go to lower temperatures. The scaled kernel of this equation is essentially the
generating function of the Euler polynomials En(s) on s ∈ [0, 1], which are defined by

2est

et + 1
=
∞∑
n=0

En(s)
tn

n!
. (22)

With s = τ/β and t = −βω we find from (18)

GM+(τ) = − 1

4π

∞∑
n=0

En(τ/β)
(−β)n

n!

∫ ∞
−∞

dω ωn ρ̃+(ω) (23)

that the fermionic Matsubara function is a linear combination of Euler polynomials, where the
expansion coefficients of En(τ/β) is proportional to the n-th moment of the spectral function.
Since the Euler polynomials are not orthogonal, to determine the moments of ρ̃ from GM+(τ),
we first have to find the dual functions En(s) with

∫ 1

0
dsEn(s)Em(s) = δn,m. Integrating them

with the generating function (22) we obtain∫ 1

0

dsEn(s) est =
tn

n!

et + 1

2
, (24)

which is solved by

En(s) =
(−1)n

2 n!

(
δ(n)(s−1) + δ(n)(s)

)
, (25)

where δ(n)(s−a) is the n-th derivative of the delta function at s = a (to make the evaluation for
a = 0 and 1 unique, we consider the limit from inside the interval of integration). Integration
by parts then produces (−1)n times the n-th derivative of the rest of the integrand at a. Using
this in (23) and rewriting the Matsubara function at β as that at 0−, eq. (13), we find that the
discontinuity in the n-th derivative of the Matsubara function is proportional to the n-th moment
of the spectral function

dnGM+(β)

d τn
+
dnGM+(0)

d τn
=
dnGM+(0+)

d τn
− d

nGM+(0−)

d τn
= −(−1)n

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (26)

The higher moments contain the information about the spectral function at large frequencies.
Extracting the derivatives from Monte Carlo data for G(τ) is difficult. Instead, they can be
sampled directly: For τ > 0 we have, (11),

−GM+(τ) =
〈
A(−iτ)B

〉
=

1

Z
Tr e−βHeτHAe−τHB . (27)



Analytic Continuation 6.7

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -10  0  10  20

(2
l+

1
) 

i l(1
) (x

/2
)/

c
o

s
h

(x
/2

)

x

l=0
l=1
l=2
l=3
l=4
l=5
l=6

Fig. 1: Dependence of the scaled Legendre kernel (2l+1) i
(1)
l (x/2)/cosh(x/2) on the order l.

For l = 0, Gl contains information about the spectral function close to the Fermi level, while
for increasing l it probes ever larger frequencies. As the Legendre polynomials themselves, the
kernel is even/odd for even/odd l.

Taking the derivative with respect to τ brings down the Hamiltonian to the left and the right of
A, producing 〈[H, A(−iτ)]B〉. Repeated derivatives produce repeated commutators defined by
[H; A]n :=

[
H, [H; A]n−1

]
and [H; A]0 := A as in the Baker-Campbell-Hausdorff formula.

The moments can then be determined directly by sampling the expectation values〈[
[H; A]n, B

]〉
= −(−1)n

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (28)

Working with the Euler polynomials can become cumbersome due to their lack of orthogonality.
This inconvenience can be overcome by expressing them in terms of orthogonal polynomials,
e.g., shifted Legendre polynomials Pl(2y−1). When the Matsubara function is expanded as [5]

GM+(τ) =
∞∑
l=0

√
2l+1

β
Gl Pl(2τ/β − 1) with Gl=

√
2l+1

∫ β

0

dτ Pl(2τ/β − 1)GM+(τ)

the expansion coefficients are related to the spectral function via (18) by

Gl = (−1)l+1
√

2l+1
β

4π

∫ ∞
−∞

dω
i
(1)
l (βω/2)

cosh(βω/2)
ρ̃(ω) , (29)

where i
(1)
l (x) are the modified spherical Bessel functions of first kind. As shown in Fig. 1, for

increasing l the integral kernel probes spectral features at higher and higher frequencies. From
the derivatives of the recursion relation (2l+1)Pl(x) = P ′l+1(x) − P ′l−1(x) and (26) we find
that the n-th moment of the spectral function is given by a sum over all even or odd Legendre
coefficients, starting at l = n

(−1)n+1 2

n!

∞∑
k=0

√
4k + 2n+ 1

β2k+n+1

(
2(k+n)

)
!(

2(k−n)
)
!
G2k+n =

1

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (30)

For bosonic Matsubara functions we can obtain similar results using the Bernoulli polynomials
Bn(s) whose generating function is directly related to the bosonic kernel.
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1.3 Preparing the data

Certainly the most important aspect of preparing Monte Carlo data for analytic continuation
is the decision what data to sample. As we have seen, the information about spectral features
further away from the chemical potential is concentrated in the Matsubara function extremely
close to τ = 0 and β. Reconstructing the spectral function from data given on a uniform τ -grid,
we can therefore only expect to get reasonable results close to the chemical potential. Using, on
the other hand, the derivatives of the Matsubara function at τ = 0 and β gives us the moments
of the spectral function, which, as we know, e.g., form the Lanczos method [6], accurately
characterize the spectral function over the entire frequency range using just a few tens of the
lowest moments.
The second concern is to properly characterize the statistical errors in the Monte Carlo data.
Considering the integral equation

g(y) =

∫
K(y, x) f(x) dx , (31)

the actual numerical data is not given as the function g(y) but as vectors of M discrete data
points g = (g1, . . . , gM)† representing g(y). The mean over K independent samples is then

ḡ =
1

K

K∑
k=1

gk (32)

with its statistical uncertainty being characterized by the M×M covariance matrix

C =
1

K(K−1)

K∑
k=1

(
gk − ḡ

)(
gk − ḡ

)†
. (33)

By the central limit theorem the probability density of measuring ḡ given the covariance matrix
C instead of the exact result gexact is then

p(ḡ| gexact,C) =
1

(2π)M/2 detC
e−(ḡ−gexact)†C−1(ḡ−gexact)/2. (34)

This probability will play a central role in the reconstruction of the spectral function represent-
ing gexact. It is, therefore, crucial to have an accurate estimate of C. Rewriting it as

C =
1

K(K−1)

∑
k

(gk − ḡ)(gk − ḡ)† =
1

K(K−1)

∑
k

gk g
†
k −

1

K−1
ḡ ḡ†

and realizing that g g† is the (scaled) projector onto g, we see that the covariance matrix is a
linear combination of K projectors to one-dimensional subspaces. We therefore need K > M

independent samples gk in (33) to have a chance of obtaining a non-singular covariance ma-
trix. Thus, reducing the discretization error requires taking more samples. The easiest way for
obtaining independent samples are independent Monte Carlo runs, e.g., on a parallel computer.
If we do not have enough CPUs available, we need to construct independent samples from a
sequential run. This can be done, e.g., using the blocking technique described in appendix, A.1.
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For the numerical solution of the integral equation (31) we also have to discretize f(x) into a
vector f = (f1, . . . , fN)†, e.g., by representing it as a piecewise constant function of value fn
on interval n. The integral equation then becomes a simple linear equation g = Kf , where the
kernel matrix is obtained, e.g., from the Riemann sum [7]

g(ym) =
∑
n

K(ym, xn)wn f(xn) , (35)

with wn the width of interval n or, when the functions are expanded in an orthonormal set of
functions |ψm〉 like in the Legendre expansion of the Green function, it is given by

gm =
∑
n

∫
dy

∫
dxψm(y)K(y, x)ϕn(x) fn =

∑
n

〈ψm|K|ϕn〉 fn . (36)

Assuming f is the exact model, i.e., it gives the exact data,Kf = gexact, it follows from (34)

p(ḡ|f ,C) ∝ e−(ḡ−Kf)†C−1(ḡ−Kf)/2 (37)

Factorizing the inverse covariance matrix, C−1 = T †T , e.g., by Cholesky decomposition, we
can absorb the explicit dependence on C by introducing g̃ := T ḡ and K̃ := TK(

ḡ −Kf
)†
C−1

(
ḡ −Kf

)
=
(
g̃ − T̃ f

)†(
g̃ − T̃ f

)
=
∥∥g̃ − T̃ f∥∥2

. (38)

The covariance of the transformed data g̃ is then the unit matrix, i.e. the transformation produces
uncorrelated data point g̃n that all have the same (unit) errorbar.

2 Optimization methods

After discretization of model f and data g and transformation to g̃, analytic continuation is
reduced to solving the linear system

g̃ = K̃f . (39)

Nothing could be easier than that! When the number of data points M we are given equals the
number of points N at which we want to know the model, the solution is unique, f = K̃−1g̃,
as long as the kernel is not singular. When M > N the model is overdetermined so that in
general there will be no solution. Normally, however, we want to know the model at many more
positions than we are given data points, M < N so that the solution is underdetermined. A
natural choice is then the f that gives the best fit to the data.

2.1 Least squares and singular values

When we ask for a best-fit, we first have to define what we mean by that. Least-squares methods
define “best” in terms of the Euclidian norm: minimize χ2(f) := ‖g̃ − T̃ f‖2. We can justify
this choice using Bayesian reasoning: As we have noted in (37), the probability of measuring
g̃ when the true model is f is given by p(g̃|f) = (2π)−M/2 exp(−χ2(f)/2). We can invert
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this relation using Bayes’ theorem [2], p(B|A) p(A) = p(A,B) = p(A|B) p(B), stating that
the probability of outcome A and B can be written as the probability of B given A times the
probability of A, or, equivalently, as the probability of A given B times that of B. For the
relation between model and data this implies

p(f | g̃) =
p(g̃|f) p(f)

p(g̃)
. (40)

The most probable model f given g̃ thus maximizes p(g̃|f) p(f). In the absence of any further
information about possible models it is reasonable to assume that p(f) is the same for all f , i.e.,
to use an “uninformative prior”. A model that maximizes p(f | g̃) is then one that maximizes
exp

(
−χ2(f)/2

)
. It is called a “maximum likelihood estimator” and gives a best fit in the least-

squares sense. Since the rank of the kernel matrix, rankK ≤ min(N,M), for M < N the
least-squares solution will not be unique: We can add any vector that is mapped byK into zero,
without changing the fit. The least-squares problem is thus ill-posed. The usual way of making
the solution unique is to ask in addition that fLS has vanishing overlap with any vector that is
mapped to zero, i.e., fLS is orthogonal to the null space of K̃.
A convenient tool for the theoretical analyzing least-squares problems is the singular value
decomposition (SVD) of the matrix K̃ = UDV †, where U is a unitary M×M matrix whose
column vectors |um〉 define an orthonormal basis in data space and V likewise is a unitary
N×N matrix with columns |vn〉 spanning the space of models, while D is a diagonal M×N
matrix with diagonal elements d1 ≥ d2 ≥ . . . ≥ dmin(N,M) ≥ 0. For the underdetermined case,
M < N , the singular value decomposition can be pictured as

K̃ =
U D

V † .

For the least-squares solution it is convenient to define the reduced singular value decomposi-
tion, where the null space of K̃ is dropped in V , pictorially,

K̃ = U D̂ V̂ † .

The singular value decomposition provides a spectral representation of the kernel

K̃ =

min(M,N)∑
i=1

|ui〉 di 〈vi| (41)

which allows us to write the residue vector for M < N as

|g̃〉 − K̃|f〉 = |g̃〉 −
∑
i

|ui〉 di 〈vi|f〉 =
∑
i

|ui〉
(
〈ui|g̃〉 − di〈vi|f〉

)
(42)

so that the least-squares solution (for which the residue vanishes when dM > 0) is

|fLS〉 =
∑
i

〈ui|g̃〉
di

|vi〉 or, equivalently, fLS = V̂ D̂−1U †g̃ . (43)
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Fig. 2: Least-squares solution for the analytical continuation of a fermionic imaginary-time
Green function. The exact data (bottom left) is constructed from a simple model spectral func-
tion consisting of three Lorenz peaks (top left). We add noise of amplitude 10−8 to the data
(bottom right). The least-squares solution given the noisy data is shown in the top right panel.
It varies over ten orders of magnitude showing no resemblance at all to the original model.

As simple and elegantly the least-squares solution can be constructed, as useless it is for the
analytic continuation problem. This is illustrated in Fig. 2, showing that fLS, despite giving a
perfect fit to the data and, in particular, fulfilling the sum rule for

∑
n fn, is completely domi-

nated by numerical noise. What is the reason for this catastrophic failure? Making the noise in
the data explicit, g̃ = g̃exact +∆g̃ we see that

|fLS〉 = |fexact〉+
∑ 〈ui|∆g̃〉

di
|vi〉 . (44)

When the kernel has close to vanishing singular values, the noise component is divided by a
number close to numerical accuracy. This is, in fact, what we are seeing in Fig. 2: dividing
noise of order 10−8 by the numerical epsilon of double precision numbers (of order 10−16),
we would expect the least-squares solution to vary over about eight orders of magnitude. We
can verify this picture more quantitatively by looking at the singular values of the kernel matrix,
shown in Fig. 3. The exponential decay of the singular values seen in this example actually is the
hallmark of an ill-conditioned problem. It is a consequence of the orthogonality of the modes
|vi〉: With increasing i they develop more and more nodes. Integrating over these oscillating
modes with the positive fermionic Green function kernel means that the integral will decrease
with the number of nodes. Once the singular value reaches machine precision, the singular
modes become numerically degenerate. These modes contribute negligibly to the fit of the data,
but cause the catastrophic numerical instability of the least-squares result.
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Fig. 3: Singular values of the kernel matrix used in Fig. 2 on a logarithmic scale. The singular
values decay exponentially until leveling off at a value determined by the numerical accuracy of
the calculation. The insets show some of the singular modes |vi〉. With increasing mode index i,
i.e., decreasing singular value, they have an increasing number of nodes. Once the singular
value reaches the numerical accuracy, the singular modes become numerically degenerate so
that the SVD routine returns arbitrary linear combinations as exemplified here for |v80〉.

2.2 Non-negative least-squares

When motivating the least-squares approach using Bayesian reasoning, (40), one assumption
was that we have no knowledge whatsoever about the possible models. When we are interested,
e.g., in a diagonal spectral function, this is not quite true: We actually do know that f cannot
be negative, cf. (18). To incorporate this information, the prior probability p(f) should, in
fact, vanish when f has a component fn < 0. In other words, we really should maximize
the likelihood over non-negative models only: maxf≥0 exp(−χ2(f)). This approach is called
non-negative least squares fitting (NNLS). A practical algorithm is discussed in A.2. It will, in
general, not give a perfect fit, χ2(fNNLS) > 0, but what is not fitted is the part of the data that is
incompatible with a non-negative model, i.e., pure noise.
As shown in Fig. 4, using non-negative least squares gives a dramatic improvement over the
least-squares solution. Just incorporating the information about the non-negativity of the model
reduces the oscillations in the result by nine orders of magnitude, bringing it into a reasonable
range. This is because the amplitude of oscillating modes is now strongly limited by non-
negativity. In fact, the constraints give the modes with small singular value or in the null space
an important role: All modes except the first have nodes, so they can often not be included in the
solution with their optimal value (43) without violating the constraint. Since the contribution of
the modes with tiny singular value to the fit is tiny, they are free to arrange such that the modes
with larger di can move closer to their optimum. Thus in NNLS the behavior of all modes is
coupled, making the fit much more robust. Moreover, the non-negativity constraint makes the
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Fig. 4: Non-negative least-squares solution of the same problem as in Fig. 2. Using our knowl-
edge about the non-negativity of the spectral function gives a dramatic improvement, bringing
the solution form a scale of the order of ±1010 to a positive function with peaks of the order of
102 so that the original model shown on the left can actually also be seen in the plot on the right
(dashed line). While the NNLS solution does show some resemblance to the original function it
is far to spiky, even in the present case of exceedingly small noise (∼ 10−8) in the data.

problem well posed, i.e., giving a unique solution. Still, the spiky NNLS solutions indicate that
we are still overfitting the noise in the data and this problem becomes stronger when considering
data with noise levels larger than the ∼ 10−8 used for the example.
While the least-squares approaches do take information about the covariance of the data into
account, via the modification of the kernel from K to K̃, so that the data points that are given
with higher accuracy have more weight, the results are completely independent of the absolute
scale ofC: Multiplying it by a scalar σ2 simply rescales all singular values of K̃ by 1/σ, which
is compensated but the same rescaling of g̃, leaving the solution unchanged. Thus the least-
squares type solutions completely neglect the information about the overall noise in the data.
This problem can be addressed when we include our intuition that the “true” solution should
show some degree of smoothness. We then have to introduce a measure of smoothness, which
puts an absolute scale in the fitting problem. This is the idea behind regularization approaches.

2.3 Linear regularization

To understand the failure of the least-squares methods better, we expand the noisy data and the
fit in their respective singular modes |um〉 and |vn〉. For the example of Fig. 2 this is shown
in Fig. 5. It shows that, initially, the expansion parameters of g decrease somewhat faster with
the mode index i than the singular values. Consequently the expansion of the least-squares
solution also decrease with i. But once the 〈ui|g〉 reach the level of the noise in the data,
here σ = 10−8, at i ≈ 30, the expansion coefficients of the data remain constant while the
singular values decrease further, leading to exponentially increasing contributions of the highly
oscillating modes with large i that render the least-squares solution useless. The situation is
quite similar for the non-negative least squares solution. The main difference being that the
contributions of the modes with small or vanishing singular value are bounded |〈vn|fNNLS〉| . 1

by the non-negativity combined with the sum-rule for the model.
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Fig. 5: Picard plot for the example of Fig. 2. Since the model is symmetric, the expansion coef-
ficients for the odd modes should vanish. For noisy data, instead of vanishing, the coefficients
of odd modes are at the noise level. The even coefficients initially decay somewhat faster than
the singular values so that the corresponding coefficients of the least-squares solution decrease
with i. Once the 〈ui|g〉 have decreased to the noise level, here 10−8, they remain at that level
while the singular values decrease further. This leads to exponentially increasing contributions
of the corresponding modes to the least-squares solution.

By maximizing the likelihood e−χ
2(f)/2, with or without non-negativity constraint, we appar-

ently overfit the noise that becomes most visible in the modes for which the singular value
is below their contribution to the (noisy) data. The assumption behind this is that the exact
solution cannot be dominated by the highly oscillating modes with vanishing singular value,
i.e., that 〈ui|gexact〉/di, for large i decreases with the mode index. This is called the Picard
condition. When it is not fulfilled, the reconstruction of the exact model is hopeless, since the
relevant information is contained in vanishingly small coefficients 〈ui|gexact〉 that will be com-
pletely masked by the noise, cf. (44). When the exact model is not highly oscillating, the Picard
condition holds and we have a chance of reconstructing the model from noisy data.
When the Picard condition is fulfilled we can get rid of a large part of the noise by suppressing
the contribution of modes with singular value below the noise level in the data. This amounts
to a least-squares fit with a truncated singular value decomposition, where the singular values
beyond a limiting index are set to zero, di>itrunc := 0.
A somewhat more refined method is to continuously switch off the small singular modes. This is
called Tikhonov regularization. Introducing a regularization parameter α, the Tikhonov solution
is given by

fT(α) =
M∑
i=1

di
d2
i + α2

〈ui|g̃〉, (45)

which in the limit α→ 0 becomes the least-squares solution (43), while for α→∞ the solution
vanishes. For finite regularization parameter, modes with large singular value di � α are
hardly affected, while the contribution of small singular values to fT(α) vanishes. To employ
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Fig. 6: Non-negative Tikhonov regularization for the example of Fig. 2, but with noise level
increased from 10−8 to 10−4. The insets show the solutions fT(α) at selected values of α. The
dotted line shows the exact model for comparison. For small α the method overfits the noise,
leading to strongly oscillating solutions, while the quality of the fit changes little. For large α
the method underfits the data, leading to a rapid increase in χ2(fT(α) and a loss of structure
in the reconstructed models. The solid line indicates the expected noise in the data, χ2 = M ,
relevant for the discrepancy principle.

Tikhonov regularization for non-negative models we need to formulate it as an optimization
problem. Expanding in singular modes and completing the square, it can be written as

‖K̃f − g̃‖2+α2‖f‖2 =
M∑
i=1

(
〈ui|g̃〉 − di〈vi|f〉

)2
+ α2

N∑
n=1

〈vi|f〉2 (46)

=
M∑
i=1

α2〈ui|g̃〉
d2
i + α2

+

(
di〈ui|g̃〉√
d2
i + α2

+
√
d2
i +α2〈vi|f〉

)2+ α2

N∑
i=M+1

〈vi|f〉2

which attains its minimum
∑

i α
2〈ui|g̃〉/(d2

i +α2) for the unique solution (45). In Bayesian
terms, (40), Tikhonov regularization chooses p(f) ∝ e−α

2‖f‖2/2 as prior probability.
Alternatively, we can express Tikhonov regularization as a least-squares problem with an ex-
panded kernel and data as

min
f

(
‖K̃f − g̃‖2 + α2‖f‖2

)
= min

f

∥∥∥∥∥
(
K̃

α1N

)
f −

(
g̃

0N

)∥∥∥∥∥
2

. (47)

Performing the minimization over all models gives Tikhonov regularization, restricting the op-
timization to f ≥ 0 defines the non-negative Tikhonov regularization method.
The crucial question is how to choose the regularization parameter α. Fig. 6 shows the results of
non-negative Tikhonov regularization for the example of Fig. 2 increasing, however, the noise
level from 10−8 to 10−4 to make the problem not too easy. For small α the solutions show
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strong oscillations, while the mean-square misfit, χ2, increases only little with α. For large α
the solution becomes featureless except for the peak at the Fermi level, which is already present
in the leading singular mode, cf. Fig. 3, while χ2(fT(α)) rapidly gets worse. A compromise
between overfitting of the noise in the data and smoothness of the model should be reached
when α is chosen such that the deviation from the optimum fit χ2(fT(α)) = ‖g̃ − K̃fT(α)‖2

equals the noise expected in M data points g̃m with unit covariance: χ2 = M . This criterion for
choosing the regularization parameter is called the discrepancy principle [8]. We can formulate
it as a constrained optimization problem with α−2 playing the role of the Lagrange parameter:

min
f
‖f‖2 +

1

α2

(∥∥g̃ − K̃f∥∥2 −M
)

(48)

has the same variational equation as (46).
The regularization parameter α is the crucial ingredient of any regularization approach. Its role
is to strike a balance between fitting the noisy data and keeping the solution smooth in some
sense. While it is clear that with increasingly accurate data the chosen α should get smaller,
there is no unique procedure for actually determining its value. The discrepancy principle is just
one very reasonable way of choosing α but there is a plethora of other approaches, see [8] for a
first overview. Likewise, the choice of the regularizer is not unique. Instead of ‖f‖2 = 〈f |1|f〉
we could choose any positive semidefinite N×N matrix M and use 〈f |M |f〉 ≥ 0 instead.
An obvious choice follows when we remember that f is the discretized version of the model
function f(x). As in (35), assuming a uniform x-grid, we can then write

1

N
‖f‖2 =

1

N

N∑
n=1

|fn|2 ≈
∫
dx |f(x)|2. (49)

Changing the integration variable from x to z, the integral and its Riemann sum in the new
coordinates becomes∫

dx |f(x)|2 =

∫
dz

dx

dz

∣∣f(x(z)
)∣∣2 ≈ 1

N

N∑
n=1

dx(zn)

dz

∣∣f(x(zn)
)∣∣2 (50)

so that Tikhonov regularization, M = 1, on the old grid becomes regularization on the z-grid
with a diagonal matrixM that contains the Jacobian factors Mnn = dx(zn)

dz
on the diagonal.

Alternative choices ofM impose smoothness by implementing finite-difference versions of the
first or higher derivatives, choosing, e.g.,

N−1∑
n=1

|fn − fn+1|2 = 〈f |



1 −1 0 0 · · · 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
...

...
0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 1


|f〉. (51)
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A regularizer that penalizes the k-th derivative does not have full rank. For, e.g., the first deriva-
tive matrix in (51), all constant models give zero. In practice there is, however, no problem
since the information about the low moments of the model are usually well contained in the
modes with the largest singular values.
Going back to the Tikhonov regularizer, we might wonder why it actually has the effect of
smoothing the solution. After all, ‖f‖2 =

∑
n |fn|2 is local, i.e., does not depend on the change

in neighboring values. So if we permuted the coordinate values {1, . . . , N} in an arbitrary
way, the value of ‖f‖2 would remain unchanged. The main reason why the identity regularizer
M = 1 leads to smooth models is that it reduces the effect of modes with small singular value.
As we have seen in Fig. 3 these modes are highly oscillatory, while the modes that are least
affected are the ones with few nodes that are relatively smooth. Still, even the leading mode
is not entirely featureless. While a simple first derivative regularizer like (51) would reduce
the contribution of such a mode, that is usually strongly supported by the data, Tikhonov will
leave it largely unaffected. In that sense, Tikhonov regularization respects the variations in the
important modes. To emulate this with a derivative regularizer would require to laboriously
taylor anM suitable for every specific kernel K̃.
There is also a second aspect. As we noted above, fT(α→∞) = 0. When we impose a sum
rule, however, we force the solution to be finite and find from

min
f

(∑
n

f 2
n + λ0

(
1−

∑
n

fn

))
(52)

that the Tikhonov regularizer prefers a flat solution, fn = 1/N , or, in the case of a general
diagonal matrix, fn ∝ 1/Mnn. These are the models resulting in the absence of data, i.e., for
diverging variance resulting in vanishing K̃ and g̃, except for the 0-th moment sum-rule. They
are called the default model of the regularizer.
We are, of course, not limited to bilinear regularizers of the type 〈f |M |f〉. An important non-
linear regularizer is the entropy of the model. It is the basis of the maximum entropy approach.

2.4 Maximum entropy

Maximum entropy methods differ from Tikhonov-type regularization in the assumptions they
make about the solutions. While Tikhonov is based on the Picard condition giving preference
to the modes with large singular value, maximum entropy favors models that contain as little
information as possible. This is measured by the information entropy, see A.3 for details. Using
the generalized entropy (89)

H(f ;ρ) = −
∑
n

(
fn ln

fn
ρn
− fn + ρn

)
(53)

as regularizer that should be maximized, we have to solve the non-linear optimization problem

min
f

(
χ2(f)/2− αH(f ;ρ)

)
, (54)
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where we use α instead of α2 as in (46) to conform with the conventions used, e.g., in [9].
A convenient property of the non-linear entropy regularizer is that it automatically ensures the
positivity of the solution since the gradient

− ∂H(f ;ρ)

∂fn
= ln

fn
ρn

(55)

diverges for fn → 0 while the gradient of the fit function

∂ 1
2
χ2(f)

∂fn
=

∂

∂fn

1

2

∑
m

(
g̃m −

∑
n′

K̃mn′fn′
)2

= −
∑
m

K̃†nm

(
g̃m −

∑
n′

K̃mn′fn′
)

(56)

is always finite, so that any solution of the variational equations fn has the same sign as ρn.
Since it is easy to also calculate the Hessians

∂2 1
2
χ2(f)

∂fn′∂fn
=
∑
m

K̃†nmK̃mn′ and − ∂2H(f ;ρ)

∂fn′∂fn
=

1

fn
δnn′ (57)

it is straightforward to solve the non-linear minimization problem using, e.g., the Levenberg-
Marquardt method. The only slight complication being that finite steps in the iteration might
change the sign of some component fn.
In the absence of data, minimizing (54), i.e, setting (55) to zero, we find f = ρ. Thus ρ is
the default model and, as in (88) or (50) it can be related to the choice of the grid. Even when
we have decided on a default model, we still have to determine the value of the regularization
parameter. Choosing it according to the discrepancy principle is called historic MaxEnt [9].
Other flavors of the maximum entropy method determine the regularization parameter using
Bayesian methods. For this we write the entropy regularizer as a prior probability

p(f |ρ, α) ∝ e+αH(f ;ρ) (58)

so that the minimization (54) becomes equal to maximizing the posterior probability, cf. (40),

p(f |g̃,ρ, α) =
p(g̃ |f ,ρ, α) p(f |ρ, α)

p(g̃)
∝ e−χ

2(f)/2+αH(f ;ρ) , (59)

where we have used that the QMC data g̃ is actually independent of our choice of regulariza-
tion parameter and default model. The Bayesian approach to determining the regularization
parameter uses the posterior probability of α

p(α |g̃,ρ) =

∫ ∏
n

dfn√
fn

p(f , α |g̃,ρ) =

∫ ∏
n

2d
√
fn

p(f |g̃,ρ, α) p(g̃,ρ, α)

p(g̃,ρ)
(60)

obtained from marginalizing out f , i.e., integrating over the space of models f . The peculiar
choice of the integration measure, 2d

√
fn, is discussed in [9]. It naturally appears in the ex-

pression for the entropy when using Stirling’s approximation to one order higher than in the
derivation given in A.3, which rather suggests that the factor 1/

√
fn should be considered part

of the entropic prior and not the integration measure.



Analytic Continuation 6.19

For historic MaxEnt it was not necessary to know the normalized probabilities (58) and (59).
When, however, we want to compare the probabilities of different renormalization parameters,
we need to determine the normalization of the distributions that depend on α by, again, inte-
grating over f

Zχ2(g̃) =

∞∫
−∞

∏
n

dfn e−χ
2(f) = (2π)M/2 (61)

ZH(ρ, α) :=

∫ ∏
n

dfn
e+αH(f ,ρ)∏
n′

√
fn′

(62)

Since the likelihood is a Gaussian, the integral is straightforward, cf. (34). The normalization
of the entropic prior is more difficult. In MaxEnt such functional integrals are approximated by
Gaussian integrals obtained from expanding the exponent to second order about its maximum.
As already discussed above, the entropy term is maximized when the model equals the default
model. The second-order expansion (57) is thus given by the diagonal matrix −δnn′/ρn, i.e.,
the entropy becomes just a Tikhonov regularizer with general diagonal matrix. Also expanding
1/
√
fn ≈

(
1−(fn−ρn)/2ρn

)
/
√
ρn, the normalization of the entropy prior thus is approximated

by that of the simple Tikhonov prior without non-negativity constraint [9]

ZH(ρ, α) ≈
∏
n

∞∫
−∞

dfn
e−

α(fn−ρn)2

2ρn

√
ρn

(
1− fn − ρn

2ρn

)
=

(
2π

α

)N/2
. (63)

To calculate p(α |g̃,ρ), (60), we still have to choose a prior probability p(g̃,ρ, α). From the
discrepancy principle it seems reasonable that it should be independent of the data normalized
to have a unit covariance matrix. If we also assume that α is independent of the default model,
we only have to choose p(α). Assuming that the prior is scale invariant

p(α) dα
!

= p(sα) d(sα) (64)

one obtains the Jeffreys prior p(α) ∝ 1/α [2], which might not be the most appropriate choice,
since the scale of the regularization parameter is fixed by the noise in the data, which we know.
Using all this for calculating the posterior probability of the renormalization parameter, there
are two different flavors of how α enters the analytical continuation: Historic MaxEnt chooses
the α that maximizes p(α |g̃,ρ) to determine fhistoric = f(αmax). Bryan’s method no longer
insists on picking a specific value of α. The approach rather determines the model as the average
over all regularization parameters, weighted with their posterior probability

fBryan =

∫ ∞
0

dα f(α) p(α |g̃, ρ) . (65)

It might seem that the MaxEnt approaches could be improved by actually performing the in-
tegrals over model space exactly rather than using simple Gaussian approximations that even
violate the non-negativity of the models, which is one of the precious priors that we are sure
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of. But doing these integrals is fiendishly hard. A second drawback of MaxEnt, or rather of
all regularization approaches, is the need to deal with a regularization parameter, introducing
the need for making assumptions about its behavior, its prior probability and the like, for which
there is no apparent solution. If only we could efficiently integrate over model space there might
be a way of eliminating all these complication arising from the need to regularize. Instead of
looking for a solution that maximizes some posterior probability, we could ask for the average
over all possible models, weighted with their likelihood. This approach which is free of explicit
regularization parameters is the average spectrum method.

3 Average spectrum method

The average spectrum methods is an appealing alternative to the optimization approaches. It
was probably first proposed by White [10] and reinvented several times after. The basic idea
is of striking elegance: The spectral function is obtained as the average over all physically
admissible functions, weighted by how well they fit the data

fASM(x) :=(2π)−M/2

∫
f(x)≥0

Df f(x) e−χ
2[f ]/2. (66)

Due to the ill-conditioning of the inverse problem there are very many functions that differ
drastically but essentially fit the data equally well. Taking the average, we can thus expect that
the spectral features not supported by the data will be smoothed out, providing a regularization
without the need for explicit parameters. So far the practical application of this conceptually
appealing approach has, however, been hampered by the immense computational cost of nu-
merically implementing the functional integration.
It is worth emphasisizing that the non-negativity constraint is essential. An unconstrained in-
tegration over the Gaussian in (66) actually produces a least-squares solution. Since the width
of the likelihood increases with the inverse of the singular value this would, of course, be nu-
merically very inefficient, and since the width diverges for the modes in the null space of the
kernel, their contribution will never converge to a definite value, reflecting that the problem is
underdetermined.
When we discretize the model function f(x) as discussed in Sec. 1.3, the functional integral
becomes

fASM ∝
N∏
n=1

∫ ∞
0

dfn f e−χ
2(f)/2, (67)

where the N -dimensional integral can be evaluated by Monte Carlo techniques. The most
straightforward approach is to perform a random walk in the space of non-negative vectors f ,
updating a single component, fn → f ′n, at a time. Detailed balance is fulfilled when we sample
the new component f ′n for the conditional distribution ∝ e−χ

2(f ;f ′n)/2 with

χ2(f ; f ′n) :=
∥∥ g̃ − K̃f + K̃nfn︸ ︷︷ ︸

=:g̃n

−K̃nf
′
n

∥∥2
= K̃†nK̃n

(
f ′n − K̃†n g̃n/K̃†nK̃n

)2

, (68)
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where K̃n is the n-th column of K̃. We thus have to sample f ′n from a univariate Gaussian of
width σ = 1/‖K̃n‖ centered at µ = K̃†n g̃n/‖K̃n‖2 and truncated to the non-negative values
f ′n ∈ [0,∞). This can be done very efficiently, e.g., as described in A.4.
Still, sampling components can be very slow because the width of the Gaussian (68) is, in
general set by the inverse of the largest singular value, i.e., the random walk performs only
exceedingly small steps. This is even more evident when sampling spectral functions, where
we cannot change just a single fn without violating the sum-rule (15). A way around is to
introduce global moves along the principal axes of χ2, i.e., along the singular modes.
Transforming to the new bases h := U †g̃ in data and e := V †f in model space diagonalizes

χ2(f) =
∥∥U †g̃ −DV †f∥∥2

=
M∑
i=1

(hi − diei)2 (69)

so that in the new basis the integral (67) factorizes into Gaussian integrals

eASM
i ∝

∫
f≥0

dei ei e
−(hi−diei)2/2. (70)

Without non-negativity constraint the integrals would be independent and result in a least-
squares solution. With the constraint they are coupled via their range of integration. Updating
modes ei → e′i is restricted by the condition f ′ = f + (e′i−ei)Vi ≥ 0, where Vi is the i-th
column vector of V . This is equivalent to e′i ≥ ei−fn/Vni for Vni > 0 and correspondingly for
Vni < 0 so that e′i is constrained to

max

{
fn
Vni

∣∣∣∣Vni < 0

}
≤ ei − e′i ≤ min

{
fn
Vni

∣∣∣∣Vni > 0

}
. (71)

Sampling modes is usually much more efficient than sampling components: For modes with
large singular value the Gaussian is narrow so that the random walk quickly jumps close to
the optimal value hi/di and then takes small steps around there. For modes with small or
zero singular value the distribution is very broad so that the random walk can take large steps,
allowing for an efficient sampling. Still, sampling may become inefficient when non-negativity
restricts a mode to a very narrow interval. This will happen when f has regions where it
becomes very small, e.g., in the tail of the spectral function. Then the scale for the step size is
not given by the singular value but rather by the width of the interval (71). Also this problem
can be overcome by using a real space renormalization group technique, introducing blocks
of varying size in which modes are sampled. This way the method can interpolate efficiently
between sampling components, i.e., blocks of size 1, and sampling modes, i.e., blocks of sizeN .
Details of the method and its performance are given in [11, 12].
Using this approach, we find that the results of the average spectrum method actually depend
on the choice of the discretization (67). This is not a problem of the particular method, but a
general feature of the functional integral and would also affect, e.g., MaxEnt were it to do the
normalization and marginalization integrals exactly, see e.g. Sec. 6.2 of [2]. We find that the
choice of the coordinates for the discretization grid plays the role of a default model, while the
number of grid points N acts as a regularization parameter.
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fit histogram: reliable results

result for N>8 independent of N: 
default model consistent with data

too few points: 

bad numerics

Fig. 7: Average spectrum method on a Gaussian grid determined from NNLS for an optical
conductivity reconstructed from Matsubara data [11]. The resulting spectral shown below are
rather insensitive to the choice of the regularization parameter, the number of grid points N ,
except for N = 8 where the coarse grid leads to discretization errors when evaluating the
Fredholm integral. The exact model is shown as the dashed line for comparison. The top panel
shows the histograms of χ taken during the Monte Carlo sampling of the functional integral.
The small variations in the histograms indicate a robust choice of the grid.

The reason for this is that the notion of sampling uniformly, i.e., with a flat prior, is tied to the
choice of a specific grid. This is most easily understood when we consider what happens when
we double the number of grid points. On the original grid we sample f ∈ [0,∞). On the denser
grid we represent f over the large interval by two values f̂1 and f̂2 over intervals of half the
width, so that f = f̂1 + f̂2. If we sample the f̂i ∈ [0,∞) with a flat prior, p(f̂i) = const., this
implies a probability distribution for f

p(f) =

∫ ∞
0

df̂1 p(f̂1)

∫ ∞
0

df̂2 p(f̂2) δ
(
f̂1+f̂2−f

)
∝
∫ f

0

df̂1 = f (72)

which is not flat. Properly defining the flat prior as p(f̂i) = limλ→∞ e−f̂i/λ/λ, p(f) becomes a
gamma distribution. More generally, we find that sampling with a flat distribution on a particular
grid defines a measure for the functional integral (66) represented by a gamma process [11].
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fit histogram: unreliable results

too few points: 

bad numerics

result for N>8 shift with N: 
default model not consistent with data

Fig. 8: Average spectrum method on a Lorentzian grid of the same width as the Gaussian in
Fig. 7. The resulting spectral functions shown below are now quite sensitive to the choice of
the regularization parameter, the number of grid points N . In the top panel we see from the
histograms of χ that the fit sizeably deteriorates with increasing N , indicating problems with
the choice of the grid.

Still, we can give a practical recipe for determining the regularization parameters and checking
the quality of the results. To find the grid type (default model), we use non-negative least-
squares to determine the width of the spectrum. This implies a Gaussian grid of particular width.
We then vary the number of grid points to check how the results change with increasing N.
When N is too small, the result will be inaccurate because of discretization errors in evaluating
the integral (31) entering χ2. When N becomes to large there is a rapidly increasing number
of vectors f that, despite having a small weight e−χ

2(f)/2, contribute to the average due to their
sheer number. In between there will be a region, where the results are fairly independent of the
actual choice of N. This is shown in Fig. 7. When the grid is not chosen well, as in Fig. 8,
where the grid uses a Lorentzian density of the same width as the Gaussian in the previous
figure, results vary strongly with N.
This approach gives already reliable and robust results. When we have to deal with particu-
larly difficult cases, we can use Bayesian techniques to make the method even more robust by
sampling over different grids, albeit at an increased computational cost [11].
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4 Conclusions

As for so many problems, there is no magic solution to the problem of analytic continuation.
Any method can only reconstruct what is in the data and must substitute missing information
ideally by exact prior knowledge or, otherwise, by mere assumptions about the solution. The
most important aspect of analytic continuation is thus encountered already before the solution of
the inverse problem is even started. Depending on what features of the model we are interested
in, we have to decide where to measure the data. If we want, e.g., to reconstruct the spectral
function far from the Fermi level, it does not help to just have highly accurate values for the
Green function when they are not close enough to τ = 0 or β to give information about the
discontinuity in its derivatives.
Moreover, it is deceiving to just look at the single result returned by a regularization approach.
There is not “the” solution, rather every method produces an expected solution with its uncer-
tainty quantified by a non-intuitive N×N covariance matrix. This is, however, rarely analyzed
because it is hard to calculate and difficult to interpret. Still, there are approaches to estimate
the error in observables derived by integrating over the spectrum. They are nicely discussed
in [9] and should be used wherever possible.
We have presented the approaches to the analytic continuation problem in the order of increas-
ing sophistication and accuracy — and numerical cost. The analysis of QMC data should ide-
ally follow this progression until the desired information about the spectral function has been
reliably obtained. A Picard plot will give a first impression of how much information is actu-
ally contained in the data and what can be expected from a straightforward linear regulariza-
tion. Despite the uncontrolled approximations in the practical flavors of MaxEnt, the approach
has developed into the standard approach for analytical continuation. The average spectrum
method, that is now numerically competitive, provides an appealing alternative since it makes
all assumptions via the choice of the discretization explicit, while being numerically exact.
The most important lesson is that results of analytic continuation must not be overinterpreted.
When the results depend on the details of the method, they rather reflect the choices made by
the approach than the data. Thus before interpreting details of the spectral function, we have
to make sure that they are robust under (reasonable) variations in the regularization parameters.
The discrepancy principle and the fit histogram are practical methods for doing this.
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A Technical appendices

A.1 Blocking method for correlated data

Let us assume we have an ergodic Markov chain Monte Carlo method, e.g., using Metropolis
sampling, that generates a set of K data points m1, . . . ,mK drawn from a probability distribu-
tion p(m) dm and we are interested in the mean value µ =

∫
dmp(m)m. The obvious estimate

for µ is the average m̄ =
∑K

k=1 mk/K. It will, of course, be different for different Monte Carlo
runs, but, by the central limit theorem, for large K the averages m̄ of different runs will tend to
be distributed as a Gaussian centered at µ with variance

σ2(m̄) = 〈m̄2〉 − 〈m̄〉2 =
1

K2

K∑
k,l=0

(
〈mkml〉 − 〈mk〉〈ml〉

)
, (73)

where 〈 · 〉 is the average over all possible Monte Carlo runs producing K data points. How can
we estimate σ2(m̄) from the simulation data of a single run? Splitting the double sum

σ2(m̄) =
1

K

1

K

K∑
k=1

(
〈m2

k〉 − µ2
)

︸ ︷︷ ︸
=〈m2〉−µ2=:s0

+
1

K2

∑
k 6=l

(
〈mkml〉 − µ2

)
(74)

we see that for uncorrelated data, 〈mkml〉 = 〈mk〉〈ml〉 for k 6= l, the variance is given by
s0/K. But in general, samples obtained from Markov chain Monte Carlo will be positively
correlated, so that σ2(m̄) ≥ s0/K. We can eliminate this correlation using an elegant renor-
malization group technique [13]. For this we consider the transformation of the original data
set m1, . . . ,mK of K samples (assuming K is even) into half as many data points, obtained by
averaging

m̂k̂ :=
m2k̂−1 +m2k̂

2
. (75)

Obviously, the average of the new data points
∑K/2

k̂=1
m̂k̂/(K/2) is still m̄ and thus must have

the same distribution as the averages of the original data. Consequently, σ2(m̄) must remain in-
variant under the blocking transformation (75). Looking at the uncorrelated part of the variance
for the blocked data m̂k̂ and remembering that the ensemble average 〈m2

k〉 is independent of k,
we see that

ŝ0 =
1

K/2

K/2∑
k̂=1

(
〈m2

2k̂−1
+ 2m2k̂−1m2k̂ +m2

2k̂
〉

4
− µ2

)
=
s0

2
+

1

2K/2

K/2∑
k̂=1

(
〈m2k̂−1m2k̂〉 − µ

2
)

(76)
contains part of the correlations not contained in s0. Therefore ŝ0/(K/2) ≥ s0/K. Under
repeated blocking transformations the uncorrelated part of the variance will thus increase. When
it reaches a plateau, i.e., a fixed-point under the blocking transformation, it becomes equal to
σ2(m̄) and the blocked data has become uncorrelated.
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Fig. 9: Estimate of the standard deviation of the average of correlated data obtained with the
blocking method. Initially the variance is severely underestimated but the estimate increases
with each blocking step until a plateau is reached, at which point the blocked data has become
uncorrelated. By that time the distribution of the m̂k̂ has become Gaussian of width ĉ0, as shown
in the insets. Eventually the number of blocked samples, K̂ = K/2n, become so small that the
estimates become unreliable.

We can try to estimate the ensemble average s0 from the data from one specific simulation run
as
∑K

k=1(m2
k − m̄2)/K. Taking the ensemble average and comparing to s0

1

K

K∑
k=1

(
〈m2

k〉 − 〈m̄2〉
)

=
1

K

K∑
k=1

((
〈m2

k〉−〈m̄〉2
)
−
(
〈m̄2〉−〈m̄〉2

))
= s0

(
1− 1

K

)
we find that the unbiased estimator actually is

s0 ≈ c0 :=
1

K−1

K∑
k=1

(
m2
k − m̄2

)
⇒ σ2(m̄) ≈ 1

K(K−1)

K∑
k=1

(
m2
k − m̄2

)
. (77)

In an actual implementation of the blocking method, we repeatedly block the data and calculate
the corresponding estimator of the uncorrelated variance ŝ0/K̂. An example is shown in Fig. 9.
As expected, ĉ0/K̂ increases with each blocking step until it reaches a plateau. There the
blocked data m̂k̂ are uncorrelated and, by the central limit theorem, approach Gaussian variables
of variance σ2(m̂) = K̂σ2(m̄). For such variables the variance of the variance σ2(m̄) is given
by 〈(ĉ0/K̂)2〉 − 〈ĉ0/K̂〉2 = 2σ4(m̄)/(K̂−1), which provides us with the errorbars. Since the
number of blocked data points is halved in each step, eventually the blocked sample becomes
very small and ĉ0/K̂ starts to fluctuate, also indicated by rapidly increasing errorbars. We
can then identify the plateau by checking when ŝ0/K̂ does not change between blocking steps
within its error bar.
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A.2 Non-negative least-squares algorithm (NNLS)

The model f fitting a given data vector g best in the least-squares sense minimizes the norm of
the residual vector χ2(f) = ‖Kf − g‖2. At the minimum fLS the gradient w vanishes

wn(fLS) :=
1

2

∂ χ2(f)

∂fn

∣∣∣∣
LS

= Re
(
K†(KfLS−g)

)
n

= 0 ∀n . (78)

Since χ2 is a non-negative quadratic form in f stationary points must be minima

χ2(fLS+δ) = χ2(fLS) + 2δTw(fLS) + ‖Kδ‖2 ≥ χ2(fLS) . (79)

The least-squares fit can be found from the singular value decomposition (SVD)K† = V DU †

fLS = V D−1U †g , (80)

where the diagonal matrix D has dimension K = rank(K) while the matrix U is M×K and
V is N×K-dimensional. In terms of the SVD the gradient (78) is given by

w(f) = ReV D(DV Tf −U †g) . (81)

This way of calculating the gradient is numerically more stable than calculating it directly in
terms ofK. It also immediately shows that the gradient vanishes for fLS.
Finding the best fit, min‖Kf − g‖2, under the constraint f ≥ 0 (non-negative least-squares,
NNLS) is more complicated. When all components of the unconstrained solution are non-
negative, (fLS)n ≥ 0, it is obviously also the solution of the constrained problem. When there
are components (fLS)n < 0 we might expect that the constrained fit assumes its minimum on
the boundary, (fNNLS)n = 0, where the gradient is positive wn > 0. These are the Karush-
Kuhn-Tucker conditions [14]:

fn > 0 and wn = 0 or fn = 0 and wn ≥ 0 . (82)

We distinguish the two cases by defining the two sets P = {n| fn > 0} and Z = {n| fn = 0}
which partition the set of indices, P ∪ Z = {1, . . . , N}.
When fKT fulfills the Karush-Kuhn-Tucker conditions, it minimizes χ2(f) on f ≥ 0. To see
this we consider a vector fKT + δ with δz ≥ 0 so that fKT + δ ≥ 0. Then

χ2(fKT+δ) = χ2(fKT) + 2δTw(fKT) + ‖Kδ‖2 ≥ χ2(fKT) (83)

since δTw =
∑

n δnwn =
∑

n∈P δnwn+
∑

n∈Z δnwn ≥ 0, where the first sum vanishes because
of the gradient, while in the second sum both factors in each term are non-negative. Conversely,
when fNNLS solves the non-negative least-squares problem it must fulfill the Karush-Kuhn-
Tucker condition, otherwise an infinitesimal change (respecting non-negativity) of a component
violating it could lower χ2. Thus, to solve the NNLS problem we just have to find a vector that
fulfills the Karush-Kuhn-Tucker conditions. For this we can simply go through all possible
partitionings of the indices {1, . . . , N} = P ∪ Z . For a given partitioning we determine the
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least-squares solution on the indices in P , i.e., we minimize ‖KPPf − g‖2, where PP is the
projector to the space spanned by the components in P . This makes sure that the gradients for
these components vanish, wp = 0, while fz = 0. If also fp ≥ 0 for all p ∈ P and wz ≥ 0 for
all z ∈ Z , we have found the NNLS solution, otherwise we try the next partitioning. The only
problem is that there are 2N partitionings of the N indices (each index can be either in P or Z).

A practical algorithm [14] considers possible partitionings in a much more efficient way. We
start from some partition for which fP > 0 and wP = 0, e.g., an empty positive set, P = {}
and f{} = 0. Given a set P and the corresponding fP for which the Karush-Kuhn-Tucker
condition is not yet fulfilled, we add the component i with the most negative gradient. Least-
squares fitting on the expanded set P ′=P ∪ {i} will produce an improved fit χ2(fP ′)<χ

2(fP):
because of the negative gradient, the new component will not stay at zero but rather take a
positive value. In case fP ′ ≥ 0, we calculate the new gradient. If it is non-negative, we have
found the Karush-Kuhn-Tucker solution, otherwise we repeat the procedure. Each iteration will
produce a non-negative solution with improved fit, so that we will converge to the minimum of
χ2(f) under the constraint f ≥ 0.

In general, however, the least squares solution fP ′ will have negative components. In this case,
we can find a mixing with the previous fit fα = (1−α)fP+αfP ′ with α ∈ (0, 1), that brings the
most negative component of fP ′ to zero. Since χ2(fα) ≤ (1−α)χ2(fP ′) + αχ2(fP) < χ2(fP)

the fit will still be improved. We remove the components where fα vanishes from P ′ and
perform a least-squares fit on the new set, repeating the procedure until we get a non-negative
least squares solution. This must happen after a finite number of iterations, since in each step at
least one element is removed from the positive set while the resulting fα ≥ 0 keeps improving
the fit χ2(fα) < χ2(fP). Thus we can continue the outer loop with fα, calculating the new
gradient and adding the component where it is most negative to the positive set.

Since each step produces a f ≥ 0 with improved fit, the algorithm does not visit any partitioning
twice and will thus always converge. At worst it may take 2N steps, but in practice the down-hill
search produces a solution after trying less than hundred partitionings. Numerically, the most
delicate part is the calculation of the gradient, which should be stabilized using a factorization
of the kernel. Obviously, checking the Karush-Kuhn-Tucker condition for the gradient must
take the numerical accuracy into account. Moreover, the implementation may not converge,
when, after adding the component with the most negative gradient, the least-squares fit gives
that component a negative value. This can only happen as a consequence of numerical errors.
In this case we rather include the component with the second most negative gradient in P .

Note that the non-negative least squares solution fNNLS is unique, unlike the least-squares so-
lution (80), to which we can add any multiple of a vector with zero singular value without
changing the fit. While the least-squares problem is thus ill-posed when there are vectors that
do not contribute to the fit, these vectors play a crucial role in non-negative least squares fitting:
They take values such that the modes that are important for the fit can approach their optimal
value as closely as possible without violating the constraint. Thus NNLS is well posed.



Analytic Continuation 6.29

1: function NNLS(K, g)
2: f ← 0
3: Z ← {1, . . . , N} . below we use the abbreviation P = {1, . . . , N} \ Z
4: loop
5: w ←K†(Kf − g) . for robust calculation use, e.g., SVD
6: if w[Z] ≥ 0 then return f
7: end if
8: i← argmin(w[Z]) . find component with most negative gradient
9: Z ← Z \ {i}

10: loop
11: f ′ ← LS(KPf , g) . LS solution on components P
12: . fi > 0, if not: numerical error in gradient! Do not pick i again this round
13: if f ′[P ] > 0 then
14: f ← f ′

15: break
16: end if
17: α← min

{
fi

fi−f ′i

∣∣∣ i ∈ P ∧ f ′i ≥ 0
}

18: f ← (1− α)f + αf ′ . now f ≥ 0 and fi = 0 for i = argmin
19: P ← P \ {i|fi = 0}
20: end loop
21: end loop
22: end function

Fig. 10: Function that returns the non-negative least-squares solution f ≥ 0 of g = Kf .

A.3 Shannon entropy

When developing The Mathematical Theory of Communication, Claude Shannon introduced the
bit as the amount of information needed to decide between two equally probable events [15].
Receiving an unlikely (surprising) message should convey more information than receiving a
likely one, and the information contained in two independent messages should be the sum of
the information carried by each individually. These axioms lead to − log2 pi as the information
contained in receiving a message of probability pi. Summing over a set ofM possible messages
of probabilities pi and weighting the information contained in them by their probability defines
the average information or entropy of an information source

H({pi}) = −
∑

pi log2 pi . (84)

It gives a lower limit to the number of bits needed for encoding the N messages. The maximum
number of bits, log2N, is needed when we know least about which message to expect, i.e.,
when all probabilities are the same. In the opposite limit, when one of the messages is certain,
we need not encode it at all. Thus the entropy of an information source measures our ignorance
before receiving one of the possible messages.
Changing the base of the logarithm, logb(x) = log2(x)/ log2(b), for b > 1 simply multiplies
the entropy by a positive constant, i.e., changes the units in which we measure information. For
convenience, we use the natural logarithm, ln, working in natural units, 1 nat ≈ 1.44 bits.
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An alternative derivation [2] of (84) starts by considering microstates representing the probabil-
ities as pi = ni/M by placing N (distinguishable) objects into M bins. Since we can place any
of theN objects into any of theM bins, there areMN such states. The number of different ways
of placing the objects into bins and obtaining the same set of {ni}, i.e., the same macrostate,
is also easily determined: We can pick any n1 of the N objects and put them into the first bin.
Then we can pick any n2 of the remaining N − n1 objects and put them into the second bin.
The probability of realizing a macrostate {n1, . . . , nM} is thus

1

MN

(
N

n1

)(
N−n1

n2

)(
N−n1−n2

n3

)
· · ·
(
nM
nM

)
=

1

MN

N !

n1!n2! · · ·nM !
.

Taking the logarithm and using the Stirling approximation lnn! ≈ n lnn− n we find

−N lnM +N lnN −N −
M∑
i=1

(
ni lnni − ni

)
= N

(
ln

1

M
−
∑
i

pi ln pi

)
,

which is proportional to the H({pi}) minus the entropy of a flat distribution {1/M}.
Subtracting the entropy of the flat distribution becomes crucial when taking the limit of a con-
tinuous probability distribution: encoding an infinite number of messages will, in general, take
an infinite number of bits. Subtracting − log 1/M keeps the limit M → ∞ finite. To see this,
we discretize a continuous distribution p(x) on an equidistant grid of M points, pi = p(xi)∆x

with ∆x = (xmax−xmin)/M = (
∫
dx)/M , and take the limit of the Riemann sum

−
M∑
i=1

pi ln

(
pi

1/M

)
= −

M∑
i=1

∆xp(xi) ln

(
p(xi)∆x

1/M

)
→ −

∫
dx p(x) ln

(
p(x)

1/
∫
dx

)
.

This defines the entropy of a distribution p(x)

H[p] = −
∫
dx p(x) ln

(
p(x)

1/
∫
dx

)
. (85)

We can find the p(x) that maximizes this functional from the variational principle. Remember-
ing that the functional derivatives are defined by the expansion

H[p+δp] = H[p] +

∫
dx

δH[p]

δp(x)
δp(x) +

1

2

∫
dx dx′

δ2H[p]

δp(x′)δp(x)
δp(x′) δp(x) +O3(δp)

we read off the first variation from

H[p+δp] = −
∫
dx (p+ δp)

(
ln(p+ δp)︸ ︷︷ ︸

=ln p+ln(1+ δp
p

)=ln p+ δp
p

+O2

+ ln
∫
dx
)

= H[p]−
∫
dx

(
1 + ln

p(x)

1/
∫
dx

)
︸ ︷︷ ︸

=− δH[p]
δp(x)

δp+O2,

where we have used ln(1+x) = x−x2/2+· · · ). In second order we find δ2H[p]/δp(x′) δp(x) =

−2δ(x−x′)/p(x) ≤ 0 so that the stationary points are maxima. Imposing normalization of the
0-th moment via a Lagrange parameter, the variational equation becomes

0 =
δ

δp(x)
H[p] + λ0

(
1−
∫
dx p(x)

)
= −1− ln p(x)− ln

∫
dx− λ0
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which is solved by the constant distribution, where λ0 = −1 is fixed by normalization

p(x) =
1∫
dx

e−(1+λ0) =
1∫
dx

. (86)

Inserting into (85) we find H[1/
∫
dx] = 0, as it must by construction.

Likewise, we can ask which distribution maximizes the entropy, when we know in addition its
first moment µ =

∫
dx x p(x). The variational equation then contains two Lagrange parameters

0 =
δ

δp(x)
H[p] + λ0

(
1−
∫
dx p(x)

)
+ λ1

(
µ−

∫
dx x p(x)

)
= −1− ln

p(x)

1
∫
dx
− λ0 − λ1 x

and we obtain a Boltzmann distribution

pµ(x) =
1∫
dx

e−(1+λ0+λ1x), (87)

where λ0 and λ1 are fixed by solving the system
∫
dx pµ(x) = 1 and

∫
dx x pµ(x) = µ. Likewise,

when we also know the variance of p(x), maximizing the entropy results in a Gaussian.
Given the entropy functional, it is natural to ask what happens under a change of variable.
Remembering that density functions transform as p(x) dx = p(z) dz, we find

H[p] = −
∫
dx

dz
dz p(z)

dz

dx
ln

(
p(z) dz

dx

1/
∫
dx

)
= −

∫
dz p(z) ln

(
p(z)

ρ(z)

)
,

where we introduced ρ(z) dz = dx/
∫
dx. It reflects how the intervals on x change under the

under transformation to z. When we define ρ(x) = 1/
∫
dx, we see that the form of the entropy

functional is invariant under coordinate transformations

H[p | ρ] = −
∫
dx p(x) ln

p(x)

ρ(x)
. (88)

This is the relative entropy or Kullback-Leibler divergence. From lnx ≤ x−1 it follows that
H[p] ≤ 0. By construction, the maximum is attained for p(x) = ρ(x). The relative entropy
describes the average information contained in the distribution p(x) when what we expected was
the distribution ρ(x). The prior ρ(x) plays the role of a density of states: from the functional
derivative of the relative entropy δH[p]/δp(x) = −1− ln(p(x)/ρ(x)) we see that the solutions
of the variational equations for p(x) derived above become proportional to ρ(x).
For convenience we might want to allow non-normalized densities of states ρ̃(x) and corre-
spondingly drop the normalization constraint for p̃(x). If we write [16]

H̃[p̃ | ρ̃] =

∫
dx

(
p̃(x)− ρ̃(x)− p̃(x) ln

p̃(x)

ρ̃(x)

)
(89)

we obtain from the variational equation δH̃/δp̃ = 0 (without normalization constraint) the
solution p̃(x) = ρ̃(x) with H̃[ρ̃ | ρ̃] = 0 as for (88).
We note that a flat prior ρ(x) = const. is bound to the choice of variable: Given any ρ(z) we
can always transform to x(z) ∝

∫ z
ρ(z′) dz′ to obtain ρ(x) = ρ(z) dz/dx = const., where x

must be restricted to a finite interval to be normalizable.
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A.4 Sampling from a truncated normal distribution

It is straightforward to generate a random variable x with a normal probability distribution

pn(x) =
1√
2π

e−x
2/2 (90)

using, e.g., the Box-Muller method [17]. When taking a constraint into account, we need,
however, variables with a normal distribution restricted to some interval, x ∈ [a, b].
x ≥ a: When x is restricted to be larger than some value a, a straightforward approach is to
sample normally distributed values x until we find an x > a. The probability for finding such
an x is, on average, just the integral over the Gaussian

P̄n(a) =

∫ ∞
a

dx pu(x) = I(a) . (91)

This is easily written in terms of the complementary error function erfc(z) = 2/
√
π
∫∞
z
dt e−t

2 .
For a > 0

I(a ≥ 0) =
1

2
erfc(a/

√
2) , (92)

while for a < 0

I(a ≤ 0) = 1− I(−a) . (93)

The average acceptance probability (91) is shown in figure 11. For a to the left of the peak of
the normal distribution it is very likely that a proposed random variable x is larger than a and
thus is accepted. For a > 0 this probability is, however, rapidly decreasing to zero, meaning
that we would have to propose very many normally distributed variables x until we find one that
is larger than a. This is very inefficient, so for a > 0 we need a better approach. Following [18],
we generate random variables x ≥ a with an exponential probability distribution

pexp(x) = α e−α(x−a) . (94)

These are easily obtained as x = a − ln(u/α)/α from uniformly distributed random numbers
u ∈ [0, 1). To transform these exponentially distributed random numbers x ≥ a into the de-
sired normally distributed random numbers we use the rejection method [17], accepting x with
probability proportional to the ratio pn(x)/pexp(x) of the desired and the proposed probability
distribution functions. To obtain a probability, we introduce a prefactor to make sure that for no
x ≥ a the ratio exceed one. Completing the square in the exponential we find

pacc(x;A) =
1

A

e−x
2/2

e−α(x−a)
=

1

A
e−(x−α)2/2︸ ︷︷ ︸

≤1

eα
2/2−αa !

≤ 1 . (95)

For x ≥ a the choice A = eα
2/2−αa maximizes the acceptance probability, which becomes

pacc(x) = e−(x−α)2/2 . (96)
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Fig. 11: Efficiency of the methods for sampling from a normally distributed variable x restricted
to the interval [a,∞): For a < 0 the average acceptance probability for an unrestricted nor-
mally distributed random variable (P̄n(a), full line) is larger than 1/2, while for a > 0 it
rapidly approaches zero. For positive a we therefore propose exponentially distributed random
numbers (P̄exp(a ≥ 0), dotted line), for which the average acceptance probability is at least√
π/2e ≈ 0.76.

The corresponding average acceptance probability is then the integral of the product of the
probability for proposing a value x times the probability for accepting it

P̄exp(a ≥ 0) =

∫ ∞
a

dx pexp(x) pacc(x) =
√

2π α e−α
2/2+αa I(a) (97)

In this expression α is still a free parameter, which we choose to maximize the average accep-
tance. Solving the variational equation we obtain

α =
a+
√
a2 + 4

2
. (98)

We note that for a ≥ 0, P̄exp(a) has the same form as (91), differing, however, by a prefactor
γexp =

√
2π α e−α

2/2+αa which grows faster than the complementary error function decays.
Therefore, as can be seen from Fig. 11, for a > 0 this method is dramatically more efficient
than sampling from an unbounded uniform distribution. Thus for a < 0 we choose the method
with γn = 1, while for a ≥ 0 we choose γexp, obtaining an average acceptance probability
P̄γ(a) = γ(a) I(a).
x ≥ b: When we need to sample a normal variable constrained from above we can use the
same methods as above, sampling −x ≥ −b, with average acceptance probability P̄γ(−b).
a ≤ x ≤ b: When the random variable is constrained to a finite interval, an obvious approach
is to first sample an x ∈ [a,∞) and to accept it if x ≤ b. The average acceptance probability is
then P̄γ(a) for proposing an x ∈ [a,∞), times

∫ b
a
dx pn(x)/

∫∞
a
dx pn(x) for accepting it, i.e.,

P̄γ(a, b) = γ
(
I(a)− I(b)

)
. (99)
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For large intervals this will be an efficient approach, while for narrow intervals the acceptance
will go to zero. In this case it becomes more efficient to propose x uniformly distributed on
[a, b] and accept them with probability

pacc = e−(x2−m2)/2 , (100)

wherem is the coordinate at which the normal distribution assumes its maximum value on [a, b],
ensuring that pacc ≤ 1. When 0 ∈ [a, b] then m = 0, otherwise m = min(|a|, |b|). The average
acceptance probability for this approach is

P̄u(a, b) =

∫ b

a

dx
1

b− a
e−(x2−m2)/2 =

em
2/2

b− a
√

2π
(
I(a)− I(b)

)
. (101)

Again, (101) differs from (99) only by its prefactor γu, which increases as the width of the
interval b− a becomes smaller.
For a given interval [a, b] we then choose the most efficient method:

• a < 0 < b: Since a < 0 we have to choose between normal sampling with γn = 1 and
uniform sampling with γu =

√
2π/(b − a). For γn = γu both methods have the same

average acceptance probability. Solving this gives us the critical width w0 =
√

2π. For
intervals b−a < w0 we thus use uniform sampling with γu, otherwise γn. The worst case
is P̄γ=1(0, w0) = I(0)− I(w0) = erf(

√
π)/2 ≈ 0.49.

• 0 < a < b: Since a > 0 we choose between exponential sampling with γexp =√
2π α e−α

2/2+αa and γu =
√

2π ea
2/2/(b − a). Solving γexp = γu gives the critical

width w>(a) = e(α−a)2/2/α. For intervals b − a < w>(a) we use uniform sampling
with γu, otherwise γexp. The worst case is P̄γ(0, w>(0)) = γexp

(
I(0) − I(

√
e)
)

=√
π/2e erf(

√
e/2) ≈ 0.68.

• a < b < 0: We sample −x in the interval from −b to −a as described above.

Overall, we can thus sample from a truncated normal distribution with an average acceptance
larger than erf(

√
π)/2 ≈ 0.49.

The generalization to sampling from a Gaussian distribution exp(−(x−µ)2/2σ2)/
√

2πσ of
variance σ centered at µ restricted to x ∈ [a, b] is then straightforward: use x=σx̃+µ, where x̃ is
sampled, as described above, from a normal distribution (90) on the interval [(a−µ)/σ, (b−µ)/σ].
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