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1 DFT and DMFT: Role of reference systems

In this lecture we give an introduction to the theoretical description of interacting electron sys-
tem based on non-perturbative, strong-coupling expansions around optimal reference systems.
The Density Functional Theory (DFT) and its Local Density Approximation (LDA) based on
the simplest reference system related to the homogeneous electron gas with constant external
potential with the same Coulomb electron-electron interactions (see Fig. 1). Such a reference
system can be solved via the numerically exact diffusion Quantum Monte Carlo scheme for the
ground state energy as function of electron density [1]. On other hand, the Dynamical Mean-
Field Theory (DMFT) for strongly interacting fermionic systems is based on the strong coupling
expansion around an effective impurity reference system (Fig. 1). This scheme become exact in
the limit of infinite lattice dimension (z →∞) [2].
For finite lattice dimension we can start from the DMFT reference system and use analytical per-
turbation theory for non-local correlation effects. The frequency dependent effective impurity
DMFT problem can nowadays be efficiently solved within the continuous-time Quantum Monte
Carlo (ct-QMC) scheme [3]. Therefore the perturbation theory needs to be formulated in the
action path integral formalism. We give a brief introduction to the path integral over fermionic
Grassmann fields and formulate a general scheme for the expansion around the DMFT solution
using a special dual space transformation. We discuss here a general way to include nonlocal
correlations beyond DMFT [4] which based on the dual-fermion path-integral formalism [5].
Consider the noninteracting, “kinetic” part Ht of the Hubbard model first [6]. This is fixed
by specifying the hopping-matrix elements tij between sites i and j. In the absence of the
local Hubbard-interaction term, Ht is easily diagonalized. For a Hubbard model on a lattice,
diagonalization is achieved by Fourier transformation of hopping parameters to k-space, and
one has the normal “band structure”. For a single orbital model it is particularly simple: εk = tk
with band width W. If, on the other hand, only the local part of the Hamiltonian is kept, i.e.,
the Hubbard interaction HU with interaction strength U and the local term of Ht fixed by the
on-site energy ε0, the diagonalization of the Hamiltonian is trivial again and reduces to the
diagonalization of a single “Hubbard atom”.
The great success of the DMFT approach is related with the interpolation between these two
limits [7]. For the half-filled Hubbard model on the infinite-dimension Bethe lattice at half-
filling the DMFT gives the exact description of the Mott-transition [8] between the weak-
coupling (U/W� 1) metallic state and the strong-coupling (U/W �1) insulating paramag-
netic state [9]. In a nutshell, DMFT maps the correlated Hubbard lattice problem onto the
self-consistent solution of an effective Anderson impurity problem with a single interacting
Hubbard atom (interaction strength U ) in a non-interacting fermionic bath (which mimics the
rest of the crystal).
Now we can think how to incorporate nonlocal correlations beyond the DMFT: since the Hub-
bard and the Anderson-impurity model share the same interaction part, one can think of the
Hubbard model as the impurity model plus a residual term ∝ (tk−∆ν) and treat this perturba-
tively. Since this term is frequency dependent we need a novel perturbation theory based on the
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Fig. 1: Schematic representation of reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous elec-
tron gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-
field theory (DMFT) with an effective impurity problem as a reference system, defined by a
fermionic bath, specified by a hybridization function ∆. (iii) GW+DMFT with correlated atom
in a fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening
of long-range Coulomb (V ) interactions.

action formalism. One may view this idea as a generalization of the Kohn-Sham idea in density
functional theory (DFT) [10, 11] of an optimal reference system, but with a crucial difference.
Here, not an interacting homogeneous electron gas, but an effective impurity model, tailored to
the problem of strong correlations, serves as the reference system, see Fig. 1. Since at the zeroth
order of this perturbative expansion, i.e., on the level of the DMFT problem, we already have an
interacting problem and since the perturbation is momentum and frequency dependent, one is
forced to replace the Hamiltonians by actions within the path-integral formalism. Note that the
fermion path integral can also be used to formulate the DMFT itself [7,13]. Now, the separation
of the local and nonlocal terms is achieved by a Hubbard-Stratonovich transformation applied
to the single-particle (tk − ∆ν)-term [5]. This provides us with a new action. Moreover, it is
formally possible to integrate out the original local degrees of freedom and in this way gener-
ate an effective action in the transformed, so-called dual-fermion representation [5]. Note that
integrating out the local degrees of freedom is not only a formal step but can be achieved in
practice, by solving the impurity problem within the numerically exact ct-QMC method.

The dual action consists of a bare dual propagator (non-local part of the DMFT Green function)
G̃0

k,ν and a local but frequency-dependent effective potential related to scattering processes of
two, three, and more dual particles on the impurity site. The simplest two-particle dual potential
coincides with the fully connected part of the screened impurity interaction vertex γωνν′ , which
can be calculated with the impurity ct-QMC solver as a function of bosonic (ω) and fermionic
(ν, ν ′) Matsubara frequencies. Normally, correlations between three particles on the DMFT
impurity site are much weaker than two-particle correlations and can be ignored. The same ap-
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plies to higher-order terms. One can think of the dual-fermion formalism as an expansion in the
order of local multi-particle correlation functions. This means that “bare” interactions between
dual fermions are related with the connected part of the screened impurity vertex. Standard di-
agrammatic techniques can be applied for calculations of the bold dual propagator G̃k,ν , which
allows to obtain the nonlocal self-energy for the original fermions [5] and to describe nonlocal
correlations beyond the DMFT.

The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation, Eq. (46). In the dual space, this simply reduces to

∑
k G̃

0
k,ν = 0 and means that, on

average over the whole Brillouin zone, ∆ν optimally approximates the electron spectrum εk,
including its local correlation effects. Therefore, the noninteracting dual fermions correspond to
strongly correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small
and reasonably described by perturbative summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Functional approach

We introduce a general functional approach which will cover the DFT, Dynamical Mean Field
Theory (DMFT) and Baym-Kadanoff (BK) theories [12, 13]. Let us start from the full many–
body Hamiltonian describing electrons moving in the periodic external potential of ions V (r)

with the chemical potential µ and interacting via Coulomb law: U(r−r′) = 1/|r−r′|. We use
the atomic units ~=m= e= 1. In the field-operator representation, the Hamiltonian has the
form

H=
∑
σ

∫
dr ψ̂†σ(r)

(
−∇

2

2
+V (r)−µ

)
ψ̂σ(r)+

1

2

∑
σσ′

∫
dr

∫
dr′ψ̂†σ(r)ψ̂†σ′(r

′)U(r−r′) ψ̂σ′(r′)ψ̂σ(r)

(1)

We can always use the single-particle orthonormal basis set in solids ϕn(r) for example Wannier
orbitals with full set of quantum numbers, e.g., site, orbital and spin index: k = (i,m, σ) and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

ϕn(r) ĉn ψ̂†(r) =
∑
n

ϕ∗n(r) ĉ†n. (2)

Going from fermionic operators to the Grassmann variables {c∗k, ck}we can write the functional
integral representation for partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D[c∗, c] e−S , S =

∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2 U1234 c4c3, (3)
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where the one- and two-electron matrix elements are defined as

t12 =

∫
drϕ∗1(r)

(
−1

2
∇2 + V (r)− µ

)
ϕ2(r) (4)

U1234 =

∫
dr

∫
dr′ ϕ∗1(r)ϕ

∗
2(r
′)U(r−r′)ϕ3(r)ϕ4(r

′).

and we use the following short definition of the sum:∑
1

· · · ≡
∑
im

∫
dτ · · · (5)

The one-electron Green function defined via a simplest non-zero correlation function for fermions
[14] can be written in the path-integral formalism [15–17] as

G12 = −
〈
c1c
∗
2

〉
S

= − 1

Z

∫
D[c∗, c] c1c

∗
2 exp(−S). (6)

The Baym-Kadanoff functional [12] gives the one–particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym-Kadanoff) we modify the action by introducing the source term J

S[J ] = S +
∑
12

c∗1J12 c2. (7)

The partition function Z, or equivalently the free energy of the system F, becomes a functional
of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D[c∗, c] e−S

′[J ]. (8)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
δF [J ]

δJ21

∣∣∣∣
J=0

. (9)

The Baym-Kadanoff functional Γ is obtained by the Legendre transform from variable J to G

Γ [G] = F [J ]− Tr JG, (10)

This is a non-trivial step and uses the possibility of inverting the Eq. (9) for arbitrary J and find
J = J(G) which may be multivalued for strongly correlated systems [18].
We can use the standard decomposition of the free energy functional Γ into the single particle
part and the correlated part

Γ [G] = Tr lnG− TrΣG+ Φ[G], (11)

were Σ is single particle self-energy and Φ[G] is a correlated part of the Baym-Kadanoff func-
tional and is equal to the sum of all two-particle irreducible diagrams. At the stationary point
this functional gives the free energy of the system. In practice, Φ[G] is not known for interact-
ing electron systems, which is similar to the problem in the density functional theory. There
is a formal expression for the “exchange-correlation” part of this functional via all connecting
two-particle diagrams [13, 19, 20].
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3 Density Functional Theory

The general functional approach reduces to density-functional theory, if one only uses the diag-
onal part in space-time of the Green function, which corresponds to the one-electron density

n(1) = G12 δ12 = 〈c∗1c1〉S, (12)

Consider a general interacting Hamiltonian with “λ-scaled” interaction

Ĥ = T̂ + λÛ, (13)

which depends on the coupling constant λ as a parameter. The same is true for the effective
action functional [20]

Γ = Γ [n, λ] . (14)

Clearly n, λ are to be considered as two independent variables. Note, however, that this does
not prevent the exact expectation value ng from depending on λ: this dependence is fixed by the
variational principle (

δΓ [n, λ]

δn

)
ng

= 0. (15)

The functional Γ [n, λ] is defined as

Γ [n, λ] = F [J, λ]− J (1)n (1) , (16)

where J is a functional of n and λ. This functional dependence is provided by the equation

δF [J, λ]

δJ (1)
= n (1) .

We can find a formally exact expression for the Γ [n] functional within the inversion method
[19]. Let us expand all the quantities in Eqn (16) in terms of λ;

J [n, λ] = J0 [n] + λJ1 [n] + λ2J2 [n] + . . . ,

F [J, λ] = F0 [J ] + λF1 [J ] + λ2F2 [J ] + . . . , (17)

Γ [n, λ] = Γ0 [n] + λΓ1 [n] + λ2Γ2 [n] + . . . .

Comparison of the two sides in Eqn (16) for different orders of λ,∑
λiΓi [n] =

∑
λiFi

(∑
λkJk[n]

)
−
∑

λiJi (1)n (1) , (18)

leads to the formally exact expression for Γi [n] ,

Γi [n] = Fi [J0] +
i∑

k=1

δFi−k [J0]

δJ0 (1)
Jk (1)− Ji (1)n (1)

+
i∑

m=2

1

m!

k1+...+km≤i∑
k1,...,km≥1

δmFi−(k1+...+km) [J0]

δJ0 (1) . . . δJ0 (m)
Jk1 (1) · · · Jkm (m) .
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The functionals
{
Fi [J0]

}
and their derivatives are assumed to be known and obtained via a

standard many-body Quantum Monte Carlo scheme. Since n and λ are considered to be inde-
pendent, the functionals Ji [n] can be obtained using,

δΓi [n]

δn (1)
= −Ji (1) . (19)

Of special importance for the DFT scheme is the zero-th order term

Γ0 [n] = F0 [J0]− J0 (1)n (1) . (20)

Using Eqn (19)

−J0 (1) =
δF0 [J0]

δJ0 (1′)

δJ0 (1′)

δn (1)
− J0 (1)− n (1′)

δJ0 (1′)

δn (1)
⇒
(
δF0 [J0]

δJ0 (1′)
−n (1′)

)
δJ0 (1′)

δn (1)
= 0.

Strict convexity of Γ0 [n] prohibits (δJ0 (1′) /δn (1)) from having zero eigenvalues. Thus we
obtain that J0 obeys the equation:

n (1) =
δF0 [J0]

δJ0 (1)
. (21)

Hence J0 is determined as a potential which generates the expectation value n in the nonin-
teracting (λ = 0) system. Notice that the same exact notion appears in the Kohn-Sham for-
malism [11]. We refer to this noninteracting system as Kohn-Sham (KS) system and J0 as
Kohn-Sham potential.
The Kohn–Sham potential for interacting system VKS = Vext + VH + Vxc plays the role of the
“constrained fields” Ji. Here Vext is am external potential and VH the Hartree potential. In
principle, the exchange-correlation potential Vxc is known only for the homogeneous electron
gas, therefore in all practical applications one uses a so-called local density approximation to
DFT. In this case the DFT functional is defined in the following way

FDFT[n] = T0[n] + Vext[n] + VH [n] + Vxc[n] (22)

where T0 is the kinetic energy of the non-interacting systems. Finally, if we define the total
electron density and exchange density as

n(r) =
∑
k

ϕ∗k(r)ϕk(r) and n(r, r′) =
∑
k

ϕ∗k(r)ϕk(r
′) (23)

the DFT approach can be formulated as

T0[n] + Vext[n] =
∑
k

∫
drϕ∗k(r)

(
−1

2
52 + Vext(r)− µ

)
ϕk(r) (24)

VH [n] =
1

2

∫
drn(r)U(r−r′)n(r′) (25)

Vxc[n] = −1

2

∫
drn(r, r′)U(r−r′)n(r′, r) +

∞∑
i=2

Γi [n] (26)
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Fig. 2: Generic Hubbard lattice for correlated lattice fermions with the local Coulomb interac-
tion U and hopping parameters t: m can label different orbitals or lattice sites.

and the local density approximation (LDA) to the DFT reads

Vxc[n] =

∫
drn(r) εxc

(
n(r)

)
(27)

where εxc(n) is exchange correlation density for homogeneous electron Coulomb gas which can
be calculated with the QMC scheme [1].
In the DFT scheme we lose information about the non-equal time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourself to only the ground-state energy of the many-electron system. Moreover, we lose
information about all collective excitations in solids, such as plasmons or magnons, which can
be obtained from the generalized susceptibility.
One of the most successful approaches to correlated materials is based on the combination of
the DFT scheme with a Dynamical Mean Field Theory (DMFT) for strongly interacting d- or
f -electrosn in the crystal. In the DMFT scheme one can obtain the numerically exact solution
for the correlated part of the local functional. In the following section we discuss the general
strong-coupling perturbation theory based on so-called dual fermion (DF) transformations [5]
in the path integral formalism, which allows us to introduce the DMFT scheme as zero-order
DF-expansion and shows a perturbative way to go beyond the DMFT approximations.

4 Dual Fermion approach with a general reference system

We start with a general lattice fermion model with the local Hubbard-like interaction vertex U.
Generalization to the multi-orbital case is straightforward [21]. All equations will be written
in matrix form, giving an idea of how to rewrite the dual fermion (DF) formula to the multi-
orbital or multi-site case. The general strategy is related with the formally exact separation of
the local and non-local correlation effects. We introduce auxiliary dual fermionic fields which
will couple local correlated impurities or clusters back to the original lattice [5].
Using the path-integral formalism (Appendix A) the partition function of a general fermionic
lattice system (Fig. 2) can be written in the following form as a functional integral over Grass-
mann variables [c∗, c]

Z =

∫
D[c∗, c] exp

(
−SL[c∗, c]

)
. (28)
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D

Fig. 3: Schematic view on the real-space DMFT reference system.

The original lattice action of interacting lattice fermions, similar to Eq. (3), can be written in
Matsubara space as a sum of the lattice one-electron contributions with the Fourier transformed
hopping tk (or energy spectrum in the single-orbital case) and the local interaction part U

SL[c∗, c] = −
∑
kνσ

c∗kνσ
(
iν+µ−tk

)
ckνσ +

∑
i

∫ β

0

dτ U n∗iτ↑niτ↓ . (29)

In the following, ν = (2n+1)π/β, (ω = 2nπ/β), n = 0,±1, . . . are the fermionic (bosonic)
Matsubara frequencies, β is the inverse temperature, τ ∈ [0, β) the imaginary time, and µ the
chemical potential. The index i labels the lattice sites, m refers to different orbitals, σ is the
spin projection and the k-vectors are quasimomenta. In order to keep the notation simple, it is
useful to introduce the combined index |1〉 ≡ |i,m, σ, τ〉 and assume summation over repeated
indices. Translational invariance is assumed for simplicity in the following, although a real
space formulation is straightforward. The local part of the action, SU , may contain any type of
local multi orbital interaction.
In order to formulate an expansion around the best possible reference action, Fig. 3, a quan-
tum impurity (cluster) problem is introduced by a general frequency-dependent hybridization
function ∆ν and the same local interaction

S∆[c∗i , ci] = −
∑
ν ,σ

c∗iνσ
(
iν+µ−∆ν

)
ciνσ +

∑
ν

Un∗iν↑niν↓ , (30)

where∆ν is the effective hybridization matrix describing the coupling of the impurity to an aux-
iliary fermionic bath. The main motivation for rewriting the lattice action in terms of a quantum
impurity model is that such a reference system can be solved numerically exactly for an arbi-
trary hybridization function using ct-QMC methods [3]. Using the locality of the hybridization
function ∆ν , the lattice action Eq. (29) can be rewritten exactly in terms of individual impurity
models and the effective one-electron coupling ∆ν−tk between different impurities, Fig. 4,

SL[c∗, c] =
∑
i

S∆[c∗i , ci]−
∑
kνσ

c∗kνσ
(
∆ν−tk

)
ckνσ . (31)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
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Fig. 4: Schematic view on the non-local DF perturbation beyond a DMFT solution.

the second term in Eq. (31) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and one cannot use of the Wick theorem. The main idea of the dual
fermion transformation is the change of variables from strongly correlated fermions (c∗, c) to
weakly correlated “dual” Grassmann fields (d∗, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix ∆̃kν = ∆ν−tk in real space

ec
∗
1 ∆̃12 c2 = det ∆̃

∫
D [d∗, d] e−d

∗
1∆̃
−1
12 d2−d∗1c1−c∗1d1 . (32)

We can immediately seen that using this HS-transformation we “localize” the [c∗i , cj] fermions:
while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c∗i , ci].
With this reference system the lattice partition function becomes

Z

Zd
=

∫
D[c∗, c, d∗, d] exp

(
−S[c∗, c, d∗, d]

)
(33)

with Zd = det ∆̃. The lattice action transforms to

S[c∗, c, d∗, d] =
∑
i

Si∆ +
∑
k,ν,σ

d∗kνσ
(
∆ν−tk

)−1
dkνσ . (34)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si∆[c∗i , ci, d
∗
i , di] = S∆[c∗i , ci] +

∑
ν,σ

(
d∗iνσ ciνσ + c∗iνσ diνσ

)
(35)

For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si∆
decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si∆ for each site i separately. This completes the change of variables

1

Z∆

∫
D[c∗, c] exp

(
−Si∆[, c∗i , ci, d

∗
i di]
)

= exp
(
−
∑
ν σ

d∗iνσ gνdiνσ − Vi[d∗i di]
)
, (36)
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where Z∆ is the partition function of the impurity action Eq. (30) and gν is the exact impurity
Green function

g12 = −〈c1c∗2〉∆ =
1

Z∆

∫
D[c∗, c] c1c

∗
2 e
−S∆[c∗,c]. (37)

The above equation may be viewed as the defining equation for the dual potential V [d∗, d]. The
choice of matrices in Eq. (32) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (36) and equating the resulting expressions
order by order. Formally this can be done up to all orders and in this sense the transformation
to the dual fermions is exact. For most applications, the dual potential is approximated by the
first non-trivial interaction vertex

V [d∗, d] =
1

4

∑
1234

γ1234 d
∗
1d
∗
2d4d3 , (38)

where for the local vertex the combined index 1 ≡ {mνσ} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. γ is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be a very useful choice for ct-QMC calculations of the local vertex for multi-orbital case. It is
given then by the connected part of the local two-particle correlations function

γ1234 = χ1234 − χ0
1234 (39)

with the two-particle Green function of the local impurity (reference system) being defined as

χ1234 = 〈c1c2c∗3c∗4〉∆ =
1

Z∆

∫
D[c∗, c] c1c2c

∗
3c
∗
4 e
−S∆[c∗,c] . (40)

The disconnected part of a generalized susceptibility reads

χ0
1234 = g14g23 − g13g24 . (41)

The single- and two-particle Green functions can be calculated using the ct-QMC Monte Carlo
algorithms [3]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d∗, d] = −
∑
k νσ

d∗kνσ G̃
−1
0kν dkνσ +

∑
i

Vi[d
∗
i , di] (42)

while the bare dual Green function is has the form

G̃0
kν =

((
tk−∆ν

)−1 − gν)−1. (43)

This formula involves only the local Green function gν of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital ct-QMC



7.12 Alexander Lichtenstein

G ( , ’)t t

Mapping

ij

Fig. 5: Schematic representation of a plaquette cluster-reference system for the square lattice.

formalism. Transformation to the original DF-normalization where both dualGd and real Green
function have the same dimension unit reads

Gd = g G̃ g = GDMFT − g GDMFT =
(
gν+∆ν−tk

)−1
. (44)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (44) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (38) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (42).

5 Perturbation in Dual Space

For general multi-orbital multi-site dual fermion perturbation technique from arbitrary reference
system (Fig. 5) we use the particle-hole notation for the local vertex and write the exact spin
and imaginary time structure of the generalized connected susceptibility [5, 22]

γσσ
′

1234(τ1, τ2, τ3, τ4) = −
〈
c1σc

∗
2σc3σ′c

∗
4σ′

〉
∆

+ gσ12g
σ′

34 − gσ14gσ32 δσσ′ .

Then the bare vertex of dual-fermion perturbation is related with the full impurity vertex, which
in Matsubara space depends on two fermionic (ν, ν ′) and one bosonic (ω) frequencies. We also
symmetrized vertex for charge density d- and spin s-channels

γ
d/m
1234(ν, ν

′, ω) = γ↑↑1234(ν, ν
′, ω)± γ↑↓1234(ν, ν ′, ω).

Now we can write the first-order, local in site (i) DF-correction to the dual self-energy (Fig.6):

Σ̃
(1)i
12 (ν) =

∑
ν′,3,4

γd1234(ν, ν
′, 0)G̃ii

43(ν
′). (45)
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Fig. 6: Feynman diagram for the 1-st order (a) and the 2-nd order (b) of dual fermion pertur-
bation for the self-energy Σ̃: a line represents the non-local G̃43 and a box is the local γ1234.

We now can use the freedom to chose the hybridization function ∆ν in order to eliminate the
main first-oder dual fermion correction Eq. (45) and all other local DF-diagram. Since the
vertex function γ1234 is purely local, it is enough to ensure that the local part of dual Green
function vanishes G̃loc = 0. This condition is exactly equivalent to the DMFT self-consistent
condition for the hybridization function ∆ν (Fig.7)

∑
k

(
g−1ν +∆ν − tk

)−1
= gν . (46)

The effective impurity model Eq. (30), which is fully determined by the local hybridization
function ∆ν on fermionic Matsubara frequencies iνn is solved using the numerically exact ct-
QMC scheme [3] and the exact local Green function gν is obtained. The self-consistent DMFT
condition for the hybridization function equates the local part of the lattice Green function with
that of the impurity, which shows that DMFT minimizes, in a local sense, the distance |tk−∆ν |.
It worthwhile to point here that the “free” or non-interacting dual fermions are equivalent to the
full solution of the DMFT problem, This is why dual fermions are only “weakly interacting” so
that this perturbation scheme can be very efficient, provided a good reference system.

S S S

S

S

S

SS

U
U

D( ’)t-t

tt’

ImpurityLattice

Mapping

Fig. 7: Schematic representation of the DMFT reference system for correlated lattice models.
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The second-order Feynman diagram for DF-perturbation (Fig.6) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = −1/4 and cm = −3/4)

Σ̃
(2)ij
12 (ν) =

∑
ν′ω

∑
3−8

∑
α=d,m

cαγ
α,i
1345(ν, ν

′, ω) G̃ij
36(ν+ω) G̃ji

74(ν
′+ω) G̃ij

58(ν
′) γα,j8762(ν

′, ν, ω) .

Using the exact relation between dual Green function and real Green function [5,22], we can ex-
press the total lattice self-energy as the sum of the reference contribution Σ0 (e.g. the impurity)
and corrections Σ ′ which related with the dual self-energy Σ̃

Σkν = Σ0
ν +Σ ′kν

Σ ′kν = g−1ν −
(
gν+Σ̃kν

)−1
.

We pointe out that this expression is related with the exact transformation between dual- and
real-spaces [4] which has general consequences for similar combinations including strong-
coupling techniques, like DMFT or DF.
What is much more important for numerical calculations is that, starting from the full DF-Green
function: G̃−1kν = G̃−10kν−Σ̃kν and the exact relation between dual and real Green function [5,22],
we can find an expression for the lattice Green function including only the reference impurity
Green function and the dual self-energy [4]

Gkν =
((
gν+Σ̃kν

)−1 − ∆̃kν

)−1
(47)

This formula is perfectly suitable for ct-QMC calculations for realistic multi-orbital correlated
matter, where from noisy Monte-Carlo data one only needs local one- and two-particle Green
functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second order perturbation theory and include dual ladder dia-
grams [22], dual parquet diagrams [23] or even try to sum up all dual diagrams with two-particle
vertex γ1234 stochastically, using a diagrammatic Monte Carlo in dual space [24, 25]. We also
can make the diagrammatic series self-consistent, using the “bold” line and update the bare dual
Green function with the dual self-energy. Finally, one can also “upgrade” the reference system,
which is not anymore “best” for dual fermion theory, but only for the DMFT approach with
non-interacting dual fermions.
As numerical example of the DF-perturbation, we discuss a simple, but non-trivial case of
a half-field Hubbard model in the strong-coupling case U =W = 8t (t= 1, U is equal to the
bandwidth W = 8t) and the temperature β = 5. We use a free periodic plaquette as a reference
system and perform second-order DF-perturbation. We use exact-diagonalization solver and the
Padé analytical continuation to the real axes [7]. Results of the second-order DF superpertur-
bation are shown on Fig. 8 together with numerical exact lattice Monte Carlo results and exact
diagonalization of a 4×4 periodic cluster. The DOS for the second order dual fermion plaque-
tte perturbations are in a good agreements with the two numerically exact schemes, ED and
DQMC. The DF theory reproduces the so-called four-peak structure of the half-filled Hubbard
model, which is a standard feature of lattice QMC calculations [26].
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Fig. 8: Density of states for the half-filled Hubbard model with U = W = 8t in the second-
order DF approximation (DF2) in comparison to ED results for a 4×4 cluster and lattice QMC
simulation of a 10×10 system.

6 LDA+DMFT scheme for real materials

In order to investigate real correlated systems with the local DMFT scheme we need to have an
efficient scheme of partitioning the space and orbital degrees of freedom. For example in the
high-temperature superconducting oxide YBa2Cu3O7 the strongly correlated electrons are the
Cu 3d’s, and moreover there is only one per non-equivalent copper dx2−y2 band which crosses
the Fermi level with strong many-body fluctuations. Just a few percent of the total number of
electronic states need to be included in the DMFT calculations. Therefore the simplest realistic
correlated scheme would be a DFT+DMFT approach [27, 28] with partitioning of the orbital
space to the normal band electrons |K〉 described by the DFT Bloch basis and the correlated
local orbitals |L〉 described by some optimal Wannier basis (see Fig. 9 for an illustration).
The treatment of correlated electron systems requires the calculation of Green functions and hy-
bridization functions in terms of local orbitals. This is readily achieved when using a basis set,
which is localized in real space, such as linear (or N -th order) muffin-tin orbitals (NMTO) [29],
plane-waves [30], Gaussian basis sets [31], or a projector scheme [32]. However, many imple-
mentations of density functional theory use a delocalized plane-wave basis set. This has the
advantage, that the basis set is simple, universal, and its convergence is controlled in principle
by a single parameter, the energy cutoff. The projector augmented wave method (PAW) [33],
being a representative of a plane-wave based methods, can be used as a simple example of the
general projection scheme from the Bloch to the local basis: 〈K|L〉 (Fig. 9).
Following the general projection scheme of Ref. [32,31], the desired quantity for an implemen-
tation of the DFT+DMFT method is a projection PC =

∑
L |L〉 〈L| of the full DFT Kohn-Sham

Green function GKS(ω) on a set of localized orbitals
{
|L〉
}

GC(ω) = PC GKS(ω)P C. (48)
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|L>
|K>

Fig. 9: Schematic representation of the projection scheme from the Bloch basis to a local Wan-
nier correlated subset.

The subspace C = span
({
|L〉
})

is usually called the correlated subspace. It is the subspace
of orbitals in which many-body fluctuations play a major role and where the DMFT corrections
to the DFT will be considered. In plane-wave based calculations, GKS(ω) in Matsubara space
is available in terms of an almost complete set of Bloch states |K〉 that are eigenstates of the
Kohn-Sham Hamiltonian HKS |K〉 = εK |K〉

GKS(ω) =
∑
K

|K〉 〈K|
iω + µ− εK

. (49)

Inserting equation (49) into (48) shows that one needs to evaluate projections of type 〈L|K〉
in order to access the matrix elements GCLL′(ω) of the local Green function. In most cases the
correlated orbitals are d or f orbitals, which, to a good approximation, are localized inside the
PAW augmentation spheres. For |L〉 within these spheres and given the PAW decomposition of
a Bloch state |K〉 [33] one obtains

〈L|K〉 =
∑
i

〈L|ϕi〉〈p̃i|K̃〉. (50)

The index i of the augmentation functions |ϕi〉 includes site s, angular momentum l and m, as
well as an index ν labeling the radial function: i = (s, l,m, ν), while the |p̃i〉 are projectors of
the PAW scheme.
In the described projections scheme the |L〉〈L|matrices are not properly normalized for two rea-
sons: (1) the Bloch basis is incomplete since only a limited number of Bloch bands is included
and (2) the PAW augmentation functions are in general not orthonormal. The simplest way is to
orthonormalized the projection matrices by the following Wannier type construction: By defini-
tion, the localized states |L〉 are labeled by site and angular momentum indices: L = (s, l,m).
We split the site index s = R+T such that R labels the position within the unit cell and T is
the Bravais lattice vector of the unit cell in which s is located. This allows us to construct the
Bloch transform of the localized states,

|Lk〉 =
∑
T

eikT |LT〉 , (51)
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where k is from the first Brillouin zone and |LT〉 ≡ |L〉 = |s, l,m〉. The sum in equation
(51) runs over the Bravais lattice. Labeling the Bloch states |K〉 = |k, n〉 by their crystal
momentum, k, and band index, n, we normalize our projection matrices PCLn(k) = 〈Lk|k, n〉
using the overlap operator

OLL′(k) =
∑
n

PCLn(k)P∗CL′n(k) (52)

in
P̄CLn(k) =

∑
L′

O
−1/2
LL′ (k)P CL′n(k). (53)

These orthonormalized projection matrices are calculated once at the beginning of any calcula-
tion and can then be used to obtain the local Green function of the correlated orbitals from the
full Bloch Green function GB

nn′

GCLL′(ω) =
∑
k,nn′

P̄CLn(k)GB
nn′(k, ω) P̄∗CL′n′(k).

Similarly the hybridization function, ∆(ω), is available. It is related to the local Green function
by

G−1(ω) = iω − εd −∆(ω), (54)

where εd is the static crystal field. Equation (54) is a matrix equation with G, ∆, and εd being
(dim C)× (dim C) matrices, in general. To separate the hybridization from the static DFT
crystal field, we numerically evaluate the limit ω →∞, where ω−G−1(ω)→ εd.
In a DFT+DMFT calculation the projection matrices P̄CLn(k) are used for up- and downfold-
ing quantities like the Green function and the self energy in the course of the iterative DMFT
procedure in exactly the same way as shown for the local Green function above. For example,
the self energy obtained by an impurity solver for the effective impurity model ΣCLL′(ω) can be
upfolded to the Bloch basis as

ΣB
nn′(k, ω) =

∑
LL′

P
∗C
Ln(k) ΣCLL′(ω) P

C
L′n′(k).

Since the self energy in DMFT is a purely local quantity, the index k on ΣB
nn′(k, ω) reflects

the momentum dependence brought about by the projection matrices. The presented projection
scheme allows for the inclusion of both correlated and uncorrelated states in the procedure.
Therefore, information about the interplay of correlated orbitals with their uncorrelated ligands
can be obtained.
Figure 10 shows that the DFT+DMFT calculation commences with the solution of the Kohn-
Sham equations of DFT. In a second step the projection onto the correlated subset is computed.
The Kohn-Sham Green function is then computed and used as an initial guess for the mean-field
G of the DMFT cycle, which consists of the usual steps detailed before. In usual applications,
the DFT+DMFT loop will stop after DMFT self-consistency is obtained. It has, however, re-
cently become possible to continue the cycle supplying the DFT code with an altered charge
density that includes correlation effects. In such a unified approach, changes in the charge
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Fig. 10: Illustration of the DFT+DMFT procedure. As a first step, the Kohn-Sham (KS) equa-
tions, determining the Kohn-Sham potential and thus the Hamiltonian, are solved. Secondly, the
KS Green function and from it the starting value for the bath Green function G is constructed
and passed on to the DMFT loop, which consists of the usual steps described before. A potential
self-consistency over the charge density is also indicated [31].

density induced by correlations can be studied [31, 34]. It allows furthermore for the accurate
calculation of total energies, that allow the determination of crystal structures and other coupled
electronic and structural effects. We will briefly sketch here the most important elements of the
charge self-consistent implementation of DFT+DMFT following Ref. [31].

As example, we show a realistic DFT+DMFT calculation of ferromagnetic spectral function
for Fe and Ni at T = 380 K in Fig. 11 [35], in comparison with experimental ARPES spectra
for Fe [36] and Ni [37]. For the DFT part the VASP code with theWannier projector scheme
was used [32] and for DMFT impurity solver numerical exact ct-QMC was used [3]. One can
see a good agreement for renormalization of the band dispersion near the Fermi level for Ni,
but some discrepancy for Fe (specially in P -H-Γ direction). This indicates that one needs
to include non-local self-energy effects in Fe beyond the DMFT, such as in the multi-orbital
DF-scheme.

We do not discuss the problem of “double counting” in the LDA+DMFT formalism: since
any DFT approximation includes average of Coulomb interactions, one should subtract these
from the DMFT part. In practice it is very hard to fulfill, since we do not know this part
analytically and normally we chose the double counting correction from the LDA+U scheme
as a static version of LDA+DMFT [27, 28]. The main problem is related with the fact that both
DFT and DMFT are non-perturbative, strong-coupling theories which need to be “aligned” on
some reference level, like the chemical potential. One can try to search for this “reference
level” as a free parameter [38] and compare the resulting spectral function of the LDA+DMFT
with experimental photoemission spectrum. Another possibility is to start from an analytical



LDA+DMFT 7.19

Fig. 11: Momentum resolved spectral function for ferromagnetic Fe and Ni obtained by
LDA+DMFT for T=380 K in comparison with photoemission data (dots) [35].

many-body scheme like GW and design a GW+DMFT approach where one knows the local
correlated part analytically [39]. If we would like to incorporate non-local self-energy effects
beyond the DMFT, then such a simple “double counting” schemes may not work any more and
more elaborat dual fermion/boson schemes should be considered. There is also the complicated
problem of estimating the effective local Coulomb matrix elements in the Wannier basis used in
LDA+DMFT. One of the most accurate schemes is related with a constrained RPA scheme [40].
We can mention a recent discussion of the cRPA scheme for strongly correlated insulators [41].
One of the recent accurate charge self-consistent LDA+DMFT software packages is based on
combination of Quantum ESPRESSO (DFT), Wannier90 (Projectors), and TRIQS (ct-QMC) [42].

7 Conclusions

We have discussed the path integral expansion for general reference systems which help to un-
derstand the DFT scheme and the correlated DMFT approach for interacting lattice fermions
and their combination for realistic systems. The transformation to dual variables allowed to
go beyond the local DMFT approximation for lattice self-energy. The accurate multi-orbital
DFT+DMFT scheme for strongly correlated transition metals and rare earth systems can de-
scribed the spin, orbital and charge fluctuations in the d- or f -shell which play the crucial role
in photoemission spectra, as well as magnetic and optical excitations. The numerically exact ct-
QMC solution of the quantum impurity problem gives an effective local exchange-correlation
functional for given correlated materials in a specific external hybridization. The accurate com-
bination of the DMFT scheme with first-principle DFT approaches gives a very useful tool for
the investigation of correlated electronic materials.
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A Path integrals for fermions

We first introduce a formalism of the path integral over fermionic fields [15]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [16]. Due to the Pauli
principle the many-body Hilbert space is spanned by only two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creation ĉ†i operators
with anticommutation relations

{
ĉi, ĉ

†
j

}
= δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 and ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 . (55)

Moreover, the density operator and the Pauli principle have the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci

ĉi |c〉 = ci |c〉 . (56)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the below and one can rewrite one of equations from Eq. (55)
in the following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the multiplication rules [17]

cicj = −cjci and c2i = 0 . (57)

It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators {

c, ĉ} = {c, ĉ†
}

= 0 .

An arbitrary function of one Grassmann variable can be represented by only the first two Taylor
coefficients

f(c) = f0 + f1c . (58)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑
i ciĉ

†
i |0〉 . (59)

Let us show this for the simple case of one fermionic state

ĉ |c〉 = ĉ
(
1− cĉ†

)
|0〉 = ĉ

(
|0〉 − c |1〉

)
= −ĉc |1〉 = c |0〉 = c |c〉 . (60)

One can also define a “left” coherent state 〈c| as the left-eigenstates of creation operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .
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Note that the new eigenvalue c∗i is just another Grassmann number, not the complex conjugate
of ci. The left coherent state can be obtained similar to Eq. (59)

〈c| = 〈0| e−
∑
i ĉic

∗
i .

A general function of two Grassmann variables can, analogously to Eq. (58), be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (61)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with the “right order” of such a derivative and remember the anti-
commutation rules, i.e.,

∂

∂c2
c1c2 = −c1 .

For the case of the general two-variable function in Eq. (61) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(
f01 − f11c∗

)
= −f11 = − ∂

∂c

∂

∂c∗
f(c∗, c).

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists of the following rules [17]∫

1 dc = 0 and
∫
c dc = 1 ,

which just shows that the integration over a Grassmann variable is equivalent to differentiation∫
· · · dc→ ∂

∂c
· · ·

The coherent states are not orthonormal and the overlap of any two such states is equal to

〈c|c〉 = e
∑
i c
∗
i ci

which is easy to see for the case of one particle

〈c|c〉 =
(
〈0| − 〈1| c∗

)(
|0〉 − c |1〉

)
= 1 + c∗c = ec

∗c.

An important property of coherent states is the resolution of unity∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉〈c| = 1̂ =

∫∫
dc∗dc

|c〉 〈c|
〈c|c〉

.

For simplicity we demonstrate this relation only for one fermion state∫∫
dc∗dc e−c

∗c |c〉〈c| =
∫∫

dc∗dc
(
1− c∗c

)(
|0〉 − c |1〉

)(
〈0| − 〈1| c∗

)
= −

∫∫
dc∗dc c∗c

(
|0〉〈0|+ |1〉〈1|

)
=
∑
n

|n〉〈n| = 1̂ .
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Matrix elements of normally ordered operators are very easy to calculate in the coherent basis
by operating with ĉ† on the states to the right and ĉ to the left:

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 . = H(c∗, c) e
∑
i c
∗
i ci (62)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trace-formula” for arbitrary fermionic operators in normal order
(in one-fermion notation)

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗dc e−c

∗c 〈n| c〉〈c| Ô |n〉 =

=

∫∫
dc∗dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉〈n| c〉 =

∫∫
dc∗dc e−c

∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states come from the commutation of the (c∗)
and (c) coherent state in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are ready now to write the partition function for the grand-canonical quantum ensemble with
H = Ĥ−µN̂ and inverse temperature β. One has to use the N -slices Trotter decomposition
for the partition function in [0, β) with imaginary time τn = n∆τ = nβ/N (n = 1, ..., N ), and
insert N times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗dc e−c

∗c
〈
−c
∣∣e−βH∣∣c〉

=

∫
ΠN
n=1dc

∗
ndcn e

−
∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
ndcn e

−∆τ
∑N
n=1

(
c∗n(cn−cn−1)/∆τ+H(c∗n,cn−1)

)
In the continuum limit (N →∞)

∆τ

N∑
n=1

· · · →
∫ β

0

dτ · · · , cn−cn−1
∆τ

→ ∂τ and ΠN−1
n=0 dc

∗
ndcn → D [c∗, c]

with antiperiodic boundary conditions for fermionic Grassmann variables in imaginary time
c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)

we end up in the standard path-integral formulation of the partition function

Z =

∫
D [c∗, c] e−

∫ β
0 dτ
(
c∗(τ)∂τ c(τ)+H(c∗(τ),c(τ))

)
. (63)

It is useful to mention the general form of the Gaussian path-integral for a non-interacting
“quadratic” fermionic action, which is equivalent to the Hubbard-Stratonovich transformation
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used in the dual-fermion derivation Eq. (32). For an arbitrary matrixMij and Grassmann vectors
J∗i and Ji one can calculate analytically the following integral

Z0 [J∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj−

∑N
i=1(c∗i Ji+J∗i ci) = detM e

∑N
i,j=1 J

∗
i (M

−1)ijJj . (64)

To prove this relation one needs to first change variables in order to eliminate J∗i and Ji and
expand the exponential function (only the N -th oder is non-zero)

e−
∑N
i,j=1 c

∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N
.

Finally, different permutations of c∗i and cj and integration over Grassmann variables will give
detM . As a small exercise we will check such integrals for the first two many-particle dimen-
sions. For N=1 it is trivial∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c]

(
− c∗1M11c1

)
= M11 = detM

and for N=2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

=
1

2!

∫
D [c∗c]

(
−c∗1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2

)2
= M11M22−M12M21 = detM.

For a change of variables in the path integral one uses the following transformation with unit
Jacobian: c→ c+M−1J and

c∗Mc+ c∗J + J∗c =
(
c∗ + J∗M−1)M (

c+M−1J
)
− J∗M−1J .

Using the Gaussian path-integral it is very easy to calculate any correlation function for a non-
interaction action (Wick-theorem)

〈
cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

= M−1
ij〈

cicjc
∗
kc
∗
l

〉
0

=
1

Z0

δ4Z0 [J∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

= M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path-integral over
bosonic fields is equal to inverse of the M -matrix determinant [15].
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