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10.2 Michael Potthoff

1 Motivation

Consider two objects A and B. These could be physical objects, such as elementary particles,
molecules, or macroscopically large bodies. They could be mathematical structures, but also
poems or novels, the mood of two people, etc. It is obvious that the question “Is A equal to
B?” rarely deserves a positive answer. In the case of “Is A essentially equal to B?” on the other
hand, it seems to be a question worthy of discussion in almost all situations. All the complexity
here is cleverly hidden in the word “essentially”. This leaves room for us to define criteria by
which we can decide about essential equality or inequality. An instructive example is a cat and
a dog. Are these “objects” the same? No, but it may be reasonable to regard them as essentially
the same, depending on the criterion chosen, e.g., that of being an animal.
Why do we bother? The relation “is essentially the same” is an equivalence relation because the
following statements appear to be immediately true: “A is essentially the same as A”, “if A is
essentially the same as B, then B is essentially the same as A”, and “if A is essentially the same
as B and B is essentially the same as C, then A is essentially the same as C”. Any equivalence
relation can be used to classify objects, and classification is an important goal of almost any
science. Classification of life forms, for example, is one of the most important goals of biology.
In physics, there are various concepts for classifying systems or the static or dynamic states of
systems. These find expression, for example, in the periodic table of elements or in equilibrium
phase diagrams of macroscopically large physical bodies. Despite the same chemical composi-
tion, we distinguish, for example, the condensed and the liquid state of water. Decision-making
criteria in many cases, and also in the distinction between solid and liquid, can be based on
symmetry arguments, i.e., on invariance under a group of transformations.
Let us discuss a well-known example from mathematics, which is frequently used in quantum
physics: A separable Hilbert space is a linear space over the field of real or complex numbers,
i.e., addition and scalar multiplication are defined and satisfy a couple of postulates. In addition
the space is equipped with a bilinear or sesquilinear inner product, which defines a distance
function for which it is a complete metric space, and has a countable basis. Two separable
Hilbert spaces HA and HB are essentially the same, HA

∼= HB, if there exists an isomorphism
HA → HB, i.e., an invertible map preserving the mathematical structure. Due to the rich
structure, the equivalence relation ∼= is very strong. This “explains” the simplicity of the clas-
sification, namely all (infinite-dimensional) separable Hilbert spaces are essentially the same
and, e.g., isomorphic to L2.
A more fruitful, finer classification is obtained with a “weaker” equivalence relation. Groups,
for example, are mathematical structures defined with a minimum of postulates. Structure-
conserving maps between two groups G1 and G2, group isomorphisms, therefore define a much
weaker equivalence relation G1

∼= G2. In fact, a complete classification is an entirely open
mathematical problem. Narrowing a bit and asking for essential equality between finite, simple
groups, brings us to one of the major milestones of group theory. Here, a complete classification
has been achieved in fact with a proof that is documented several hundred papers published over
the last 70 years.
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Fig. 1: Various topological subspaces of R3.

An equivalence relation that has proven very fruitful in the context of condensed-matter physics
is “A can continuously and reversibly be deformed into B”. Continuity is a rather weak property
of functions and the main concept of topology. To give a mathematical example again, we may
consider R3 as a topological space and forget about its capability to carry a linear structure.
Among the topological subspaces of R3 we have, e.g., the 2-sphere S2 = {x ∈ R3 | ||x|| = 1},
the Cartesian product of 1-spheres S1 × S1, the surface of a cube C2, the 2-torus (“donut”) T 2,
the open or closed 3-ball with the 2-sphere as its boundary, and the like, see Fig. 1. We find that
S1 × S1 ∼= T 2 � S2 ∼= C2 � x-y plane etc.

An important tool of topological classification are topological invariants. These are all quan-
tities that are preserved under continuous transformations that have a continuous inverse trans-
formation. The number of holes is such an invariant. Two subspaces with different number
of holes in fact cannot be continuously deformed into each other. This explains, why S2 (no
hole) and the torus T 2 (one hole) are topologically different. On the other hand, two subspaces
with the same number of holes are not necessarily topologically equivalent. An example is the
2-sphere and the x-y plane. These may differ in another invariant.

In electron band-structure theory we are interested in the topological classification of more com-
plex structures. Consider a system of independent electrons on an infinite periodic lattice. Its
Bloch HamiltonianH(k) parametrically depends on the wave vectors k in a reciprocal unit cell.
In two dimensions, for example, this parameter space forms a torus T 2 because wave vectors at
the boundaries of the reciprocal unit cell must be identified. However, it is not (only) the non-
trivial topology of the parameter-space geometry that is the focus. We are rather interested in
the topological classification of the bundle of ground states of H(k) over T 2. Questions behind
this are: Can these ground states be deformed into each other continuously? Can we topo-
logically classify band structures in this way? In case of band insulators, this seemingly simple
question has been answered affirmatively and comprehensively. The answer is surprisingly deep
and requires substantial mathematical background. It has led to a classification scheme called
“the 10-fold way”, in which symmetry arguments and different topological invariants play the
essential role.

The goal of this contribution is twofold: First, with the Chern number, we exemplarily pick
a central topological invariant and, starting from basic concepts, discuss its precise definition,
its range of applicability for the construction of topological phase diagrams, its connection
with time-reversal symmetry, its experimental significance, etc. This elucidates the concept of
“class A” Chern insulators, i.e., band insulators with a certain topological twist, which fall into
one of the mentioned 10 classes.



10.4 Michael Potthoff

Second, despite the great success of topological band theory, it cannot be straightforwardly
extended to interacting electron systems. The development of novel concepts for the topological
characterization and classification of the states of strongly correlated electron systems is one the
major activities in theoretical physics, and in fact it is one of the most fascinating endeavors.
One promising route is paved by combining dynamical mean-field theory with topological band
theory, and the discussion of this idea and of an illuminating example will take a major part of
the present work.
The presentation heavily makes use of various ideas from textbooks on topology and its applica-
tions in physics [1–4], on the results of the M.Sc. thesis of David Krüger, essentially published
in Ref. [5], and of the B.Sc. thesis of Lara Heyl [6].

2 Chern number

The Chern number is a topological invariant. To define this invariant and to prove its quanti-
zation, we have to introduce and discuss a couple of basic theoretical concepts, including the
adiabatic theorem, the Berry connection, gauge transformations and the Berry phase, and finally
the Berry curvature.

Adiabatic theorem

Consider a system Hamiltonian H which smoothly depends on r parametersR = (R1, ..., Rr)

H = H(R) = H(R1, ..., Rr) . (1)

The space of parametersM is a smooth r-dimensional manifold. We will further assume that
the ground state

∣∣Φ0(R)
〉

of H(R) is unique (nondegenerate) for allR. This implies that there
is a finite gap ∆(R) to the first excited state

∣∣Φ1(R)
〉

on the entire manifold M. For each
parameter configuration R ∈ M the Hilbert space H is “locally” spanned by an orthonormal
eigenbasis {

∣∣Φj(R)
〉
} of H(R), i.e., we have

H(R)
∣∣Φj(R)

〉
= Ej(R)

∣∣Φj(R)
〉
. (2)

Suppose that the parameters evolve in time as described by a trajectory R = R(t) in M.
This means that the Hamiltonian acquires an explicit time dependence H(t) = H

(
R(t)

)
. The

formal solution of Schrödinger’s equation provides us with the state of the system at time t:∣∣Ψ(t)〉 = T exp
(
−i
∫ t
0
dτ H

(
R(τ)

))∣∣Ψ(0)〉, where T is the time ordering and where have set
~ ≡ 1. We assume that the state at time t = 0 is the ground state of H

(
R(t = 0)

)
, i.e., at t = 0

we have
∣∣Ψ(0)〉 = ∣∣Φ0

(
R(0)

)〉
.

The adiabatic theorem [7,8] states that, if the time evolution of the parametersR(t) is sufficiently
slow, the system will remain in its ground state. More precisely, the state of the quantum
system at time t is the instantaneous ground state of the Hamiltonian H

(
R(t)

)
, i.e., we have∣∣Ψ(t)〉 ∝ ∣∣Φ0

(
R(t)

)〉
. This is a strong statement and it is nontrivial to precisely formulate the

conditions under which this holds true. Roughly, its validity requires that the typical time scale



DMFT for correlated topological phases 10.5

τtypical of the parameter dynamics is much larger than the inverse of the gap: τtypical � 1/∆.
Here, we take the adiabatic theorem for granted and will focus on the phase of the state. The
adiabatic theorem, as we have formulated it, tells us that the state at time t is a ground state of
H
(
R(t)

)
, ∣∣Ψ(t)〉 = e−iγ(t)

∣∣Φ0

(
R(t)

)〉
, (3)

but it leaves the phase factor e−iγ(t) yet undetermined.

Berry connection

Schrödinger’s equation can be derived from the action principle δS = δ
∫
dt L = 0 with the

Lagrangian
L = L

(
|Ψ〉, ∂t|Ψ〉, 〈Ψ |, ∂t〈Ψ |, t

)
=
〈
Ψ
∣∣i∂t −H(R(t)

)∣∣Ψ〉 . (4)

In fact, 0 = ∂L/∂〈Ψ | − ∂t
(
∂L/∂(〈∂tΨ |)

)
=
(
i∂t − H

(
R(t)

))
|Ψ〉, while the second Euler-

Lagrange equation for 〈Ψ | is just the adjoint Schrödinger equation. The Lagrange formalism is
a useful tool, as one can incorporate the result of the adiabatic theorem as a holonomic constraint
with the goal to get a simple equation of motion for the yet unknown phase γ(t) only. Using
Eq. (3) to express the “generalized coordinates”

∣∣Ψ(t)〉 and
〈
Ψ(t)

∣∣ in terms of
∣∣Φ0

(
R(t)

)〉
and〈

Φ0

(
R(t)

)∣∣, we get an effective Lagrangian,

Leff = eiγ(t)
〈
Φ0

(
R(t)

)∣∣∣(i∂t −H(R(t)
))
e−iγ(t)

∣∣∣Φ0

(
R(t)

)〉
, (5)

which indeed is a functional of the unknown phase of the system state only, while the local
ground states

∣∣Φ0

(
R(t)

)〉
have fixed selected phases. Since |Ψ〉 and 〈Ψ | must be treated as

independent in Eq. (4), γ and γ have to be treated as independent as well. Hence, the Lagrangian
Leff has the functional form Leff(γ, γ, ∂tγ, ∂tγ, t) with an explicit time dependence due toR(t).
Carrying out the time derivative i∂t of the terms on the right and using Eq. (2) for j = 0, we
arrive at

Leff = eiγ(t)e−iγ(t)
(
∂tγ(t)− E0

(
R(t)

)
+A0

(
R(t)

)
·Ṙ(t)

)
. (6)

Here,

A0(R) = i
〈
Φ0(R)

∣∣∣ ∂
∂R

∣∣∣Φ0(R)
〉

(7)

is the Berry connection, which mediates between the ground states at R and R+dR on the
manifoldM, andA0(R)·Ṙ =

∑r
ρ=1A0,ρ(R)·Ṙρ with Ṙρ = ∂tRρ. Note that the normalization

condition for the state implies that A0(R) is real. The resulting Euler-Lagrange equations for
γ and γ are equivalent, such that eventually γ = γ. The equation for γ,

∂tγ(t) = E0

(
R(t)

)
−A0

(
R(t)

)
·Ṙ(t) , (8)

is easily solved by

γ(t) = γ(0) +

∫ t

0

E0

(
R(τ)

)
dτ −

∫ t

0

A0

(
R(τ)

)
·Ṙ(τ) dτ , (9)
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Finally, with Eq. (3) and choosing w.l.o.g. γ(0) = 0,

∣∣Ψ(t)〉 = exp

(
−i
∫ t

0

E0

(
R(τ)

)
dτ

)
exp

(
i

∫ R(t)

C,R(0)

A0(R) · dR

)∣∣Φ0

(
R(t)

)〉
. (10)

The first phase factor is called “dynamical”, the second “geometrical”. For the second, the
substitution rule has been used in the last step. We see that it only depends on the path C from
R(0) toR(t) inM, a geometrical object, but not on the time dependence of the trajectoryR(t),
on “velocity”, “acceleration” etc.

Gauge transformations and Berry phase

After having demonstrated the relevance of the Berry connection for the adiabatic time evolution
of a quantum system, we will now turn to our main question, namely its relevance for the (time-
independent) topological properties of the system and reconsider the bundle of ground states∣∣Φ0(R)

〉
withR∈M. The choice of an orthonormal energy eigenbasis for eachR, see Eq. (2),

also implies the choice of a particular phase ϕ(R) for each of the ground states in M. This
choice is arbitrary, so it is important to ask what happens if we make a different choice. Our
naive expectation is that all observable ground-state properties of the system are invariant under
a transformation of the phase, i.e., under a gauge transformation of the form∣∣Φ0(R)

〉
7→ eiϕ(R)

∣∣Φ0(R)
〉
. (11)

Such anR-dependent gauge transformation is called “local”, as opposed to a “global” transfor-
mation

∣∣Φ0(R)
〉
7→ eiϕ

∣∣Φ0(R)
〉
. The system’s topological properties are governed by the map

R 7→ eiϕ(R) from the parameter manifoldM into U(1) =
{
z ∈ C

∣∣ |z| = 1
}

. The fact that this
map or, equivalently, theR-dependent choice of the phase factors, has observable consequences
as has been pointed out by M. Berry [9].
Under a local gauge transformation, Eq. (11), the Berry connection transforms as

A0(R) 7→ A′0(R) = A0(R)− ∂ϕ(R)

∂R
. (12)

This implies that A0(R) is gauge dependent. It has no direct physical meaning but depends on
the arbitrary choice of the phases ϕ(R) of the local ground states |Φ0(R)〉. The situation is
particularly interesting, if C is a closed path inM, given by some parametrization R = R(λ),
where the real parameter λ could stand for the time. In this case γC =

∮
CA0(R)·dR is called

the Berry phase. Under a gauge transformation, the Berry phase transforms as γC 7→ γC −∮
C

(
∂ϕ(R)/∂R

)
·dR, see Eq. (12). If certain rather general conditions are satisfied, as specified

by the Poincaré lemma and regarding, in particular, the continuity of ∂ϕ(R)/∂R, we can argue
that the Berry phase is invariant γC 7→ γC −

∮
C dϕ(R) = γC .

However, the integral along C can be nonzero in fact. Consider, for example, M = R3 and
the circle C =

{
R = (X, Y, Z)T

∣∣X2+Y 2 = R2 , Z=0
}

of radius R around R = 0 in the
X-Y plane. Suppose A′0(R) = A0(R)− (−Y,X, 0)T/(X2+Y 2). Locally, we have A′0(R) =
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A0(R)− (∂/∂R) arctan(Y/X). However, the map ϕ(R) = arctan(Y/X) is discontinuous on
the X = 0 plane, and ∂ϕ(R)/∂R is singular on the Z axis. In fact, it is straightforward to see
that

∮
C

(
∂ϕ(R)/∂R

)
·dR = 2π 6= 0.

Generally, under an arbitrary gauge transformation, we have

γC =

∮
C
A0(R)·dR 7→ γC + 2πk (13)

with k ∈ Z. This is equivalent with the statement that the Berry phase factor eiγC is always
gauge invariant. To verify this, we rewrite the integral as the limit of a Riemann sum

exp (iγC) = exp

(
i

∮
C
A0(R)·dR

)
= lim

n→∞
exp

(
iA0(Rn)·∆Rn + · · ·+ iA0(R1)·∆R1

)
= lim

n→∞

(
1+iA0(Rn)·∆Rn

)
· · ·
(
1+iA0(R1)·∆R1)

)
. (14)

This is a Volterra product integral. The k-th factor can be written as 1 + iA0(Rk)·∆Rk =

1 −
〈
Φ0(Rk)

∣∣ (∣∣Φ0(Rk)
〉
−
∣∣Φ0(Rk−∆Rk)

〉)
=
〈
Φ0(Rk)

∣∣Φ0(Rk−∆Rk)
〉
, with the help of

Eq. (7). We haveRk−∆Rk = Rk−1 and, since C is a closed path, we can identifyR0 withRn.
This yields

exp (iγC) = lim
n→∞

〈
Φ0(Rn)

∣∣Φ0(Rn−1)
〉
· · ·
〈
Φ0(R1)

∣∣Φ0(R0)
〉

= lim
n→∞

tr
(∣∣Φ0(Rn)

〉〈
Φ0(Rn)

∣∣ · · · ∣∣Φ0(R1)
〉〈
Φ0(R1)

∣∣Φ0(R0)
〉〈
Φ0(R0)

∣∣) . (15)

where the latter representation is manifestly gauge invariant, since the phases cancel out in each
of the dyadic products.

Example: Toy model with two-dimensional Hilbert space

As an example, we will consider the following toy Hamiltonian on a three-dimensional param-
eter manifold

H = −1

2
R·τ , (16)

Here R ∈ M = R3 \ {0} and τ = (τ1, τ2, τ3)
T is the vector of Pauli matrices. Actually, this

form of H is generic for a quantum system with a two-dimensional Hilbert space. The 2×2
matrix representing the Hamiltonian can be expanded in the Hermitian basis {1, τ1, τ2, τ3},
which yields Eq. (16) after dropping the uninteresting term ∝ 1.
When interpreting the three parameters R as the components of a field strength B, the model
Eq. (16) just describes a local spin 1/2 in an external magnetic field. We thus expect a Zeeman
splitting of the two eigenstates of H . In fact we have E0(R) = −R/2 and E1(R) = +R/2

where R = |R|. Note that we have intentionally excluded the point R = 0 from the manifold
M, as here the ground state would be degenerate and our entire construction would break down.
TheR-dependent normalized ground state of the model is readily calculated and is conveniently
expressed in terms of spherical coordinatesR = R

(
cosφ sin θ, sinφ sin θ, cos θ

)T as

∣∣Φ0(R)
〉
=
∣∣Φ0(θ, φ)

〉
=

(
cos(θ/2)

eiφ sin(θ/2)

)
. (17)
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It

Fig. 2: Hairy-ball theorem: There is no everywhere nonvanishing and continuous tangent vec-
tor field on an n-sphere, if n is even. Left: Sketch of a continuous tangent vector field for n = 1.
Middle: Tangent vector field with two twirls for n = 1. Right: Tangent vector field on S2 with
(already) two twirls. At each R ∈ S2, the direction of the arrow with unit length specifies the
phase ϕ(R).

In fact, the ground state is independent of R, and it is almost everywhere a smooth and in-
vertible function of θ and φ. The angle variables provide us with a chart of the 2-sphere
S2 =

{
R
∣∣R=1

}
. However, the state that is obtained in the limit θ → π, i.e., when approach-

ing the south pole of S2, will depend on φ. This means that the map (θ, φ) 7→ R 7→
∣∣Φ0(R)

〉
is discontinuous at the south pole. Hence, the parameter manifold S2 cannot be described by a
single chart. A second one is necessary for a complete atlas.
Choosing a different gauge is another way to deal with the singularity since this will not af-
fect any physical, gauge-invariant properties. In fact, the gauge transformation

∣∣Φ0(R)
〉
7→

e−iφ
∣∣Φ0(R)

〉
does the job. It removes the singularity at the south pole — but it also intro-

duces a similar one at the north pole. Clearly, the problem cannot be solved with a continuous
gauge transformation, and the proposed one is itself discontinuous. As we have seen above,
R = (X, Y, Z)T 7→ ϕ(R) = φ = arctan(Y/X) is discontinuous on the entire X = 0 plane.
Generally, there is no gauge such that the phase of

∣∣Φ0(R)
〉

is continuous on the entire manifold
M, which essentially is the 2-sphere. The 2-sphere, with a phase factor eiϕ(R) ∈ U(1) ∼= S1

attached to each point, is like a hairy sphere, so that we can apply the “hairy-ball theorem” [4],
see Fig. 2. This states that any attempt to comb a hairy billiard ball (the 2-sphere) smoothly,
without twirls, must fail and that there must be at least one singular point.
On the equator θ = π/2, oriented from west to east, and for arbitrary φ ∈ [0, 2π[, the φ
component of the Berry connection obtained from Eq. (17) is

A0(θ, φ)Reφ = i
〈
Φ0(θ, φ)

∣∣∂φ∣∣Φ0(θ, φ)
〉
= −1

2
, (18)

where eφ = (1/R)∂R/∂φ. Here, we have used the definition Eq. (12) and the representation
∂/∂R = eφ(R sin θ)−1(∂/∂φ) + eθ(· · · ) + eR(· · · ) with θ = π/2 and R = 1. Computing the
line integral along the equator, where dR = Reφ dφ, yields the Berry phase

γequator =

∮
equator

A0(R)·dR =

∫ 2π

0

A0(θ, φ)·Reφ dφ = −π . (19)

In the context of adiabatic dynamics, this has the interesting consequence that the system state
|Ψ〉 picks up a sign eiγC = −1 whenR is slowly steered once around the equator C.
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Fig. 3: Parallel transport along a closed path on a flat and on a curved space.

In the above-discussed alternative gauge after the transformation
∣∣Φ0(R)

〉
7→ e−iφ

∣∣Φ0(R)
〉
=(

e−iφ cos(θ/2), sin(θ/2)
)T, we get a different result for the Berry connection, A′0(θ, φ)·Reφ =

+1
2
, showing again that A′0(R) is not gauge invariant. Computing the corresponding Berry

phase yields γequator = +π. This is consistent with our general reasoning: The Berry phase γC
is gauge invariant up to an integer multiple of 2π only, but the Berry phase factor eiγC is fully
gauge invariant.

Berry curvature

More elegantly, we can compute the Berry phase γC with the help of the Stokes theorem

γC =

∮
C
A0(R)·dR =

∫
S
Ω0(R)·dS . (20)

Here S is the unit normal vector of the surface S on the sphere of fixed radiusR that is bounded
by the closed path C = ∂S, and Ω0(R) = ∂R×A0(R) is the curl of the Berry connection.
The orientation of the path C is inherited from the orientation of S in the usual way by the
right-hand rule. Ω0(R) is called the (ground-state) Berry curvature. In this form, the Stokes
theorem is formulated for applications to a three-dimensional parameter space only, and we will
stick to the above toy model. Qualitatively, however, the entire discussion holds for arbitrary
r-dimensional manifoldsM, and a brief discussion of the general case will be given later.
The Berry phase γC is a quantity, which measures the degree to which parallel transport fails to
preserve the geometrical data that is being transported. Parallel transport along closed loops is
in a way trivial on flat spaces but leaves a detectable footprint for a curved space, see Fig. 3. In
fact, Eq. (20) demonstrates that a finite Berry phase requires a finite Berry curvature Ω0(R).
Eq. (19) shows that parallel transport of states in Hilbert space does not follow descriptive
Euclidean geometry. Rather, it takes two circumnavigations of the equator instead of just one
to get back to the same state.
The Berry curvature is a highly convenient quantity since it is invariant under arbitrary gauge
transformations. This follows from its definition, from the transformation behavior (12) of
the Berry connection, and from the fact that the curl of any gradient field vanishes. Another
important property is ∂RΩ0(R) = 0, i.e., the Berry curvature is divergence-free. Again, this
holds by definition since ∂RΩ0(R) = ∂R · ∂R×A0(R) = 0.
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Vice versa, there is the mathematical question, under which conditions a divergence-free vector
fieldΩ0(R) can be expressed as the curl of another vector field on the entire manifoldM. This
is answered by the following form of the Poincaré lemma: If the manifoldM is an open ball
or, more generally, a star-shaped open set in R3, one can find a single field A0(R) such that
Ω0(R) = ∂R×A0(R) globally, i.e., for all R ∈ M. Note that locally a representation as the
curl of a vector field is always possible.
In case of topologically more complicated manifolds, a global representation may not be possi-
ble. The manifoldM = R3\{0} relevant for the toy model or, since the ground state does not
depend on R, the submanifold S2, are in fact examples for manifolds that cannot be covered
by a single chart and are thus topologically different from R3 or from R2, respectively. Conse-
quently, the Stokes theorem Eq. (20) cannot be applied if S = S2. We would mistakenly get
γC = 0 since the path C vanishes in this case.
Let us compute the Berry curvature for our toy model concretely. Its α-th component

Ω0,α(R) =
1

2

∑
βγ

εαβγ Ω0,βγ(R) (21)

can be expressed in terms of an antisymmetric real matrix

Ω0,βγ(R) = ∂βA0,γ(R)− ∂γA0,β(R) = i
(〈
∂βΦ0(R)

∣∣∂γΦ0(R)
〉
−
〈
∂γΦ0(R)

∣∣∂βΦ0(R)
〉)

= −2 Im
〈
∂βΦ0(R)

∣∣∂γΦ0(R)
〉
= −2 Im

∑
j 6=0

〈
∂βΦ0(R)

∣∣Φj(R)
〉〈
Φj(R)

∣∣∂γΦ0(R)
〉
.

(22)

For the second equality, we have used Eq. (7) and the fact that partial derivatives commute in
case of a smooth R dependence. For the last, we have inserted a resolution of the identity (at
R). Note that the term j = 0 does not contribute as for j = 0 the matrix elements are real.
Using the identity

〈
Φj(R)

∣∣∂γΦ0(R)
〉
=
〈
Φj(R)

∣∣∂γH(R)
∣∣Φ0(R)

〉
/
(
E0(R)−Ej(R)

)
, valid

for j 6= 0, we finally have

Ω0,βγ(R) = −2 Im
∑
j 6=0

〈
Φ0(R)

∣∣∂βH(R)
∣∣Φj(R)

〉〈
Φj(R)

∣∣∂γH(R)
∣∣Φ0(R)

〉(
E0(R)−Ej(R)

)2 . (23)

In case of the toy model, the j-sum merely consists of a single term, referring to the excited
state

∣∣Φ1(R)
〉
. Furthermore, ∂βH(R) = −τβ/2, see Eq. (16), and

(
E0(R)−E1(R)

)2
= R2.

Hence

Ω0,βγ(R) = −1

2
Im

〈
Φ0(R)

∣∣τβ∣∣Φ1(R)
〉〈
Φ1(R)

∣∣τγ∣∣Φ0(R)
〉

R2
(24)

and with Eq. (21)

Ω0(R) =
1

2

∑
αβγ

εαβγ Ω0,βγ(R) eα = −1

4
Im

〈
Φ0(R)

∣∣τ ∣∣Φ1(R)
〉
×
〈
Φ1(R)

∣∣τ ∣∣Φ0(R)
〉

R2
. (25)
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We can choose the z axis to point in the direction of R, such that
∣∣Φ0(R)

〉
= (1, 0)T with

Eq. (17) and
∣∣Φ1(R)

〉
= eiφ(0, 1)T . Evaluating the matrix element

〈
Φ0(R)

∣∣τ ∣∣Φ1(R)
〉
= eiφ(1, 0) τ

(
0

1

)
= eiφ

 1

−i
0

 ,
〈
Φ1(R)

∣∣τ ∣∣Φ0(R)
〉
= e−iφ

 1

i

0

 ,

(26)
and remembering that we had assumedR = Rez, we find

Ω0(R) = −1

2

R

R3
. (27)

Since Ω0(R) = ∂R×A0(R), one may ask the question, if there is a similarly compact result
for the Berry connection. In fact, one may verify by a direct calculation that, for an arbitrarily
chosen unit vector e, the curl of

A0(R) = −1

2

1

R2

e×R
1 + eR/R

(28)

yields the Berry curvature (27), as has already been noted by P. Dirac in 1931 [10].
Equations (27) and (28) are interesting as they allow us to interpret A0(R) as the vector po-
tential of the magnetic field Ω0(R) of a “magnetic monopole” with “magnetic point charge”
q = −1/2 located at the origin R = 0. Note that A0(R) is singular for all R with R = −Re,
i.e., on the ray (Dirac string) starting atR = 0 to infinity in −e direction. Different choices for
e just correspond to different gauges. The singular point R = −e, where the ray intersects S2,
can be moved around on S2 by choosing different gauges but it cannot be removed for any par-
ticular gauge. Hence, Ω0(R)=∂R×A0(R) holds locally but not globally on S2 or on R3\{0}.
This is consistent with our earlier discussion that the Poincaré lemma does not apply to S2.
There is also a descriptive meaning of the Berry phase γC . Equation (20) tells us that γC is
the flux of the “magnetic field” through a surface that is bounded by the closed path C. The
right-hand rule tells us that, for C being the equator, oriented from west to east, S is the upper
hemisphere. Using Eq. (27) with dS=R2(R/R) dS, we see that γC = −1

2

∫
S
(R/R3)dS = −π

for any great circle on the sphere of arbitrary radius. This generalizes our earlier result, Eq. (19).
We can also integrate over the lower hemisphere π/2 < θ < π to compute the Berry phase via
the Stokes theorem. According to Eq. (27), the collected flux is the same:

∫
S
Ω0(R)dS = −π.

However, in applying the Stokes theorem with the same path C (the equator) we have to take care
of an additional sign,

∮
CA0(R)dR = −

∫
SΩ0(R) dS, since the orientations of C and S are not

consistent in this case (the right-hand rule is violated). There is a second point to be considered:
The Stokes theorem holds ifA0(R) is smooth on (an open set containing) the lower hemisphere,
which is not the case for the Berry connection derived from Eq. (17). In the above-discussed al-
ternative gauge after the transformation |Φ0(R)〉 7→ e−iφ|Φ0(R)〉, the Berry connectionA′0(R)

is in fact smooth on the lower hemisphere. However,
∮
CA

′
0(R)dR = π, opposed to Eq. (19),

but consistent with the Stokes theorem:
∫
SΩ0(R) dS = −

∮
CA
′
0(R) dR=−π.
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Chern number

We are now in a position to define the Chern number and to understand why this is a topological
invariant. Given the HamiltonianH(R) of a quantum system with a nondegenerate ground state
for allR on its parameter manifoldM, our goal is to show that the first Chern number, defined
as

C =
1

2π

∮
S
Ω0(R)·dS , (29)

is quantized: C ∈ Z.
Here, we consider a closed two-dimensional surface S embedded in a two- or higher-dimen-
sional manifold M. The Chern number will generally be dependent on our choice for S.
For simplicity, we still stick to a three-dimensional parameter space, e.g., to M = R3\{0},
which applies to our toy model. The Berry curvatureΩ0(R) is divergence-free. Hence, locally
Ω0(R) = ∂R×A0(R). IfM could be covered by a single chart, i.e., if it is essentially given by
R3, then the Poincaré lemma would tell us thatΩ0(R) is globally given as the curl of the Berry
connection A0(R) defined on the entire manifoldM. In this case C = 0, Namely, the Stokes
theorem gives

∮
S ∂R×A0(R)dS =

∮
∂SA0(R)dR = 0 since the boundary of S vanishes.

Consider now the case of a nontrivial M and assume that the closed surface S = S1 ∪ S2,
where S1 and S2 are surfaces, which both share the same closed path C as their boundary,
except for the different orientation: ∂S1 = −∂S2 = C. Let Ω0(R) = ∂R×A0,1(R) on S1
and Ω0(R) = ∂R×A0,2(R) on S2. On an environment of C, the Berry connections A0,1(R)

and A0,2(R) satisfy ∂R ×
(
A0,1(R)−A0,2(R)

)
= 0, and thus differ by a gradient field, i.e.,

transform into each other via a gauge transformation. Thus, the corresponding Berry phase
factors are equal, eiγ1,C = eiγ2,C , while the Berry phases are equal modulo 2πk with k ∈ Z:∮

C
A0,1(R)·dR−

∮
C
A0,2(R)·dR = 2πk . (30)

We choose the orientation of C consistent with the orientation of S1 according to the right-hand
rule. The Stokes theorem then gives∫

S1
Ω(R)·dS1 =

∮
C
A0,1(R)·dR and

∫
S2
Ω(R)·dS2 = −

∮
C
A0,2(R)·dR , (31)

where the sign in the second equation comes from the fact that the orientations of C and S2 are
opposite. With Eq. (30) and Eq. (31) we conclude that∮
S
Ω(R)·dS =

∫
S1
Ω(R)·dS1+

∫
S2
Ω(R)·dS2 =

∮
C
A0,1(R)·dR−

∮
C
A0,2(R)·dR ∈ 2πZ. (32)

This is exactly the proposition made and thus concludes the proof.
Inserting the result we have obtained for the toy model Eq. (27) in the definition of the Chern
number Eq. (29), we find a nontrivial (nonzero) invariant

C =
1

2π

∮
S

(
−1

2

R

R3

)
·dS = −1

2

1

2π
4π = −1 ∈ Z , (33)

if we choose the closed surface S such that it once encloses the “magnetic monopole” atR = 0.
Taking a sphere centered around R = 0 is the most simple choice, and the result Eq. (33) is
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obtained straightforwardly. Let us emphasize, however, that it also holds for any continuous
deformation of the sphere as long as R = 0 is included, i.e., if there is no gap closure during
the deformation.
We conclude the discussion with two general points: First, it should be stressed that the Chern
number is assigned to a bundle

{
|Φ0(R)

〉}
S of ground states of Hamiltonians H(R) with pa-

rametersR belonging to a closed two-dimensional manifold S . This can be indicated by writing
C(S) or, more generally, C(S,λ), where we made explicit the dependence of the Hamiltonian
H = H(R,λ) on additional parameters λ, which are unrelated to R and which are called
control parameters. Examples for λ will be seen in the next section. A nonzero Chern num-
ber can be interpreted as a nontrivial twist of this bundle. We can now state that the bundle{
|Φ0(R,λ1)

〉}
S cannot be deformed continuously into the bundle

{
|Φ0(R,λ2)

〉}
S , if the cor-

responding Chern numbers differ from each other, i.e., if C(S,λ1) 6= C(S,λ2). In passing
from λ1 to λ2 in control-parameter space, one would necessarily have to go through a critical
point λc, where there is a gap closure at one (or several) pointsR ∈ S, since the Chern number
cannot change as long the ground state is nondegenerate.
Second, the entire construction can be generalized from three-dimensional parameter mani-
foldsM to manifolds of arbitrary dimension r using the calculus of differential forms and the
generalized Stokes theorem. In this language, the Berry connection is a 1-form, and the Berry
curvature Ω a 2-form, which can be integrated over a closed two-dimensional submanifold
of M, and are thus relevant for r = 3. By construction Ω is closed, i.e., dΩ = 0. In case
of a topologically nontrivial manifoldM, however, it is not necessarily exact, i.e., of the form
Ω = dA. For a bundle of Hamiltonians H(R) with parameters R living in an r = 2n+1-
dimensional manifoldM, and for a given closed 2n-dimensional submanifold S ofM, one can
associate the n-th Chern number C2n(S). It is defined as a 2n-dimensional integral over the
2n-form in

(2π)n
1
n!

∫
S tr(Ωn) over S, where Ω = dA+A2 is the Berry-curvature 2-form given in

terms of the nonabelian (matrix-valued) Berry-connection 1-form A. Let us also mention that
the case of even r must be treated differently. The details of the mathematical formulation are
too complicated to be discussed here. One may have a look at Refs. [3, 11–13].

3 Chern insulator

Our goal is to apply the concept of the Chern number as a topological invariant to a system of
noninteracting electrons on a lattice. An additional Hubbard interaction is discussed later.

Generic model of a noninteracting insulator

A lattice model for noninteracting electrons is uniquely characterized by a hopping matrix t and
has the Hamiltonian

H =
L∑

i,i′=1

M∑
α,α′=1

tiα,i′α′ c
†
iαci′α′ . (34)
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Here i = 1, ..., L labels the sites of a D-dimensional Bravais lattice of position vectors ri with
periodic boundary conditions, and α = 1, ...,M is an orbital index. For simplicity we consider
spinless fermions. Furthermore, M = 2 different orbitals per site are necessary at least to allow
for a band-insulating state with a gapped band structure. We choose M = 2 for simplicity.
We recap a few simple facts from band theory: The lattice is spanned by basis vectors ar with
r = 1, ..., D. Hence, ri =

∑D
r=1 nirar with nir ∈ Z. The discrete Fourier transformation

c†kα = L−1/2
∑

k e
ikric†iα block diagonalizes the Hamiltonian: H =

∑
kαα′ tαα′(k) c

†
kαckα′ .

Here, the wave vectors k lie in the unit cell of the reciprocal lattice spanned by the basis vectors
bs with s = 1, ..., D, defined as the unique solution of the inhomogeneous linear system of
equations arbs = 2πδrs. Periodic boundary conditions for the real-space lattice imply that
the wave-vector components are discrete: ks = (ms/Ls)bs with ms = 0, ..., Ls−1. There
are L = L1L2 · · ·LD wave vectors in any reciprocal unit cell. Typically, one chooses the first
Brillouin zone (1BZ). Furthermore, we have tαα′(k+g) = tαα′(k) for any reciprocal lattice
vector g =

∑D
s=1msbs.

The last point leads to the important observation that in the thermodynamic limit L → ∞ the
1BZ is actually a smoothD-dimensional manifold without a boundary, namely aD-dimensional
torus TD ∼= S1 × · · · × S1. This is nontrivial in the sense that the Poincaré lemma does not
apply when integrating over the 1BZ. Furthermore, for each k ∈ 1BZ ∼= TD the “Bloch
Hamiltonian” t(k) is a 2×2 matrix (in general M×M ). We conclude that for D = 2 we have
exactly the situation as discussed above in the toy-model example: A bundle of Hamiltonians
with two-dimensional Hilbert spaces attached to the points of a smooth nontrivial parameter
manifold 1BZ ∼= T 2 (replacing the 2-sphere).
However, the present situation is much more pleasant: The different Bloch Hamiltonians in the
bundle actually all derive from one and the same Hamiltonian of the system. Furthermore, the
closed two-dimensional surface S = 1BZ, over which the integration is performed, is an intrin-
sic property of the system, namely of its geometry. There is no need to indicate the dependence
of the Chern number C(S,λ) on the choice for S. There is no choice, since S is given a priori.
Hence, C(λ) is a material property and depends on material (control) parameters only. It can
be used to topologically classify the ground states in λ space.
For each k ∈ 1BZ we can expand the Bloch Hamiltonian in the basis of Hermitian 2×2 matrices
as t(k) = d0(k)1+d(k)·τ . Actually, this form is quite convenient to define interesting models,
rather than specifying the real-space hopping matrix tiα,i′α′ . As an example, we will consider
the Qi-Wu-Zhang (QWZ) model [14, 2] on the square lattice. This is defined by d0(k) = 0 and

d(k) =

 t sin kx
t sin ky

m+ t cos kx + t cos ky

 . (35)

Here, t > 0 is the hopping parameter, which can be fixed to specify the energy scale. Fur-
ther, m is the so-called “mass” parameter. The eigenvalues of t(k) = d(k)·τ are given by

ε±(k) = ±|d(k)| = ±t
√
sin2 kx + sin2 ky +

(
m/t+cos kx+cos ky

)2. We see that there is
a (fully occupied) valence band and an (unoccupied) conduction band separated by a finite
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gap ∆(k) = 2|d(k)| > 0 in the entire 1BZ (−π < kx, ky ≤ π), except for special val-
ues of the mass m, for which |d(k)| = 0. We immediately see that a gap closure requires
k = kc with kc ∈

{
(0, 0), (0, π), (π, 0), (π, π)

}
, i.e., it can take place at critical wave vec-

tors kc given by the high-symmetry points (HSPs) in the 1BZ. Furthermore, from the condi-
tion m/t + cos kx + cos ky = 0, evaluated at the HSPs, we find the critical mass parameters
mc = −2t, 0, 2t, at which there is a band closure (at kc = (0, 0), kc = (π, 0), (0, π), and
kc = (π, π), respectively).

Band and Chern insulators

Our toy model Eq. (16) is recovered with the substitution d ↔ −1
2
R. Hence, we immediately

get the Berry curvature (note that ground and excited states switch their roles and that the
prefactor 1

2
is the same, see Eq. (23))

Ω0(d) =
1

2

d

d3
. (36)

At least this is the Berry curvature when regarding d = (dx, dy, dz)
T as the parameters. One

would then have to choose, more or less arbitrarily, a closed two-dimensional surface embedded
in three-dimensional d space to compute the Chern number. The physical parameter manifold
S, however, is the 1BZ. This yields the Chern number as a material property. If the resulting
Chern number is nonzero, we refer to such a material as a “Chern insulator”, as opposed to a
“trivial” band insulator with C = 0.
For noncritical mass parameters, Eq. (35) defines a smooth map d : S → R3\{0}. Since S =

1BZ ∼= T 2 is a closed two-dimensional surface, its image under d,

D ≡
{
d = d(k) ∈ R3\{0}

∣∣ k = (kx, ky) ∈ 1BZ
}
, (37)

is a closed two-dimensional surface as well, which is embedded in R3\{0}. We can define its
infinitesimal vectorial surface element as dS = ∂d(k)

∂kx
×∂d(k)

∂ky
dkxdky, which is perpendicular

to D. This can be used, together with the substitution rule for functions of several variables, to
compute the Chern number as

C =
1

2π

∮
D

(
1

2

d

d3

)
dS =

1

4π

∮
S

d(k)

d(k)3
· ∂d(k)
∂kx

×∂d(k)
∂ky

dkxdky . (38)

The two-dimensional integral in Eq. (38) with the QWZ d(k) from Eq. (35) is easily evaluated
numerically, and one can verify in this way that C ∈ Z.
In fact, C = 0 for −∞ < m < −2t, C = +1 for −2t < m < 0, C = −1 for 0 < m < 2t, and
C = 0 for 2t < m < ∞. This provides us with a topological phase diagram. Systems in the
phase diagram with different Chern numbers cannot be deformed continuously into each other.
Upon varying m, one necessarily has to pass a critical value mc, where there is a band closure
at a HSP in the 1BZ and thus a degenerate ground state.
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Wrapping number

Now that we have the topological phase diagram, we may consider continuous deformations of
the Hamiltonian that do not lead to a gap closure and thus ensure that the Chern number does not
change. For example, we may treat the modulus of d(k) as a k-dependent control parameter.
A continuous deformation d(k) = |d(k)| 7→ 1 does not close the gap ∆(k) = 2d(k). Hence,
the Hamiltonian with normalized d(k) = 1 has the same Chern number as the original one.
This deformation is advantageous, since this implies ∂|d(k)|2/∂kx = 0 (and the same for ky),
and thus d(k) becomes perpendicular to ∂d(k)/∂kx, and to ∂d(k)/∂ky as well. Therewith,
d(k) becomes parallel to the surface element dS, and d(k)dS = ±dS with dS > 0. Eq. (38)
then reads

C = ± 1

4π

∮
D
dS , (39)

where D is the image of the 1BZ ∼= T 2 under the continuous map T 2 → R3\{0} with k 7→
d(k), see Eq. (37).
Since the 1BZ ∼= T 2 is a closed two-dimensional surface and since d(k) = 1, the image of T 2

is a closed two-dimensional surface embedded in the 2-sphere S2. This implies that the image
D must cover the entire S2 — once or several times. The Chern number is just the area of this
surface, divided by 4π. Since the surface area of S2 is just 4π, we see that the Chern number
is just the count, how often S2 is covered. Its sign reflects the orientation of the image with its
surface normal on S2 pointing inwards or outwards. The Chern number gives us the information
how often T 2 wraps around S2. It can be interpreted as a wrapping number.

Time-reversal symmetry

It is important to understand that a nonzero Chern number requires that time-reversal symmetry
is broken. The identity and time reversal form a group of transformations isomorphic to Z2.
According to Wigner’s theorem [8], time reversal is represented in Hilbert space by a unitary
or anti-unitary operator K. In single-particle quantum mechanics, it is defined via its action of
the position, momentum and spin operator as KrK† = r, KpK† = −p, and KsK† = −s. This
impliesK[x, px]K† = −[x, px], and since [x, px] = i~ we must haveKi~K† = −i~. This means
K is anti-unitary, i.e., anti-linear and unitary with K†K = 1. For a many-body system with an
even (odd) number of spin-1/2 fermions we haveK2 = 1 (K2 = −1). Here, we consider spinless
fermions, where K2 = 1. On the Fock space of a spinless-fermion model, the anti-unitary
operator K can be defined to act trivially on the annihilation and creation operators with respect
to the site-orbital basis, KciαK† = ciα (and the same for c†iα). Since c†kα = L−1/2

∑
k e

ikric†iα,
anti-linearity of K implies KckαK† = c−kα.
Let us assume that the parameter-dependent Hamiltonian H(R) of a spinless-fermion system
is time-reversal symmetric for all R, i.e., H(R) = KH(R)K†. Hence, we may assume that
the eigenstates of H(R) can be chosen among the eigenstates of K. In fact, we may choose the
phases of

∣∣Φj(R)
〉

such that K
∣∣Φj(R)

〉
= +

∣∣Φj(R)
〉
. These relations can be used to analyze
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the matrix element in the representation Eq. (23) of the Berry curvature. We have〈
Φ0(R)

∣∣∂βH(R)
∣∣Φj(R)

〉
=
〈
KΦ0(R)

∣∣∂β(KH(R)K†)
∣∣KΦj(R)

〉
=
〈
Φ0(R)

∣∣K†K∂βH(R)K†K
∣∣Φj(R)

〉∗
=
〈
Φ0(R)

∣∣∂βH(R)
∣∣Φj(R)

〉∗
, (40)

where we have used that 〈Au|v〉 = 〈u|A†v〉∗ for any anti-linear operator A and arbitrary states
|u〉, |v〉. Hence, the matrix element is real. With Eq. (23) we conclude that the Berry curvature
vanishes for any time-reversal symmetric Hamiltonian. The Chern number is zero.
Consider a multi-orbital spinless-fermion model, whereH =

∑
kαα′ tαα′ (k)c

†
kαckα′ is specified

by the Bloch Hamiltonian t(k). We have

KHK† = K
∑
kαα′

tαα′(k) c
†
kαckα′K

† =
∑
kαα′

t∗αα′(k) c
†
−kαc−kα′ =

∑
kαα′

t∗αα′(−k) c
†
kαckα′ , (41)

and thus H is invariant under time reversal, KHK† = H , if t(k) = t∗(−k). Specifically, for
the QWZ model t(k) = d(k)τ with d(k) given by Eq. (35). We have

t∗(−k) = d(−k)τ ∗ =
(
−dx(k),−dy(k),+dz(k)

)
·
(
τx,−τy, τz

)
, (42)

showing that time-reversal symmetry is broken. Thus, a topologically nontrivial phase of the
model signalled by a nonzero Chern number is not excluded.

The quantum Hall effect

Typically, a topological invariant is a rather abstract, mathematical concept, and its only signif-
icance is to discriminate topologically different phases that cannot be deformed into each other
continuously. Sometimes, on top of this important classification property, a topological invari-
ant can be an easily accessible physical observable. The Chern number of a two-dimensional
Chern insulator is exactly such a case, and it plays the central role in the quantum Hall effect.
The quantum Hall effect (QHE) is observed in a two-dimensional electron gas, which can be
realized, e.g., in gallium-arsenide heterostructures. Applying a magnetic field perpendicular
to the heterostructure, the transverse (Hall) resistivity Rxy can be measured as function of the
magnetic field strength. From the standard theory of electromagnetism and from Drude theory
one expects a linear dependence. At sufficiently low temperatures, however, plateaus in the
field dependence are found [15]. In fact, the zero-temperature Hall conductivity is quantized:
1/Rxy = νe2/h with integers ν characteristic for the Hall plateaus. This striking quantization
effect has been employed for a new practical standard for electrical resistance as it comes with
an extremely high accuracy. A theoretical derivation [16] shows that the integer ν is given by
the first Chern number. This means that the quantum Hall effect is eventually traced back to
topological properties of the two-dimensional electron gas.
The QWZ model must be seen as a simplified model related to the quantum anomalous Hall
effect (QAHE), i.e., the quantum version of the anomalous Hall effect. The latter requires a
combination of magnetic polarization and spin-orbit coupling to generate a Hall effect rather
than an external magnetic field. In fact, broken time-reversal symmetry rather than an orbital
magnetic field and Landau levels is more fundamental for the concept of a Chern insulator [17].
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Fig. 4: Gapless modes must exist at the boundary between two bulk systems with different Chern
numbers or at the surface of a Chern insulator.

Bulk-boundary correspondence

Another important and experimentally observable consequence of the existence of the Chern
number as a topological invariant in systems with broken time-reversal symmetry is the neces-
sary presence of gapless modes at the surfaces of a Chern insulator. The finite and quantized
conductivity in the quantum-Hall systems is in fact carried by these boundary modes. Their
number is exactly given by the Chern number, and each carries a flux quantum e2/h.
The existence of gapless boundary modes can be explained with the so-called bulk-boundary
correspondence. This is a rather deep concept in topology but can be sketched in simple terms
as follows:
Consider a D-dimensional system that is spatially cut into two subsystems along a D−1-
dimensional boundary, see Fig. 4. For each of the two D-dimensional subsystems, the bulk
band structure shall be gapped and topologically characterized by a Chern number. We assume
that the two Chern numbers are different and imagine an extended boundary which smoothly
interpolates between the bulk Hamiltonians of the two subsystems. Then, somewhere along a
path starting in the bulk of the first subsystem through the boundary and ending in the bulk of
the second, the energy gap must vanish. Otherwise it would be impossible for the topological
invariant to change. Hence, we conclude that at the boundary between two insulators with dif-
ferent Chern numbers, or, since the vacuum has vanishing Chern number, at the surface of a
Chern insulator, there must be low-energy electronic states crossing the gap. These boundary
modes have the fascinating and experimentally detectable property of being topologically pro-
tected. Their existence is a fundamental consequence of a gapped and topologically nontrivial
band structure and thus not affected by arbitrary local perturbations at the boundary.

4 Electron correlations

Up to this point we have concentrated on the topological properties of noninteracting lattice-
fermion models. We will now shift the focus to interacting models, such as the QWZ model
with an additional Hubbard interaction as an instructive prototype and example for concrete
calculations. To this end, we first define the spinful QWZ model with Hamiltonian H(0) =∑

kαα′σ tαα′(k) c
†
kασckα′σ, where σ =↑, ↓ denotes the spin projection and where t(k) = d(k)·τ

with d(k) given by Eq. (35). The QWZ+U model is then given by H = H(0) +H(1) where the
(intra-orbital) Hubbard term reads as H(1) = U

∑
iα niα↑niα↓ with niασ = c†iασciασ.
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Generally, a lattice-fermion model is defined via its hopping matrix tiα,i′α′ (see Eq. (34)) or
by the corresponding Bloch Hamiltonian t(k) that is obtained after Fourier transformation to
reciprocal space and can trivially be made spinful as above (if this is not already the case) and
equipped with a Hubbard or with the full Coulomb interaction. We will restrict ourselves to local
interactions, such as the Hubbard interaction, since in those cases one can straightforwardly
apply dynamical mean-field theory (DMFT).

Dynamical mean-field theory

For the following discussion, we recall some important facts related to DMFT. An overview is
given by Ref. [18].
(i) DMFT is an approximate mean-field theory for D-dimensional interacting lattice-fermion
models with local interactions. As opposed to other mean-field approaches, it becomes exact in
the limit of infinite spatial dimensions D →∞. This requires a proper scaling of the hopping-
matrix elements with D. In case of the hypercubic lattice, for example, the nearest-neighbor
hopping must be scaled as t = t∗/

√
D to maintain the balance between the noninteracting and

the interacting parts, H(0) and H(1), of the Hamiltonian in the D →∞ limit.
(ii) The central quantity of DMFT is the single-particle Green function G(k, ω). In the nonin-
teracting case, its elements are given by

G
(0)
αα′(k, ω) =

(
1

ω + µ− t(k)

)
αα′

, (43)

assuming a spin-diagonal and spin-independent hopping. Here, µ is the chemical potential. The
interacting Green function is obtained fromG(0)(k, ω) in terms of the local, i.e., k-independent
self-energyΣ(ω) as

G(k, ω) =
1(

G(0)(k, ω)
)−1 −Σ(ω)

. (44)

Locality of the self-energy is the decisive assumption of DMFT and is an exact property in the
limit D →∞.
(iii) Operationally, DMFT self-consistently maps the lattice model onto an Anderson impurity
model with the same local interaction term. The self-consistency cycle may be started with
a guess for Σ(ω). Via Eq. (44) this fixes G(k, ω) and the local Green function Gloc(ω) =
1
L

∑
kG(k, ω) in particular. The latter is used to define the noninteracting Green function

matrix G(ω) of a (multi-impurity) Anderson impurity model as

Gαα′(ω) =

(
1(

Gloc(ω)
)−1

+Σ(ω)

)
αα′

, (45)

and thereby fixes its noninteracting Hamiltonian H(0)
imp or action. The interacting impurity prob-

lem Himp = H
(0)
imp +H(1) must be solved for the same interaction, chemical potential and tem-

perature T (here assumed as T = 0) with the goal to get an updated self-energy that can be fed
back to the start of the cycle. The DMFT solution of the lattice problem is obtained by iterating
the cycle until self-consistency is reached. Clearly, an “impurity solver” is needed to run the
algorithm (see Ref. [18], for examples).
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Topological Hamiltonian

A noninteracting electron system on a lattice is specified by the Bloch Hamiltonian t(k). We
assume that (i) t(k) is gapped, i.e., that there is an energy µ0 such that, for all k ∈ 1BZ,
its eigenvalues εm(k) < µ0 if m = 1, ...,m0 (“occupied bands”) and εm(k) > µ0 if m =

m0+1, ...,M (“unoccupied bands”). We further assume that (ii) the total electron number is
N = 2m0L. Then, the state |χ0(k)

〉
=
∏

m≤m0

∏
σ c
†
kmσ|vac.〉 can be seen as the ground

state of H(k) =
∑

mσ εm(k) c
†
kmσckmσ =

∑
αα′σ tαα′(k)c

†
kασckα′σ at a given k ∈ 1BZ in the

invariant subspace with 2m0 electrons. The ground state of H(0) is |Φ0〉 =
∏

k

∣∣χ0(k)
〉
.

Apart from the trivial spin degeneracy which can be disregarded here, we have a Hamiltonian
H(0)(k) with a smooth dependence on the parameters of a two-dimensional closed manifold
(the 1BZ) with a unique, i.e., nondegenerate ground state for all k and thus a gap to the lowest
excited state. As discussed in the preceding section, we can thus define the corresponding Berry
curvature and infer that its integral over the parameter manifold is given by 2π times an integer,
the Chern number.
Within DMFT, this argument holds true if we replace t(k) by ttop(k) = t(k) + Σ(ω=0),
provided that ttop(k) is still gapped and that Σ(ω) does not diverge as ω → 0. The bundle
of matrices ttop(k) is called the “topological Hamiltonian” [19]. Note that the self-energy at
zero frequency Σ(ω=0) is a Hermitian matrix in the orbital indices as can be deduced from
the fundamental properties of the single-particle Green function and Dyson’s equation (44).
We also note that the Slater determinants |χ0(k)〉 do not have a direct physical meaning in
case of an interacting electron system and must be seen as auxiliary quantities. Nevertheless,
the topological Hamiltonian provides us with a means for computing an “interacting Chern
number” and thereby with a topological classification of gapped interacting electron systems on
a lattice.
We will proceed with the concept of topological Hamiltonian in the context of DMFT. How-
ever, in the extended context of interacting topological insulators there are some partly open
questions. However, we will postpone their discussion to the final section.

5 Exact interplay of correlations and topology inD=∞

Among the various mean-field theories, DMFT has an exceptional standing, since it is internally
consistent and nonperturbative, and since there is a nontrivial limit, in which this mean-field
approach becomes exact [20]. This is the limit of infinite spatial dimensions. For the Hubbard
model H =

∑
ii′σ tii′ c

†
iσci′σ + U

∑
i ni↑ni↓ on a D-dimensional hypercubic lattice, one has to

properly scale the nearest-neighbor hopping amplitudes to keep a nontrivial balance between the
tight-binding and the Hubbard-interaction term in the limit D → ∞, namely t = t∗/

√
D with

fixed t∗ (e.g. t∗=1). In this limit, DMFT provides the exact solution and, while one can profit
from certain simplifications such as the locality of the self-energy [21], the remaining physics
is highly nontrivial. This is demonstrated, for example, with the famous phase diagram for the
Mott metal-insulator transition [18]. Here, we consider the D → ∞ limit of a multi-orbital
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Hubbard model, which already for U = 0 has a nontrivial topological phase diagram including
band and Chern insulator phases. Our goal is to construct the model such that its correlations
and its topological properties remain nontrivial, such that we are able to study, on a numerically
exact level, the topological properties of a paradigmatic strongly interacting electron system.

Spinful QWZ model on aD-dimensional hypercubic lattice

To this end, we start from the noninteracting QWZ model, for which an extension to arbitrary
even dimensionsD = 2, 4, 6, ... is known [12], namelyH(0) =

∑
kαα′σ tαα′(k) c

†
kασckα′σ, where

α = 1, ...,M is the orbital index and tαα′(k) are the elements of the spin-independent Bloch
Hamiltonian

t(k) =

(
m+ t

D∑
r=1

cos kr

)
γ
(0)
D + t

D∑
r=1

sin kr γ
(r)
D . (46)

Here, t = t∗/
√
D is the hopping andm the mass parameter. We set t∗=1 to fix the energy scale.

This Bloch Hamiltonian is an M×M matrix for each wave vector k = (k1, ..., kD) ∈ 1BZ with
−π < kr ≤ π and is constructed with the help of the M×M matrices γ(µ)D , where µ = 0 or
µ = r = 1, ..., D. These satisfy the anticommutation relations of a Clifford algebra{

γ
(µ)
D , γ

(ν)
D

}
= 2δ(µν) . (47)

This algebra is a very convenient one, e.g., for the computation of the eigenvalues of t(k).
We have t(k) =

∑M
µ=0 dµ(k)γ

(µ) with d0(k) ≡ m + t
∑D

r=1 cos kr and dr(k) ≡ t sin kr for
r = 1, ..., D. Using Eq. (47) we immediately get

t(k)2 =
∑
µ

dµ(k)γ
(µ)
∑
ν

dν(k)γ
(ν) =

1

2

∑
µν

dµ(k)dν(k)
(
γ(µ)γ(ν)+ γ(ν)γ(µ)

)
=
∑
µ

dµ(k)
2 .

(48)
This means that there are two M/2-fold degenerate bands with dispersions given by ε±(k) =
±
(
d0(k)

2 +
∑

r dr(k)
2
)1/2, when disregarding the spin degree of freedom. Note that, since the

γ matrices are traceless, t(k) is traceless as well and, therefore, there must be as many negative
as positive eigenvalues.
The orbital-dependent density of states (DOS) is given in terms of the free retarded Green
function as

ρα(ω) = −
1

π
Im

1

L

∑
k

G(0)
αα(k, ω+i0

+) . (49)

Again, thanks to the Clifford algebra, we can easily compute

G(0)
αα(k, ω) =

(
1

ω + µ(0) − ε(k)

)
αα

=

(
1

ω −
∑

µ dµ(k)γ
µ
D

)
αα

=

(
ω +

∑
µ dµ(k)γ

µ
D

ω2 −
∑

µ dµ(k)
2

)
αα

. (50)

We consider a half-filled system and have set the chemical potential of the free system to zero.
ForD = 2, one obtains the QWZ model discussed Sec. 3 when choosing γ(1)

2 = τx and γ(2)
2 = τy,

and the so-called chiral element γ(0)
2 = −iτxτy = τz for the γ matrices. Note that they sat-

isfy the anticommutation relations Eq. (47), i.e., the Pauli matrices form a two-dimensional
representation of the algebra, M = 2. We have t(k) = d(k)·τ with d(k) given by Eq. (35).
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Fig. 5: Density of states on the A-orbitals for the D = 2 QWZ model for different m (left).
Right: Density of states (color code) at low excitation energies. t = t∗/

√
2 with t∗ = 1 sets the

energy scale. Figure taken from Ref. [5].

The matrices γ(r) have vanishing diagonal elements, such that there is a contribution from
γ(0) only. We have γ(0)αα ≡ zα=+1 for “A orbitals” α = 1, ...,M/2 and γ(0)αα ≡ zα=−1 for
“B orbitals” α = (M/2)+1, ...,M . This holds for general D and M (for the D = 2 QWZ
model: M = 2) and implies that the orbital-resolved free Green functions G(0)

αα(k, ω) for α =

1, ...,M can be divided into two classes with representatives G(0)
A (k, ω) and G(0)

B (k, ω).
The local DOS on the A orbitals is displayed in Fig. 5 (left) as a function of the mass pa-
rameter m. We note the symmetry ρA(ω) → ρA(−ω) for m → −m. Furthermore, we have
ρA(−ω) = ρB(ω). In the right plot for small frequencies, the evolution of the gap with m can
be read off. Gap closures are found atm = 0 andm = ±

√
2 (in units of t∗ = 1, i.e., t = 1/

√
2),

as discussed earlier.

Bulk-boundary correspondence

For D = 2 dimensions and for mass parameter m = 1 the system is a Chern insulator with
C = −1. Hence, according to the bulk-boundary correspondence, there must be a gap closure
at the surfaces of the bulk system. This is uncovered, e.g., by a calculation for the system in a
ribbon geometry, i.e., we assume that the system is infinitely extended (with periodic boundary
conditions) is x direction, while in y direction it consists of a finite number d of one-dimensional
chains labelled by a chain index λ = 1, ..., d. As the vacuum (for λ < 1 and λ > d) has Chern
number C = 0, we expect gapless edge modes localized at the two edges.
For the actual calculation we can only profit from translational symmetry in x direction. We
perform a two-dimensional Fourier transformation of the bulk Bloch Hamiltonian, Eq. (46),
or specifically, for D = 2, of t(k) = d(k)·τ with d(k) given by Eq. (35) to real space, cut
the hopping parameters in Eq. (34) at the two edges, and perform a one-dimensional Fourier
transform from x space back to kx space. The result is a d×d matrix for each wave “vector” kx,
which must be diagonalized numerically. The d eigenvalues as functions of kx represent the
band structure of the QWZ model in a ribbon geometry.
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Fig. 6: Dispersions of theD = 2 QWZ model in a ribbon geometry atm=1 (left). Calculations
for d=10 chains of infinite length in x direction with edges at λ=1 and λ=10 in y direction.
Right: Weight of various eigenstates in the different chains λ=1, ..., d of a ribbon with thickness
d=40, as indicated. Calculations for t = t∗/

√
2 with t∗=1. Figure taken from Ref. [6].

They are displayed in Fig. 6 (left) for a ribbon thickness of d = 10. In fact, we find two
low-energy eigenmodes visible around kx = 0, which split off the “bulk continuum”, which
is here represented by 8 bands only, at wave vectors kx ≈ ±0.36π. Each of these modes
bridges the bulk band gap. Furthermore, the analysis of the corresponding eigenstates in the
right part of Fig. 6 shows that one edge mode is localized at the top edge λ = 1 and the other
one at the opposite edge λ = 40. Note that here the calculations have been done for a thicker
ribbon with d = 40. The corresponding weight factors |〈i, α|kx, λ〉|2 decay exponentially with
increasing distance to the edges, opposed to bulk states which extend over the entire ribbon.
Let us emphasize once more, that these two gapless edge modes must necessarily exist and that
they are topologically protected against local perturbations.

Topological phase diagram of theD = 2 QWZ+U model

We now add a local Hubbard-type interactionH(1) = (U/2)
∑

iασ niασniα−σ to the Hamiltonian
and consider the resulting two-dimensional QWZ+U model at half filling. Within the DMFT,
the self-energy is site-diagonal, i.e., k-independent. Furthermore, as the H(1) term is an intra-
orbital interaction only, it is diagonal in orbital space, Σαβ(k, ω) = Σαβ(ω) = δαβΣα(ω).
Analogous to the discussion of the density of states above, the orbital-dependent diagonal
elements Σα(ω) can be divided into two classes A and B. With the definition Σ±(ω) =
1
2

(
ΣA(ω)±ΣB(ω)

)
, we have the following decomposition

Σ(ω) = Σ+(ω)1+Σ−(ω)γ
(0)
D=2 , (51)

where γ(0)
2 = τz for D = 2. We see that the topological Hamiltonian

ttop(k) = t(k) +Σ(k, ω=0) = t(k) +Σ+(0)1+Σ−(0)τz (52)
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D (see text). Energy units:
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√
D with t∗=1. Figure taken from Ref. [5].

acquires a nontrivial additional (staggered) orbital structure due to the second term, which adds
to the term in Eq. (46) proportional to γ(0)

D=2. We thus expect a nontrivial modification of the
U = 0 topological phase diagram.
The actual calculation by means of DMFT is conceptually simple: The lattice model is self-
consistently mapped onto two Anderson impurity models, one for the A orbitals and another one
the B orbitals, which are related to each other by A-B sublattice symmetry. As our intention is
to cover the entire m-U parameter space, a simplified DMFT scheme, the two-site DMFT [22],
is helpful. This has successfully been cross-checked against accurate DMFT results obtained
with the standard Lanczos solver [23].
The top panel of Fig. 7 displays the topological phase diagram in the m-U control-parameter
space for dimension D = 2. The phase diagram is shown for negative m only. The m > 0

range is obtained by reflection at the m = 0 axis with a simultaneous sign change C 7→ −C.
At U = 0 and when increasing m, we thus pass from C = 0 over C = +1 (for m > −

√
2) and

C = −1 (for m > 0) to C = 0 (for m >
√
2), i.e., from a band insulator over two topologically

different Chern insulators back to a band insulator again.
Right atm=mc=0, i.e., at the topological phase transition, the bulk system is a so-called semi-
metal. The semi-metal state at this critical mass parameter does not have a (one-dimensional)
Fermi surface. The gap is rather closed at isolated k points in the 1BZ, namely at kc = (π, 0)

and kc = (0, π).
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For U > 0, the Chern number is computed from the topological Hamiltonian, Eq. (52), and is
thus affected by the self-energy at ω = 0. As Σ(ω) is diagonal in orbital space, this merely
amounts to a renormalization of the chemical potential, µ → µ + Σ+(ω=0), and of the mass
parameter, m → m + Σ−(ω=0). Since m acts as the strength of a staggered orbital field,
m = 0 means that the orbital polarization nA−nB vanishes and that ΣA(ω) = ΣB(ω). Hence,
Σ−(ω) = 0 and Σ+(ω) = ΣA(ω) = ΣB(ω). Furthermore, the ω = 0 value of Σ+(ω) = U/2 is
exactly compensated by the chemical potential µ = U/2. Hence, for finite but not too large U
and at m = 0, the topological Hamiltonian equals the noninteracting one, and thus the system
remains in a (correlated) semi-metal state.
For U > Uc ≈ 6, the self-consistently determined DMFT self-energy develops a pole at ω = 0.
This implies that the concept of the topological Hamiltonian breaks down. In fact, at Uc there is
a transition from the correlated semi-metal to a topologically trivial Mott insulator with C = 0,
which is somewhat reminiscent of the paradigmatic metal-to-Mott-insulator transition predicted
by DMFT [18].
For m 6= 0, the system becomes orbitally polarized. At constant U < Uc and for decreasing m,
the Chern-insulator phase with C = 1 extends up to a U -dependent critical mass parameter
mc(U), where a topological phase transition to the band insulator takes place. Upon decreasing
m for U > Uc the Mott insulator is stable up to a second U -dependent critical mass parameter
mMott(U), where a transition to the correlated C=1 Chern-insulator takes place. The phase
diagram shown in Fig. 7 suggests that the Mott insulator and the band insulator (both withC=0)
cannot be connected continuously, as they are separated in parameter space by topologically
nontrivial phases with C 6= 0.

Arbitrary even dimensionsD

Since DMFT is a (rather questionable) approximation in case of a two-dimensional lattice
model, it is worthwhile to ask if and how these results change for the same model on a higher-
dimensional lattice. Eventually, in the D → ∞ limit, the DMFT becomes exact, so that one
might expect exact results for a strongly correlated and topologically nontrivial model at the
same time. This extension to lattices of arbitrary dimensions D requires some effort. We con-
centrate on even dimensions, for odd D a somewhat different but similar approach is necessary.
Let us mention that the D →∞ limit is not unique and that approaching it via even or via odd
D yields different results.
The QWZ model on the hypercubic lattice with arbitrary even D, defined via Eq. (46), requires
an explicit representation for the Hermitian and traceless generators γ(µ)D with µ = 0, 1, ..., D of
the Clifford algebra Eq. (47). There is in fact a general recursive prescription [12], namely

γ
(0)
D+2 = τz ⊗ 1 , γ

(r)
D+2 = τx ⊗ γ(r)

D for r = 1, ..., D

γ
(D+1)
D+2 = τx ⊗ γ(0)

D , γ
(D+2)
D+2 = τy ⊗ 1 ,

(53)

where 1 is the 2D/2-dimensional unity. Explicitly, γ(0) = diag(+1,+1, ...,−1,−1, ...). The
number of orbitals M = 2D/2 scales exponentially with D. Since a lower-dimensional faithful
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representation is not possible [12, 24], the model becomes rather artificial. This is the price we
have to pay to get a correlated and topologically nontrivial model solvable by DMFT.

Noninteracting electronic structure

At U = 0 and arbitrary even D, the band structure is easily obtained by squaring t(k), as
shown above, and we get the dispersions of the two M/2-fold degenerate bands ε±(k) =

±
(
t2
∑

r sin
2 kr + (m+t

∑
r cos kr)

2
)1/2. We set t = t∗/

√
D and t∗ = 1. Due to the point-

group symmetries, band closures are found at the high-symmetry points (HSPs) kc = kn0 ≡
(0, ..., 0, π, ..., π) in the 1BZ, and for the

(
D
n0

)
inequivalent permutations of the components,

where n0 counts the number of vanishing entries kr. To get a band closure, the condition
m = (D−2n0) t must be met or, equivalently,

m/t∗ = (D−2n0)/
√
D . (54)

Thanks to the Clifford algebra, we can easily compute the moments M (n)
α =

∫
dω ρnα(ω) of

the local partial density of states (DOS) of the orbital α for small n. We find the normalization
conditionM (0)

α = 1, the center of gravityM (1)
α = mγ

(0)
αα = ±m, and the α-independent variance

M
(2)
α −

(
M

(1)
α

)2
= t2D = 1. Hence, the scaling of the hopping leads to a proper balance

between H0 and H1 for D→∞. The mass parameter m must not be scaled to maintain a
nontrivial model.
The dispersions for theD=4 model are shown in Fig. 8 (left). ForD=4 we haveM=2D/2=4,
and thus the degeneracy of each band is M/2 = 2. Comparing results for different m (see color
code), we find gap closures form = −2,−1, 0, 1, 2 at the high-symmetry points (HSPs) kc with
n0 = 4, 3, 2, 1, 0, respectively. This is consistent with Eq. (54), which yieldsm = (4−2n0)/2 =

2−n0 forD = 4. The respective number of equivalent HSPs is 1, 4, 6, 4, 1, and the total number
of wave vectors getting critical when varying m from m = −∞ to m = +∞ is 2D = 16.
The right panel in Fig. 8 displays the A-orbital DOS in the D → ∞ limit for mass parameter
m = −1.5. It can be calculated analytically (see Ref. [5])

ρα(ω) =
1

2

1

t∗
√
π
Θ
(
|ω|−t∗/

√
2
)

signω
∑
s=±

(
ω√

ω2−t∗2/2
+ szα

)
e−

(s
√

ω2−t∗2/2−m)
2

t∗2 . (55)

Recall the definition zα=+1,−1 for A, B orbitals. Interestingly, the DOS has anm-independent
gap given by∆=

√
2t∗, opposed to any finite-D DOS. This point requires discussion, see below.

Topological phase diagrams at U =0

The middle panel of Fig. 8 displays the topological phase diagrams of the noninteracting QWZ
model for D = 2, 4, ..., when using m as a control parameter. For each even dimension D, the
red points mark the critical mass parameters given by Eq. (54). In fact they separate topologi-
cally inequivalent states of the system characterized by different Chern numbers. Actually, for
arbitrary even D, the relevant invariant is the (D/2)-th Chern number CD, which is obtained
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as a D-dimensional integration of the D-form, which has been discussed above, over the 1BZ.
(Note that here we depart from the conventional notation CD/2 for the (D/2)-th Chern number.)
The (D/2)-th Chern number of a topological phase for an m that satisfies, for some n0 ∈
{0, ..., D−1}, the condition

D−2n0−2√
D

< m/t∗ <
D−2n0√

D
, (56)

i.e., that lies between the critical mass parameters with band closures at k2n0−2 and kn0 , respec-
tively, is given by [12, 25, 26]

CD(n0) = (−1)n0+
D
2

(
D−1
n0

)
. (57)

For the extreme cases
m/t∗ < − D√

D
and for

D√
D
< m/t∗ (58)

we have band insulators with CD/2(n0=D−1) = 0 and CD/2(n0=0) = 0, respectively.
Fig. 8 (middle) shows that the m-distance between two neighboring transitions shrinks to zero
for D → ∞. Eq. (56) gives us ∆m = 2t∗/

√
D. Hence, for high D the system is arbitrarily

close to criticality for any m, and in the limit D →∞, the set of critical m’s becomes dense in
any finitem-interval. The phase diagram exhibits a continuum of topologically different phases.
This observation has a couple of implications.
First, it means that the definition of a critical point in the 1BZ becomes elusive for D → ∞,
since ε±(k) = ε±(k

′) if ‖k−k′‖ = 0, where we have defined ‖k‖2 ≡ limD→∞D
−1∑D

r=1 k
2
r .

‖ · ‖ is a semi-norm, i.e., ‖k‖ = 0 does not imply k = 0. Hence, the concept of band closures
at isolated points in the 1BZ breaks down. For a given m, we have ε±(k) = 0 at a critical wave
vector k = kc(m) but also at all wave vectors k with ‖k−kc(m)‖ = 0. Furthermore, while the
number

(
D
n0

)
of equivalent critical HSPs at a given critical m and the total number 2D of HSPs

in the 1BZ diverge, their ratio approaches a constant when D →∞.
Second, since all values of the mass parameter are critical, one would expect the absence of a
gap in the DOS for any m. To understand the fact that the DOS displayed in Fig. 8 (right) has
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Fig. 9: The topological phase diagram of the QWZ+U model in the D→∞ limit. The color
codes the topologically invariant Chern density c(m,U) in the m-U plane. Only the m≤ 0
range is plotted as the phase diagram is symmetric underm→−m. Figure taken from Ref. [5].

an m-independent gap ∆ = 2t∗, one can analytically analyze the DOS at a critical m at any
finite D. For sufficiently small frequencies (see Ref. [5]),

ρα(ω) = c(D,n0)|ω|D−1/t∗D (59)

with a coefficient c(D,n0) which, for any n0 and thus for any critical m, tends to zero ex-
ponentially fast with D → ∞. This demonstrates that the contribution of wave vectors with
ε±(k) = 0 to the DOS vanishes in the D → ∞ limit. For D → ∞, we conclude that the DOS
does not indicate whether the system is a (Chern) insulator or a semi-metal. The distinction
between insulator and semi-metal becomes meaningless in this limit.
A third important observation is related to the Chern number. Eq. (57) shows that for D →
∞ only the modulus of the Chern number, and only after proper normalization, has a well-
defined limit. Since

∑D−1
n0=0 |CD(n0)| = 2D−1, we thus introduce a Chern density as c(n0) =

limD→∞ |CD(n0)|/2D−1. To express the Chern density as a function of m, we employ n0 =(
D−m

√
D/t∗

)
/2, see Eq. (54). Furthermore, since ∆m 7→ 0 we write dm ≡ 2t∗/

√
D. With

the Moivre-Laplace theorem, which states that the binomial distribution converges to the normal
distribution, we then find

c(n0) = lim
D→∞

√
2

πD
e−2

(D/2−n0)
2

D = c(m) dm (60)

with
c(m) =

1

t∗
√
2π
e−

1
2

m2

t∗2 . (61)

The Chern density is a smooth Gaussian density. It is normalized by construction and turns out
to have unit variance. This is important, as it shows that not only dynamic correlation effects
but also nontrivial topological properties survive the D → ∞ limit when using the standard
scaling of the hopping.

Topological phase diagram of the interacting system forD→∞

Fig. 9 displays the topological phase diagram of the QWZ+U model in the limit D → ∞. The
control parameters arem and U , and the topological invariant, the Chern density, is indicated by
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Fig. 10: Local spectral function on α = A-orbitals for m = 0 (left) and m = −1.5 (right) for
various U in the D →∞ limit as obtained by two-site DMFT. Figure taken from Ref. [5].

the color code. The results have been obtained numerically employing the simplified two-site
DMFT scheme [22,5] and have been cross-checked against full DMFT employing the Lanczos
solver [23]. The Chern density is obtained from the topological Hamiltonian, where we merely
have to take into account a renormalization of the chemical potential, µ 7→ µ+Σ+(ω=0), and
of the mass parameter, m 7→ m+Σ−(ω=0).
We first discuss the U = 0 case. As a function of m, the Chern density is a Gaussian, see
Eq. (61). This means that the system smoothly evolves from a conventional band insulator,
with c(m, 0) → 0 in the limit m → −∞, to a Chern insulator (or semimetal, this cannot be
distinguished). The invariant increases and takes the maximum value c(m, 0) = 1/

√
2π at

m = 0. The phase diagram for m > 0 is simply obtained by reflection at the m = 0 axis
(also for U > 0). Already the U = 0 phase diagram is quite unconventional, since we have
an infinitely fine classification, where each value of the (modulus of the) control parameter m
defines a separate topological phase. At the same time, each value for m is also critical.
With increasing U at m = 0, the Chern density c(0, U) stays at its maximum, until at U = Uc ≈
6t∗ the system undergoes a correlation-driven transition to a Mott-insulating phase. The Mott
phase is topologically trivial with c = 0. Approaching Uc either from above or from below,
the transition is characterized by a continuously vanishing renormalization factor z 7→ 0, where
z ≡ 1/

(
1− ∂Σα(ω=0)/∂ω

)
is independent of the orbital type α. The quantity z plays the role

of a band-gap renormalization [27]. Examples for the U -dependent interacting spectral function
on the A orbitals are given in Fig. 10 for m = 0 and for m < 0.
For U > Uc, the Mott phase extends to m < 0 and is bounded for all m by a line of critical
interactions Uc(m). For m → −∞ we observe that Uc(m) develops into a linearly increasing
function of |m|. This is due the fact that the system becomes fully orbital-polarized, see the inset
in Fig. 8 (right). Hence, the self-energy becomes static and approaches constants ΣA → U ,
ΣB → 0, such that the renormalization of m is trivial: m→ m+Σ−(ω=0)→ m+ U/2. As a
consequence, the band insulator with c = 0 cannot be smoothly connected to the Mott insulator
with c = 0 without passing topologically nontrivial states with c > 0.
The whole phase diagram Fig. 9 can be understood as being the D → ∞ limit of m-U phase
diagrams at finite D, see Fig. 7, where we have used the same color coding as in Fig. 9 for the
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Chern density, and where the (signed and unnormalized) Chern numbers are given additionally
and directly label the topological phases in the figure. Note the alternating sign and the mono-
tonic increase of the modulus of the Chern number along any straight path from the band to the
Mott insulator. With increasing D, the number of topologically nontrivial phases CD(m) 6= 0

increases and they cover ever narrower regions in the m-U plane (recall ∆m=2t∗/
√
D for

U =0), until they shrink to one-dimensional curves of constant color given by c(m,U)= const
in Fig. 9. In the limit D→∞, systems on these iso-Chern curves are topologically equivalent,
while on paths crossing iso-Cherns one passes through a continuum of topologically different
phases.

6 Concluding discussion

We have demonstrated that DMFT can be used to study the interplay between topology and
correlations in a model for a Chern insulator on an infinite-dimensional lattice. While the ap-
proach is numerically exact, the underlying model necessarily involves, besides the D → ∞
limit, an infinite number of orbitals and is thus somewhat artificial. There are three main lines
along which the discussion could proceed:
The considered example belongs (at U = 0) to the so-called class A of the complete topological
classification of noninteracting lattice-fermion systems. The other nine classes of the “ten-fold
way” have not yet been considered (a simple modification of the theory covers class A III). One
important question is, whether interacting lattice-fermion models can be constructed that remain
well-defined and nontrivial in the D →∞ limit for all classes. In the positive case, this would
demonstrate that the ten classes “survive” if one switches on a Hubbard-type interaction, and we
would have explicit models as prototypes, at least in the (comparatively simple) D →∞ limit.
Even in this limit, where DMFT applies, however, we would not be sure that the classification
was complete – another problem to be tackled.
Complexity rises dramatically, if one attempts a topological classification of all interacting sys-
tems on finite-dimensional lattice. Clearly, already the correlation problem is hard. On the
other hand, we are allowed to consider continuous deformations, preferably to models, which
are more simple from the correlation point of view. This might help to proceed. Up to now
a general classification has not been achieved and theory is still at the very beginning, see
Ref. [28] for a discussion. Some important questions are: Is the topological phase diagram of a
noninteracting system stable against weak interactions? Vice versa, can topologically nontrivial
phases be generated by interactions? In the D →∞ limit, the answer is “yes”, see Fig. 9. More
important, are there topologically nontrivial phases in interacting models that have no analog
to those of noninteracting ones, i.e., cannot be connected to a phase classified by the ten-fold
way? Is a topologically nontrivial Mott insulator possible? What are the consequences of the
bulk-boundary correspondence in case of interacting systems?
On a more pragmatic level and with the focus to concrete materials, one may attempt to com-
pute topological invariants of two- and three-dimensional interacting systems by approximate
numerical tools. DMFT itself and its various extensions to include nonlocal correlations to
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some extent, suggest themselves and appear attractive since the Chern number, for example, can
be computed by means of a formula based on the single-particle Green function only [29, 30].
However, this expression rather is inconvenient for numerical studies as it involves an additional
frequency integration. Invoking the tool of continuous deformations, it has been shown [31] that
a strong simplification is possible and that it is sufficient to consider the self-energy at ω = 0

only, i.e., that the invariant can be computed from the topological Hamiltonian. A different
concept is that of the so-called pole expansion [32, 33]. Here, the self-energy is represented by
a hybridization function involving auxiliary orbitals. For a given self-energy, this allows us to
map the interacting to a noninteracting problem such that the standard methods of topological
classification apply. However, it has been questioned [34] that these two concepts are equivalent
in case of a k-dependent self-energy. Another more fundamental problem is that any scheme,
which is solely based on the single-particle Green function, disregards two-particle correlations
to some extent. The two-particle excitation spectra may undergo a gap closure while the one-
particle gap stays open, so that a complete topological classification cannot be achieved in this
way. Ref. [35] provides an example along this line of reasoning.
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