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2.2 Giovanni Vignale

1 A tale of many fermions

One of the triumphs of quantum mechanics in the 20th century was the explanation of the atomic
structure (periodic table of the elements) in terms of elementary fermions (electrons) endowed
with intrinsic spin ~/2 and obeying Pauli’s exclusion principle, such that no two fermions can
occupy the same quantum state. When many fermions (N ) are present in a finite region of space
the Pauli exclusion principle creates a kind of effective repulsion between the particles: this
repulsion exists even if we pretend that there are no physical interactions between the particles,
e.g., in the limiting case of the ideal Fermi gas. Under such conditions the minimum energy
state is attained by singly occupying the N lowest lying single-particle states: this maximally
compact state is known (for large N ) as the “Fermi sea“, and the energy of the highest occupied
state is known as the Fermi energy, denoted by εF . When many interacting fermions condense in
a state close to the minimum energy allowed by the Pauli exclusion principle (i.e., such that the
average occupation numbers of the N lowest single-particle states are close to 1) one obtains a
Fermi liquid. Physical realizations of the Fermi liquids concept range from interacting electrons
in metals and semiconductors (our main interest here), to liquid 3He, to gases of cold fermionic
atoms, to nuclear matter, electrons in white dwarves, and neutron stars.

The behavior of Fermi liquids confronts us at the outset with a puzzle. In spite of strong mutual
interactions the particles appear in many measurements to behave as if they were essentially
non-interacting. Many properties of electrons in metals, for example heat capacity and electric
conductivity, can be qualitatively understood in terms of the Sommerfeld picture, which is based
on the degenerate ideal Fermi gas model. But this model is not easily justified. The average
interaction energy per electron can be roughly estimated to be on the order of e2n

1
3 , where

n = N/V is the average electronic density and V is the volume. For electrons in Na this works
out to be ' 4.29 eV, which is already larger than the value εF ' 3.24 eV of the Fermi energy.
There is no sense in which the Coulomb interaction can be considered a small perturbation,
and yet the electrons behave by and large as noninteracting particles, while the presence of the
interaction manifests itself in rather subtle ways.

It was not until the late 1950s that this puzzling state of affairs was clarified from a theoretical
point of view by L.D. Landau [1]. Although Landau did not provide a rigorous solution of
the problem, he did provide a firm basis for the understanding of the “normal“ low-energy
behavior of interacting Fermi systems. The solidity of this basis was subsequently confirmed
by theoretical and experimental work.

Perhaps the most striking feature of Landau’s approach is that he completely sidestepped what
most physicists would have considered a prerequisite for further progress, namely a complete
description of the interacting ground state. Instead, he focused on the excited states. His basic
idea was that, under very broad conditions, the low-lying excitations of a system of interacting
Fermions with repulsive interactions are connected to the low-lying states of a non-interacting
ideal Fermi liquid by a suitably slow switching-on of the interaction between the particles.
There are several subtleties in the specification of the switching-on process, beginning with a
precise definition of the words “suitably slow”. For the time being we will not delve into these
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subtleties, but simply notice that the switching-on procedure establishes a one-to-one corre-
spondence between the eigenstates of the ideal system and a set of (approximate) eigenstates
of the interacting system. Since the eigenstates of the noninteracting system are specified by
a set of occupation numbers {N~kσ} of single-particle momentum eigenstates, it follows that
the corresponding low-lying excitations of the interacting system can also be described by the
same set of occupation numbers. It is important to understand that the quantum numbers N~kσ
that specify an excited state of the Fermi liquid are not the true momentum occupation numbers
nkσ =

〈
â†~kσâ~kσ

〉
for that state. Rather, they are momentum occupation numbers of the ideal

system from which the excited state has evolved.

Because in an interacting system the n~kσ’s are not constants of the motion, one could have
naively expected that any memory of the initial noninteracting momentum distribution {N~kσ}
would be completely lost at the end of the switching-on process. Landau’s insight was the
recognition that, for states that are weakly excited (i.e., close to the noninteracting Fermi distri-
bution) the occupation numbers change very slowly even when particle-particle interactions are
strong. The main consequence of this fact is that the N~kσ retain their validity as approximate
quantum numbers, which specify an excited state. Thus, low-energy elementary excitations
of an interacting Fermi liquid can be described in terms of addition or removal of individual
quasiparticles from a filled Fermi sphere of radius kF , where kF is the Fermi momentum of a
non interacting electron gas of the same density. In other words, the interacting system has a
Fermi surface that coincides with that of the non-interacting system – a statement that is known
as Luttinger’s theorem. For example, a state of the ideal system containing a particle of mo-
mentum ~~k with k ≥ kF outside the non-interacting Fermi sphere evolves into an excited state
of the interacting system containing one quasiparticle of momentum ~~k outside the interacting
Fermi sphere. Likewise, a state of the noninteracting system containing one empty state (a hole)
of momentum ~~k within the non-interacting Fermi sphere evolves into an excited state of the
interacting system containing a quasihole of the same momentum. More complex excitations
consisting of multiple quasiparticles and quasiholes can be constructed in a similar fashion. By
definition, the ground-state hasN~kσ = Θ(kF−k). In contrast to this, the momentum occupation
numbers n~kσ in the ground-state decrease discontinuously by an amount Z (with 0 < Z ≤ 1)
as ~k crosses the Fermi sphere from inside to outside. The discontinuity, Z, is of course 1 in the
noninteracting system and less than 1 in the interacting system. The existence of a discontinu-
ity in the momentum occupation number at k = kF is one of the distinctive signatures of the
normal Fermi liquid.

The physical basis of the Landau theory rests on the surprising ineffectiveness of electron-
electron scattering to change the momentum distribution of quasiparticles near the Fermi level.
What happens is that most of the states into which two quasiparticles near the Fermi surface
might end up after a collision are already occupied by other electrons, and therefore, according
to the Pauli exclusion principle, unavailable. Because of this “Pauli blocking” effect, which op-
erates irrespective of the strength of the interaction, the rate at which a quasiparticle is scattered
out of a state of momentum k ' kF vanishes for k → kF . This result can be obtained from a
simple phase space argument.
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Fig. 1: Schematic illustration of two possible decay processes for a quasiparticle near the
Fermi surface. The quasiparticle makes a transition from ~k to ~k′, producing an electron-hole
pair in the process. Momentum and energy conservation restrict the momentum of the hole to
the shaded regions.

Consider a quasiparticle with initial wave vector ~k with k > kF . At zero temperature the
empty states into which the quasiparticle can decay lie within a shell of thickness |k−kF | just
above the Fermi surface. The number of states in this region is clearly proportional to |k−kF |
– a result valid in one, two and three dimensions. Now, through the Coulomb interaction, the
momentum and energy change of the quasiparticle will be offset by the momentum and energy
of an electron-hole pair. In two and three dimensions, the state of the hole must lie within a
shell of thickness |k− kF | below the Fermi surface (see Fig. 1). This contributes another factor
of |k−kF | to the probability of decay, which, as anticipated, is thus found to be proportional to
(k−kF )2 in three dimensions.1

Accordingly in two and three dimensions in the limit k→ kF , the inverse of the scattering rate,
i.e., the scattering time τ~k, becomes long enough to include many cycles of oscillation of an
external field that is able to create the quasiparticle excitation out of the ground-state (the fre-
quency of this field being proportional to the excitation energy which is of order |k−kF |). Thus,
on a time scale that is short compared to τk (but still long compared to the inverse excitation fre-
quency) the occupation numberN~kσ can be regarded as a good quantum number for the excited
state.2

Strictly speaking however the N~kσ are not exact quantum numbers (for that to be true the scat-
tering rate would have to actually vanish), and if one waits long enough, i.e., up to times t� τ~k,

1In two dimensions, a more accurate calculation shows that the scattering rate vanishes at a somewhat slower
rate −(k−kF )2 ln |k−kF | (see Section 3.3). In the presence of disorder the quasiparticle inelastic lifetime is
shorter. This is discussed in Section 6.1.

2The alert reader will notice that the phase-space argument is circular: one assumes the existence of quasiparti-
cles to deduce that their lifetime is long. This does not prove the existence of quasiparticles, but shows that one can
assume their existence without falling in a contradiction. This discussion does also clarify that a “suitably slow”
switching-on must be carried out in a time intermediate between the fast time scale of order 1

vF |k−kF | related to the
resolution of a quasiparticle state and the quasiparticles lifetime which we have shown to be of order εF

~(vF |k−kF |)2 .
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one will see them change. Thus a quasiparticle state is not an exact eigenstate of the interacting
Fermi liquid. Rather, it must be understood as a superposition of closely spaced exact eigen-
states with energies spread over a range of width ~/τ~k � ε~k about the median quasi-particle
energy ε~k. Such a state decays with a characteristic lifetime τ~k, and can be regarded as station-
ary only for times much shorter than τ~k. It turns out that these “quasi-eigenstates” completely
determine the response of the system to macroscopic perturbations.
So strong has been the impact of the Landau theory in condensed matter physics that the Landau
Fermi liquid is often referred to as the Fermi liquid tout-court. It is important therefore to
keep in mind that there are situations in which the Landau description of the Fermi liquid fails
completely. A well known case is that of one-dimensional electronic systems. In this case
the spectral density of electron-hole pairs exhibits a peak at small wavevector q and frequency
ω = vF q. All the electron-hole pairs with given momentum ~q have essentially the same
energy comprised between ~|ω−(q)| =

∣∣∣~vF q − ~2q2
2m

∣∣∣ and ~ω+(q) = ~vF q + ~2q2
2m

. Due to the
massive quasi-degeneracy of the noninteracting spectrum, an arbitrarily weak interaction causes
a complete reconstruction of the many-body eigenstates, and, in particular, destroys the “Fermi
surface” (actually, two points in 1D). Thus, there is no Landau Fermi liquid in one dimension.
The correct paradigm in this case is the Luttinger liquid, where the low-energy excitations are
collective charge and spin density waves and single-particle excitations are no longer sharply
defined. Whether similar departures from Fermi liquid theory can also occur in two dimensions
remains a very active and contentious area of research.
In spite of its occasional failures, the concept of a quasiparticle is an encompassing one. It
applies not only to electrons in metals and doped semiconductors (where the renormalization
factors m∗

m
and Z remain close to 1) but also to 3He atoms in the liquid phase where m∗

m
' 3 and

to highly correlated heavy fermion systems where m∗

m
can run in the hundreds. Considering the

diversity in coupling constants and physical character of these systems it is quite amazing that
they can be subsumed under the same generic theoretical paradigm.
This Chapter is organized as follows:
In Section 2 we summarize the basic results of the phenomenological theory of the Fermi liquids
due to and mostly developed by Landau.
Section 3 presents a simple theory of the quasiparticle inelastic lifetime based on the Fermi
golden rule of elementary quantum mechanics.
The microscopic underpinning of the Landau theory is briefly reviewed in Section 4 and some
numerical results for quasiparticle properties are presented.
Section 5 presents the Fermi liquid theory for massless Dirac Fermions in graphene.
Finally, Section 6 illustrates some ways in which the standard theory of Fermi liquids may fail
due to reduced dimensionality, disorder effects, and high magnetic fields.
The material presented in this chapter is largely adapted from the discussion of the normal Fermi
liquid theory in “Quantum theory of the electron liquid” (G.F. Giuliani and G. Vignale, Cam-
bridge University Press, 2005) [2] and in “The Theory of Quantum Liquids, Vol. I” (D. Pines
and P. Noziéres, W.A. Benjamin 1966) [3], to which you are referred for more detailed deriva-
tions and discussions.
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2 Phenomenological theory

2.1 The Landau energy functional

As discussed in the previous section, a set of noninteracting occupation numbers Nkσ = 0

or 1 defines, by continuation, a quasi-eigenstate of the interacting Fermi liquid. Similarly, a
distribution of fractional occupation numbers 0 ≤ Nkσ ≤ 1 defines an ensemble of quasiparticle
states in which the state of momentum ~~k and spin σ has a probability Nkσ to be occupied
and 1−Nkσ to be empty. At the heart of Landau’s macroscopic theory of the Fermi liquids
lies an Ansatz for the functional dependence of the energy of the liquid on the quasiparticle
distribution functionN~kσ. This functional is in fact an expansion for the energy to second order
in the deviation of the quasiparticle distribution function from its ground-state value N (0)

~kσ
=

Θ(kF−k):

E
[
{N~kσ}

]
= E0 +

∑
~kσ

E~kσ δN~kσ +
1

2

∑
~kσ,~k′σ′

f~kσ,~k′σ′ δN~kσδN~k′σ′ , (1)

where E0 is the ground-state energy (which needs not be specified!), E~kσ is the energy of a
single quasiparticle, f~kσ,~k′σ′ is the Landau interaction function and δN~kσ = N~kσ−N

(0)
~kσ

is the
deviation of the quasiparticle distribution function from the ideal Fermi distribution at T = 0.
Because the quasiparticles are well defined only in the immediate vicinity of the Fermi surface,
it is evident that this expansion makes sense only when δN~kσ is restricted to a thin shell of
momentum space surrounding the Fermi surface. In addition, since every wave vector sum
introduces a factor Ld (the d-dimensional volume), the interaction function f~kσ,~k′σ′ must scale
as the inverse of the volume 1

Ld
in order to keep the energy proportional to the volume in the

thermodynamic limit.
Both the quasiparticle energy and the interaction function (as well as the Landau parameters
introduced below) are phenomenological quantities that the Landau theory of Fermi liquid as-
sumes to be given. In practice, they must be either determined from measurements of physical
properties, or calculated by a microscopic many-body theory.
The energy E~kσ of a single quasiparticle can be formally viewed as the functional derivative of
the energy with respect to the quasiparticle distribution function evaluated at the ground-state:

E~kσ =

(
δE

δN~kσ

)
N~kσ=N

(0)
~kσ

. (2)

Since the ground-state of the N+1-particle system is obtained by adding a quasiparticle of
wavevector kF to the ground state of the N -particle system, it is evident that

EkF σ = µ , (3)

where µ is the chemical potential.
In an isotropic liquid, for |~k| close to kF , the quasiparticle energy can be expanded as

E~kσ ' µ+ ~v∗F (k−kF ), (4)
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where

v?F =
1

~

∣∣∣∣∂E~kσ
∂~k

∣∣∣∣
k=kF

(5)

defines the effective Fermi velocity of a quasiparticle. v∗F can be conveniently written as

v∗F =
~kF
m?

, (6)

which defines the quasiparticle effective massm?. The effective mass in turn determinesN?(0),
the quasiparticle density of states (per unit volume) at the Fermi level µ. This is given by
N?(0) = m?

m
N(0), where N(0) is the density of states at the Fermi surface of a non interacting

electron gas, N(0) = nd
2εF

in d-dimensions.
A fundamental role in the Landau theory is played by the quantity

Ẽ~kσ =
δE

δN~kσ
= E~kσ +

∑
~k′σ′

f~kσ,~k′σ′ δN~k′σ′ , (7)

sometimes referred to as the local quasiparticle energy. This can be interpreted as the energy
of a quasiparticle modified by its interaction with other quasiparticles. From the form of this
equation it is clear that, within the Landau theory, this effect is treated in a mean field approxi-
mation.
We next turn our attention to the quasiparticle interaction function. An inspection of Eq. (1)
reveals that this quantity can be expressed in terms of functional derivatives of the Landau
energy functional with respect to the quasiparticle distribution function as

f~kσ,~k′σ′ =
δ2E

δN~kσδN~k′σ′
=

δẼ~kσ
δN~k′σ′

, (8)

where the functional derivatives are evaluated at the ground-state distribution. Notice that in
order to correctly perform the second derivative appearing in Eq. (8), one needs to know the en-
ergy functional E[{N~kσ}] up to second order in δN~kσ. This implies, for instance, that to derive
the expression for the interaction function in a paramagnetic system one needs the knowledge
of the energy functional appropriate to an infinitesimally polarized electron liquid. This com-
plication does not arise in the case of the quasiparticle energy, since its calculation only requires
a knowledge of the Landau energy functional up to first order in δN~kσ. Finally, in order to cal-
culate thermal properties at finite temperature T one also needs an expression for the entropy of
the liquid. This is given by

S
[
{N~kσ}

]
= −kB

∑
~kσ

(
N~kσ lnN~kσ + (1−N~kσ) ln (1−N~kσ)

)
, (9)

which coincides with the entropy of the noninteracting ensemble of origin, and vanishes in the
ground-state. This is a direct consequence of the assumed one-to-one correspondence between
states of the interacting and non-interacting systems.
Eqs. (1) and (9) are widely used to calculate, from a macroscopic point of view, the thermal
equilibrium properties, the response functions, and the transport properties of an interacting
Fermi liquid, and to establish relationships between different such properties. What follows is
a summary of the main results.
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2.2 The heat capacity

As it turns out, the low-temperature specific heat of a Fermi liquid coincides with that of a
noninteracting Fermi gas comprised of particles of mass m∗: it is therefore given by

cv(T ) =
π2

3
N∗(0)Ldk2BT , (10)

where, as we have seen, N∗(0), the density of quasiparticle energy states per unit volume at the
Fermi level, differs from the corresponding quantity in the non interacting case by the substi-
tution of the bare electronic mass m with m∗.3 This is a direct consequence of Eq. (9) for the
entropy, which in turn implies that the quasiparticle distribution function at thermal equilibrium
is given by

N eq
~kσ
(µ, T ) =

1

eβ(E~kσ−µ) + 1
, (11)

where β = 1/kBT . Notice that the Landau interaction function does not appear in this expres-
sion. This is because the thermal excitation of the system does not contribute to the quasiparticle
energy. Thus the effective mass can in principle be directly measured from the heat capacity,
or by any other measurement that is sensitive only to the quasiparticle density of states. The
situation is quite different when the excitation is caused by an external field such as pressure or
magnetic field, as we show next.

2.3 The Landau parameters

It is useful to introduce at this point the Landau Fermi liquid parameters. One starts from
the observation that within the dynamically relevant shell in which δN~k′σ′ is finite, the Landau
interaction function depends only on the cosine of the angle θ between ~k and ~k′. Accordingly we
can set f~kσ,~k′σ′ ' fσσ′(cos θ) and introduce the dimensionless quantities F s,a

` which are defined
in terms of spin symmetric (s) and spin antisymmetric (a) angular averages of fσσ′(cos θ) as
follows

F s,a
` =

LdN∗(0)

2

∫
dΩd

Ωd

(
f↑↑(cos θ)± f↑↓(cos θ)

){ P`(cos θ) , 3D

cos `θ , 2D
, (12)

where the + and− signs are associated with s and a respectively, Ωd = 2d−1π is the solid angle
in d = 3 or 2 dimensions, and P`(cos θ) is the `-th Legendre polynomial.
It must be noted that this definition (introduced in Ref. [2]) differs from the one commonly
used in previous texts and in large part of the literature. Nervous readers can revert to the
standard notation by simply making the substitution F s,a

` → F s,a`
2`+1

in three dimensions and

F s,a
` →

F s,a`
2
(1+δ`0) in two dimensions.

3We are considering here only the mass renormalization that arises from interactions between the particles. In
a crystalline environment the crystal potential and the electron-phonon coupling produce additional mass renor-
malizations.
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F

k
F 
+ δk

F

Fig. 2: Calculation of the compressibility in the Landau theory of Fermi liquids. The chemical
potential, i.e., the energy of a quasiparticle at the Fermi surface, changes due to (i) the variation
of the Fermi momentum, (ii) the addition of quasiparticles to the shaded region.

The inverse of Eq. (12) is

f↑↑(cos θ)± f↑↓(cos θ) =
2

LdN∗(0)

∞∑
`=0

F s,a
`

{
(2`+1)P`(cos θ) , 3D

(2−δ`0) cos `θ , 2D
, (13)

where + is associated with s and − with a.

2.4 Compressibility and spin susceptibility

An important property of a Fermi liquid is the proper compressibility K,4 given by the relation

1

K
= n2∂µ

∂n
=

nkF
d

∂µ

∂kF
. (14)

The compressibility determines, among other things, the magnitude of the screening wave vec-
tor and the hydrodynamic sound velocity s = 1√

nmK
. For a non interacting system one simply

has the result

K0 =
N(0)

n2
. (15)

To evaluate the derivative ∂µ
∂kF

within the Landau theory of Fermi liquids one must recall that,
according to Eq. (3), the change in µ as the Fermi surface expands to accommodate the addi-
tional density δn is the sum of two terms: one is the change in the bare quasiparticle energy
when the wave vector varies from kF to kF+δkF ; the other is the interaction energy with the
additional quasiparticles created by the expansion of the Fermi sphere (see Fig. 2). The first
term is responsible for changing the density of states in Eq. (15) from N(0) to N∗(0), but the

4For a charged Fermi liquid the proper compressibility is calculated under the assumption that the system
remains charge-neutral during the compression and there is no energy cost associated with the compression of the
neutralizing background of charge.
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k
F

k
F

Fig. 3: Calculation of the spin susceptibility in the Landau theory of Fermi liquids. In the
presence of a magnetic field the up- and down-spin Fermi surfaces split in such a way that the
energies of two quasiparticles at the two Fermi surfaces are equal. The additional quasipar-
ticles are down-spin electrons above the unperturbed Fermi surface (dashed line) and up-spin
holes below it.

second term involves the Landau parameter F s
0 , since the additional quasiparticle distribution is

spherically symmetric (` = 0) and spin-independent (superscript s). The result is

K

K0

=
m?/m

1 + F s
0

. (16)

Thus, the interaction enters the proper compressibility not only through the effective mass, but
also, explicitly, through the spin symmetric spherical average of the Landau interaction function.

The spin susceptibility can be calculated in a completely analogous way (see Fig. 3). In the
presence of an external magnetic field B the Hamiltonian is modified by the addition of the
Zeeman energy term

ĤZ =
gµB
2
BŜz , (17)

where g is the noninteracting g-factor for the electrons and Ŝz is the z-component of the spin in
units of ~

2
. Here gµB

2
is the magnetic moment of the electron.5 The spin susceptibility is defined

as the derivative of the magnetization with respect to the magnetic field at zero magnetic field.
In an ideal Fermi gas it works out to be

χS0 =
(gµB

2

)2
N(0) . (18)

In a Fermi liquid the energy of a quasiparticle of wave vector ~k and spin σ in the presence of
the magnetic field becomes

E~kσ(B) = E~kσ +
1

2
gµBBσ , (19)

where, it must be noted, the g-factor of the quasiparticle coincides with that of the bare electron
(as long as spin-orbit interactions are neglected), because the many-body state described by the

5For free electrons g ' 2, but this value can be considerably different for electrons in a solid state environment,
due to the spin-orbit interaction: for example in GaAs one has g = −0.44.
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quasiparticle at ~kσ is an eigenstate of Ŝz with eigenvalue ~σ/2. Because of the Zeeman energy,
the Fermi surfaces of up-spin and down-spin electrons shift by equal amounts in opposite di-
rections, i.e., the radius of the down-spin Fermi surface increases by an amount δkF↓, while the
radius of the up-spin Fermi surface decreases by the same amount.
The equilibrium value of δkF↓ is determined by the condition that the energy of an up-spin
quasiparticle at the up-spin Fermi surface be equal to that of a down-spin quasiparticle at the
down-spin Fermi surface: if this were not the case one could gain energy by transferring quasi-
particles from one Fermi surface to the other. The common value of the energy is, of course, the
chemical potential (see Eq. (3)). The mathematical form of the equilibrium condition is thus

ẼkF↑↑ +
1

2
gµBB = ẼkF↓↓ −

1

2
gµBB . (20)

Now, by making use of Eq. (7) and following the same procedure we used for the case of the
compressibility, we obtain the elegant result

χS
χS0

=
m?/m

1 + F a
0

, (21)

where the interaction enters both through the effective mass and through the Landau parameter
F a
0 . This has the same structure as Eq. (16). The ` = 0 component is selected by the spherical

symmetry of the quasiparticle distribution, and the a subscript reflects the spin-antisymmetry of
that distribution.
Looking at Eqs. (16) and (21) we see that measurements of K and χS , combined with a knowl-
edge of the effective mass from the heat capacity allow us to determine the values of the Landau
parameters F s

0 and F a
0 . Negative values of these parameters, arising from the exchange inter-

action enhance both the proper compressibility and the spin susceptibility. Because these two
quantities must be finite and positive in a stable ground state, we conclude that the uniform and
paramagnetic state will be unstable if F a

0 or F s
0 become less than −1.6

2.5 Galilean invariance and effective mass

The effective mass of quasiparticles that we have discussed in the previous section arises en-
tirely from the interaction between the Fermions in a translationally invariant Fermi liquid.
Translational invariance is a good assumption for liquid 3He or for nuclear matter, but hardly
so for electrons in a solid state environment. The interaction of the electron with the periodic
crystal potential and with lattice vibrations is an important source of effective mass renormal-
ization. But if the system is translationally invariant, in the sense that momentum is strictly
conserved, and if in addition the kinetic energy is of the Galilean-invariant form p2/2m with m
the bare particle mass, then an exact relation exists between the quasiparticle effective mass and
the interaction function:

m∗

m
= 1 + F s

1 , (22)

where F s
1 is the ` = 1 (dipolar) component of the spin-symmetric Landau parameter.

6For the electron gas only the spin instability is real, as the density instability is preempted by the “improper”
contribution arising from the charged background.
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Fig. 4: Relation between the effective mass and the Landau parameters. When the original
Fermi surface centered at O is viewed from a reference frame moving at speed v it appears
to be shifted by an amount mv/~. The shift can be described in terms of quasiparticles and
quasiholes added to the original Fermi distribution in the shaded crescent-shaped regions.

The origin of this relation is illustrated in Fig. 4. We consider a quasiparticle of momentum
~p = ~~k in the reference frame in which the center of mass of the liquid is at rest. If we now
change the reference frame to one in which the center of mass of the liquid moves to the right
with velocity ~v the same quasiparticle will appear to have momentum ~~k +m~v where m is the
bare mass of the particle, not the quasiparticle mass! This is because under this transformation
the total momentum of the fluid changes by m~v. But the momentum of the quasiparticle is not
the only thing that changes. The entire momentum distribution shifts bym~v and the net result of
this shift can be described as the creation of quasiparticles and quasiholes in the shaded crescent-
shaped regions of Fig. 4, with quasiparticles residing in the right crescent, and an equal number
of quasiholes residing in the left crescent.
The corresponding change in energy of the quasiparticles (calculated to first order in ~v) has two
contributions:

(i) the change of the single quasiparticle energy E~kσ due to the fact that the quasiparticle
momentum is shifted from ~~k to ~~k+m~v

(ii) the energy of interaction between the quasiparticle of momentum ~~k and the additional
quasiparticles and quasiholes that appear in the crescent-shaped regions of Fig. 4

The first contribution involves the effective mass of the quasiparticle, and the second contribu-
tion involves the dipolar component of the Landau interaction function (reflecting the dipolar
structure of the additional quasiparticle distribution). Combining the two contribution must
yield the exact change in the energy of the system under the Galilean transformation, namely
∆E = ~~v · ~k, which does not depend the particle mass. Clearly, this is possible only if a pre-
cise relation exists between the quasiparticle mass and the interaction function, and this is what
Eq. (22) gives us.
The importance of momentum conservation in the above discussion cannot be overemphasized.
Consider, for example, the following question: what is the spin-current j↑−j↓, carried by a
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rs F s
0 F a

0 F s
1 F a

1 F s
2 F a

2

1 -0.21 -0.17 -0.04 -0.0645 -0.0215 -0.0181
2 -0.37 -0.25 -0.03 -0.0825 -0.0168 -0.0126
3 -0.55 -0.32 -0.02 -0.0915 -0.0107 -0.0073
4 -0.74 -0.37 0.0 -0.0956 -0.0047 -0.0022
5 -0.95 -0.40 0.03 -0.0965 +0.0009 +0.0023

Table 1: Calculated values of Landau Fermi liquid parameters of the three-dimensional elec-
tron liquid. The values of F a

1 , F s
2 , and F a

2 were calculated by Yasuhara and Ousaka [5].

quasiparticle of wave vector ~k and spin ↑? Recall that the “spin current” is the difference be-
tween the current carried by spin-up particles and that carried by spin-down particles, where the
spin of a particle (as well as the spin of a quasiparticle) is a good quantum number. One might
be tempted to answer “~~k/m” on the (wrong) assumption that a spin-up quasiparticle carries no
down-spin current, but this is incorrect because the difference between the total up- and down-

spin momenta of the particles ~̂P↑ − ~̂P↓ is not a constant of the motion. In fact, the magnitude
of the spin-current is smaller than ~~k

m
[4]. What happens is that in the process of switching-on

the interaction some momentum is transferred from the up- to the down-spin component of the
electron liquid. This reduces the spin current without altering the total momentum and spin. The
reduction can be expressed in terms of an effective spin mass mS > m such that j↑ − j↓ = ~k

mS
.

The relation between mS and m∗ has the same form as the relation (22) between the “charge
mass”, m, and m∗, i.e.,

m∗

mS

= 1 + F a
1 . (23)

Numerical values of several Landau parameters of the uniform electron liquid (in the jellium
model) obtained from approximate microscopic calculations [5] are listed in Table 2.5 for sev-
eral different densities.

2.6 Measuringm∗,K and χS
The effective mass, the proper compressibility, and the spin susceptibility of liquid 3He have
been the object of many experimental studies by a variety of techniques (see, for example,
Ref. [6]). Values of the effective mass, the spin susceptibility and the compressibility are re-
ported in Ref. [7]. The effective mass ratio m∗/m ranges between 3 and 6 as the pressure is
increased from 0 to 33 bar. In the same interval of pressures the spin susceptibility enhancement
factor (1+F a

0 )
−1 is nearly constant at a value between 3.5 and 4, while the compressibility ratio

K/K0 decreases from 6 to 1 [7].
For electron liquids the situation is generally complicated by the presence of solid-state effects
which are hard to identify and eliminate from the analysis. This is especially the case in what
would appear to be the best realization of the three-dimensional jellium model, namely elemen-
tal metals. In spite of this difficulty valiant attempts have been made to determine a variety of
Fermi liquid properties in these systems.
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Fig. 5: Experimentally determined spin susceptibilities of elemental metals vs theoretical values
obtained from an analytical fit to quantum Monte Carlo results (see Ref. [2] for details).

Fig. 5 shows a comparison between the spin susceptibilities of some elemental metals deter-
mined via the measurement of the Knight shift in the nuclear magnetic resonance, versus the
spin susceptibility calculated directly from the second derivative of the energy with respect to
spin polarization, which is known from quantum Monte Carlo calculations. The agreement is
quite good for the three middle elements (with intermediate values of rs) but it is much less
satisfactory for the low-density metal Cs, and absolutely disappointing for Li.

The experimental situation improves considerably in two-dimensional electronic systems, which
can be made essentially free of lattice and disorder effects. Here the electronic density can be
changed by electrical means (gates), thus allowing a systematic study of interaction effects.
Thus, for example, measurements of the capacitance of double-layer GaAs quantum wells
(Eisenstein, 1994) [8] have allowed a precise determination of the proper compressibility of the
two-dimensional electron liquid, confirming, in particular, that this quantity becomes negative
below a certain density, without implying an instability of the system (stability being ensured
by the presence of remote neutralizing charges on the gates or on the donors).

Coming to the effective mass and the spin susceptibility, the most accurate measurements so
far have been done on systems such as n-type Silicon inversion layers, n-doped GaAs/AlGaAs,
and p-doped GaAs (see Ref. [2] for details). While the early experiments were done at densities
of the order of 1012 cm−2, corresponding to rs ∼ 3 in Si, the most recent ones have reached
considerably lower densities in both GaAs (1.7× 109 cm−2, i.e. rs = 13.4) and in Si inversion
layers (1011 cm−2, i.e. rs = 8.4). At such low densities, the many-body renormalizations
(i.e., the Landau parameters) are strong: for example, the spin susceptibility enhancement m

∗g∗

mbgb

(where mb and gb are the “bare” mass and g-factor determined by the band structure of the host
semiconductors: gb ∼ 2 in Si and gb ∼ 0.44 in GaAs) can be as large as 5. [9] This is consistent
with the theoretical expectation that the 2DEG should become ferromagnetic at sufficiently low
density: however, no ferromagnetic instability has been observed so far.

Recently, tilted field experiments have allowed the determination of the spin susceptibility of
the two-dimensional electron liquid in very narrow AlAs quantum wells in a broad range of den-
sities [10]. Fig. (6) shows the comparison, obviously very satisfactory, between the measured
data and the values obtained from quantum Monte Carlo calculations.
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Fig. 6: Spin susceptibility enhancement vs rs for the 2DEL in narrow AlAs quantum wells.
Circles and triangles denote experimental data taken in different samples and for different ori-
entations of the magnetic field. The quantum Monte Carlo predictions at zero and full spin
polarization are shown by the dotted and solid lines respectively. From Vakili et al. [10].

3 The lifetime of quasiparticles

3.1 General formulas

Up to this point we have treated quasiparticles as if they were exact eigenstates of the many-
fermion system. In reality, as we pointed out in the introduction, quasiparticles are not exact
eigenstates, and do decay in time by transferring their momentum and energy to other quasi-
particles. The key point of the Landau theory of Fermi liquids is that the decay rate tends to
zero much more rapidly than the quasiparticle energy (relative to the chemical potential) when
the latter tends to zero. It is this circumstance that allows us in a first approximation to ne-
glect the decay rate and to treat the interaction between quasiparticles at the mean-field level,
i.e., simply as a modification of the quasiparticle energy which is describable in terms of the
Landau interaction function. However, the residual interactions, beyond the mean-field approx-
imation, cause quasiparticles to decay. This decay process plays an essential role in the study
of transport phenomena, where an external field drives the quasiparticles out of their thermal
equilibrium distribution. In this situation the residual interactions between quasiparticles pull
the quasiparticle distribution back towards equilibrium, thus providing a kind of restoring force
which determines the magnitude of the response to the external field.
The most relevant process contributing to the decay of a quasiparticle state in a Fermi liquid
is particle-hole pair production. At zero temperature, given a quasiparticle close to the Fermi
surface, there is a certain probability that, because of the interaction, part of the energy and mo-
mentum of the quasiparticle will be lost by exciting a single electron-hole pair out of the Fermi
sea. Upon losing part of its initial momentum and energy the quasiparticle makes a transition
to an available lower energy state. At finite temperatures the scenario is slightly complicated
by the fact that the available final states are neither definitely occupied nor definitely empty, but
the basic physical picture remains the same.
In principle a quasiparticle can also lose momentum and energy by exciting multiple particle-
hole pairs and/or collective modes (zero sound in a neutral Fermi liquid or plasmons in the
electron liquid). As it turns out both processes are irrelevant for quasiparticles near the Fermi
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surface at sufficiently low temperature. Decay by emission of collective modes is forbidden
by energy and momentum conservation, since collective modes owe their very existence to
having frequencies that are significantly higher than particle-hole excitation energies at the same
momentum. As for multiple particle-hole pair excitations, we note that the spectral density of
these excitations vanishes, at low energy, much more rapidly than the spectral density of single
particle-hole pairs.
The simplest way to estimate the particle-hole contribution to the quasiparticle decay rate is to
make use of the Fermi golden rule to compute the transition probability between the initial and
the final state of the system. Within this approach the rate at which a quasiparticle of spin σ
and momentum ~~k is scattered by the Coulomb interaction into an empty state of momentum
~(~k−~q ), while a second quasiparticle of spin σ′ and momentum ~k′ is scattered into an empty
state of momentum ~(~k′+~q ) is given by

2π

~

∣∣∣∣W (~q )

Ld

∣∣∣∣2 δ(ε~k−~qσ+ε~k′+~qσ′−ε~kσ−ε~k′σ′), (24)

where W (~q )
Ld

is the matrix element of an effective interaction between quasiparticles, taken be-
tween the initial and final plane-wave states. The δ-function ensures that the energy is conserved
through the collision.
Eq. (24) is approximate in more than one way. First of all, the correct two-particle scattering
amplitude is a function of ~k,~k′, and ~q, as well as the relative spin orientation, not just of the
momentum transfer ~q. Secondly, Eq. (24) violates the indistinguishability of the particles, since
the scattering amplitude is not antisymmetric upon interchange of the two final plane-wave
states of parallel spin. Finally, Eq. (24) is not entirely self-consistent, since the quasiparticle
energy is approximated by the bare particle energy. In spite of these defects, Eq. (24) is still an
excellent starting point to begin to understand the microscopic physics of the Fermi liquid. In
what follows I focus on the case of the electron liquid, where the long range of the Coulomb
interaction requires some special attention: however the final result has the same form for all
Fermi liquids.
The inverse lifetime 1/τ (e)~k

of a plane wave state initially occupied by an electron of momentum

~~k and spin σ, is given by the sum of the probabilities of all the allowed decay processes:

1

τ
(e)
~kσ

=
2π

~
∑
~q~k′σ′

∣∣∣∣W (~q )

Ld

∣∣∣∣2 n~k′σ′(1−n~k′+~qσ′)(1−n~k−~qσ) δ(ε~k−~qσ+ε~k′+~qσ′−ε~kσ−ε~k′σ′), (25)

where the Fermi occupation factors guarantee that the plane-wave state ~k′σ′ is indeed occupied
by an electron, while the final states ~k′ + ~q σ′, and ~k − ~q σ′ are empty and therefore available
for occupation after the scattering event.
A nice feature of Eq. (25) is that part of the calculation can be carried out without specifying
the form of the scattering amplitude W (~q ). We work, for simplicity, in the paramagnetic state,
and approximate n~kσ by the noninteracting occupation numbers n(0)

~kσ
. Then we make use of the

fluctuation-dissipation theorem for the non-interacting electron gas (see Ref. [2] for details) to
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evaluate the sum over ~k′ and σ′:

π

~Ld
∑
~k′σ′

n
(0)
~k′σ′

(
1−n(0)

~k′+~q σ′

)
δ

(
ε~k′+~q σ′−ε~k′σ′

~
− ω

)
= − Imχ0(q, ω)

1− e−β~ω
. (26)

Here χ0(q, ω) is the density-density response function of the noninteracting Fermi liquid, also
known as the Lindhard function [2]. Naturally, the appearance of the spectral density of particle-
hole pairs,− Imχ0(q, ω), shows that these excitations play a central role in the process. Eq. (25)
can now be rewritten as

1

τ
(e)
~kσ

= − 2

(2π)d

∞∫
−∞

dω
1−nF (ε~kσ−~ω−µ)

1− e−β~ω

∞∫
0

dqqd−1
∣∣W (~q)

∣∣2 Imχ0(q, ω)

∫
dΩdδ

(
ε~kσ−ε~k−~qσ−~ω

)
(27)

where nF (x) = 1/(eβx + 1) is the Fermi-Dirac distribution function at zero chemical potential,
so that nF (ε~kσ−µ) = 1/(eβ(ε~kσ−µ) + 1) = n

(0)
~kσ

is the noninteracting occupation number. In
obtaining this expression we have introduced the variable ~ω = ε~kσ−ε~k−~qσ through the intro-
duction of an auxiliary delta function and its corresponding integration. Notice that the angular
integration only involves the delta function.
The corresponding formula for the lifetime of a quasihole (τ

(h)
~kσ

) is obtained from Eq. (27) by
performing the replacements 1−nF (ε~kσ−~ω−µ)→ nF (ε~kσ−~ω−µ) and 1−e−β~ω → 1−eβ~ω,
and changing the overall sign. This can be used to demonstrate that the principle of detailed
balance (see Eq. (50) below), is satisfied at the appropriate level of accuracy, i.e., we have

n~kσ

τ
(e)
~kσ

=
1− n~kσ
τ
(h)
~kσ

. (28)

This important result guarantees (see Section 3.5) that the equilibrium Fermi-Dirac distribution
of quasiparticles is stable against quasiparticle decay processes.
We shall henceforth concentrate only on the calculation of the quasiparticle lifetime. The cal-
culation will be carried out separately for three and two-dimensional systems below. In one
dimension, a calculation of 1/τ (e)~kσ

based on Eq. (27) would result in a divergent integral at fi-
nite temperatures: we can conclude that the Landau Fermi liquid picture cannot be consistently
applied to 1D systems, as mentioned in the introduction.

3.2 Three-dimensional electron gas

In this case the angular integration is rather simple once the z-axis is taken along the direction
of ~q. We have:∫ 2π

0

dφ

∫ π

0

dθ sin θ δ
(
ε~kσ−ε~k−~qσ−~ω

)
=

2πm

~2kq
Θ

(
1−

∣∣∣∣q2 + 2mω
~

2kq

∣∣∣∣ ) , (29)

where Θ(x) is the familiar Heaviside step function which mandates a precise behavior for the
limits of the remaining quadratures. As it turns out however, these limiting conditions are
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Fig. 7: Regions of wave vector integration for the calculation of the low-energy quasiparticle
lifetime. For k → kF and ~ω � εF the leading contribution to the wave vector integral
comes from region II where |ω|

vF
< q < 2kF − |ω|vF . Two-dimensional plasmon excitations do not

contribute to the lifetime and hence are not shown.

irrelevant, in view of the behavior of the integrand. This can be seen as follows: for positive
frequencies the Fermi thermal occupation factor 1− nF (ε~kσ−~ω−µ) cuts off the integral for ω
of the order of |ε~kσ−µ|, an energy which, by definition, is much smaller than the Fermi energy
εF . For negative frequencies, on the other hand, it is the thermal occupation factor 1/(1−e−β~ω)
that cuts off the frequency integral for ω of the order of kBT, an energy scale that we assume
to be much smaller than εF . At very low frequency the most stringent limits on the q-integral
come from the factor Imχ0(q, ω) which contains the structure of the particle-hole continuum
and differs from zero only along the segment shown in Fig. 7. This sets the lower limit of the q
integral at q ∼ |ω|

vF
∼ 0 and the upper limit at q ∼ 2kF + |ω|

vF
∼ 2kF . Notice that the dominant

contribution to the integral (for ω → 0) comes from the region labeled as II in Figure 7. In this
region it is legitimate to approximate Imχ0(q, ω) by its zero temperature and low-frequency
form

Imχ0(q, ω) ' −
πω

2vF q
N(0) . (30)

Accordingly the formula for 1/τ (e)k in three dimensions is seen to be proportional to

1

τ
(e)
~kσ

∝
∫ ∞
−∞

dω ω(
1 + eβ(~ω−ε~kσ+µ)

)(
1− e−β~ω

) ∫ 2kF

0

dq
∣∣W (~q )

∣∣2 . (31)

The frequency integral can be calculated analytically and is given by

1

2~2
(ε~kσ−µ)2 + (πkBT )

2

1 + e−β(ε~kσ−µ)
. (32)

The integral over the wave vector q deserves special attention. It is quite obvious at this point
that one cannot make use of the bare Coulomb interaction. The integral would emphatically
diverge. This is of course a consequence of the long range of the Coulomb interaction. It is then
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quite natural to employ for W (~q ) some sort of screened interaction. In this case the q integral
presents no problems. A reasonable approximation is provided by the choice W (~q ) ' vq

ε(q,0)
so

that ∫ 2kF

0

dq
∣∣W (~q )

∣∣2 ' 1

N2(0)

∫ 2kF

0

dq

(
N(0)vq
ε(q, 0)

)2

. (33)

Further simplification can be achieved by making use of the Thomas-Fermi approximate dielec-
tric function, that is the static long wavelength limit of the RPA dielectric function, given by
ε(q, 0) = 1 + 4πe2N(0)

q2
. This gives the result∫ 2kF

0

dq
∣∣W (~q )

∣∣2 ' 2kF
N2(0)

ξ3(rs) , (34)

where the function ξ3(rs) is given by

ξ3(rs) =

√
α3rs
4π

tan−1
√

π

α3rs
+

1

2
(
1+ π

α3rs

) . (35)

Recall that rs(=
(

3
4πna3

)1/3 in 3D) is the average distance between electrons in units of the Bohr
radius a = ~2

me2
. For most densities in the metallic range ξ3(rs) ' 1. Notice that ξ3(rs) ∼

√
rs

as rs → 0: thus, due to the non-perturbative nature of the screening, the quasiparticle decay rate
turns out being proportional to the electron charge e, rather than e4, as one could have naively
expected.
Collecting the various factors we finally obtain for the inelastic quasiparticle lifetime in three
dimensions the following result

1

τ
(e)
~kσ

' π

8~εF
(ε~kσ−εF )2 + (πkBT )

2

1 + e−β(ε~kσ−εF )
ξ3(rs) in 3D, (36)

where we have approximated µ with εF and k with kF .
The inverse lifetime of a quasiparticle at the Fermi surface (k = kF ) vanishes as T 2 at small
temperatures. On the other hand, at T = 0, the inverse lifetime vanishes as (ε~kσ−εF )2. One
power of ε~kσ−εF (or T ) arises from the phase space restrictions on the scattering process. The
second one stems from the linearly vanishing density of particle-hole pair excitations. The
numerical prefactor is simply a Fermi surface average of the statically screened Coulomb inter-
action. This is the expected behavior, an indication that the Landau theory of the electron liquid
is consistent with the microscopic perturbative approach.

3.3 Two-dimensional electron gas

The two-dimensional case presents a few new twists. The most important difference to the
three-dimensional case is the q dependence of the integrand of Eq. (27), which must be handled
with special care in the regions q ' 0 and q ' 2kF . This necessitates a more precise treatment
of the limits of integration.
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We begin by considering the angular integration which in this case gives the interesting result

∫ 2π

0

dφ δ
(
ε~kσ−ε~k−~qσ−~ω

)
=

2Θ
(
1−

∣∣∣ q2+ 2mω
~

2kq

∣∣∣)√(
~2kq
m

)2
−
(
~ω + ~2q2

2m

)2 , (37)

an expression that features an extra frequency dependence with respect to the three-dimensional
case. The other necessary ingredient is the expression for Imχ0(q, ω) in two dimensions, which,
at low frequency and in region II of Fig. 7, is approximately given by

Imχ0(q, ω) ' −
ω

qvF

N(0)√
1−

(
q

2kF

)2 (2D), (38)

where N(0) = m
π~2 . Within the necessary accuracy, we can set k = kF in the argument of the

square root appearing in Eq. (37), which can then be rewritten as

~2

2m

√√√√(q2 − ( |ω|
vF

)2
)(

4k2F−q2
)
. (39)

Accordingly we see that the contribution of region II to the q integral of Eq. (27) is

8πkF

∫ 2kF− |ω|vF

|ω|
vF

∣∣N(0)W (~q )
∣∣2dq√

q2 −
(
|ω|
vF

)2
(4k2F−q2)

(2D). (40)

This integral can be evaluated rather easily. Notice that in the limit ω → 0 it presents a logarith-
mic divergence originating from the regions q ' 0 and q ' 2kF . To extract the exact coefficient
of the logarithmic singularity we set q = 0 and q = 2kF in the regular parts of the integrand,
when evaluating the contributions of q ' 0 and q ' 2kF respectively. Up to corrections that
remain finite as ω → 0 the integral is then found to be equal to

π
(
|N(0)W (0)|2 + |N(0)W (2kF )|2/2

)
kF

ln
4εF
|ω|

. (41)

It is convenient, at this point, to define the “coupling constant”

ξ2(rs) ≡ |N(0)W (0)|2 + 1

2
|N(0)W (2kF )|2 , (42)

which, in the Thomas-Fermi approximation (see [2]), depends on rs in the following manner:

ξ2(rs) = 1 +
1

2

(
rs

rs +
√
2

)2

. (43)

Notice that, unlike its three-dimensional counterpart, ξ2(rs) tends to a constant, 1, in the high-
density limit.7 Combining Eqs. (27), (37), (38), and (40), we find that the quasiparticle lifetime

7The surprising fact that the inverse lifetime fails to vanish in the noninteracting limit rs → 0 is an artifact
due to our asymptotic expansion of the integral (40), which requires the limit k → kF to be taken before the limit
rs → 0. The expansion fails for rs < |k/kF − 1|.
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is given by the integral

1

τ
(e)
~kσ

' ~ξ2(rs)
2πεF

∫ ∞
−∞

ω ln 4εF
|ω|(

1 + eβ(~ω−ε~kσ+µ)
)(
1− e−β~ω

) dω in 2D. (44)

Consider first the “zero-temperature” situation |ε~kσ−εF | � kBT . In this case it is clear that
the main contribution to the integral comes from the region ω ' ε~kσ−εF . Now, since in this
region the logarithm is slowly varying, we can take it out of the integration to give the factor
ln 4εF
|ε~kσ−εF |

. This leaves us with a frequency integral which coincides with that of Eq. (31),
which we calculated exactly. The only difference is that in this case we need to take the limit
kBT

|ε~kσ−εF |
→ 0. By making use of Eq. (32) we therefore obtain the result

1

τ
(e)
~kσ

' ξ2(rs)
(ε~kσ−εF )2

4π~εF
ln

4εF
|ε~kσ−εF |

, kBT � |ε~kσ−εF | . (45)

The other relevant case is that of kBT � |ε~kσ−εF |, which corresponds to the case of a quasi-
particle lying on the Fermi surface. In this case a direct inspection of Eq. (44) shows that the
most relevant contributions to the integral come from a region of the order of kBT/~ centered
about the origin. In this situation the logarithm can again be taken out of the integral8 as to give
a factor of ln 4εF

kBT
. The remaining integral can then again be evaluated by means of Eq. (32) in

the limit of |ε~kσ−εF |
kBT

→ 0. This immediately gives9

1

τ
(e)
~kσ

' ξ2(rs)
(πkBT )

2

8π~εF
ln

4εF
kBT

, |ε~kσ−εF | � kBT . (46)

The only significant difference with the three-dimensional case is the appearance here of the
logarithmic factors. This fact was first discovered by Giuliani and Quinn in Ref. [11].
The basic comments made about the three-dimensional result continue to apply. We emphasize
that the above calculation focused on the leading term in the low-energy/low-temperature ex-
pansion of the inverse lifetime.10 The complete calculation of the “subleading” contributions of
order (ε~kσ−εF )2 and (kBT )

2 is more tricky: in particular, it can be shown that the regions I and
III in the q integral (see Fig. 7) do contribute to the result at this order.

3.4 Measuring the quasiparticle lifetime

Thanks to the great improvements in the manufacture of high-quality quantum well systems
it has become possible to directly measure, by means of precise and elegant tunneling experi-
ments between parallel identical quantum wells, the quasiparticle lifetime of a two-dimensional
electron liquid (Murphy et al., Ref. [12]).

8This is due to the fact that if f(x) is a well behaved function in the interval [−a, a], then in the limit a → 0,
with logarithmic accuracy,

∫ a
−a ln |x|f(x) dx ' ln |a|

∫ a
−a f(x) dx as one can readily verify.

9The coefficient of Eq. (46) can also be quickly inferred from Eq. (45) by making use of the general result (32).
10It is somewhat sobering to remark that a surprisingly vast variety of contradicting results for the coefficients

of Eqs. (45) and (46) have appeared in the literature.



2.22 Giovanni Vignale

Γ

kk
F

eV

Γ

E

Fig. 8: Momentum-conserving tunneling between two identical free-electron bands separated
by a potential difference eV . Because of energy conservation, the tunneling probability de-
creases rapidly when eV exceeds the spectral width Γ of the single-particle states in each band.

The basic idea of the experiment is shown in Fig. 8. The two identical parabolas separated
by an energy eV represent the energy vs wave vector relation of the quasiparticle states in the
two quantum wells, and the shaded regions show the energy spread of these states due to finite
lifetime of a quasiparticle at the Fermi surface (we are, of course, at finite temperature). Here
k‖ is the two-dimensional in-plane-wave vector, V is the electric potential difference between
the two quantum wells, and Γ is the width of the quasiparticle peak in the spectral function
at k‖ = kF , which is directly related to the quasiparticle lifetime. Under the assumption that
electron-impurity and electron-phonon scattering are negligible the two-dimensional wave vec-
tor of the tunneling electrons is conserved and overall energy conservation causes the tunneling
probability to decrease sharply when eV exceeds Γ . More precisely, a plot of the tunneling
conductance vs voltage is approximately a Lorentzian centered at zero voltage with width at
half maximum equal to 2Γ , as shown in the inset of Fig. 9. From this width the quasiparticle
lifetime can be inferred.
In practice, the interpretation of the experimental data is complicated by the presence of disor-
der, which leads to imperfect momentum conservation and a finite linewidth even in the limit of
zero temperature. This extrinsic contribution, however, is expected to be nearly independent of
temperature, and when one subtracts it from the data one obtains values that are in reasonably
good agreement with the theory presented in this section (see Fig. 9).

3.5 The kinetic equation

Perhaps the technical centerpiece of the Landau theory of Fermi liquids is the kinetic equation,
which governs the time evolution of the quasiparticle distribution function in out-of-equilibrium
situations, such as in the presence of slowly varying external fields. The main idea is to treat
the system as an assembly of quasiparticle wave packets characterized by an average position ~r
and an average momentum ~~k (k ' kF ). The quantum mechanical uncertainties in position and
energy are assumed to be negligible on the scale of spatial and temporal variation of the external
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Fig. 9: Inset: Lorentzian lineshape of the current-voltage (I-V) relation in tunneling between
two-dimensional GaAs quantum wells. Main figure: a plot of the half-width Γ , identified with
the inverse of the quasiparticle lifetime, vs temperature for systems of different density (a resid-
ual T=0 contribution, attributed to disorder, has been subtracted). The solid line is the theoret-
ical prediction from Eq. (46) which is only applicable asymptotically. Adapted from Ref. [12].

fields. This description makes sense only if the wavevector and frequency of the external field
are much smaller than the Fermi wave vector and the Fermi energy respectively. In addition,
the thermal energy kBT must be much smaller than the Fermi energy in order that the notions
of Fermi surface and quasiparticles be well defined. Under these assumptions the quasiparticle
wave packets can be treated as classical particles, with canonical coordinates and momenta ~r
and ~~k, described by a “classical” Hamiltonian

Hcl(~r, ~~k, σ) = E~kσ − eφσ(~r, t) +
∑
~k′σ′

f~kσ,~k′σ′ δN~k′σ′(~r, t) (47)

where φσ(~r, t) is a (generally spin-dependent) scalar potential. The last term on the right hand
side of Eq. (47) describes the effect of the short-range interaction between the quasiparticles. It
has the form of a mean effective potential whose strength is controlled by the Landau interaction
function. The long-range electrostatic potential (Hartree potential) is self-consistently included
in the external field.
The equation of motion for the quasiparticle distribution function follows immediately from
Liouville’s theorem for a classical flow in phase space

∂N~kσ(~r, t)
∂t

+
1

~
∂Hcl

∂~k
·
∂N~kσ(~r, t)

∂~r
− 1

~
∂Hcl

∂~r
·
∂N~kσ(~r, t)

∂~k
=

(
∂N~kσ(~r, t)

∂t

)
coll
. (48)

The collisional time derivative on the right hand side of Eq. (48) takes into account the fact
that the evolution of the quasiparticle distribution function is affected by collision processes
that are not included in the classical mean field Hamiltonian. As discussed in previous sections,
quasiparticle collisions result in a finite lifetime of quasiparticles (τ (e)~kσ

) and quasiholes (τ (h)~kσ
)

near the Fermi surface. We can therefore write(
∂N~kσ
∂t

)
coll

= −
N~kσ
τ
(e)
~kσ

+
1−N~kσ
τ
(h)
~kσ

, (49)
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where the first term represents the rate at which quasiparticles leave the state ~kσ and the second
is the rate at which they are scattered into it. Besides the interaction contributions derived in
Section 3, the total decay rates will in general include contributions from electron-impurity and
electron-phonon scattering.
It is evident that the collisional derivative must vanish when N~kσ is the thermal equilibrium
distributionN eq

~kσ
, i.e., the Fermi-Dirac distribution with energy E~kσ (see Eq. (11)). This principle

of detailed balance leads to an exact relation between quasiparticle and quasihole lifetimes:

N eq
~kσ

τ
(e)
~kσ

=
1−N eq

~kσ

τ
(h)
~kσ

, (50)

which is satisfied (at the appropriate level of accuracy) by the formulas presented in Section 3
(see Eq. (28)). Expanding Eq. (48) to first order in the strength of the external fields we obtain
the linearized kinetic equation for the deviation of the distribution function from equilibrium.
This equation has the form

∂δN~kσ(~r, t)
∂t

+ ~v~kσ ·
∂δN~kσ(~r, t)

∂~r
+ ~v~kσ · ~F~kσ(~r, t) δ(E~kσ−µ) =

(
∂δN~kσ(~r, t)

∂t

)
coll

(51)

where v~kσ = ~~k/m∗ is the quasiparticle velocity, and

~F~kσ(~r, t) = −~∇~r
(
− eφσ(~r, t) +

∑
~k′σ′

f~kσ,~k′σ′ δN~k′σ′(~r, t)
)

(52)

is the classical force acting on the quasiparticle. This equation is the starting point for most
applications of the Landau theory of Fermi liquids.
One outstanding application of the kinetic equation is the study of the macroscopic dynamics of
the quasiparticle distribution function in the absence of external fields, leading to the prediction
of self-sustained collective modes (i.e., normal modes of oscillation of the Fermi surface) of
different symmetries. In this manner one can obtain the (long-wavelength) dispersion of the
zero-sound mode in the neutral Fermi liquid and plasmons in the electron liquid. Focusing, for
example, on plasmons, we neglect the collision term (justified, since the collision rate is much
smaller than the plasmon frequency) and notice that φσ(~r, t) is the self-consistent electrostatic
potential (Hartree potential) associated with a density fluctuation δn(~r, t) =

∑
~k′σ′ δN~k′σ′(~r, t).

We take advantage of linearity by performing a Fourier transformation with respect to the vari-
ables ~r and t in Eqs. (51) and (52). This gives us(

ω−~q · ~v~kσ
)
δN~kσ(~q, ω) + ~q · ~v~kσ δ

(
E~kσ−µ

)∑
~k′σ′

(
vq+f~kσ,~k′σ′

)
δN~k′σ′(~q, ω) = 0 , (53)

where vq = 4πe2/q2 in 3D and vq = 2πe2/q in 2D. A nontrivial solution δN~k′σ′(~q, ω) 6= 0

of this equation exists only if ω equals the plasmon frequency ωp(q). In the long wavelength
limit, q → 0, we get ωp(q) = (4πne2/m)1/2 in 3D and ωp(q) = (2πne2q/m)1/2 in 2D. Notice
that these results involve the bare electron mass m, not the quasiparticle mass, which appears
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in ~v~kσ. How did the quasiparticle mass get converted back to the bare mass? The answer is
that the Landau interaction function, acting on the self consistent solution of Eq. (53) reinstates
the bare mass according to the Galilean invariance relation discussed in section 2.5. Inclusion
of the quasiparticle collision term does not change these results (if translational and Galilean
invariance are in force), but affects the dispersion and introduces damping of the collective
modes at finite wave vector.
The other classic application of the kinetic equation for quasiparticles is the calculation of the
transport coefficients of a Fermi liquid. These are the spin diffusion constant, Ds, the shear and
bulk viscosities, η and ζ respectively, and the thermal conductivity κ. Ds is the constant of pro-
portionality between the spin current and the gradient of spin density that drives it. Similarly,
η and ζ can be viewed as the traceless and traceful components of a diffusion tensor for the
momentum density – with the momentum current being driven by a gradient in the macroscopic
velocity field. Lastly, κ is the constant of proportionality between the heat (entropy) current and
the gradient of temperature that drives it. Quasiparticle collisions, which are responsible for the
finite quasiparticle lifetime, are absolutely essential to calculate these transport coefficient. In
fact, these coefficients would all be infinite if those collisions were neglected, which of course
becomes a better and better approximation as the temperature is reduced. This counterintu-
itive result (divergence of the transport coefficients for T → 0) follows from the “asymptotic
freedom” of the Landau quasiparticles in this limit. Indeed, one can show that the transport
coefficient are qualitatively described by the following formulas

Ds ∼ v2F τs , η ∼ Sτη , ζ ∼ Bτζ , κ = ncvv
2
F τq , (54)

where S andB, are, respectively, the high-frequency shear modulus and the bulk modulus (both
on the order of nεF ) and cv is the heat capacity (per particle) of the Fermi liquid. Here τs, τη
etc... are transport relaxation times which are related to the quasiparticle lifetime (since they
all depend on the same scattering probabilities) but are not identical with it or with each other.
All these scattering times diverge in the limit of zero temperature as 1/T 2 in three dimensions.
In two dimensions the situation is more delicate as the scattering times associated with spin
diffusion and thermal conductivity diverge as 1/(T 2 lnT ), while the scattering time associated
with the viscosity continues to diverge as 1/T 2 [14]. This is due to the fact that the scattering
processes that are responsible for the logarithmic divergence have zero momentum transfer and
therefore do not contribute to the transfer of momentum within the liquid. The divergence is
eventually cut off when the quasiparticle mean free path becomes comparable to the macro-
scopic size of the system, at which point the coefficients lose their hydrodynamic significance.
You might wonder why the density diffusion constantDn does not appear in our list of transport
coefficients. The answer is that in the absence of impurities or external potentials quasiparti-
cle collisions cannot change the total particle current: this leads to an infinite conductivity and
then, via the Einstein relation – which connects the conductivity to the diffusion constant – to an
infinite diffusion constant! The physical interpretation of this surprising result is that a density
imbalance in a Fermi liquid does not relax via a diffusion process, but through the emission of
sound waves.
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The transport coefficients (or, equivalently, the transport relaxation times defined by Eq. (54))
can be calculated with the help of the kinetic equation. For the neutral Fermi liquid 3He this was
first done by Abrikosov and Khalatnikov [13]. Explicit formulas for the transport coefficients
in terms of angular averages of quasiparticle scattering probability are known for the three-
dimensional case: see Eqs. (1.171) and (1.151) of Ref. [3]. The scattering probability is obtained
from the Fermi golden rule, just as in the calculation of the quasiparticle lifetime. We refer the
interested reader to Ref. [3] for details.

4 Microscopic basis of the Landau theory of Fermi liquids

Landau guessed the theory of interacting Fermi liquids largely on a basis of physical intuition.
Shortly afterwards, it was shown that indeed the theory could be “derived” (or, more accurately,
shown to be self-consistent) from the microscopic Hamiltonian under certain assumptions of
continuity and regularity. Nowadays the Landau theory is recognized as an early example of
renormalization, whereby the exact many-body Hamiltonian is transformed, through recursive
elimination of fast degrees of freedom, into an effective Hamiltonian of weakly interacting
quasiparticles. A “poor man” version of this theory, based on seminal work by Hamann and
Overhauser [15], can be found in Section 8.6 of Ref. [2].
Without going into technical details, which can be easily found in the literature (including
Ref. [2]), we summarize the main correspondences between the Landau theory and the micro-
scopic theory.

4.1 Existence of quasiparticles and self-energy

The existence of long-lived quasiparticles, with an inverse lifetime that scales as |k−kF |2 for
k → kF corresponds to the fact that the microscopic retarded Green function has the form

G(~k, ω) = G(reg)(~k, ω) +
Z~k

ω − E~k~ + i
2τ~k

, (55)

where G(reg)(~k, ω) is a regular function of ~k and ω, and we have omitted the spin dependence
for simplicity. Thus, the retarded Green function is dominated by a single pole of strength
Z~k (0 < Z~k < 1) at the complex frequency z =

E~k
~ −

i
2τ~k

in the lower half of the complex
plane (as required by causality). The imaginary part of the frequency at the pole implies an
exponential decay, with a characteristic time τ~k, of the squared amplitude of a plane-wave state.
The quasiparticle energy, the strength of the pole (also known as the renormalization constant),
and the plane-wave lifetime are determined by the (retarded) self-energy function11 as follows

E~k = ε~k +ReΣ ret
σ (~k, E~k) , (57)

11We remind the reader that the self-energy is defined as the difference between the inverse noninteracting Green
function and the inverse Green function:

Σ = G−10 −G−1 (56)
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Fig. 10: Behavior of the plane-wave states average occupation number in three dimensions at
rs = 2 (solid line) and rs = 5 (dashed line). The jump of nk at k = kF is the renormalization
constant ZkF .

where ε~k is the bare particle energy,

Z~k ≡
(
1− 1

~
∂

∂ω
ReΣ ret(k, ω)

∣∣∣∣
~ω=E~k

)−1
, (58)

and
~
2τ~k
≡ Z~k

∣∣ ImΣ ret(k, E~kσ)
∣∣ . (59)

Crucially, the validity of the Fermi liquid scenario requires that

ImΣ ret(~k, E~kσ) ∼ −a
(
k−kF

)2
, (60)

where a is a positive constant, and the approximate equality ∼ disregards the possibility of log-
arithmic terms ln |k−kF |. Microscopic calculations of the self-energy confirm that the asymp-
totic form (60) is, at the very least, self-consistent, i.e., the presence of a pole of the form (55)
in the Green function guarantees the vanishing of the imaginary part of the self-energy, which
in turn implies a divergence of the quasiparticle life time.12

The existence of an infinitely sharp quasiparticle peak of strength Z~kσ in the spectral function
(defined as the negative of the imaginary part of the retarded Green function) implies that the
momentum state occupation number n~k has a discontinuity as a function of k at k = kF , the
magnitude of the discontinuity being given by ZkF . This is shown in Fig. 10. The fact that
the discontinuity occurs precisely at k = kF where kF is related to density by the ideal gas
relation, is known in the literature as Luttinger’s theorem. Notice that Z~k and the ground state
occupations n~kσ are “invisible” in the Landau theory of Fermi liquids, which abstracts from
the detailed structure of the ground state. On the other hand, all the parameters of the Landau
theory can be calculated from the microscopic theory following well-defined procedures. For

12It must be noted that the plane-wave lifetime of Eqs. (55) and (59) is not exactly the same as the lifetime of a
quasiparticle and a quasihole. The inverse of the former differs from the inverse of latter by factors 1− n~k and n~k
respectively. See Ref. [2] for details.
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example, the effective mass of the quasiparticle works out to be

m∗

m
=

1

ZkF

(
1 + m

~2kF
∂
∂k

ReΣ ret(k, µ)
∣∣∣
k=kF

) . (61)

The results of several microscopic calculations of the effective mass of quasiparticles in the 2D
and 3D electron gas are presented and critically discussed in Chapter 8 of Ref. [2].

4.2 Landau interaction function and scattering amplitude

What about the Landau interaction function? What is its representation in the microscopic
theory? Considering Eq. (7) and the microscopic expression, Eq. (57), for the quasiparticle
energy, combined with Eq. (58) for the renormalization constant we arrive at

f~k,~k′ = Z~kZ~k′
δΣ(~k, E~k)
δN~k′

, (62)

where we continue to ignore the spin for simplicity. The problem with this expression is that the
quasiparticle occupation number N~k′ is not a well-defined microscopic quantity. However, one
can calculate the change in the Green function that follows from a change in the corresponding
occupation number n~k′ of the non-interacting ground state from which the interacting state
is supposed to arise under adiabatic switching-on of the interaction. According to Landau’s
hypothesis of continuity, such a change will result in an identical change of the quasiparticle
occupation number, while at the same time propagating through the expression for the self-
energy to produce the desired δΣ. The analysis is quite complex (see Section 8.5.5 of Ref. [2]
for details) but the final result is simple, at least formally:

f~k,~k′ = Z~kZ~k′ limω→0
lim
q→0

Γ~kE~k;~k′E~k′
(q, ω) , (63)

where ~k and ~k′ lie on the Fermi surface and Γ~kE~k;~k′E~k′
(q, ω) is the probability amplitude for

the two particles with momenta ~k and ~k′ and energies E~k and E~k′ respectively to scatter against
each other with momentum and energy transfers q and ω, where both q and ω tend to zero in
the order specified by Eq. (63) (i.e., q must tend to zero before ω does). Notice that this is the
scattering amplitude between two particles embedded in the many-body system. As such it has a
very complex diagrammatic representation but it can, in principle be calculated by the methods
of many-body theory. In the simplest approximation, i.e., first order perturbation theory, the
calculation becomes trivial and we find

f~k,~k′ = −v~k−~k′ , (64)

where v~k−~k′ is the Fourier transform of the Coulomb interaction.13

13This formula is valid for same-spin electrons. If the electrons have opposite spin the first order interaction is
zero.
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The Landau interaction function f~k,~k′ , from which the Landau parameters are extracted, should
not be confused with the effective interaction between quasiparticles which is used to calculate
the quasiparticle lifetime and the collision term in the kinetic equation of Section 3.5. The
essential difference, already evident from Eq. (63), is that the Landau interaction function is
the limit of the microscopic scattering amplitude for zero momentum and energy transfer, with
the additional specification that the momentum transfer q tends to zero before the frequency
transfer ω. In contrast to this, the effective interaction determines the scattering amplitude for
all momentum transfers such that 0 < q ' 2kF , which connect two wave vectors on the Fermi
surface and, again, for small energy transfers ω � εF , such that the quasiparticles remain close
to the Fermi surface. Even in the limit of small q this is different from the Landau interaction
function because the energy transfer goes to zero first!14

This leaves us with the problem of extending the Landau interaction function to finite q, thus
generating what is known as an effective interaction between quasiparticles [16–19]. This is
an extremely difficult task, even if one limits oneself to seeking a “local” interaction, which
depends only on q and ω and is averaged over the quasiparticle momenta ~k and ~k′ over the
Fermi surface. A very useful concept in this context has been that of the dimensionless many-
body local field factors, denoted by Gs(a)(q). The local field factors were originally introduced
to generate approximate expressions for the density and spin response functions of a Fermi
liquid beyond the random phase approximation: this concept is described in detail in Section
5.4 of Ref. [2]. It is now understood [17] that the local field factors are in a very precise sense
the finite-q extension of the ` = 0 Landau parameters:

− lim
q→0

v(q)Gs(a)(q) = f
s(a)
0 , (66)

where v(q) is the Fourier transform of the bare interaction (Coulomb interaction for an electron
liquid).15 Armed with this understanding and with a decent microscopic calculation of the
local field factors (see Ref. [2], Appendix 11) it is relatively easy to construct a local effective
interaction appropriate to the problem at hand.16 The most famous effective interaction between
quasiparticles is perhaps the Kukkonen-Overhauser (KO) interaction [16], which is especially
suitable for calculations of the superconducting transition temperature. The explicit form of this
interaction is

V s
eff(q, ω) = v(q) +

(
v(q)(1−Gs(q))

)2 χ0(q, ω)

1− v(q)(1−Gs(q))χ0(q, ω)
, (67)

14It can be shown that the relation between the amplitudes calculated for q → 0 with these two different orders
of limits is

A
s(a)
` = f

s(a)
` /(1+F

s(a)
` ) (65)

where F s(a)` are the Landau parameters and As(a)` is the `-th component in the Legendre-polynomial expansion of
the q → 0 limit of the scattering amplitude in the symmetric (s) or antisymmetric (a) spin channel.

15The quantity −v(q)Gs(a)(q), often generalized to finite frequency, is known in the density functional theory
literature as the “exchange-correlation kernel”.

16Different effective interactions arise depending on whether one consider the interaction between two particles
extraneous to the Fermi liquid, e.g., two charged impurities in the electron gas, an extraneous particle and a
quasiparticle, or two quasiparticles. Even in the latter case differences arise depending on if one wants to calculate
a superconducting transition temperature or a self-energy, since different classes of diagrams are involved in the
two cases.
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for the spin-symmetric channel (s), and

V a
eff(q, ω) =

(
v(q)Ga(q)

)2 χ0(q, ω)

1 + v(q)Ga(q)χ0(q, ω)
, (68)

for the spin antisymmetric channel (a), where χ0(q, ω) is the well-known Lindhard function,
i.e., the density/spin response function of the non-interacting electron gas, and V s(a)

eff ≡ V ↑↑eff +

(−)V ↑↓eff . An application of the KO interaction to a study of superconductivity in an electron-
hole liquid can be found in Ref. [18]. For a very recent application of this interaction to the
study of superconductivity in elemental metals see Ref. [19].

5 Fermi liquid of massless Dirac fermions

We now discuss some peculiarities of the Fermi liquid formed by “massless Dirac fermions”
(MDF). MDFs occur near the crossing of two bands, such as occurs in a single layer of C
atoms (graphene) and in numerous Dirac and Weyl semimetals: the band dispersion is linear
in k near the crossing point, which we set at k = 0 (see Fig. 11): εk = ~vk where v is the
fermion velocity, independent of momentum. A Fermi liquid is realized when the Fermi level
crosses one of the bands (say the upper one) in the vicinity of the crossing. The existence of
a non-vanishing Fermi wave vector kF , related to the density of electrons in the upper band
by the usual Fermi liquid relation, k2F = 2πn, and a non-vanishing Fermi energy εF = ~vkF ,
are sufficient to establish the existence of a normal Fermi liquid at sufficiently low temperature
kBT � εF . This is because the structure of the low-energy excitations in the MDF system is
indistinguishable from that of the low-energy excitations in an ordinary parabolic band:

εk = εF + ~v
(
k−kF

)
= εF + ~

kF
mc

(
k−kF

)
, (69)

where mc ≡ ~kF/v, also known as the “cyclotron mass”, plays the same role as the bare
electron mass for parabolic bands. Unlike the bare electron mass, however, mc is density-
dependent, scaling as n1/2 in 2D, and thus vanishing as the Fermi level approaches the crossing
point for kF → 0. In view of this correspondence, we expect the Fermi liquid concept to be
robust in this new situation, in particular we expect to find long-lived quasiparticles with an
effective mass m∗ that is somewhat different from mc due to the presence of electron-electron
interaction. Nevertheless there are some important differences to be kept in mind. We list them
below.

1. First of all, the range of validity of the Fermi liquid theory shrinks to zero as the Fermi en-
ergy approaches the crossing point of the bands, also known as the “Dirac point”. When
εF = 0 there is no Fermi surface and no Fermi liquid. The length and time scales provided
by k−1F and ~ε−1F diverge, and the system becomes scale-invariant (or quantum-critical).
The only energy scale left is kBT itself and the inverse lifetime of electrons and holes
must be proportional to kBT , which is of the same order of magnitude as the energy of
the excitations. This defines the so-called “Planckian regime”, and we see that the whole
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Fig. 11: Band dispersion for massless Dirac Fermions in the vicinity of the crossing point
(Dirac point). Also shown is the Fermi level which defines our Fermi liquid.

concept of quasiparticle falls apart in this regime. The nature of the quantum critical
state at εF = 0 (also known as the charge neutrality point) is not completely understood
at present. Strong electron-electron interactions have been dealt with by a hydrodynamic
description, where individual particles are superseded by collective variables such as den-
sity and current. Alternatively, it has been suggested that electrons and holes in the upper
and lower band bind together to produce a gapped state known as “excitonic insulator”.

2. Although, for finite kF , the structure of the low-energy excitations remains the same as in
the standard parabolic case, there are some important differences in the structure of higher
energy excitations. In particular, the presence of electrons in the fully occupied lower
band cannot be ignored, as it gives a significant contribution to the Fermi liquid properties.
These contributions fall into two categories: (i) contributions to the Landau interaction
function arising from interactions between the electrons near the Fermi surface and those
in the fully occupied bands, (ii) contributions to the quasiparticle lifetime arising from
interband transitions at energies lower than or comparable to the Fermi energy.

Concerning (i) it must be noted that the relative strength of the electron-electron interac-
tion, as measured by the ratio of the potential energy to the kinetic energy, is no longer
density-dependent: rather it becomes a fixed constant α = e2

~v of order 1. However, there
is now another measure of the importance of interaction effects, and that is Λ/kF where
Λ is an ultraviolet cutoff wave vector, which determines the largest momentum of the
occupied states for which the linear (massless) band model is still valid. This cutoff is
poorly defined, but is expected to be of order 1/a, where a is the lattice constant. So even
though α is constant, interaction effects become stronger as kF tends to zero, which is
similar to the familiar situation, but leads to very different phenomenology in this case.
For example it can be shown that the inverse compressibility, proportional to ∂µ/∂n,
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is increased by interactions rather than decreased [20]. This happens because when the
electronic density is increased the Fermi level in the upper band moves farther away from
the lower band: the negative exchange energy that is lost due to this effect outweighs the
negative exchange energy that is gained by having more electrons in the upper band. The
same phenomenon is observed for the spin susceptibility, which is now suppressed, rather
than enhanced, by interactions.

Concerning point (ii), a detailed analysis presented in Ref. [21] shows that the quasipar-
ticle lifetime (in the upper band, +) is given by

1

τ
(e)
k,+

' εF
~

1

πN(0)

(
ξk,+
εF

)2

ln

(
Λ

ξk,+

)
, (70)

at zero temperature and

1

τ
(e)
k,+

' εF
~

π

2N(0)

(
kBT

εF

)2

ln

(
Λ

kBT

)
, (71)

at finite temperature. This is essentially the Giuliani-Quinn result [11] discussed earlier in
Section 3.3. Three main differences with respect to the classic calculation for an ordinary
two-dimensional electron gas have been identified in Ref. [21]: i) a simple Fermi golden
rule approach with statically screened Coulomb interactions is not viable in graphene as
it yields logarithmically-divergent intra-band scattering rates due to the collinear scatter-
ing singularity; ii) the leading-order contribution to the quasiparticle decay rate in the
low-energy and low-temperature limits is completely controlled by scattering events with
small momentum transfer: the 2kF contributions are suppressed by the chiral nature of
massless Dirac carriers in graphene; iii) because of point ii), the leading order contri-
bution to the quasiparticle decay rate is completely independent of the strength of the
background dielectric constant ε: the result is therefore universal in that it does not de-
pend on the substrate on which graphene is placed.

3. As the Fermi level approaches the crossing point with decreasing density, the Fermi liquid
concept remains in force as long as kF > 0, but the effective mass of quasiparticles is
found to be logarithmically suppressed relative to the noninteracting cyclotron mass [22].
Another way of saying this is that the Fermi velocity v is renormalized to v∗(kF ) > v

where v∗(kF ) diverges logarithmically in first order perturbation theory as kF → 0:

v∗(kF )

v
= 1 +

α

4
ln

(
Λ

kF

)
. (72)

While an increase of the velocity, leading to a reshaping of the bands near the Dirac point,
has been experimentally observed, the divergence of v∗(kF ) poses a problem of legiti-
macy for the microscopic perturbation theory on which this prediction is based. Clearly
a non-perturbative approach is needed to analyze the kF → 0 limit. This approach is
provided by the renormalization group, which is reviewed in Ref. [22], and generally
confirms the predictions of the weak coupling theory.
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6 Non-Fermi-liquid behavior

6.1 Disordered electron liquid

Thus far we have only considered translationally invariant electron liquids. But real electron
liquids are inevitably subjected to potentials that break translational invariance, such as the
periodic potential in a crystal lattice, or the potential from randomly distributed impurities.

A general approach to inhomogeneous interacting Fermi liquids begins with a consideration
of the exact eigenstates |φα〉 of a single particle – an electron in our case – in the external
potential. These are Bloch waves in a perfectly periodic crystal lattice, but have no definite
symmetry in the presence of a random impurity potential. In either case, the ground-state of
the noninteracting system is obtained by singly occupying the eigenstates with the N lowest
energies εα. The highest occupied eigenvalue defines a Fermi energy εF = εN , but not a Fermi
surface. Excited states are obtained by promoting some electrons from below the Fermi level to
above the Fermi level. All these states are described by a set of occupation numbers Nα.

We now start from one of these states, and slowly turn on the electron-electron interaction,
expecting to generate long-lived interacting states characterized by a quasiparticle distribution
Nα. But here comes an important difference. While in the homogeneous case the interaction
between quasiparticles is hindered by the Pauli exclusion principle and by the conservation of
momentum and energy, in an inhomogeneous system the constraint of momentum conservation
does not exist. It is therefore expected that the quasiparticles will interact more strongly and
decay more rapidly than in the homogeneous case. How much more rapidly? This is an es-
sential question, since the very existence of the Fermi liquid requires that the decay rate of a
quasiparticle of energy ε tend to zero more rapidly than ε−εF when ε→ εF .

The answer depends on whether the system is periodic or disordered. In periodic systems
crystal momentum (the Bloch wave vector) is conserved up to reciprocal lattice vectors. While
the occurrence of “umklapp” processes can alter the numerical value of the lifetime it does not
lead to qualitative departures from the homogeneous picture.

In disordered systems the lack of momentum conservation has more serious consequences. First
of all, if disorder is sufficiently strong, it can lead to localization of the quasiparticle states and
hence change the electrical properties of the system from metal to insulator. We will not pursue
this scenario here. Even in the weak disorder regime, i.e., for kF ` � 1, where ` is the electron
mean free path, the combined effects of disorder and interactions can be significant. Because
density fluctuations relax at a slower pace than in a perfect crystal the electrons within them stay
together for a longer time and hence interact more strongly: this “electron loitering” leads to an
enhanced quasiparticle decay rate. In three dimensions the decay rate goes as 1

τ (e)
∼ (ε−εF )3/2

and 1
τ (e)
∼ (kBT )

3/2 in the limits of kBT � ε−εF and kBT � ε−εF respectively [23].
This is considerably larger than (ε−εF )2 and (kBT )

2 yet still small compared to ε−εF . In two
dimension, on the other hand, one finds 1

τ (e)
∼ (ε−εF ) at T = 0, and 1

τ (e)
∼ (kBT ) ln(kBT ) at

finite temperature [24, 23], which implies that the conventional Fermi liquid picture is, at best,
marginally valid.
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In concomitance with the enhancement of the quasiparticle decay rate, the single-particle den-
sity of states, N(ε), is reduced in the vicinity of the Fermi level, going as (ε−εF )1/2 in three
dimensions, and | ln(ε−εF )| in two dimensions [25]. These results are based on perturbation
theory, and therefore cannot be trusted when the correction to the unperturbed density of states
becomes too large (e.g., in two dimensions, for ε → εF ). Notice, however, that a suppression
of the density of states at the Fermi level is also predicted in the limit of strong disorder, even
though the physics appears to be quite different in that regime. Other thermodynamic and trans-
port properties, such as the heat capacity and the conductivity, show non-analytic behavior in T
at low temperature. Remarkably, there is no non-analytic correction to the compressibility.17

Going beyond perturbation theory, in the true spirit of the Landau theory of Fermi liquid, has
turned out to be an extremely difficult task, and the problem remains unsolved to date (for a
relatively recent review, see Ref. [27]). Suffice it to say that the scattering amplitudes in the
antisymmetric spin channel have been predicted to diverge in the low energy sector, suggesting
a diverging spin susceptibility associated with the formation of ferromagnetic domains at the
length scale of the divergence. At the same time the inverse conductance is seen to initially
increase, as if the system were going towards an insulating state, but it then reaches a maximum
and begins to decrease as the divergence of γa takes over. These findings show very clearly
that the noninteracting theory of localization needs serious revision in the presence of electron-
electron interactions.

6.2 Luttinger liquid

An interesting phenomenon, known by the colorful name of “orthogonality catastrophe”, lies at
the heart of the distinction between Fermi liquids and non Fermi liquids. Imagine injecting an
extra electron into the ground-state of a strongly correlated N -electron system. Since the new
electron lacks the appropriate correlations with the pre-existing electrons, the state of the N+1-
electron system after the injection is essentially orthogonal to the ground-state. In mathematical
terms, the orthogonality catastrophe implies that the renormalization constant Z, defined in
Section 4, vanishes in the thermodynamic limit.18 We take this to be the defining feature of a
non-Fermi liquid state.
A classic example of non-Fermi liquid behavior is the so-called “Luttinger liquid” [28], which
is realized in quasi-one dimensional electronic systems such as Bechgaard salts, TTF-TCNQ,
and carbon nanotubes, as well as in confined systems of fermionic cold atoms. The reduced
effective dimensionality of these systems hinders single particle motion to the point that the
particles must be regarded as strongly correlated even when their interactions are weak.
An immediate consequence of this situation is the disappearance of the quasiparticle δ-function
peak in the spectral function A(kF , ω) at the chemical potential: there are no single-electron

17 It should mentioned, for completeness, that additional non-analytic corrections to the density of states and
the specific heat arise when the transverse electromagnetic interaction between the electrons is taken into account.
See Ref. [26] for details.

18It can be shown that the renormalization constant is the square of the overlap between the excited state of the
system immediately after the injection of an electron and the ground-state of the system.
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Fig. 12: Schematic behavior of the local spectral function at A(kF , ω) for a Luttinger liquid in
the weak coupling regime (thin line) and in the strong coupling regime (thick line). In both cases
A(kF , ω) ∼ 1

|ω−µ/~|ν for ω → µ/~, with the exponent ν tending to 1 for weak interactions and
becoming negative for strong interactions. Notice the absence of the quasiparticle δ-function
peak at ω = µ/~.

quasiparticles. For weak interactions the δ-function peak is replaced by a power-law diver-
gence for ω → µ/~. With increasing coupling strength a sort of energy gap develops, whereby
A(kF , ω) vanishes with a power law for ω → µ/~ as shown in Fig. 12. The position of the
lateral maxima in the spectral function is a rough measure of the energy of the disturbance cre-
ated by the injection of the new electron in the liquid, while the “width” of these maxima is
inversely proportional to the time needed for the many-electron system to adjust to the presence
of the new electron. Another consequence of the vanishing of Z is that the plane-wave occupa-
tion number nk is no longer discontinuous at k = kF , even though a singularity persists in its
derivatives with respect to k.
Luttinger liquids exhibit anomalous transport properties. For example, the electrical conduc-
tivity is expected to vanish at zero temperature. One might find this not so surprising since it
is known that in a one dimensional system any amount of random disorder causes localization
of the one-electron states, and hence a vanishing conductivity at T = 0. But, in the Luttinger
liquid any perturbation that breaks translational invariance, e.g., even a single impurity, leads
to an insulating state at T = 0. The physical reason for this effect is that the perfectly clean
system is on the verge of spontaneously forming a charge density wave (CDW) of wave vector
2kF . Under these conditions even a single impurity can pin down an insulating CDW state.

6.3 Fractional quantum Hall liquid

It is still an open question whether non-Fermi liquid behavior occurs in more than one di-
mension. Although many theories suggest that this should be the case, for example in the
normal phase of the superconducting cuprates, the experimental evidence remains somewhat
ambiguous. A notable exception is the fractional quantum Hall liquid which occurs in the
two-dimensional electron liquid at high magnetic field. This system presents the most radical
departures from Landau Fermi liquid theory so far encountered in any condensed matter system,
and the experimental evidence is extremely strong.
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The basic reason for this exotic behavior is the quenching of the kinetic energy at high magnetic
field. The kinetic energy of an electron in a magnetic field B is quantized in units of ~ωc (where
ωc =

eB
mc

is the cyclotron frequency) so that its admissible values are

εn =

(
n+

1

2

)
~ωc (73)

where n is a non-negative integer. These energy levels are known as Landau levels. The number
of degenerate states in each Landau level is proportional to the magnetic field and to the area
(A) of the system, and is given by

NL =
eBA
hc

. (74)

Thus, in the limit of large magnetic field all the electrons fall in the lowest Landau level and
the kinetic energy becomes a constant N ~ωc

2
, where N is the number of electrons. The key

parameter that controls the properties of the system is the filling factor

ν =
N

NL

, (75)

which is less than 1 for a fractionally filled lowest Landau level. In this situation, the non-
interacting ground-state is highly degenerate because the electrons can be distributed in many
different ways among orbitals of the lowest Landau level. The degeneracy is removed, however,
by the interaction. Under these conditions, the concept of an adiabatic connection between non-
interacting and interacting states, which is central to the Landau theory of Fermi liquids, has no
meaning, since the non-interacting limit of an interacting state is a completely ill-defined notion.
Indeed, the incompressible quantum Hall liquid state, introduced by Laughlin [29] to explain
the quantum Hall effect at filling factors of the form ν = 1

2k+1
, where k is a positive integer, is

not connected in any obvious way to a non-interacting state. The many-body wave function that
describes it has multiple zeroes (of order 2k+1) on the hypersurfaces of configuration space on
which two electrons come in contact: in this sense, the zeroes of the wave function are “bound”
to the particles. These multiple zeroes are far more powerful than the simple zeroes required by
the Pauli exclusion principle in a non-interacting, and are ultimately responsible for giving the
Laughlin state a particularly low interaction energy.
An exotic connection to a non-interacting state continues to exist, however, as has been pointed
out by Jain, based on the beautiful idea of composite fermions [30]. Composite fermions are
constructed by attaching to each electron an infinitely thin flux tube carrying an even number 2k
of magnetic flux quanta Φ0 ≡ hc

e
. These composite particles, like the original electrons, are sub-

ject to the external magnetic field B and interact with each other via the Coulomb interaction.
The vector potential produced by the magnetic flux tubes exerts no force on the particles, and
therefore does not contribute to the particle-particle interaction. When two composite particles
are adiabatically interchanged along a path that does not enclose other particles the wave func-
tion is multiplied by an Aharonov-Bohm phase factor eiπ(2k+1) = −1: this indicates that the
composite particles are fermions and the problem of interacting composite particles is math-
ematically identical to the original problem of interacting electrons. While the transformed
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problem appears at first sight more difficult than the original, the advantage of this description
appears when one introduces a mean field approximation. To this end, the fictitious magnetic
fluxes attached to the particles are spread out, creating a uniform and constant magnetic flux
proportional to the particle density. This average magnetic flux combines with the external
physical flux, yielding an effective flux

B∗A = BA− 2kΦ0N (76)

where the flux tubes have been assumed to be antiparallel to the external field for k > 0 and
parallel for k < 0. The composite fermions feel the effective field B∗ and their effective filling
factor ν∗ is therefore given by (see Eqs.(74), (75) and (76))

1

ν∗
=

1

ν
− 2k . (77)

Thus, by cleverly choosing the values of 2k and ν, it is possible to convert a strongly-correlated
problem of electrons at fractional filling ν into a weakly correlated problem of composite
fermions at integral filling factor ν∗. For example if ν = 1

3
and 2k = 2, then we have

ν∗ = 1, which corresponds to a full Landau level of composite fermions. But the non-interacting
ground-state at integer filling factor is perfectly well defined (one simply has to completely fill
an integer number of Landau level) and provides a suitable starting point for an analytic continu-
ation when the interactions are turned on. Although this conversion is inspired by a questionable
mean field approximation, it provides a conceptual framework for constructing correlated wave
functions of excellent quality for electrons starting from uncorrelated wave functions for com-
posite fermions. The composite fermion picture also establishes a beautiful connection between
the seemingly different phenomena of the integral and fractional quantum Hall effects. Accord-
ing to this picture, the fractional quantum Hall effect of electrons is nothing but the integral
quantum Hall effect of composite fermions.
The special case of a half-filled Landau level (ν = 1

2
) provides an extreme example of the

power of the composite fermion idea. In this case, Eq. (77), with 2k = 2, yields ν∗ = ∞,
implying that the composite fermions experience no magnetic field on the average (i.e., the
number of occupied Landau levels of composite fermions is infinite). If the mean field approx-
imation makes sense one would then expect to see here some of the characteristic signatures
of a two-dimensional Fermi liquid, such as a two-dimensional Fermi surface [31]. In fact, sur-
face acoustic wave propagation experiments have provided considerable evidence in support of
this prediction. However, one must keep in mind that the “Fermi liquid” behavior is limited to
density and current response properties: it certainly does not apply to single-particle properties.
For example, tunneling experiments show a pseudogap in the spectral density of one-electron
excitations, characteristic of an “orthogonality catastrophe”, and no sign of the quasiparticle
peak characteristic of an ordinary Fermi liquid.
The edge of a 2D electron liquid at high magnetic field provides yet another example of non
Fermi liquid behavior. It can be shown that the collective oscillations of the density in such an
edge are dynamically equivalent to the collective oscillations of a chiral Luttinger Liquid [32],
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i.e., a Luttinger liquid in which, after diagonalizing the electron-electron interaction, only one
half of the bosons – those propagating to the right or those propagating to the left – are retained.
Unlike previous putative realizations of the Luttinger liquid paradigm, the edges of the 2D elec-
tron liquid are essentially free of disorder effects and, more importantly, the Luttinger liquid
coupling constant coincides with the bulk filling factor ν. This has allowed a rather detailed
experimental verification of the non-universal exponents in the power-law decay of the corre-
lation functions of the Luttinger liquid. Studies of the tunneling current between edges in the
fractional quantum Hall regime have also provided the first convincing evidence of fractionally
charged excitations in condensed matter systems.
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