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1 Introduction

Widespread interest has been devoted in the last three decades to strongly correlated materials,
which are being used in emerging technologies, such as spintronics, quantum computing and
high temperature superconductivity for example. They are characterized by strong electronic
interactions between their d and f -band valence electrons. The interplay between charge local-
ization (Mott physics) and itinerant behavior (quasi-particles) provides a challenge for standard
electronic theories, such as density function theories. In recent years significant progress in un-
derstanding the underlying physics of strong electron correlation effects has been made by the
dynamical mean-field theory (DMFT) method [1], in particular with the harnessing of DMFT
to widespread materials modelling methods, such as density functional theory (DFT), with the
DFT+DMFT combined approach [2].
Despite this formidable achievement, practical challenges remain with the DFT+DMFT ap-
proach. At the heart of the theory is the choice of the quantum engine that solves the many-body
Anderson Impurity Model (AIM), an underlying model that provides the local Green function
of the compound of interest via a self-consistent mapping. Currently, methods of reference at
finite temperature are based on statistical sampling, with for instance the continuous-time quan-
tum Monte Carlo solver [3]. The latter provide exact results (within sampling error bars) on the
imaginary axis for the fully rotationally-invariant AIM Hamiltonian.
Other solvers can provide robust information on the real axis, such as numerical renormalization
group approach [4], but their application remains currently challenging for the case multi-orbital
systems for the DFT+DMFT approach.
Another well-known method that provides information on the real-axis is the exact diagonal-
ization (ED) approach. Here, the DMFT hybridization is approximated by a finite number (Nb)
of effective bath orbitals. In practice, Nb is restricted because of the exponential growth of the
Fock space with the total number of sites (bath and impurity). The growth of the Hilbert space
is mitigated by Lanczos-based algorithms, which utilize the sparse nature of the Hamiltonian,
and to a large degree enable routine calculations for systems up to Ns ≈ 12 [5]. Overall, the
limitationNs limits the scope of applicability of this method, and typically discretization effects
remain large for multi-orbital systems.
In summary, the quantum engine at the heart of DMFT remains an active topic of research,
and there is no single silver bullet that provides a general solution of the AIM problem for all
contexts and all parameters ranges. Generally, with a few exceptions, most quantum solvers
are also computationally demanding, adding a significant overhead to the DFT calculation.
Until the latter is addressed, high-throughput material design will remain beyond the reach of
most researchers, without access to dedicated large HPC infrastructures: the quantum solver
used to provide the solution of the embedding theory, as for every calculation applied to each
material of interest, has to be solved hundred’s of time with a large inherent computational cost.
Furthermore, if approaches such as DMFT are made widely available to engineers and scientists,
it would be repeated all across the world, at the cost of thousands of computing hours for every
single calculation, generating large hallmarks in terms of energy consumption, data storage and
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computational slow-downs. Approximate methods provide cost effective alternatives, such as
perturbation based theories, but they are qualitatively wrong in known limits of the theory.
The fundamental problem lies in the fact that the effects of the Coulomb interaction and of the
specific material cannot be separated. Otherwise, one could calculate the interaction contribu-
tions once and forever, store them and add them every time a new material is calculated.
The most prominent example of the strategy is indeed the local density approximation (LDA) to
density functional theory (DFT), where the Kohn-Sham exchange-correlation potential is taken
from a homogeneous electron gas that is calculated at the density of the real system in the same
point. In this way, DFT profits from the existence of tabulated and interpolated Quantum Monte
Carlo (QMC) results, shared with the entire scientific community.
In the latter context, the Anderson impurity model (AIM) plays a central role in the dynamical
mean-field theory (DMFT), very similarly to the role of the local density approximation in DFT,
where the exchange functional involves solving the quantum problem of a gas of interacting
electrons. Contrary to DMFT however, where the AIM is solved every single time without data
storing or sharing, the success of DFT has been established by a simple but efficient strategy:
the difficult problem of the interacting electronic gas has been solved at a large computational
cost with Quantum Monte Carlo, once and for all, and for everyone, shared with the wider
scientific community for the benefit of all [6].
It is very surprising that only moderate work has been done on storing and sharing solutions of
the AIM obtained at large computational costs (typically in the several thousands of core-hours
for every single-point calculation on a given compound), as the obtained many-body solution of
the AIM is not specific to a given material. Furthermore, repeatedly solving the AIM correlated
problem at large computational cost is also required when only small variations are introduced
by finite displacements (for lattice dynamics properties). This limits the scope of predictions
for structure optimization or other interesting applications under applied constraints, such as
external pressure, due to the overwhelming number of required calculations, when relaxing
different chemical compositions with numerous single-point calculations of the same chemical
composition are required. This latter fundamental limitation of DMFT, and more generally
quantum embedding approaches, can be addressed with advances in the field of data science.
Application of machine learning (ML) to quantum physics as neural networks and gaussian
processes to accelerate material discovery have been well studied, for instance for accelerating
DFT [7–9] optimizing QMC in terms of speed [10–12] and accuracy [13], and similarly for
analytic continuation [14].
In the context of DMFT, the pioneering work of Arseneault et al. [15] has opened new avenues
in applying ML to the Anderson impurity model for a broad range of parameters. Recently, the
application of neural networks (NN) combined with different exact solvers has further estab-
lished the validity of ML approaches in the context of DMFT [16–18]. These approaches have
pioneered in applying ML to quantum many-body systems.
We note that ML and its applicability is limited in terms of offering an overall general solution
of quantum many-body systems, for reasonably sized data-bases, due to the rich and complex
nature of the many-body problem.
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Here, we review the literature on machine learning and neural networks within the context of
condensed matter. We also address a simpler task than providing the whole solution of the
AIM from a data-science perspective. Instead, we use here physically inspired approximate
and cost efficient solvers to DMFT, and outline an approach to provide many-body correc-
tions to account for the obtained errors of the fast solver [19]. The credit to this work goes
to the lead author of this work, Dr Evan Sheridan (Phasecraft), and to Dr Francois Jamet (UK
National Physics Laboratory) and Zelong Zhao (King’s College London).

1.1 Supervised learning and linear regression

We illustrate here the concept of supervised learning within the framework of linear regression.
Let’s consider for instance a data set that we’d like to fit with a simple regression model. For
sake of illustration we’ll consider data obtained from electric vehicles, where we relate the
mileage in miles per gallon equivalent (MPGe) to the vehicle weight and battery capacity [20].

Vehicle List
Vehicle weight (Kg) Battery Capacity (kWh) Mileage (MPGe)
1000 54 108
1500 81 103
2000 108 98
2500 135 93
3000 162 88
3500 189 83
4000 217 78

The data set is composed of two-dimensional vectors, where xi1 is the vehicle weight, and xi2 the
battery capacity of a given vehicle. We note that the given features need to be chosen with care
for a given problem. To perform any sort of learning, we need to represent a model function for
the mileage

hθ(x) = θ0 + θ1x1 + θ2x2 . (1)

The θ parameters, or weights, are the model parameters that will be learned throughout the
supervised learning process. Introducing the extra term x0 = 1, the notation simplifies to

hθ(x) =
d∑

i=0

θixi . (2)

In the spirit of regression, we need to identify the optimal parameters θi that provide the best
model for the known dataset (training set), and ultimately for inferring the mileage on future
vehicles (inference process). How can we learn from the available data at hand, and obtain the
model parameters? To address this question, we need to define a figure of merit of our model,
or a cost function

J(θ) =
1

2

n∑

i=1

(
hθ(x

(i))− y(i)
)2
, (3)
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where yi are the known mileage obtained from the table above. Minimizing the cost function
will hence provide the theoretical model. This can be achieved with a gradient descent algorithm
for instance, starting from a initial guess for θ, and repeatedly updating the parameter values by
following the steepest gradient,

θj := θj − α
∂

∂θj
J(θ). (4)

The gradient descent update is performed over all parameters θj simultaneously and the proce-
dure iterated until convergence is achieved. The parameter α plays the role of a learning rate,
indeed for small α changes in the model parameters θ are small and progress is slow, with the
caveat that a large number of iterations is required to reach convergence, whereas for large α
changes in the model parameters are rapid, but convergence might be hampered from sudden
jumps in the iteration process. To implement the algorithm, one can analytically calculate the
derivative and one can easily check that the following is obtained

∂

∂θj
J(θ) =

(
hθ(x)− y

)
xj, (5)

and combined with equation (4) we obtain the training rule, also known as Widrow-Hoff rule

θj := θj + α
(
y(i) − hθ(x(i))

)
x
(i)
j . (6)

As mentioned above, the learning rate is proportional to the proportional coefficient α, but
perhaps counter-intuitively the amplitude of the learning is proportional to the error rate y(i) −
hθ(x

(i)). Thus, this algorithm learns most from large deviation from the sample, i.e., when our
prediction has a large error and hθ(x(i)) deviates most from y(i). Some practical considerations
are absent from the discussion above. In particular, the parameter θ can be updated for every
measurement or known data point of the training set, albeit the latter is in reality finite. This
highlights the importance of the learning rate. Furthermore, our model is limiting in terms of
dependencies and extensions: what if we would like to add a parameter in the model related
to the weight of the battery, which is a function of both the total vehicle weight and battery
capacity? Such a parameter should feed from the previous variable and provide a higher level
model parameter. In the next section we will extend this simple model and learning process to
a more general framework that allows for this flexibility. The formulae obtained above are of
course nothing else than the well known linear regression method, but it provides a means to set
the terminology and general extension to neural networks, discussed in the section hereafter.

1.2 A single layer neural network: the perceptron model

Neural networks are a flexible ensemble of data-driven models, largely inspired by the human’s
brain network of synapses and neurons, that provide non-linear neural connections. In contrast
to a biological neuron, inside the artificial neural network the neuron, or perceptron, is in the
form of a simple function whose operation is to take an input vector x = {x1, . . . , xn} (the
feature vector) and activate a logical threshold if the signal is large enough,

f(x) = σ
(
x.w + b

)
, (7)
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Fig. 1: a) Schematic of a biological neuron, which consist of a cell nucleus, synapses connected
via dendrites to the cell, myelin sheath that embeds the axon that ultimately provides the output
signal via the axon terminal to another neuron. b) Simplified artificial neuron model: input
signals Ini are multiplied by a proportional weighting factor W and a constant bias b is added
to the signal, providing the output Outi that connect with the other neurons.

where σ is a continuous activation function, w is a set of parameters that are specific to the
neuron, and b is the bias parameter. Connecting a network of neurons together and adjusting
the weights to match the value of a target output provide a mean to use the network to build
non-linear predictive responses for different given inputs, which is foundation of learning.
The perceptron model was originally introduced by Frank Rosenblatt, who simulated and built
purpose hardware for this model in the early 1960s that provided a direct and parallel imple-
mentation of perceptron learning [21]. This model is the first neural network learning model
introduced, which is simple and limited, but provides the basic concepts and is a good learning
tool. The original motivation for deriving this theory was related to the physiology of the brain
learning process, and in particular pattern recognition. The theory is based on a simplified model
for the brain neuron: the latter consist of a complex interplay between input signals carried by
synapses, interconnected with the neuron cell which provides a time-dependent output signal
transported via the axon terminals (see Fig. 1.a). Many complex physiologic phenomena occur
via the brain neuron cells in the learning process. The simplest model of an artificial neuron con-
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Fig. 2: a) Schematic of the perceptron model. Inputs xi are weighted with wi, and collected by
a sum-rule Σ, before entering a threshold logic unit and triggering the activation function. The
output is then obtained and compared to the training set. The perceptron learns by the error
correction method, where the weights are updated based on the obtained error. b) A typical
classification task where the training set consists in a set of data points labeled as circles or
squares. After the learning process, the perceptron weights wi correspond to the equation of
the separation line.

siders a simple proportional relation between input and output signals via a weight coefficient
wi and a constant applied bias bi (see Fig. 1.b). This model omits the time-dependence of the
output signal and many other factors, but provides a basic building block for inter-neuron con-
nections. Typically, the perceptron model consist of a layer of artificial neuron cells, connected
to a set of input signals xi (see Fig. 2a). To mimic the learning process, a summation is applied
to the neuron layer, which collects the weighted sum of all input signals. A threshold logic unit
is then applied which determines the outcome of the final output binary signal, typically the
output signal being z = 1 if the learning outcome is positive, and z = 0 in the alternative. This
provides typically a means to classify data in two categories (classifier). A typical example is
a set of data points in Euclidean space which are delimited in two classes, as to whether they
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lie above a delimiting line, or below it (see Fig. 2b). The line coefficients wi are unknown, but
instead we know for a group of points whether they belong to the class +1 or −1.
In this example, we are provided with a given training data set

{
(xi, yi)

∣∣ i=1, . . . , n
}

. We
define the activation function fw(x) = wTx

• y = +1, if wTx > 0

• y = −1, if wTx < 0

The prediction of the perceptron model is the sign of the activation function sign
(
fw(x)

)
. The

aim of this approach is to learn from the data set and minimize the classification error.
We will use a two neuron model, and following the general recipe, we will set the weights to
random initial values: w1 = 0.4 and w2 = −0.2 (note that weights can be either positive or
negative). Our training set is set as follow:

Training set
x1 x2 outcome
0.2 0.3 1
0.4 0.1 0

The learning process occurs by testing the algorithm on the training set and to adjust in turns
the network weights in the learning process. Weights are typically adjusted by comparing the
prediction of the network on a given data point, and correcting for errors obtained in the eval-
uation. We provide here a simple example and recipe to optimize weights in the single layer
neural network, with a simple learning algorithm and objective function. To be more specific,
we use the objective function C

z = 1, if
n∑
i=1

xiwi ≤ θ

z = 0, if
n∑
i=1

xiwi > θ

where θ is the threshold value. This part defines the logical activation function that converts the
signal, modulated by the network weights, into a prediction. The task of the learning process
is to train the network weights, for a given objective function, such that the training set is
reproduced accurately. For the sake of illustration, we use here a threshold value θ = 0.1.

Training set
x1 x2 ω1 ω2 Prediction P Dataset D
0.2 0.3 0.4 –0.2 1 1
0.4 0.1 0.4 –0.2 1 0

Applying our randomized neural network, we observe that the first training data point is actually
well classified by the network with original choice of weights. However, for the second data
point, our network produces a wrong prediction. After every error of the network, we perform
a weight update with the following learning rule

∆wi = α (t− z)xi, (8)
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Fig. 3: a) Activation step-function. b) Activation sigmoid function.

where t is the target value (training set), z the current output, α the learning rate, wi the weight
associated with input i, xi the corresponding input value. We note the direct correspondence
with the parameter update obtained in equation (6) in the steepest descent approach. The fol-
lowing pseudo-code provides the general approach for a single or multiple layer neural network

Algorithm 1 Neural network pseudo-code
inputs for sample data point: θ,wi,xi

Require: C = 0
call Evaluation function: xi, α, θ, wi, Di output wi
Prediction Pi ←

n∑
i=1

xiwi ≤ θ

Cost function← ‖D−P‖
Learning wi ← α (D−P)xi
Iterate over training set

The weights obtained from the neural network will eventually provide a means to predict the
class of an unknown data point yi. The weights have a very simple geometrical interpretation,
they represent the line parameters (see Fig. 2.b). In the simple perceptron model, the relation
between outputs and inputs remains linear, due to the limited complexity of the model.
We note that in our approach, the choice of the threshold value θ and logical rule to determine
whether the weighted signal falls within class A or B is entirely arbitrary. The mathematical
formulation of the logical threshold unit is denoted as activation function. In general, there is a
breadth of possible choices available and studied in the literature, providing different learning
efficiency and resilience towards noise, typical examples are the step function and the sigmoid
function (1/ (1+e−z)), ReLU (max(z, 0)), or tanh (see Fig. 3).
To expand the scope of this approach, and allow for identifying non-linear boundaries between
more complex sample sets, the perceptron model can simply be extended by allowing for several
neuron layers between inputs and the logical threshold function. The current is simply modu-
lated several times, by the weights of the respective layers. Furthermore, we can also allow for
connections between a neuron of one layer with multiple neurons of the next layer, allowing for
a large number of weight parameters. This is the realization of a so-called neural network.
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Fig. 4: Simple extension of the perceptron model, where we have now an intermediate neuron
layer between the input fully connected layer and the binary output.

1.3 Neural networks

A neural network is a direct extension of the perceptron model. It has two main components: (i)
the network architecture in terms of number of layers, neurons per layer, and how neurons are
inter-connected, and (ii) the parameters defining connections (weights), with the task to learn
the parameters for achieving a given task. In our application to DMFT, this task will consist in
learning the errors of a given approximate solver to the Anderson impurity model.

In our context, the input will consist of a Green function G(τ) represented in imaginary time,
which is essentially a vector of d dimension

(
x
(i)
1 , x

(i)
2 , ..., x

(i)
d

)
. We’ll come back to our main

aim in the next sections, but for now we extend the example of the perceptron model where we
want to classify an input in a binary class ŷ = 0 or ŷ = 1 (see Fig. 4). On the left of this figure,
the input is connected to the first layer, the fully connected layer. The second layer is denoted
as a hidden layer, as its presence merely provide additional degrees of freedoms to propagate
the information forward to the logical threshold unit. It is worth noting that we have so far only
considered forward propagation of the information throughout the network. After doing a first
single forward pass through the network, for a given initial choice of weights wi and a given
input vector xi, we need to update the parameters for the learning process.

Here, we need to generalize the learning formula introduced in the context of the perceptron
model. This extension leads to the concepts of training loss, and validation loss. The former
is a metric used to assess how the model fits the training data, i.e., it assesses the error of the
model on the training set. It is worth noting that the training set is a portion of the entire dataset
used to initially train the model. Computationally, the training loss is calculated by taking the
sum of errors for each example in the training set. It is also important to note that the training
loss is measured after each batch, that is usually visualized by plotting a curve of the training
loss after each update of the weights. The latter (validation loss) is a metric used to assess the
performance of the learning model on the validation set. The validation set is another portion of
the dataset set aside to validate the performance of the model, usually a smaller portion of the
dataset as the largest chunk is used to train the model instead (typical splits of the entire dataset
in validation/training are 20% validation and 80% training).
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The loss function used in neural networks is based on the binary cross-entropy formula

L = −
(
yi log2(ŷi) + (1−yi) log2(1−ŷi)

)
, (9)

where y represents the expected outcome and ŷ the outcome produced by the model. Let’s
have a look at a simple example: for a neural network that tries to determine whether a picture
contains a cat, the outcome is either of 1 (cat) or 0 (no cat). With a sample that has two pictures,
the first of which contain cats, whilst the second doesn’t. Let’s imagine that the neural network
is 80% confident that the first image contains a cat: y = 1 and ŷ = 0.8. The loss function in
equation (9) gives L = 0.32. For the second image, the network gives a 90% probability that
there aren’t any cats in the picture, y = 0 and ŷ = 0.1, with L = 0.15. The loss function
is designed such that either the first term yi log2(ŷi) or the second term (1−yi) log2(1−ŷi) are
naught or small when the network has a large confidence in asserting the classification, whilst
the loss function is large in uncertain situations. The loss function can be averaged over the
training sample (or the validation sample), leading to the overall cost function C

C = − 1

N

N∑

i=1

(
yi log2(ŷi) + (1−yi) log2(1−ŷi)

)
. (10)

For DMFT we are however not focusing on binary classification, and instead our predicted and
model values are in general real. The fairly straightforward extension to a real number can be
achieved simply by generalizing the cost function with a regression model, for instance

C = 1

N

N∑

i=1

(yi − ŷi)2. (11)

1.4 Back-propagation

Once the error is established, the weight update is less obvious than in the case of the perceptron
model, where the error obtained on each components xi could directly be linked and associated
with a well defined weight wi.
Although the gradients of the loss function will provide eventually the weight update, as a
generalization of the linear update that we have seen in the previous section, the connection
between error and weights is convoluted due to the multiple intermediate layers. Let us first
introduce more specific notation for the neural network. Fig. 5 provides a schematic of a max-
imally connected feed-forward network, where the web of neuron connections is illustrated,
with the associated activation values h and the prediction made in the final layer h41. In what
follows, we consider training the network on input data X = {x1, . . . , xN} and their associated
outputs Y = {y1, . . . , yN}. The first-pass through the network consists of assigning h0i = xi
and evaluating the activation functions at each layer of the network as

hlj = σ
(∑

k

wljkh
l−1
k + blj

)
= σ

(
zlj
)
, (12)
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hl
j = s

"
Â
k

wl
jkhl�1

k + bl
j

#
, (2.74)

= s(zl
j), (2.75)

where zl
j = Âk wl

jkhl�1
k + bl

j which can be more compactly expressed in matrix form as,

hl = s[wlhl�1 + bl]. (2.76)

Nevertheless, for clarity we opt to keep index notation in what follows, despite the more compact
notation afforded through vectorisation. At the end of the first-pass through the network the
cost function is evaluated,

C =
1

2N

N

Â
i

|yi � hL
i |2, (2.77)

Figure 2.9: Schematic of a feed-forward neural network. An input vector is propagated through the
system, via a number of “hidden layers”, triggering the activation functions hj

i of each neuron
i in layer j. This process parametrises a model encapsulated in the output layer, containing a
single value neuron for univariate supervised learning or multiple neurons for multivariate
supervised learning.

where hL
i is a nested function of xi with many intermediate evaluations of s,

hL
i = sL

 
Â
k

wL
iksL�1

 
Â
k

wL
iksL�2[. . . xi . . .] + bL�1

i

!
+ bL

i

!
. (2.78)

36

Fig. 5: Schematic of a feed-forward neural network. An input vector is propagated through the
system, via a number of hidden layers, triggering the activation functions hji of each neuron i
in layer j.

where zlj =
∑

k w
l
jkh

l−1
k + blj which can be more compactly expressed as,

hl = σ
(
wlhl−1 + bl

)
. (13)

At the end of the first-pass through the network the aforementioned cost function is evaluated,

C =
1

2N

N∑

i

∣∣yi − hLi
∣∣2, (14)

where hLi is a nested function of xi with many intermediate evaluations of σ,

hLi = σL
(∑

k

wLikσ
L−1
(∑

k

wLikσ
L−2( . . . xi . . .

)
+ bL−1i

)
+ bLi

)
. (15)

Given the nested structure of this function and the sheer number of parameters that Wij can
have, it is prohibitive to find analytical solutions for the combination of weights that minimize
equation (14). Instead, established gradient descent methods are applied [22] and define what
is now known as the backpropagation approach.
The central question of the backpropagation method is to calculate the variation of the cost
function with respect to all of the network parameters, ∂C/∂wljk and ∂C/∂blj , and to use these
gradients to update the weights. The first step to obtaining these expressions is to express the
error in the j-th neuron of layer l as

δ lj =
∂C

∂zlj
=
∂C

∂hlj

∂hlj
∂zlj

=
∂C

∂hlj
σ′
(
zlj
)
, (16)

where we have applied the chain rule. In this form, δ lj doesn’t exploit the connectivity of the
overall network. Indeed, calculating

∂C

∂wljk
=
∂C

hlj

∂hlj
∂wljk

=
∂C

∂hlj
σ′
(
zlj
)
hl−1k = δ lj h

l−1
k , (17)
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shows that variation of the cost in layer l with respect to its weight is dependent on the activated
output in the preceding layer. Hence, relating the errors from layer-to-layer can allow for a
systematic way to calculate the variation of the cost in each layer of the network

δ lj =
∂C

∂zlj
=
∑

k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=
∑

k

δl+1
k

∂zl+1
k

∂zlj
=
∑

k

δl+1
k wl+1

kj σ′
(
zlj
)
. (18)

Similarly, ∂C/∂blj can be found as ∂C
∂blj

= δ lj . All weights in the network can then be updated by
gradient descent in the following manner,

wljk → wljk − η
∂C

∂wljk
, and blj → blj − η

∂C

∂blj
, (19)

where η is the so-called learning rate. The origin of the name backpropagation refers to the
equations above as for the update δ lj one must first know all errors in the subsequent layer δl+1

k ,
and hence the error propagates backward through the network.
In summary, the learning process in the neural network consists of repeated forward- and
backward-passes throughout the network, after each pass the cost function is reduced. The
forward-pass propagates the input forward for the evaluation of the cost function, while the
backward-pass updates the network weights starting in the output layer and back-propagating
the information to the input layer, that in turn implements the weight updates that reduce the
cost function on the next forward pass.

2 Generating a quantum database for
the Anderson impurity model

We have now introduced all the concepts in the field of data science required for designing
a data-driven approach for solving quantum many-body hamiltonians. To apply the learning
process outlined above, we need first to decide on a compact representation of the many-body
quantities that will be used in the neural network.

2.1 Polynomial basis method

One way to represent the Green function in a compact formulation is via a polynomial support
basis. We expand G(τ) in an arbitrary orthogonal polynomial basis P (k)

i

(
x(τ)

)
(e.g., Legendre,

Chebyshev, or else) where i is the polynomial order, k is the species and x(τ) = 2τ/β−1 is a
transformation to absorb the temperature dependence from [−1,+1] to [0, β]. The expansion is

G(k)(τ) =
∑

i≥0

P
(k)
i

(
x(τ)

)
G

(k)
i . (20)

Applying the orthogonality constraints obeyed by the polynomials
∫ β

0

P
(k)
i

(
x(τ)

)
P

(k)
i′

(
x(τ)

)
W
(
x(τ)

)
dτ = W̃ (i) δi,i′ , (21)



4.14 Cedric Weber

provides a means to obtain the basis coefficients that can be calculated as
∫ β

0

G(k)(τ)P
(k)
i

(
x(τ)

)
W (x(τ))dτ =

∫ β

0

∑

i′≥0

G
(k)
i′ P

(k)
i′

(
x(τ)

)
P

(k)
i

(
x(τ)

)
W
(
x(τ)

)
dτ= W̃ (i)G

(k)
i .

(22)
For the purpose of this discussion one restrict the analysis only to the Legendre polynomials,
where W (x) = 1 and W̃ (i) = 4/β/(2i+1).
With the Gi, we can express G(τ) on an arbitrarily fine imaginary time τ grid, absent from
discretization constraints. For a given G(τ), the procedure outlined above provides us with the
gl coefficients, or as an alternative a simple fitting procedure can be achieved, which amounts
to the minimization of the function

min{gl}
(
G(τ)−G{gl}FIT (τ)

)
, (23)

where the fitted (model) function G{gl}FIT (τ) is parametrized by the basis coefficients gl, i.e.

G
{gl}
FIT (τ) =

Nl∑

l≥0

√
2l+1

β
Pl
(
x(τ)

)
gl. (24)

It is straightforward to find G{Gl}
FIT (τ) using the conjugate gradient method for example, as the

number of Legendre coefficients Nl is generally of the order of a few tenths, typically Nl ≈ 20.
This procedure is indeed exceptionally computationally efficient. Furthermore, it can also be
used to filter out noise if a Monte Carlo solver is used to generate the database, shifting the
paradigm of dealing with a statistical problem to that of an optimization one. It allows the
advantage of including a-priori information, such as tail exponents etc.

2.2 Generating the validation dataset with exact diagonalization

Now that we have introduced the representations of our dataset, we need to provide a training set
of reference data against which the neural network can learn and validate. As a reference solver
for the AIM, it is essential that the solver can efficiently compute solutions in fast and stable
ways over a wide range of parameters (Coulomb U, bandwidth W and inverse temperature
β = 1/T ). A variety of solvers are available for use in DMFT calculations, and they can be
selected to match the computational resources available to complete a calculation in a time-
efficient way. As we will see hereafter, we will consider two families of solvers

i. A selection of fast approximate solvers that have low computational cost an provide a
reasonable solution of the AIM in some limits of the parameter space, failing in other
regions of parameters (e.g. strong or weak interaction limits).

ii. A choice of benchmark solver against which the solvers in (i) above can be compared.

We discuss first the choice of an exact solver for validation and training in (ii). We use here the
exact diagonalization method, a typical approach known for solving the AIM in DMFT [23],
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where the infinite lattice surrounding the impurity site is approximated by a discretized bath of
finite sizeNb. The first step is to parametrize the Weiss field G0 for each orbital and spin in terms
of a finite number of bath orbitals by approximating the Weiss field in terms of a non-interacting
Anderson impurity model

G−1And,m(iωn) = iωn + µ− εimp
m −

k=Nb∑

k=1

Vm,kV
∗
m,k

iωn − εm,k
(25)

where k is the index for the bath level,m is the index for each orbital/spin. This entails minimiz-
ing a distance between the Weiss field and the parametrized impurity Green function obtained
in equation (25), using a cost function

χ2(εk, Vk) =
n=nc∑

n=0

An
∣∣GAnd(iωn; {εk, Vk})− G0(iωn)

∣∣2. (26)

For using ED as a solver for DMFT, it is common practice to weight the cost function towards
smaller imaginary frequencies by using a prefactor An ≈ 1/iω2

n. This avoids fitting cost on the
asymptotic regions of the Green function, which are known analytically, but instead provides a
good solution in the low energy regime.
Once a set of εk, Vk has been identified, the calculation proceeds as a standard brute force matrix
diagonalization by scanning quantum sectors of the AIM (either total spin Sz or numbers of up
and down particles). The focus in DMFT-AI is however reversed: one can limit the database to
the large ensemble of parameters εk, Vk which are tractable with typically 6, 7 or 8 bath sites,
such that the solution of the AIM remains exact without the need for iterative solvers (Lanczos,
Arnoldi, . . . ) and the computational cost reasonable. We hence limit ourselves to a large but
finite set of corresponding hybridization functions that will be used to train the neural network.
We now turn to the discussion of the fast and approximate solvers. Perturbation theory is a well-
known and successful diagrammatic method for solving quantum many-body problems in the
weak-coupling limit. It is quite often the first port of call in a scientist’s arsenal when tackling
the quantum many-body problem. The goal of weakly perturbative methods for the AIM is to
approximate Σ(iωn) analytically with diagrammatic expansions in the Coulomb repulsion U/t
for (t is the hopping term in the Hubbard model)

G−10 (iωn) = Σ(iωn) +G−1(iωn). (27)

Weak coupling expansions in U/t up to second order, O(2), were successfully used for the
AIM [1] to capture the main features of the Mott transition at strong coupling in the nonpertur-
bative regime. This only applies at half-filling, and can be attributed to the simple form of the
atomic Green function in the t/U → 0 limit being proportional to U2 [1]. Nonetheless, iterative
perturbation theory (IPT) is extremely useful for generating solutions for the AIM at low com-
putational cost, in spite of the parameter regimes where the solution can be qualitatively wrong.
Specifically, the second order perturbation of Σ(iωn) at inverse temperature β and half-filling
is given by,

Σ IPT(iωn) = Σ1(iωn) +Σ2(iωn) =
U

2
+ U2

∫ β

0

dτ eiωnτG2
0(τ)G0(−τ), (28)
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where Σ1,2(iωn) consist of the non-skeleton O(2) representations of the self-energy. Iterating
over (27) with the above form of the self-energy is the foundation of the IPT theory, that suc-
cessfully captures the Mott transition. Higher order diagrams can also be readily incorporated
into this approach, to provide further corrections, but the complexity rapidly increases with the
diagrammatic order, limiting the scope of manually correcting this approach. Practically, this
amounts to replacing (28) with

Σ(iωn) = Σ1(iωn) +Σ2(iωn) +Σ3(iωn), (29)

where Σ3(iωn) encapsulates all of irreducible third-order processes allowed, coming at an ad-
ditional computation cost due to calculating the integrals associated with the higher-order di-
agrams and their additional interaction vertices. IPT is a good example to illustrate the data-
driven approach outlined in these notes: the neural network that we will discuss below learns
the error obtained in IPT and provides a highly non-linear solution in a multi-dimensional space
to account for Σn(iωn) with n > 2, absent in standard IPT.
There are of course other approaches than neural networks that deal with corrections beyond
second-order perturbation theories, and out of half-filling. For instance the Non-Crossing Ap-
proximation (NCA) is the lowest order strong-coupling perturbative method that sums up all
diagrams without crossing hybridization lines. In this scheme the propagator of the impurity is
mapped to an integro-differential Volterra equation that is solved for the strongly-coupled form
of the self-energy in equation (27).
Both NCA, IPT, and the exact-diagonalization solver with a very small number of bath sites
(typically zero, also known as Hubbard-1, or with Nb = 1, 2, 3 bath sites) represent a valid
ensemble of approximate solvers which all introduce a negligible overhead in terms of calcula-
tions, and also all need corrections for providing quantitatively accurate solutions of the AIM,
covering both the weak- and strong-coupling limits in the phase-space of the AIM. Finally, we
note that those solvers are tractable and can also provide solutions in both real and Matsubara
frequencies, but we’ll limit the discussion in a first instance to the imaginary time formalism
hereafter.

2.3 Data representation

The construction of a high-quality database of training samples is of key importance for any
data-driven approach. Specifically, there must be sufficient representative samples, such that
after the training process the inference process will produce the most likely outputs. Strate-
gies for generating databases in machine learning are key for the success of any data-driven
approach, and require great care in identifying robust and well thought strategies.
Before presenting the database construction at great lengths, we first need to view the AIM
from a data-science perspective. Bearing this in mind, we look at the AIM from a black box
perspective, and regard it only in terms of its inputs and outputs. In doing so, the AIM merely
provides a relation between input X = {x1, . . . ,xNS

} and output samples Y = {y1, . . . ,yNS
},

where NS is the number of database samples or images.
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Fig. 6: Depiction of two approaches for machine learning solutions of the Anderson Impurity
Model. a The approach taken by [15] which uses as input features xi the physical parameters
of the AIM {Ui,Wi, εi, Vi} b The approach taken here uses approximate solutions, expressed in
different bases, (λk), of the AIM as the feature vectors.

We limit our discussion to the single-orbital AIM, which is completely described by the set of
parameters {U,W, ε, β, V }, where U is the Hubbard parameter, W is the half-bandwidth of the
bath-states, ε is the impurity on-site energy, β is the inverse temperature and V characterizes
the impurity-bath coupling. Furthermore, we can split these contributions into the different
components of the AIM, where {U, ε} represent the physics of the impurity while {W,V }
represent respectively the bath. β is viewed from the perspective of the grand canonical as a
fixed parameter of the entire system and the database hence generated at constant temperature.
This doesn’t preclude generating data for various temperatures, as indeed we’ll discuss below
the differences that occur in the network as we move from high to low temperature.
In practice, the AIM can absorb inputs in different representations, for instance a set of hamil-
tonian parameters for ED, or a function in imaginary time for IPT and NCA (the Weiss field).
Typically, one might have

• inputs: xi =
{
Ui,Wi, εi, Vi

}

• outputs: yi =
{
G(τ), G(l), G(iωn), G(ω)

}
,

depending on the choice of basis. The basis choices above are the imaginary-time, Legendre,
imaginary-frequency and real-frequency bases, respectively.
Outputs can however be seen as vectors of given length, and in this case, each input vector has
a dimension of 4, whereas the output has the number of imaginary-time points (usually Nτ >

200) for the imaginary time Green function, while it is known that the number of Legendre
coefficients Nl < 50 is more compact [15]. The mapping is illustrated in Fig. 6a. In Ref [15],
the authors employ a similar approach for the input features, but attempt to learn the spectral
function A(ω) instead.
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2.4 Defining the unknowns: from learning solutions to learning errors

The approach discussed in this lecture is different with regard to the input vectors xi, where
instead we use a combination of approximate solutions to the AIM. We illustrate the idea in
Fig. 6b for the i-th AIM instance, which is still characterized by the set {Ui,Wi, εi, Vi}, but the
feature space increases by NλNb−4, where Nλ is the number of approximate solvers used, λ
refers to the different impurity solver types, and Nb is the number of basis coefficients used.

For example, if we consider using two different approximate solvers {λ1, λ2}, then the input
features for a model would be (let’s say for IPT and NCA),

xi =
{
Gλ1

and(τ), G
λ2
and(τ)

}
or xi =

{
Gλ1

and(l), G
λ2
and(l))

}
, (30)

in the imaginary-time or Legendre polynomial bases respectively, and the output vectors are
given by,

yi = Gand(τ) or yi = Gand(l). (31)

In this case, the length of the feature vector is 2Nb and the length of the output vector isNb. This
is a straightforward generalization, we will discuss how this impacts the cost function hereafter.

Moreover, instead of learning the relationship between the input parameters {Ui,Wi, εi, Vi} and
the exact solution of the AIM, we attempt to learn the error between a set of approximate so-
lutions of the AIM and its exact solution, generated using a reference solver such as ED, but
equivalently, quantum Monte Carlo can be used as a valid exact benchmark at higher compu-
tational costs (we note however that the compute cost for generating a database is not a large
concern, as these calculations only need to be performed once and for all).

We then learn the error of a set of approximations, rather than using just one, noting that differ-
ent approximate AIM solvers have their merits in different parts of the AIM parameter space.

As mentioned in the previous section, IPT is a well-known and successful diagrammatic method
for solving quantum many-body problems in the weak-coupling limit, and can also capture
some features of the strongly interacting limit. Similarly, the Hubbard-I approach is exact in the
weakly hybridized atomic limit, but can qualitatively fail outside of this parameter regimes.

We note that while the weak-coupling expansion has its merits, for scenarios out at strong-
coupling it can be qualitatively wrong. To address this, for example, the Non-Crossing Ap-
proximation (NCA) is the lowest order strong-coupling perturbative method that sums up all
diagrams without crossing hybridization lines.

It is also possible to use basis-truncated approximate ED solutions that use fewer bath sites to
represent the Weiss field, which thus provide a more consistent coverage of the parameter AIM
space, albeit with larger errors when small numbers of bath fitting parameters are used.

Thus, a natural extension for data driven methods lies with the combination of different ap-
proximations, which span a wider range of the AIM parameter space, rather than just using one
quantum solver alone.
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2.5 Constructing the database

Having established the form of the inputs and their associated outputs, we now discuss the
construction of the database. We first deal with inverse temperature, β: unlike the rest of the
parameters, the Green function is explicitly dependent on it, so each database is constructed at
a specific β. The next parameters to decide are {U,W, ε}, all of which are randomly distributed
between their extremal values. Therefore, for each instance of an AIM, random samples of
each are drawn from the uniform distributions U ∈ [Umin, Umax], W ∈ [Wmin,Wmax] and ε ∈
[εmin, εmax].
Determining the hybridization parameters is slightly more difficult, as regards to how it man-
ifests itself in the impurity solver. The ED solver necessitates a discrete representation of the
bath parameters, while this is not true for other impurity solvers, and there is a connection be-
tween the lattice bandwidth W and the range of hybridizations that need to be considered in the
database.
Furthermore, we want to be able to deal with both discrete and continuous representations of
the bath to allow for various approximate solvers. For illustration, we take the Hilbert transform
of specific form of the density of states, i.e.,

G(z) =

∫ ∞

−∞

A(ε)

z − ε dε (32)

with two typical density of states samples being the semi-circular DOS given by

A(ε) =
2
√
−ε2

(πW )2
Θ
(
W−|ε|

)
(33)

or the constant DOS, given by,

A(ε) =
Θ
(
W 2−ε2

)

2W
, (34)

where Θ is the Heaviside step-function.
Using either, truncates the limits of integration in Eq. (32) from −W to +W , where W is the
half-bandwidth, and provides hence the energy scale associated with the hybridization parame-
ters V in the Weiss field (z = iωn), the latter being given by,

∆(iωn) =
N∑

i=1

V 2
i

iωn − εi
, (35)

where Vi and εi are the bath parameters, and which become an additional parameter in the
database construction.
Specifically, along with the number of samples in the database and the inverse temperature β,
the number of bath parameters determines the overall time it takes for the construction of the
database. After the number of bath sites is chosen, random samples of each are drawn from the
uniform distributions V ∈ [Vmin, Vmax] and ε ∈ [εmin, εmax].
To ensure that the discrete representation of the hybridization function retains consistent physi-
cal characteristics, its bath parameters are all scaled to the chosen values of W, such that both εi
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and Vi are normalized by it and εi is centered on its weighted arithmetic mean with respect to V 2
i .

Alternatively, it is possible to create discrete representations of the bath by treating εi and Vi as
fit parameters in Eq. (35) to a continuous representation generated from the half-bandwidth W.
The next step is to generate the database that will be used for the training of the data-driven
model. To do this, each instance of {Ui,Wi, εi, ∆i(iωn)} is passed to the set of approximate
solvers {λ1, . . . , λN} as well as one exact solver. In this case, the exact solution is obtained by
the ED algorithm using a large number of bath sites, generally between 4–6 is enough to ensure
a converged solution for the single-site AIM.

3 Training a model solver to solve the
Anderson impurity model

We now outline the details of the multivariate maximally connected neural network regression
model that is used for the training against the database we have just constructed. As established
above, the set of inputs for the model are X = {x1, . . . ,xNs}, where xi is a set of different
approximate solutions of the AIM, while the outputs are Y = {y1, . . . ,yNs}, where yi is an
exact solution of the AIM given by ED. For all models trained in this section, they proceed by
minimizing the cost function,

C(X,Y,α) =
1

Ns

Ns∑

j

(
yj − gα(xj)

)2
, (36)

with respect to the parameters α to produce a model gα(xi) := GM(xi), where GM(xi) is the
model Green function of the problem. GM(xi) is constructed such that the error between it
and the true solution yi is minimized, and therefore GM(xi) corrects for the error between the
approximate solution xi and the exact one yi, for all Ns entries in the database. The neural
network we use is shown as a schematic in Fig. 7. In the input layer, each neuron evaluates

f(x·w + b) = f
(∑

i,j

wijG
λj(ki) + b1

)
(37)

with f(. . .) being the activation function of the input layer neurons (colored pink), index i is
associated to the feature (i.e. mesh point) and index j indicates the approximate solver used,
wij are the set of neural weights, and xi is in general of the format λN entries, despite the
depiction in Figure 7 that suggests that the number of approximate solvers is 2. This procedure
then repeats itself as the values propagate forward through the network such that f(x·w + b)

of each neuron are used as the inputs for the next layer in the network, until eventually the
output layer is reached. As the neural network is being used to solve a regression problem,
the output layer applies a linear activation function to its neurons, which does not modify its
input data. Therefore, when the output layer is reached the cost function (36) is evaluated for
a “mini-batch” of samples, after which the weights throughout the entire network are updated
in accordance with the backpropagation method. This procedure is then repeated until GM is
found with weights α that minimize C(X,Y,α).
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Fig. 7: Depiction of the maximally connected feed-forward artificial neural network used to
generate solutions of the Anderson Impurity Model to produce a model outputGM(τ) orGM(l).
In the schematic, there is 1 hidden layer with 5 neurons and the output layer has 5 neurons.

It is important to keep in mind the number of parameters in the model gα(xi) so as to avoid
potential over-fitting scenarios. For the neural network presented in Fig. 7 the total number of
parameters Nα can be determined by the following equation,

Nα =
∑

l

(
N l
NN

l−1
N + 1

)
, (38)

where N l
N is the number of neurons in layer l. For example, if there are 20 neurons in the input

and hidden layer, 100 neurons in the output layer and 200 is the length of the input vector, then
the total number of parameters of the network broken down per layer is given by:

Nα = 20(200+1)︸ ︷︷ ︸
input layer

+20(20+1)︸ ︷︷ ︸
hidden layer

+100(20+1)︸ ︷︷ ︸
output layer

= 6540︸︷︷︸
total

. (39)

The value of Nα is pertinent when considering sources of data over-fitting, as it should not ex-
ceed to the total number of feature observations in the database. In addition to what determines
the number of weights in the neural network, the following series of adjustable parameters have
an effect on its performance They are usually referred to as hyperparameters:

• Learning rate: step-size update for the weights of the network

• Mini-batch size: number of samples after which the neural network weights are updated

• Epochs: number of sweeps of the neural network

• Activation functions: family of non-linear neuron activation functions, including tanh,
elu and relu
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• Cross-validation split: %-split of the database between training/validation samples

• Basis functions: equidistant τ -basis, adaptive τ -basis or Legendre Gl-basis

Typically a hyperparameter grid search is employed over these parameters and by doing so, the
model is trained iteratively as the learning steps occur across different values of its parameters.
Ultimately it will produce the final optimized value of the cost function for both the training
and validation datasets, where the minimum cost function provides a measure for the optimum
choice of parameters to be used for the inference process in future DMFT calculations.

3.1 Data processing: symmetry, augmentation and transformation

Once the database of approximate and exact solutions is obtained, and before the data is passed
on to the machine learning algorithm for training, there are a number transformation operations
that allow the database to be augmented through symmetry operations. Without having to re-run
the impurity solver, there are a number of ways to both extend and transform the database in
ways that are optimal for learning a model.
For simplicity, we assume a database under consideration is expressed in either the imaginary-
time or in the Legendre polynomial basis.
The first symmetry operation makes use of the fact that the Green function can be decomposed
into its symmetric and anti-symmetric contributions by decomposing it into the Legendre basis,

GS(τ) =
∑

l≥0
even

√
2l+1

β
Pl
(
x(τ)

)
Gl and GAS(τ) =

∑

l≥0
odd

√
2l+1

β
Pl
(
x(τ)

)
Gl, (40)

whereGS(τ) andGAS(τ) are respectively the symmetric and anti-symmetric parts of total Green
function which give the total Green function when summed, i.e.

G(τ) = GS(τ) +GAS(τ). (41)

In practice, if performed in the τ basis, the latter requires an intermediate step of generating the
Legendre coefficients, or reading them in from a database which has them stored already. For
the size of the databases dealt with in this lecture (typically less than 40k samples), the latter
can be added practically at no additional computational cost. Physically, the symmetric part of
the Green function represents the physics at half-filling while the anti-symmetric component
encodes the information away from half-filling. This operation need not only be used for the
augmentation of the database, it can similarly be used for partitioning it. Specifically, instead
of training a model on both the symmetric and anti-symmetric components simultaneously, two
separate models can be trained on the symmetric and anti-symmetric components separately,
after which they are recombined to produce the total answer in Eq. (41).
The same procedure can be followed in the Legendre basis, where the symmetric part of Gl is
encoded in the even coefficients and the anti-symmetric part in its odd ones. For both bases,
this operation allows the database to be augmented by a factor of two.
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The strategy to learn different features on a given dataset is very much akin to the concepts
developed in deep learning: an image would be decomposed in different features with different
characteristics, and the neuron model optimized for such.
The second symmetry operation on G(τ) that we can consider is particle-hole equivalence, i.e.,
Ge(τ) = Gh(β−τ) where Ge is the electron Green function and Gh is the hole Green func-
tion. Therefore, for every entry in the database that is away from half-filling, the corresponding
electron (if hole-type) or hole (if electron-type) Green function can be generated simply by
flipping G(τ). If, however, the database is expressed in the Legendre basis instead, this trans-
formation requires that the odd coefficients be multiplied by −1. We note that for both basis
representations, this can double the size of the database.

3.2 Activation function with many-body quantities
In addition to augmenting the database by exploiting symmetry operations, the data must also
be transformed into a representation appropriate for how the training data will be manipulated,
an in particular for designing a suitable activation function.
Scaling the input and output variables so that they are normalized is a standard technique when
preparing data for training algorithms such as neural networks. One example for instance:
standard activation functions, as seen in the early chapters of this lecture, are dealing usually
with positive signals, so care will be needed to manipulate and transform the Green functions
in a suitable format.
Another need for the mapping lies with protecting the weights that are learned in the model
from becoming too large or biased towards large input values. Specifically, this is essential
for when input variables are the Legendre coefficients, as the Legendre basis has no inherent
scale for the coefficients. On the other hand, while an inherent scale exists for G(τ), i.e.,
−1 ≤ G(τ) ≤ 0 when τ > 0, it is also possible to create a family of scaling transformations
and test their efficacy throughout the training process. The following scaling transformations
work regardless whether the aforementioned symmetrization or augmentation procedures have
been followed.
T0 is the unscaled Green function and each transformation is a function of T0. For G(τ) the
situation is quite simple, there are only a few transformations that can be done to normalize
in between the range [0, 1] or [−1, 1]. We note that if GAS(τ) is used, i.e., the anti-symmetric
part of the Green function, it is important to ensure that the scaling operations do not shift
the data out of the scaling range, and so an extra constant shift should be applied in these
cases to counteract this behavior. For the Legendre basis, it is clear that the unscaled data
is not normalized. Fortunately, by applying a tanh function this can readily be achieved. In
the example shown, we see the first anti-symmetric component of the Green function, G1, is
scaled to be much closer to G0 and G2, the either-side symmetric components. As stated above
for the τ basis, the dependence of training the model is also assessed as a function of these
transformations.
Moreover, we emphasize that to recover the physical Green function it is necessary to apply the
relevant inverse transformation T −1, which are given in Table 1.
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a) Tr T −1r

T0 G(τ) G(τ)

T1 −G(τ) −G(τ)
T2 G(τ) + 1/2 G(τ)− 1/2

T3 −2
(
G(τ)+1/2

)
−G(τ)/2− 1/2

T4 2
(
G(τ)+1/2

)
G(τ)/2− 1/2

b) Tr T −1r

T0 Gl Gl

T1 tanh(Gl) tanh−1(Gl)

T2 − tanh(Gl) − tanh−1(Gl)

Table 1: Scaling transformations for a): G(τ) and b): Gl

3.3 An error correction approach for solving DMFT

Here we present results that pertain to the machine learning framework outlined above. We be-
gin with a discussion of the different aspects of the generated databases, and this is followed by
details on the training of an artificial neural network with those generated databases. We con-
clude by illustrating how the generated data-driven solver is able to capture the Mott transition
in the half-filled single-band Hubbard model the using DMFT scheme presented above.

3.4 Database of solutions for the Anderson Impurity Model

Using the procedure outlined in the previous section we generate a database of size Ns = 103

at inverse temperatures of β = {1, 2, 5, 10, 20, 50} eV−1 over the parameter ranges indicated
in Table 2 for discrete sets of bath parameters. The range of temperatures chosen represent the
high-temperature and intermediate temperature limits, whereby the features of the Green func-
tion are smoother, and hence our choice of the range. Each database entry constitutes a random
combination of all parameters in Table 2. The parameters chosen cover a range of physical fea-
tures, for example the Hubbard U is uniformly randomly sampled over the range {1, . . . , 10},
in addition to W ∈ {1, . . . , 10} and ε ∈ {−1, . . . , 1}, then the various combinations of U,W, ε
result in metals or insulators. Take for instance if {U,W, ε} = {8, 2, 0} then the result is insu-
lating, and if {U,W, ε} = {2, 8, 0} the result is metallic. In Table 2 we clarify the notation for
the approximate solvers ED-[1,2,3]. ED-1 means solving the AIM with one bath site only, and
hence results in a truncated approximation to the exact ED solution of the AIM (which in this
case uses 4 bath sites). We note that these latter ED solvers are significantly faster than the ED
solution obtained at large cost for Nb > 6, due to the exponential increase of the Hilbert space.
Of course the latter are themselves approximate solutions, similar to IPT or Hubbard-I, and the
large error induced by the finite size effects of the bath discretization. We note that interestingly
the machine learning framework does act in this respect as a Hilbert space extrapolation tool,
inferring information on small Hilbert spaces that remains pertinent for larger dimensions.
Furthermore, in Fig. 8 we show the distribution of all chosen parameters for the 10, 000 samples
in the database corresponding to β = 20 eV−1. As expected, {U,W, ε} are distributed evenly,
Nb = 4 is constant as the number of bath-sites is not changed, and {εi, Vi} are chosen by
normalizing to W . While the illustrated database is not the only one that could be considered,
it is not a special choice. For all other databases we analyzed, the distribution of parameters
behaves similarly to the β = 20 eV−1 case presented.



DMFT with AI 4.25

U (eV) {1, . . . , 10}
Nbath, εi, Vi 4
W (eV) {1, . . . , 10}
ε {−1, . . . , 1}
β (eV−1) {1, 2, 5, 10, 20, 50}
Nsamples 10,000
S Hubbard-I, IPT, NCA, ED-[1,2,3]

Table 2: Parameter selection for the database of AIM solutions shown in Fig. 8 where
{pi, . . . , pf} denotes that a parameter is randomly selected from this interval [pi, pf ]. U is
the Hubbard interaction, Nbath stands for the number of bath sites, W is the Half-bandwidth, ε
is the electron on-site energy, β is the inverse temperature, Nsamples is the number of database
entries, and S denotes the total ensemble of approximate quantum solvers used in the ML ap-
proach. ED-[1,2,3] denotes the exact diagonalization solver with respectively 1, 2, 3 bath sites.

We review the strength and weaknesses of the Hubbard-I, IPT and NCA solvers for representa-
tive samples of the database against the corresponding exact diagonalization results. The latter
provide valid approximations of the AIM in different limits (Hubbard-I and IPT are good in the
weakly hybridized limit, NCA is a good approximation for stronger interactions). In general,
the Hubbard-I, IPT and NCA solvers are however in quantitative and qualitative disagreement.

Fig. 8: Typical statistical distribution of the Anderson Impurity Model parameter space for a
database for β = 20 eV−1, Nbath = 4 with 10,000 entries.



4.26 Cedric Weber

Hyperparameter Range Optima
η [0.0001, 0.0002, 0.001, 0.01] 0.0002

Mini-batch size {4, 8, 16, 32, 64} 8
Optimizer {Adamax, Nadam} Nadam

Activation functions {elu, relu, tanh } tanh
Hidden Layers {1, 2, 3, 4} 1

Table 3: Hyperparameter grid-search over the neural network parameters with a fixed number
epochs = 20 and β = 1 eV−1

For example, the Hubbard-I solver indicates for highly hybridized AIM an insulating solution
when in reality the system is metallic. Nevertheless, we emphasize that this behavior is ex-
pected and welcome, since the end-goal is to systematically correct for the error between the
approximate and exact solutions.

3.5 A Neural Network Impurity Solver

The very first step to training a machine learning model is the hyperparameter grid-search
over its independent parameters using tensorflow [24]. Specifically, for our neural network we
coarse-grain the number of epochs to 20, set the inverse temperature to β = 1 eV−1 and scan
across all combinations of parameters in Table 3. Ultimately, 401 different neural networks are
trained and the combination of parameters with the minimum cost function ∼ 10−6 is given
by that combination of parameters shown in the “Optima” column of Table 3. Additional fixed
parameters in the grid search are: evenly spaced time grid, Hubbard-I, IPT and NCA solvers as
inputs xi to the neural network as they all require minimal computational resources in compar-
ison to the ED methods, no data augmentation, and the T4 imaginary-time transformation from
Table 1. It is noteworthy that either increasing the complexity of the network, i.e., increasing its
depth beyond 1, or increasing the learning rate to an order beyond 10−2 has detrimental effects
on the minimization of the cost function. Practically, it would be computationally prohibitive to
perform this grid search for every β and their additional free-parameters. In what follows, all
networks use the optimal values as specified in Table 3 and use an 80/20 cross-validation split,
i.e., 80% training data and 20% validation data.
We propose a collection of data scaling transformations of the input and output data which
improve the training of the neural network in the imaginary-time and Legendre bases. Fig. 9
presents the validation loss for these scenarios, for β = 1 eV−1. For the Legendre basis the
effect of data transformations is quite significant, as shown in Fig. 9. Here we see that by
applying a tanh-type Legendre transformations, the final value of the loss can be improved
by at least 2 orders of magnitude, reduced from 10−4 to 10−6. We expect the effect of this
transformation to be enhanced for larger values of β (lower temperatures), where the range
of Gl can greatly exceed the value of unity, and therefore necessitates the application of an
appropriate data transformation. At higher temperatures (i.e lower β), the Legendre coefficients
are often bounded close to unity, and so the neural network is less sensitive to the untransformed
input as compared to lower temperatures.
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Fig. 9: Validation loss for the Legendre basis transformations at β = 1 eV−1. The transforma-
tions applied on the database lead to different figures of merit for the network predictions.

In Figure 10 we show the value of the cost function when trained in the Legendre basis using
the T1/2 data transformation. We observe for the training in the Legendre basis that higher
temperatures are more amenable to the training procedure and that including more approximate
solvers increases accuracy of the final validation loss. Therefore, we see that by executing
suitable basis transformations which are supplemented by a multitude of different approximate
solvers, the accuracy of the overall predictive quality of the neural network can be improved.
We note that production of high quality data on larger values of β requires a larger number of
imaginary time slices or Legendre coefficients.

Fig. 10: Cost function for the Legendre mesh for different inverse temperatures β using as input
the approximate solvers Hubbard-I, IPT and NCA.
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Fig. 11: CTQMC and Neural Network solvers used for a DMFT prediction of the quasiparticle
weight Z as a function of U at β = 20 eV−1 and W = 1.0 eV for the single-band half-filled
Hubbard model on a Bethe lattice.

3.6 A data-driven approach to the Mott transition

The motivation behind developing the data-driven impurity solver is to alleviate DMFT calcu-
lations from the intensive computational burden imposed by Exact Diagonalization and Monte
Carlo methods. In Fig. 11 we illustrate how the neural network solver, used in a DMFT calcu-
lation, can predict the Mott transition at β = 20 eV−1, W = 1.0 eV (at half-filling). This is
compared with the equivalent exact CTQMC results.
For each value of U, both solvers are run for 30 iterations to a self-consistent solution. As U
is increased the Mott transition occurs at U/D ≈ 4–6, consistent with other calculations in
the literature [1], up to a factor of 2 due to the choice of D = 2eV . We emphasize that
the network uses approximate solutions as its input during its cycle, for which it predicts the
error-free corrected output instantly. By contrast the CTQMC has to be run long enough to
mitigate its statistical error bars. This proof-of-concept calculation highlights the power of the
data-driven method for a prototypical strongly correlated system, where the solver runs nearly
instantaneously, without any significant overheads.

4 Conclusion and code availability

We reviewed neural networks as a data-driven framework that can readily be trained for pro-
viding solutions of the Anderson impurity model. This provides an impurity solver capable of
capturing the Mott transition using DMFT for the Hubbard model. So far this approach remains
robust at higher temperatures, using approximate solutions results in consistently reliable re-
sults. We anticipate that improved results at lower temperatures could be attained by extending
this method to larger databases or more compact representations of the Green function.
The code discussed in these notes, coined Data driven Dynamical Mean Field Theory (D3MFT)
is available on GitHub at http://github.com/zelong-zhao/d3mft. For the installation of this pack-
age, please make sure that you have the Anaconda manager installed on your system, then
simply run ./install.sh d3mft. Once installed, there are different examples which can be run.
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