DMFT (and GW+DMFT) for Systems out of Equilibrium

Martin Eckstein

Juelich, Correl22 autumn school, October 5, 2021

Motivation for out of equilibrium studies

⇒ Real time formulation of many body physics avoids analytical continuation

⇒ Transport beyond linear response

from Goldhaber Gordon et al. Nature (1998)

⇒ Controlled quantum many body dynamics in quantum simulators

⇒ Ultrafast dynamics in solids

Trotzky et al, Nature Physics (2012)

Ultrafast dynamics in solids

Ultrafast pump-probe experiments: Selective probe of the dynamics of various degrees of freedom on different timescales: Xray, tr-ARPES, XAS

- ⇒ Reach novel states out of equilibrium?
- ⇒ What can we learn from the dynamics about the relevant degrees of freedom and their interactions?

some reviews:

- Aoki et al. Rev. Mod. Phys. 86, 779 (2014)
- Giannetti et al. Advances in Physics, 65, 58 (2016)
- Basov, Hsieh, Averitt, Nature Materials 16, 1077 (2017)
- de la Torre et al., Rev. Mod. Phys. **93**, 041002 (2021)

Perfetti et al. PRL (2006), NJP (2008)

Low temperature state of TaS₂:

13 atom CDW reconstruction

Leaves half-filled valence orbital per cluster

Mott state described by single band Hubbard Model (?)

(AFM order suppressed on triangular lattice)

Early motivation for non-equilibrium DMFT:

Perfetti et al. PRL (2006), NJP (2008)

"hot electrons"

Insulating phase (low temperature):

Almost instantaneous response of the lower Hubbard band

⇒ Filling in of gap

Thermalization of the electrons? $|\Psi(t)\rangle \longrightarrow \rho \sim e^{-H/T_{eff}}$ (more generally: emergence of universal behavior, governed by few almost conserved quantities) Non-thermal electronic structure? Photo-induced phase transitions? Hidden phases?

Models

Standard lattice models ... such as Hubbard model:

$$H = \sum_{i,j} \sum_{\sigma} J(R_i - R_j) c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

+ Coupling to time-dependent electromagnetic fields: $\vec{E} = -\partial_t \vec{A}(t)$

Peierls Phase
$$J_{ab} \rightarrow J_{ab} \exp\left\{-e \int_{\vec{R}_a}^{\vec{R}_b} d\vec{r} \cdot \vec{A}(\vec{r},t)\right\}$$

i.e., for homogeneous fields: $\epsilon(\vec{k}) \rightarrow \epsilon(\vec{k} - e\vec{A}(t))$

Derivation (projecting time-dependent continuum model on Wannier orbitals: Luttinger, Phys. Rev. (1951), Li et. al, PRB 101, 205140 (2020) (gives also dipolar matrix elements)

(Simple) theoretical approaches

Time-dependent mean field theory (Hartree Fock):

$$U\sum_{j} n_{j,\uparrow} n_{j,\downarrow} \longrightarrow \sum_{j,\sigma} n_{j,\sigma} V_{j,\sigma}(t) + \text{const.}, \qquad V_{j,\sigma} = U\langle n_{j,\bar{\sigma}}(t) \rangle$$

- Change of band structure due to population transfer (in particular for multi-orbital systems)
- Effective time-dependent potential similar to time-dependent density functional theory (tdDFT) in the adiabatic approximation
- Does not describe thermalization (single particle momentum is conserved)

(Simple) theoretical approaches

Kinetic equations:

 $k_1, \epsilon_{HF}(k_1)$ $k_3, \epsilon_{HF}(k_3)$ $k_2, \epsilon_{HF}(k_2)$ $k_4, \epsilon_{HF}(k_4)$

- Quasiparticles well defined in non-equilibrium state?
- Response of electronic structure beyond mean field, beyond rigid bands?

Non-equilibrium Green's functions techniques:
 Non-perturbative quantum kinetic equations without quasiparticle approximation

Keldysh formalism

Formulation of many-body theory in real time

Coupled equations for time-dependent spectrum and occupation

References

- Aoki et al. Rev. Mod. Phys. 86, 779 (2014)
- A. Kamenev, Field theory of non-equilibrium systems

General setting:

• initial state $|\Psi_i\rangle$ or density matrix $\rho = \sum_i w_i |\Psi_i\rangle\langle\Psi_i| = \frac{1}{Z}e^{-\beta H(0)}$

• time evolution
$$|\Psi_i(t)\rangle = \underbrace{\mathscr{U}(t, t_0)}_{\#} |\Psi_i\rangle \quad \# = T_t \exp\left(-i \int_{t_0}^t d\bar{t} H(\bar{t})\right)$$

⇒ time-dependent expectation values?

$$\langle O(t) \rangle = \sum_{i} w_{i} \langle \Psi_{i}(t) | O | \Psi_{i}(t) \rangle = \operatorname{tr} \left[\rho \, \mathcal{U}(t_{0}, t) \, O \, \mathcal{U}(t, t_{0}) \right]$$

Keldysh contour

 $\langle O(t) \rangle = \operatorname{tr} \left[\rho \, \mathcal{U}(t_0, t) \, O \, \mathcal{U}(t, t_0) \right] \quad \Rightarrow \quad \operatorname{Representation} \text{ as contour-ordered expectation value:}$

Contour-ordered correlation functions

Analogous: Two- and N-point correlation functions:

$$\langle T_{\mathscr{C}}A(t)B(t') \cdots \rangle \equiv \frac{1}{Z} \operatorname{tr} \left(T_{\mathscr{C}} e^{-i \int_{\mathscr{C}} d\overline{t} H(\overline{t})} A(t)B(t') \cdots \right)$$

Contour ordering: convenient bookkeeping of different operator orderings (... which all have different physical significance, see below)

Keldysh path integral

Contour-ordered ordered evolution operator on "closed contour" has path integral representation of analogous to imaginary-time contour:

$$\operatorname{tr}\left(T_{\mathscr{C}}e^{-i\int_{\mathscr{C}}d\bar{t}\,H(\bar{t})}\cdots\right) = \int \mathscr{D}[\bar{c},c]\,e^{iS_{\mathscr{C}}}\cdots S_{\mathscr{C}} = \int_{\mathscr{C}}dt\Big[\bar{c}(t)i\partial_{t}c(t) - H(t)\Big]$$

integrate over all (anti)-periodic path $c(0_+) = \pm c(-i\beta)$

• Check: Restriction to imag. time contour: $t = -i\tau$, $\tau \in [0,\beta]$:

$$i \int_{\mathscr{C}} dt \to \int_{0}^{\beta} d\tau, \quad \partial_{t} \to i \partial_{\tau} \quad \Rightarrow \quad e^{iS_{\mathscr{C}}} \to e^{-\int_{0}^{\beta} d\tau \left[\bar{c}\partial_{\tau}c + H(t)\right]}$$

usual imaginary time action

Concepts like Wick's theorem, effective action, diagrammatic perturbation theory, field theoretical tricks like Hubbard Stratonovich transformation ... carry over 1:1 to Keldysh formalism

Contour-ordered Green's functions

- Contour-ordered Green's functions $G(t, x, t', x') = -i\langle T_{\mathscr{C}} c_x(t) c_{x'}^{\dagger}(t') \rangle$: x, x': spin/orbital/momentum indices, omitted in the following \Rightarrow G(t, t') is a matrix in orbital indices
- \mathscr{C} -ordering \equiv bookkeeping of operator orderings ... here there are 9:

$$G(t_{+}, t'_{+}) = \bigoplus_{c^{\dagger} c} G(t_{-}, t'_{+}) = \bigoplus_{-i\langle c(t)c^{\dagger}(t')\rangle} G(t_{-}, t_{+}) = \bigoplus_{c^{\dagger} c^{\dagger} c} G(t_{-}, t'_{+}) = \bigoplus_{-i\langle c(t)c^{\dagger}(t')\rangle} G(t_{-}, t'_{-}) = \bigoplus_{c^{\dagger} c^{\dagger} c^{\dagger}$$

Contour-ordered Green's functions

Equilibrium:

- Translational invariance in time
- Green's functions related to spectrum $A(\omega)$ and universal distribution function $f(\omega) = (e^{\beta \omega} \pm 1)^{-1}$

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G^{R}(\omega + i0) \quad G^{R}(t - t') = -i\theta(t - t') \langle [c(t), c^{\dagger}(t')] \rangle$$

⇒ "fluctuation dissipation relations":

 $G^{<}(\omega) = 2\pi i A(\omega) f(\omega)$ "occupied DOS", photoemission $G^{>}(\omega) = -2\pi i A(\omega) [1 - f(\omega)]$ "unoccupied density of states"

 $\Rightarrow \text{ Relation to imag time: } G^{M}(\tau) = -\int d\omega A(\omega) e^{-\omega\tau} f(-\omega)$ (analytical continuation)

Non-equilibrium Green's functions

Out of equilibrium:

- breaking of time-translational invariance X(t, t') or $X(\omega, t)$
- real time G(t, t') parametrized by two independent functions:

 $= G^{tv}(t,\tau)$

 $G^{R}(t, t') \leftrightarrow \operatorname{spectrum} A(\omega, t)$ $G^{<}(t,t') \leftrightarrow$ non-universal distribution $G^{<}(\omega,t) = 2\pi i A(\omega,t) F(\omega,t)$ $G(-i\tau, t_+) = \mathbf{\mathbf{Q}}$ $\begin{aligned} G(t_{-}, t'_{+}) &= & & & \\ & & & \\ -i\langle c(t)c^{\dagger}(t')\rangle \equiv G^{>}(t, t') \end{aligned}$ $\equiv G^{t}(t, t')$ $\equiv G^{vt}(\tau, t')$ $G(t_+, t_-') = \Box$ $G(t_{-},t_{-}') = \Box$ $G(-i\tau,t_{-}) = \overline{\mathbf{r}}$ $i\langle c^{\dagger}(t')c(t)\rangle \equiv G^{<}(t,t')$ $= G^{vt}(\tau, t')$ $\equiv G^{\overline{t}}(t,t')$ $G(t_+, -i\tau) = -0$ $G(-i\tau, -i\tau') =$ $G(t_{-}, -i\tau) =$ $= -i\langle T_{\tau}c(\tau)c^{\dagger}(\tau')\rangle$ $\equiv G^{tv}(t,\tau)$ $= iG^M(\tau - \tau')$

Non-equilibrium Green's functions

Out of equilibrium:

- breaking of time-translational invariance X(t, t') or $X(\omega, t)$
- real time G(t, t') parametrized by two independent functions:

 $G^{R}(t, t') \leftrightarrow \operatorname{spectrum} A(\omega, t)$

 $G^{<}(t,t') \leftrightarrow$ non-universal distribution $G^{<}(\omega,t) = 2\pi i A(\omega,t) F(\omega,t)$

⇒ Keldysh formalism: Equations for contour-ordered G(t, t')≡ coupled equations for time-dependent spectrum and occupation

Perturbation theory

Derivation of perturbation theory for \mathscr{C} -ordered Green's functions analogous to imag time ordered Green's functions

Same rules in diagrammatic perturbation theory:

Diagrams on imag part on $\mathscr{C} \to \text{diagrams}$ for Matsubara Green's functions when $t \to -i\tau$, $i \int_{\mathscr{C}} dt \to \int_{0}^{\beta} d\tau$, $G(-i\tau, -i\tau') \to iG^{M}(\tau - \tau')$

Solution of real-time Dyson equation

Give $G_0(t, t')$, determine G(t, t') from $G(t, t') = G_0(t, t') + \int_{\mathscr{C}} dt_1 dt_2 G_0(t, t_1) \Sigma[G, G_0](t_1, t_2) G(t_2, t') ?$

Causality: Solution possible via "timestepping"

mixed components $G(-i\tau, t)$ not shown for simplicity

Implementation:

Schüler et al. Computer Phys. Comm. **257**, 107484 (2020)

Update on time-slice based on previous times (and on initial state Matsubara Green's function)

Dyson equation mapped to causal integral equastions: "Kadanoff Baym equations"

Illustration: Melting of excitonic insulator

• Electron-electron scattering

E.g. Melting of exciton insulator (photoemission $\sim G_k^{<}(\omega, t)$)

Equations for contour-ordered Green's function in (t, t') \equiv coupled equations for time-dependent spectrum and occupation # Comment on self-consistency

$$H = J \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

Interaction quench (sudden switchon of interaction) starting from Fermi gas (U=0)

Second order perturbation theory ($Z \rightarrow \infty$ Bethe lattice)

 $\Sigma(t,t') = U(t)U(t')G(t,t')G(t,t')G(t')$

Check of energy conservation:

Computational cost / Memory bottleneck

E.g.: First-principle **multi**-orbital simulations based on standard perturbative approaches?

L = 10 orbitals Energy window 10eV $\Rightarrow \Delta t \ll 1/eV = 0.1fs$) Simulation time 1000fs $n_t = 10^4$ Memory $G^{<}$ and G^R $n_t^2 \times L^2 = (10^4)^2 \times (10^2) = 10^{10}$ complex numbers

not entirely out of range, but definitely some improvement needed!

Memory bottleneck

Overcoming the memory constraint? ... needed for

- ⇒ simulations with vastly different timescales: electrons & lattice; electrons & collective modes; prethermalization & thermalisation
- ⇒ first-principle multi-orbital simulations based on standard perturbative approaches
- Generalized Kadanoff Baym Ansatz
 Schlünzen, Joost, Bonitz, Phys. Rev. Lett. 124, 076601 (2020)
- Quantum Boltzmann equations

Picano, Li, Eckstein, Phys. Rev. B 104, 085108 (2021)

additional approximations "physical insight"

- Systematic truncation of memory integrals
 Stahl, Dasari Picano, Li, Werner, Eckstein, PRB 105, 115146 (2022)
- Hierarchical storage of two-time functions
 Kaye and Golez,arXiv:2010.06511

Reformulation of numerical solutiuoin

Dynamical mean-field theory

• Best approximation for local self-energy, exact in $d = \infty$

 $G_k = G_{0,k} + G_{0,k} * \Sigma * G_k$

Metzner & Vollhardt 1989; Georges & Kotliar 1992; Georges et al. RMP 1996

• Local (momentum-independent) $\Sigma[G]$ from auxiliary impurity model:

 Δ : bath propagator of continuous environment

$$S_{imp} = S_{loc} - \int_0^\beta d\tau d\tau' \, c^*(\tau) \Delta(\tau - \tau') c(\tau)$$

$$\Rightarrow G_{imp} = \mathscr{G}_{imp}[\Delta] + \mathscr{G}_{imp}[\Delta] * \Sigma * G_{imp} \stackrel{!}{=} \sum_{k} G_{k}$$

Non-equilibrium formulation of DMFT

Monien et al 2002; Freericks et al, 2006 Aoki et al., Rev.Mod.Phys. 2014

Dynamical mean-field theory

Non-equilibrium formulation of DMFT

Biggest issue: Solution of the non-equilibrium Quantum impurity model

Equivalent to a time-dependent Anderson model

$$H_{imp} = H_{loc} + \sum_{p,\sigma} \epsilon_p a_{p\sigma}^{\dagger} a_{p\sigma} + \sum_{p,\sigma} \left(V_p(t) c_{\sigma}^{\dagger} a_{p,\sigma} + h \cdot c \cdot \right)$$

Solution: (no multi-purpose approach like in equilibrium yet)

• Quantum Monte Carlo

(dynamical sign problem)

- matrix product states (MPS) Wolf, Schollwöck, et al. 2014 (efficient bath representation, entanglement)
- strong-coupling expansion (hybridization expansion)
- weak coupling expansions ("IPT")

Solution of the Anderson model: Hybridization expansion

$$\langle O(t) \rangle = \pm \frac{1}{Z} \operatorname{tr} \left[\rho U(t_0, t) O U(t, t_0) \right]$$

Unfolding the contour:

Solution of the Anderson model: Hybridization expansion

Monte Carlo summation of all configurations (CTQMC-Hyb on \mathscr{C}):

Werner et al. (2006), Werner, Oka, Millis (2009)

$$\langle O \rangle = \sum_{c} w_{c}O_{c} = \frac{\sum_{c} |w_{c}| s_{c}O_{c}}{\sum_{c} |w_{c}| s_{c}} \quad \text{dynamical sign problem} \\ (\mathcal{G}, \Delta, \dots, w_{c} \in \mathbb{C})$$

Note: $Z = \sum_{c} w_{c}$ can depend only on Matsubara branch

Quench in the Hubbard model ME, Kollar, Werner (2009)

$$H = J \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

Interaction quench (sudden switchon of interaction) starting from Fermi gas (U=0)

Relaxation of momentum distribution $n_k(t) = \langle c_k^{\dagger} c_k \rangle$ (bandwidth=4)

"prethermalization"

Thermalization at DPT

Collapse and revival

Moeckel & Kehrein (2008)

Interesting physics, but only few hopping times accessible

Photo-doping a Mott insulator # Photo-doping: Ultrafast dynamics in TaS₂

Low temperature state of TaS₂:

13 atom CDW reconstruction

Leaves half-filled valence orbital per cluster

Mott state described by single band Hubbard Model (?)

(AFM order suppressed on triangular lattice)

Photo-doping: Ultrafast dynamics in TaS₂

Photo-excitation: Time resolved ARPES (at Γ) after 1.5eV excitation

Ligges et al., Phys. Rev. Lett. **120**, 166401 (2018)

Earlier Experiments: Perfetti et al., Phys. Rev. Lett. 97, 067402 (2006)

Photo-doping: Ultrafast dynamics in TaS₂

Scenario:

Thermalization time in small gap Mott insulator and bad metal?
 Spectral signature of transient and final photo-excited state?

Thermalization of a photo-excited Mott insulator

Eckstein & Werner, PRB 84, 035122 Exponentially slow thermalization for larger Mott gap

Ultra-fast dynamics in TaS₂

Simulation for triangular Hubbard model

$$A^{<}(\omega,t) = \frac{1}{2\pi i} \int ds \, G^{<}(t+s/2,t-s/2)e^{i\omega s}$$

Thermalization in half-filled model too slow to explain disappearance of UHB

consistent with electronic thermalization in slightly doped regime

Good benchmark for DMFT: Qualitative interpretation of features, reasonable timescales ... but too simple model to describe TaS₂

Photo-doping in a CT insulator

Photo-doping in a charge transfer insulator

Golez, Boenke, Eckstein, Werner, PRB(R) 2019, PRB 2019

3-band Emery model Tight-binding model CuO₂ plane in cuprate

$$U_{dd} = 8 \text{eV}, t_{dd} = -0.1 \text{eV},$$
$$V_{pd} = 2 \text{eV}, \Delta_{pd} = -2 \text{eV},$$
$$t_{pd} = 0.4 \text{eV},$$

Equilibrium spectral function:

Manipulating electronic structure: The role of screening

Needed for any quantitative understanding of the dynamics

⇒ Manipulate screened interactions out of equilibrium?

Treatment of electrons with self-consistently screened interaction?

GW+DMFT

• Self-consistent expansion in terms of fully screened interaction

$$\overset{W}{\longrightarrow} = \overset{V}{\longrightarrow} + \overset{W}{\longrightarrow} \qquad \Pi = \Pi[G, W]$$

$$\xrightarrow{G} = \xrightarrow{G_0} + \xrightarrow{\Sigma} \sum \longrightarrow \Sigma = \Sigma[G, W]$$

+ Diagrammatic approximation:

GW+DMFT

Biermann, Aryasetiawan, Georges PRL 2003

GW+DMFT

• Evaluation of local contributions from auxiliary impurity problem: Impurity with self-consistent bath and self-consistent interaction $U(\omega)$

 $\Rightarrow G_{imp}, \ \chi_{imp} = \langle n(\tau)n(\tau') \rangle$

DMFT self-consistency for Δ and Σ plus self-consistency of interaction:

$$W_{imp} = U(\omega) + U(\omega)\chi_{imp}U(\omega)$$

= $U(\omega) + U(\omega)\Pi_{imp}W_{imp}$
 $W_k = V_k + V_k\Pi_{imp}W_k$
 $W_{loc} = \sum_k W_k = W_{imp}$

Spectral function:

Laser excitation:

~ 5% charge transfer ⇒ Modification of spectrum:
 Band shifts and broadening (basically instantaneous)

Different possible origins:

- Dynamic screening (renormalization of "U")
- Mean-field shifts due to inter-site interaction (HF)

 $H_{pd} \rightarrow V_{pd} n_p \langle n_d \rangle + V_{pd} \langle n_p \rangle n_d + const.$

Distinguish?

Photo-doping in a charge transfer insulator

Golez, Boenke, Eckstein, Werner, PRB(R) 2019, PRB 2019

Only mean-field like shifts (DMFT + Hartree Fock) $\Delta(CT) = V_{pd} \langle n_p \rangle n_d$

$$\Delta(\text{CT}) = -150\text{meV}$$

Screening modes

Simulation including screening (GW+DMFT)

Photo-doping in a charge transfer insulator

Golez, Boenke, Eckstein, Werner, PRB(R) 2019, PRB 2019

Effect of dynamical screening on population dynamics:

DMFT+Hartree Fock:

DMFT+GW:

 \Rightarrow No population dynamics

⇒ Ultrafast relaxation of electron and hole populations

(electron boson scattering)

Photo-doping in a charge transfer insulator

Optical excitation on cuprate LSCO, XAS probe

Baykusheva et al., Phys. Rev. X 12, 011013 (2022)

... but Xrays are different from ARPES:

Final state: strongly bound (localized) core-valence exciton: Sensitive to dynamic screening ... more specific theory needed

Summary / Outlook

Keldysh formalism:

Formulation of many-body theory in real time

Coupled equations for time-dependent spectrum and occupation

Non-equilibrium DMFT (+GW)

Electronic structure of correlated systems out of equilibrium

Outlook, future (technical) developments:

Non-equilibrium Green's function simulations at long times ⇒ realistic many-band simulations

- Non-perturbative impurity solvers
- Electron boson systems, electron lattice dynamics