

Beyond DMFT: Spin fluctuations, Pseudogaps and Superconductivity

Karsten Held (TU Wien)

Jülich, Oct. 7th 2022

- Motivation
- \succ Synopsis: dynamical vertex approximation (D Γ A)
- > 2D Hubbard model, cuprates and nickelates
- Spin fluctuations
- Pseudogap
- Superconductivity

Rev. Mod. Phys. 90, 025003 (2018)

Please ask questions

RMP'18

Correlations beyond DMFT:

d-, p-wave superconductivity, pseudogaps,

(para-)magnons, quantum criticality

1PI, TRILEX

Kotliar et al.'98, Lichtenstein, Katsnelson'00 Kotliar et al.'01, Potthoff et al.'03, Maier et al.'05

Take spin fluctuations

Resummation of Feynman diagrams in terms of locality n-particle fully irreducible vertex *approximated as local*

- **n=1: DMFT** local 1-particle fully irreducible vertex Σ $i = \sum_{i=1}^{j} i = i = i = i = i$ + all local + diagrams
- **Σ**: one-particle irreducible one-particle vertex

Resummation of Feynman diagrams in terms of locality n-particle fully irreducible vertex approximated as local

- local 1-particle fully irreducible vertex Σ **n=1**: DMFT **DΓ**Α **n=2**:
 - local 2-particle fully irreducible vertex Λ

error estimate **n=3**:

Ribic et al. PRB'17, 18

 $n \rightarrow \infty$: exact

Two-particle irreducibility

3 ways (channels) to cut two lines

Parquet equations

Ladder D ΓA

k+q k''+q

Calculations using ladder D Γ A (with λ -correction)

Unbiased: spin and charge fluctuations, quantum critical fluct. excellent agreement with diag. MC ... Schäfer et al. PRX'21

Importance of vertex dynamics

suppressed by pp channel $\delta\Gamma_m$

Beyond DMFT: Spin fluctuations, Pseudogaps and Superconductivity

Karsten Held (TU Wien)

Jülich, Oct. 7th 2022

- > Motivation
- \succ Synopsis: dynamical vertex approximation (D Γ A)
- > 2D Hubbard model, cuprates and nickelates
- ➢ Spin fluctuations
- Pseudogap
- Superconductivity

Rev. Mod. Phys. 90, 025003 (2018)

New age of superconductivity: nickel age

KH et al. Physik Journal Feb. 2022

similar & different to cuprates \rightarrow better understand high T_c supercond.

Anisomov et al. PRB'99 DFT+U: nickelates are cuprate analog

Nd³⁺Ni¹⁺O₂⁴⁻

isoelectric: 3d⁹ isostructural to Ca²⁺Cu²⁺O₂⁴⁻

 $\begin{array}{ll} \mathsf{Nd}_{1-\mathsf{x}}\mathsf{Sr}_{\mathsf{x}}\mathsf{NiO}_2 & \mathsf{Zeng\ et\ al.\ PRL'20} \\ \mathsf{Pr}_{1-\mathsf{x}}\mathsf{Sr}_{\mathsf{x}}\mathsf{NiO}_2 & \mathsf{Osada\ et\ al.\ Nano\ Lett'20} \\ \mathsf{La}_{1-\mathsf{x}}\mathsf{Ca}_{\mathsf{x}}\mathsf{NiO}_2 & \mathsf{Zeng\ Sci.\ Adv.'22} \\ \mathsf{La}_{1-\mathsf{x}}\mathsf{Sr}_{\mathsf{x}}\mathsf{NiO}_2 & \mathsf{Osada\ et\ al.\ Adv.\ Mat.'21} \\ \mathsf{Nd}_6\mathsf{Ni}_5\mathsf{O}_{12} & \mathsf{Pan\ et\ al.\ Nature\ Phys.'21} \\ \mathsf{high\ quality\ films,\ pressure\ ...} \end{array}$

Nickelates & cuprates - similarities & differences

DFT bandstructure

e cf. Botana Norman PRX'20 Sakakibara et al. PRB'20 Wu et al. PRB'20, Zhang et al PRB'20, Werner, Hoshino PRB'20 ...

DFT+DMFT: Ni x^2-y^2 + A pocket

Occam's razor: Ni x^2-y^2 + A pocket

inverse Occam's razor Mazin Nature Phys.'22

Cuprates & nickelates - similarities & differences

 oxygen orbitals important
 holes → oxygen orbitals
 Emery model
 (Hubbard model at most mimics Zhang-Rice singlet) A pocket only electron reservoir holes ½ A pocket ½ Ni x²-y²

Hubbard model w properly calculated doping

Γ pocket as electron reservoir \rightarrow Hubbard model

NdNiO₂: 1-band Hubbard model with U=8t (cRPA: U = 2.6eV = 6.7 t) t = 395 meV, t'/t = -0.25, t''/t = 0.12 and doping from above Fig.

Kitatani ... KH npj QM'20

Beyond DMFT: Spin fluctuations, Pseudogaps and Superconductivity

Karsten Held (TU Wien)

Jülich, Oct. 7th 2022

- > Motivation
- \succ Synopsis: dynamical vertex approximation (D Γ A)
- > 2D Hubbard model, cuprates and nickelates
- Spin fluctuations
- Pseudogap
- Superconductivity

Rev. Mod. Phys. 90, 025003 (2018)

Spin fluctuations

 $\chi(\mathbf{r}) = \langle S(\mathbf{r})S(0) \rangle \sim (\mathbf{r}/\xi)^{-1/2} e^{-\mathbf{r}/\xi}$

in practice: Ornstein-Zernike form $\chi_{\omega=0 q} \sim 1/[(q-Q)^2 + \xi^{-2}]$

Spin fluctuations

Paramagnon spectrum NdNiO₂

DΓA Theory Worm ... KH unpublished'22 **RIXS exp.** Lu et al. Science'21 NdNiO₂ on STO (with stacking faults) better films \rightarrow better agreement?

Pseudogap

Pseudogap: Nickelates

Krien, Worm ... KH arXiv:2101.06529

Comm. Phys in print

We can rewrite self-energy as spin-fermion vertex

$$\Sigma_{\rm sp}(k,q) \propto -G_{k+q}W_q\Gamma_{kq}$$

at strong coupling: contribution from Im Γ (!)

Ladder D ΓA

k+q k''+q

Calculations using ladder D Γ A (with λ -correction)

Unbiased: spin and charge fluctuations, quantum critical fluct. excellent agreement with diag. MC ... Schäfer et al. PRX'21

Superconductivity Sr_xNd_{1-x}NiO₂ (d-wave)

DΓA Kitatani ... KH npj QM'20

WI

EN

Superconductivity Sr_xNd_{1-x}NiO₂ (d-wave)

DFA Kitatani ... KH npj QM'20

WI

EN

Superconductivity Sr_xNd_{1-x}NiO₂ (d-wave)

E

New, cleaner (NdSr)NiO₂ films

W

E

LSAT: 3.890 Å instead of STO: 3.905 Å Lee et al. arXiv:2203.02580

From infinite layer to finite layer

Nd₆Ni₅O₁₂ Pan et al. Nature Phys.'21

essentially same hopping just cut-off after 5 layers

System	t	t'	$t^{\prime\prime}$
$NdNiO_2$	-0.395	0.095	-0.047
$\mathrm{Nd}_3\mathrm{Ni}_2\mathrm{O}_6$	-0.414	0.092	-0.055
$Nd_6Ni_5O_{12}$: Ni-1	-0.395	0.098	-0.050
$Nd_6Ni_5O_{12}$: Ni-2	-0.392	0.097	-0.050
Nd ₆ Ni ₅ O ₁₂ : Ni-3	-0.398	0.097	-0.049

Worm ... KH arXiv'21

Pentalayer nickelate

Pentalayer

correlations \rightarrow no pockets/tubes T_c consistent with infinite layer nickelate at proper d_{x²-y²} doping exp. evidence: positive Hall coef. \checkmark

Worm ... KH arXiv'21

How to increase T_c?

- (a) pressure or compressive strain
- (b) substrate different from SrTiO₃
- (c) palladates with 4d instead of 3d

exp. confirmed: $Pr_{1-x}Sr_xNiO_2$ under 12GPa with T_c>30K Wang et al. arXiv:2109.12811

Conclusion

 Diagrammatic extensions of DMFT such as DΓA allow us to describe the physics beyond DMFT such as spin fluctuations superconductivity ...

Nickelates
 Hubbard model: Ni x²-y² orbital
 + electron reservoir: A pocket

 good DΓA prediction of superconducting phase diagram consistent picture

Thanks to ...

Motoharu Kitatani (Tokyo)

u

Paul Worm Josef Kaufmann

Zhicheng Zhong (Ningbo)

ng Oleg ; Janson (Dresden) Jan Tomczak

Si et al. Kitatani et al. Worm et al. Held et al. Phys. Rev. Lett. 124, 166402 (2020)
npj Qu. Materials 5, 59 (2020)
arXiv:2111.12687
Frontiers in Phys. 9, 810394 (2022)

DΓA Rohringer et al. Rev.Mod.Phys. 90, 025003 (2018)

European Research Council Established by the European Commission

DTA: Resummation of Feynman diagrams in terms of locality n-particle fully irreducible vertex *approximated as local*

non-local local victory parquet 2 3 F F Σ ladder 2 3 3 **AbinitioDGA** ladderDGA b includes local **DMFT** correlations and non-local correlations (e.g. spin fluctuations)