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analytic continuation



why analytic continuation?

expectation values
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sample trace using Monte Carlo (sign problem)

correlation functions
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complex time evolution: phase problem
could be avoided in imaginary time



analytic continuation
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well defined for = € [0, B]

calculate Cas(7) := (A(-i7)B) for = € [0, B] by Monte Carlo



how to go back to real axis?

QMC gives only function values Cas(7) := {A(-i7)B) for r € [0, O]
need functional form for analytic continuation

1 _ .
Cag(T) = > e(T=B)En o E’”(nlA|m><m|B|n>

n,m

iInvolves all eigenvalues & matrix elements...

more compact: spectral function

/Oodt e {A(t)B)= 2% Ze_BE”<n\A]m><m\B\n> O(w—(Em—Ep))=:pas(w)
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Ca(T) = %/_OO dwe “Tpag(w) [ = (A(=iT)B)

solve for spectral function
then we can analytically continue back to real axis



Fredholm equation of 1st kind

1 O
Cag(T) = g/ dwe ™" pag(w)

diverging integral kernel for w——oo
modify kernel
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convenient choice
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meaning of modified spectral function

Oaglw) = (1

= e_ﬁw) paB(w) = pag(w)

Is spectral function of

+ ppa(—w)

Gio(t) = A(t)B £ B(—t)A = A(t)B + BA(t) = [A(t), Blx

(A(t)B) can be analytically continued to stripe below real axis, (BA(t)) above

define Matsubara Green function

GMi(T)

TEA(-iT)B(0)

where imaginary-time ordering selects the term that is analytic for the given r

T A(~iT)B(0)

= O(T)A(—iT)B(0) F ©(—T)B(0)A(—iT)

introducing discontinuity at =0

Gh(0T) —GK5(07)=—[A Bl:



Fredholm equation for Matsubara GF
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special case B=AT
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properties of G(7)



where is the information in GM(z7) ?

1 o0 e~ WT
G(T) = — 5 _Oodw e o(w) for T €0, ]
model spectral function: p(w) = w; 0(w — €;)
6(m) = _% | Wi %_ Nep(€7) I_el_g’T :EEZ
/ —oo3
= L | 7% | nro(g;) et ™) " o
O
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linear combination of decaying exponentials
information on spectral features at large |w| concentrated at 0 and 3



Euler polynomials and moments

fermionic kernel is generating function of Euler polynomials

2ext E  ¢n
et+1:n:OE(X) for x € [0, 1]

G (1) = — o Z Ea(r/6) EL [ dwer 5t )

— OO
nth moment

to determine moments from Matsubara GF
we need dual functions of Euler polynomials

[y dx E"(X) Em(X) = 6.

/O dx E"(x) efej - :% = E"(x)= (;7)' (5<”>(x— 1) +5<">(X))



moments and derivative discontinuities

d"GM+*(0*) d"GM* (0~ )" -
dTn( ) dTn( ) (= >/ 1o 6" 5* (@)

higher derivatives very hard to get from G(z) directly ...

1
—GM* (1) = = Tre PHe™ Ae™H B

dGM* 1
dT(T) _ ? Tr e—BHeTH[/_/, A] e—THB

repeated derivatives produce [H; A]» := [H; [H; Aln-1] and [H; Alo := A

([H: Aln, B]) = (;T)n/_m dw w" p™ (w)



preparing data
and discretization



preparing QMC data

Fredholm equation

9() = [ K. ) F(x) dx o)
9o
QMC data: discrete (mesh or expansion coeff.) 9g(y) = g = :
statistically independent samples \ dm /
) 1 | S
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blocking of correlated data

. 1 | I
sequence of MC data my, ..., mxk m = P2 My
k
2=\ — 1 ' ' _\2 underestimates variance
o°(m) = (mg — m)
K(K—1) when data correlated
o 0.0010 . . .
renormalization step /\
o . Mok T My 0-0008] A
k ~—
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0 o * |
i€ 0.0004 . !
removes correlations ° ‘
approaches normal distr. 0.0002}
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number of blocking transformations



matrix representation

o(y) = / K(y, x) F(x) dx
(1)
f

discretize also model function f(x) - f =

o)

glym) = KWm X)) WnT(Xp) or 9Im = <7~/jm|K|(pn> fn

matrix equation g = Kf

T'g
TK

absorb covariance in kernel matrix
factorize C-1 = TtT
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solving g = Kf



Bayesian inversion

probability for measuring g with covariance C when true model is f
p(g| f) oc e 219~ KT

want probability of f given data g and C

- P(G|F)p(F)
p(F[g) = 5(5)

posterior « likelihood x prior

maximize posterior probability
assume p(f) = const. (uninformative prior)
maximum likelihood estimator

minimize y?

least-squares fit



singular value decomposition

singular value decomposition of MxN kernel matrix

- di=d2=>... = dminun =0
K = lu,) d; (v, small singular value di
i small contribution to result

full SVD (for N > M)

U D

A
|

reduced SVD (drop zero modes)




least-squares fit

minimize X2(f) = ||g — K f||?

least squares solution

L
| fis L& c;,a v;

/
modes with di=0 do not contribute to y2 — can be chosen at will [ill-posed]

perfect fit (¥2=0) if du>0

problem solved!



least-squares fit
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singular value d.

why ill-conditioned?

§ — gexact + gnoise — ‘fLS> — ’fexact> +

~15 decay of modes slower for
1 O - larger cutoff!
gapped system should be

0 20 40 60 30 100
mode index i

modes with small singular value
* responsible for noise in model
 hardly represented in data

/K(y,x) vi(x) dx = d; ui(y)

oscillate rapidly

= necessary to resolve
sharp features

limit contribution of these modes by imposing non-negativity: A(w) = 0



non-negative least-squares

p(g| ) p(F)

p(F|G) = 5(§)

rior: p(F) = const. for ¥ >0
PHOEPAT) = 0 otherwise

constrained minimization:
true extremum boundary

Ox°(TF) ox*(f)
-~ — >
ot 0 fn = 0 and or. =

Karush-Kuhn-Tucker conditions

fn > 0 and 0

naive algorithm: check all partitions; better: Appendix 2

now modes with di=0 are well defined! [well posed]
help di>0 modes to move as close to optimum as possible
without violating constraint



non-negative least-squares fit
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Picard plot

problem with LS/NNLS: overfitting noise in data
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mode index i

Picard condition:  [{ui|g)| < d;

modes with small singular value contribute little

otherwise data contains little information about f

noise in data



regularization

avoid fitting noise in data

Tikhonov regularization

fr(a) = |

 —

=1 I

regularization parameter a scales with noise in data

1035

107 |

10" |

1009 ® ® ® O ® .

10 107 1070 107 107 10

discrepancy
principle



regularization methods

Tikhonov: minimize ||Kf — §||2+a2||f||2

= prior
use smarter regularizers?
suppress modes based on first derivative

( 1 -1 0 0 .- 0 0 O 0\
-1 2 =1 0 0O 0 0 O
N1 o -1 2 -1 0O 0 0 O
Z |fn_fn+1|2 = (F| )
n=1 O 0 0 0 -1 2 -1 0
0O 0 0 O o -1 2 -1
\ o o o0 0 --- 0 0 -1 1)

would also affect stable modes with large d;
Tikhonov is more adaptive: suppresses highly oscillating modes with small d;
reasonable modification:  ||f||? = fnz/pﬁ

default model (result in absence of dataf «< p) "



maximum entropy



maximum entropy

min (11§ = K £I° = aH(f:p))

entropy: non-linear regularizer

H(f;P):_Z<fn|n;_n_fn‘|‘Pn>

default model p and non-negativity
(linearization about default model gives Tikhonov)

how to choose regularization parameter?
» discrepancy principle: historic MaxEnt
- most probable value: classic MaxEnt

» average value: Bryan’s MaxEnt



Bryan’s method

determine regularization parameter from Bayes’ theorem

MaxEnt prior: p(F |p, a) el (fip)

f(o): min 2(F) — aH(F:p)

Foryan = / da F (o) p(a [, p)
0

probability for regularizer:

pald e = [T[ 55 ptf.ald.

functional integral replaced by Gaussian approximation...



average spectrum



The Average Spectrum Method for the Analytic Continuation
of Imaginary-Time Data |

S.R. White
Department of Physics, University of California, Irvine, CA92717, USA

Springer Proceedings in Physics, Vol, 53 145
Computer Simulation Studies in Condensed Matter Physics 111 1991
Editors: D.P,Landau - K.K,. Mon - H.-B, Schuuler © Springes-Verlag Berlin, Heidelberg 1991

In the average spectrum method, we avoid the need to introduce biases in Pr[A]
and avoid any adjustable paramelers by abandoning the maximum likelihood method
and instead average over Pr[A]G9?*]. We calculate the average speetrum via

unbiased

(Alp,w)) = / DA ) PH[A]GY9) A(p, ) (9)
with — Tasm X /Df f(x) e_Xz[’c]/2

__ }J const., if A(p,w) > 0 for all w; FO>0
Pr[4] = {0, otherwise. )20 (10)

The integral here is a path inlegral over all positive delinile spectra. Each path in the
integral is a possible spectrum weighted by Lhe probability of that spectrum, given the i
data. The averaging over spectra automatically smears out statistically insignificant noise ]
features. Because of this we need only include in Pr[A] what we really know: that the regularizes
result is positive definite and in some cases that it is an even function. The average

spectrum method makes fewer assumptions and is conceptually simpler than any of the

maximum likelihood methods; the only disadvantage is that the path integral may be

somewhat more time-consuming to compute. In the next section we discuss numerical



The Average Spectrum Method for the Analytic Continuation
of Imaginary-Time Data |

S.R. White
Department of Physics, University of California, Irvinc., CA92717, USA

Springer Proceedings in Physics, Vol, 53 145
Computer Simulation Studies in Condensed Matter Physics 111
Editors: D.P.Landau - K.K, Mon - H.-B, Schuuler € Springes-Verlag Berlin, Heidelberg 1991

The average spectrum method makes fewer assumptions and is
conceptually simpler than any of the maximum likelihood methods;

the only disadvantage is that the path integral may be somewhat
more time-consuming to compute.



PHYSICAL REVIEW B VOLUME 57, NUMBER 17 I MAY 1998-1

Stochastic method for analytic continuation of quantum Monte Carlo data

Anders W. Sandvik
Department of Physics, University of lllinois at Urbana-Champaign, 1110 West Green Street, Urbana, lllinois 61801
(Received 28 October 1997)

A method for analytic continuation of quantum Monte Carlo data is presented. The spectrum A(w) is
parametrized as a sum of o functions, the weights A; of which are sampled according to a distribution p(A)
~exp(— x?/©). It is argued that the calculated entropy S provides a criterion for determining the ® corre-
sponding to the ‘‘best’” averaged spectrum. The appearance of spurious structure is signaled by a sharp drop in
(S(0)), which in test cases is preceded by a local maximum. Results for the dynamic spin structure factor of
a 16-site Heisenberg chain obtained at this maximum are in better agreement with exact results than ‘‘classic’
maximum-entropy results. [S0163-1829(98)02717-9]

before the method can be applied to more complicated spec-
tra than the single-maximum case considered here. A prob-
lem for practical use of the method is that the sampling
needed for an accurate determination of ®* as well as the
averaging needed to obtain a final result are quite time con-
suming. The good agreement with the exact results obtained
here should motivate further work along these lines.



PHYSICAL REVIEW B 76, 035115 (2007)

Analytical continuation of spectral data from imaginary time axis to real frequency axis
using statistical sampling

K. Vafayi and O. Gunnarsson
Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany

(Received 27 February 2007; revised manuscript received 2 May 2007; published 19 July 2007)

We present a method for performing analytical continuation of spectral data from imaginary time to real
frequencies based on a statistical sampling method. Compared with the maximum entropy method (MEM), an
advantage is that no default model needs to be introduced. For the problems studied here, the statistical
sampling method gives comparable or slightly better results than MEM using quite accurate default models.

DOI: 10.1103/PhysRevB.76.035115 PACS number(s): 72.15.Eb, 02.70.Ss

We have presented a statistical sampling method, where
the optical conductivity o(w) is averaged using the probabil-
ity in Eq. (7) as a weight function. Comparing with the maxi-
mum entropy method (MEM), an advantage is that there is
no need to provide a default model, which influences the
MEM results if the method 1s close to its limit of applicabil-
ity. For the problems considered here, the statistical sampling
method gives comparable or slightly better results than
MEM using default models close to the exact result. The
price we have to pay is that the method is many orders of
magnitude slower than MEM. With present day computers
this 1s not a serious drawback, in particular, since the time
spent for the analytical continuation is typically small com-
pared with the time needed for the QMC calculation of the
J(7) data.




PHYSICAL REVIEW E 81, 056701 (2010)

Analytic continuation of quantum Monte Carlo data by stochastic analytical inference

Sebastian Fuchs™ and Thomas Pruschke
Institut fiir Theoretische Physik, Georg-August-Universitit Gottingen, Friedrich-Hund-Platz 1, 37077 Gottingen, Germany

Mark Jarrell
Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 3 January 2010; revised manuscript received 11 March 2010; published 4 May 2010)

We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which
is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an
explicit expression for the calculation of a weighted average over possible energy spectra, which can be
evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as func-
tion of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in
similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum
Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy

lculation. ' '
calcutation One apparent drawback of the method is the necessity to

perform simulations for a broad range of values for «, inde-
pendent of whether one chooses the Wang-Landau approach
or x>~ N, respectively, a=1 [23] to fix a. Although this can
be performed efficiently with parallel tempering techniques,
the required computer resources for one single spectrum can
sum up to about 20 processor hours and are hence orders of
magnitude larger than for standard MEM approaches. Espe-
cially for QMC data at higher temperatures, more computer
time may be needed for the analytic continuation than for the
simulation of the Monte Carlo data itself. As the resulting
spectra tend to be less regularized one has to ponder the gain
in details in the structures against the significant increase in
computer time.




sampling

fasm (G x) o Df f(x)e 2XI]
f(x)>0
¥ =} 118 _I0f (|2
discretize @ — df, e~ 21I9=KII"
0

n=1

Gibbs sampling: sample component f, = fi’ € [0,0) keeping all others fixed

> Y Y yaly RIJQNn °
(1) =g = K + Rofy =Ko = iR, (1= 2720 )
h v o \/_/ KnKn
=:gn 1/02 N——
=

sample truncated Gaussian, quite slow since o very narrow



sampling

sample truncated Gaussian, still quite slow since o very narrow

NSNS

better to sample along principal axes of x2




modes sampling

unitary transformations to singular modes

h:=U'g ~ e T 1
I ) =05V = (h s e)’
e =V'f i=1

]/ afe tloRie g H ~laeh)?
df, e 2197 de; e 2 e
0 f>0

non-negativity constraint f, > 0

fr

ff=Ff+(el—e)V, >0 = max{v

f
Vi <0p < e—e <ming —
< }_e e,_mm{v

ni

Vi > O}

optimal sampling, except when f, becomes small (e.g. in tail)



blocked modes sampling

introduce hierarchy of grid partitionings in blocks
and sample modes on blocks

modes sampling

L [ [ | [ ][ [componentssamping| | | | [ | [ | [ | |

In each update choose random level in hierarchy
and sample modes on blocks



efficiency: small cutoff

step size: A; = ||FY) — FUTL| /|| F)|
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efficiency: large cutoff

step size: A; = ||FY) — FUTL| /|| F)|
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test cases

PHYSICAL REVIEW B 82, 165125 (2010)

Analytical continuation of imaginary axis data for optical conductivity

O. Gunnarsson,! M. W. Haverkort,! and G. Sangiovanni?

'Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
2Institut fiir Festkorperphysik, Technische Universitit Wien, Vienna, Austria
(Received 24 June 2010; revised manuscript received 13 August 2010; published 28 October 2010)

We compare different methods for performing analytical continuation of spectral data from the imaginary
time or frequency axis to the real frequency axis for the optical conductivity o(w). We compare the maximum
entropy (MaxEnt), singular value decomposition (SVD), sampling, and Padé methods for analytical continu-
ation. We also study two direct methods for obtaining ¢7(0). For the MaxEnt approach we focus on a recent
modification. The data are split up in batches, a separate MaxEnt calculation is done for each batch and the
results are averaged. For the problems studied here, we find that typically the SVD, sampling, and modified
MaxEnt methods give comparable accuracy while the Padé approximation is usually less reliable.

DOI: 10.1103/PhysRevB.82.165125 PACS number(s): 72.15.Eb, 02.70.Ss
2 [ w?

optical conductivity [1(v,) = — 5 5

™ Jg Vi t+Ww

Wi Wo W5 1

o(w) dw

o(w) = 1+ (w/l1)? 1 + [(w—€)/T5]° 1 +[(wH+e€)/To]* ) 1+ (w/l3)°

[1=030r006,l>o=12T3=4,e=3,W; =03 W,=0.2



0.40

0.35}

0.30¢

0.25}

0.20}

0.15}

0.10¢

0.05}

0.00

average spectrum

O-n :10_2

— Exact
I StochS




0.40

0.35}

0.30¢

0.25}

0.20}

0.15}

0.10¢

0.05}

0.00

Improve cut-off: Wmax= 8

O-n :10_2

— Exact
I StochS




improve cut-off: Wmax= 16
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remove cutoff

variable transform

W — Z :/ o(w)dw'
0

exponential grid
Lorentzian grid

Gaussian grid
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09+

1 ) 3
p(w) =Xe™
fY
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grid dependence !?
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default model

average spectral without data (except normalization)

— Lorentzian Grid
— Exponential Grid

grid density acts as default model




consider different grids

N 50 3
/ Df e Xl £(x) — H/ df, e 218-KfII” £
f(x)>0 n—=1+0

sample component f, = 0 uniformly on grid interval n

Inconsistent with choice of different grids

example: coarsening of grid interval I = /1 u I>

]
f=Ha+f L[_pb(f)= /o dfi pi(fi) po(f — f1)

for uniform pn(f)=1 we get pi(f)=f



Gamma distribution

(X/A)k—le—x/k 1 .
(koxin) = EE S ML) =~
| f%if‘%)%— im [ (1, X\; x) = uniform
0.08 | I'(4,10; x) | A— 00

0.06 |

0.04

0.02 | 1 0o i o T(k+n)
I \\ /dex [(k,\; X)) = A F(n)

/ dx xI' (k, A; x) = Ak
0

/ dx T (ki, ;xS T (ko X x — x5 = T (ky + ko, \; x)
0



functional measure

sampling on grid with k-fold resolution: reweight with

Peoarse(f1, 2, ... Tkn) N Hn e~/ _ H 1k
,Dﬁne(fl, fz, C e fk/\/) A—>00 Hn fnk_le—fn/k n

i LI
“fIFf —  Df e 72X (x)

f(x)=0

n

dfn a —% | |g'—Kf ||2f N check reweighing...
n=1 g, n=1

sampling uniformly on a grid implies a certain functional measure

reweighting for grids of different density

p(ffo ... fn) _ H F1=Np(xn)/ NB(xn)
p(fl,fZ,---,fN) "

separate grid from default model

n



0.45

0.40¢t

0.35

0.30}
0.25¢
0.20¢t
0.15¢
0.10¢t
0.05}

0.00

0.45
0.40
0.35

0.30¢
0.25¢
0.20¢
0.15¢
0.10¢
0.05¢

0.00

simulating different grids

— Original 32 Grid

— 32 Simulated on 128 |

- Original Exponential

- Exponential Simulated on Lorentzian |

0.45
0.40
0.35

0.30¢
0.25¢
0.20+
0.15¢
0.10¢
0.05¢

0.00

0.45

0.40}
0.30}
0.25} }
0.20f %
0.15f
0.10}
0.05}

0.00

— Original 128 Grid ]
— 128 Simulated on 32 |

0 1 2 3 4 5 6 17

- Original Lorentzian
- Lorentzian Simulated on Exponential |

0 1 2 3 4 5 6 7



how to choose grid?

estimate width of model from NNLS
U= / f(w)dw o0°%= /(w — w)?f(w) dw

default model: least informative function that reproduces lowest moment

1
w =>0: IO((U) —_— — e_w//l'
U
1
otherwise: o(w) = ~/ o~ (w—p)?/20°
2T O

grid: make numerical error in evaluating kernel smaller than noise in data



fit histogram: reliable results
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fit histogram: unreliable results
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(A(t)B(0))

LS/NNLS & Picard condition
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analytic continuation
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summary

where is information?
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why ill conditioned?
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