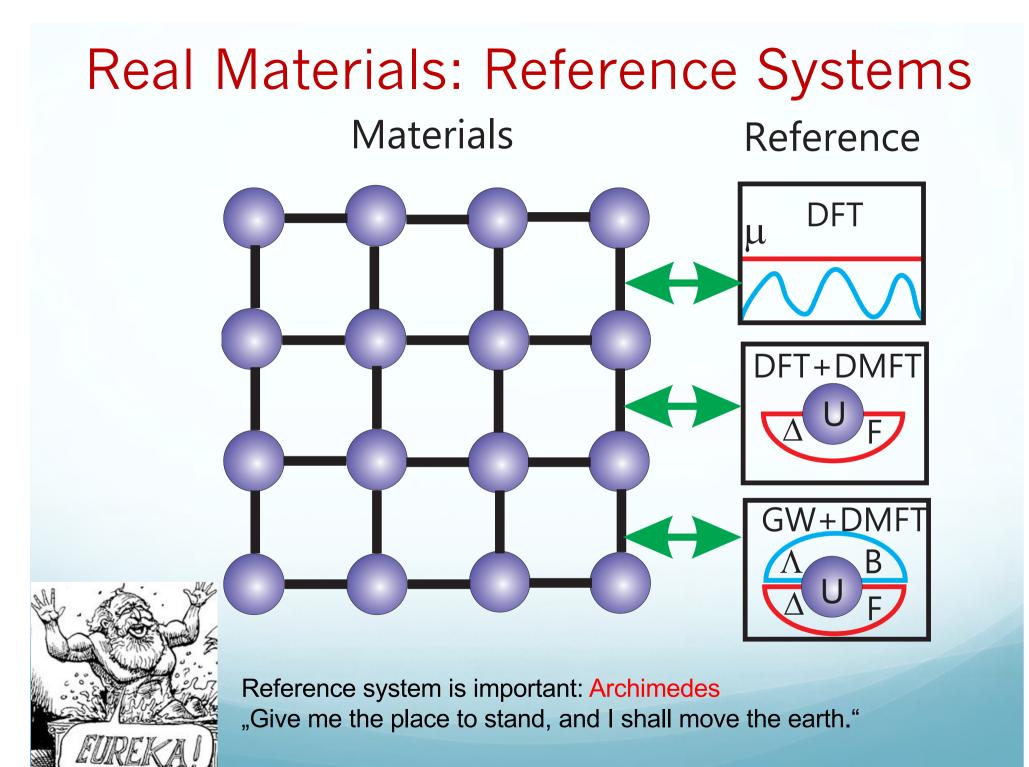
LDA+DMFT for strongly correlated materials

Alexander Lichtenstein University of Hamburg

Outline

- Introduction: Reference system
- Path integral for fermions
- Functional approach: BK, DFT
- DF super-perturbation: beyond DMFT
- LDA+DMFT scheme for real materials



QM-Alphabet
$$1-Q$$
 $\left(-\frac{1}{2}\Delta + V_{eff}(\vec{r})\right)\psi(\vec{r}) = \varepsilon\psi(\vec{r})$ $2-Q$ $\hat{H} = \sum_{ij\sigma} t_{ij}\hat{c}_{i\sigma}^{+}\hat{c}_{j\sigma} + \sum_{i}U\hat{n}_{\uparrow}\hat{n}_{\downarrow}$ $3-PI$ $z = Sp(e^{-\beta\hat{H}}) = \int D[c^*,c]e^{-\int_{0}^{\beta}d\tau[c_{i\sigma}^{*}c_{c}^{*} + H(c_{i\sigma}^{*},c_{c})]}$ Richard Feynman
1948 $\sum_{ij\sigma} \sum_{ij\sigma} \sum_$

References

- John W. Negele and Henri Orland "Quantum Many-particle Systems" (Addison Wesley 1988)
- Piers Coleman "Introduction to Many-Body Physics" (Cambridge Uni Press 2015)
- Eduardo Fradkin "Field Theories of Condensed Matter Physics" (Cambridge Uni Press 2013)
- Alexander Altland and Ben D. Simons "Condensed Matter Field Theory" (Cambridge Uni Press 2010)
- Alexey Kamenev "Field Theory of Non-Equilibrium Systems" (Cambridge Uni Press 2011)

Summary for Fermions $\{\hat{c}_i, \hat{c}_j^+\} = \delta_{ij}$ $\hat{c}_i |1\rangle = |0\rangle$ $\hat{c}_i |0\rangle = 0$ $\hat{c}_i^+ |0\rangle = |1\rangle$ $\hat{c}_i^+ |1\rangle = 0$

Pauli principle

$$\hat{c}_i^+ \hat{c}_i |n\rangle = n_i |n\rangle$$
$$\hat{c}_i^2 = (\hat{c}_i^+)^2 = 0.$$

Fermionic coherent states |c>

$$\hat{c}_i \left| c \right\rangle = c_i \left| c \right\rangle$$

Left-eigenbasis has only annihilation operator - bounded from the bottom: $\hat{c}_i \left| 0 \right> = 0 \left| 0 \right>$

Grassmann numbers c_i

F. A. Berezin: Method of Second Quantization (Academic Press, New York, 1966)

Eigenvalues of coheren states

$$c_i c_j = -c_j c_i$$
$$c_i^2 = 0$$

Exact representation

 $|c\rangle = e^{-\sum_{i} c_i \hat{c}_i^+} |0\rangle$

Proof for one fermionic states

$$\hat{c} |c\rangle = \hat{c}(1 - c\hat{c}^{\dagger}) |0\rangle = \hat{c}(|0\rangle - c |1\rangle) = -\hat{c}c |1\rangle = c |0\rangle = c |c\rangle$$

Left coherent state (c) :

$$\left\langle c \right| \hat{c}_i^+ = \left\langle c \right| c_i^*$$

$$\langle c| = \langle 0| e^{-\sum_i \hat{c}_i c_i^*}$$

general function of two Grassmann variables

$$f(c^*, c) = f_{00} + f_{10}c^* + f_{01}c + f_{11}c^*c$$

Grassmann calculus

Formal definition of derivative

$$\frac{\partial c_i}{\partial c_j} = \delta_{ij}$$

Due to anti-commutation rule:

 $\frac{\partial}{\partial c_2}c_1c_2 = -c_1$

Example: $f(c^*, c) = f_{00} + f_{10}c^* + f_{01}c + f_{11}c^*c$

$$\frac{\partial}{\partial c^*}\frac{\partial}{\partial c}f(c^*,c) = \frac{\partial}{\partial c^*}(f_{01} - f_{11}c^*) = -f_{11} = -\frac{\partial}{\partial c}\frac{\partial}{\partial c^*}f(c^*,c)$$

Formal definition of integration over Grassmann variables

$$\int \dots dc \to \frac{\partial}{\partial c} \dots$$
$$\int 1 dc = 0 \qquad \int c dc = 1$$

Resolution of unity operator

Overlap of any two coherent fermionic states

$$\langle c|c\rangle = e^{\sum_i c_i^* c_i}$$

Proof for single particle

$$\langle c|c\rangle = (\langle 0| - \langle 1|c^*)(|0\rangle - c|1\rangle) = 1 + c^*c = e^{c^*c}$$

Unity operator

$$\int dc^* \int dc \ e^{-\sum_i c_i^* c_i} \left| c \right\rangle \left\langle c \right| = \hat{1} = \int \int dc^* dc \ \frac{\left| c \right\rangle \left\langle c \right|}{\left\langle c \right| c \right\rangle}$$

Proof for single particle

$$\int \int dc^* dc \ e^{-c^*c} \left| c \right\rangle \left\langle c \right| = \int \int dc^* dc \left(1 - c^*c \right) \left(\left| 0 \right\rangle - c \left| 1 \right\rangle \right) \left(\left\langle 0 \right| - \left\langle 1 \right| c^* \right) = -\int \int dc^* dc \ c^* c \left(\left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \right) = \sum_n \left| n \right\rangle \left\langle n \right| = \hat{1}$$

Trace Formula

Matrix elements of normally ordered operators

$$\langle c^* | \hat{H}(\hat{c}^+, \hat{c}) | c \rangle = H(c^*, c) \langle c^* | c \rangle = H(c^*, c) e^{\sum_i c_i^* c_i}$$

Trace of fermionic operators in normal order

$$Tr\left(\widehat{O}\right) = \sum_{n=0,1} \langle n | \,\widehat{O} \, | n \rangle = \sum_{n=0,1} \int \int dc^* dc \, e^{-c^*c} \langle n | \, c \rangle \, \langle c | \,\widehat{O} \, | n \rangle = \int \int \int dc^* dc \, e^{-c^*c} \sum_{n=0,1} \langle -c | \,\widehat{O} \, | n \rangle \, \langle n | \, c \rangle = \int \int \int dc^* dc \, e^{-c^*c} \, \langle -c | \,\widehat{O} \, | c \rangle$$

"Minus" fermionic sign due to commutations:

 $\langle n|c\rangle \langle c|n\rangle = \langle -c|n\rangle \langle n|c\rangle$

Mapping: $(\hat{c}_i^+, \hat{c}_i) \to (c_i^*, c_i)$

Partition function

Grand-canonical quantum ensemble

$$H=\widehat{H}\!-\!\mu\widehat{N}$$

N-slices Trotter decomposition $[0,\beta)$

$$\tau_n = n\Delta\tau = n\beta/N \ (n = 1, ..., N), \qquad e^{-\beta H} = \lim_{N \to \infty} (e^{-\Delta\tau H})^N$$

Insert N-times the resolution of unity:

$$Z = Tr \left[e^{-\beta H} \right] = \int \int dc^* dc e^{-c^* c} \left\langle -c \right| e^{-\beta H} \left| c \right\rangle$$

$$= \int \Pi_{n=1}^N dc_n^* dc_n e^{-\sum_n c_n^* c_n} \left\langle c_N \right| e^{-\Delta \tau H} \left| c_{N-1} \right\rangle \left\langle c_{N-1} \right| e^{-\Delta \tau H} \left| c_{N-2} \right\rangle \dots \left\langle c_1 \right| e^{-\Delta \tau H} \left| c_0 \right\rangle$$

$$= \int \Pi_{n=1}^N dc_n^* dc_n e^{-\Delta \tau \sum_{n=1}^N [c_n^* (c_n - c_{n-1}) / \Delta \tau + H(c_n^*, c_{n-1})]}$$

In continuum limit (N $\rightarrow \infty$)

$$\Delta \tau \sum_{n=1}^N \dots \mapsto \int_0^\beta d\tau \dots$$

$$\frac{c_n - c_{n-1}}{\Delta \tau} \mapsto \partial_\tau$$

In continuum limit ($N \rightarrow \infty$)

$$Z = \int D[c^*, c] e^{-\int_0^\beta d\tau [c^*(\tau)\partial_\tau c(\tau) + H(c^*(\tau), c(\tau))]}$$

Antiperiodic boundary condition

$$c(\beta) = -c(0), \qquad c^*(\beta) = -c^*(0)$$

 $\Pi_{n=0}^{N-1} dc_n^* dc_n \quad \mapsto \quad D\left[c^*, c\right]$

Gaussian path integral

Non-interacting "quadratic" fermionic action

$$Z_0[J^*, J] = \int D[c^*c] e^{-\sum_{i,j=1}^N c_i^* M_{ij} c_j + \sum_{i=1}^N \left(c_i^* J_i + J_i^* c_i\right)} = \det[M] e^{-\sum_{i,j=1}^N J_i^* (M^{-1})_{ij} J_j}$$

Hint for proof: $e^{-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j} = \frac{1}{N!} \left(-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j \right)$

Exercise for N=1 and 2: $\int D[c^*c] e^{-c_1^*M_{11}c_1} = \int D[c^*c] (-c_1^*M_{11}c_1) = M_{11} = \det M$

$$\int D[c^*c] e^{-c_1^*M_{11}c_1 - c_1^*M_{12}c_1 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2} = \frac{1}{2!} \int D[c^*c] (-c_1^*M_{11}c_1 - c_1^*M_{12}c_1 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2)^2 = M_{11}M_{22} - M_{12}M_{21} = \det M$$

Shift of Grassmann variable: $c^*Mc - c^*J - J^*c = (c^* - J^*M^{-1}) M (c - M^{-1}J) - J^*M^{-1}J$ correlation functions for a non- interaction action (Wick-theorem)

$$\left\langle c_i c_j^* \right\rangle_0 = -\frac{1}{Z_0} \frac{\delta^2 Z_0 \left[J^*, J \right]}{\delta J_i^* \, \delta J_j} |_{J=0} = M_{ij}^{-1}$$

$$\left\langle c_i c_j c_k^* c_l^* \right\rangle_0 = \frac{1}{Z_0} \frac{\delta^4 Z_0 \left[J^*, J \right]}{\delta J_i^* \delta J_j^* \delta J_l \delta J_k} |_{J=0} = M_{il}^{-1} M_{jk}^{-1} - M_{ik}^{-1} M_{jl}^{-1}$$

Path Integral for Everything

Euclidean action

$$Z = \int \mathcal{D}[c^*, c] e^{-S}$$

$$S = \sum_{12} c_1^* (\partial_\tau + t_{12}) c_2 + \frac{1}{4} \sum_{1234} c_1^* c_2^* U_{1234} c_4 c_3$$

One- and two-electron matrix elements:

$$t_{12} = \int d\mathbf{r} \,\phi_1^*(\mathbf{r}) \left(-\frac{1}{2} \bigtriangledown^2 + V(\mathbf{r}) - \mu \right) \phi_2(\mathbf{r})$$
$$U_{1234} = \int d\mathbf{r} \int d\mathbf{r}' \,\phi_1^*(\mathbf{r}) \phi_2^*(\mathbf{r}') \,U(\mathbf{r} - \mathbf{r}') \,\phi_3(\mathbf{r}) \phi_4(\mathbf{r}')$$

Shot notation:

$$\sum_{1} \ldots \equiv \sum_{im} \int d\tau \ldots$$

One- and Two-particle Green Functions

One-particle Green function

$$G_{12} = -\langle c_1 c_2^* \rangle_S = -\frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2^* \, e^{-S}$$

Two-particle Green function (generalized susceptibilities)

$$\chi_{1234} = \langle c_1 c_2 c_3^* c_4^* \rangle_S = \frac{1}{Z} \int \mathcal{D}[c^*, c] c_1 c_2 c_3^* c_4^* e^{-S}$$

Vertex function:

$$X_{1234} = G_{14}G_{23} - G_{13}G_{24} + \sum_{1'2'3'4'} G_{11'}G_{22'}\Gamma_{1'2'3'4'}G_{3'3}G_{4'4}$$

$$\chi = -\chi + \Gamma$$

Baym-Kadanoff-Luttinger-Ward functional

Source term

$$S[J] = S + \sum_{ij} c_i^* J_{ij} c_j$$

Partition function and Free-energy:

$$Z[J] = e^{-F[J]} = \int \mathcal{D}[c^*, c] e^{-S[J]}$$

Legendre transforming from J to G:

$$F[G] = F[J] - \operatorname{Tr}(JG) \qquad \qquad G_{12} = \frac{1}{Z[J]} \left. \frac{\partial Z[J]}{\partial J_{12}} \right|_{J=0} = \left. \frac{\partial F[J]}{\partial J_{12}} \right|_{J=0}$$

 $\left[\left(T \right) \right]$

1

STT[T]

Decomposition into the single particle part and correlated part

Problems with BKLW-functional

Physical and unphysical regimes of self-consistent many-body perturbation theory

K. Van Houcke, E. Kozik, R. Rossi, Y. Deng, F. Werner, arXiv:2102.04508

Toy model – Hubbard atom: H= $-\mu \sum_s n_s + U n_{\uparrow} n_{\downarrow}$. $s \in \{\uparrow,\downarrow\}$

Partition function, Action and Grteen Function in Grassmann integral over $|arphi_s|$ and $ar{arphi}_s$

$$Z = \int \left(\prod_{s} d\varphi_{s} d\bar{\varphi}_{s}\right) e^{-S[\bar{\varphi}_{s},\varphi_{s}]}$$
Exact results for $\mu > 0$ with rescaling $g \coloneqq G\sqrt{|U|}$, $\sigma \coloneqq \Sigma/\sqrt{|U|}$.

$$S[\bar{\varphi}_{s},\varphi_{s}] = -\mu \sum_{s} \bar{\varphi}_{s}\varphi_{s} + U\bar{\varphi}_{\uparrow}\varphi_{\uparrow}\bar{\varphi}_{\downarrow}\varphi_{\downarrow}$$
 $\sigma_{\text{bold}}(g) = \sum_{n=1}^{\infty} \sigma_{\text{bold}}^{(n)}(g)$ $\sigma_{\text{bold}}^{(n)}(g) = a_{n}(-1)^{n}g^{2n-1}$ $a_{n} = \frac{(-1)^{n-1}(2n-2)!}{n!(n-1)!}$

$$G = -\frac{1}{Z} \int \left(\prod_{s} d\varphi_{s} d\bar{\varphi}_{s}\right) e^{-S[\bar{\varphi}_{s},\varphi_{s}]} \varphi_{s} \bar{\varphi}_{s}$$

Exact self-energy and propagator

$$\sigma_{\text{exact}}(g_{0}) = -g_{0}$$
 $g_{\text{exact}}(g_{0}) = \frac{g_{0}}{1+g_{0}^{2}}$

$$g_{0} \coloneqq \sqrt{|U|}G_{0} = \sqrt{|U|}/\mu.$$

Unphysical branch (+) $|U| < \mu^{2}$

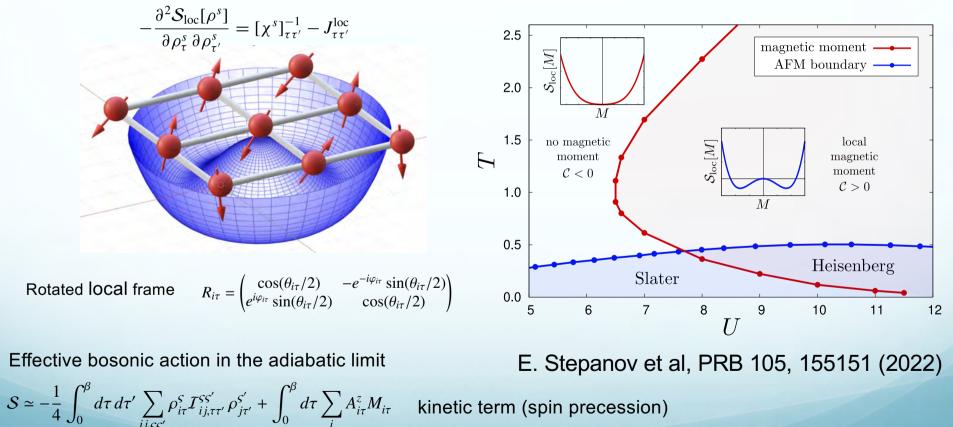
$$Unphysical branch (-) |U| > \mu^{2}$$

Emergent Magnetic Moment

$$S_{\text{latt}} = \int_{0}^{\beta} d\tau \left\{ -\sum_{ij,\sigma\sigma'} c_{i\tau\sigma}^{*} \left[\delta_{ij} \delta_{\sigma\sigma'} (-\partial_{\tau} + \mu) - \varepsilon_{ij}^{\sigma\sigma'} \right] c_{j\tau\sigma'} \text{ Correlated electrons} \right. \\ \left. + \sum_{i,\sigma\sigma'} U n_{i\tau\uparrow} n_{i\tau\downarrow} + \frac{1}{2} \sum_{ij,\varsigma} \rho_{i\tau}^{\varsigma} V_{ij}^{\varsigma} \rho_{j\tau}^{\varsigma} \right\}$$
(1)

Criterium of Local Moment formation:

 $-\frac{1}{2}\int_0^\beta d\tau\,d\tau'\,\sum_i \left\{\rho^c_{i\tau}\chi^{c-1}_{\tau\tau'}\rho^c_{i\tau'}+M_{i\tau}\chi^{z-1}_{\tau\tau'}M_{i\tau'}\right\}$



longitudinal (Higgs) fluctuations

DFT functional: $n(1) = G_{12}\delta_{12} = \langle c_1^*c_1 \rangle_{S_1}$

M. Valiev, G. W. Fernando, Phys. Rev. B 54, 7765 (1996); R. Fukuda et al, Prog. Theor. Phys. 92, 833 (1994) $\hat{H} = \hat{T} + \lambda \hat{U}$ Hamiltonian with " λ -scaled" interaction part $\frac{\delta F\left[J,\lambda\right]}{\delta I\left(1\right)} = n\left(1\right)$ **DFT-functional** $\Gamma[n,\lambda] = F[J,\lambda] - J(1) n(1)$ $J[n, \lambda] = J_0[n] + \lambda J_1[n] + \lambda^2 J_2[n] + \dots$ $F[J, \lambda] = F_0[J] + \lambda F_1[J] + \lambda^2 F_2[J] + \dots$ Inversion method (R. Fukuda): $\Gamma[n,\lambda] = \Gamma_0[n] + \lambda \Gamma_1[n] + \lambda^2 \Gamma_2[n] + \dots$ $\sum \lambda^{i} \Gamma_{i}[n] = \sum \lambda^{i} F_{i} \left[\sum \lambda^{k} J_{k}[n] \right] - \sum \lambda^{i} J_{i}(1) n(1)$ Formal exact expression: $\Gamma_{i}[n] = F_{i}[J_{0}] + \sum_{k=1}^{i} \frac{\delta F_{i-k}[J_{0}]}{\delta J_{0}(1)} J_{k}(1) - J_{i}(1)n(1) + \sum_{m=2}^{i} \frac{1}{m!} \sum_{k=-k=-1}^{k_{1}+\ldots+k_{m} \leq i} \frac{\delta^{m} F_{i-(k_{1}+\ldots+k_{m})}[J_{0}]}{\delta J_{0}(1)\ldots\delta J_{0}(m)} J_{k_{1}}(1) \cdots J_{k_{m}}(m)$ $n\left(1\right) = \frac{\delta F_0\left[J_0\right]}{\delta I_0\left(1\right)}.$ DFT (effective single particle) related with zero-order term: $\Gamma_0[n] = F_0[J_0] - J_0(1)n(1)$ Kohn-Sham potential: $V_{KS} = V_{ert} + V_H + V_{rc}$ $F_{DFT}[n] = T_0[n] + V_{ext}[n] + V_H[n] + V_{rc}[n]$ $T_0[n] + V_{ext}[n] = \sum_k \int d\mathbf{r} \,\phi_k^*(\mathbf{r}) [-\frac{1}{2} \nabla^2 + V_{ext}(\mathbf{r}) - \mu] \phi_k(\mathbf{r})$ $n(\mathbf{r}) = \sum_{k} \phi_k^*(\mathbf{r}) \phi_k(\mathbf{r})$

$$V_H[n] = \frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}) U(\mathbf{r} - \mathbf{r}') n(\mathbf{r}')$$

$$V_{xc}[n] = -\frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}, \mathbf{r}') U(\mathbf{r} - \mathbf{r}') n(\mathbf{r}', \mathbf{r}) + \sum_{i=2}^{\infty} \Gamma_i[n]$$

LDA $V_{xc}[n] = \int d\mathbf{r} n(\mathbf{r}) \varepsilon_{xc}(n(\mathbf{r}))$ With ε_{xc} from VMC-calculation of D. M. Ceperley and B. J. Alder Phys. Rev. Lett. 45, 566 (1980) – Reference System with fixed n

Why DFT-LDA works?

• Errors in the approximation of exchange and correlation cancel

LDA does fulfill the sum rule for the exchange-correlation hole

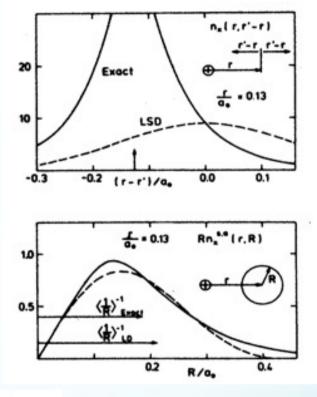
$$\int d\mathbf{r}' n_{xc}(\mathbf{r}, \mathbf{r}' - \mathbf{r}) = -1$$

 $n_{xc}(\mathbf{r}, \mathbf{r}') = n(\mathbf{r}')[\tilde{g}(\mathbf{r}, \mathbf{r}') - 1] = \text{exchange-correlation hole density;}$ $\tilde{g}(\mathbf{r}, \mathbf{r}') = \text{pair correlation function averaged over coupling constant.}$

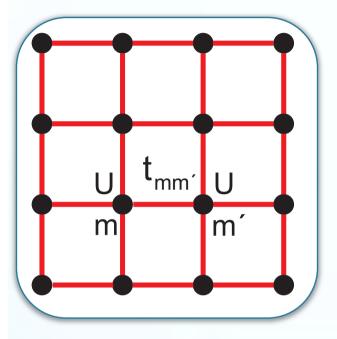
 The exchange-correlation energy depends only on the angle-averaged exchangecorrelation hole which is well described in LDA.

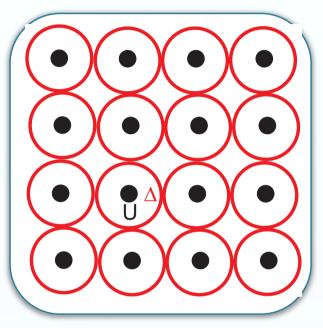
$$2E_{xc}[n] = \int \frac{n(\mathbf{r})n_{xc}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}' = \int n(\mathbf{r}) d\mathbf{r} \int \tilde{n}_{xc}(\mathbf{r},R) dR/R,$$
$$\tilde{n}_{xc}(\mathbf{r},R) = \int n_{xc}(\mathbf{r},\mathbf{r}+\mathbf{R}) d\Omega_R/4\pi.$$

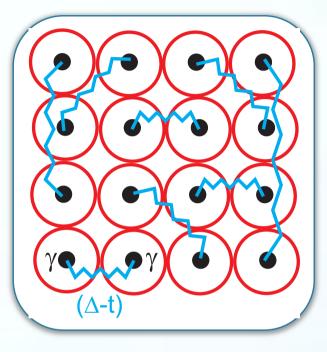
R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)



How to find "optimal"-functional?



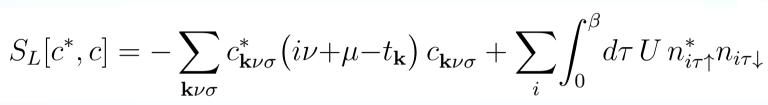




Dual Fermions: Basic

Start from Correlated Lattice Find the optimal Reference System Bath hybridization Expand around DMFT solution

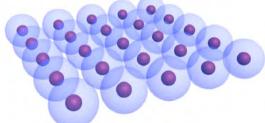
Dual Fermion scheme



Reference system: Local Action with hybridization Δ_v

$$S_{\Delta}[c_i^*, c_i] = -\sum_{\nu, \sigma} c_{i\nu\sigma}^* (i\nu + \mu - \Delta_{\nu}) c_{i\nu\sigma} + \sum_{\nu} U n_{i\nu\uparrow}^* n_{i\nu\downarrow}$$

Lattice-Impurity connection:



$$S_L[c^*, c] = \sum_i S_\Delta[c_i^*, c_i] - \sum_{\mathbf{k}\nu\sigma} c_{\mathbf{k}\nu\sigma}^* (\Delta_\nu - t_{\mathbf{k}}) c_{\mathbf{k}\nu\sigma}$$

A. Rubtsov, et al, PRB 77, 033101 (2008)

Dual Transformation

Gaussian path-integral

$$e^{c_1^* \widetilde{\Delta}_{12} c_2} = \det \widetilde{\Delta} \int \mathcal{D} \left[d^*, d \right] e^{-d_1^* \widetilde{\Delta}_{12}^{-1} d_2 - d_1^* c_1 - c_1^* d_1}$$

new Action:

With
$$\widetilde{\varDelta}_{\mathbf{k}\nu} = (\varDelta_{\nu} - t_{\mathbf{k}})$$

$$\tilde{S}[d^*, d] = -\sum_{\mathbf{k}\,\nu\sigma} d^*_{\mathbf{k}\nu\sigma} \,\tilde{G}^{-1}_{0\mathbf{k}\nu} \,d_{\mathbf{k}\nu\sigma} + \sum_i V_i[d^*_i, d_i]$$

Diagrammatic:

$$\tilde{G}_{\mathbf{k}\nu}^{0} = \left(\left(t_{\mathbf{k}} - \Delta_{\nu} \right)^{-1} - g_{\nu} \right)^{-1} \qquad V[d^*, d] = \frac{1}{4} \sum_{1234} \gamma_{1234} d_1^* d_2^* d_4 d_3$$
$$\gamma_{1234} = \chi_{1234} - \chi_{1234}^{0} \qquad \chi_{1234} = \left\langle c_1 c_2 c_3^* c_4^* \right\rangle_{\Delta}$$

 g_{ω} and $\chi_{\nu,\nu',\omega}$ from DMFT impurity solver

 $q_{12} = -\langle c_1 c_2^* \rangle_A$

Dual Fermion Action: Details

Lattice - dual action
$$\frac{Z}{Z_d} = \int \mathcal{D}[c^*, c, d^*, d] \exp(-S[c^*, c, d^*, d]) \qquad Z_d = \det \widetilde{\Delta}$$
$$S[c^*, c, d^*, d] = \sum S_{-}^i S_{-}^i + \sum d_{+}^* \left(\Delta_u - t_h\right)^{-1} d_{\mu\nu\sigma}$$

$$S[c^*, c, d^*, d] = \sum_{i} S^*_{\Delta} + \sum_{\mathbf{k}, \nu, \sigma} d^*_{\mathbf{k}\nu\sigma} (\Delta_{\nu} - t_k) \quad d_{\mathbf{k}\nu\sigma}$$
$$S^i_{\Delta}[c^*_i, c_i, d^*_i, d_i] = S_{\Delta}[c^*_i, c_i] + \sum_{\nu, \sigma} \left(d^*_{i\nu\sigma} \ c_{i\nu\sigma} + c^*_{i\nu\sigma} \ d_{i\nu\sigma} \right)$$

For each site (i) integrate-out original c-Fermions:

$$\frac{1}{Z_{\Delta}} \int \mathcal{D}[c^*, c] \exp\left(-S_{\Delta}^i[, c_i^*, c_i, d_i^* d_i]\right) = \exp\left(-\sum_{\nu \sigma} d_{i\nu\sigma}^* g_{\nu} d_{i\nu\sigma} - V_i[d_i^* d_i]\right)$$

Dual potential: $V[d^*, d] = \frac{1}{4} \sum_{1234} \gamma_{1234} d_1^* d_2^* d_4 d_3 + \dots$ $\gamma_{1234} = \chi_{1234} - \chi_{1234}^0$

 $\chi^0_{1234} = g_{14}g_{23} - g_{13}g_{24}$

$$\chi_{1234} = \langle c_1 c_2 c_3^* c_4^* \rangle_{\Delta} = \frac{1}{Z_{\Delta}} \int \mathcal{D}[c^*, c] \, c_1 c_2 c_3^* c_4^* \, e^{-S_{\Delta}[c^*, c]}$$

$$g_{12} = -\langle c_1 c_2^* \rangle_{\Delta} = \frac{1}{Z_{\Delta}} \int \mathcal{D}[c^*, c] \, c_1 c_2^* \, e^{-S_{\Delta}[c^*, c]}$$

Dual and Lattice Green's Functions

Two equivalent forms for partition function:

$$e^{F[J^*J,L^*L]} = \mathcal{Z}_d \int \mathcal{D}[c^*c,d^*d] e^{-S[c^*c,d^*,d] + J_1^*c_1 + c_2^*J_2 + L_1^*d_1 + d_2^*L_2}$$

$$e^{F[L^*,L]} = \tilde{\mathcal{Z}}_d \int \mathcal{D}[d^*,d] e^{-S_d[d^*,fd+L_1^*d_1+d_2^*L_2} \qquad \tilde{\mathcal{Z}}_d = \mathcal{Z}/\tilde{\mathcal{Z}}_d$$

Hubbard-Stratanovich transformation:

$$F[J^*J, L^*L] = L_1^*(\Delta - t)_{12}L_2 + \ln \int \mathcal{D}[c^*, c] \exp\left(-S[c^*, c] + J_1^*c_1 + c_2^*J_2 + L_1^*(\Delta - t)_{12}c_2 + c_1^*(\Delta - t)_{12}L_2\right)$$

Relation between Green functions:

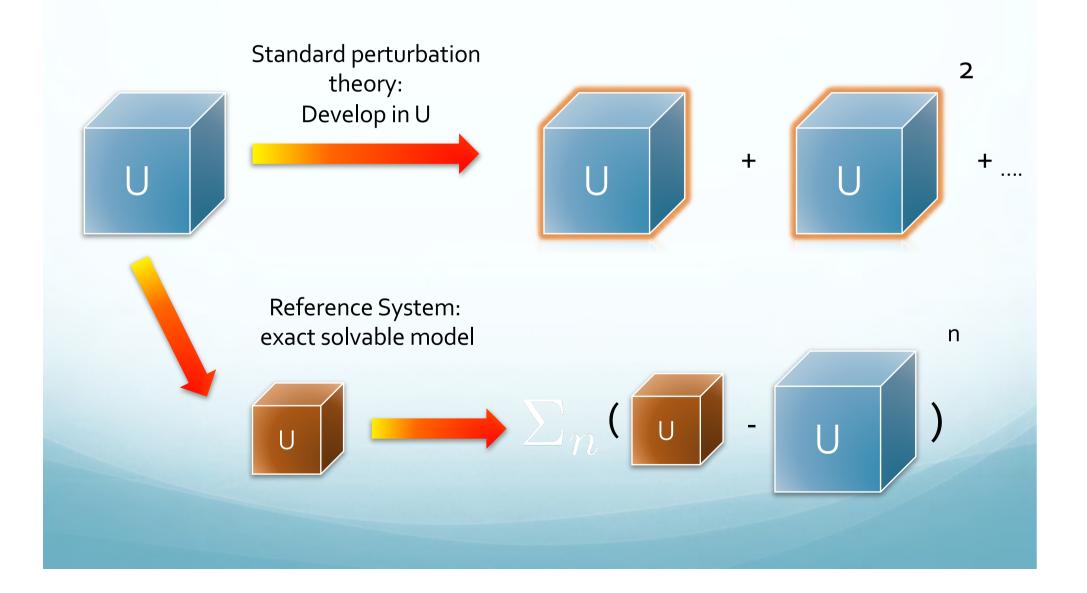
$$\tilde{G}_{12} = -\frac{\delta^2 F}{\delta L_2 \delta L_1^*} \bigg|_{L^* = L = 0}$$

$$\tilde{G}_{12} = -(\Delta - t)_{12} + (\Delta - t)_{11'} G_{1'2'} (\Delta - t)_{2'2}$$

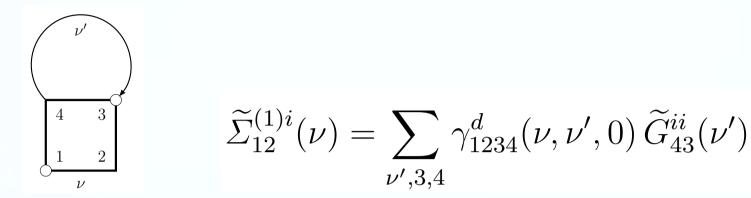
T-matrix like relations via dual self-energy

$$G_{\mathbf{k}\nu} = \left(\left(g_{\nu} + \widetilde{\Sigma}_{\mathbf{k}\nu} \right)^{-1} - \widetilde{\Delta}_{\mathbf{k}\nu} \right)^{-1}$$

Super-perturbation



1-st order diagram for dual self-energy



Density (d) and Magnetic (m) Vertices:

$$\gamma_{1234}^{d/m}(\nu,\nu',\omega) = \gamma_{1234}^{\uparrow\uparrow}(\nu,\nu',\omega) \pm \gamma_{1234}^{\uparrow\downarrow}(\nu,\nu',\omega)$$

Connected 2-particle GF:

$$\gamma_{1234}^{\sigma\sigma'}(\tau_1, \tau_2, \tau_3, \tau_4) = -\langle c_{1\sigma}c_{2\sigma}^*c_{3\sigma'}c_{4\sigma'}^* \rangle_{\Delta} + g_{12}^{\sigma}g_{34}^{\sigma'} - g_{14}^{\sigma}g_{32}^{\sigma}\delta_{\sigma\sigma'}$$

Two site test V_0 $U=2, \varepsilon_0=0 \quad V_0=0.5$ U **E**₀ Ref. **Fixed** $V=1.5V_0$ V Sys. U 3 0.3 DF 0.2 G G₀ DOS 3 4 0.1

Energy

0

2

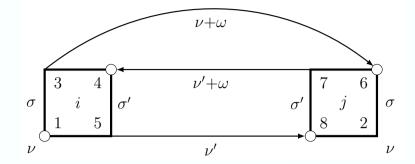
-2

0.0 -

-4

2 v

2-nd order diagram for dual self-energy



$$c_d = -1/4 \text{ and } c_m = -3/4$$

 $\widetilde{\Sigma}_{12}^{(2)ij}(\nu) = \sum_{\nu'\omega} \sum_{3-8} \sum_{\alpha=d,m} c_{\alpha} \gamma_{1345}^{\alpha,i}(\nu,\nu',\omega) \,\widetilde{G}_{36}^{ij}(\nu+\omega) \widetilde{G}_{74}^{ji}(\nu'+\omega) \,\widetilde{G}_{58}^{ij}(\nu') \,\gamma_{8762}^{\alpha,j}(\nu',\nu,\omega)$

Lattice Self-Energy:

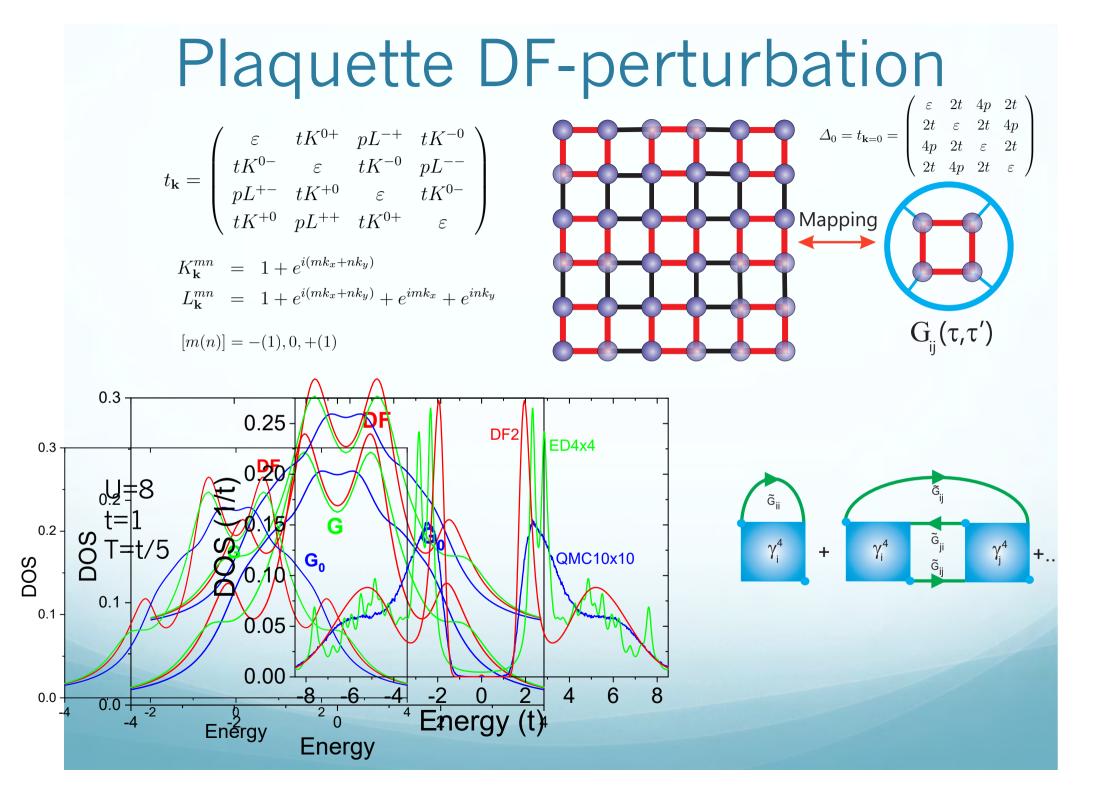
$$\Sigma_{\mathbf{k}\nu} = \Sigma_{\nu}^{0} + \Sigma_{\mathbf{k}\nu}'$$

Non-Local DF-correction:

$$\Sigma_{\mathbf{k}\nu}' = g_{\nu}^{-1} - \left(g_{\nu} + \widetilde{\Sigma}_{\mathbf{k}\nu}\right)^{-1}$$

Lattice Green Function:

$$G_{\mathbf{k}\nu} = \left(\left(g_{\nu} + \widetilde{\Sigma}_{\mathbf{k}\nu} \right)^{-1} - \widetilde{\Delta}_{\mathbf{k}\nu} \right)^{-1}$$



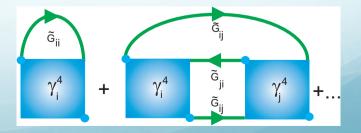
Condition for Δ and relation with DMFT

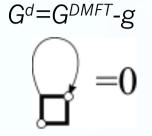
To determine Δ , we require that Hartree correction in dual variables vanishes. If no higher diagrams are taken into account, one obtains DMFT:

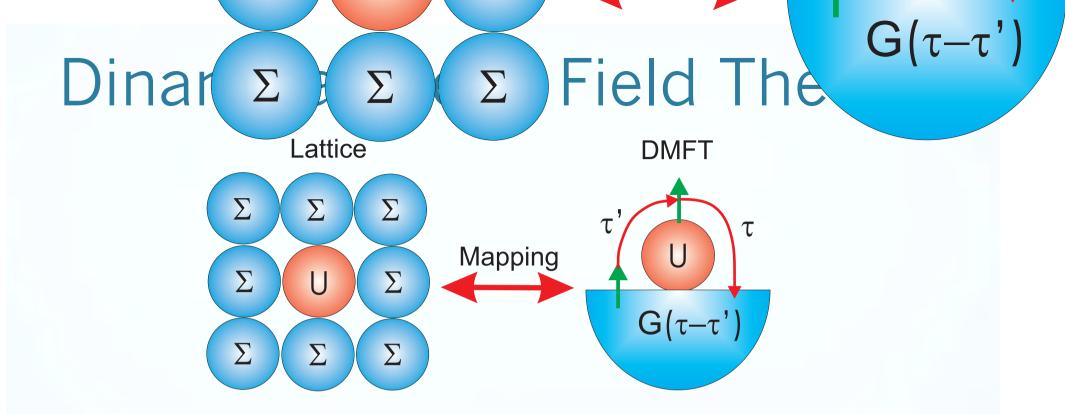
$$G_d = g \widetilde{G} g = G_{DMFT} - g \qquad \qquad G_{DMFT} = \left(g_\nu + \Delta_\nu - t_\mathbf{k}\right)^{-1}$$

$$\frac{1}{N}\sum_{\mathbf{k}}\tilde{G}^{0}_{\omega}(\mathbf{k}) = 0 \quad \Longleftrightarrow \quad \frac{1}{N}\sum_{\mathbf{k}}G^{\mathrm{DMFT}}_{\omega}(\mathbf{k}) = g_{\omega}$$

Higher-order diagrams give corrections to the DMFT self-energy, and already the leading-order correction is nonlocal.







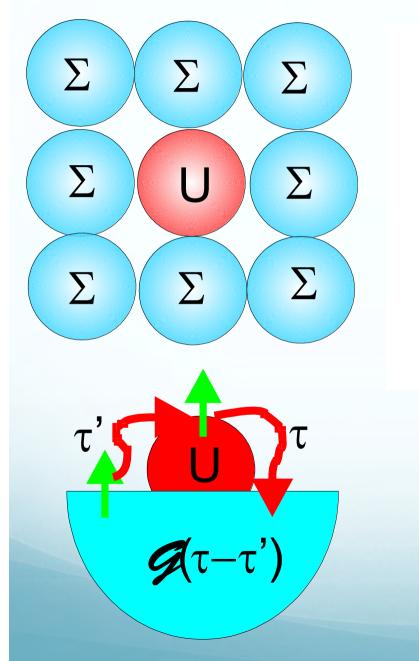
Self-consistent condition:

$$\sum_{\mathbf{k}} \left(g_{\nu}^{-1} + \Delta_{\nu} - t_{\mathbf{k}} \right)^{-1} = g_{\nu}$$

DMFT minimize "distance":

$$|t_{\mathbf{k}} - \Delta_{\nu}|$$

Quantum Impurity Solver

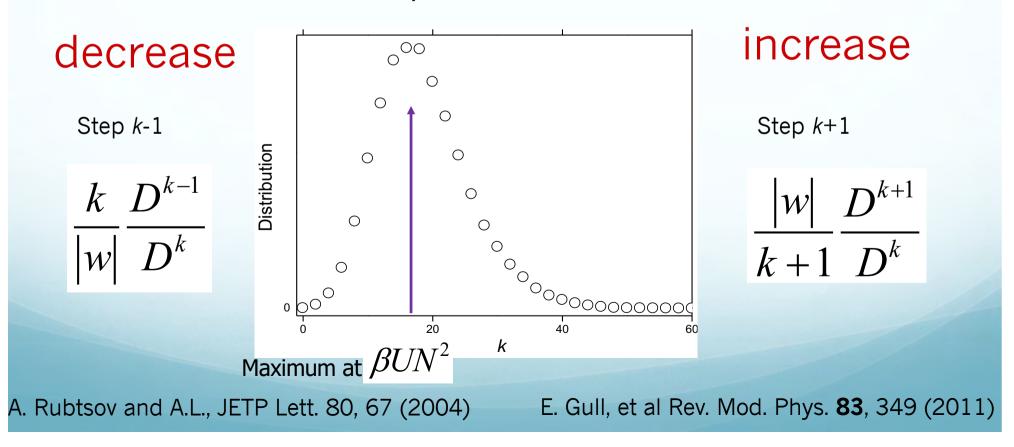


 $Z = \int \mathcal{D}[c^*, c] e^{-S_{simp}},$

$$S_{simp} = -\sum_{I,J=0}^{N} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' c_{I\sigma}^{*}(\tau) \left[\mathcal{G}_{\sigma}^{-1}(\tau - \tau') \right]_{IJ} c_{J\sigma}(\tau') + \sum_{I=1}^{N} \int_{0}^{\beta} d\tau U n_{I,\uparrow}(\tau) n_{I,\downarrow}(\tau),$$

What is a best scheme? Quantum Monte Carlo !

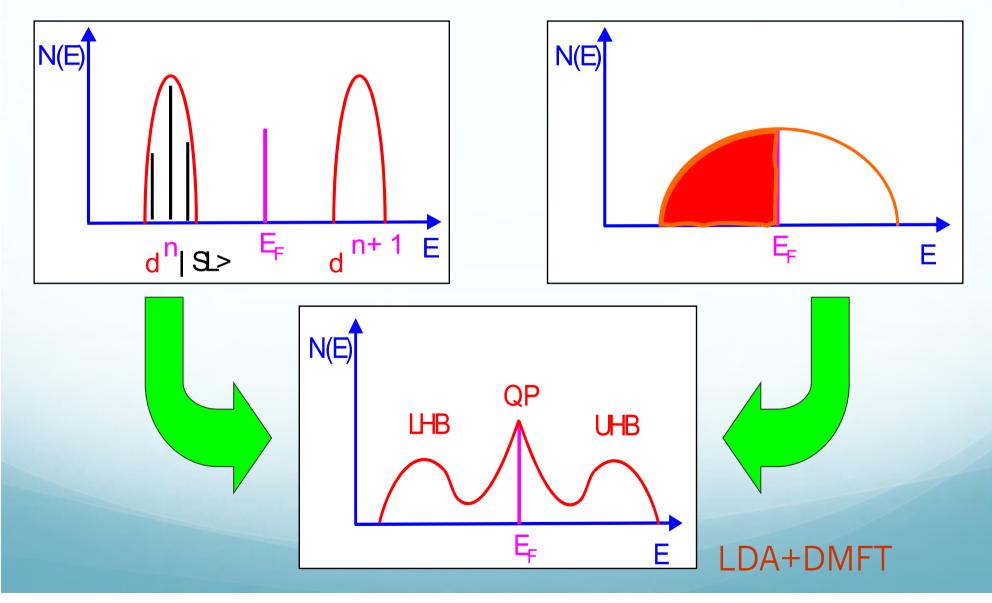
Acceptance ratio



From Atom to Solid

Atomic physics (U)

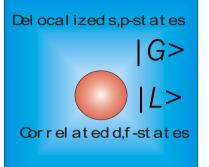
Bands effects (LDA)



General Projection formalism for LDA+DMFT

$$|L\rangle = |ilm\sigma\rangle \qquad \langle L_i|L_j\rangle = \delta_{ij}$$

$$|G\rangle = |n\vec{k}\sigma\rangle \qquad P_c = \langle L|G\rangle$$



P. Blochl, PRB **50,** 17953 (1994)

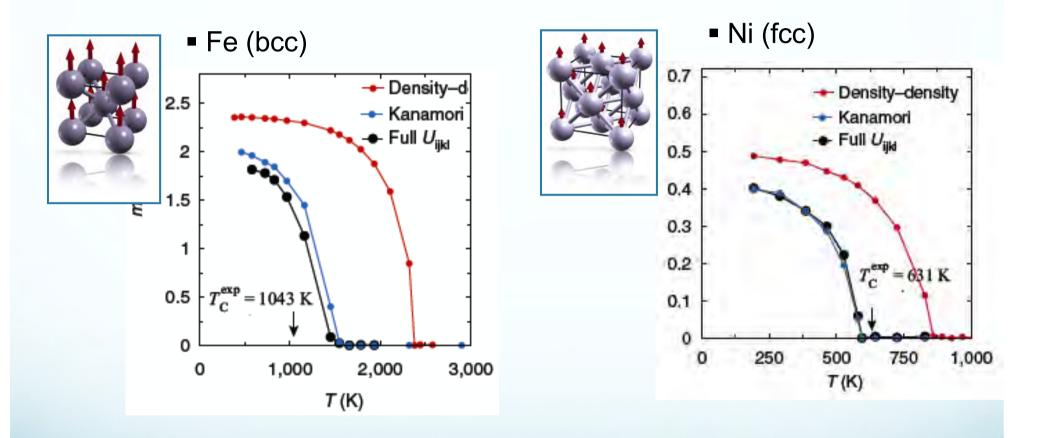
$$G_{mm'}^{c}(i\omega) = \sum_{\overrightarrow{k}\,nn'} \langle L_{m}|G_{n}\rangle \left[(i\omega + \mu)\,\widehat{1} - \widehat{H}_{KS}(\overrightarrow{k}) - \Delta\Sigma(i\omega) \right]_{nn'}^{-1} \langle G_{n'}|L_{m'}\rangle$$
$$\Delta\Sigma_{nn'}(i\omega) = \sum_{mm'} \langle G_{n}|L_{m}\rangle \,\Delta\Sigma_{mm'}(i\omega) \,\langle L_{m'}|G_{n'}\rangle$$

$$\Sigma_{mm'}(i\omega) = (G_0^{-1} - G^{-1})_{mm'}$$
$$\Delta \Sigma_{mm'}(i\omega) = \Sigma_{mm'}(i\omega) - \Sigma_{dc}$$

G. Trimarchi, *et al*. JPCM **20**,135227 (2008) B. Amadon, *et al*. PRB **77**, 205112 (2008)

DFT+ DMFT: Curie Temperature

 \diamond calculations with Full U_{ijkl} from cRPA

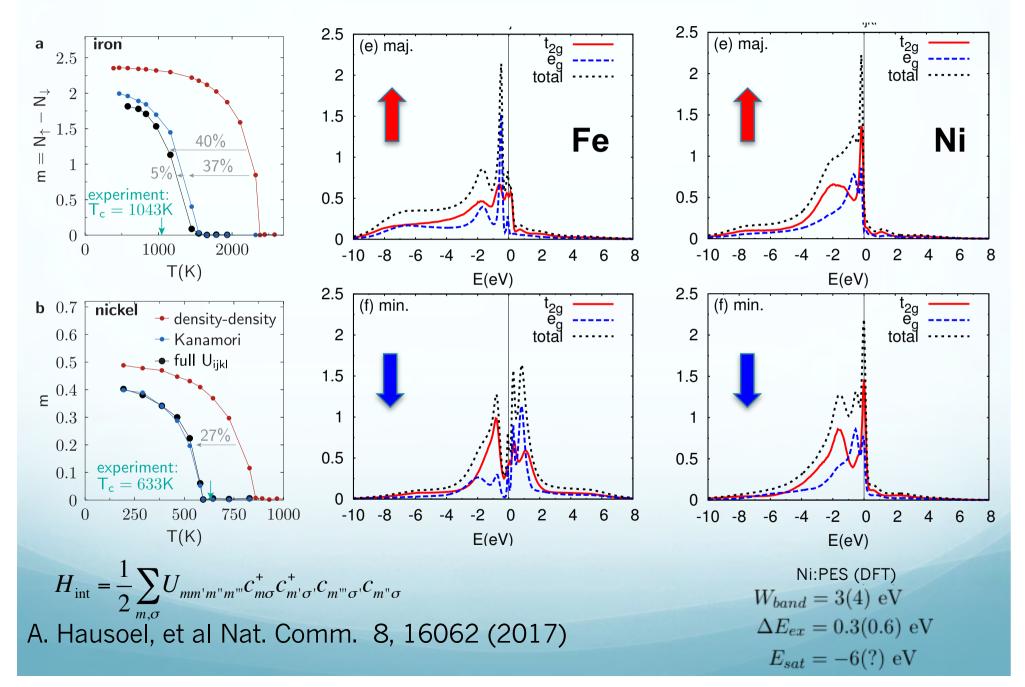


* A.Hausoel, M. Karolak, E. Sasioglu, A. L., K. Held, A. Katanin, A.Toschi and G. Sangiovanni

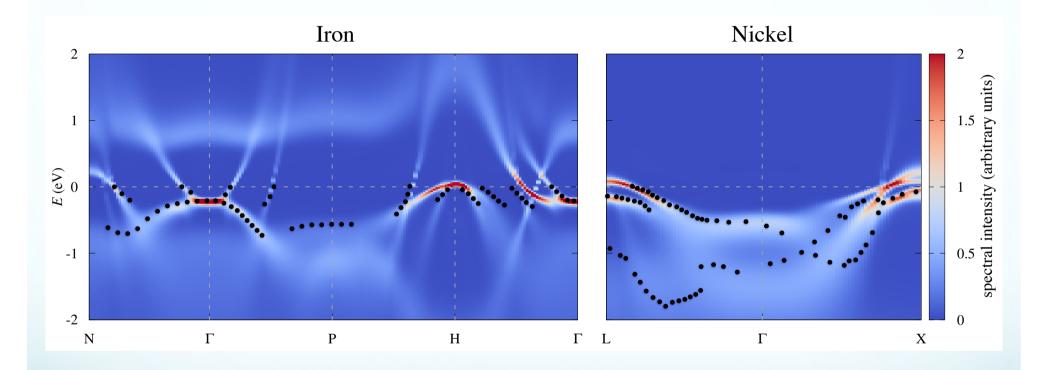
COMMUNICATIONS

DOI: 10.1038/ncomms16062

DFT+ DMFT: Curie Temperature



Spectral Function for Fe and Ni paramagnetic DFT+DMFT



A. Hausoel, M. Karolak, E. Sasioglu, A. L., K. Held, A. Katanin, A.Toschi and G. Sangiovanni Nat. Comm. 8, 16062 (2017)

Magnetic fluctuations and Hund coupling

E. Stepanov, Y. Nomura, A.L., and S. Biermann, PRL **127**, 207205 (2021)

D-TRILEX

 $l = \{\alpha\beta\}$

 $1 = yz_1$

$$\overline{\Sigma}_{11} = \bigwedge_{1}^{r} \prod_{1}^{r} \overline{\Pi}_{23} = 4$$

3D-3-orbital t_{2g} -model ($C_{\alpha} = \cos k_{\alpha}$)

 $-\pi$

 $-\pi$

0

 q_x

 π

$$\mathcal{H} = \{\alpha\beta\}$$

$$\mathcal{H} = -\sum_{ij,l,\sigma} t_{ij}^{ll} c_{il\sigma}^{\dagger} c_{jl\sigma} + \frac{1}{2} \sum_{i,ll'} \left(U_{ll'}^{ch} n_{il} n_{il'} + U_{ll'}^{sp} m_{il} m_{il'} \right)$$

$$t_{ll}(\mathbf{k}) = \epsilon + 2t_{\pi} (C_{\alpha} + C_{\beta}) + 2t_{\delta} C_{\gamma} + 4t_{\sigma} C_{\alpha} C_{\beta}$$

$$a) X_{11}^{sp} (q_x, q_y); \ J = 0.2$$

$$b) X_{11}^{sp} (q_x, q_y); \ J = 0.65$$

$$\pi_{q_y}$$

$$q_y$$

$$0$$

$$q_y$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

0.260

0.255

 $-\pi$

 $-\pi$

0

 q_x

 π

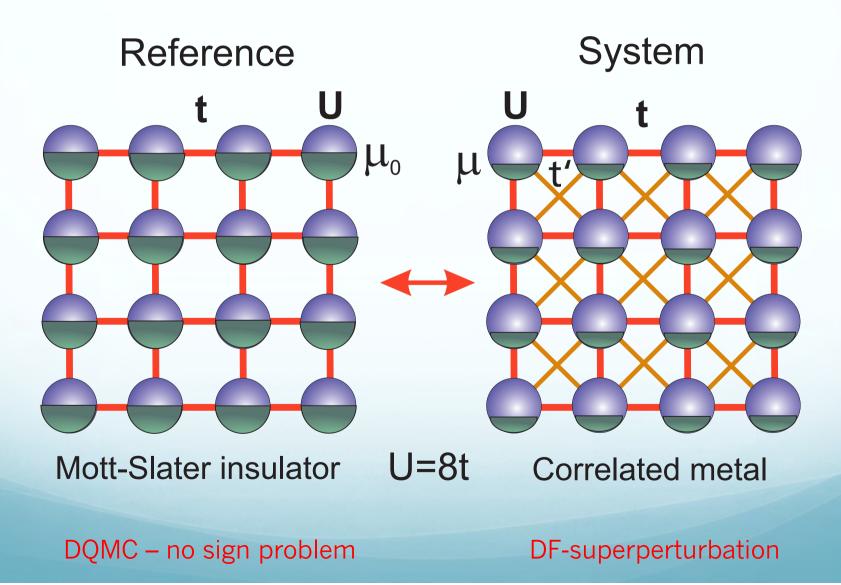
0.29

0.28

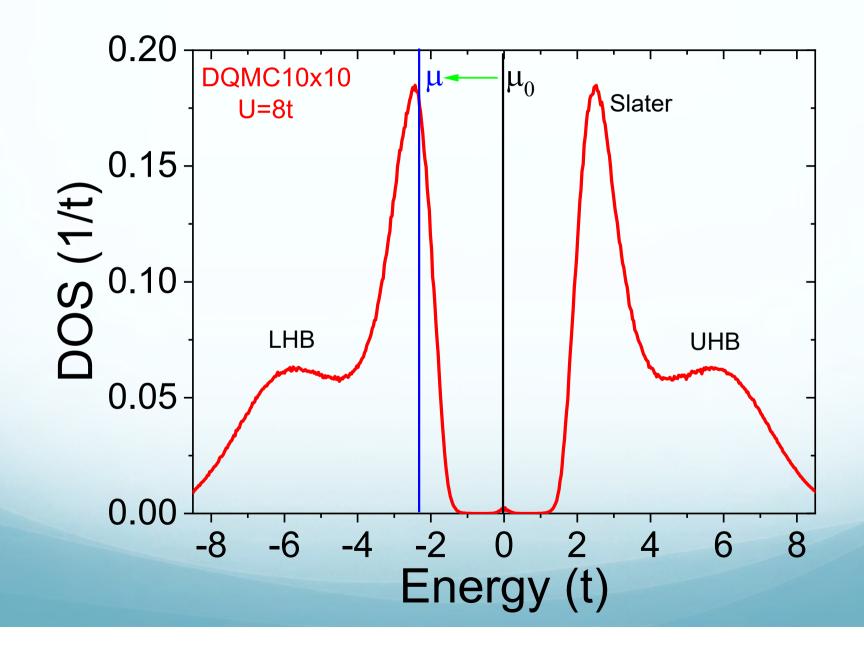
Spin suscep (yz-compon

Super-perturbation: DF-QMC

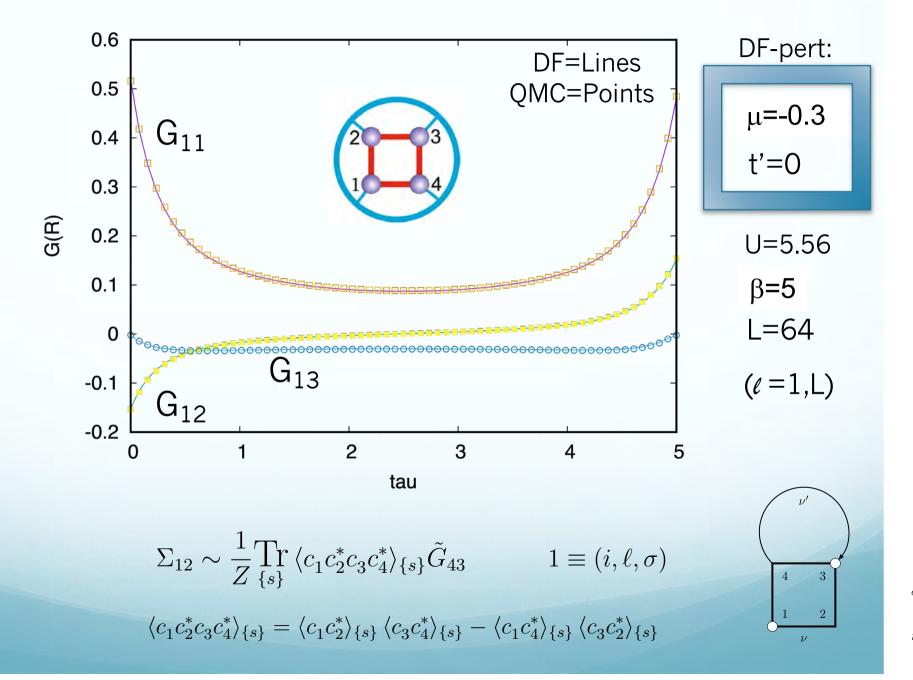
- Controllable perturbative solution of doped Hubbard model for HTSC
- Developed DF expansion around DQMC for N=1, t'=0



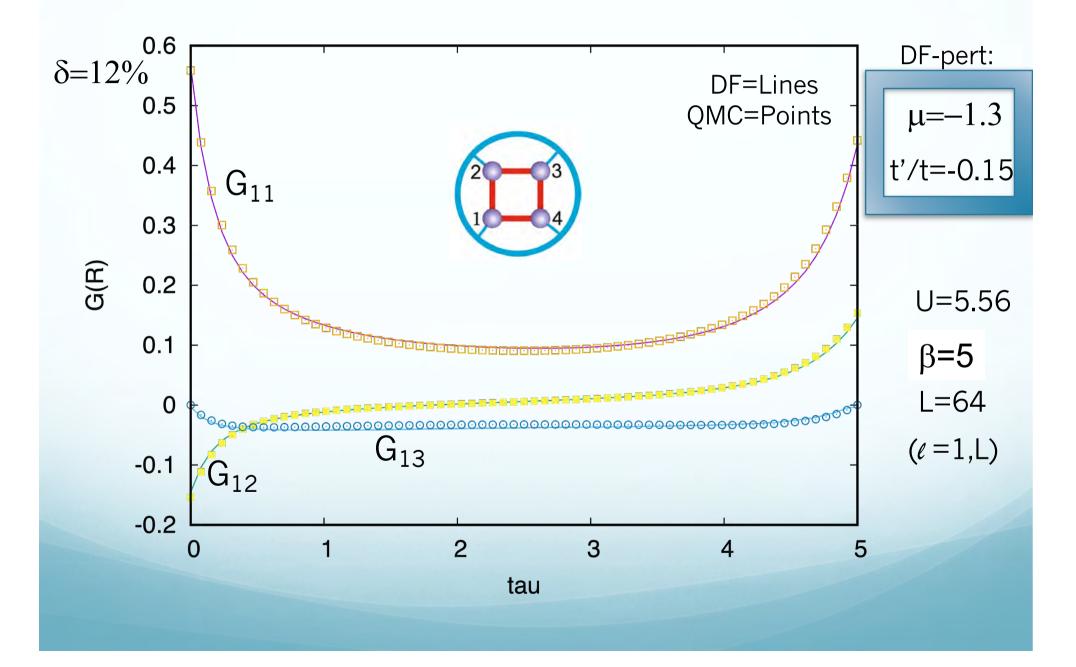
DOS for Reference System



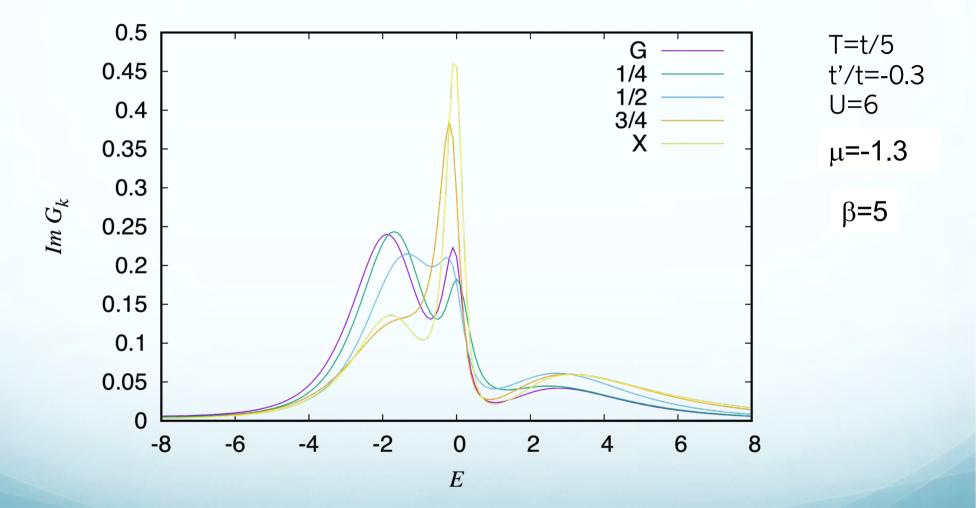
Super-DF-QMC 2x2 test DQMC-Hirsch



Super-DF-QMC 2x2 compare with exact QMC



DFQ for 8x8: Spectral Function



Conclusions

- Local correlations well described with the CT-QMC impurity solver: basis for DFT+DMFT
- Multiorbital D-TRILEX is most efficient scheme for non-local correlation in realistic systems
- DF-theory can be combined with Lattice DQMC to describe strongly correlated materials

Collaborations with:

Viktor Harkov, Matteo Vandelli (Hamburg) Erik G.C.P. van Loon (Lund) Sergei Iskakov (Michigan) Evgeny Stepanov (Paris) Mikhail Katsnelson (Nijmegen)