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Figure 3 Schematic representation of reference systems in the DFT, DFT+DMFT and
GW+DMFT methods

ture, are indeed most striking in spectroscopic probes, where they take the form of
quasi-particle renormalisations or broadening due to finite lifetimes, and give rise to
satellite features or atomic multiplets. An intrinsic temperature dependence of the
electronic structure of a metal, with a coherence-incoherence crossover delimiting
Fermi liquid properties, or a strongly temperature-dependent gap – beyond what can
be explained by a Fermi factor – are further hallmarks of electronic correlations [11].

Historically, the first non-perturbative electronic structure techniques for correlated
materials evolved from many-body treatments of the multi-orbital Hubbard Hamilto-
nian with realistic parameters. The general strategy of these so-called “DFT++” ap-
proaches [12, 13] consists in the extraction of the parameters of a many-body Hamil-
tonian from first principles calculations and then solving the problem by many-body
techniques. The procedure becomes conceptually involved, however, through the
need of incorporating e�ects of higher energy degrees of freedom on the low energy
part, the so-called “downfolding”.

For the one-particle part of the Hamiltonian, downfolding techniques have been the
subject of a vast literature [14, 15], and are by now well established. The task here
is to define orbitals spanning the low-energy Hilbert space of the electronic degrees
of freedom of a solid in such a way that a low-energy one-particle Hamiltonian can
be constructed whose spectrum coincides with the low-energy part of the spectrum
of the original one-particle Hamiltonian.1) Downfolding of the interacting part of a
many-body Hamiltonian is a less straightforward problem, which has attracted a lot

1) We do not enter here into details concerning the di�erent strategies of achieving such a construction:
various frameworks, such as mu�n-tin orbitals methods [15], maximally localised Wannier functions
[16], or projected atomic orbitals [17] have been employed.

Reference system is important: Archimedes
„Give me the place to stand, and I shall move the earth.“
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Summary for Fermions
ĉi |1i = |0i ĉi |0i = 0

ĉ+i |0i = |1i ĉ+i |1i = 0

{ĉi, ĉ+j } = �ij

Pauli principle

9.4 Alexander Lichtenstein

interactions between dual fermions are related with the connected part of the screened impu-
rity vertex. Standard diagrammatic techniques can be applied for calculations of the bold dual
propagator G̃k,⌫ , which allows to obtain the nonlocal self-energy for the original fermions [2]
and to describe nonlocal correlations beyond the DMFT.
The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation (1). In the dual space, this simply reduces to

P
k G̃

0
k,⌫ = 0 and means that, on average

over the whole Brillouin zone, �⌫ optimally approximates the electron spectrum "k, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by, e.g., ladder summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Path Integral for fermions
We first introduce a formalism of the path integral over fermionic fields [10]. Let us consider a
simple case of a single quantum state |ii occupied by fermionic particles [11] . Due to the Pauli
principle the many-body Hilbert space is spanned only by two orthonormal states |0i and |1i.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ+

i
operators

with anticommutation relations {ĉi, ĉ+j } = �ij we have the following simple rules

ĉi |1i = |0i ĉi |0i = 0 (1)

ĉ+
i
|0i = |1i ĉ+

i
|1i = 0 .

Moreover, the density operator and the Pauli principle has a form

ĉ+
i
ĉi |ni = ni |ni

ĉ2
i
= (ĉ+

i
)
2

= 0 .

The central object here related with so-called fermionic coherent states |ci which are eigenstates
of annihilation operator ĉi with eigenvalue ci:

ĉi |ci = ci |ci (2)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the bottom and one can rewrite one of equation from Eq. (1) in
the following ”eigenvalue” form

ĉi |0i = 0 |0i

Due to anti-commutation relations for the frmionic operators the eigenvalues of coheren states
ci are so-called Grassmann numbers with the following multiplictions rules [12]:

cicj = �cjci (3)

c2
i

= 0

Fermionic coherent states |c⟩
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i
operators
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Grassmann numbers ci

Exact representation

Left coherent state ⟨c| :

general function of two Grassmann variables 

Eigenvalues of coheren states
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ĉi |0i = 0 |0i

Due to anti-commutation relations for the frmionic operators the eigenvalues of coheren states
ci are so-called Grassmann numbers with the following multiplictions rules [12]:

cicj = �cjci (3)

c2
i

= 0

Dual Fermions 9.5

It is convenient to assume that the Grassmann number also anti-commute with the fermionic
operators

{c, ĉ} = {c, ĉ+} = 0

The arbitrary function of one Grassmann variable can be represented only by the first two Taylor
coefficients

f(c) = f0 + f1c (4)

One can proof the following general many-body representation of coherent states

|ci = e�
P

i ciĉ
+
i |0i (5)

Let us show this in a simple case of one fermionic states:

ĉ |ci = ĉ(1� cĉ+) |0i = ĉ (|0i � c |1i) = �ĉc |1i = c |0i = c |ci (6)

One can also define a ”left” coherent state hc| as the lef-eigenstates of creations operators ĉ+
i

hc| ĉ+
i
= hc| c⇤

i

Note that new eigenvalues c⇤
i

is just another Grassman nimber and not a complex conjugate of
ci. The left coherent state can be obtained similar to Eq. (5) as following

hc| = h0| e�
P

i ĉic
⇤
i

The general function of two Grassmann variables analogously to Eq. (4) can be represented
only by four Taylor coefficients

f(c⇤, c) = f00 + f10c
⇤
+ f01c+ f11c

⇤c (7)

Using this expansion we can define a derivative of Grassmann variables in the natural way

@ci
@cj

= �ij

One need to be careful with ”right-order” of such a derivative and remember of anti-commutation
rules, i.e.

@

@c2
c1c2 = �c1

For the case of general two-variable function in Eq. (7) we have

@

@c⇤
@

@c
f(c⇤, c) =

@

@c⇤
(f01 � f11c

⇤
) = �f11 = � @

@c

@

@c⇤
f(c⇤, c)

One also need a formal definition of integration over Grassmann variables and the natural way
consists with the following rules [12]:

Z
1dc = 0

Z
cdc = 1,

Proof for one fermionic states
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+
i |0i (5)

Let us show this in a simple case of one fermionic states:
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F. A. Berezin: Method of Second Quantization (Academic Press , New York, 1966)



Grassmann calculus

Due to anti-commutation rule:  

Formal definition of integration over Grassmann variables 

Formal definition of derivative

Example:
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The arbitrary function of one Grassmann variable can be represented only by the first two Taylor
coefficients

f(c) = f0 + f1c (4)

One can proof the following general many-body representation of coherent states

|ci = e�
P

i ciĉ
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9.6 Alexander Lichtenstein

which just shows that the integration over Grassmann variable is equivalent to the differentia-
tion: Z

...dc ! @

@c
...

The coherent states are not orthonormal and the overlap of any two coherent fermionic states
equal to

hc|ci = e
P

i c
⇤
i ci

which is easy to see for the case of one particle

hc|ci = (h0|� h1| c⇤) (|0i � c |1i) = 1 + c⇤c = ec
⇤
c

An important property of coherent states is related with resolution of the unity operator
Z

dc⇤
Z

dc e�
P

i c
⇤
i ci |ci hc| = 1̂ =

Z Z
dc⇤dc

|ci hc|
hc|ci .

For simplicity we demonstrate this relation only for one fermion state:
Z Z

dc⇤dc e�c
⇤
c |ci hc| =

Z Z
dc⇤dc (1� c⇤c) (|0i � c |1i) (h0|� h1| c⇤) =

�
Z Z

dc⇤dc c⇤c (|0i h0|+ |1i h1|) =
X

n

|ni hn| = 1̂

Matrix elements of normally ordered operators is very easy to calculate in coherent basis by
operating of ĉ+ to the write states and ĉ to the left one:

hc⇤| Ĥ(ĉ+, ĉ) |ci = H(c⇤, c) hc⇤|ci = H(c⇤, c) e
P

i c
⇤
i ci (8)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ+

i
, ĉi) ! (c⇤

i
, ci).

Finally, we prove the so-called ”trance-formula” for arbitrary fermionic operator in normal
order (in one fermion notation):

Tr
⇣
bO
⌘

=

X

n=0,1

hn| bO |ni =
X

n=0,1

Z Z
dc⇤dc e�c

⇤
c hn| ci hc| bO |ni =

=

Z Z
dc⇤dc e�c

⇤
c
X

n=0,1

h�c| bO |ni hn| ci =
Z Z

dc⇤dc e�c
⇤
c h�c| bO |ci

The fermionic ”minus” sign in the left coherent states come from the commutation of (c⇤) and
(c) coherent state in such a transformation: hn|ci hc|ni = h�c|ni hn|ci. One have to use the
standard Grassmann rules: c⇤

i
cj = �cjc⇤i and |�ci = |0i+ c |1i.

We are ready now to write a partition function for grand-canonical quantum ensemble with
H = bH�µ bN and inverse temperature �. One have to use the N-slices Trotter decomposition for
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, ĉi) ! (c⇤

i
, ci).

Finally, we prove the so-called ”trance-formula” for arbitrary fermionic operator in normal
order (in one fermion notation):

Tr
⇣
bO
⌘

=

X

n=0,1

hn| bO |ni =
X

n=0,1

Z Z
dc⇤dc e�c

⇤
c hn| ci hc| bO |ni =

=

Z Z
dc⇤dc e�c

⇤
c
X

n=0,1

h�c| bO |ni hn| ci =
Z Z

dc⇤dc e�c
⇤
c h�c| bO |ci

The fermionic ”minus” sign in the left coherent states come from the commutation of (c⇤) and
(c) coherent state in such a transformation: hn|ci hc|ni = h�c|ni hn|ci. One have to use the
standard Grassmann rules: c⇤

i
cj = �cjc⇤i and |�ci = |0i+ c |1i.

We are ready now to write a partition function for grand-canonical quantum ensemble with
H = bH�µ bN and inverse temperature �. One have to use the N-slices Trotter decomposition for



Trace Formula
Matrix elements of normally ordered operators 

Trace of fermionic operators in normal order 

„Minus“ fermionic sign due to commutations:

9.6 Alexander Lichtenstein

which just shows that the integration over Grassmann variable is equivalent to the differentia-
tion: Z

...dc ! @

@c
...

The coherent states are not orthonormal and the overlap of any two coherent fermionic states
equal to

hc|ci = e
P

i c
⇤
i ci

which is easy to see for the case of one particle

hc|ci = (h0|� h1| c⇤) (|0i � c |1i) = 1 + c⇤c = ec
⇤
c

An important property of coherent states is related with resolution of the unity operator
Z

dc⇤
Z

dc e�
P

i c
⇤
i ci |ci hc| = 1̂ =

Z Z
dc⇤dc

|ci hc|
hc|ci .

For simplicity we demonstrate this relation only for one fermion state:
Z Z

dc⇤dc e�c
⇤
c |ci hc| =

Z Z
dc⇤dc (1� c⇤c) (|0i � c |1i) (h0|� h1| c⇤) =

�
Z Z

dc⇤dc c⇤c (|0i h0|+ |1i h1|) =
X

n

|ni hn| = 1̂

Matrix elements of normally ordered operators is very easy to calculate in coherent basis by
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Insert N-times the resolution of unity: 

In continuum limit (N → ∞) 
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partition function in the interval [0, �) with imaginary time ⌧n = n�⌧ = n�/N (n = 1, ..., N ),
and insert N-times the resolution of unity as follows
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=
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⇤
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�⌧
NX

n=1

... 7!
Z

�

0

d⌧...

cn � cn�1

�⌧
7! @⌧

⇧N�1
n=0 dc

⇤
n
dcn 7! D [c⇤, c]

with antiperiodic boundary condition for fermionic Grassmann variables on an imaginary time
c(⌧) and c⇤(⌧)

c(�) = �c(0), c⇤(�) = �c⇤(0)

we ended up in the standard path integral formulation of quantum mechanical Partition function
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For the later discussion we mention the Gaussian path integral for non-interacting ”quadratic”
fermionic action. For an arbitrary matrix Mij and Grassmann vectors J⇤
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and Ji one can calcu-

late analytically the following integral
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To proof this relations one need first to shift variable in order to eliminate J⇤
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the exponent function (only N-th oder is non-zero):
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i
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Finally, different permutations of c⇤
i
and cj and integration over Grasmann variables will gives

the detM - answer. As a small exercise we will check such integrals for first two many-particle
dimensions. For N = 1 it is trivial:

Z
D [c⇤c] e�c

⇤
1M11c1 =

Z
D [c⇤c] (�c⇤1M11c1) = M11 = detM
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Antiperiodic boundary condition

3.0.1 Trotter Decomposition

TODO Bild
The Trotter decomposition follows from the Liouville operator e.g. form the matrix function of
the Liouville operator with �t = t

N

e≠—H = lim
NæŒ

(e≠�·H)N

Here is e
1
2 [X,Y ]+... negligible, because it follows if the N is huge that

eiL�t = eiL1�t+iL2�t = eiL1�teiL2�t + O(�t2)

and the equation

lim
NæŒ

O(�t2) = lim
NæŒ

O(( t

N
)2) = 0

disappier. In general the solution gets more accurate as bigger the N gets.

3.0.2 Accurate Trotter decomposition and the Strange Decomposition (symplectic)

Definition 3.2.

eiL1�t+iL2�t = eiL1 �t

2 eiL2 �t

2 eiL1 �t

2 + O(�t3)

e.g.

eiL1�t+iL2�t = eiL2 �t

2 eiL1 �t

2 eiL2 �t

2 + O(�t3)

Let H(q, p) be an seperable Hamiltonium
Properties 3.3.

H(q, p) = Ekin(p) + Epot(q) = T (p) + V (q)

so H(q, p) is a symplectic Integrator with

eiL1�t+iL2�t = (
kŸ

j=1

eicjL1�teibjL2�t) + O(�tk+1)

with k. order. Further H(q, p) has the following properties

x =
A

q
p

B
eibj L2�t

æ
A

q
p ≠ bj

ˆV
ˆq �t

B

x =
A

q
p

B
eicj L1�t

æ
A

q + cj
ˆT
ˆp �t

p

B

and for all cj and bj applies the features of
ÿ

j

cj =
ÿ

j

bj = 1

Example 3.4. If k = 1 the factors are c1 = 1, b1 = 1 and the solution is equivalent to the
Euler-Richardson algorithm. For k = 2 the factors are c1 = 1

2
, b1 = 0, c2 = 1

2
, b2 = 1 so its

equal to the quadratic integrator which is equal to the Velet algorithm. For details if k = 3, 4
take a look at R. Ruth‘s work. ⌥
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Non-interacting ”quadratic” fermionic action

Hint for proof:

Exercise for N=1 and 2: 

Shift of Grassmann variable:

correlation functions for a non- interaction action (Wick-theorem) 

Dual Fermions 9.7

partition function in the interval [0, �) with imaginary time ⌧n = n�⌧ = n�/N (n = 1, ..., N ),
and insert N-times the resolution of unity as follows
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=

Z
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n=1dc
⇤
n
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��⌧
PN
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Z =
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R �
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For the later discussion we mention the Gaussian path integral for non-interacting ”quadratic”
fermionic action. For an arbitrary matrix Mij and Grassmann vectors J⇤
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and Ji one can calcu-
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⇤
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⇤
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⇤
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�1)ijJj
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i
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the exponent function (only N-th oder is non-zero):
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i
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!N

Finally, different permutations of c⇤
i
and cj and integration over Grasmann variables will gives

the detM - answer. As a small exercise we will check such integrals for first two many-particle
dimensions. For N = 1 it is trivial:

Z
D [c⇤c] e�c

⇤
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Z
D [c⇤c] (�c⇤1M11c1) = M11 = detM
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and for N = 2 we have
Z

D [c⇤c] e�c
⇤
1M11c1�c

⇤
1M12c1�c

⇤
2M21c1�c

⇤
2M22c2 =

1

2!

Z
D [c⇤c] (�c⇤1M11c1 � c⇤1M12c1 � c⇤2M21c1 � c⇤2M22c2)

2
= M11M22 �M12M21 = detM

For a shift (change) of variables in the path integral one use the following transformation with
the unit Jacobian: c ! c�M�1J and

c⇤Mc� c⇤J � J⇤c =
�
c⇤ � J⇤M�1

�
M

�
c�M�1J

�
� J⇤M�1J .

Using Gaussian path integral it is very easy to calculate any correlation functions for a non-
interaction action (Wick-theorem) :

⌦
cic

⇤
j

↵
0

= � 1

Z0

�2Z0 [J⇤, J ]

�J⇤
i
�Jj

|J=0 = M�1
ij

hcicjc⇤kc⇤l i0 =
1

Z0

�4Z0 [J⇤, J ]

�J⇤
i
�J⇤

j
�Jl�Jk

|J=0 = M�1
il

M�1
jk

�M�1
ik

M�1
jl

Corresponding bosonic path-integral can be formulated in a similar way with a complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path integral over
bosonic fields is equal to inverse of the M-matrix determinant [10] .

3 Functional approach
We introduce a general functional approach which will cover the DFT, Dynamical Mean Field
Theory (DMFT) and Baym-Kadanoff (BK) theories [9]. Let us start from the full many–body
Hamiltonian describing electrons moving in the periodic external potential of ions V (r) with
the chemical potential µ and interacting via Coulomb law: U(r � r0) = 1/|r � r0|. We use
the atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian has the
following form:

H =

X

�

Z
dr b +

�
(r)[�1

2
52

+ V (r)� µ] b �(r) (10)

+
1

2

X

��0

Z
dr

Z
dr0 b +

�
(r) b +

�0(r0)U(r� r0) b �0(r0) b �(r).

We can always use the single-particle orthonormal basis set in solids �n(r) for example Wannier
orbitals with full set of quantum numbers, e.g. site, orbital and spin index: n = (i,m, �) and
expand the fields in creation and annihilation operators:

b (r) =

X

n

�n(r)bcn (11)

b +
(r) =

X

n

�⇤
n
(r)bc+

n
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Path Integral for Everything

One- and two-electron matrix elements:

Euclidean action

Shot notation:

1.4 Alexander Lichtenstein

2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r′) = 1/|r− r′|. We

use atomic units ! = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫

dr ψ̂†
σ(r)

(

−
1

2
∇2 + V (r)− µ

)

ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫

dr

∫

dr′ ψ̂†
σ(r)ψ̂

†
σ′(r

′)U(r − r
′) ψ̂σ′(r

′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
#2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)
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Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]
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and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
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G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function
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∣
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).

One- and Two-particle Green Functions

Vertex function:

One-particle Green function

1.4 Alexander Lichtenstein

2 Functional approach: Route to fluctuations
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+
1

2
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We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,
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n
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∗
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2
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1

... ≡
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∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function
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2 e
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Abstract

In the standard framework of self-consistent many-body perturbation theory, the

skeleton series for the self-energy is truncated at a finite order N and plugged

into the Dyson equation, which is then solved for the propagator GN . For two

simple examples of fermionic models – the Hubbard atom at half filling and its

zero space-time dimensional simplified version – we find that GN converges when

N ! 1 to a limit G1, which coincides with the exact physical propagator Gexact at

small enough coupling, while G1 6= Gexact at strong coupling. We also demonstrate

that it is possible to discriminate between these two regimes thanks to a criterion

which does not require the knowledge of Gexact, as proposed in [1].

1 Introduction

Self-consistent perturbation theory is a particularly elegant and powerful approach in quantum
many-body physics [2, 3]. The single-particle propagator G is expressed through the Dyson
equation

G�1 = G�1
0 � ⌃ (1)

in terms of the non-interacting propagator G0 and the self-energy ⌃, which itself is formally
expressed in terms of G through the skeleton series

⌃ = ⌃bold[G] =
1X

n=1

⌃(n)
bold[G] (2)

where ⌃(n)
bold[G] is the sum of all two-particle irreducible Feynman diagrams of order n (built

with bold propagator lines representing G).
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Sorbonne Université, Université de Paris, 75005 Paris, France

2 Physics Department, King’s College, London WC2R 2LS, United Kingdom

3 Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA

4 National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China

5 Shanghai Research Center for Quantum Science, Shanghai 201315, China
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Figure 4: Detecting the misleading convergence for the toy model. Introducing a finite ⇠ , the
sequence becomes divergent which allows to detect the problem (left), or remains convergent
which allows to trust the result (right).

3 Hubbard atom

We turn to the single-site Hubbard model, defined by the grand-canonical Hamiltonian
�µ

P
s ns+Un"n#. The propagator can be expressed as a functional integral over �-antiperiodic

Grassmann fields [40],

Gs(⌧) = �
R
D'D'̄ 's(⌧)'̄s(0) e�S

R
D'D'̄ e�S

(10)

with the action

S =

Z �

0
d⌧

"
�
X

s

'̄s(⌧)(G
�1
0 's)(⌧) + U('̄"'̄#'#'")(⌧)

#
(11)

and

G�1
0 = µ� d

d⌧
. (12)

We restrict for simplicity to the half-filled case µ = U/2, which should be the most danger-
ous case, since it is at and around half-filling that the misleading convergence of ⌃bold[Gexact]
was discovered in [4]. We use the BDMC method [5, 32, 41, 42] to sum all skeleton diagrams
and solve the self-consistency equation (3) for truncation orders N  8 (note that at half

filling, ⌃(n)
bold = 0 for all odd n > 1).

The first question is whether the skeleton sequence GN can also converge to an unphysical

result, or equivalently, whether ⌃(N)
bold [GN ] =: ⌃N can converge to an unphysical result. Let

us first consider the double occupancy

D = hn"n#i = U�1 tr(⌃G) (13)

and the corresponding sequence DN := U�1 tr(⌃N GN ). At large enough U , our data strongly
indicate that this sequence does converge (albeit slowly) towards an unphysical result, see left
panel of Fig. 5. For small enough U , there is a fast convergence to the correct result, see right
panel of Fig. 5.
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2 Zero space-time dimensional toy-model

2.1 Definitions and reminders

We begin with some reminders from [7]. While fermionic many-body problems can be repre-
sented by a functional integral over Grassmann fields, which depend on d space coordinates
and one imaginary time coordinate [40], in this simplified toy model the Grassmann fields are
replaced with Grassmann numbers 's and '̄s that do not depend on anything, apart from a
spin index s 2 {", #}. The partition function, the action and the propagator are then defined
by

Z =

Z  Y

s

d'sd'̄s

!
e�S['̄s,'s]

S['̄s,'s] = �µ
X

s

'̄s's + U '̄"'"'̄#'#

G = � 1

Z

Z  Y

s

d'sd'̄s

!
e�S['̄s,'s] 's '̄s,

the dimensionless parameters µ and U being the analogs of chemical potential and interaction
strength. We restrict for convenience to µ > 0 (changing the sign of µ essentially amounts to
the change of variables ' $ '̄) and to U < 0 (as in [7]).

The coe�cients of the skeleton series have the analytical expression

⌃bold[G] =
1X

n=1

anG
2n�1Un with an =

(�1)n�1(2n� 2)!

n!(n� 1)!
.

It is convenient to work with rescaled variables, multiplying propagators with
p

|U | and
dividing self-energies with the same factor,

g := G
p
|U |, � := ⌃/

p
|U |. (4)

The rescaled skeleton series is then given by

�bold(g) =
1X

n=1

�(n)
bold(g) with �(n)

bold(g) = an(�1)ng2n�1

and accordingly �(N)
bold (g) ⌘

PN
n=1 �

(n)
bold(g).

The exact self-energy and propagator are given by

�exact(g0) = �g0

gexact(g0) =
g0

1 + g20

in terms of the rescaled free propagator g0 :=
p

|U |G0 =
p
|U |/µ.

If one evaluates the bold series at the exact G, one obtains the correct physical self-energy
for |U | < µ2 and an incorrect result for |U | > µ2. More precisely, the self-energy functional
(which reduces to a function in this toy model) has the two branches

�(±)(g) =
�1±

p
1� 4g2

2g
(5)
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replaced with Grassmann numbers 's and '̄s that do not depend on anything, apart from a
spin index s 2 {", #}. The partition function, the action and the propagator are then defined
by

Z =

Z  Y

s

d'sd'̄s

!
e�S['̄s,'s]

S['̄s,'s] = �µ
X

s

'̄s's + U '̄"'"'̄#'#

G = � 1

Z

Z  Y

s

d'sd'̄s

!
e�S['̄s,'s] 's '̄s,

the dimensionless parameters µ and U being the analogs of chemical potential and interaction
strength. We restrict for convenience to µ > 0 (changing the sign of µ essentially amounts to
the change of variables ' $ '̄) and to U < 0 (as in [7]).

The coe�cients of the skeleton series have the analytical expression

⌃bold[G] =
1X

n=1

anG
2n�1Un with an =

(�1)n�1(2n� 2)!

n!(n� 1)!
.

It is convenient to work with rescaled variables, multiplying propagators with
p

|U | and
dividing self-energies with the same factor,

g := G
p
|U |, � := ⌃/

p
|U |. (4)

The rescaled skeleton series is then given by

�bold(g) =
1X

n=1

�(n)
bold(g) with �(n)

bold(g) = an(�1)ng2n�1

and accordingly �(N)
bold (g) ⌘

PN
n=1 �

(n)
bold(g).

The exact self-energy and propagator are given by

�exact(g0) = �g0

gexact(g0) =
g0

1 + g20

in terms of the rescaled free propagator g0 :=
p

|U |G0 =
p
|U |/µ.

If one evaluates the bold series at the exact G, one obtains the correct physical self-energy
for |U | < µ2 and an incorrect result for |U | > µ2. More precisely, the self-energy functional
(which reduces to a function in this toy model) has the two branches

�(±)(g) =
�1±

p
1� 4g2

2g
(5)
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series, evaluated at the exact physical propagator, always converges to the (+) branch;
i.e., �bold(gexact(g0)) = �(+)(gexact(g0)) for all g0 > 0.

Note that �bold(g) is the expansion of �(+)(g) in powers of g, and thus from (5) the
convergence radius of the series �bold(g) is 1/2.

Figure 1: The two branches of the self-energy as a function of the full propagator, for the
toy model in zero space-time dimensions. The skeleton series converges up to g = 1/2 and
coincides with the (+) branch: �bold(g) = �(+)(g) for g  1/2.

2.2 Limit of the skeleton sequence

We will refer to the sequence GN as the skeleton sequence. Rescaling variables as in (4),
in particular setting gN := GN

p
|U |, the self-consistency equation (3) becomes

1

gN
=

1

g0
� �(N)

bold (gN ). (6)

This equation is readily solved for gN numerically: The solutions are roots of a polynomial
of order 2N , and we observe that there is a unique real positive root, which we take to
be gN (recall that the exact g is always real and positive); alternatively, we solved Eq. (6)
by iterations (with a damping procedure described in the next Section), and we found
convergence to this same gN . We find that

• for g0 < 1, gN �!
N!1

gexact(g0)

• for g0 > 1, gN �!
N!1

g1 6= gexact(g0)

i.e., the skeleton sequence converges to the correct physical result below a critical coupling
strength, and to an unphysical result above it.

Let us focus on the regime g0 > 1, where the convergence to an unphysical result
takes place (as demonstrated in Fig. 2). The fact that the skeleton sequence converges
at all in this regime is non-trivial. The value of the unphysical limit g1 = 1/2 of the
skeleton sequence gN is equal to the radius of convergence of the skeleton series �bold(g).
This is not a coincidence, and the reason for this self-tuning towards the convergence
radius becomes clear from Fig. 3: For a large truncation order, the curve representing the
truncated bold series as a function of g becomes an almost vertical line above the position
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p

|U |G0 =
p
|U |/µ.

If one evaluates the bold series at the exact G, one obtains the correct physical self-
energy for |U | < µ2 and an incorrect result for |U | > µ2. More precisely, the self-energy
functional (which reduces to a function in this toy model) has the two branches

�(±)(g) =
�1±

p
1� 4g2

2g
(5)

as represented on Fig. 1. The physical branch is the (+) branch for g0 < 1, and the (�)
branch for g0 > 1; i.e., �exact(g0) = �(sign(1�g0))(gexact(g0)). On the other hand, the bold
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Abstract

I. INTRODUCTION

II. EFFECTIVE BOSONIC ACTION FOR CHARGE AND
SPIN DEGREES OF FREEDOM

In the current work we aim at deriving a quantum bosonic
action that describes the behaviour of the charge and spin de-
grees of freedom of an initially purely fermionic problem. We
start with the lattice action of the extended Hubbard model
written in the coordinate and imaginary time representation

Slatt =

Z �

0
d⌧

(
�
X

i j,��0
c
⇤
i⌧�

h
�i j���0 (�@⌧ + µ) � "��

0
i j

i
c

j⌧�0

+
X

i,��0
Uni⌧"ni⌧# +

1
2

X

i j,&

⇢&
i⌧V
&
i j
⇢&

j⌧

)
(1)

Fermionic Grassmann variables c
(⇤)
i⌧� describe annihilation

(creation) of an electron with the spin projection � = {", #}
at the site i and imaginary time ⌧. "��0

i j
= "i j ��� + i~i j · ~���0

is the hopping matrix in the spin space. The diagonal compo-
nent "i j of this matrix corresponds to the hopping amplitude
of electrons between two lattice sites i and j. The nondiago-
nal part accounts for the spin-orbit coupling (SOC) ~i j in the
Rashba form [1, 2], where ~� = {�x,�y,�z} is a vector of Pauli
matrices. U is the on-site Coulomb repulsion. V

&
i j

describes
the non-local (V&

ii
= 0) interaction between charge (& = c) and

spin (& = s = {x, y, z}) densities n
&
i⌧ =
P
��0 c

⇤
i⌧� �

&
��0ci⌧�0 . For

convenience we introduce following variables ⇢&
i⌧ = n

&
i⌧ � hn&i

that describe fluctuations of the densities around their average
value. We assume that the average densities can be obtained
from a certain local reference system. Can one write a lo-
cal reference problem for DFT (LDA)? Can I say that it is an
atomic problem in the Hartree-Fock approximation? In this
particular work the role of the reference system is played by
an e↵ective local impurity problem of the dynamical mean-
field theory (DMFT) [3]

Simp = �
Z �

0
d⌧ d⌧0

X

��0
c
⇤
⌧�

h
�⌧⌧0���0 (�@⌧ + µ) � ���

0
⌧⌧0

i
c⌧0�0

+

Z �

0
d⌧Un⌧"n⌧# (2)

⇤ evgeny.stepanov@polytechnique.edu

The advantage of considering this reference system is that
it can be solved numerically exactly, e.g. by means of the
continious-time quantum Monte Carlo method [4–7]. There-
fore, introducing such reference system makes investigation
of local correlation e↵ects more accessible. In particular, this
will help us to address the problem of the local moment for-
mation in the system. In order to isolate the impurity problem
from the initial action (1), we add the fermionic hybridiza-
tion function ���0⌧⌧0 = �

��0 (⌧0 � ⌧) to the local part of the lat-
tice problem. To be consistent, the same hybridization is sub-
tracted from the remaining (non-local) part of the lattice prob-
lem Srem = Slatt �

P
i Simp

Srem = �
Z �

0
d⌧ d⌧0

X

i j,��0
c
⇤
i⌧�

h
�

i j
���

0
⌧⌧0 � �⌧⌧0"��

0
i j

i
c

j⌧0�0

+
1
2

Z �

0
d⌧
X

i j,&

⇢&
i⌧V
&
i j
⇢&

j⌧ (3)

This way of introducing the reference system gives some free-
dom in choosing the form of the hybridization function [8].
For instance, �⌧⌧0 does not necessarily have to be obtained
from the DMFT self-consistency condition, which equates the
local part of the lattice Green’s function G

��0
ii,⌧⌧0 to the exact lo-

cal impurity Green’s function g
��0
⌧⌧0 [3]. In this work we stick to

the paramagnetic case, which is the most challenging regime
for describing the behavior of the local magnetic moment. In-
deed, in the ordered state the value of the magnetic moment
is given by the average magnetization, which in many cases
can be obtained from DFT in reasonable agreement with the
experiment [??]. On the contrary, in the paramagnetic regime
the average magnetization is equal to zero even if the mag-
netic moment has already been formed. In the latter case the
zero average magnetization is a consequence of an uncorre-
lated precession of the magnetic moment, and distinguishing
this situation from the case when the system does not pos-
sess any magnetic moment at all is a non-trivial task. As has
been mentioned above, in the current work the average mag-
netization is given by the local reference system (2). For this
reason, we consider a spin-independent hybridization func-
tion ���0⌧⌧0 = ���0�⌧⌧0 , which ensures that the average local spin
density is zero hnsiimp = 0, and therefore ⇢s

i⌧ = n
s

i⌧. As a con-
sequence, the Green’s function g

��0
⌧⌧0 = ���0g⌧⌧0 of such refer-

ence system is also diagonal in the spin space. At the same
time, the lattice Green’s function can have non-diagonal spin
components due to the presence of the SOC. For this reason,
we determine the hybridization function from the following

Correlated electrons
lattice model

2

self-consistency condition for the diagonal part of the lattice
Green’s function 1

2
P
�G

��
ii,⌧⌧0 = g⌧⌧0 .

We point out that ⇢& are not suitable variables for address-
ing the problem of charge and spin dynamics. Indeed, they
are not true bosonic variables, because they are composed of
two fermionic Grassmann variables. Proper bosonic variables
that describe fluctuations of charge and spin densities can be
introduced performing a set of Hubbard-Stratonovich trans-
formations as has been shown in Refs. 9 and 10. Following
the idea of these works we first rewrite the non-local part of
the lattice action Srem in terms of new fermionic f

(⇤) and truly
bosonic �& fields instead of original fermionic c

(⇤) and com-
posite ⇢& variables. This transformation is explicitly shown in
Appendix ?? for a general multi-orbital case and results in the
following lattice action

S = �
Z �

0
d⌧ d⌧0

X

i j,��0
f
⇤
i⌧�

h
�⌧⌧0"

��0
i j
� �
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���0�⌧⌧0

i�1
f

j⌧0�0

� 1
2
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0
d⌧

X

i j,&

�&
i⌧V
& �1
i j
�&

j⌧ +

Z �

0
d⌧

X

i,&

⇣
�&

i⌧ + j
&
i⌧

⌘
⇢&

i⌧

+

Z �

0
d⌧

X

i,�

⇣
c
⇤
i⌧� f

i⌧� + f
⇤
i⌧�c

i⌧�

⌘
+

X

i

Simp (4)

In this equation we have introduced a source field j
& for a

composite ⇢& variable. This source field will help us identify
the correct variables for original charge and spin degrees of
freedom after multiple transformations of the initial action.

Static properties of e↵ective bosonic models for spin or
charge degrees of freedom, namely the exchange interaction
between spin or charge densities, have been studied in previ-
ous works [9, 10]. Description of the spin dynamics, which
has not been performed in these works, is a nontrivial task
that requires a careful separation of the precession of the vec-
tor spin field from the fluctuation of the absolute value of the
local magnetic moment. To this e↵ect, we deviate from the
main route of these works and make a transformation to a ro-
tating frame for original fermionic variables c

⇤
i⌧ ! c

⇤
i⌧Ri⌧ and

c
i⌧ ! R

†
i⌧ci⌧ introducing a unitary rotation matrix in the spin

space

Ri⌧ =

 
cos(✓i⌧/2) �e

�i'i⌧ sin(✓i⌧/2)
e

i'i⌧ sin(✓i⌧/2) cos(✓i⌧/2)

!
(5)

where ci⌧ = (ci⌧", ci⌧#)T . Later on, polar angles ✓i⌧ and 'i⌧ will
be associated with the direction of the local magnetic moment.
Therefore, at each lattice site i and imaginary time ⌧ the rota-
tion matrices are intended to adjust the coordinate system such
that the local magnetization in new coordinates always points
in z direction. In this way the accounting for the rotation
dynamics of the local magnetic moment is transferred from
the corresponding bosonic field to a new time- and position-
dependent coordinate system. Under this rotation the impurity

problem transforms as

Simp ! Simp +

Z �

0
d⌧ Tr� c

⇤
i⌧R
†
i⌧Ṙi⌧ci⌧

= Simp +

Z �

0
d⌧

X

&

A
&
i⌧ ⇢
&
i⌧ (6)

where Ṙ
i⌧ = @⌧Ri⌧ and A

&
i⌧ is an e↵ective gauge field intro-

duced as R
†
i⌧Ṙi⌧ =

P
& A
&
i⌧�
&. The explicit form of the rota-

tion matrix (5) implies that A
c

i⌧ = 0. Composite variables for
charge and spin degrees of freedom become

⇢&
i⌧ !

X

&0
B
&&0

i⌧ ⇢
&0

i⌧ (7)

where B
&&0

i⌧ satisfies

R
†
i⌧�
&
R

i⌧ =
X

&0
B
&&0

i⌧ �
&0 (8)

It can be shown that
P

s0 B
T ss

0
B

s
0
s
00
= �ss00 , B

cs

i⌧ = 0, and
B

cc

i⌧ = 1. The last equality originates from the fact that the
charge density n

c

i⌧ is invariant under rotation in the spin space.
Upon collecting all terms, the lattice action (4) transforms to
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��0
i j
� �

i j
���0�⌧⌧0
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X
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Simp

+

Z �

0
d⌧ Tr�

X
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(
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⇤
i⌧R
†
i⌧ f

i⌧ + f
⇤
i⌧Ri⌧ci⌧

)

+

Z �

0
d⌧

X

i,&&0

0
BBBBBB@�
&
i⌧ + j

&
i⌧ +

X

&00
A
&00

i⌧ B
T &00&
i⌧

1
CCCCCCA B
&&0

i⌧ ⇢
&0

i⌧ (9)

We find that the bosonic field �s

i⌧ enters the lattice action (9)
as an e↵ective magnetic field. However, it is important to em-
phasise that the local magnetic moment at a given lattice site
does not necessarily point in the same direction as the polar-
izing field applied to the same site. For this reason it would
be incorrect to associate polar angles ✓i⌧ and 'i⌧ with the di-
rection of the field �s

i⌧ and identify the latter with the Higgs
field contrary to what is commonly done in the literature (see
e.g. [11–15]). Instead, below we demonstrate a proper way of
introducing the bosonic field that describes Higgs fluctuations
of the local magnetic moment.

After the rotational dynamics of the magnetic moment is
explicitly isolated, original fermionic variables can be inte-
grated out. This allows to account for local correlation ef-
fects exactly via the reference system (2), which is formulated
solely in terms of original variables. It is important that upon
all transformations of the lattice problem the source field j

&

and the e↵ective gauge field A
& are taken into account exactly

without any approximation. For this purpose we make the fol-
lowing shift of variables

�&
i⌧ ! �̂

&
i⌧ = �

&
i⌧ � j

&
i⌧ �

X

&00
A
&00

i⌧ B
T &00&
i⌧ (10)

Rotated local frame

4

to non-locality of the bare dual Green’s function (17). In ad-
dition, since the SOC enters the problem (1) as a non-local
hopping ~i j · ~���0 , the local part of G̃��0

i j,⌧⌧0 in the case of a small
SOC is also negligibly small. Quadratic exchange can be ob-
tained in the second order of expansion, which gives

S ' �1
4
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d⌧ d⌧0
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&&0
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A
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⌧⌧0 ⇢
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z�1
⌧⌧0 M

i⌧0

)
(19)

The total non-local exchange interaction

I&&0
i j,⌧⌧0 = � �⌧⌧0�&&02V

&
i j
� J
&&0

i j,⌧⌧0 (20)

contains the bare (direct) interaction V
&
i j

of the initial action (1)
and the RKKY-like (kinetic) interaction mediated by electrons

J
&&0

i j,⌧⌧0 = 2
X

{⌧},{�}
⇤⇤ &⌧⌧1⌧2

G̃
�1�3
i j,⌧1⌧3

G̃
�4�2
ji,⌧4⌧2
⇤&
0

⌧3⌧4⌧0
(21)

Here, G̃ is the full Green’s function of the problem (16). The
diagonal part of the kinetic interaction is given by the Heisen-
berg exchange interaction J

ss

i j
for spin [9] and the Ising in-

teraction J
cc

i j
for charge [10] densities. The nondiagonal J

ss
0

i j

(s , s
0) component gives rise to the antisymmetric anisotropic

(Dzyaloshinskii-Moriya) and the symmetric anisotropic inter-
actions (see, e.g., Ref. 2). More involved interaction terms,
such as the chiral three-spin [??] and biquadratic [??] ex-
change interactions can be obtained by a straightforward ex-
pansion the first term in Eq. (18) in higher-orders in ⇢.

III. EQUATION OF MOTION

In this section we derive equation of motion for the preces-
sion of the local magnetic moment and thus exclude charge
degrees of freedom from consideration. The last term in
Eq. (19) describes the Higgs dynamics of the absolute value
of the local magnetic moment Mi⌧. These fluctuations are fast
and the corresponding contribution is strongly non-local in
time. This fact is confirmed by a rapidly saturating behav-
ior of the Fourier transform of the local spin susceptibility �s

!
to the Matsubara frequency space ! shown in Fig. 1. On the
contrary, the precession of the local magnetic moment is slow
in time and can be described by the Landau-Lifshitz-Gilbert
equation of motion [??]. To derive this equation we assume
that the local magnetic moment has already been formed in
the system. The criterion for the formation of the magnetic
moment is discussed in details in the Section IV. At this point
we average over fast Higgs fluctuations and replace the scalar
field Mi⌧ by its constant nonzero average value hMi⌧i = 2S .
In this case the Higgs term can be neglected in the action, be-
cause now it only gives a constant contribution to the energy.
The bosonic action (19) reduces to an e↵ective spin problem

Sspin =

Z �

0
d⌧
X

j

⇣
i'̇ j⌧(1 � cos ✓ j⌧) S � ~S j⌧ · ~h j⌧

⌘
(22)

FIG. 1. Local spin susceptibility �z

! as a function of the number N

of bosonic Matsubara frequency !N = 2⇡N/�. Results are obtained
for the case of U = 8 given in units of nearest-neighbor hopping
amplitude " = 1 at di↵erent temperatures specified in the legend.
The non-local interaction V

& and the SOC are set to zero.

where ~Si⌧ = S~ei⌧, and components of an e↵ective magnetic
field ~h j⌧ are following

h
s

j⌧ = 2
Z �

0
d⌧0
X

i,s0
Iss

0
ji,⌧⌧0S

s
0

i⌧0 (23)

In the general case the equation of motion for the spins is a
set of integro-di↵erential equations. To simplify the problem,
we make use of the fact that the interaction between spins
is determined by the super-exchange processes due to elec-
trons (21) and thus decays fast on the time scales of inverse
band width, while the time-dependence of the angle variables
'i⌧ and ✓i⌧ is slow. For this reason, we can expand the time-
dependence of the spin variable S

s
0

i⌧0 in Eq. (23) up to the first
order in powers of ⌧ � ⌧0. In the zeroth order the ⌧0 time argu-
ment of S

s
0

i⌧0 is simply replaced by ⌧. Then, the ⌧0 integration
of Iss

0
ji

(⌧ � ⌧0) leads to the zero frequency Fourier component
of the spin-spin interaction Iss

0
i j

(! = 0), and the zeroth-order
contribution to the e↵ective magnetic field (23) becomes

h
0s

j⌧ = 2
X

i,s0
Iss

0
ji,!=0 S

s
0

i⌧ (24)

We note that the local three-point vertex function that enters
the expression for the kinetic interaction J

ss
0

i j,!=0 (21) can be
obtained from the self-energy of the impurity problem as (see
Ref. 9 and also Appendix)

⇤s

⌫,!=0 =
1
2
@⌃imp
⌫

@S!=0
+ �s�1

!=0 (25)

where ⌫ is the fermionic Matsubara frequency. If the in-
verse of the local susceptibility is neglected in this equa-
tion, the equal-time kinetic interaction reduces to well-known
Liechtenstein-Katsnelson-Antropov-Gubanov expression

J
ss
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i j,!=0 =
1
2

X

⌫,{�}
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@S⌃

s

i⌫

⌘
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⌘
G̃
�4�2
ji,⌫ (26)

longitudinal (Higgs) fluctuations

kinetic term (spin precession)

Effective bosonic action in the adiabatic limit E. Stepanov et al, PRB 105, 155151 (2022) 

Criterium of Local Moment formation:

SPIN DYNAMICS OF ITINERANT ELECTRONS: LOCAL … PHYSICAL REVIEW B 105, 155151 (2022)

At this point we should emphasize again that our aim was
a mapping of the initial interacting fermionic problem onto
and effective Hamiltonian problem (24) that is stationary in
time. This effective problem describes the dynamics of spin
degrees of freedom, which is supposed to be much slower
than the electron hopping and other fast electron processes, in
particular, related to the Hubbard U energy scale. Within this
approach, we should take into account only low-frequency
part of the exchange term (23), which is approximately lim-
ited by the value of the exchange interaction. Actually, the
exchange term (23) has a complicated frequency dependence;
in fact it diverges for high frequencies, but taking into ac-
count such nonadiabatic effects is not allowed in the derived
Landau-Lifshitz-Gilbert equation of motion (30). In the high-
frequency region the separation of spin and electron dynamics
is, generally speaking, impossible. In the latter case, the dy-
namics of charge and spin degrees of freedom can only by
described by the derived fermion-boson (17) or boson (19)
actions that have no restriction on the regime of frequencies,
but are nonstationary in time.

IV. LOCAL MAGNETIC MOMENT FORMATION

The introduced equation of motion (30) is valid only when
the local magnetic moment exists. Otherwise, there is no way
to discuss a specific spin dynamics separated from general
dynamics of electron-hole excitations. In this section we de-
rive the corresponding condition for the formation of the local
magnetic moment in the system.

According to Landau phenomenology [82], a transition
from a paramagnetic to a magnetically ordered state occurs
due to a spontaneous symmetry breaking. The latter results
in the change of the free energy F [m] from a paraboloid-like
form with a minimum at m = 0 to a Mexican-hat potential
characterized by a continuous set of minima at m != 0. This
change in the free energy can be seen in the sign change
of the second variation of the free energy ∂2

mF [m]|m=0 with
respect to the corresponding order parameter m (see, e.g.,
Ref. [83]). As an example, let us consider a half-filled Hub-
bard model on a three-dimensional (3D) cubic lattice, where
the spontaneous symmetry breaking is associated with the
formation of the antiferromagnetic (AFM) ordering with the
wave vector "Q = {π ,π ,π}. The free energy of our problem is
given by the action derived above (19) that is written in terms
of the physical bosonic variables ρς describing fluctuations of
charge and spin densities. Thus, the second variation of the
free energy with respect to the AFM order parameter ρs

Q,ω=0
results in the inverse of the AFM susceptibility X s

Q,ω=0 [39]
that becomes zero at the transition point

− ∂2S[ρs]
∂ρs

Q,ω=0∂ρs
−Q,ω=0

=
(
X s

Q,ω=0

)−1 =
(
χ s

ω=0

)−1−Iss
Q,ω=0=0.

(31)

Above the AFM phase boundary fluctuations of magnetic
moments are uncorrelated at large distances, which means that
the moments on different lattice sites fluctuate independently
on each other, assuming that the distance between sites is
larger than the magnetic correlation length. It can be expected
that the formation of the local magnetic moment can be cap-

tured in the same way as the formation of the AFM ordering
but looking at the corresponding local free energy. Impor-
tantly, this local free energy is different from the one of the
local reference system (2). Indeed, the impurity problem Simp
describes local correlation effects of both itinerant electrons
and local magnetic moments. In order to isolate the energy
related to the magnetic moment only, one has to find a way
to subtract the contribution of itinerant electrons from the
local free energy of the reference system (2). As we argue
in Appendix C, this procedure can be done by excluding
nonlocal terms from Eq. (10) and integrating out fermionic
variables f (∗). This procedure is reminiscent of the mapping
of the s-d model on the Anderson impurity model for the d
electrons [84,85]. Let is emphasize again that the discussion of
local moments and their separate dynamics makes sense only
at timescales much larger than typical electron times, such as
the inverse of the hopping amplitude, or 1/U . As the result we
get the local problem written in terms of only physical bosonic
variables ρ:

Sloc = −Tr ln

[

g−1
ττ ′δσσ ′ +

∫ β

0
dτ ′′

∑

ς

σ
ς
σσ ′+

ς
ττ ′τ ′′ ρ

ς
iτ ′′

]

− 1
2

∫∫ β

0
dτ dτ ′

∑

ς

ρς
τ [χς ]−1

ττ ′ρ
ς
τ ′ . (32)

Note that the derivation of this local problem does not rely on
the saddle-point approximation for rotation angles because no
transformation of fermionic variables to a rotating frame (4)
has been performed in this case.

In analogy to the formation to the AFM state the formation
of the local magnetic moment in the system can be seen in the
sign change of the second variation of the local action (32)
with respect to the local magnetic moment

−∂2Sloc[ρs]
∂ρs

τ ∂ρs
τ ′

= [χ s]−1
ττ ′ − J loc

ττ ′ . (33)

Importantly, and contrary to the case of the true phase transi-
tions for the infinite system, we keep times τ and τ ′ different
since in the static limit local magnetic moment does not exist,
it is screened by Kondo effect, or by intersite exchange-
induced spin flips (in paramagnetic phase), or by both these
factors. At the same time, as was already stressed, local
magnetic moment exists at relatively long times in compar-
ison with basic electron processes. In this sense, its existence
means symmetry breaking at intermediate timescales.

The expression (33) corresponds to a “slow” exchange cou-
pling of the local moment to itself at a different time point that
can be obtained by subtracting the contribution of itinerant
electrons given by a local analog of the exchange interaction
(23):

J loc
ττ ′ =

∫ β

0
{dτi}

∑

σ

+∗ s
ττ1τ2

gσ
τ1τ3

gσ
τ4τ2

+s
τ3τ4τ ′ (34)

from the total exchange interaction χ−1
ττ ′ of the local ref-

erence system (2). The moment when this self-exchange
becomes diamagnetic clearly marks the instability of the truly
paramagnetic phase without a developed local moment. Re-
markably, by direct numerical calculations we find that the
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7.6 Alexander Lichtenstein

We can use the standard decomposition of the free energy functionakl � into the single particle
part and the correlated part

� [G] = Tr lnG � Tr (⌃G) + �[G], (12)

were ⌃12 is single particle self-energy and �[G] is a correlated part of the Baym–Kadanoff
functional and is equal to the sum of all two-particle irreducible diagrams. In the stationary
point this functional gives the free energy of the system. In practice, �[G] is not known for
interacting electron systems, which is similar to the problem in the density functional theory.
There is a formal expression for ”exchange-correlation” part of this functional via all connecting
two-particle diagrams [13, 19, 20]

3 Density Functional Theory
The general functional approach reduces to the DFT theory, if one only uses the diagonal part
in space-time of the Green function, which corresponds to the one-electron density:

n(1) = G12�12 =< c⇤1c1 >S, (13)

Consider general interacting Hamiltonian with ”�-scaled” interaction part:

Ĥ = T̂ + �Û , (14)

which depends on the coupling constant � as a parameter. The same is true for the effective
action functional [20]

� = � [n,�] . (15)

Clearly n,� are to be considered as two independent variables. Note, however, that this does
not prevent the exact expectation value ng from depending on �: this dependence is fixed by the
variational principle ✓

�� [n,�]

�n

◆

ng

= 0. (16)

The functional � [n,�] is defined as,

� [n,�] = F [J,�] � J (1)n (1) , (17)

where J is functional of n and �. This functional dependence is provided by the equation

�F [J,�]

�J (1)
= n (1) .

We can find a formaly exact expression for � [n] functional within the inversion method [19].
Let us expand all the quantities in Eqn (17) in terms of �;

J [n,�] = J0 [n] + �J1 [n] + �2J2 [n] + . . . ,

Hamiltonian with ”λ-scaled” interaction part

7.6 Alexander Lichtenstein

We can use the standard decomposition of the free energy functionakl � into the single particle
part and the correlated part

� [G] = Tr lnG � Tr (⌃G) + �[G], (12)

were ⌃12 is single particle self-energy and �[G] is a correlated part of the Baym–Kadanoff
functional and is equal to the sum of all two-particle irreducible diagrams. In the stationary
point this functional gives the free energy of the system. In practice, �[G] is not known for
interacting electron systems, which is similar to the problem in the density functional theory.
There is a formal expression for ”exchange-correlation” part of this functional via all connecting
two-particle diagrams [13, 19, 20]

3 Density Functional Theory
The general functional approach reduces to the DFT theory, if one only uses the diagonal part
in space-time of the Green function, which corresponds to the one-electron density:

n(1) = G12�12 =< c⇤1c1 >S, (13)

Consider general interacting Hamiltonian with ”�-scaled” interaction part:

Ĥ = T̂ + �Û , (14)

which depends on the coupling constant � as a parameter. The same is true for the effective
action functional [20]

� = � [n,�] . (15)

Clearly n,� are to be considered as two independent variables. Note, however, that this does
not prevent the exact expectation value ng from depending on �: this dependence is fixed by the
variational principle ✓

�� [n,�]

�n

◆

ng

= 0. (16)

The functional � [n,�] is defined as,

� [n,�] = F [J,�] � J (1)n (1) , (17)

where J is functional of n and �. This functional dependence is provided by the equation

�F [J,�]

�J (1)
= n (1) .

We can find a formaly exact expression for � [n] functional within the inversion method [19].
Let us expand all the quantities in Eqn (17) in terms of �;

J [n,�] = J0 [n] + �J1 [n] + �2J2 [n] + . . . ,

DFT-functional

7.6 Alexander Lichtenstein

We can use the standard decomposition of the free energy functionakl � into the single particle
part and the correlated part

� [G] = Tr lnG � Tr (⌃G) + �[G], (12)

were ⌃12 is single particle self-energy and �[G] is a correlated part of the Baym–Kadanoff
functional and is equal to the sum of all two-particle irreducible diagrams. In the stationary
point this functional gives the free energy of the system. In practice, �[G] is not known for
interacting electron systems, which is similar to the problem in the density functional theory.
There is a formal expression for ”exchange-correlation” part of this functional via all connecting
two-particle diagrams [13, 19, 20]

3 Density Functional Theory
The general functional approach reduces to the DFT theory, if one only uses the diagonal part
in space-time of the Green function, which corresponds to the one-electron density:

n(1) = G12�12 =< c⇤1c1 >S, (13)

Consider general interacting Hamiltonian with ”�-scaled” interaction part:
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F [J,�] = F0 [J ] + �F1 [J ] + �2F2 [J ] + . . . , (18)

� [n,�] = �0 [n] + ��1 [n] + �2�2 [n] + . . . .

Comparison of the two sides in Eqn (17) for different orders of �,
X

�i�i [n] =
X

�iFi

hX
�kJk [n]

i
�
X

�iJi (1)n (1) , (19)

leads to the formally exact expression for �i [n] ,

�i [n] = Fi [J0] +
iX

k=1

�Fi�k [J0]

�J0 (1)
Jk (1) � Ji (1)n (1) +

iX

m=2

1

m!

k1+...+kmiX

k1,...,km�1

�mFi�(k1+...+km) [J0]

�J0 (1) . . . �J0 (m)
Jk1 (1) · · · Jkm (m)

Functionals {Fi [J0]} and its derivatives are assumed to be known and obtained via standard
many-body Quantum Monte Carlo scheme. Since n and � are considered to be independent,
the functionals Ji [n] can be obtained using,

��i [n]

�n (1)
= �Ji (1) . (20)

The special importance for the DFT scheme related with the zeroth order term,

�0 [n] = F0 [J0] � J0 (1)n (1) . (21)

Using Eqn (20)

�J0 (1) =
�F0 [J0]

�J0 (10)

�J0 (10)

�n (1)
� J0 (1) � n (10)

�J0 (10)

�n (1)

)
✓
�F0 [J0]

�J0 (10)
� n (10)

◆
�J0 (10)

�n (1)
= 0.

Strict convexity of �0 [n] prohibits (�J0 (10) /�n (1)) from having zero eigenvalues. Thus we
obtain that J0 obeys the equation:

n (1) =
�F0 [J0]

�J0 (1)
. (22)

Hence J0 is determined as a potential which generates the expectation value n in the nonin-

teracting (� = 0) system. Notice that the same exact notion appears in Kohn-Sham formal-
ism [11]. We refer to this noninteracting system as Kohn-Sham (KS) system and J0 as Kohn-
Sham potential.
The Kohn–Sham potential for interacting system VKS = Vext+VH +Vxc playing the role of the
”constrained fields” - Ji. Here Vext is external potential and VH is a Hartee potential. In principle
exchange-correlation potential Vxc is known only for homogeneous electron gas, therefore in all
practical applications one use a so-called local density approximation to DFT. In this case the
DFT functional defined in the following way:

FDFT [n] = T0[n] + Vext[n] + VH [n] + Vxc[n] (23)
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where T0 is kinetic energy of non-interacting systems. Finally, if we define the total electron
density and exchange density as
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the DFT approach can be formulated as
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the local density approximation (LDA) to the DFT reads

Vxc[n] =

Z
drn(r)"xc(n(r)) (28)

where "xc(n) is exchange correlation density for homogeneous electron Coulomb gas which
can be calculated with the QMC scheme [1].
In the DFT scheme we lose information about the non-equal time Green’s function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourself only to the ground state energy of the many-electron system. Moreover, we lose
information about all collective excitations in solids, such as plasmons or magnons, which can
be obtained from generalised susceptibility.
One of the most successful approach to correlated materials based on the combination of the
DFT scheme with a Dynamical Mean Field Theory (DMFT) for strongly interacting d� of
f� electron in the crystal. In the DMFT scheme one can obtained numerically exact solution
for a correlated part of the local functional. In the following section we discuss the general
strong-coupling perturbation theory based on so-called dual fermion (DF) transformations [5]
in the path integral formalism which allowed us to introduce the DMFT scheme as zero-order
DF-expansion and and shows a perturbative way to go beyond the DMFT approximations.

4 Dual Fermion approach with a general reference system
We start with a general lattice fermion model with the local Hubbard-like interaction vertex U .
Generalisation to the multi-orbital case is straightforward [21]. All equations will be written in
matrix form, giving the idea of how to rewrite the dual fermion (DF) formula to the multi-orbital
or multi-site case. The general strategy is related with formally exact separation of the local and
non-local correlations effects. We introduction of auxiliary dual fermionic fields which will
couple local correlated impurities or clusters back to the original lattice [5].
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Fig. 3: Generic Hubbard lattice for correlated lattice fermions with the local Coulomb interac-

tion U and hopping parameters t: m can label different orbitals or lattice sites.

magnons, which can be obtained from a generalized susceptibility or from the second variation
of the free-energy.
One can probably find the Baym-Kadanoff interacting potential �[G] for simple lattice models
using quantum Monte Carlo (QMC). Unfortunately due to the sign problem in lattice simula-
tions this numerically exact solution of the electronic correlations is not feasible. On the other
hand, one can obtain the solution of a local interacting quantum problem in a general fermionic
bath, using the QMC scheme, which has no sign problem if it is diagonal in spin and orbital
space. Therefore, a reasonable approach to strongly correlated systems is to keep only the local
part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one can
obtain numerically the correlated part of the local functional. In this scheme we only use the
local part of many electron vertex and obtain, in a self-consistent way, an effective functional
of the local Green function. In the following section we discuss the general dual fermion (DF)
transformations [3] which help us to separate the local fluctuations in many-body system and
show a perturbative way to go beyond the DMFT approximations.

3 Dual fermion approach with a general reference system

We start with a general lattice fermion model with the local Hubbard-like interaction vertex U.
Generalization to the multi-orbital case is straightforward [14]. All equations will be written
in matrix form, giving an idea of how to rewrite the dual fermion (DF) formula to the multi-
orbital or multi-site case. The general strategy is related with the formally exact separation of
the local and non-local correlation effects. We introduce auxiliary dual fermionic fields which
will couple local correlated impurities or clusters back to the original lattice [3].
Using the path-integral formalism (Appendix A) the partition function of a general fermionic
lattice system (Fig. 3) can be written in following form as a functional integral over Grassmann
variables [c⇤, c]

Z =

Z
D[c⇤, c] exp

�
�SL[c

⇤, c]
�
.

The original lattice action of interacting lattice fermions, similar to Eq. (3), can be written in
Matsubara space as a sum of the lattice one-electron contributions with the Fourier transformed
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hopping tk (or energy spectrum in the single-orbital case) and the local interaction part U

SL[c
⇤, c] = �

X

k⌫�

c⇤k⌫�
�
i⌫+µ�tk

�
ck⌫� +

X

i

Z
�

0

d⌧ U n⇤
i⌧"ni⌧# . (19)

In the following, ⌫ = (2n+1)⇡/�, (! = 2n⇡/�), n = 0,±1, . . . are the fermionic (bosonic)
Matsubara frequencies, � is the inverse temperature, ⌧ 2 [0, �) the imaginary time, and µ the
chemical potential. The index i labels the lattice sites, m refers to different orbitals, � is the
spin projection and the k-vectors are quasimomenta. In order to keep the notation simple, it is
useful to introduce the combined index |1i ⌘ |i,m, �, ⌧i and assume summation over repeated
indices. Translational invariance is assumed for simplicity in the following, although a real
space formulation is straightforward. The local part of the action, SU , may contain any type of
local multi orbital interaction.
In order to formulate an expansion around the best possible reference action, Fig. 4, a quan-
tum impurity (cluster) problem is introduced by a general frequency-dependent hybridization
function �⌫ and the same local interaction

S�[c
⇤
i
, ci] = �

X

⌫ ,�

c⇤
i⌫�

�
i⌫+µ��⌫

�
ci⌫� +

X

⌫

Un⇤
i⌫"ni⌫# , (20)

where �⌫ is the effective hybridization matrix describing the coupling of the impurity to an
auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a
quantum impurity model is that such a reference system can be solved numerically exactly
for an arbitrary hybridization function using the CT-QMC methods [1]. Using the locality of
the hybridization function �⌫ , the lattice action Eq. (19) can be rewritten exactly in terms of
individual impurity models and the effective one-electron coupling (�⌫�tk) between different
impurities, Fig. 5,

SL[c
⇤, c] =

X

i

S�[c
⇤
i
, ci]�

X

k⌫�

c⇤k⌫�
�
�⌫�tk

�
ck⌫� . (21)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
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the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c⇤, c) to
weakly correlated “dual” Grassmann fields (d⇤, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix e�k⌫ = (�⌫�tk)

ec
⇤
1

e�12 c2 = det e�
Z

D [d⇤, d] e�d
⇤
1
e��1
12 d2�d

⇤
1c1�c

⇤
1d1 . (22)

We can immediately seen that using this HS-transformation we “localize” the [c⇤
i
, cj] fermions:

while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c⇤

i
, ci].

With this reference system the lattice partition function becomes
Z

Zd
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Z
D[c⇤, c, d⇤, d] exp

�
� S[c⇤, c, d⇤, d]

�
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with Zd = det e�. The lattice action transforms to

S[c⇤, c, d⇤, d] =
X

i

Si

�
+

X

k,⌫,�

d⇤k⌫�
�
�⌫�tk

��1
dk⌫� . (24)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions
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For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si

�

decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si

�
for each site i separately. This completes the change of variables
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where Z� is the partition function of the impurity action Eq. (20) and g⌫ is the exact impurity
Green function

g12 = �hc1c⇤2i� =
1

Z�

Z
D[c⇤, c] c1c

⇤
2 e

�S�[c⇤,c]. (27)

The above equation may be viewed as the defining equation for the dual potential V [d⇤, d]. The
choice of matrices in Eq. (22) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (26) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [d⇤, d] =
1

4

X

1234

�1234 d
⇤
1d

⇤
2d4d3 , (28)

where for the local vertex the combined index 1 ⌘ {m⌫�} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. � is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be very useful choice for CT-QMC calculations of local vertex for multi-orbital case. It is given
then by connected part of the local two-particle correlations function

�1234 = �1234 � �0
1234 (29)

with the two-particle Green function of the local impurity (reference system) being defined as

�1234 = hc1c2c⇤3c⇤4i� =
1

Z�

Z
D[c⇤, c] c1c2c

⇤
3c

⇤
4 e

�S�[c⇤,c] . (30)

The disconnected part of a generalized susceptibility reads

�0
1234 = g14g23 � g13g24 . (31)

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [1]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d⇤, d] = �
X

k ⌫�

d⇤k⌫� G̃�1
0k⌫ dk⌫� +

X

i

Vi[d
⇤
i
, di] (32)

while the bare dual Green function is has the form

G̃0
k⌫ =

⇣�
tk��⌫

��1 � g⌫
⌘�1

. (33)

This formula involves only the local Green function g⌫ of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital CT-QMC
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the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c⇤, c) to
weakly correlated “dual” Grassmann fields (d⇤, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix e�k⌫ = (�⌫�tk)
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We can immediately seen that using this HS-transformation we “localize” the [c⇤
i
, cj] fermions:

while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c⇤

i
, ci].

With this reference system the lattice partition function becomes
Z

Zd

=

Z
D[c⇤, c, d⇤, d] exp

�
� S[c⇤, c, d⇤, d]

�
(23)

with Zd = det e�. The lattice action transforms to
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For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si
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Fig. 5: Schematic view on the non-local DF perturbation beyond a DMFT solution.

the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c⇤, c) to
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where Z� is the partition function of the impurity action Eq. (20) and g⌫ is the exact impurity
Green function

g12 = �hc1c⇤2i� =
1

Z�

Z
D[c⇤, c] c1c

⇤
2 e

�S�[c⇤,c]. (27)

The above equation may be viewed as the defining equation for the dual potential V [d⇤, d]. The
choice of matrices in Eq. (22) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (26) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [d⇤, d] =
1

4

X

1234

�1234 d
⇤
1d

⇤
2d4d3 , (28)

where for the local vertex the combined index 1 ⌘ {m⌫�} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. � is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be very useful choice for CT-QMC calculations of local vertex for multi-orbital case. It is given
then by connected part of the local two-particle correlations function

�1234 = �1234 � �0
1234 (29)

with the two-particle Green function of the local impurity (reference system) being defined as

�1234 = hc1c2c⇤3c⇤4i� =
1

Z�

Z
D[c⇤, c] c1c2c

⇤
3c

⇤
4 e

�S�[c⇤,c] . (30)

The disconnected part of a generalized susceptibility reads

�0
1234 = g14g23 � g13g24 . (31)

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [1]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d⇤, d] = �
X

k ⌫�

d⇤k⌫� G̃�1
0k⌫ dk⌫� +

X

i

Vi[d
⇤
i
, di] (32)

while the bare dual Green function is has the form

G̃0
k⌫ =

⇣�
tk��⌫

��1 � g⌫
⌘�1

. (33)

This formula involves only the local Green function g⌫ of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital CT-QMC
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B Exact relations between Green functions
After appropriate diagrammatic results for the dual self-energy and the dual Green function
have been obtained, they have to be transformed back to the corresponding physical quantities
in terms of real lattice fermions. The fact that dual fermions are introduced through the exact
Hubbard-Stratonovich transformation, Eq. (22), allows to establish exact identities between
dual and lattice Greens function [3, 15].
The relations between the n-particle cumulants of dual and lattice fermions can be established
using the cumulant (linked cluster) technique. To this end one may consider two different,
equivalent representations of the following generating functional

eF [J⇤
J,L

⇤
L] = Zd

Z
D[c⇤c, d⇤d] e�S[c⇤c,d⇤,d]+J

⇤
1 c1+c

⇤
2J2+L

⇤
1d1+d

⇤
2L2 . (51)

Integrating-out the lattice fermions from this functional similar to (26) (this can be done with
the sources J and J⇤ set to zero) yields

eF [L⇤
,L] = Z̃d

Z
D[d⇤, d] e�Sd[d⇤,fd+L

⇤
1d1+d

⇤
2L2 (52)

with Z̃d = Z/Z̃ . The dual Green function and the two-particle correlator related with non-local
susceptibilities are obtained from (52) by suitable functional derivatives, e.g.,

G̃12 = � �2F

�L2�L⇤
1

����
L⇤=L=0

(53)

where G ⌦ G is the antisymmetrized direct product of Green functions, so that the angular
bracket is the connected part of the dual two-particle Green function. Conversely, integrating
out the dual fermions from Eq. (51) using the HS-transformation, one obtains an alternative
representation, which more clearly reveals the connection of the functional derivatives with
respect to the sources J , J⇤, and L, L⇤. The result is

F [J⇤J, L⇤L] = L⇤
1(�� t)12L2 (54)

+ ln

Z
D[c⇤, c] exp

⇣
�S[c⇤, c] + J⇤

1 c1 + c⇤2J2 + L⇤
1(��t)12c2 + c⇤1(��t)12L2

⌘
.

In analogy to (53), the cumulants in terms of lattice fermions are obviously obtained by func-
tional derivative with respect to the sources J and J⇤ with L and L⇤ set to zero. Applying the
derivatives with respect to L, L⇤ to (54) with J = J⇤ = 0 and comparing to (53), e.g., yields
the identity

G̃12 = �(��t)12 + (��t)110G1020(��t)202. (55)

Solving for G provides the rule how to transform the dual Green function to the physical quan-
tity in terms of lattice fermions.
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Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy e⌃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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1-st order diagram for dual self-energy
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy e⌃:

a line represents the non-local eG43 and a box is the local �1234.

formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

���
0

1234(⌧1, ⌧2, ⌧3, ⌧4) = �hc1�c⇤2�c3�0c⇤4�0i
�
+ g�12g

�
0

34 � g�14g
�

32���0 .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

�d/m

1234(⌫, ⌫
0,!) = �""

1234(⌫, ⌫
0,!)± �"#

1234(⌫, ⌫
0,!).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d

1234(⌫, ⌫
0, 0) eGii

43(⌫
0) (35)
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g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]
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Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels
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continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p
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Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference

and target Green function for the two-site model.
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What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]
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Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels
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grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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We now can use the freedom to chose the hybridization function �⌫ in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)

X

k

�
g�1
⌫

+�⌫ � tk
��1

= g⌫ . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function �⌫ on the fermionic Matsubara frequencies i⌫n is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function g⌫ is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = �1/4 and cm = �3/4)

e⌃(2)ij
12 (⌫) =

X

⌫0!

X

3-8

X

↵=d,m

c↵�
↵,i

1345(⌫, ⌫
0,!) eGij

36(⌫ + !) eGji

74(⌫
0 + !) eGij

58(⌫
0) �↵,j

8762(⌫
0, ⌫,!).

Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃

⌃k⌫ = ⌃0
⌫
+⌃ 0

k⌫ (37)

⌃ 0
k⌫ = g�1

⌫
�
�
g⌫ + e⌃k⌫

��1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)

X

k

�
g�1
⌫

+�⌫ � tk
��1

= g⌫ . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function �⌫ on the fermionic Matsubara frequencies i⌫n is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function g⌫ is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃

⌃k⌫ = ⌃0
⌫
+⌃ 0

k⌫ (37)

⌃ 0
k⌫ = g�1

⌫
�

�
g⌫ + e⌃k⌫

��1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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We now can use the freedom to chose the hybridization function �⌫ in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)
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The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function �⌫ on the fermionic Matsubara frequencies i⌫n is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function g⌫ is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = �1/4 and cm = �3/4)

e⌃(2)ij
12 (⌫) =

X

⌫0!

X

3-8

X

↵=d,m

c↵�
↵,i

1345(⌫, ⌫
0,!) eGij

36(⌫ + !) eGji

74(⌫
0 + !) eGij

58(⌫
0) �↵,j

8762(⌫
0, ⌫,!).

Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃

⌃k⌫ = ⌃0
⌫
+⌃ 0

k⌫ (37)

⌃ 0
k⌫ = g�1

⌫
�
�
g⌫ + e⌃k⌫

��1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy e⌃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃�1

k⌫ = G̃�1
0k⌫ � e⌃k⌫ , and exact the relation of Appendix B, Eq. (55), we can directly

write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gk⌫ =
⇣�

g⌫ + e⌃k⌫

��1 � e�k⌫

⌘�1

. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex �1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples
As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level " coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, "0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ", but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature �=5 and the Padé analytical
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Fig. 9: Schematic representation of dual-fermion superperturbation test for a two-site model.

continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2⇥2 plaquette as the reference system (Fig. 11). We used the
2⇥2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4⇥4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =

0
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Fig. 11: Schematic representation of a plaquette cluster-reference system for the square lattice.

The standard reference system (Fig. 11) corresponds to the Green function, averaged over the
supercell Brillouin zone, which is equivalent to the self-consistent cluster-DMFT scheme [21].
Another possibility for the reference system is related with the k = 0 Green function, which
corresponds to the decoupled lattice of plaquettes with periodic boundary condition

�0 = tk=0 =

0

BBB@

" 2t 4p 2t

2t " 2t 4p

4p 2t " 2t

2t 4p 2t "

1

CCCA
. (40)

Note that the spectrum of this hopping Hamiltonian Eq. (40) is equal to the original cubic tight-
binding model

"k = 2t
�
cos kx + cos ky

�
+ 4p cos kx cos ky

in the 4 k-points: �=(0, 0), X=(⇡, 0), Y=(0, ⇡) and M=(⇡, ⇡) which corresponds to the 2⇥2

grid in the original Brillouin zone. In this sense, we can view the dual fermion perturbation
from the plaquette reference system [21] as a DF-multigrid interpolation from the 2⇥2 k-mesh
in the original cubic lattice to, e.g., 64⇥64 k-points (for this case one needs to use the 32⇥32

mesh in our supercell). This is exactly the task for the present numerical test.
In order to calculate the bare dual Green function we use a slightly modified version of Eq. (33)
(since �k = �0�tk = 0, for some k-points, e.g. for k = 0)

eG0
k,⌫ = �k

�
1� g⌫�k

��1
.

With this choice of reference system, one can again stay only with the exact diagonalization
scheme to calculate the dual Green function and the plaquette vertex function. We choose the
strong-coupling parameters with U=W=8, t=� 1, p=0 and the temperature T=1/3 for which
there is a diagrammatic QMC results [18]. In the Fig. 12 we plot the density of states (DOS)
for three different Green functions: ED for the reference plaquette, cluster perturbation (CP)
which corresponds to Eq. (39) with e⌃k⌫=0, and the results for the second-order plaquette dual-
fermion. We use Padé-analytical continuation from the Matsubara to the real energy axis [5].
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Supplementary Figure 2. Density of states for the half-filled case with t0 = 0 and U = W = 8 in the second-order DF approximation (DF2) in
comparison with ED results for 4x4 cluster and DQMC simulation of 10x10 system.

For numerical calculations it is more convenient not to calculate the lattice self-energy, but to use directly a simple connection
between the dual self-energy and the lattice Green’s function2

Gk⌫ =
⇣

g⌫ + ⌃̃k⌫

⌘�1
� t̃k⌫
��1
. (18)

where ⌃̃k⌫ is calculated via diagrammatic perturbation scheme using the G̃0k⌫ matrix and plaquette vertex �1234. The properly
rescaled dual self energy plays the role of a T-matrix for the the reference Green’s function g. With this relation, the calculation
only involves single and two-particle correlation functions of the reference system and no “amputated” quantities. By avoiding
many matrix inversions, this makes it suitable for multi-orbital systems. The case of the ”bare dual fermions” ⌃̃k⌫ = 0 is
equivalent to the cluster perturbation theory14.

As a benchmark, we show the calculations for the half-filled square lattice Hubbard model and compared with ED results
for 4x4 cluster as well as lattice DQMC15 results for 10x10 system. The parameters were chosen as following: t = 1, t0 = 0,
U = 8 (equal to the bandwidth W = 8t) and the temperature � = 5. Similar calculations have previously been done for higher
temperature16. The density of states for the cluster DF approximations using periodic 2x2 plaquete as the reference system
is presented in Supplementary Figure 2. The DOS for the second order dual fermion plaquette perturbations are in a good
agreements with two numerically exact scheme ED and DQMC. The DF theory reproduces the so-called four-peak structure of
the half-filled Hubbard model, which is standard feature of lattice QMC calculations17.

Supplementary Note 2. Dual Fermion approach with a general reference system

For all DF-calculations we used 44 fermionic Masubara frequencies for the dual Green’s function and for the vertex we used
22/21 fermion/boson frequencies. We checked few calculations with up to 160 Matsubara frequencies and results are not very
sensitive and well converged due to fast decay of the four point correlation functions for �  10.

The generalized susceptibility �P
i jkl(⌫, ⌫

0,!) is an important quantity that describes the two-particle correlations in a given
channel. For the particle-particle case it merely coincides with the two-particle Green’s function Pi jkl(⌫, ⌫

0,!), while in the
particle-hole channel � di↵ers from  by the disconnected contribution gi j(⌫)gkl(⌫0)�!,0. In this appendix ! will be set to 0
everywhere and we omit it in the notation.

Let us look at the structure of the particle-particle generalized susceptibility in more detail. We define the superconducting
nonlocal pairing operator as �i j(⌫) = c"i,⌫c

#

j,�⌫ (in order not to overload the formulas we consider only the ! = 0 situation).
The singlet pairing corresponds to ("# � #")/

p
2 combination, or equivalently the singlet pairing operator is given by �s

i j(⌫) =
(�i j(⌫) + � ji(�⌫))/

p
2. The generalized particle-particle singlet susceptibility is defined as

�s
i jkl(⌫, ⌫

0) = h�s
i j(⌫)�

s†
kl (⌫0)i = �P"#"#

i jkl (⌫, ⌫0) � �P"##"
i jkl (⌫, ⌫0) = �P"#"#

i jkl (⌫, ⌫0) + �P"#"#
i jlk (⌫,�⌫0) (19)

.
To understand the special role of the plaquette degenerate point, we consider a single component of the particle-particle singlet

susceptibility of the plaquette, namely �s
0110 at ⌫ = ⌫0 = ⇡/�. Supplementary Figure 3 shows this objects as a function of the



Condition for D and relation with DMFT

To determine D, we require 
that Hartree correction in dual variables vanishes.
If no higher diagrams are taken into account, one obtains DMFT:

Higher-order diagrams give corrections 
to the DMFT self-energy,  and already 
the leading-order correction is nonlocal.
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy e⌃:

a line represents the non-local eG43 and a box is the local �1234.

formalism. Transformation to the original DF-normalization where both dual Gd and real Green
function have the same dimension unit reads

Gd = g eGg = GDMFT � g GDMFT =
�
g⌫+�⌫�tk

��1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

���
0

1234(⌧1, ⌧2, ⌧3, ⌧4) = �hc1�c⇤2�c3�0c⇤4�0i
�
+ g�12g

�
0

34 � g�14g
�

32���0 .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

�d/m

1234(⌫, ⌫
0,!) = �""

1234(⌫, ⌫
0,!)± �"#

1234(⌫, ⌫
0,!).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d

1234(⌫, ⌫
0, 0) eGii

43(⌫
0) (35)
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Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (⌫, ⌫ 0), and one bosonic, (!), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels
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Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)
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We now can use the freedom to chose the hybridization function �⌫ in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function �1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes eGloc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function �⌫ (Fig. 7)
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= g⌫ . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function �⌫ on the fermionic Matsubara frequencies i⌫n is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function g⌫ is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk��⌫ |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = �1/4 and cm = �3/4)
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8762(⌫
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃

⌃k⌫ = ⌃0
⌫
+⌃ 0

k⌫ (37)

⌃ 0
k⌫ = g�1

⌫
�
�
g⌫ + e⌃k⌫

��1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].

Self-consistent condition:

DMFT minimize “distance”:
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Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution ⌃0 (e.g. the
impurity) and corrections ⌃ 0, which are related with the dual self-energy e⌃
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We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =











Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0











For a generalN ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫

D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N
∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[

G−1
σ (τ − τ ′)

]

IJ
cJσ(τ

′)

+
N
∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

What is a best scheme?
Quantum Monte Carlo !



CT-QMC: random walks in fermionic-det space
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DFT+ DMFT:  Curie Temperature

A. Hausoel, et al Nat. Comm. 8, 16062 (2017)
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FIG. 1. Curie Temperature in iron and nickel. Ferromagnetic order parameter in bcc-iron (a) and in fcc-nickel (b)
as a function of temperature. The Curie temperature TC is signalled by the magnetisation dropping to zero. For nickel
we obtain TC = 600K, very close to the experimental value of 627K [15]. Our estimated TC for iron is around 1500K, i.e.
roughly 30% larger than the experimental one of 1044K [15] (for a discussion, see Methods, where also a description of the three
parametrization used for the Coulomb interaction can be found). c, Imaginary part of the Matsubara self-energies. Im⌃(i⌫n!0)
is inversely proportional to the lifetime of the quasiparticles. Contrary to nickel, the scattering rate in iron at ambient pressure is
large, even though the insulating-like shape of the Density-Density eg-self-energy is replaced by an upturn at small frequencies in

Kanamori and full-Coulomb. e, Temperature dependence of the local spin susceptibility �!=0
loc (T ) = g2

R �

0
d⌧

P
ij

⌦
Si
z(⌧)S

j
z(0)

↵

in iron, calculated with DFT+DMFT. Calculations are performed following the non-ordered magnetic phase, also below the
ferromagnetic transition temperature TC at which the uniform (Q=0) susceptibility diverges (not shown). This shows how,
above as well as below TC, �

!=0
loc (T ) displays in iron a marked “1/T” behaviour, indicative of the existence of robust local

magnetic moments. The DFT+DMFT data are compared to the uncorrelated and “bubble” susceptibilities, i.e. calculated
respectively from the bare and “dressed” Green’s functions, neglecting the e↵ect of vertex corrections. In the inset to e we show
the decay in imaginary time ⌧ of the local spin susceptibility at two di↵erent temperatures for Density-Density (red curves)
and Kanamori (blue curves). The fact that �loc(⌧ =�/2) is going to zero much more slowly than � indicates the existence of
persistent local moments at these temperatures.

Ferromagnetic transition temperatures96

The Curie temperature (TC) of iron and nickel has97

been the object of several studies, in particular using98

the merger of density functional theory and dynamical99

mean-field theory (DFT+DMFT) [16–18]. This theoret-100

ical approach gives reliable results for three-dimensional101

materials with large coordination number, and is able to102

access the magnetic as well as the non-ordered phase103

above TC. The latter is described by DFT+DMFT104

as non-vanishing local magnetic moments with strong105

quantum fluctuations, which is crucial for the physics106

of correlated itinerant magnets [19]. The hitherto pub-107

lished results di↵er in the Coulomb matrix elements Uijkl108

and in the approximation in which they are treated in109

the many-body part of the algorithm (DMFT) [9, 20, 21].110

To calculate TC we use ab-initio-estimated Uijkl and111

go, for the first time, beyond the so-called “Density-112

Density” and Kanamori parametrizations (see Methods113

and Ref.[22]). This allows us not only to improve the114

agreement with the experimental transition tempera-115

tures but, even more importantly, to make a step for-116

ward in the understanding of the di↵erences between117

these two itinerant magnets. In Fig. 1a and b we show118

the DFT+DMFT magnetisation curves. The agreement119

with the experimental TCs is very good (for the over-120

estimate of TC in iron see related discussion in Meth-121

ods). There is however a substantial dependence on the122

parametrization of the Coulomb interaction, which re-123

flects the big influence of electron-electron interaction124

in iron and nickel. Our DFT+DMFT spectra (see Sup-125

plementary information) also reproduce the known sig-126

natures of correlation in both materials, in particular127

the visible spin-polarised photoemission satellite around128
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DFT+DMFT SPECTRA

Spectral information can be obtained from CT-QMC data via a transformation of the Green’s function from imaginary
time or Matsubara axis to real energy. Since this transformation is mathematically ill-defined and the QMC data
is inherently noisy, one has to resolve to special techniques, such as maximum entropy [26] or stochastic analytical
continuation [27, 28]. Here we use the stochastic optimization method for analytical continuation developed by
Mishchenko et al. [23–25] to obtain spectra from the imaginary time Green’s function. Since the spectra are not the
main focus of this work, we only discuss them here briefly.
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FIG. 2: Spectra of the 3d shell for Fe using the three parametrizations of the interaction as discussed above. The top row
shows the majority, the bottom row the minority spin channel.

The results for Fe are shown in Fig. 2 for the three parametrizations of the interaction used. The spectra generally
agree well with photoemission experiments [30–32], showing a principal peak below the Fermi level, a secondary peak
at about 2eV binding energy, as well as additional features at higher binding energies with a potential sattelite at
about 6-7eV. The spectra undergo an evolution as a function of the parametrization of the Coulomb interaction,
showing more multiplett features when going form density-density (panels a,b in Fig. 2) towards the full inclusion of
Uijkl (e,f in Fig. 2). This is somewhat expected, due to the large e↵ects of the Coulomb interaction on the electronic
structure of iron in general, as discussed in the main text.
For Ni the situation is complicated by the long history of the sattelites in the photoemission spectrum. Our results for
Ni are shown in Fig. 3 for the three parametrizations of the interaction used. Here, the spectra do not vary as strongly
as in the case of iron. This is again not unexpected, since the di↵erent parametrizations do not have such a strong
e↵ect in Ni. Only small changes in the intensities and positions of features are observed. Comparing to experiments
we identify a large principal peak, a sholder next to it, as well as an additinal peak at about 2eV binding energy
[31, 33–35]. Apart from these, we see only one additional satellite around 6�8eV binding energy, which we identify as
the ”6eV valence band satellite”. In Fig. 4 we show an enlarged version of the satellite region. The whole spectrum
below about 4eV binding energy shows stronger majority than minority character, in accordance with experiment
[36, 37]. We find the relative spin polarization (majority-spin minus minority-spin divided by their sum) to be between
40% (density-density) and 35% (Kanamori, Full) for the satellite depending on the parametrization of the Coulomb
interaction. We do not see additional spectral features beyound the energy regions shown. Satellites reported at
higher binding energies have been identified in Ref. [33] as potential artifacts of data subtraction procedures.
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FIG. 3: Spectra of the 3d shell for Ni using the three parametrizations of the interaction as discussed above. The top row
shows the majority, the bottom row the minority spin channel.
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FIG. 4: Spectra for Ni, with an enlarged sattelite region around 6eV. The top row shows the majority, the bottom row the
minority spin channel.
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Spectral Function for Fe and Ni
paramagnetic DFT+DMFT

LDA+DMFT 7.19

Fig. 10: Illustration of the DFT+DMFT procedure. As a first step, the Kohn-Sham (KS) equa-

tions, determining the Kohn-Sham potential and thus the Hamiltonian, are solved. Secondly, the

KS Green function and from it the starting value for the bath Green function G is constructed

and passed on to the DMFT loop, which consists of the usual steps described before. A potential

self-consistency over the charge density is also indicated [31].
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SUPPLEMENTARY FIG. 5: Momentum resolved spectra. Total momentum resolved spectral functions of the 3d shell for
Fe and Ni at T = 386K using the density-density parametrization of the interaction as discussed above.

We have also performed a preliminary comparison of our calculations with angle-resolved photoemission spectroscopy
(ARPES) data, which is shown in Supplementary Fig. 5. Unlike the local spectral functions shown above, the data
were obtained using a faster standard maximum-entropy approach. We compare our results with ARPES of Himpsel
et al. [39] for Ni and of Schäfer et al. [40] for Fe. We have used the results of the density-density interaction, since
the QMC data at low temperature have the least noise here.
For Ni the agreement is quite satisfactory only close to the Fermi level along L-�, but worsens at larger binding
energies as well as along �-X. From the analytically continued Greens function at the L-point we have estimated the
exchange splitting to be about 0.25eV in good agreement with experiments that give values between 0.26 ± 0.05eV
[41] and 0.31 ± 0.03eV [39]. Since a recent study [7], employing quasiparticle self-consistent GW (QSGW) to account
for non-local correlations, found that using QSGW+DMFT leads to an improved description for the whole band
structure, it appears that non-local e�ects play an important role in ferromagnetic Ni.
For Fe the agreement between our data and ARPES is very good along the N-�-P lines of the band structure. Larger
quantitative discrepancies appear along P-H-�, which is a trend also seen in the Gutzwiller-DFT of Schickling et al.
[42]. Since we can reasonably describe the ARPES spectrum of the ferromagnetic phase of Fe, it appears that local
correlations play an important role here. On the other hand it was shown in Ref. [7] that the ARPES spectrum of
Fe is also very well described within QSGW alone, neglecting local correlations. In this case, only a simultaneous
analysis of one- and two-particle quantities within the same theoretical scheme can clarify the relative role of local
(DMFT) and non-local (QSGW) correlations.

Fig. 11: Momentum resolved spectral function for ferromagnetic Fe and Ni obtained by

LDA+DMFT for T=380 K in comparison with photoemission data (dots) [35].A. Hausoel, M. Karolak, E. Sasioglu,  A. L., K. Held,  A. Katanin,  A.Toschi and G. Sangiovanni
Nat. Comm. 8, 16062 (2017)
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out any spatial restrictions, which is a decisive advantage over
cluster extensions of DMFT [35–40]. Finally, the D-TRILEX
approach accounts for the exact local three-point vertex cor-
rections at both sides of the GW-like diagrams for the self-
energy and polarization operator, which preserves correct or-
bital structure of spatial fluctuations. These vertices are cru-
cial for describing the isotropic nature of the spin fluctuations
described above: in their absence, this physics is not even
qualitatively captured.

Model — We start with a realistic t2g tight-binding model
for the perovskite materials described by the three-orbital
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where operator c(†)
il� annihilates (creates) an electron with spin

projection � = {", #} on site i and orbital l = {1, 2, 3}. The
anisotropy of this model originates from hopping parameters
tll
i j that are diagonal in the orbital space and have the following

structure in momentum (k) space [41]

tll(k) = ✏ + 2t⇡(C↵ + C�) + 2t�C� + 4t�C↵C�, (2)

where ✏ is the center of bands and C↵ = cos k↵. For simplicity,
we introduce three non-equivalent ↵, �, � indices, where the
first two are defined by the orbital label l = {↵�} with 1 = yz,
2 = zx, and 3 = xy. The last index � takes the remaining value
among {x, y, z}. In this model, orbital degrees of freedom are
tied to a spatial motion of the electrons, because the latter can
hop only within the same orbital in a strictly defined direction,
which is di↵erent for every considered orbital. The t⇡,�,� ma-
trix elements describe the main hopping processes that pro-
vide the t2g symmetry. We choose t⇡ = 1, which defines the
energy scale of the system, and a realistic value for t� = 0.12
for the SrVO3 perovskite [41]. We note that t� plays the role
of t0 in a two-dimensional model for cuprates and shifts the
van-Hove singularity (vHS) away from the Fermi level. The
presence of the vHS at the Fermi energy results in a peak in
the density of states, which enhances correlation e↵ects in the
system. Thus, for the half-filled case (hNii = 3 electrons per
site) we preserve the particle-hole symmetry for t2g bands and
set t� = 0. For the case of hNii = 4 we choose the positive
value for t� = 0.35 [41], which ensures that the vHS again
appears at the Fermi level [42].

The on-site charge and spin density operators are defined as
nil = nil" + nil# and mil = nil" � nil#, where nil� = c†il�cil�. The
interaction is parametrized in the Kanamori form [43] with in-
traorbital U and interorbital U0 Coulomb interactions, and the
Hund’s coupling J. This parametrization is rotationally invari-
ant provided U0 = U � 2J. Given that the matrix of hopping
amplitudes is diagonal in orbital space, we consider only the
density-density part of the Kanamori interaction
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FIG. 1. Diagrams for the non-local self-energy ⌃ll and polarization
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tween charge and spin densities can be obtained rewriting the
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As has been shown recently, this decoupling provides a rela-
tively good result for the self-energy [28, 44].

Many-body e↵ects — The non-interacting part of the prob-
lem (1) is highly anisotropic. We find, however, that many-
body interactions can drastically change this property of the
system. In this work collective electronic fluctuations are
taken into account via the simplest consistent diagrammatic
extension of DMFT [45], which yet allows to consider de-
sirable lowest-order vertex corrections without heavy numer-
ical e↵orts. This theory is formulated as a multi-orbital ex-
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introduced recently as a simplified version of the dual bo-
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cluster extensions of DMFT [35–40]. Finally, the D-TRILEX
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rections at both sides of the GW-like diagrams for the self-
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cluster extensions of DMFT [35–40]. Finally, the D-TRILEX
approach accounts for the exact local three-point vertex cor-
rections at both sides of the GW-like diagrams for the self-
energy and polarization operator, which preserves correct or-
bital structure of spatial fluctuations. These vertices are cru-
cial for describing the isotropic nature of the spin fluctuations
described above: in their absence, this physics is not even
qualitatively captured.

Model — We start with a realistic t2g tight-binding model
for the perovskite materials described by the three-orbital
Hamiltonian

H = �
X

i j,l,�

tll
i jc
†

il�c jl� +
1
2

X

i,ll0

⇣
Uch

ll0 nilnil0 + Usp
ll0milmil0

⌘
, (1)

where operator c(†)
il� annihilates (creates) an electron with spin

projection � = {", #} on site i and orbital l = {1, 2, 3}. The
anisotropy of this model originates from hopping parameters
tll
i j that are diagonal in the orbital space and have the following

structure in momentum (k) space [41]

tll(k) = ✏ + 2t⇡(C↵ + C�) + 2t�C� + 4t�C↵C�, (2)

where ✏ is the center of bands and C↵ = cos k↵. For simplicity,
we introduce three non-equivalent ↵, �, � indices, where the
first two are defined by the orbital label l = {↵�} with 1 = yz,
2 = zx, and 3 = xy. The last index � takes the remaining value
among {x, y, z}. In this model, orbital degrees of freedom are
tied to a spatial motion of the electrons, because the latter can
hop only within the same orbital in a strictly defined direction,
which is di↵erent for every considered orbital. The t⇡,�,� ma-
trix elements describe the main hopping processes that pro-
vide the t2g symmetry. We choose t⇡ = 1, which defines the
energy scale of the system, and a realistic value for t� = 0.12
for the SrVO3 perovskite [41]. We note that t� plays the role
of t0 in a two-dimensional model for cuprates and shifts the
van-Hove singularity (vHS) away from the Fermi level. The
presence of the vHS at the Fermi energy results in a peak in
the density of states, which enhances correlation e↵ects in the
system. Thus, for the half-filled case (hNii = 3 electrons per
site) we preserve the particle-hole symmetry for t2g bands and
set t� = 0. For the case of hNii = 4 we choose the positive
value for t� = 0.35 [41], which ensures that the vHS again
appears at the Fermi level [42].

The on-site charge and spin density operators are defined as
nil = nil" + nil# and mil = nil" � nil#, where nil� = c†il�cil�. The
interaction is parametrized in the Kanamori form [43] with in-
traorbital U and interorbital U0 Coulomb interactions, and the
Hund’s coupling J. This parametrization is rotationally invari-
ant provided U0 = U � 2J. Given that the matrix of hopping
amplitudes is diagonal in orbital space, we consider only the
density-density part of the Kanamori interaction
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FIG. 1. Diagrams for the non-local self-energy ⌃ll and polarization
operator ⇧ll0 . Grey triangles correspond to full local vertex functions
⇤ll0 of DMFT impurity problem. Wiggly line depicts the renormal-
ized interaction Wll0 . Other bold lines are dressed non-local Green’s
functions Gll. Labels l = {1, 2, 3} are orbital indices. Summation over
internal orbital indices is implied.

where U⇤ = 2U0 � J. This expression for the interaction be-
tween charge and spin densities can be obtained rewriting the
intraorbital Coulomb potential in the Ising-like form

Unil"nil# =
U
4

⇣
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⌘
. (4)

As has been shown recently, this decoupling provides a rela-
tively good result for the self-energy [28, 44].

Many-body e↵ects — The non-interacting part of the prob-
lem (1) is highly anisotropic. We find, however, that many-
body interactions can drastically change this property of the
system. In this work collective electronic fluctuations are
taken into account via the simplest consistent diagrammatic
extension of DMFT [45], which yet allows to consider de-
sirable lowest-order vertex corrections without heavy numer-
ical e↵orts. This theory is formulated as a multi-orbital ex-
tension of the D-TRILEX approach [28, 29] that has been
introduced recently as a simplified version of the dual bo-
son (DB) theory [46–51]. Both methods use DMFT as a
starting point for diagrammatic expansion. Thus, the lo-
cal self-energy ⌃imp

ll (⌫) and polarization operator ⇧imp
l0l00 (!) are

given by an e↵ective impurity problem of DMFT-type. To
avoid double-counting issues, the diagrammatic part of the
theory that accounts for spatial correlation e↵ects is formu-
lated in a dual space. To this aim, we perform a transfor-
mation of initial fermionic variables and exactly integrate out
the local impurity problem [28]. This allows to construct
an analog of the Almbladh functional [52] in the dual space
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&
ll0W

&
l0l00⇤
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and Matsubara fermion ⌫ (boson !) frequency dependence.
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lattice Green’s function Gll(k). W&l0l00 (q) is the renormalized
interaction in the charge (& = ch) and spin (& = sp) chan-
nel. These quantities can be obtained self-consistently via
standard Dyson equations G�1
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site) we preserve the particle-hole symmetry for t2g bands and
set t� = 0. For the case of hNii = 4 we choose the positive
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appears at the Fermi level [42].
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FIG. 1. Diagrams for the non-local self-energy ⌃ll and polarization
operator ⇧ll0 . Grey triangles correspond to full local vertex functions
⇤ll0 of DMFT impurity problem. Wiggly line depicts the renormal-
ized interaction Wll0 . Other bold lines are dressed non-local Green’s
functions Gll. Labels l = {1, 2, 3} are orbital indices. Summation over
internal orbital indices is implied.
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extension of DMFT [45], which yet allows to consider de-
sirable lowest-order vertex corrections without heavy numer-
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introduced recently as a simplified version of the dual bo-
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starting point for diagrammatic expansion. Thus, the lo-
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given by an e↵ective impurity problem of DMFT-type. To
avoid double-counting issues, the diagrammatic part of the
theory that accounts for spatial correlation e↵ects is formu-
lated in a dual space. To this aim, we perform a transfor-
mation of initial fermionic variables and exactly integrate out
the local impurity problem [28]. This allows to construct
an analog of the Almbladh functional [52] in the dual space
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and ⌃ll(k) = ⌃imp
ll (⌫) + ⌃ll(k) and ⇧l0l00 (q) = ⇧imp

l0l00 (!) + ⇧l0l00 (q)
are the total self-energy and polarization operator, respec-
tively [53]. In this way, the D-TRILEX theory provides an
equal footing description of collective charge and spin fluctu-
ations. The susceptibility X&ll0 (q) in the corresponding chan-
nel, which is an experimentally observable quantity, can also
be obtained via Dyson’s equation X& �1

ll0 (q) = ⇧& �1
ll0 (q) � U&ll0 .

Finally, it is worth noting that the introduced improved
GW-like form for the non-local self-energy (5) and polariza-
tion operator (6) additionally accounts for vertex corrections
at both sides of the corresponding diagrams [54]. ⇤&ll0 (⌫,!) is
the full local three-point vertex given by the DMFT impurity
problem, and the quantity ⇤⇤ &ll0 (⌫,!) = ⇤&l0l(⌫ + !,�!) is intro-
duced to simplify notations. As Fig. 1 demonstrates, this form
of the diagrams allows to preserve correct orbital symmetry
of electronic fluctuations. Indeed, the orbital structure of both
lattice sites that are connected by the non-local Green’s func-
tion G is considered in a symmetric way, which is missing in
the original TRILEX approach [55, 56]. It should be noted
that the full local vertex function ⇤ll0 serves as the bare inter-
action vertex in the renormalized perturbation D-TRILEX the-
ory [28, 29]. Therefore, the introduced diagrammatic struc-
tures (5) and (6) do not contradict the exact Hedin form for
the self-energy and polarization operator [30]. As has been
clarified in Ref. 49, both of these expressions can be identi-
cally rewritten in the conventional Hedin form that contains a
non-local vertex function at one side of the diagram.

A particular symmetry of the considered model (1) allows
us to use a simplified version of the multi-orbital D-TRILEX
approach [57], where the vertex function ⇤ll0 and renormal-
ized interaction Wl0l00 are taken in the density-density form
and depend on two orbital indices instead of four. This makes
the dressed Green’s function Gll diagonal in the orbital space
and thus anisotropic. However, as we shall see later, the ini-
tial single-particle anisotropy of the model (2) does not nec-
essarily extend to two-particle quantities. Indeed, although
the Green’s function is diagonal, the presence of vertex cor-
rections ⇤ll0 leads to non-diagonal contributions to the non-
local polarization function (6). Further, a matrix structure of
the Dyson equation for the renormalized interaction Wll0 and
the susceptibility Xll0 even more entangles orbital and spatial
degrees of freedom. In this way, strong non-local collective
fluctuations, which are magnetic in our particular case, can
destroy the spatial anisotropy in the orbital space. This obser-
vation suggests to reconsider the commonly believed mean-
field-based statement that correlations usually tend to increase
the anisotropy of a system.

Orbital isotropy of magnetic fluctuations — Remarkably,
we find that the strength and orbital structure of spatial mag-
netic fluctuations are controlled by the value of the local
Hund’s coupling J. To illustrate this point, let us first con-
sider the interacting three-orbital model (1) at half-filling with
U = 4 and temperature T = 1/2. For the specified parame-
ters, the leading eigenvalue (l.e.) � of the Dyson equation for
the susceptibility Xll0 indicates that strongest collective excita-
tions in the system correspond to a magnetic instability chan-

FIG. 2. The absolute value of the diagonal yz orbital component
of the spin susceptibility Xsp

11(qx, qy; qz = 0,! = 0) obtained for the
half-filled t2g model for U = 4. Color bars show the strength of
Xsp. (a) In the case of small Hund’s coupling J = 0.2, the diagonal
component of the susceptibility is highly anisotropic and is almost
dispersionless along qx direction. (b) Increasing the Hund’s coupling
to J = 0.65, intraorbital spin fluctuations become isotropic with a
pronounced antiferromagnetic behavior depicted by the largest value
of Xsp

11 at corners of the Brillouin zone.

nel. We observe that for a relatively small J = 0.2, the l.e.
of magnetic fluctuations is not very large (� = 0.78). In this
case, the diagonal (intraorbital) part of the spin susceptibility
Xsp

ll presented in Fig. 7 a for the yz orbital is much larger than
the non-diagonal (interorbital) one shown in the Supplemental
Material (SM) [58]. Moreover, the Xsp

11(qx, qy; qz = 0,! = 0)
component of the susceptibility is highly anisotropic in mo-
mentum space and is almost dispersionless along qx direction.
This spatial structure of the spin susceptibility originates from
the orbital symmetry of t2g hopping processes (2). The same
symmetry also leads to the identical qy and qz momentum de-
pendence of Xsp

11(q). Importantly, all three diagonal compo-
nents Xsp

11, Xsp
22, and Xsp

33 of the susceptibility show a similar
behavior in momentum space with a pronounced dispersion-
less structure along qx, qy and qz directions, respectively. This
result indicates that for small Hund’s coupling, orbital degrees
of freedom are anisotropic.

Increasing the value of the Hund’s coupling to J = 0.65,
the magnetic l.e. approaches unity (� = 0.99), which indi-
cates that spin fluctuations are strongly enhanced [59]. This
can also be concluded from Fig. 7 comparing the amplitude
of the susceptibility for two considered cases of J. Moreover,
at this large value of the Hund’s coupling interorbital compo-
nents of Xsp (see SM [58]) become comparable to intraorbital
ones (Fig. 7 b). This is the first signature of the isotropic or-
bital behavior of magnetic fluctuations. A proximity of the
l.e. to unity indicates that all orders of an e↵ective perturba-
tion expansion given by the Dyson equation contribute almost
equally to the total Xsp. This leads to a more thorough mixing
of orbital and spatial degrees of freedom in the susceptibility.
As shows Fig. 7 b, this results in a highly isotropic form of
spin fluctuations with a clearly distinguishable antiferromag-
netic (AFM) behavior. Interorbital components of the sus-
ceptibility remain isotropic in momentum space [58]. This
means, that orbital degrees of freedom are no more tied to a
specific spatial direction defined by hopping parameters (2) of

Spin susceptibility 
(yz-component)
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FIG. 3. Feynman diagram for the first order (left) and the second order (right) dual fermion perturbation for the self-energye⌃: a line represents
the non-local eG43 and a box is the local �1234.

III. PERTURBATION IN DUAL SPACE

The cluster dual fermion perturbation theory (Fig.2) starts with the interaction between dual fermions. We use here the
particle-hole notation for the local vertex and write explicit spin indices and Matsubara frequency structure of the connected two
particle Green’s function17,28 as follows:

����01234((⌫, ⌫0,!) =
D
c1�(⌫)c⇤2�(⌫ + !)c3�0 (⌫

0 + !)c⇤4�0 (⌫
0)
E
�
� �g�12(⌫)g�

0
34(⌫0)�!0 + �g�14(⌫)g�32(⌫ + !)�⌫⌫0���0 .

In Matsubara space, the vertex depends on two fermionic (⌫, ⌫0) and one bosonic (!) frequencies. For the sake of completeness
and the reader’s convenience we mention that the connection between the particle-particle and the particle-hole notation reads
�1234(⌫, ⌫0,!) = �P

1324(⌫, ⌫0, ⌫+⌫0+!) with �P
1234(⌫, ⌫0,!) = hc1(⌫)c2(!�⌫)c⇤3(!�⌫0)c⇤4(⌫0)i�. DO NOT FORGET TO CHANGE IF

WE DECIDE TO CHANGE (13) Thus, the bare vertex of the dual fermion perturbation theory is the full connected correlation
function of the reference system. The present vertex di↵ers from the usual dual fermion expression due to the di↵erent rescaling
factor of the Hubbard-Stratonovich field. Here, we avoid amputation of the vertex, which requires division by Green’s functions
at all external points.

It is useful to symmetrize the vertex into charge density (d) and magnetic (m) channels:

�d/m
1234(⌫, ⌫0,!) = �""1234(⌫, ⌫0,!) ± �"#1234(⌫, ⌫0,!)

Now we can write the first-order dual fermion self-energy which is local in plaquette space (Fig.3):

e⌃(1)i
12 (⌫) =

X

⌫0,3,4

�d
1234(⌫, ⌫0, 0)eGii

43(⌫0) (19)

The second order Feynman diagram for DF-perturbation (Fig.3) in real space (Rij) has density- and magnetic-channel contri-
butions with corresponding constants (cd = � 1

4 and cm = � 3
4 ) :

e⌃(2)i j
12 (⌫) =

X

⌫0!

X

3�8

X

↵=d,m

c↵�↵,i1345(⌫, ⌫0,!)eGi j
36(⌫ + !)eG ji

74(⌫0 + !)eGi j
58(⌫0)�↵, j8762(⌫0, ⌫,!) (20)

In principle, one can go beyond the second order perturbation expansion and include dual ladder diagrams28,29, dual parquet
diagrams30 or a stochastic sum of all dual diagrams with the two-particle vertex �1234, using diagrammatic Monte Carlo in
dual space31–33. In addition, the diagrammatic series can be made self-consistent, using dual skeleton diagrams and “bold”
lines. Finally, one can also update the reference system (and obtain a frequency dependent �) with quite involved numerical
approach. But as the main goal of the present work is not to present quantitatively reliable results but rather to highlight the
connection between the degenerate reference system and the superconducting fluctuations we will mostly stick to the second-
order consideration.

IV. RESULTS FOR PLAQUETTE DUAL SCHEME

We study the optimally doped square lattice Hubbard model, with nearest neighbour hopping t and NNN hopping t0. As
illustrated in Fig.2, the original lattice can be reconsidered as a lattice of 2 ⇥ 2 plaquettes. Every unit cell of the plaquette lattice
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†
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i4�0i{s} = hci1�c
†

i2�i{s} hci3�0c
†

i4s0
i{s} + ���0hci1�c

†

i4�i{s} hc
†

i2�ci3�i{s} (16)

In the path-integral later, we will used a short notation for correlators of Grassmann

variable (c1, c⇤1) with 1 ⌘ (i, `, �)

hc1c⇤2c3c⇤4i{s} = hc1c⇤2i{s} hc3c⇤4i{s} � hc1c⇤4i{s} hc3c⇤2i{s} (17)

For DF-calculations we used:

⌃12 ⇠
1

Z
Tr
{s}

hc1c⇤2c3c⇤4i{s}G̃43 (18)

II. DETERMINANTAL QUANTUM MONTE CARLO: PRELIMINARIES

The above discussion on the Ising model was tremendously simplified due to the fact

that the eigenstates of the Hamiltonian are given as products over single particle states.

Quantum e↵ects manifest themselves in the fact that di↵erent terms in the Hamiltonian do

not commute. In the case of the Hubbard model, the interaction and hopping terms do not

commute with each other, and, in addition, hopping terms involving the same site also do

4

which are the elements of the Ns ⇥Ns diagonal matrix V
�(`). and Partition function

Z =

✓
1

2

◆NdL

Tr
{s}

Y

�

det
⇥
1+ B

�
LB

�
L�1 . . .B

�
1

⇤

Z =

✓
1

2

◆NdL

Tr
{s}

Y

�

det

0

BBBBBBBB@

1 0 0 · · · 0 B
�
L

�B
�
1 1 0 · · · 0 0

0 �B
�
2 1 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · �B
�
L�1 1

1

CCCCCCCCA

=

✓
1

2

◆NdL

Tr
{s}

Y

�

det
⇥
1+ B

�
LB

�
L�1 . . .B

�
1

⇤

Important for future that ALL correlations function can be calculated, since Wick’s

theorem holds for a fixed HS configuration[8, 11, 14]; the two-particle Green’s functions are
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DISCUSSION
There appears to be a close relation between the physics of
cuprate superconductors, with the clear existence of a quantum
critical point at δc ≈ 0.24, and the degeneracy of the plaquette in
the strong-coupling regime. In this sense, the plaquette and not
the single site can be considered the minimal building block for
cuprate physics, with pair binding arising in a lattice of plaquettes.
Exact diagonalization shows that the cluster pair binding

energy is dramatically enhanced when four plaquettes are
considered together, compared to the pair binding energy in a
single plaquette. Given their large binding energy, these pairs
should probably exist also at much higher temperatures than the
superconducting critical temperature, remaining noncoherent.
The exact diagonalization also shows the important role played
by the next-nearest hopping t0, with a large pair-binding energy
at t0=t ! "0:3.
Dual fermion expansion starting from the plaquette reference

system provides a complementary way to investigate inter-
plaquette correlations. For the doping δ ≤ 0.25 the dual Bethe-
Salpeter equation clearly shows the presence of a low tempera-
ture dx2"y2 instability, which has an eigenvalue substantially larger
than the magnetic channel. Starting from the degenerate
plaquette, fluctuations in the density channel are also very strong,
but these seem to be less robust against changes in the filling.
The exact diagonalization of the 4 × 4 cluster as well as

renormalized dual fermion perturbation starting from the
plaquette reference system with δ= 0.25 also uncovers spectral
consequences of this degeneracy. The formation of the
pseudogap can be seen as the destructive interference or a
Fano-like effect originating from the sharply peaked DOS in the
isolated plaquette embedded into the band of surrounding
fermions, as was hypothesised in ref. 17. These observations
about the mechanisms of superconductivity can all be made by
starting the perturbation theory from an isolated plaquette. For
more quantitative predictions of the theoretical phase diagram,
the optimal dynamical embedding of the plaquette and the
implications for the resulting perturbation theory need to be
studied further.

METHODS
Cluster Dual Fermion approach
We used the standard exact diagonalization method30 for small systems
as well as the special version of the cluster dual fermion scheme23,26 for
t " t0 " U square lattice Hubbard model. The general strategy of the
dual fermion approach is related to formally exact separation of the
local-plaquette and non-local hybridization (Fig. 7). The details of

the path-integral formulation of this approach can be found in the
Supplementary Note 1.
We start from the following general lattice action and rewrite it as a sum

of non-connected plaquette reference systems and the remaining
coupling term:

SL½c$; c% ¼ "
P
kνσ

c$kνσ iν þ μ" t̂k
! "

ckνσ þ
P
i

R β
0 dτ Un$iτ"niτ#

¼
P
i
SΔ½c$i ; ci % þ

P
kνσ

c$kνσ t̂k " Δ̂ν

# $
ckνσ;

(3)

where ν= (2k+ 1)π/β, with k 2 Z, are the fermionic Matsubara frequen-
cies, β is the inverse temperature, τ is the imaginary time in the interval
0; β½ Þ, μ is the chemical potential, t̂k is the hopping matrix downfolded
onto the site-orbital space of the plaquette (see Eq. (11) below), and the
Grassmann fields c, c* are vectors in the same space. The index i labels the
lattice sites, σ is the spin projection and the k-vectors are supercell
plaquette quasimomenta. In order to keep the notation simple, it is useful
to introduce the combined index 1j i ) i; n; σ; τj i (n being the plaquette
site index suppressed above) while assuming summation over repeated
indices. The summation over Matsubara frequencies ν includes a normal-
ization factor 1/β and the k integration is normalized by the volume of the
reduced Brillouin zone.
The general reference system is defined by a plaquette matrix Δ̂ν , which

is also allowed to be instantaneous24 (ν-independent). It can contain
hopping inside the cluster as well as possible frequency-dependent
connections to an auxiliary fermionic bath. The reference plaquette has the
same local plaquette interaction matrix Û, as illustrated in Fig. 7, and the
corresponding action is:

SΔ½c$i ; ci % ¼ "
X

ν ;σ

c$iνσ iν þ μ" Δ̂ν

! "
ciνσ þ

X

ν

Ûn$iν"niν#: (4)

In this work, we restrict ourselves to instantaneous Δ̂. The main motivation
for using the simple static Δ̂ is that such a reference system can be solved
numerically using Exact Diagonalization (ED), without the introduction of
“bath sites” and fitting parameters, and without the numerical costs and
noise of continuous-time Quantum Monte Carlo (CT-QMC)23,52, which is
able to treat general, frequency-dependent hybridization Δ̂ν . In this work,
we use an isolated plaquette cluster with periodic boundary conditions as
the reference model, see Eq. (12).
Having solved the reference system exactly, including the calculation of

all relevant correlation functions, we can derive an efficient perturbation
series in the “coupling term” ~tkν ) t̂k " Δ̂ν

# $
which is equivalent to solving

of the effective dual fermion (d*, d) action and describes non-local
correlation effects beyond the reference plaquette23,23:

~S½d$; d% ¼ "
X

k νσ

d$kνσ ~G
"1
0kν dkνσ þ

1
4

X

1234

γP1234d
$
1d

$
2d3d4; (5)

where the bare dual Green function has the form

~G
0
kν ¼ ~t"1

kν " ĝν
% &"1

; (6)

with ĝν being the local Green’s function matrix for the plaquette. The
vertex γP is given by the connected part of the local two-particle

Fig. 7 Plaquette lattice. Schematic representation of a plaquette reference system for the square lattice.
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critical point at δc ≈ 0.24, and the degeneracy of the plaquette in
the strong-coupling regime. In this sense, the plaquette and not
the single site can be considered the minimal building block for
cuprate physics, with pair binding arising in a lattice of plaquettes.
Exact diagonalization shows that the cluster pair binding

energy is dramatically enhanced when four plaquettes are
considered together, compared to the pair binding energy in a
single plaquette. Given their large binding energy, these pairs
should probably exist also at much higher temperatures than the
superconducting critical temperature, remaining noncoherent.
The exact diagonalization also shows the important role played
by the next-nearest hopping t0, with a large pair-binding energy
at t0=t ! "0:3.
Dual fermion expansion starting from the plaquette reference

system provides a complementary way to investigate inter-
plaquette correlations. For the doping δ ≤ 0.25 the dual Bethe-
Salpeter equation clearly shows the presence of a low tempera-
ture dx2"y2 instability, which has an eigenvalue substantially larger
than the magnetic channel. Starting from the degenerate
plaquette, fluctuations in the density channel are also very strong,
but these seem to be less robust against changes in the filling.
The exact diagonalization of the 4 × 4 cluster as well as

renormalized dual fermion perturbation starting from the
plaquette reference system with δ= 0.25 also uncovers spectral
consequences of this degeneracy. The formation of the
pseudogap can be seen as the destructive interference or a
Fano-like effect originating from the sharply peaked DOS in the
isolated plaquette embedded into the band of surrounding
fermions, as was hypothesised in ref. 17. These observations
about the mechanisms of superconductivity can all be made by
starting the perturbation theory from an isolated plaquette. For
more quantitative predictions of the theoretical phase diagram,
the optimal dynamical embedding of the plaquette and the
implications for the resulting perturbation theory need to be
studied further.

METHODS
Cluster Dual Fermion approach
We used the standard exact diagonalization method30 for small systems
as well as the special version of the cluster dual fermion scheme23,26 for
t " t0 " U square lattice Hubbard model. The general strategy of the
dual fermion approach is related to formally exact separation of the
local-plaquette and non-local hybridization (Fig. 7). The details of

the path-integral formulation of this approach can be found in the
Supplementary Note 1.
We start from the following general lattice action and rewrite it as a sum

of non-connected plaquette reference systems and the remaining
coupling term:
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where ν= (2k+ 1)π/β, with k 2 Z, are the fermionic Matsubara frequen-
cies, β is the inverse temperature, τ is the imaginary time in the interval
0; β½ Þ, μ is the chemical potential, t̂k is the hopping matrix downfolded
onto the site-orbital space of the plaquette (see Eq. (11) below), and the
Grassmann fields c, c* are vectors in the same space. The index i labels the
lattice sites, σ is the spin projection and the k-vectors are supercell
plaquette quasimomenta. In order to keep the notation simple, it is useful
to introduce the combined index 1j i ) i; n; σ; τj i (n being the plaquette
site index suppressed above) while assuming summation over repeated
indices. The summation over Matsubara frequencies ν includes a normal-
ization factor 1/β and the k integration is normalized by the volume of the
reduced Brillouin zone.
The general reference system is defined by a plaquette matrix Δ̂ν , which

is also allowed to be instantaneous24 (ν-independent). It can contain
hopping inside the cluster as well as possible frequency-dependent
connections to an auxiliary fermionic bath. The reference plaquette has the
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In this work, we restrict ourselves to instantaneous Δ̂. The main motivation
for using the simple static Δ̂ is that such a reference system can be solved
numerically using Exact Diagonalization (ED), without the introduction of
“bath sites” and fitting parameters, and without the numerical costs and
noise of continuous-time Quantum Monte Carlo (CT-QMC)23,52, which is
able to treat general, frequency-dependent hybridization Δ̂ν . In this work,
we use an isolated plaquette cluster with periodic boundary conditions as
the reference model, see Eq. (12).
Having solved the reference system exactly, including the calculation of

all relevant correlation functions, we can derive an efficient perturbation
series in the “coupling term” ~tkν ) t̂k " Δ̂ν
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which is equivalent to solving

of the effective dual fermion (d*, d) action and describes non-local
correlation effects beyond the reference plaquette23,23:
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Conclusions
� Local correlations well described with the       

CT-QMC impurity solver: basis for DFT+DMFT

� Multiorbital D-TRILEX is most efficient scheme 
for non-local correlation in realistic systems

� DF-theory can be combined with Lattice DQMC 
to describe strongly correlated materials
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