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Dynamical Mean Field TheoryTheory
for Correlated Topological PhasesPhases

Michael Potthoff
University of Hamburg

Jalich Oct 7 2022
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matter

and a way of classification

another way of classification
symmetry and symmetry breaking
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many body models

H j tig
ctstigctstig CjcctsCjccts t 2

557

H
E EaCECKCECKCE IJeffI EyEyCutC It c k'tca'tH If tigctsCjcctsCjccts t U hithid

L I Dun din 12 1 I

É
spy

It Ect ut tEcoskrcoskrcos p's t t InsinkrMEME Ck

classification

Classification mathematically

objects A B

is A essentially the same as B

AE B
classclass

equivalence relation iii c representative
AI A

AE B BE A

A B Bec a
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continuity a powerful equivalence relation
in the context of condensed matter physics

Example frommathematics

A E B A can continuously and reversibly be deformeddeformed into B

topology

topological invariants

preserved under homeomorphisms
continuous maps with a continuous inverseinverse

here number of holes
S T2

but C x y plane

Condensed matter theory

can we topologically classify band structures

the problem is for band insulators
yappedelectronic structure no correlations Ép
can we topologically classify the electronic
structure of correlatedmaterials
can we topologically classify many bodymodelsmodels

continuitycontinuity

solvedsolved

unsolved
topologically

unsolved
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the ten foldway this lecturelecture part I

nice review

A Ludwig Phys Sar T 168 014001 2016

add correlations this lecture partpart I

t
doo

see David Kriger M P PRL 121 196401196401 2027

posterby David
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Plan for part I

adiabatic theorem s Berry connection

time dependence U

of yapped quantum gauge transformationstransformations

systems
v

toy modelBerry phase
topological properties

Berry carnage

FEE
of gapped quantum V

systems

topological invariant c Chern number s Chern insulator
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Adiabatic theorem

parameter dependent Hamiltonian

orthonormal basis at every R

we assume

i iH IR is zapped on M

E IR En R KR

gap A R En R E R o

let R R It be time dependent

H RIO Rft

given 14101 what is 14147

dependent

every
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if 14147 H RIE 1414 I SchrodingerSchrodinger eqn

141017 Ie Riot I initialinitial condition

formal solution

14147 J exp i ft de H R Kl 141017141017

Theorem adiabatic theorem

If the time evolution of the parametersparameters Rct
is sheeted Typical D 111 then

i e

11 11

pct
idea insert t into Schrodinger's egoego

e his if 1441 id e N I I Rit

it i gift e in II Rit

i e t fr II Rit Rct

v his H Rit 467

H RCH e N I I Rit
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e Nlt E RIE II Rit

jct II Rit if II RIE RCH EE CRIED II CRIED

multiply with Io Rct this yields

jct t A R RCH E Rct

with

BerryBerry connection

integrate

insertinsert intointo x andand choosechoose p lo o

dynamical phase factor geometricalgeometrical phase factor
depends on R R e depends onon C only
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Gange transformations

properties of the Berry connection

it is time independent

it as a property of the ground state actuallyactually of the

bundle of ground states or possibly
twistedII R1 Re M

is it an observable

the choice of the phase of II R is arbitraryarbitrary
what happens under a gauge transformation

let's compute

Ao IR i Eo R fr I I R

i silken letterletter

the Berry connection depends on the arbitraryarbitrary choice of y R
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f Ao R de or e
told dR

is no observableobservable

M Berry 1984

Berry phase

How does ye behave
under a gauge transformation

C closed path in M

compute

Nc G Ao R IR I A R IR

A R f dr

Pc f 37 ar Inc gaugegauge invariant

F

EEEEpets ya

if dy OR is continuous on M and if
M is simply connected loops can becontractedcontracted to Zero

Nc f Ao R IRf
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Example

gouge transformation

discontinuous on the X 0 plane

we have

dy E yetyaOR

singular on the Z axis

under this gang transformation

R i s t R I IR xityz I
andand inin factfact forfor thethe circlecircle ofof radiusradius RR

around the origin in X Y plane

C R E R E L 12 0 en

we get

xityz Y de ft fry's'd ar

F Iz R da 25 0

y R arctan Xx

gouge

y arctan Xx
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Theorem gange

Pc to R de É pet 25k ke Z

Berry phase factor is gange invariant

Proof

Ra to Rz

ein exp i f to R ar In p

Ing exp i to lent ARn t it iAo RnRn AR
Riemann sum

Ing exp i to lent Aka exp i to IBI Sen

him at it Ra ARn at itit IRn ARn

Volterra product integral
k th factor

A ti Ao Ru ARK A i ARK

IT Io Ra I II IRK II IRKIRK Ska

Io Ral I I RK SRU

Io Ral I E Ra n

insert

e te

Ao Ru ARK i CI RK FR I E Ra
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C closed Ra E RoRo

e'the king K E Ral l I Rn n E R1R1 E Ro

Ey tr II Rn E Ral n II Rn CI Rall

I manifestly gange invariantinvariant

Rz
R n n

a

Ra E R
Rn
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Toy model

R e M IR I do

É Pauli matrices

note any Hamiltonian in a 2 dimensionaldimensional

Hilbert space is a linear combinationcombination of the I's

aside from a trivial offset n 1

we can solve the problem

EnE R IR IR EeEeEnEn RR tftf RR
I ZeemanZeeman splitting

I dependent ground state

F

R R
cosy since y gsin y sin d

ios 0 I y

i
x

II R II Oy
ask

e's sincesince

dependent ground

Oy e's sincesince
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there is a problem at the south pole

II R
as 52
e's sine

E 52

there is a problem here
2gDing to R n I E

is discontinuous
O T

the problem at the south pole can be fixedfixed

by a gauge transformation

II R I é s II R

in the new gauge

IIII caca E'sE's ee sasa
É

S2
now we have a

problem here

but then pops up at the north pole g I
note

the gange transformation itself

y R y X Y Z y are tan XxXx
and

I E R I e
ar tan Xx I E a

are discontinuous on the X O plane
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the problem is persistent it is a topologicaltopological feature
choosing a gauge means to attach a phase factor

eiy R e UG E S

to each point on S2

q
this is a hairy ball

é't
the arrow direction
specifies e'y IR

5
unit circle

Theorem the hairy ball theorem

There is no everywhere non vanishing andand continuous

tangent vector field on an n sphere if n is even

S S with two
twirls

S withwith already
two twirls

on 8 there is no globally smooth gaugegauge
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the feature shows up in the Berry phase as well

Nc R dit
F

C equator

ACE i I R 1 E rt i i i i y

x

continuous along the equator
in any of the above two gouges
its y component

to lay Rey I i Eloy I fy I I 1dg1dg I

II aa gg saysay
cos k
e's sine

first gauge

FI es r sing of t Ee f ter c

I D Tile sin D A

Nc E I dit S IEEE
dydy T

in the second gauge

Nc t AT R die

note e is gauge
invariant
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Berry curvature
Berry curvaturecurvature

Nc t.IR dÉ
ÉÉ

f I R D8
c OS

Tt
éBerry Berry

connection
phase

t
to what degree
does parallel
transport fail
to preserve
geometrical data failure requires a finite

Berry curvaturecurvature

definitiondefinition

the Berry curvature is gauge invariant II

I R m IG E DEX AT I

Dex F R dry R

To R

the Berry curvature is divergence free

da TER da da x AT IR 0

R de x AT Rde AT
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vice versa

Da R o I IR da x AIAI R
for some to lie locally

globally on the entire parameter manifoldmanifold M

ensures that a representationrepresentation

as a curl is possible for a contractible parametermanifold
can becontinuouslycontinuously shrunkcontractible to a pointpoint in that manifold

11231hot
is not contractiblecontractible

notnot contractiblecontractible aa representationrepresentationrepresentationrepresentation

to R da xx R

might not existexist globally

compute to lie for the toy model H IR EEE

antisymmetric real 3 3 matrix

def def

me

with identity

I
me

Poincare's lemmaPoincare's lemma
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rewriterewrite as vectoragain

compute matrix
elements

interesting
looks like the magneticmagnetic field
of a

R is singular
where the magnetic we have

charge sits div o i.e there is
no magneticcharge

if we had

howhow wouldwould thethe divdiv BB MoMopm andand rotrot oo

vector potential to E then a magneticmagnetic pointcharge

look like Put Am Sir

Dirac 11931 would produceproduce a monopole field

E IT AmÉ

Dex R É ICI

I 7 e with let n is arbitrary
or gangs transformationtransformation implies é teDirac im

string this shifts the singularitysingularity
but does not remove it

magnetic monopolemonopole

magneticmagnetic
magnetic monopolemonopole
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there is no globally smooth potential
R is singular if

e E n

Nc F R de sites I EE dj

p is the flux of the magneticmagnetic field
through a surface bounded by EE

im

Ife E age
as

s

1 f gasgas 1.25 t

SS

same calculation but with the lower hemispherehemisphere

É
g

tg
d

f f
Eazy de
lower

leftleft hand rulewe unnst choose
a gauge where the

potential is smooth
on the lower hemisphere

we again get f E R IF Tt v

lower
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The Chern theorem

quantum system with parameter dependentdependent
Hamiltonian H R REM c IR

non degenerate ground state K IE chch

S closed surface in M

5 a
definition of the

Chern number

Chern theoremtheorem
C is quantizedquantized

there is a generalization to IR

here M 1231403 a toy modelmodel

if M was contractible e.g 1123 dirtdirt I o

would imply EIR Op x R globallyglobally
and thus C o

fo III ds t's R IR 0

7
05 0 P

C depends on our choice for S

a non trivial topology C o requiresrequires a non trivial
parameter manifold not just 123

C It fo III as e Z

5
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but this is not sufficient

s

ymagneticmonopole C O

O M M 30

Proof of the Chern theorem

write the closed surface as T

S Sn u Sz

boundary of Sa One C S Sz
boundary of S2 052 C

ICIC c

such that

RR dax toto RR on S I
R A x AI R on Sa de

on an environment of C

Dex Fon R Io R o

Foin R Io R is a gradient field

Fan R c Jonge to E
transf

Man pipe 2

to R dit to a E die 25k Ke Z
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Stokes theorem

I E den fo Fon R de
c

to R d52 f to.IR de Faa E de
C

conclusion

to E de I E den f to E d5
22

So I II de fo Faa E de
c c

2h k with Ke Z

for the toy model

c Ia f Ici de Ia 1 1 Es É de

I Iz f as 1

if S is the surface of a ball with radiusradius R

S

QQ
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or for any continuous deformation S ofof S
as long as there is no gap closure duringduring the deformation

Remark

extension to arbitrary even D 2n

Cat pain ft oh I da AZ

I i
n th 2h dimensional
Chern closedmanifold
number

Remark

thethe ChernChern numbernumber is assigned toto a

bundle II R of ground statesstates

of Hamiltonians H IR RE S

H H R R S

5h
Res further control

parameters

if CIS Rn CIS 22 then

II R R É S II R 221221
deformation

C C S RC C S R
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d

gap closureclosure at one

or severalseveral points R e SCIS R2
CIS in topologicaltopological phase transition
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Application to a generic insulator

tight binding model of independent fermionsfermions on a lattice

sites 9 2 orbitals D 2 I Eg E ABE

H É II tix in ctci.atEEmzEEEmzEctci.atEEmzEctci.at tax E catacea

I k bundle of 2 2 Bloch HamiltoniansHamiltonians

on S TL I ABZ

note

all Bloch Hamiltonians III derive from
one and the same Hamiltonian H

S ABE is an intrinsic system propertyproperty geometry

S is given a priori no choice necessarynecessary

C S 2 CIR is a material propertyproperty
depends on control parameters only

Expansion into a basis of hermitian 2 22 matrices

E IE do E I t da E I t da E I t d E E

E k do k I t IIE I I Pauli matrices

Et I do II I I d III
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Qi Wu Zhang QWZ model

Qi Wa Zhang PRB 12006

E III I with

sinkydock o I'M
my IIItIIIt sinkyIIIsinky tasktask

two bands

EI I I E sink t sink t Int t casket trosky F

the gap closes at if M
ABZI M o o m Lt

K X T o O TT m O P X

I M Iii TI un t Lt

insulator

c u v

m 2t2t o tht

Asboth OroszleinyOroszleiny Paly
Springer 2006

c v

semi metalsemi metal
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Topological classification

compute the Chern number of the QWZ model
for all control parameters i e for m

QWZ model toy model
CK IIE I R ER

E I I

the physical parameter manifold is thethe ABZ

we have a smooth map if ur uncriticaluncritical

d ABZ S 11231 o

I I ICE

the image of the ABE under d

D I ICE E IR I o I Kx Ky E ABE

is

2 dimensional

closed

with infinitesimal surface elementelement ICE

D8 OPIE
Ok

DRIED
ok dkxdky I D at Ilk

c Js Ef.TL xoamdkydkxdkdkydkxdk



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

WolframAlphaWolframAlphaWolfram

One may continuously deform the HamiltonianHamiltonian

C E Z C cannot change 4 gap closure

unless there is a gap closure ZI

Example Hamiltonians

treat da ACE as a controlparameterparameter
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Our Goal ?
Can we topologically classify all interacting electron models ?
Can we topologically classify all interacting lattice electron models ?
Can we topologically classify all lattice-electron models !
with local interactions on infinite-dimensional lattices ?
Can we topologically classify, in infinite dimensions, !
Hubbard-type lattice models derived from noninteracting prototypes !
of the tenfold way?
Can we topologically classify at least one of the !
prototype band models of the tenfold way, plus Hubbard-U, !
on an infinite-dimensional lattice ?
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Topological Hamiltonian
noninteracting system, M orbitals, dimension D

equivalently classification can be based on the map

1BZ = TD 3 k 7! ✏(k) 2 GL(M,R)

k ! G(0)(k,!) =
1

! � ✏(k)

interacting system: classification in terms of
(k,!) 7! G(k,!) =

1

! � ✏(k)�⌃(k,!)
Volovik, Zh. Eksp. Teor. Fiz.( 1988)

Thunström, Held, arXiv (2019) !
Savrasov, Haule, Kotliar, PRL (2006)

Ishikawa and Matsuyama, ZPC (1986)
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We propose general topological order parameters for interacting insulators in terms of the Green’s

function at zero frequency. They provide a unified description of various interacting topological insulators

including the quantum anomalous Hall insulators and the time-reversal-invariant insulators in four, three,

and two dimensions. Since only the Green’s function at zero frequency is used, these topological order

parameters can be evaluated efficiently by most numerical and analytical algorithms for strongly

interacting systems.
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Topological Insulators

I. INTRODUCTION

Topological insulators are new quantum states of matter
whose characteristic property is the existence of both bulk
energy gap and stable surface states [1–4]. The stability of
surface states is protected by the topology of the bulk
electronic structure, which in the noninteracting limit is
described by Bloch band topological invariants, such as
the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) in-
variant [5] and the Z2 invariants [6–9]. More recently, topo-
logical insulator with strong electron-electron interaction is
becoming a central topic in the field [10–20]. For general
interacting systems (‘‘interacting systems/insulators’’ refer
to systems/insulators with many-body interaction instead of
systems/insulators interacting with each other), the topologi-
cal order parameters can be defined as the physical response
function for the quantumHall effect [21] and the topological
magneto-electric effect [9]. For actual evaluations of these
physical response functions, we proposed earlier that the
Green’s function is an useful tool in topological insulators
[22], and there is much recent interest focused in this direc-
tion [23–26]. However, our original formula for the topologi-
cal order parameter [22] is rather complicated;more recently,
a much simpler formula was obtained for the inversion-
symmetric interacting topological insulators [27].

Themain purpose of this paper is to obtain several simple
and yet general topological order parameters for interacting
topological insulators in an unified framework. They are
expressed in terms of the Green’s function at zero frequency
instead of the entire frequency domain. These invariants
strongly resemble the conventional topological invariants
such as the Chern number/TKNN invariant, yet they are
valid for general interacting systems. Current proposals for
the quantum anomalous Hall (QAH) insulators [28–30]

require magnetic order, which is only possible for interacting
systems. Our proposed topological order parameter can
greatly help the search for realistic materials. Among our
central results are Eqs. (6), (13), (16), (18), and (19), all of
which are expressed in terms of the Green’s function at
i! ¼ 0. In most numerical algorithms for strongly interact-
ing systems, it is much easier to obtain the Green’s function
at zero frequency than at all frequencies. Therefore, our new
formulas present a significant improvement over the pre-
vious result [22]. We would also like to point out that the
formulas given in this paper are not directly applicable to
fractional topological insulators with nontrivial ground-
states degeneracy, which will be left to future studies.

II. TOPOLOGICAL ORDER PARAMETER FOR
INTERACTING QAH INSULATORS

The conventional topological invariant for two-
dimensional (2D) noninteracting quantum (anomalous)
Hall states (or the ‘‘Chern insulator’’) is the TKNN invari-
ant [5], which is also called the first Chern number in
mathematical literature. Explicitly, it is an integral over
the momentum space (namely the first Brillouin zone):

c1 ¼
1

2!

Z
d2kfxy; (1)

where fij¼@iaj"@jai, and ai¼"i
P

"hc "ðkÞj@ki jc "ðkÞi,
where " runs through all the occupied bands. However,
because of its fundamental dependence on the Bloch state
jc "ðkÞi, Eq. (1) applies only to noninteracting systems.
There is an interesting generalization to interacting sys-
tems using the twisted-boundary condition [31], which is
nonetheless difficult to compute and is not easy to general-
ize to Z2 insulators. Another integer topological invariant is
expressed in terms of the Green’s function rather than the
Bloch states [22,32,33]:

N2 ¼
1

24!2

Z
dk0d

2kTr½#$%&G@$G
"1G@%G

"1G@&G
"1&;

(2)
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Wang, Zhang, PRX (2012)… if the self-energy is local topological Hamiltonian
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DMFT applied to TI’s + U in D=2 or D=3

Haldane model + U
Vanhala, Siro, Liang, Troyer, 
Harju, Törmä , PRL (2016)

opposes this effect. The QH phase has Chern number
C ¼ 2, which is the sum of the Chern numbers of the two
(equivalent) spin channels.
For high interaction strengths, on the other hand, the

main features of the phase diagram are the antiferromag-
netic Mott insulator and the band insulator phase whose
boundary roughly follows the line ΔAB ¼ U=2. Below this
line U dominates and the ground state of the local
Hamiltonian Hl has no doubly occupied sites, while above
the line ΔAB drives all of the particles to the lower energy
sublattice. Nontrivial competition between the hopping, U
and ΔAB occurs close to the line ΔAB ¼ U=2 where the
large energy scales U and ΔAB mostly cancel each other.
Indeed, we find that this boundary region between the two
topologically trivial insulators exhibits a phase with Chern
number C ¼ 1.
In themean-field solution [14–18] for theC ¼ 1 phase the

staggered potential drives one of the components mostly to
the low-energy sublattice. Thus, this component is effec-
tively in the topologically trivial region of the phase diagram
of the Haldane model. However, the larger density of one
component on the lower sublattice creates a Hartree poten-
tial that mostly cancels the sublattice potential difference
ΔAB for the other component, which then carries the Chern
number C ¼ 1. Because of this symmetry breaking, the
C ¼ 1 phase has a nonzerom, while theC ¼ 2 phase and the
band insulator are paramagnetic, although the mean-field
solution also has a very narrow antiferromagnetic region
with C ¼ 2 near the C ¼ 2 to C ¼ 1 transition line.
We have confirmed this picture in the FS ED calculations

by comparing the obtained ground state with an ansatz
that is a symmetric linear combination jψi ¼
ð1=

ffiffiffi
2

p
ÞðjQHi↑jBIi↓ þ jBIi↑jQHi↓Þ, where jQHi and

jBIi are the single-component ground states of the non-
interacting model for vanishing (quantum Hall) and large
ΔAB (band insulator), respectively. In Fig. 3(b) we present

the overlap between this state and the ground state, which
reaches values as high as 0.5 in the C ¼ 1 region of the
phase diagram. This shows that the above qualitative
picture of the C ¼ 1 state is correct. In the FS ED results
the C ¼ 1 phase is present already for weak interactions.
However, this is a finite-size effect: A mean-field calcu-
lation for the FS ED cluster produces the same result for
weak U, while the C ¼ 1 phase is absent in the infinite-
lattice mean field in this region. This is expected, as finite-
size effects are known to be important when the band gap of
the noninteracting Hamiltonian is small [38].
To further understand the nature of the C ¼ 1 phase we

have calculated the quasiparticle gap (see Fig. 4), which in
ultracold gas experiments can be studied using rf or lattice
modulation spectroscopy [39]. For U ≪ 2ΔAB the system
is in the band insulating state and we find a gap that gets
smaller as U is increased. The gap has a minimum at the
point where the system enters the C ¼ 1 state. When U is
increased further, the gap for the component that carries
Chern number C ¼ 1 again reaches a minimum, and the
system moves to the C ¼ 0Mott insulator phase, where the
gap grows as a function of U. In the FS ED calculation we

FIG. 2. The phase diagram of the model from mean-field theory
(MF), finite-size exact diagonalization (FS ED) and single-site
dynamical mean-field theory (DMFT). The lines indicate the
topological transitions where the Chern number C changes. The
most interesting feature is the C ¼ 1 phase found by all methods
between the Mott insulating and band insulating regions.

(a) (b)

FIG. 3. (a) The single-site DMFT and FS ED phase diagrams
for a finite mass imbalance. The hoppings for the up component
were scaled by a factor of 0.8, while the hoppings for the down
component were scaled by 1.2 compared to the balanced situation
in Fig. 2. (b) The overlap between the ground state and the trial
state jψi obtained from the FS ED calculations (see text) for the
same parameters as in Fig. 2.

(a)

(b)

FIG. 4. (a) The quasiparticle gap Δ for the up and down
components obtained from two-site DMFT and the spin-rotation-
invariant result from FS ED at ΔAB ¼ 20. (b) The Chern number,
staggered density, and the antiferromagnetic order parameter m
from two-site DMFT and FS ED for the same ΔAB.
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maintains the properties of the noninteracting system.
For larger values of U, higher-order terms of a perturbative
expansion must be taken into account. In the framework of
DMFT, this is reflected by a significant frequency depend-
ence of the self-energy and an increase of Ξ for the QSHI
solution [25], which becomes rapidly more correlated as U
increases. On the other hand the BI remains largely
unaffected by correlations [see the red region on the
QSHI side of the thick solid line, to be contrasted with
the BI side remaining green in Fig. 1(a)]. The frequency
dependence of the self-energy implies that an increase of
the M term can no longer compensate exactly for the
dynamical effect of the interactions, and the physical
picture is no longer directly linked with the U ¼ 0 point.
The two ground states cannot be continuously connected
and the only way to move from one to the other is a first-
order jump. However, the topological characterization of
the two phases remains the same as in weak coupling, and
in particular the two solutions retain the values of the global
topological invariants of their noninteracting counterparts.
The first-order line ends in a triple point, after which U

and M are so large that the QSHI solution disappears in
favor of a direct transition between the BI and a Mott
insulator (MI), which naturally emerges when the inter-
action strength is larger than any other scale. This highly
correlated solution has a high-spin configuration and a very
large value of Ξ [yellow in Fig. 1(a)]. We have checked that,
releasing the paramagnetic constraint, an antiferromagnet is
stable for large U but it does not spoil the critical behavior.
The first-order behavior and the associated hysteresis are

further illustrated by the behavior of the internal energy
hHi for two interactions, respectively, smaller [panel
(b)] and larger [panel (c)] than Uc ¼ 6.1. The derivative

∂hHi=∂M ≡ 2hTzi is clearly continuous below Uc and it
jumps aboveUc, but it does not vanish on either sides of the
transition [see Fig. 3(a)], and it cannot be used as an order
parameter. On the other hand, the quantity ΔMeff ¼
MeffðBIÞ −MeffðQSHIÞ calculated along the topological
transition line, can be viewed as an order parameter. A
visual analogy with the liquid-gas transition can be
obtained plotting ΔMeff as a function of 1=M for different
values of U which are the counterparts of the isotherms.
The critical behavior is apparent in the corresponding plot
of Fig. 1(d). The topological transition in the correlated part
of the phase diagram becomes, therefore, of first-order in
the usual thermodynamic sense.
Absence of a gap closing.—For noninteracting systems,

the topological invariants are defined in terms of integrals
over the compact Brillouin zone of functions of the Bloch
Hamiltonian, more precisely, of the projection onto its
occupied eigenstates. These functions are continuous in all
band structure parameters as long as an energy gap is
present. As a consequence, if the underlying symmetries of
the system are maintained, the discrete-valued topological
invariants cannot change without a continuous closing of
the energy gap [3,21]. In contrast, by explicit breaking of
TRS or particle number conservation [32–34], a QSHI can
be connected to a trivial band insulator without a gap
closing. In the presence of interactions, the single-particle
Green’s function can acquire zeros that are also associated
with changes in the topological invariants [35].
Remarkably, the topological quantum phase transition

line for U > Uc discovered in this work does not fit into
any of the above pictures. The topological transition is of
first-order and is accompanied by a discontinuity—in the
sense of a finite jump—in the single-particle Green’s
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FIG. 1 (color online). (a) T ¼ 0 phase diagram in the 1=U vs 1=M plane for J ¼ U=4 and λ ¼ 0.3. Besides delimiting the different
phases—Mott, topological, and band insulator (MI, QSHI, and BI, respectively, in the main text)—the color quantifies the many-body
character, as measured by the value of Ξ ¼ 2½Σð0Þ − Σð∞Þ%. The orange squares and the dotted line mark the continuous BI-QSHI
transition for small U. The blue diamonds and the thick solid line mark the first-order transition between the same phases for large U.
The two lines are connected by a quantum critical point. White circles and a dashed line denote the boundary of the MI. (b),(c) Total
energy hHi as a function of M, for two values of U. Vertical arrows mark the transition. The red and blue curves in (c) denote the
solutions coming from the QSHI and from the BI, respectively. The branches with higher energy correspond to metastable solutions that
can be followed beyond the transition point and give rise to hysteresis. (d) Effective band splitting parameter Meff near the quantum
critical point showing the critical behavior of the transition.
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FIG. 1. (Color online) Phase diagram of the BHZ model with U ,
V =U − 2J , and J =0.25U,λ = 0.3. For m>2 the noninteracting
model is topologically trivial (green) and for m<2 is in a topolog-
ically nontrivial QSH phase (red). At large values of U the system
is in a Mott phase (blue). The red open circles at m=0 indicate that
the solution is metallic. The gray lines denote transition regions. The
“topological Hund insulator,” i.e., the nontrivial interacting phase in
red, can be obtained for small-to-moderate values of U , starting from
a trivial phase with m!2.

this makes two states per spin per unit cell since each unit
cell consists of two sites. However, as an on-site Hubbard
model, the Kane-Mele model can be seen as a spinful single-
band model. The BHZ model in contrast takes into account
one electronlike orbital (E) and one holelike orbital (H) for
each spin. Hence, a lattice version based on this model should
be naturally considered as a two-band Hubbard model. We
consider the Hamiltonian,

H = HBHZ + Hint, (1)

where HBHZ is the single-particle Hamiltonian associated with
the Bloch-Hamiltonian HBHZ(k) = diag(h(k),h∗(−k)), where
the diagonal matrix structure is in spin space,37 h(k) = (m −
cos(kx) − cos(ky))σz + λ sin(kx)σx + λ sin(ky)σy , and σi are
Pauli matrices in the E-H band pseudospin space. For
the interacting part we take the most general two-orbital
interaction parametrization Hint = HU + HV + HJ .38 HU =
U

∑
i(n

(E)
i,↑ n

(E)
i,↓ + n

(H )
i,↑ n

(H )
i,↓ ), represents an intraorbital Hub-

bard repulsion, HV = V
∑

i(n
(E)
i,↑ n

(H )
i,↓ + n

(H )
i,↑ n

(E)
i,↓ ), and HJ =

(V − J )
∑

i(n
(H )
i,↑ n

(E)
i,↑ + n

(H )
i,↓ n

(E)
i,↓ ), an interorbital term for

electrons with opposite and parallel spin, respectively. We
also consider an S+S−-like contribution, namely HS =
−J (c†H,↓c

†
E,↑cE,↓cH,↑ + c

†
E,↑c

†
E,↓cH,↑cH,↓), which makes the

interaction fully SU(2) symmetric. In order to check to what
extent our results depend on the details of the interaction,
we consider three forms of Hint: (i) HU + HV + HJ with
V = U − 2J and J = 0.25U , (ii) HU + HV + HJ + HS with
the same values of V and J , and (iii) HU alone. Hitherto,
only the latter has been considered in the literature as
interaction for the BHZ model (see Refs. 39–42). Yet, the

“U -only” interaction represents a very unreasonable choice
for a multiorbital Coulomb vertex, because the interorbital
matrix elements are entirely neglected. Cases (i) and (ii) are
therefore much closer to a realistic Hamiltonian for a realizable
material.

We solve the model within dynamical mean-field theory
(DMFT). DMFT—for a review see Ref. 43—corresponds
to a mean-field approximation for the spatial degrees of
freedom while preserving the local quantum dynamics of the
interacting system. The self-energy #(iω) depends therefore
on the Matsubara frequencies only and the k dependence of
the Green’s function comes entirely from the one-particle
Hamiltonian HBHZ. This is a good approximation whenever
the local correlations are the dominant ones (e.g., for high
dimensionality, or at high temperatures, or far away from
quantum critical points). With these limitations in mind, we
conclude that DMFT represents a very powerful tool for the
present study which focuses on the way the self-energy—and
hence the topology of the Green’s function—is modified by
dynamical effects of the electron-electron interaction. DMFT
allows us to go one step beyond static mean-field treatments
which, by construction, cannot address the ω dependence of
the self-energy and, contrary to DMFT, cannot yield dynamics-
induced insulating states without long-range order. As a
DMFT-impurity solver we use the hybridization-expansion
version of the continuous-time quantum Monte Carlo. The
details of the code used for the numerical results can be found
in Ref. 44. The advantage of this flavor of impurity solver is
that very low temperatures can be accessed (here we show
results for kBT = 1/100 in units of the hopping parameter of
HBHZ, but we even went down to 1/400) and the calculation
is sign-problem free.

We consider the half-filled case, i.e., two electrons on two
orbitals. The E band lays 2m above the H band, therefore,
without interaction, the system is in the (nH ,nE) = (2,0)
configuration. U alone favors the (1,1) configuration. On the
other hand, the interorbital repulsion tends to restore (2,0). The
Hund coupling J therefore plays the crucial role for favoring
(1,1) in the strong coupling region.45,46 The effective reduction
of the energy difference between the orbitals is the important
prerequisite to get the topological phase in the intermediate
region. Indeed, were the bands effectively getting further and
further apart from each other, the system would just forever
stay in the trivial band-insulating (2,0) configuration. This is,
for instance, what would happen if we put J =0.

In Fig. 2, we show the evolution of the orbital occupations
for all three interaction forms. We see how in all cases the
system goes from the (2,0) to the (1,1) configuration upon
increasing the interaction strength. Case (iii) gives an essen-
tially linear decrease of the orbital polarization (confirming the
oddness of such a choice of interaction) and, as a consequence,
yields the topological transition in the weak-coupling regime
where the frequency dependence of the self-energy is weak.
As a consequence, the character of this transition is strongly
static mean-field like. In contrast, cases (i) and (ii) are much
richer and physically more interesting. Indeed, the topological
transition is shifted to larger coupling, where the real part of
the self-energy has a pronounced structure at low Matsubara
frequencies. The dynamical fluctuations are therefore the
driving force for the topological phase transition, as one can
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Qi-Wu-Zhang (QWZ) model
D=2 square lattice, two-orbitals, broken TRS, made spinful

Qi, Wu, Zhang, PRB (2006)
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✏(k) = d(k) · ⌧
describes submanifolds of the lattice of condimension 2� (e.g.
one lines in a d= 3 dimensional lattice), etc. The term s=0
describes such toplogical properties associated with points. The
factor s

d( ) counts the number of ways the s-dimensional objects
can be placed into the d-dimensional lattice. None of these
lower dimensional objects would be defined in the absence of
the lattice. For this reason the second piece characterizes ‘weak
topological insulators (superconductors)’ which can exist in the
system18. Finally, there is a corresponding expression for the
two complex symmetry classes A and AIII, and the
corresponding complex classifying spaces called Cq, q=0,
1. By keeping only the first, universal piece on the right-hand
side of (42) as well as the corresponding ‘complex’ version,
one arrives at the table of topological insulators and super-
conductors displayed in table 3.

We end by noting that, as already mentioned at the
beginning of section 3, a somewhat different approach to
topological band theory, which does not use K-Theory, was
very recently developed in [33] (see also the contribution [34]
to the present nobel symposium).

3.3. Classification by lack of Anderson localization on the
boundary (NLSMs)

The technically simplest way to obtain the table of topological
insulators and superconductors, table 3, is to focus on the
classification of boundaries of the system, as opposed to the
approach in the previous section 3.2 which focused on the
bulk. The characterization of topological phases in terms of
their boundaries has proven more generally to be one of the
most successful tools in this subject area. This is related to the
fact that these boundaries must exhibit an ‘anomaly’ of some
kind, a fact that was first recognized in its general form in the
context of non-interacting fermionic topological insulators
and superconductors in [3], and this is discussed in section 3.5
below. The characterization of more general Topological
Phases, including interacting systems, by anomalies at their
boundaries has become a key tool in this area. (See also the
comments in sections 2 and 3.5.) In the case of non-

interacting Fermionic topological insulators (super-
conductors) the anomalous properties of the sample bound-
aries manifest themselves through the fact that the boundaries
must always possess extended states. This means that the
boundaries always conduct electrical current or heat similar to
a metal. Because of the well known phenomenon of Anderson
localization this provides a very convenient and quick way to
classify toplogical insulators (superconductors), as we will
now review.

As already mentioned above, Anderson localization is the
phenomenon that, at least for sufficiently strong breaking of
translational invariance (typically introduced by potentials
that arise from randomly located impurities—‘disorder’),
spatially extended eigenstates of the Hamiltonian H tend to
become localized in space (typically exponentially decaying
in space about a point) [30, 31]. The resulting phase is the so-
called Anderson insulator which, hence, typically always
occurs at least for sufficiently strong breaking of translational
invariance. Now, the point is that the Anderson Insulator is a
phase that does not conduct electrical current nor heat, and
therefore is not allowed to occur at the boundaries of a
topological insulator or superconductor. Thus, the boundary
of any topological insulator or superconductor must entirely
evade the phenomeon of Anderson localization. As we will
now see, this condition can be fairly easily exploited at the
technical level, and this directly yields the classification of
topological insulators (superconductors), table 3.

In summary, the current method of classification amounts
to the following: We reduce the problem of classifying topo-
logical insulators (superconductors) in d spatial dimensions to
a problem of Anderson localization in d d 1( )� � dimensions
(i.e. ‘at the boundary’). By studying the lack of Anderson
localization in d d 1( )� � spatial dimensions, we solve the
classification problem of topological insulators (super-
conductors) in d spatial dimensions.

In order to understand how to implement this program in
practice, all one needs to appreciate is that the answer to the
question about the lack of Anderson localization is a question
in Field Theory. It is well known that the theoretical
description of problems of Anderson localization is very
systematic and geometrical (see e.g. [26, 35, 36]).

Table 3. Table of topological insulators and superconductors [13–16] .

Cartan d⧹ 0 1 2 3 4 5 6 7 8

Complex case:
A ' 0 ' 0 ' 0 ' 0 ' L
AIII 0 ' 0 ' 0 ' 0 ' 0 L
Real case:
AI ' 0 0 0 2' 0 2' 2' ' L
BDI 2' ' 0 0 0 2' 0 2' 2' L
D 2' 2' ' 0 0 0 2' 0 2' L
DIII 0 2' 2' ' 0 0 0 2' 0 L
AII 2' 0 2' 2' ' 0 0 0 2' L
CII 0 2' 0 2' 2' ' 0 0 0 L
C 0 0 2' 0 2' 2' ' 0 0 L
CI 0 0 0 2' 0 2' 2' ' 0 L

18 These weak topological insulators (superconductors) were also identified
in [15] using a physical argument.

13

Phys. Scr. T168 (2016) 014001 A W W Ludwig

<latexit sha1_base64="vitB80qNI9NgBDww4iM3v2px9ts="></latexit>

⌧ =

0

@
⌧x
⌧y
⌧z

1

A

two bands:

gap closes at:            if: 

<latexit sha1_base64="OsfUnmsQLM6JxQ9lj0N/xdtE2Xk="></latexit>

✏±(k) = ±
q
t2(sin2 kx + sin2 ky) + (m+ t cos kx + t cos ky)2

<latexit sha1_base64="6zR1hO7Y1qx/pgpTxXKUgc3CXTk="></latexit>

kx = 0, ky = 0 and m = �2t
kx = 0, ky = ⇡ and m = 0
kx = ⇡, ky = 0 and m = 0
kx = ⇡, ky = ⇡ and m = +2t

<latexit sha1_base64="DGKjnimE5flPx8e2F3TEnI/DUIE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LC1CRSmJiHosevFYwX5AG8pmu2nXbjZhdyOE0P/gQQ+KePX/eOu/cdP2oK0PBh7vzTAzz4s4U9q2J1ZuZXVtfSO/Wdja3tndK+4fNFUYS0IbJOShbHtYUc4EbWimOW1HkuLA47TljW4zv/VEpWKheNBJRN0ADwTzGcHaSM2KfWafFHrFsl21p0DLxJmTcq3UPX2Z1JJ6r/jd7YckDqjQhGOlOo4daTfFUjPC6bjQjRWNMBnhAe0YKnBAlZtOrx2jY6P0kR9KU0Kjqfp7IsWBUkngmc4A66Fa9DLxP68Ta//aTZmIYk0FmS3yY450iLLXUZ9JSjRPDMFEMnMrIkMsMdEmoCwEZ/HlZdI8rzqX1Yt7k8YNzJCHIyhBBRy4ghrcQR0aQOARnuEN3q3QerU+rM9Za86azxzCH1hfP2dHkLE=</latexit>

(0, 0)

<latexit sha1_base64="IpEbvD4nVXu9bLTKR9I4x2BhUzo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LC1CRSmJiHosevFYwX5AE8pmu2mXbjZxdyOU0D8hggdFvPp3vPXfuGl70NYHA4/3ZpiZ58ecKW3bEyu3srq2vpHfLGxt7+zuFfcPmipKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryh7eZ33qiUrFIPOhRTL0Q9wULGMHaSO2KG7Mz+6TQLZbtqj0FWibOnJRrJff0ZVIb1bvFb7cXkSSkQhOOleo4dqy9FEvNCKfjgpsoGmMyxH3aMVTgkCovnd47RsdG6aEgkqaERlP190SKQ6VGoW86Q6wHatHLxP+8TqKDay9lIk40FWS2KEg40hHKnkc9JinRfGQIJpKZWxEZYImJNhFlITiLLy+T5nnVuaxe3Js0bmCGPBxBCSrgwBXU4A7q0AACHJ7hDd6tR+vV+rA+Z605az5zCH9gff0AQmORyg==</latexit>

(⇡, 0)

<latexit sha1_base64="uQeOTUx+y8S9HC6LGpUMIMMzaTU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LC1CRSmJiHosevFYwX5AE8pmu2mXbjZxdyOU0D8hggdFvPp3vPXfuGl70NYHA4/3ZpiZ58ecKW3bEyu3srq2vpHfLGxt7+zuFfcPmipKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryh7eZ33qiUrFIPOhRTL0Q9wULGMHaSO2KfebG7KTQLZbtqj0FWibOnJRrJff0ZVIb1bvFb7cXkSSkQhOOleo4dqy9FEvNCKfjgpsoGmMyxH3aMVTgkCovnd47RsdG6aEgkqaERlP190SKQ6VGoW86Q6wHatHLxP+8TqKDay9lIk40FWS2KEg40hHKnkc9JinRfGQIJpKZWxEZYImJNhFlITiLLy+T5nnVuaxe3Js0bmCGPBxBCSrgwBXU4A7q0AACHJ7hDd6tR+vV+rA+Z605az5zCH9gff0AQRGRyg==</latexit>

(0,⇡)
<latexit sha1_base64="4wkpBVSFDXQiOXmpQbUIvJCemss=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LC1CRSmJiHosevFYwX5gE8pmu2mXbjZhdyOE0n/RiwdFvPpvvPXfuGl70NYHA4/3ZpiZ58ecKW3bUyu3tr6xuZXfLuzs7u0fFA+PmipKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryh/eZ33qhUrFIPOk0pl6I+4IFjGBtpOeKG7MLU2eFbrFsV+0Z0CpxFqRcK7nnk2ktrXeL324vIklIhSYcK9Vx7Fh7Iyw1I5yOC26iaIzJEPdpx1CBQ6q80eziMTo1Sg8FkTQlNJqpvydGOFQqDX3TGWI9UMteJv7ndRId3HojJuJEU0Hmi4KEIx2h7H3UY5ISzVNDMJHM3IrIAEtMtAkpC8FZfnmVNC+rznX16tGkcQdz5OEESlABB26gBg9QhwYQEDCBN3i3lPVqfVif89actZg5hj+wvn4AHj+S4w==</latexit>

(⇡,⇡)

<latexit sha1_base64="Vg1154ChOOS+ZQ8ztEltzmRW4b8=">AAAB8nicdVDJTgJBEO3BDXFDPXrpCCaeJjMwjHAjePGIiSwRkPQ0DXToWdJdY0ImfIYXDxrj1a/x5t/YLCZq9CWVvLxXlap6XiS4Asv6MFJr6xubW+ntzM7u3v5B9vCoqcJYUtagoQhl2yOKCR6wBnAQrB1JRnxPsJY3uZz7rXsmFQ+DG5hGrOeTUcCHnBLQUsfO3yUKZvnabaafzVlmueQWKw62zILrOlZFk6LruMUStk1rgRxaod7PvncHIY19FgAVRKmObUXQS4gETgWbZbqxYhGhEzJiHU0D4jPVSxYnz/CZVgZ4GEpdAeCF+n0iIb5SU9/TnT6BsfrtzcW/vE4Mw3Iv4UEUAwvoctEwFhhCPP8fD7hkFMRUE0Il17diOiaSUNApzUP4+hT/T5oF03ZN57qQq9ZWcaTRCTpF58hGF6iKrlAdNRBFIXpAT+jZAOPReDFel60pYzVzjH7AePsEToSQpA==</latexit>

1stBZ

topological phase diagram: 

C=0 C=1 C=-1 C=0

topological invariant:
<latexit sha1_base64="r9TTQkRVTY2eybMasdCeYtQPua8=">AAACGXicbVDLSsNAFJ34rPVVdelmsAh1U5JSVBChtCAuK9gHNrFMppN2yGQSZiZCCfkNN/6KGxeKuNSVf+O0zUJbD1w4nHMv997jRoxKZZrfxtLyyuraem4jv7m1vbNb2NtvyzAWmLRwyELRdZEkjHLSUlQx0o0EQYHLSMf1GxO/80CEpCG/VeOIOAEacupRjJSW+gWzAS+h7QmEEytNKnZEU2iHlKt+YosAWvW7FA7uKz60L+BVyT/J9wtFs2xOAReJlZEiyNDsFz7tQYjjgHCFGZKyZ5mRchIkFMWMpHk7liRC2EdD0tOUo4BIJ5l+lsJjrQygFwpdXMGp+nsiQYGU48DVnQFSIznvTcT/vF6svHMnoTyKFeF4tsiLGVQhnMQEB1QQrNhYE4QF1bdCPEI6JqXDnIRgzb+8SNqVsnVart5Ui7V6FkcOHIIjUAIWOAM1cA2aoAUweATP4BW8GU/Gi/FufMxal4xs5gD8gfH1AzzJnes=</latexit>

C =
1

2⇡

I

1BZ
d2k F (k)

m=-2t m=0 m=+2t

band 
insulator

Chern 
insulator

band 
insulator

<latexit sha1_base64="OrxBYlCp/5htoL0DiennzPPG8+0=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUS9ktRb0IRS9ehAr2A9qlZNNsG5tNliQrlNL/4MWDIl79P978N2bbPWjrg4HHezPMzAtizrRx3W9nZXVtfWMzt5Xf3tnd2y8cHDa1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtFN6reeqNJMigczjqkf4YFgISPYWKlZuruqnOV7haJbdmdAy8TLSBEy1HuFr25fkiSiwhCOte54bmz8CVaGEU6n+W6iaYzJCA9ox1KBI6r9yezaKTq1Sh+FUtkSBs3U3xMTHGk9jgLbGWEz1IteKv7ndRITXvoTJuLEUEHmi8KEIyNR+jrqM0WJ4WNLMFHM3orIECtMjA0oDcFbfHmZNCtl77xcva8Wa9dZHDk4hhMogQcXUINbqEMDCDzCM7zCmyOdF+fd+Zi3rjjZzBH8gfP5A5YJjdY=</latexit>

(M = 2)




























































Qi-Wu-Zhang (QWZ) model

Qi, Wu, Zhang, PRB (2006)

Interacting Chern Insulator in Infinite Spatial Dimensions
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We study a generic model of a Chern insulator supplemented by a Hubbard interaction in arbitrary
even dimensionD and demonstrate that the model remains well-defined and nontrivial in theD ! 1
limit. Dynamical mean-field theory is applicable and predicts a phase diagram with a continuum of
topologically di↵erent phases separating a correlated Mott insulator from the trivial band insulator.
We discuss various features, such as the elusive distinction between insulating and semi-metal states,
which are unconventional already in the non-interacting case. Topological phases are characterized
by a non-quantized Chern density replacing the Chern number as D ! 1.

Introduction. Strong electron correlations and topo-
logical classification are two major research frontiers of
condensed-matter theory. While much work has been
done in providing prototypical examples of topologically
nontrivial quantum matter [1–4] and in classifying [5–9]
topological insulators, much less is known for correlated
systems [10–13]. As correlated lattice-fermion models
in D = 2 and D = 3 dimensions pose highly involved
problems, many studies focus on one-dimensional sys-
tems with nontrivial topological properties [14–20].
On the other hand, the opposite limit of infinite spa-

tial dimensions has been recognized as extremely instruc-
tive for the pure electron-correlation problem and con-
stitutive for the dynamical mean-field theory (DMFT)
[21]. In the large class of mean-field approaches, DMFT
has an exceptional standing, since it is internally con-
sistent and nonperturbative, and since it becomes exact
in the D ! 1 limit [22]. While the limit comes with
certain simplifications, such as the locality of the self-
energy [21, 23], infinite-dimensional lattice-fermion mod-
els are far from being trivial. This is demonstrated by
the DMFT paradigm of the Mott metal-insulator transi-
tion as a prime example [24]. Furthermore, the fact that
exact properties of strongly correlated systems are nu-
merically accessible [21, 25, 26], make correlated lattice-
fermion models on D = 1 lattices attractive points of
orientation.
With the present study we pose the question whether

the same limit is also helpful for the understanding of
topological properties of strongly interacting electron sys-
tems. Our answer is a�rmative. Assuming locality of the
self-energy, previous DMFT studies of correlated topo-
logical insulators have addressed two-dimensional sys-
tems, such as the Haldane model [27], Hofstadter’s but-
terfly [28], or the BHZ model [29, 30], all supplemented
by interaction terms, or real three-dimensional systems,
such as SmB6 [31], combining the DMFT with ab initio
band theory. A DMFT study of an interacting, topologi-
cally nontrivial model on a D = 1 lattice is still missing.

Here, we consider multi-orbital Hubbard models on a
D-dimensional hypercubic lattice for arbitrary but even
D, whose low-energy non-interacting band structures re-

duce to massive Dirac theories and belong to class A
of Chern insulators with Z topological invariants. We
demonstrate that, with the proper scaling of the hopping,
the D ! 1 limit leads to a well-defined model with non-
trivial interplay between kinetic and interaction terms,
hosting topologically nontrivial phases, and is accessible
to a numerical solution by DMFT for arbitrary Hubbard
interaction U and mass parameter m. The m-U phase di-
agram contains the trivial band and the correlated Mott
insulator, separated by a continuum of interacting and
topologically di↵erent Chern insulators. The latter are
characterized by a properly defined Chern density, which
replaces the Chern number as a topological invariant.
We argue that for D ! 1 already the U = 0 model
has highly unconventional topological properties as the
sign of the Chern number as well as a band closure are
concepts becoming ill-defined in the limit D ! 1.
Hamiltonian. We study an extension of a family

of D-dimensional tight-binding models for even D to
spinful fermions with local Coulomb interaction as de-
scribed by the Hamiltonian H = H0 + H1. Here
H1 = (U/2)

P
i↵� ni↵�ni↵�� is an on-site and intra-

orbital Hubbard term, where i = 1, ..., L labels the
sites of a D-dimensional hypercubic lattice with peri-
odic boundaries, � =", # is the spin projection, and
↵ = 1, ...,M is an orbital index. The corresponding anni-
hilator is ci↵�, and ni↵� ⌘ c

†
i↵�ci↵�. After Fourier trans-

formation to k-space, ci↵� = L
�1/2

P
k e

ikRick↵�, the

tight-binding part reads H0 =
P

k↵�� ✏↵�(k)c
†
k↵�ck��,

where k = (k1, ..., kD) with �⇡ < kr  ⇡, and where
✏↵�(k) are the elements of the M ⇥M hopping matrix in
k-space:
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describes submanifolds of the lattice of condimension 2� (e.g.
one lines in a d= 3 dimensional lattice), etc. The term s=0
describes such toplogical properties associated with points. The
factor s

d( ) counts the number of ways the s-dimensional objects
can be placed into the d-dimensional lattice. None of these
lower dimensional objects would be defined in the absence of
the lattice. For this reason the second piece characterizes ‘weak
topological insulators (superconductors)’ which can exist in the
system18. Finally, there is a corresponding expression for the
two complex symmetry classes A and AIII, and the
corresponding complex classifying spaces called Cq, q=0,
1. By keeping only the first, universal piece on the right-hand
side of (42) as well as the corresponding ‘complex’ version,
one arrives at the table of topological insulators and super-
conductors displayed in table 3.

We end by noting that, as already mentioned at the
beginning of section 3, a somewhat different approach to
topological band theory, which does not use K-Theory, was
very recently developed in [33] (see also the contribution [34]
to the present nobel symposium).

3.3. Classification by lack of Anderson localization on the
boundary (NLSMs)

The technically simplest way to obtain the table of topological
insulators and superconductors, table 3, is to focus on the
classification of boundaries of the system, as opposed to the
approach in the previous section 3.2 which focused on the
bulk. The characterization of topological phases in terms of
their boundaries has proven more generally to be one of the
most successful tools in this subject area. This is related to the
fact that these boundaries must exhibit an ‘anomaly’ of some
kind, a fact that was first recognized in its general form in the
context of non-interacting fermionic topological insulators
and superconductors in [3], and this is discussed in section 3.5
below. The characterization of more general Topological
Phases, including interacting systems, by anomalies at their
boundaries has become a key tool in this area. (See also the
comments in sections 2 and 3.5.) In the case of non-

interacting Fermionic topological insulators (super-
conductors) the anomalous properties of the sample bound-
aries manifest themselves through the fact that the boundaries
must always possess extended states. This means that the
boundaries always conduct electrical current or heat similar to
a metal. Because of the well known phenomenon of Anderson
localization this provides a very convenient and quick way to
classify toplogical insulators (superconductors), as we will
now review.

As already mentioned above, Anderson localization is the
phenomenon that, at least for sufficiently strong breaking of
translational invariance (typically introduced by potentials
that arise from randomly located impurities—‘disorder’),
spatially extended eigenstates of the Hamiltonian H tend to
become localized in space (typically exponentially decaying
in space about a point) [30, 31]. The resulting phase is the so-
called Anderson insulator which, hence, typically always
occurs at least for sufficiently strong breaking of translational
invariance. Now, the point is that the Anderson Insulator is a
phase that does not conduct electrical current nor heat, and
therefore is not allowed to occur at the boundaries of a
topological insulator or superconductor. Thus, the boundary
of any topological insulator or superconductor must entirely
evade the phenomeon of Anderson localization. As we will
now see, this condition can be fairly easily exploited at the
technical level, and this directly yields the classification of
topological insulators (superconductors), table 3.

In summary, the current method of classification amounts
to the following: We reduce the problem of classifying topo-
logical insulators (superconductors) in d spatial dimensions to
a problem of Anderson localization in d d 1( )� � dimensions
(i.e. ‘at the boundary’). By studying the lack of Anderson
localization in d d 1( )� � spatial dimensions, we solve the
classification problem of topological insulators (super-
conductors) in d spatial dimensions.

In order to understand how to implement this program in
practice, all one needs to appreciate is that the answer to the
question about the lack of Anderson localization is a question
in Field Theory. It is well known that the theoretical
description of problems of Anderson localization is very
systematic and geometrical (see e.g. [26, 35, 36]).

Table 3. Table of topological insulators and superconductors [13–16] .

Cartan d⧹ 0 1 2 3 4 5 6 7 8

Complex case:
A ' 0 ' 0 ' 0 ' 0 ' L
AIII 0 ' 0 ' 0 ' 0 ' 0 L
Real case:
AI ' 0 0 0 2' 0 2' 2' ' L
BDI 2' ' 0 0 0 2' 0 2' 2' L
D 2' 2' ' 0 0 0 2' 0 2' L
DIII 0 2' 2' ' 0 0 0 2' 0 L
AII 2' 0 2' 2' ' 0 0 0 2' L
CII 0 2' 0 2' 2' ' 0 0 0 L
C 0 0 2' 0 2' 2' ' 0 0 L
CI 0 0 0 2' 0 2' 2' ' 0 L

18 These weak topological insulators (superconductors) were also identified
in [15] using a physical argument.

13

Phys. Scr. T168 (2016) 014001 A W W Ludwig

⌧ =

0

@
⌧x
⌧y
⌧z

1

A

can be written as (D=2)

and with
�(1)
D = ⌧x �(2)

D = ⌧ y �(0)
D = ⌧ z = �i⌧x⌧ y

✏(k) =

 
m+ t

DX

r=1

cos kr

!
�(0)
D + t

DX

r=1

sin kr�
(r)
D

(M = 2)

and 
{�(1)

D ,�(2)
D } = {�(2)

D ,�(0)
D } = {�(0)

D ,�(1)
D } = 0

(�(1)
D )2 = (�(2)

D )2 = (�(0)
D )2 = 1

D=2 square lattice, two-orbitals, broken TRS, made spinful

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



QWZ model on the hypercubic lattice (even D)

3

FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
D/t

⇤)/2 and dm ⌘
2t⇤p
D

to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:

c(n0) = lim
D!1

r
2

⇡D
e
�2

(D
2

�n0)2

D = c(m)dm (4)

with a normalized Chern density of unit variance:

c(m) =
1

t⇤
p
2⇡

e
� 1

2
m2

t⇤2 . (5)

This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.
From the bulk-boundary correspondence [7, 32, 41]

at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.
Density of states. Turning to the correlation side of

the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
P

k G
(0)
↵↵(k,! + i0+)

of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L

�1
P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-
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Introduction. Strong electron correlations and topo-
logical classification are two major research frontiers of
condensed-matter theory. While much work has been
done in providing prototypical examples of topologically
nontrivial quantum matter [1–4] and in classifying [5–9]
topological insulators, much less is known for correlated
systems [10–13]. As correlated lattice-fermion models
in D = 2 and D = 3 dimensions pose highly involved
problems, many studies focus on one-dimensional sys-
tems with nontrivial topological properties [14–20].
On the other hand, the opposite limit of infinite spa-

tial dimensions has been recognized as extremely instruc-
tive for the pure electron-correlation problem and con-
stitutive for the dynamical mean-field theory (DMFT)
[21]. In the large class of mean-field approaches, DMFT
has an exceptional standing, since it is internally con-
sistent and nonperturbative, and since it becomes exact
in the D ! 1 limit [22]. While the limit comes with
certain simplifications, such as the locality of the self-
energy [21, 23], infinite-dimensional lattice-fermion mod-
els are far from being trivial. This is demonstrated by
the DMFT paradigm of the Mott metal-insulator transi-
tion as a prime example [24]. Furthermore, the fact that
exact properties of strongly correlated systems are nu-
merically accessible [21, 25, 26], make correlated lattice-
fermion models on D = 1 lattices attractive points of
orientation.
With the present study we pose the question whether

the same limit is also helpful for the understanding of
topological properties of strongly interacting electron sys-
tems. Our answer is a�rmative. Assuming locality of the
self-energy, previous DMFT studies of correlated topo-
logical insulators have addressed two-dimensional sys-
tems, such as the Haldane model [27], Hofstadter’s but-
terfly [28], or the BHZ model [29, 30], all supplemented
by interaction terms, or real three-dimensional systems,
such as SmB6 [31], combining the DMFT with ab initio
band theory. A DMFT study of an interacting, topologi-
cally nontrivial model on a D = 1 lattice is still missing.

Here, we consider multi-orbital Hubbard models on a
D-dimensional hypercubic lattice for arbitrary but even
D, whose low-energy non-interacting band structures re-

duce to massive Dirac theories and belong to class A
of Chern insulators with Z topological invariants. We
demonstrate that, with the proper scaling of the hopping,
the D ! 1 limit leads to a well-defined model with non-
trivial interplay between kinetic and interaction terms,
hosting topologically nontrivial phases, and is accessible
to a numerical solution by DMFT for arbitrary Hubbard
interaction U and mass parameter m. The m-U phase di-
agram contains the trivial band and the correlated Mott
insulator, separated by a continuum of interacting and
topologically di↵erent Chern insulators. The latter are
characterized by a properly defined Chern density, which
replaces the Chern number as a topological invariant.
We argue that for D ! 1 already the U = 0 model
has highly unconventional topological properties as the
sign of the Chern number as well as a band closure are
concepts becoming ill-defined in the limit D ! 1.
Hamiltonian. We study an extension of a family

of D-dimensional tight-binding models for even D to
spinful fermions with local Coulomb interaction as de-
scribed by the Hamiltonian H = H0 + H1. Here
H1 = (U/2)

P
i↵� ni↵�ni↵�� is an on-site and intra-

orbital Hubbard term, where i = 1, ..., L labels the
sites of a D-dimensional hypercubic lattice with peri-
odic boundaries, � =", # is the spin projection, and
↵ = 1, ...,M is an orbital index. The corresponding anni-
hilator is ci↵�, and ni↵� ⌘ c

†
i↵�ci↵�. After Fourier trans-

formation to k-space, ci↵� = L
�1/2

P
k e

ikRick↵�, the

tight-binding part reads H0 =
P

k↵�� ✏↵�(k)c
†
k↵�ck��,

where k = (k1, ..., kD) with �⇡ < kr  ⇡, and where
✏↵�(k) are the elements of the M ⇥M hopping matrix in
k-space:

✏(k) =

 
m+ t

DX

r=1

cos kr

!
�(0)
D + t

DX

r=1

sin kr�
(r)
D , (1)

depending on the hopping parameter t and on a param-

eter m controlling the mass term. Here, �
(1)
D , ..., �

(D)
D

are the generators of the complex Cli↵ord algebra

ClD, and �
(0)
D = (�i)D/2

�
(1)
D · · · �

(D)
D is the chiral ele-

ment. They satisfy the Cli↵ord anticommutation rela-

tions {�(µ)
D ,�(⌫)

D } = 2�(µ⌫) for µ, ⌫ = 0, 1, ..., D. Close

with generators of Cli"ord algebra

Interacting Chern Insulator in Infinite Spatial Dimensions
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Introduction. Strong electron correlations and topo-
logical classification are two major research frontiers of
condensed-matter theory. While much work has been
done in providing prototypical examples of topologically
nontrivial quantum matter [1–4] and in classifying [5–9]
topological insulators, much less is known for correlated
systems [10–13]. As correlated lattice-fermion models
in D = 2 and D = 3 dimensions pose highly involved
problems, many studies focus on one-dimensional sys-
tems with nontrivial topological properties [14–20].

On the other hand, the opposite limit of infinite spa-
tial dimensions has been recognized as extremely instruc-
tive for the pure electron-correlation problem and con-
stitutive for the dynamical mean-field theory (DMFT)
[21]. In the large class of mean-field approaches, DMFT
has an exceptional standing, since it is internally con-
sistent and nonperturbative, and since it becomes exact
in the D ! 1 limit [22]. While the limit comes with
certain simplifications, such as the locality of the self-
energy [21, 23], infinite-dimensional lattice-fermion mod-
els are far from being trivial. This is demonstrated by
the DMFT paradigm of the Mott metal-insulator transi-
tion as a prime example [24]. Furthermore, the fact that
exact properties of strongly correlated systems are nu-
merically accessible [21, 25, 26], make correlated lattice-
fermion models on D = 1 lattices attractive points of
orientation.

With the present study we pose the question whether
the same limit is also helpful for the understanding of
topological properties of strongly interacting electron sys-
tems. Our answer is a�rmative. Assuming locality of the
self-energy, previous DMFT studies of correlated topo-
logical insulators have addressed two-dimensional sys-
tems, such as the Haldane model [27], Hofstadter’s but-
terfly [28], or the BHZ model [29, 30], all supplemented
by interaction terms, or real three-dimensional systems,
such as SmB6 [31], combining the DMFT with ab initio
band theory. A DMFT study of an interacting, topologi-
cally nontrivial model on a D = 1 lattice is still missing.

Here, we consider multi-orbital Hubbard models on a
D-dimensional hypercubic lattice for arbitrary but even
D, whose low-energy non-interacting band structures re-

duce to massive Dirac theories and belong to class A
of Chern insulators with Z topological invariants. We
demonstrate that, with the proper scaling of the hopping,
the D ! 1 limit leads to a well-defined model with non-
trivial interplay between kinetic and interaction terms,
hosting topologically nontrivial phases, and is accessible
to a numerical solution by DMFT for arbitrary Hubbard
interaction U and mass parameter m. The m-U phase di-
agram contains the trivial band and the correlated Mott
insulator, separated by a continuum of interacting and
topologically di↵erent Chern insulators. The latter are
characterized by a properly defined Chern density, which
replaces the Chern number as a topological invariant.
We argue that for D ! 1 already the U = 0 model
has highly unconventional topological properties as the
sign of the Chern number as well as a band closure are
concepts becoming ill-defined in the limit D ! 1.
Hamiltonian. We study an extension of a family

of D-dimensional tight-binding models for even D to
spinful fermions with local Coulomb interaction as de-
scribed by the Hamiltonian H = H0 + H1. Here
H1 = (U/2)

P
i↵� ni↵�ni↵�� is an on-site and intra-

orbital Hubbard term, where i = 1, ..., L labels the
sites of a D-dimensional hypercubic lattice with peri-
odic boundaries, � =", # is the spin projection, and
↵ = 1, ...,M is an orbital index. The corresponding anni-
hilator is ci↵�, and ni↵� ⌘ c

†
i↵�ci↵�. After Fourier trans-

formation to k-space, ci↵� = L
�1/2

P
k e

ikRick↵�, the

tight-binding part reads H0 =
P

k↵�� ✏↵�(k)c
†
k↵�ck��,

where k = (k1, ..., kD) with �⇡ < kr  ⇡, and where
✏↵�(k) are the elements of the M ⇥M hopping matrix in
k-space:

✏(k) =

 
m+ t

DX

r=1

cos kr

!
�(0)
D + t

DX

r=1

sin kr�
(r)
D , (1)

depending on the hopping parameter t and on a param-

eter m controlling the mass term. Here, �
(1)
D , ..., �

(D)
D

are the generators of the complex Cli↵ord algebra

ClD, and �
(0)
D = (�i)D/2

�
(1)
D · · · �

(D)
D is the chiral ele-

ment. They satisfy the Cli↵ord anticommutation rela-

tions {�(µ)
D ,�(⌫)

D } = 2�(µ⌫) for µ, ⌫ = 0, 1, ..., D. Close

✏(k) = ±
 
(m+ t

X

r

cos kr)
2 +

X

r

t2 sin2 kr

!1/2

kn0 = (0, . . . , 0,⇡, . . . ,⇡)

n0

)

m = (D � 2n0)t

band dispersions

gap closure for

at          HSPs                                        in the 1BZ

2

to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
d! ⇢

n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from

D=4

✏(k)2 =

 
DX

µ=0

dµ(k)�
(µ)
D

!2

=
X

µµ0

dµ(k)dµ0(k)�(µ)
D �(µ0)

D =

 
d0(k)

2 +
DX

r=1

dr(k)
2

!
1

�(0)
D = (�i)D/2�(1)

D · · ·�(D)
D

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Section A: Band structure and density of states.
Here, we discuss some properties of the non-interacting
part of the Hamiltonian. A Julia script for the compu-
tation of the density of states as function of m and D is
available from the authors upon request.

With d0(k) ⌘ m + t
PD

r=1 cos kr and dr(k) ⌘ t sin kr
for r = 1, ..., D the M ⇥ M dispersion matrix ✏(k)
(with M = 2D/2) in Eq. (1) can be written as ✏(k) =

d0(k)�
(0)
D +

PD
r=1 sin kr�

(r)
D . Using the Cli↵ord anti-

commutation relations {�(µ)
D ,�(⌫)

D } = 2�(µ⌫), one finds
✏(k)2 = (d0(k)2 +

P
r dr(k)

2)1, where 1 is the M -
dimensional unity. The �-matrices and thus ✏(k) are
traceless. Hence, disregarding the spin degree of free-
dom, there are two M/2-fold degenerate bands with dis-
persions given by ✏±(k) = ±(d0(k)2 +

P
r dr(k)

2)1/2.
The gap � = mink(✏+(k)�✏�(k)) is determined by the

conditions d0(k) sin kr = dr(k) cos kr for the components
of k. � = 0 is obtained if d0(k) = 0 and dr(k) = 0 for all
r. The latter implies that kr = 0 or kr = ⇡, i.e., the gap
closes at the high-symmetry points (HSPs) in the BZ,
which are given by kc = kn0 = (0, ..., 0,⇡, ...,⇡) and by
the

�D
n0

�
inequivalent permutations of the components.

We define n0 as the number of vanishing entries kr = 0.
Then, the first condition d0(k) = 0 reads: 0 = m +

t
PD

r=1 cos kr = m+ tn0 � t(D � n0) = m� (D � 2n0)t.
Using the scaling t = t

⇤
/
p
D, we find the gap-closure

condition m =
p
D(1� 2n0/D)t⇤ for n0 = 0, ..., D.

The partial orbital-dependent free (U = 0) density of
states is given in terms of the free retarded Green’s func-
tion as

⇢↵(!) = �
1

⇡
ImG

(0)
↵↵(! + i0+ + µ

(0)) , (6)

where µ
(0) is the chemical potential of the free system.

At half-filling, µ(0) = 0, and we have

G
(0)
↵↵(!) =

1

L

X

k

G
(0)
↵↵(k,!) (7)

with

G
(0)
↵↵(k,!) =


1

! � ✏(k)

�

↵↵

=

"
1

! �
P

µ dµ(k)�
µ
D

#

↵↵

.

(8)

FIG. 3: Density of states on the A-orbitals at m = �1.5
for various dimensions D. The nearest-neighbor hopping is
t = t⇤/

p
D, and t⇤ = 1 sets the energy scale.

Here, µ = 0, 1, ..., D, and ↵ = 1, ...,M is the orbital
index. The matrix inverse must be computed in the
M = 2D/2-dimensional orbital space. Exploiting the
Cli↵ord-algebra relations again, we get

G
(0)
↵↵(k,!) =

"
! +

P
µ dµ(k)�

µ
D

!2 �
P

µ dµ(k)
2

#

↵↵

. (9)

The irreducible matrix representation of �(r) has vanish-
ing diagonal elements, see Eq. (2), such that there is a
contribution from the chiral element �(0) only. We have

�
(0)
↵↵ ⌘ z↵ = +1 for “A orbitals” ↵ = 1, ...,M/2 and

�
(0)
↵↵ ⌘ z↵ = �1 for “B orbitals” ↵ = (M/2) + 1, ...,M .

This implies that the orbital-resolved free Green’s func-

tions G(0)
↵↵(k,!) for ↵ = 1, ...,M can be divided into two

classes with representatives G(0)
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2)1/2. Note that

1
M

P
↵ ⇢↵(!) =

1
L

P
k
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s=± �(!�s✏(k)). Furthermore,
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to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
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n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
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(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from
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they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
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proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
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D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
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↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals
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↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2
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2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
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obtained by linearization of ✏(k) around kn0 .
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H0 and H1 is obtained if the standard [22, 38] scaling
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D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+
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⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m
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(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:
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see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k
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k = 0, where

we have defined kkk
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to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number
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of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from
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they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
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D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
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↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
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(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2
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2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for
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the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-
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via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =
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dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
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they span Cl2. The corresponding generalized lattice
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0, and thus the connectivity
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Noninteracting case. The U = 0 band structure is
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� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
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The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for
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the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
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(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from
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to the critical points kc in the first Brillouin zone (BZ),
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linear Dirac model with k-independent mass term. Such
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D+2 = ⌧ z ⌦ 1, where 1 de-
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Noninteracting case. The U = 0 band structure is
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in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
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FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
D/t

⇤)/2 and dm ⌘
2t⇤p
D

to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:

c(n0) = lim
D!1

r
2

⇡D
e
�2

(D
2

�n0)2

D = c(m)dm (4)

with a normalized Chern density of unit variance:

c(m) =
1

t⇤
p
2⇡

e
� 1

2
m2

t⇤2 . (5)

This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.
From the bulk-boundary correspondence [7, 32, 41]

at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.
Density of states. Turning to the correlation side of

the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
P

k G
(0)
↵↵(k,! + i0+)

of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L

�1
P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-

2

FIG. 4: Density of states on the A-orbitals for the D = 2-
dimensional model and various mass parameters m.

the DOS is spin-independent and independent of ↵ for
orbitals in the same class A or B. Moreover, we have the
symmetry ⇢A(�!) = ⇢B(!). For m = 0 in particular,
⇢↵(�!) = ⇢↵(!). Under a sign change m ! �m, the
DOS transforms as ⇢A,B(!) ! ⇢B,A(!).

Fig. 3 displays the DOS on the A orbitals for a fixed
mass parameter m = �1.5. This m-value is not critical

for any of the finite lattice dimensions considered (D =
2, 4, 8), see also Fig. 1 (middle). The DOS at critical
mass parameters is discussed in Sec. C. Here, we find a
quick overall convergence of the DOS with increasing D.

Fig. 4 gives another example. Here, we consider the
two-dimensional model, i.e., the model proposed by Qi,
Wu and Zhang [36, 37]. The DOS on the A orbitals is
plotted for various mass parameters. We see the sym-
metry ⇢A(!) ! ⇢A(�!) for m ! �m. Furthermore,
the evolution of the gap with m can be read o↵. Gap
closures are found at m = 0 and m = ±

p
2 (in units of

t
⇤ = 1). For m = 0, the gap closes at kn0=1 = (0,⇡)
(and at (⇡, 0)). For m = +1 and for m = �1, the critical
k-points in the BZ are kn0=2 = (0, 0) and kn0=0 = (⇡,⇡),
respectively. The m-parameter range 0 < m <

p
2 is

characterized by n0 = 0 corresponding to the critical k-
point for the upper boundary m =

p
2, and the Chern

number in that m-range is CD=2(n0 = 0) = �1, see
also Fig. 1 (middle panel) and Eq. (3). For the range
�
p
2 < m < 0, characterized by n0 = 1, the Chern num-

ber is CD=2(n0 = 1) = +1. The phases for m < �
p
2

and for
p
2 < m are topologically trivial, and the corre-

sponding Chern number vanishes.

Section B: DOS in the limit D ! 1. In the limit D ! 1 an analytical expression for the DOS can be given. As
the k-dependence in Eq. (10) is only due to d0(k) and

P
r d

2
r(k), we can write

⇢↵(!) =
1

2

X

s=±

ZZ
dxdyD(x, y)

 
1 + sz↵

xp
x2 + y

!
�(! � s

p
x2 + y) (11)

with

D(x, y) ⌘
1

L

X

k

�(x� d0(k)) �(y �
X

r

d
2
r(k)) =

1

(2⇡)2

ZZ
dudve

�iux
e
�ivy�(u, v) . (12)

In the thermodynamic limit L ! 1 the Fourier transform can be written as:

�(u, v) = e
ium

✓
1

2⇡

Z ⇡

�⇡
dk e

iut cos k
e
ivt2 sin2 k

◆D

. (13)

We insert the scaling t = t
⇤
/
p
D, proceed by straightforwardly expanding the exponentials in powers of u and v and

keep terms up to order 1/D. In the limit D ! 1 this yields:

�(u, v) = e
ium

e
� 1

4u
2t⇤2

e
1
2 ivt

⇤2
(14)

and thus

D(x, y) =
1

t⇤
p
⇡
e
�(x�m)2/t⇤2

�(y �
1

2
t
⇤2) . (15)

We see that D(x, y) factorizes for D ! 1. The computation is a generalization of the one given by Müller-Hartmann
[21, 38]. Inserting the result in Eq. (11) we get, after some straightforward algebra:

⇢↵(!) =
1

2

1

t⇤
p
⇡
⇥(|!|�

1
p
2
t
⇤) sign!

X

s=±

0

@ !q
!2 �

1
2 t

⇤2
+ sz↵

1

A exp

0

B@�

⇣
s

q
!2 �

1
2 t

⇤2 �m

⌘2

t⇤2

1

CA . (16)

there is a finite gap                    independent of m!

3

The DOS is has an m-independent gap � =
p
2t⇤.

Section C: DOS at a critical m. If m is critical,
i.e., if the condition for a topological phase transition,
m =

p
D(1 � 2n0/D)t⇤, is satisfied for some n0 2

{0, ..., D}, we have ✏(k) = (t⇤/
p
D)
P

r(kr � kn0,r)�
(r)
D

close to ! = 0 and kn0 , and the dispersion is given by
d0(k) = 0 and dr(k) = t(kr � kn0,r), i.e., by a Dirac cone
✏±(k) = ±(t⇤/

p
D)[
P

r(kr � kn0,r)
2]1/2.

Fig. 5 provides an overview for the D = 2 model and
for the gap closures at m = �

p
2 and m = 0 (in units of

t
⇤ = 1). Directly at the criticalm, and at low frequencies,
the DOS is linear ⇢A(!) / |!|. The figure shows that the
m-dependence of the gap is linear as well, � / (m�mc),
if m is su�ciently close to a critical value mc.
We proceed with an analytical calculation for arbitrary

D. The low-frequency DOS for the D-dimensional model
is still given by Eq. (11) but with

D(x, y) ⌘ �(x)
1

L

X

k

0
�

 
y �

X

r

d
2
r(k)

!
, (17)

where
P0

k indicates summation over wave vectors dif-
ferences k with respect to a high-symmetry point kc =
kn0 = (0, ..., 0,⇡, ...,⇡) within a sphere |k|  ⇤ defined
by a cuto↵ ⇤. This implies

⇢↵(!) =

✓
D

n0

◆
1

2

X

s=±

1

L

X

k

0
�

0

@! � s
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⇤

p
D

vuut
DX

r=1

k2r

1

A

(18)
in the linear low-frequency regime. The combinato-
rial prefactor accounts for the fact that the gap closes
simultaneously at all

�D
n0

�
wave vectors produced by

the permutations of the components of kc = kn0 =
(0, ..., 0,⇡, ...,⇡). In the thermodynamic limit, and at

FIG. 5: Density of states (color code, note the log-scale)
on the A-orbitals at low excitation frequencies as a func-
tion of the mass parameter m. Calculation for the D = 2-
dimensional model.

su�ciently low frequencies !,
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D
D/2

(D/2� 1)!

1

⇡D/2
, (19)

with  = |k|, and with the surface area SD�1 =
2⇡D/2

/(D/2�1)! = 2⇡D/2
/�(D/2) of the D�1-dimensional

unit sphere S
D�1. This implies

⇢↵(!) = c(D,n0)|!|
D�1

/t
⇤D (20)

at low frequencies with a coe�cient c(D,n0) which, for
any n0, tends to zero exponentially fast as D ! 1.

Section D: Diagonal elements of the spectral function.
With the help of the self-energy, the interacting Green’s
function generally reads

G(k,!) =
1

! + µ� ✏(k)�⌃(k,!)
. (21)

Here, we have included a chemical-potential term in the
Hamiltonian via the replacement ✏(k) 7! ✏(k)� µ1.
As the interaction term preserves the symmetries

at half-filling, we must have AA/B(!) = AB/A(�!)
for the interacting local spectral function, A↵(!) =
�(1/⇡L)Im

P
k G↵↵��(k,!+ i0+). This implies that the

total (↵-summed) local spectral density A(!) is symmet-
ric. Hence, half-filling is obtained with a chemical poten-
tial which yields a vanishing first moment of A(!). The

latter is given by M
(1)
↵ = 1

M

P
↵(m�

(0)
↵↵ + Uhn↵i � µ),

i.e., we must choose µ = U/2 since the orbital occupa-
tions must be symmetric as well: hnAi+ hnBi = 1.
Within the DMFT, the self-energy is site-diagonal, i.e.,

k-independent. Furthermore, as the Hubbard-interaction
term is an intra-orbital interaction only, it is diagonal in
orbital space,

⌃↵�(k,!) = ⌃↵�(!) = �↵�⌃↵(!) . (22)

Analogous to the discussion of the density of states above,
the orbital-dependent diagonal elements ⌃↵(!) can be
divided into two classes A and B. With the definition

⌃±(!) =
1

2
(⌃A(!)± ⌃B(!)) , (23)

we have the following decomposition:

⌃(!) = ⌃+(!)1+ ⌃�(!)�
(0)
D . (24)

local DOS of orbital  in the limit α D → ∞
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We study a generic model of a Chern insulator supplemented by a Hubbard interaction in arbitrary
even dimensionD and demonstrate that the model remains well-defined and nontrivial in theD ! 1
limit. Dynamical mean-field theory is applicable and predicts a phase diagram with a continuum of
topologically di↵erent phases separating a correlated Mott insulator from the trivial band insulator.
We discuss various features, such as the elusive distinction between insulating and semi-metal states,
which are unconventional already in the non-interacting case. Topological phases are characterized
by a non-quantized Chern density replacing the Chern number as D ! 1.

Introduction. Strong electron correlations and topo-
logical classification are two major research frontiers of
condensed-matter theory. While much work has been
done in providing prototypical examples of topologically
nontrivial quantum matter [1–4] and in classifying [5–9]
topological insulators, much less is known for correlated
systems [10–13]. As correlated lattice-fermion models
in D = 2 and D = 3 dimensions pose highly involved
problems, many studies focus on one-dimensional sys-
tems with nontrivial topological properties [14–20].
On the other hand, the opposite limit of infinite spa-

tial dimensions has been recognized as extremely instruc-
tive for the pure electron-correlation problem and con-
stitutive for the dynamical mean-field theory (DMFT)
[21]. In the large class of mean-field approaches, DMFT
has an exceptional standing, since it is internally con-
sistent and nonperturbative, and since it becomes exact
in the D ! 1 limit [22]. While the limit comes with
certain simplifications, such as the locality of the self-
energy [21, 23], infinite-dimensional lattice-fermion mod-
els are far from being trivial. This is demonstrated by
the DMFT paradigm of the Mott metal-insulator transi-
tion as a prime example [24]. Furthermore, the fact that
exact properties of strongly correlated systems are nu-
merically accessible [21, 25, 26], make correlated lattice-
fermion models on D = 1 lattices attractive points of
orientation.
With the present study we pose the question whether

the same limit is also helpful for the understanding of
topological properties of strongly interacting electron sys-
tems. Our answer is a�rmative. Assuming locality of the
self-energy, previous DMFT studies of correlated topo-
logical insulators have addressed two-dimensional sys-
tems, such as the Haldane model [27], Hofstadter’s but-
terfly [28], or the BHZ model [29, 30], all supplemented
by interaction terms, or real three-dimensional systems,
such as SmB6 [31], combining the DMFT with ab initio
band theory. A DMFT study of an interacting, topologi-
cally nontrivial model on a D = 1 lattice is still missing.

Here, we consider multi-orbital Hubbard models on a
D-dimensional hypercubic lattice for arbitrary but even
D, whose low-energy non-interacting band structures re-

duce to massive Dirac theories and belong to class A
of Chern insulators with Z topological invariants. We
demonstrate that, with the proper scaling of the hopping,
the D ! 1 limit leads to a well-defined model with non-
trivial interplay between kinetic and interaction terms,
hosting topologically nontrivial phases, and is accessible
to a numerical solution by DMFT for arbitrary Hubbard
interaction U and mass parameter m. The m-U phase di-
agram contains the trivial band and the correlated Mott
insulator, separated by a continuum of interacting and
topologically di↵erent Chern insulators. The latter are
characterized by a properly defined Chern density, which
replaces the Chern number as a topological invariant.
We argue that for D ! 1 already the U = 0 model
has highly unconventional topological properties as the
sign of the Chern number as well as a band closure are
concepts becoming ill-defined in the limit D ! 1.
Hamiltonian. We study an extension of a family

of D-dimensional tight-binding models for even D to
spinful fermions with local Coulomb interaction as de-
scribed by the Hamiltonian H = H0 + H1. Here
H1 = (U/2)

P
i↵� ni↵�ni↵�� is an on-site and intra-

orbital Hubbard term, where i = 1, ..., L labels the
sites of a D-dimensional hypercubic lattice with peri-
odic boundaries, � =", # is the spin projection, and
↵ = 1, ...,M is an orbital index. The corresponding anni-
hilator is ci↵�, and ni↵� ⌘ c

†
i↵�ci↵�. After Fourier trans-

formation to k-space, ci↵� = L
�1/2

P
k e

ikRick↵�, the

tight-binding part reads H0 =
P

k↵�� ✏↵�(k)c
†
k↵�ck��,

where k = (k1, ..., kD) with �⇡ < kr  ⇡, and where
✏↵�(k) are the elements of the M ⇥M hopping matrix in
k-space:

✏(k) =

 
m+ t

DX

r=1

cos kr

!
�(0)
D + t

DX

r=1

sin kr�
(r)
D , (1)

depending on the hopping parameter t and on a param-

eter m controlling the mass term. Here, �
(1)
D , ..., �

(D)
D

are the generators of the complex Cli↵ord algebra

ClD, and �
(0)
D = (�i)D/2

�
(1)
D · · · �

(D)
D is the chiral ele-

ment. They satisfy the Cli↵ord anticommutation rela-

tions {�(µ)
D ,�(⌫)

D } = 2�(µ⌫) for µ, ⌫ = 0, 1, ..., D. Close

with generators of Cli"ord algebra
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(D)
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�
(1)
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ment. They satisfy the Cli↵ord anticommutation rela-

tions {�(µ)
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Prodan, Schulz-Baldes (2016)!
“Bulk and Boundary Invariant for !
Complex Topological Insulators”

{�(µ)
D ,�(⌫)

D } = 2�(µ⌫) for µ, ⌫ = 0, 1, ..., D

Theorem
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to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
d! ⇢

n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from

2

to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
d! ⇢

n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from

2

to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
d! ⇢

n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].

Importantly, the distance between two transitions
�m = 2t⇤/

p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.

A second important observation directly follows from

• for even D, there is a unique irrep of the 
complex Clifford algebra 

•   
• dimension of the representation: M= 2D/2

explicit iterative construction

immediate consequences
• number of orbitals   (diverges for ) 
• A- and B-orbitals (m: strength of staggered orbital field) 
• degenerate band structure
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Chern number

K-theory yields:

3

FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
D/t

⇤)/2 and dm ⌘
2t⇤p
D

to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:

c(n0) = lim
D!1

r
2

⇡D
e
�2

(D
2

�n0)2

D = c(m)dm (4)

with a normalized Chern density of unit variance:

c(m) =
1

t⇤
p
2⇡

e
� 1

2
m2

t⇤2 . (5)

This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.

From the bulk-boundary correspondence [7, 32, 41]
at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.

Density of states. Turning to the correlation side of
the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
P

k G
(0)
↵↵(k,! + i0+)

of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L

�1
P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-

CD =
1

(D/2)!

iD/2

(2⇡)D/2

Z

1BZD

trFD/2

F = dA+A2

A↵�(k) = hu↵(k)|@k|u�(k)i dk

Chern number

2

to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
d! ⇢

n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].

Importantly, the distance between two transitions
�m = 2t⇤/

p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.

A second important observation directly follows from

Prodan, Schulz-Baldes (2016)

CD(n0) = (�1)n0+D
2
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◆
band closure

m =

✓p
D � 2

n0p
D
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t⇤

lim
D!1

CD ?

with increasing lattice dimension:
• more and more topological phases  
• with increasing Chern numbers 
• in an ever narrower m-range
�m = 2t⇤/

p
D

lim
D!1

CD ?

interpretation
• (D-1)-dim. (1000…) surface hosts  

gapless edge states 
• Weyl nodes at surface-projected HSP’s  

in the (D-1)-dim surface BZ 
• sign: chirality of the of the Weyl points
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DMFT of QWZ+U 
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0 D=2

D=4
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• trivial band insulator, trivial Mott insulator 
• nontrivial intermediate phases 
• more phases with increasing D 
• phase diagram symmetric   
• at m=0: transition from an interacting  

Chern insulator to trivial Mott insulator 
• strong A-B orbital polarization: 

 

•  

m ↔ − m

ΣA → U , ΣB → 0 for m → ∞
Uc(m) ∼ |m | for m → ± ∞
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⌃± =
1

2
(⌃A ± ⌃B)
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2

to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the
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(n)
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n
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M
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↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
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p
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⇤
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(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:
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◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].

Importantly, the distance between two transitions
�m = 2t⇤/

p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
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for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.

A second important observation directly follows from
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FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
D/t

⇤)/2 and dm ⌘
2t⇤p
D

to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:

c(n0) = lim
D!1

r
2

⇡D
e
�2

(D
2

�n0)2

D = c(m)dm (4)

with a normalized Chern density of unit variance:

c(m) =
1

t⇤
p
2⇡

e
� 1

2
m2

t⇤2 . (5)

This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.

From the bulk-boundary correspondence [7, 32, 41]
at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.

Density of states. Turning to the correlation side of
the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
P

k G
(0)
↵↵(k,! + i0+)

of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L

�1
P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-

Chern number sum rule
D�1X

n0=0

1

2D�1
|CD(n0)| = 1

m =

✓p
D � 2

n0p
D

◆
t⇤

�m = 2t⇤/
p
D ! dm
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FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
D/t

⇤)/2 and dm ⌘
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to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:

c(n0) = lim
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with a normalized Chern density of unit variance:

c(m) =
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This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.
From the bulk-boundary correspondence [7, 32, 41]

at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.
Density of states. Turning to the correlation side of

the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
P
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(0)
↵↵(k,! + i0+)

of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L
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P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-
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FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
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⇤)/2 and dm ⌘
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to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:
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with a normalized Chern density of unit variance:
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This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.
From the bulk-boundary correspondence [7, 32, 41]

at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.
Density of states. Turning to the correlation side of

the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
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of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L

�1
P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-
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The DOS is has an m-independent gap � =
p
2t⇤.

Section C: DOS at a critical m. If m is critical,
i.e., if the condition for a topological phase transition,
m =

p
D(1 � 2n0/D)t⇤, is satisfied for some n0 2

{0, ..., D}, we have ✏(k) = (t⇤/
p
D)
P

r(kr � kn0,r)�
(r)
D

close to ! = 0 and kn0 , and the dispersion is given by
d0(k) = 0 and dr(k) = t(kr � kn0,r), i.e., by a Dirac cone
✏±(k) = ±(t⇤/

p
D)[
P

r(kr � kn0,r)
2]1/2.

Fig. 5 provides an overview for the D = 2 model and
for the gap closures at m = �

p
2 and m = 0 (in units of

t
⇤ = 1). Directly at the criticalm, and at low frequencies,
the DOS is linear ⇢A(!) / |!|. The figure shows that the
m-dependence of the gap is linear as well, � / (m�mc),
if m is su�ciently close to a critical value mc.
We proceed with an analytical calculation for arbitrary

D. The low-frequency DOS for the D-dimensional model
is still given by Eq. (11) but with

D(x, y) ⌘ �(x)
1

L

X

k
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r
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2
r(k)

!
, (17)

where
P0

k indicates summation over wave vectors dif-
ferences k with respect to a high-symmetry point kc =
kn0 = (0, ..., 0,⇡, ...,⇡) within a sphere |k|  ⇤ defined
by a cuto↵ ⇤. This implies
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(18)
in the linear low-frequency regime. The combinato-
rial prefactor accounts for the fact that the gap closes
simultaneously at all

�D
n0

�
wave vectors produced by

the permutations of the components of kc = kn0 =
(0, ..., 0,⇡, ...,⇡). In the thermodynamic limit, and at

FIG. 5: Density of states (color code, note the log-scale)
on the A-orbitals at low excitation frequencies as a func-
tion of the mass parameter m. Calculation for the D = 2-
dimensional model.
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with  = |k|, and with the surface area SD�1 =
2⇡D/2

/(D/2�1)! = 2⇡D/2
/�(D/2) of the D�1-dimensional

unit sphere S
D�1. This implies

⇢↵(!) = c(D,n0)|!|
D�1

/t
⇤D (20)

at low frequencies with a coe�cient c(D,n0) which, for
any n0, tends to zero exponentially fast as D ! 1.

Section D: Diagonal elements of the spectral function.
With the help of the self-energy, the interacting Green’s
function generally reads

G(k,!) =
1

! + µ� ✏(k)�⌃(k,!)
. (21)

Here, we have included a chemical-potential term in the
Hamiltonian via the replacement ✏(k) 7! ✏(k)� µ1.
As the interaction term preserves the symmetries

at half-filling, we must have AA/B(!) = AB/A(�!)
for the interacting local spectral function, A↵(!) =
�(1/⇡L)Im

P
k G↵↵��(k,!+ i0+). This implies that the

total (↵-summed) local spectral density A(!) is symmet-
ric. Hence, half-filling is obtained with a chemical poten-
tial which yields a vanishing first moment of A(!). The

latter is given by M
(1)
↵ = 1

M

P
↵(m�

(0)
↵↵ + Uhn↵i � µ),

i.e., we must choose µ = U/2 since the orbital occupa-
tions must be symmetric as well: hnAi+ hnBi = 1.
Within the DMFT, the self-energy is site-diagonal, i.e.,

k-independent. Furthermore, as the Hubbard-interaction
term is an intra-orbital interaction only, it is diagonal in
orbital space,

⌃↵�(k,!) = ⌃↵�(!) = �↵�⌃↵(!) . (22)

Analogous to the discussion of the density of states above,
the orbital-dependent diagonal elements ⌃↵(!) can be
divided into two classes A and B. With the definition

⌃±(!) =
1

2
(⌃A(!)± ⌃B(!)) , (23)

we have the following decomposition:

⌃(!) = ⌃+(!)1+ ⌃�(!)�
(0)
D . (24)

Electronic structure

kn0 = (0, . . . , 0,⇡, . . . ,⇡)

n0

)

2

to the critical points kc in the first Brillouin zone (BZ),
see below, the low-energy e↵ective theory is given by a
linear Dirac model with k-independent mass term. Such
free Dirac models are extensively analyzed and topologi-
cally classified for di↵erent mass terms and for arbitrary
D, see e.g. Ref. [32]. The model (1) belongs to symmetry
class A in the Altland-Zirnbauer (AZ) scheme [6].

We note that ClD+2
⇠= Mat(2,C) ⌦ ClD and that

there is, for even D, a unique irreducible M = 2D/2-
dimensional matrix representation of ClD [33–35]. The
according �-matrices can be constructed recursively: Cl0
is spanned by 1 2 C. The first nontrivial dimension is
D = 2, and hence M = 2. Cl2 is generated by the Pauli

matrices �(1)
2 = ⌧x and �(2)

2 = ⌧ y, and together with the

unity 1 and the chiral element �(0)
2 = �i⌧x⌧ y = ⌧ z,

they span Cl2. The corresponding generalized lattice
Dirac model, Eq. (1), with ✏(k) = d(k) · ⌧ and d(k) =
(t sin kx, t sin ky,m+ t cos kx + t cos ky) is just the model
proposed by Qi, Wu and Zhang [36, 37]. For arbitrary
even D the general recursive prescription for the Hermi-
tian and traceless generators is [32]:

�(r)
D+2 = ⌧x ⌦ �(r)

D , for r = 1, ..., D

�(D+1)
D+2 = ⌧x ⌦ �(0)

D , �(D+2)
D+2 = ⌧ y ⌦ 1 . (2)

The chiral element is �(0)
D+2 = ⌧ z ⌦ 1, where 1 de-

notes the 2D/2-dimensional unity. Explicitly, �(0) =
diag(+1,+1, ...,�1,�1, ...), such that m is the strength
of a staggered on-site potential in Eq. (1). Accordingly,
the orbitals ↵ can be divided into two classes, A orbitals

with �
(0)
↵↵ ⌘ z↵ = +1 (↵ = 1, ...,M/2) and B orbitals

�
(0)
↵↵ ⌘ z↵ = �1 (↵ = (M/2) + 1, ...,M). We see that

the number of orbitals scales exponentially with D. Eqs.
(1) and (2) imply that along a spatial direction r, each
site-orbital (i,↵) couples to a single orbital ↵0 at the two
nearest-neighbor positions i

0, and thus the connectivity
of (i,↵) is 2D.

Noninteracting case. The U = 0 band structure is
easily obtained by squaring ✏(k), using properties of the
� matrices, and noting that tr ✏(k) = 0. Apart from
the spin degeneracy, this yields two M/2-fold degenerate
bands: ✏±(k) = ±[t2

P
r sin

2
kr + (m+ t

P
r cos kr)

2]1/2.
The high-energy band edges are given by ✏max,min =
±(|m| + Dt) and are taken for kr = 0 (if m � 0)
and kr = ⇡ (m  0) for all r. Due to the point-
group symmetries, band closures are found at the high-
symmetry points (HSPs) kc = kn0 = (0, ..., 0,⇡, ...,⇡)
in the BZ, and for

�D
n0

�
inequivalent permutations of

the components, where n0 counts the number of van-
ishing entries kr. For a band closure the condition
m = (D � 2n0)t must be met. This corresponds to
the vanishing of the mass term in the Dirac Hamilto-

nian ✏(k) = [m+ (2n0 �D)t]�(0)
D + t

P
r(kr � kn0,r)�

(r)
D ,

obtained by linearization of ✏(k) around kn0 .

Infinite dimensions. It is instructive to compute the

low-order moments M
(n)
↵ =

R
d! ⇢

n
↵(!) of the local par-

tial density of states (DOS) of the orbital ↵. We have the

trivial normalization condition M
(0)
↵ = 1, the barycenter

M
(1)
↵ = m�

(0)
↵↵ = ±m, and the ↵-independent second mo-

ment M (2)
↵ = t

2
D+m

2. The variance of the DOS is given

by the second central moment M
(2)
↵ � (M (1)

↵ )2 = t
2
D.

Hence, a proper D ! 1 limit with a balance between
H0 and H1 is obtained if the standard [22, 38] scaling
t = t

⇤
/
p
D with lattice dimension D is employed. This

will be assumed here as well. Furthermore, we fix the en-
ergy scale by setting t

⇤ = 1, i.e., the variance of the DOS
is unity, while the locations of the band edges diverge
✏max,min = ±(|m|+

p
Dt

⇤) 7! ±1. The mass parameter
m must not be scaled in the D ! 1 limit to maintain
a nontrivial model. This implies a D-independent band
center of gravity ±m.

Topology for D ! 1. We approach the D ! 1 limit
via even-D models of Chern insulators and stay in the
AZ class A. For any finite even D, upon varying m, one
passes band closures and related topological phase transi-
tions, located at m =

p
D(1�2n0/D)t⇤ for n0 = 0, ..., D.

Fig. 1 (left) gives an example for D = 4. The topological
phase for an m with D � 2n0 � 2 < m

p
D/t

⇤
< D � 2n0

(with n0 = 0, ..., D � 1) can be characterized by the
(D/2)-th Chern number [32, 39, 40]:

CD(n0) = (�1)n0+D
2

✓
D � 1

n0

◆
, (3)

see Fig. 1 (middle) for an overview. The equation can be
interpreted by referring to the bulk-boundary correspon-
dence [7]. Namely, the (D� 1)-dimensional surface char-
acterized by Miller indices (100 · · · 0) hosts topologically
protected surface states, and their dispersion has Weyl
nodes at the surface projections kc,k of the bulk HSPs kc
for given n0. The binomial factor in Eq. (3) counts the
number of equivalent nodal kc,k-points in the (D � 1)-
dimensional surface Brillouin zone. All Weyl points have
the same chirality given by the sign factor [32].
Importantly, the distance between two transitions

�m = 2t⇤/
p
D shrinks to zero for D ! 1, i.e., the

set of critical m’s becomes dense in any finite m-interval.
Hence, for high D the system is arbitrarily close to crit-
icality for any m. We note that, mathematically, the
definition of a critical point in the BZ becomes elusive
for D ! 1, since ✏±(k) = ✏±(k0) if kk � k

0
k = 0, where

we have defined kkk
2
⌘ limD!1 D

�1
PD

r=1 k
2
r . It is easy

to see that k·k is a semi-norm, i.e. kkk = 0 6) k = 0, such
that the concept of a band closure at isolated points in
k-space breaks down. However, we still have ✏±(k) = 0
at k = kc(m) for any m. Furthermore, the number

�D
n0

�

of equivalent critical HSPs at a given critical m and the
total number 2D of HSPs in the BZ diverge, but their
ratio approaches a constant when D ! 1.
A second important observation directly follows from
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We study a generic model of a Chern insulator supplemented by a Hubbard interaction in arbitrary
even dimensionD and demonstrate that the model remains well-defined and nontrivial in theD ! 1
limit. Dynamical mean-field theory is applicable and predicts a phase diagram with a continuum of
topologically di↵erent phases separating a correlated Mott insulator from the trivial band insulator.
We discuss various features, such as the elusive distinction between insulating and semi-metal states,
which are unconventional already in the non-interacting case. Topological phases are characterized
by a non-quantized Chern density replacing the Chern number as D ! 1.

Introduction. Strong electron correlations and topo-
logical classification are two major research frontiers of
condensed-matter theory. While much work has been
done in providing prototypical examples of topologically
nontrivial quantum matter [1–4] and in classifying [5–9]
topological insulators, much less is known for correlated
systems [10–13]. As correlated lattice-fermion models
in D = 2 and D = 3 dimensions pose highly involved
problems, many studies focus on one-dimensional sys-
tems with nontrivial topological properties [14–20].
On the other hand, the opposite limit of infinite spa-

tial dimensions has been recognized as extremely instruc-
tive for the pure electron-correlation problem and con-
stitutive for the dynamical mean-field theory (DMFT)
[21]. In the large class of mean-field approaches, DMFT
has an exceptional standing, since it is internally con-
sistent and nonperturbative, and since it becomes exact
in the D ! 1 limit [22]. While the limit comes with
certain simplifications, such as the locality of the self-
energy [21, 23], infinite-dimensional lattice-fermion mod-
els are far from being trivial. This is demonstrated by
the DMFT paradigm of the Mott metal-insulator transi-
tion as a prime example [24]. Furthermore, the fact that
exact properties of strongly correlated systems are nu-
merically accessible [21, 25, 26], make correlated lattice-
fermion models on D = 1 lattices attractive points of
orientation.
With the present study we pose the question whether

the same limit is also helpful for the understanding of
topological properties of strongly interacting electron sys-
tems. Our answer is a�rmative. Assuming locality of the
self-energy, previous DMFT studies of correlated topo-
logical insulators have addressed two-dimensional sys-
tems, such as the Haldane model [27], Hofstadter’s but-
terfly [28], or the BHZ model [29, 30], all supplemented
by interaction terms, or real three-dimensional systems,
such as SmB6 [31], combining the DMFT with ab initio
band theory. A DMFT study of an interacting, topologi-
cally nontrivial model on a D = 1 lattice is still missing.

Here, we consider multi-orbital Hubbard models on a
D-dimensional hypercubic lattice for arbitrary but even
D, whose low-energy non-interacting band structures re-

duce to massive Dirac theories and belong to class A
of Chern insulators with Z topological invariants. We
demonstrate that, with the proper scaling of the hopping,
the D ! 1 limit leads to a well-defined model with non-
trivial interplay between kinetic and interaction terms,
hosting topologically nontrivial phases, and is accessible
to a numerical solution by DMFT for arbitrary Hubbard
interaction U and mass parameter m. The m-U phase di-
agram contains the trivial band and the correlated Mott
insulator, separated by a continuum of interacting and
topologically di↵erent Chern insulators. The latter are
characterized by a properly defined Chern density, which
replaces the Chern number as a topological invariant.
We argue that for D ! 1 already the U = 0 model
has highly unconventional topological properties as the
sign of the Chern number as well as a band closure are
concepts becoming ill-defined in the limit D ! 1.
Hamiltonian. We study an extension of a family

of D-dimensional tight-binding models for even D to
spinful fermions with local Coulomb interaction as de-
scribed by the Hamiltonian H = H0 + H1. Here
H1 = (U/2)

P
i↵� ni↵�ni↵�� is an on-site and intra-

orbital Hubbard term, where i = 1, ..., L labels the
sites of a D-dimensional hypercubic lattice with peri-
odic boundaries, � =", # is the spin projection, and
↵ = 1, ...,M is an orbital index. The corresponding anni-
hilator is ci↵�, and ni↵� ⌘ c

†
i↵�ci↵�. After Fourier trans-

formation to k-space, ci↵� = L
�1/2

P
k e

ikRick↵�, the

tight-binding part reads H0 =
P

k↵�� ✏↵�(k)c
†
k↵�ck��,

where k = (k1, ..., kD) with �⇡ < kr  ⇡, and where
✏↵�(k) are the elements of the M ⇥M hopping matrix in
k-space:

✏(k) =

 
m+ t

DX

r=1

cos kr

!
�(0)
D + t

DX

r=1

sin kr�
(r)
D , (1)

depending on the hopping parameter t and on a param-

eter m controlling the mass term. Here, �
(1)
D , ..., �

(D)
D

are the generators of the complex Cli↵ord algebra

ClD, and �
(0)
D = (�i)D/2

�
(1)
D · · · �

(D)
D is the chiral ele-

ment. They satisfy the Cli↵ord anticommutation rela-

tions {�(µ)
D ,�(⌫)

D } = 2�(µ⌫) for µ, ⌫ = 0, 1, ..., D. Close
✏±(k) = ± t⇤p

D

vuut
DX

r=1

(kr � kn0,r)
2

for 

close to one of the         equivalent HSPs                                      in the 1BZ 

m =

✓p
D � 2

n0p
D

◆
t⇤ the Bloch Hamiltonian

leads to a Dirac-cone dispersion

3

The DOS is has an m-independent gap � =
p
2t⇤.

Section C: DOS at a critical m. If m is critical,
i.e., if the condition for a topological phase transition,
m =

p
D(1 � 2n0/D)t⇤, is satisfied for some n0 2

{0, ..., D}, we have ✏(k) = (t⇤/
p
D)
P

r(kr � kn0,r)�
(r)
D

close to ! = 0 and kn0 , and the dispersion is given by
d0(k) = 0 and dr(k) = t(kr � kn0,r), i.e., by a Dirac cone
✏±(k) = ±(t⇤/

p
D)[
P

r(kr � kn0,r)
2]1/2.

Fig. 5 provides an overview for the D = 2 model and
for the gap closures at m = �

p
2 and m = 0 (in units of

t
⇤ = 1). Directly at the criticalm, and at low frequencies,
the DOS is linear ⇢A(!) / |!|. The figure shows that the
m-dependence of the gap is linear as well, � / (m�mc),
if m is su�ciently close to a critical value mc.
We proceed with an analytical calculation for arbitrary

D. The low-frequency DOS for the D-dimensional model
is still given by Eq. (11) but with

D(x, y) ⌘ �(x)
1

L

X

k

0
�

 
y �

X

r

d
2
r(k)

!
, (17)

where
P0

k indicates summation over wave vectors dif-
ferences k with respect to a high-symmetry point kc =
kn0 = (0, ..., 0,⇡, ...,⇡) within a sphere |k|  ⇤ defined
by a cuto↵ ⇤. This implies

⇢↵(!) =

✓
D

n0

◆
1

2

X

s=±

1

L

X

k

0
�

0

@! � s
t
⇤

p
D

vuut
DX

r=1

k2r

1

A

(18)
in the linear low-frequency regime. The combinato-
rial prefactor accounts for the fact that the gap closes
simultaneously at all

�D
n0

�
wave vectors produced by

the permutations of the components of kc = kn0 =
(0, ..., 0,⇡, ...,⇡). In the thermodynamic limit, and at

FIG. 5: Density of states (color code, note the log-scale)
on the A-orbitals at low excitation frequencies as a func-
tion of the mass parameter m. Calculation for the D = 2-
dimensional model.

su�ciently low frequencies !,

⇢↵(!) =

✓
D

n0

◆
1

2

X

s=±

SD�1

(2⇡)D

Z ⇤

0
d

D�1
�

✓
! �

st
⇤

p
D


◆

=
|!|

D�1

t⇤D
1

2D
D!

n0!(D � n0)!

D
D/2

(D/2� 1)!

1

⇡D/2
, (19)

with  = |k|, and with the surface area SD�1 =
2⇡D/2

/(D/2�1)! = 2⇡D/2
/�(D/2) of the D�1-dimensional

unit sphere S
D�1. This implies

⇢↵(!) = c(D,n0)|!|
D�1

/t
⇤D (20)

at low frequencies with a coe�cient c(D,n0) which, for
any n0, tends to zero exponentially fast as D ! 1.

Section D: Diagonal elements of the spectral function.
With the help of the self-energy, the interacting Green’s
function generally reads

G(k,!) =
1

! + µ� ✏(k)�⌃(k,!)
. (21)

Here, we have included a chemical-potential term in the
Hamiltonian via the replacement ✏(k) 7! ✏(k)� µ1.
As the interaction term preserves the symmetries

at half-filling, we must have AA/B(!) = AB/A(�!)
for the interacting local spectral function, A↵(!) =
�(1/⇡L)Im

P
k G↵↵��(k,!+ i0+). This implies that the

total (↵-summed) local spectral density A(!) is symmet-
ric. Hence, half-filling is obtained with a chemical poten-
tial which yields a vanishing first moment of A(!). The

latter is given by M
(1)
↵ = 1

M

P
↵(m�

(0)
↵↵ + Uhn↵i � µ),

i.e., we must choose µ = U/2 since the orbital occupa-
tions must be symmetric as well: hnAi+ hnBi = 1.
Within the DMFT, the self-energy is site-diagonal, i.e.,

k-independent. Furthermore, as the Hubbard-interaction
term is an intra-orbital interaction only, it is diagonal in
orbital space,

⌃↵�(k,!) = ⌃↵�(!) = �↵�⌃↵(!) . (22)

Analogous to the discussion of the density of states above,
the orbital-dependent diagonal elements ⌃↵(!) can be
divided into two classes A and B. With the definition

⌃±(!) =
1

2
(⌃A(!)± ⌃B(!)) , (23)

we have the following decomposition:

⌃(!) = ⌃+(!)1+ ⌃�(!)�
(0)
D . (24)

local DOS at low frequencies

c(D,n0) → 0 for D → ∞ exponentially!fast
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Semimetal vs. topological insulator
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FIG. 1: Left: Band structure ✏(k) = ✏±(k) of the D = 4 model along straight shortest lines in the BZ connecting HSPs
characterized by n0. Results for di↵erent m, see color code. Middle: Di↵erent topological phases with Chern numbers CD(n0)
(green), separated by critical m-values (red dots) for di↵erent D. Right: U = 0 DOS on the A-orbitals at m = �1.5 for D = 1.
Inset: orbital polarization as function of m for D = 1. Nearest-neighbor hopping: t = t⇤/

p
D, t⇤ = 1 sets the energy scale.

Eq. (3): When D ! 1, only the modulus of the
Chern number, and only after proper normalization,
has a well-defined limit. Noting that

PD�1
n0=0 CD(n0) =

2D�1, we thus introduce a Chern density as c(n0) =
limD!1 |CD(n0)|/2

D�1. Since �m 7! 0, we can use

n0 = (D � m
p
D/t

⇤)/2 and dm ⌘
2t⇤p
D

to express the

Chern density as a function of m. With this, and using
the Moivre-Laplace theorem, we find:

c(n0) = lim
D!1

r
2

⇡D
e
�2

(D
2

�n0)2

D = c(m)dm (4)

with a normalized Chern density of unit variance:

c(m) =
1

t⇤
p
2⇡

e
� 1

2
m2

t⇤2 . (5)

This is a central result, as it shows that not only dynamic
correlation e↵ects but also nontrivial topological proper-
ties survive the D ! 1 limit when using the standard
scaling of the hopping.

From the bulk-boundary correspondence [7, 32, 41]
at any finite D, we can infer that c(m)dm is the ratio
between the number of topologically protected surface
states and the total number of HSPs in the BZ. Upon
variation of m 7! m + dm, a ratio of ±2c(m)dm bulk
states (per total number of HSPs) traverse the gap at
the HSPs corresponding to m. The Chern density is in-
sensitive to the sign though.

Density of states. Turning to the correlation side of
the problem, the relevant quantity for the DMFT is the

U = 0-DOS ⇢↵(!) = �(1/⇡L)Im
P

k G
(0)
↵↵(k,! + i0+)

of orbital ↵. This can be computed e�ciently using
the quasi-Monte Carlo technique of Refs. [42, 43] to
carry out the k-summation. Thanks to the Cli↵ord al-
gebra, the inversion of the M ⇥ M hopping matrix re-
quired to get the noninteracting Green’s function matrix

G(0)
k (!) = 1/(! � ✏(k)) can be done analytically, see

section A of the Supplemental Material (SM) [44]. We
also derive an analytical expression for the DOS in the
D ! 1 limit (SM, Sec. B [44]). For any D, we have
⇢A(�!) = ⇢B(!), and for m 7! �m, the DOS trans-

forms as ⇢↵(!) 7! ⇢↵(�!). The D = 1 DOS is shown
in Fig. 1 (right).

Another important point is that the D = 1 DOS is
fully gapped for allm. Furthermore, the gap� =

p
2t⇤ is

m-independent. This should be contrasted with the DOS
at any finite D, which behaves at low frequencies and at
a critical m as ⇢↵(!) / |!|

D�1, as it is characteristic
for a Dirac-cone structure (SM, Secs. C [44]). The band
states near a band closure in k-space at a critical kc and
all equivalent points (including k-points with kk�kck=0)
do no longer contribute a finite DOS near ! = 0. Hence,
there is no meaningful distinction between insulator and
semi-metal states in the D ! 1 limit.

The relevant range of the mass parameter to get non-
trivial correlation e↵ects in high D is of order m =
±O(t⇤). This is demonstrated with the inset of Fig. 1
(right) showing the orbital polarization p = (nA �nB)/2
of the half-filled noninteracting system, (nA+nB)/2 = 1,
as a function ofm (where n↵ ⌘ L

�1
P

k�hc
†
k↵�ck↵�i). On

the scale m = ±O(t⇤), p quickly approaches almost full
saturation with empty or doubly occupied A (or B) or-
bitals, i.e., a state where the Hubbard interaction is static
and correlation e↵ects are absent.

DMFT. The exact solution of the interacting model
in the D ! 1 limit is provided by the DMFT. Particu-
larly, the m-U phase diagram of the model is interesting
as it expresses the generic interplay of topological prop-
erties and correlations in an exactly solvable and non-
perturbative case. To cover the entire relevant parameter
space, we employ a simplified DMFT scheme, where the
interacting lattice model is self-consistently mapped onto
a two-site single-impurity Anderson model (SIAM) [45].
A slight generalization is necessary to account for the
A-B orbital structure. This generalized two-site DMFT
(see SM, Secs. D and E for details [44]) simultaneously
focusses on the low- and on the high-frequency limit of
the DMFT self-consistency condition and qualitatively
captures the Mott-transition physics [45–47].

At finite U the D-th Chern number can be expressed
in terms of the interacting single-particle Green’s func-
tion [48–50]. Here, for D ! 1, the locality of the self-

finite dimension D:

infinite dimensions:
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• Chern density c(m,U) varies continuously 
• distinction between SM and TI not meaningful  
• there is no “band closure at isolated k-points in the 1BZ” 
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What does not ?

What survives  ?D → ∞
• local correlations effects

• nontrivial topological classification

• the overall structure of the finite-D phase diagrams

• DMFT solves the problem exactly

• distinction between semi-metal / insulator states

• arguments based on the discreteness of the topological invariant

• Chern density is positive: chirality of edge modes ? 

• there is not the  limit (only even D considered)D → ∞
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m
,U

)

Mott 
insulator

Chern 
insulator 

continuum

band 
insulator
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To do
Can we topologically classify all interacting electron models ?
Can we topologically classify all interacting lattice electron models ?
Can we topologically classify all lattice-electron models  
with local interactions on infinite-dimensional lattices ?
Can we topologically classify, in infinite dimensions,  
Hubbard-type lattice models derived from noninteracting prototypes  
of the tenfold way?
Can we topologically classify at least one of the  
prototype band models of the tenfold way, plus Hubbard-U,  
on an infinite-dimensional lattice ?

?
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