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A bird-eye view of Fermi liquids



When many interacting fermions condense in a state close to the minimum energy 
allowed by the Pauli exclusion principle one obtains a Fermi liquid. Physical realizations 
of the Fermi liquids concept range from interacting electrons in metals and 
semiconductors to liquid 3He, to gases of cold Fermionic atoms, to nuclear matter, 
electrons in white dwarves, and neutron stars. 

The behavior of Fermi liquids confronts us with a puzzle: in spite of strong mutual 
interactions the particles appear to behave as if they were non-interacting. 

It was not until the late 1950s that this puzzling state of affairs was clarified from 
a theoretical point of view by L. D. Landau. 

1. The Fermi liquid

Momentum space: N particles in a sphere of radius kF
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kF = (3⇡2n)1/3

Fermi wave vector

Real space: N particles in a box of volume V

density
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n = N/V



The low-lying states of the interacting liquid are in one-to-one 
correspondence with those of the ideal Fermi gas. 

Note: the adiabatic continuation principle does not say anything 
about the microscopic structure of the interacting states.  It only 
says that these states can be labelled in terms of “quasiparticles”, 
which are defined relative to the Fermi sphere.

2. Principle of adiabatic continuity

<latexit sha1_base64="csZgp6ysq6fXYKXG2CU84rNJ6wY="></latexit>

{Nk�}

Non-interacting quantum numbers
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Nk� 2 {0, 1}
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nk� 6= Nk�

nks discontinuous at kF



At low temperature, the Pauli principle 
greatly reduces the phase space available 
to the mutual scattering of particles under 
constraint of momentum and energy 
conservation.  In 3D this leads to
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1

⌧k
⇠ vF (k � kF )2

kF
(T = 0)
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1

⌧k
⇠ (kBT )2

~EF
(k = kF )

The adiabatic  “switching on” of interactions is justified on a time scale that is 
long on the scale of excitation frequencies, yet short on the scale of the 
(diverging) lifetime.  

3. Adiabatic continuity and quasiparticle lifetimeShort Title 5.5
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Fig. 1: Schematic illustration of two possible decay processes for a quasiparticle near the
Fermi surface. The quasiparticle makes a transition from ~k to ~k0, producing an electron-hole
pair in the process. Momentum and energy conservation restrict the momentum of the hole to
the shaded regions.

initial wave vector ~k with k > kF . At zero temperature the empty states into which the quasi-
particle can decay lie within a shell of thickness |k � kF | just above the Fermi surface. The
number of states in this region is clearly proportional to |k�kF | – a result valid in one, two and
three dimensions. Now, through the Coulomb interaction, the momentum and energy change
of the quasiparticle will be offset by the momentum and energy of an electron-hole pair. In two
and three dimensions, the state of the hole must lie within a shell of thickness |k � kF | below
the Fermi surface (see Fig. 1). This contributes another factor of |k � kF | to the probability of
decay, which, as anticipated, is thus found to be proportional to (k� kF )2 in three dimensions.1

Accordingly in two and three dimensions in the limit k ! kF , the inverse of the scattering
rate, i.e. the scattering time ⌧~k, becomes long enough to include many cycles of oscillation
of an external field that is able to create the quasiparticle excitation out of the ground-state
(the frequency of this field being proportional to the excitation energy which is of order |k �
kF |). Thus, on a time scale that is short compared to ⌧k (but still long compared to the inverse
excitation frequency) the occupation number N~k� can be regarded as a good quantum number
for the excited state.2

Strictly speaking however the N~k� are not exact quantum numbers (for that to be true the scat-
tering rate would have to actually vanish), and if one waits long enough, i.e., up to times t � ⌧~k,

1In two dimensions, a more accurate calculation shows that the scattering rate vanishes at a somewhat slower
rate �(k � kF )2 ln |k � kF | (see Section 3.3). In the presence of disorder the quasiparticle inelastic lifetime is
shorter. This is discussed in Section 6.1.

2An alert reader will notice that the phase-space argument is circular: one assumes the existence of quasipar-
ticles to deduce that their lifetime is long. This does not prove the existence of quasiparticles, but shows that
one can assume their existence without falling in a contradiction. This discussion does also clarify that a “suitably
slow” switching-on must be carried out in a time intermediate between the fast time scale of order 1

vF |k�kF | related
to the the resolution of a quasiparticle state and the quasiparticles lifetime which we have shown to be of order

✏F
~(vF |k�kF |)2 .



4. “Golden rule” calculation of the quasiparticle lifetime 
(GV Chapter 8.4)
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presents no problems. A reasonable approximation is provided by the choice W (~q) ' vq
"(q,0) so

that Z 2kF

0
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0

dq
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◆2
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Further simplification can be achieved by making use of the Thomas-Fermi approximate dielec-
tric function, that is the static long wavelength limit of the RPA dielectric function, given by
✏(q, 0) = 1 + 4⇡e2N(0)

q2 . This gives the result

Z 2kF

0

dq|W (~q)|2 ' 2kF
N2(0)

⇠3(rs) , (34)

where the function ⇠3(rs) is given by
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Recall that rs(=
�

3
4⇡na3

�1/3 in 3D) is the average distance between electrons in units of the Bohr
radius a = ~2

me2 . For most densities in the metallic range ⇠3(rs) ' 1. Notice that ⇠3(rs) ⇠
p
rs

as rs ! 0: thus, due to the non-perturbative nature of the screening, the quasiparticle decay rate
turns out being proportional to the electron charge e, rather than e4, as one could have naively
expected.
Collecting the various factors we finally obtain for the inelastic quasiparticle lifetime in three
dimensions the following result

1

⌧ (e)~k�

' ⇡

8~✏F
("~k� � ✏F )2 + (⇡kBT )2

1 + e��("~k��✏F )
⇠3(rs), 3D, (36)

where we have approximated µ with ✏F and k with kF .
The inverse lifetime of a quasiparticle at the Fermi surface (k = kF ) vanishes as T 2 at small
temperatures. On the other hand, at T = 0, the inverse lifetime vanishes as ("~k� � ✏F )2. One
power of "~k� � ✏F (or T ) arises from the phase space restrictions on the scattering process.
The second one stems from the linearly vanishing density of particle-hole pairs excitations.
The numerical prefactor is simply a Fermi surface average of the statically screened Coulomb
interaction. This is the expected behavior, an indication that the Landau theory of the electron
liquid is consistent with the microscopic perturbative approach.

3.3 Two-dimensional electron gas

The two-dimensional case presents a few new twists. The most important difference with the
three-dimensional case is the q dependence of the integrand of Eq. (27), which must be handled
with special care in the regions q ' 0 and q ' 2kF . This necessitates a more precise treatment
of the limits of integration.

5.20 Giovanni Vignale

presents no problems. A reasonable approximation is provided by the choice W (~q) ' vq
"(q,0) so

that Z 2kF

0

dq|W (~q)|2 ' 1

N2(0)

Z 2kF

0

dq

✓
N(0)vq
"(q, 0)

◆2

. (33)

Further simplification can be achieved by making use of the Thomas-Fermi approximate dielec-
tric function, that is the static long wavelength limit of the RPA dielectric function, given by
✏(q, 0) = 1 + 4⇡e2N(0)

q2 . This gives the result

Z 2kF

0

dq|W (~q)|2 ' 2kF
N2(0)

⇠3(rs) , (34)

where the function ⇠3(rs) is given by

⇠3(rs) =

r
↵3rs
4⇡

tan�1

r
⇡

↵3rs
+

1

2
⇣
1 + ⇡

↵3rs

⌘ . (35)

Recall that rs(=
�

3
4⇡na3

�1/3 in 3D) is the average distance between electrons in units of the Bohr
radius a = ~2

me2 . For most densities in the metallic range ⇠3(rs) ' 1. Notice that ⇠3(rs) ⇠
p
rs

as rs ! 0: thus, due to the non-perturbative nature of the screening, the quasiparticle decay rate
turns out being proportional to the electron charge e, rather than e4, as one could have naively
expected.
Collecting the various factors we finally obtain for the inelastic quasiparticle lifetime in three
dimensions the following result

1

⌧ (e)~k�

' ⇡

8~✏F
("~k� � ✏F )2 + (⇡kBT )2

1 + e��("~k��✏F )
⇠3(rs), 3D, (36)

where we have approximated µ with ✏F and k with kF .
The inverse lifetime of a quasiparticle at the Fermi surface (k = kF ) vanishes as T 2 at small
temperatures. On the other hand, at T = 0, the inverse lifetime vanishes as ("~k� � ✏F )2. One
power of "~k� � ✏F (or T ) arises from the phase space restrictions on the scattering process.
The second one stems from the linearly vanishing density of particle-hole pairs excitations.
The numerical prefactor is simply a Fermi surface average of the statically screened Coulomb
interaction. This is the expected behavior, an indication that the Landau theory of the electron
liquid is consistent with the microscopic perturbative approach.

3.3 Two-dimensional electron gas

The two-dimensional case presents a few new twists. The most important difference with the
three-dimensional case is the q dependence of the integrand of Eq. (27), which must be handled
with special care in the regions q ' 0 and q ' 2kF . This necessitates a more precise treatment
of the limits of integration.

x3(rs)

rs

5.22 Giovanni Vignale

is given by the integral

1
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Z 1
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Consider first the “zero-temperature” situation |"~k� � ✏F | � kBT . In this case it is clear that
the main contribution to the integral comes from the region ! ' "~k� � ✏F . Now, since in this
region the logarithm is slowly varying, we can take it out of the integration to give the factor
ln 4✏F

|"~k��✏F | . This leaves us with a frequency integral which coincides with that of Eq. (31),
which we calculated exactly. The only difference is that in this case we need to take the limit

kBT
|"~k��✏F | ! 0. By making use of Eq. (32) we therefore obtain the result
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, kBT ⌧ |"~k� � ✏F |. (45)

The other relevant case is that of kBT � |"~k��✏F |, which corresponds to the case of a quasipar-
ticle lying on the Fermi surface. In this case a direct inspection of Eq. (44) shows that the most
relevant contributions to the integral come from a region of the order of kBT

~ centered about the
origin. In this situation the logarithm can again be taken out of the integral8 as to give a factor
of ln 4✏F

kBT . The remaining integral can then again evaluated by means of Eq. (32) in the limit of
|"~k��✏F |

kBT ! 0. This immediately gives9

1
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' ⇠2(rs)
(⇡kBT )2

8⇡~✏F
ln

4✏F
kBT

, |"~k� � ✏F | ⌧ kBT . (46)

The only significant difference with the three-dimensional case is the appearance here of the
logarithmic factors. This fact was first discovered by Giuliani and Quinn in Ref. [11].
The basic comments made about the three-dimensional result continue to apply. We emphasize
that the above calculation focused on the leading term in the low-energy/low-temperature ex-
pansion of the inverse lifetime.10 The complete calculation of the “subleading” contributions of
order ("~k� � ✏F )2 and (kBT )2 is more tricky: in particular, it can be shown that the regions I
and III in the q integral (see Fig. 7) do contribute to the result at this order.

3.4 Measuring the quasiparticle lifetime

Thanks to the great improvements in the manufacture of high-quality quantum well systems it
has recently been possible to directly measure, by means of precise and elegant tunneling exper-
iments between parallel identical quantum wells, the quasiparticle lifetime of a two-dimensional
electron liquid (Murphy et al., Ref. [12]).

8This is due to the fact that if f(x) is well behaved function in the interval [�a, a], then in the limit a ! 0,
with logarithmic accuracy,

R a
�a ln |x|f(x)dx ' ln |a|

R a
�a f(x)dx as one can readily verify.

9The coefficient of Eq. (46) can also be quickly inferred from Eq. (45) by making use of the general result (32).
10It is somewhat sobering to remark that a surprisingly vast variety of contradicting results for the coefficients

of Eqs. (45) and (46) have appeared in the literature.
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We begin by considering the angular integration which in this case gives the interesting result
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an expression that features an extra frequency dependence with respect to the three-dimensional
case. The other necessary ingredient is the expression for =m�0(q,!) in two dimensions,
which, at low frequency and in region II of Fig. 7, is approximately given by
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where N(0) = m
⇡~2 . Within the necessary accuracy, we can set k = kF in the argument of the

square root appearing in Eq. (37), which can then be rewritten as
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Accordingly we see that the contribution of region II to the q integral of Eq. (27) is
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This integral can be evaluated rather easily. Notice that in the limit ! ! 0 it presents a logarith-
mic divergence originating from the regions q ' 0 and q ' 2kF . To extract the exact coefficient
of the logarithmic singularity we set q = 0 and q = 2kF in the regular parts of the integrand,
when evaluating the contributions of q ' 0 and q ' 2kF respectively. Up to corrections that
remain finite as ! ! 0 the integral is then found to be equal to

⇡
�
|N(0)W (0)|2 + 1

2 |N(0)W (2kF )|2
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kF
ln
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It is convenient, at this point, to define the “coupling constant”

⇠2(rs) ⌘ |N(0)W (0)|2 + 1

2
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which, in the Thomas-Fermi approximation (see GV), depends on rs in the following manner:

⇠2(rs) = 1 +
1

2

✓
rs

rs +
p
2

◆2

. (43)

Notice that, unlike its three-dimensional counterpart, ⇠2(rs) tends to a constant, 1, in the high-
density limit.7 Combining Eqs. (27), (37), (38), and (40), we find that the quasiparticle lifetime

7The surprising fact that the inverse lifetime fails to vanish in the noninteracting limit rs ! 0 is an artifact
due to our asymptotic expansion of the integral (40), which requires the limit k ! kF to be taken before the limit
rs ! 0. The expansion fails for rs <

��� k
kF

� 1
���.

2D electron gas with Thomas-Fermi screened interaction:
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Fig. 8: Momentum-conserving tunneling between two identical free-electron bands separated
by a potential difference eV . Because of energy conservation, the tunneling probability de-
creases rapidly when eV exceeds the spectral width � of the single-particle states in each
band.
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Fig. 9: Inset: Lorentzian lineshape of the current-voltage (I-V) relation in tunneling between
two-dimensional GaAs quantum wells. Main figure: a plot of the half-width � , identified with
the inverse of the quasiparticle lifetime, vs temperature for systems of different density (a resid-
ual T = 0 contribution, attributed to disorder, has been subtracted). The solid line is the
theoretical prediction from Eq. (46) which is only applicable asymptotically. Adapted from
Ref. [12].

The basic idea of the experiment is shown in Fig. 8. The two identical parabolas separated
by an energy eV represent the energy vs wave vector relation of the quasiparticle states in the
two quantum wells, and the shaded regions show the energy spread of these states due to finite
lifetime of a quasiparticle at the Fermi surface (we are, of course, at finite temperature). Here
kk is the two-dimensional in-plane wave vector, V is the electric potential difference between
the two quantum wells, and � is the width of the quasiparticle peak in the spectral function
at kk = kF , which is directly related to the quasiparticle lifetime. Under the assumption that
electron-impurity and electron-phonon scattering are negligible the two-dimensional wave vec-
tor of the tunneling electrons is conserved and overall energy conservation causes the tunneling
probability to decrease sharply when eV exceeds � . More precisely, a plot of the the tunneling
conductance vs voltage is approximately a Lorentzian centered at zero voltage with width at
half maximum equal to 2� , as shown in the inset of Fig. 9. From this width the quasiparticle
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conductance vs voltage is approximately a Lorentzian centered at zero voltage with width at
half maximum equal to 2� , as shown in the inset of Fig. 9. From this width the quasiparticle

Momentum-conserving tunneling between two 
identical quantum wells separated by a potential 
difference eV . Because of energy conservation, 
the tunneling probability decreases rapidly when 
eV exceeds the spectral width Γ of the single-
particle states in each band. Adapted from Sheena 
Murphy (2004) 

5. Measuring the quasiparticle lifetime
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Figure 2: A cross-section of a double quantum well with an applied bias.
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6. The Landau energy functional
Expand the energy to second order in the deviation of the quasiparticle 
distribution from the ground state distribution
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2 Phenomenological theory

2.1 The Landau energy functional

As discussed in the previous section, a set of noninteracting occupation numbers Nk� = 0

or 1 defines, by continuation, a quasi-eigenstate of the interacting Fermi liquid. Similarly, a
distribution of fractional occupation numbers 0  Nk�  1 defines an ensemble of quasiparticle
states in which the state of momentum ~~k and spin � has a probability Nk� to be occupied
and 1 � Nk� to be empty. At the heart of Landau’s macroscopic theory of the Fermi liquids
lies an Ansatz for the functional dependence of the energy of the liquid on the quasiparticle
distribution function N~k�. This functional is in fact an expansion for the energy to second order
in the deviation of the quasiparticle distribution function from its ground-state value N (0)

~k�
=

⇥(kF � k):

E[{N~k�}] = E0 +
X

~k�

E~k��N~k� +
1

2

X

~k�,~k0�0

f~k�,~k0�0�N~k��N~k0�0 , (1)

where E0 is the ground-state energy (which needs not be specified!), E~k� is the energy of a
single quasiparticle, f~k�,~k0�0 is the Landau interaction function and �N~k� = N~k� � N (0)

~k�
is the

deviation of the quasiparticle distribution function from the ideal Fermi distribution at T = 0.
Because the quasiparticles are well defined only in the immediate vicinity of the Fermi surface,
it is evident that this expansion makes sense only when �N~k� is restricted to a thin shell of
momentum space surrounding the Fermi surface. In addition, since every wave vector sum
introduces a factor Ld (the d-dimensional volume), the interaction function f~k�,~k0�0 must scale
as the inverse of the volume 1

Ld in order to keep the energy proportional to the volume in the
thermodynamic limit.
Both the quasiparticle energy and the interaction function (as well as the Landau parameters
introduced below) are phenomenological quantities that the Landau theory of Fermi liquid as-
sumes to be given. In practice, they must be either determined from measurements of physical
properties, or calculated by a microscopic many-body theory.
The energy E~k� of a single quasiparticle can be formally viewed as the functional derivative of
the energy with respect to the quasiparticle distribution function evaluated at the ground-state:

E~k� =

✓
�E

�N~k�

◆

N~k�=N (0)
~k�

. (2)

Since the ground-state of the N + 1-particle system is obtained by adding a quasiparticle of
wavevector kF to the ground state of the N -particle system, it is evident that

EkF � = µ , (3)

where µ is the chemical potential.
In an isotropic liquid, for |~k| close to kF , the quasiparticle energy can be expanded as

E~k� ' µ+ ~v⇤F (k � kF ) , (4)

Quasiparticle effective mass
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where
v?F =

1

~

����
@E~k�
@~k

����
k=kF

(5)

defines the effective Fermi velocity of a quasiparticle. v⇤F can be conveniently written as

v⇤F =
~kF
m?

, (6)

which defines the quasiparticle effective mass m?. The effective mass in turn determines N?(0),
the quasiparticle density of states (per unit volume) at the Fermi level µ. This is given by
N?(0) = m?

m N(0), where N(0) is the density of states at the Fermi surface of a non interacting
electron gas, N(0) = nd

2✏F
in d-dimensions.

A fundamental role in the Landau theory is played by the quantity

Ẽ~k� =
�E

�N~k�

= E~k� +
X

~k0�0

f~k�,~k0�0�N~k0�0 , (7)

sometimes referred to as the local quasiparticle energy. This can be interpreted as the energy
of a quasiparticle modified by its interaction with other quasiparticles. From the form of this
equation it is clear that, within the Landau theory, this effect is treated in a mean field approxi-
mation.
We turn next our attention to the quasiparticle interaction function. An inspection of Eq. (1)
reveals that this quantity can be expressed in terms of functional derivatives of the Landau
energy functional with respect to the quasiparticle distribution function as follows:

f~k�,~k0�0 =
�2E

�N~k��N~k0�0
=

�Ẽ~k�
�N~k0�0

, (8)

where the functional derivatives are evaluated at the ground-state distribution. Notice that in
order to correctly perform the second derivative appearing in Eq. (8), one needs to know the en-
ergy functional E[{N~k�}] up to second order in �N~k�. This implies, for instance, that to derive
the expression for the interaction function in a paramagnetic system one needs the knowledge
of the energy functional appropriate to an infinitesimally polarized electron liquid. This com-
plication does not arise in the case of the quasiparticle energy, since its calculation only requires
a knowledge of the Landau energy functional up to first order in �N~k�. Finally, in order to cal-
culate thermal properties at finite temperature T one also needs an expression for the entropy of
the liquid. This is given by

S[{N~k�}] = �kB
X

~k�

[N~k� lnN~k� + (1�N~k�) ln (1�N~k�)] , (9)

which coincides with the entropy of the noninteracting ensemble of origin, and vanishes in the
ground-state. This is a direct consequence of the assumed one-to-one correspondence between
states of the interacting and non-interacting systems.
Eqs. (1) and (9) are widely used to calculate from a macroscopic point of view the thermal
equilibrium properties, the response functions, and the transport properties of an interacting
Fermi liquid, and to establish relationships between different such properties. What follows is
a summary of the main results.
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2 Phenomenological theory

2.1 The Landau energy functional

As discussed in the previous section, a set of noninteracting occupation numbers Nk� = 0

or 1 defines, by continuation, a quasi-eigenstate of the interacting Fermi liquid. Similarly, a
distribution of fractional occupation numbers 0  Nk�  1 defines an ensemble of quasiparticle
states in which the state of momentum ~~k and spin � has a probability Nk� to be occupied
and 1 � Nk� to be empty. At the heart of Landau’s macroscopic theory of the Fermi liquids
lies an Ansatz for the functional dependence of the energy of the liquid on the quasiparticle
distribution function N~k�. This functional is in fact an expansion for the energy to second order
in the deviation of the quasiparticle distribution function from its ground-state value N (0)
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where E0 is the ground-state energy (which needs not be specified!), E~k� is the energy of a
single quasiparticle, f~k�,~k0�0 is the Landau interaction function and �N~k� = N~k� � N (0)

~k�
is the

deviation of the quasiparticle distribution function from the ideal Fermi distribution at T = 0.
Because the quasiparticles are well defined only in the immediate vicinity of the Fermi surface,
it is evident that this expansion makes sense only when �N~k� is restricted to a thin shell of
momentum space surrounding the Fermi surface. In addition, since every wave vector sum
introduces a factor Ld (the d-dimensional volume), the interaction function f~k�,~k0�0 must scale
as the inverse of the volume 1

Ld in order to keep the energy proportional to the volume in the
thermodynamic limit.
Both the quasiparticle energy and the interaction function (as well as the Landau parameters
introduced below) are phenomenological quantities that the Landau theory of Fermi liquid as-
sumes to be given. In practice, they must be either determined from measurements of physical
properties, or calculated by a microscopic many-body theory.
The energy E~k� of a single quasiparticle can be formally viewed as the functional derivative of
the energy with respect to the quasiparticle distribution function evaluated at the ground-state:

E~k� =

✓
�E

�N~k�

◆

N~k�=N (0)
~k�

. (2)

Since the ground-state of the N + 1-particle system is obtained by adding a quasiparticle of
wavevector kF to the ground state of the N -particle system, it is evident that

EkF � = µ , (3)

where µ is the chemical potential.
In an isotropic liquid, for |~k| close to kF , the quasiparticle energy can be expanded as

E~k� ' µ+ ~v⇤F (k � kF ) , (4)
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�Ẽ~k�
�N~k0�0

, (8)

where the functional derivatives are evaluated at the ground-state distribution. Notice that in
order to correctly perform the second derivative appearing in Eq. (8), one needs to know the en-
ergy functional E[{N~k�}] up to second order in �N~k�. This implies, for instance, that to derive
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of the energy functional appropriate to an infinitesimally polarized electron liquid. This com-
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which coincides with the entropy of the noninteracting ensemble of origin, and vanishes in the
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states of the interacting and non-interacting systems.
Eqs. (1) and (9) are widely used to calculate from a macroscopic point of view the thermal
equilibrium properties, the response functions, and the transport properties of an interacting
Fermi liquid, and to establish relationships between different such properties. What follows is
a summary of the main results.

7. Going to finite temperature
We obtain the equilibrium distribution of quasiparticles at finite temperature by 
maximizing the entropy

subject to the constraints of constant energy and number
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~k�

N~k� = N
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~k�

N~k�E~k� = E

This gives the usual Fermi-Dirac distribution function
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N eq
~k�

=
1

e(E~k��µ)/kBT + 1
Notice that, to the order of our expansion           is not affected by the 
interaction function.
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(i) Heat capacity depends only on the effective mass. No contribution from interaction 
function.

Short Title 5.9

2.2 The heat capacity

As it turns out, the low-temperature specific heat of a Fermi liquid coincides with that of a
noninteracting Fermi gas comprised of particles of mass m⇤: it is therefore given by

cv(T ) =
⇡2

3
N⇤(0)Ldk2

BT , (10)

where, as we have seen, N⇤(0), the density of quasiparticle energy states per unit volume at the
Fermi level, differs from the corresponding quantity in the non interacting case by the substi-
tution of the bare electronic mass m with m⇤.3 This is a direct consequence of Eq. (9) for the
entropy, which in turn implies that the quasiparticle distribution function at thermal equilibrium
is given by

N eq
~k�
(µ, T ) =

1

e�(E~k��µ) + 1
, (11)

where � = 1/kBT . Notice that the Landau interaction function does not appear in this expres-
sion. This is because the thermal excitation of the system does not contribute to the quasiparticle
energy. Thus the effective mass can in principle be directly measured from the heat capacity,
or by any other measurement that is sensitive only to the quasiparticle density of states. The
situation is quite different when the excitation is caused by an external field such as pressure or
magnetic field, as we show next.

2.3 The Landau parameters

It is useful to introduce at this point the Landau Fermi liquid parameters. One starts from
the observation that within the dynamically relevant shell in which �N~k0�0 is finite, the Landau
interaction function depends only on the cosine of the angle ✓ between ~k and ~k0. Accordingly we
can set f~k�,~k0�0 ' f��0(cos ✓) and introduce the dimensionless quantities F s,a

` which are defined
in terms of spin symmetric (s) and spin antisymmetric (a) angular averages of f��0(cos ✓) as
follows

F s,a
` =

LdN⇤(0)

2

Z
d⌦d

⌦d
[f""(cos ✓)± f"#(cos ✓)]

(
P`(cos ✓), 3D

cos `✓, 2D
, (12)

where the + and � signs are associated with s and a respectively, ⌦d = 2d�1⇡ is the solid angle
in d = 3 or 2 dimensions, and P`(cos ✓) is the `-th Legendre polynomial.
It must be noted that this definition (introduced in Ref. [2]) differs from the one commonly
used in previous texts and in large part of the literature. Nervous readers can revert to the
standard notation by simply making the substitution F s,a

` ! F s,a
`

2`+1 in three dimensions and

F s,a
` ! F s,a

`
2 (1 + �`0) in two dimensions.

3We are considering here only the mass renormalization that arises from interactions between the particles. In
a crystalline environment the crystal potential and the electron-phonon coupling produce additional mass renor-
malizations.

Landau parameters
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It is useful to introduce at this point the Landau Fermi liquid parameters. One starts from
the observation that within the dynamically relevant shell in which �N~k0�0 is finite, the Landau
interaction function depends only on the cosine of the angle ✓ between ~k and ~k0. Accordingly we
can set f~k�,~k0�0 ' f��0(cos ✓) and introduce the dimensionless quantities F s,a

` which are defined
in terms of spin symmetric (s) and spin antisymmetric (a) angular averages of f��0(cos ✓) as
follows

F s,a
` =

LdN⇤(0)

2

Z
d⌦d

⌦d
[f""(cos ✓)± f"#(cos ✓)]

(
P`(cos ✓), 3D

cos `✓, 2D
, (12)

where the + and � signs are associated with s and a respectively, ⌦d = 2d�1⇡ is the solid angle
in d = 3 or 2 dimensions, and P`(cos ✓) is the `-th Legendre polynomial.
It must be noted that this definition (introduced in Ref. [2]) differs from the one commonly
used in previous texts and in large part of the literature. Nervous readers can revert to the
standard notation by simply making the substitution F s,a

` ! F s,a
`

2`+1 in three dimensions and

F s,a
` ! F s,a

`
2 (1 + �`0) in two dimensions.

3We are considering here only the mass renormalization that arises from interactions between the particles. In
a crystalline environment the crystal potential and the electron-phonon coupling produce additional mass renor-
malizations.

(ii) Compressibility
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Fig. 3: Calculation of the spin susceptibility in the Landau theory of Fermi liquids. In the
presence of a magnetic field the up- and down-spin Fermi surfaces split in such a way that the
energies of two quasiparticles at the two Fermi surfaces are equal. The additional quasipar-
ticles are down-spin electrons above the unperturbed Fermi surface (dashed line) and up-spin
holes below it.

second term involves the Landau parameter F s
0 , since the additional quasiparticle distribution is

spherically symmetric (` = 0) and spin-independent (superscript s). The result is

K

K0
=

m?/m

1 + F s
0

. (16)

Thus, the interaction enters the proper compressibility not only through the effective mass, but
also, explicitly, through the spin symmetric spherical average of the Landau interaction function.

The spin susceptibility can be calculated in a completely analogous way (see Fig. 3). In the
presence of an external magnetic field B the Hamiltonian is modified by the addition of the
Zeeman energy term

ĤZ =
gµB

2
BŜz , (17)

where g is the noninteracting g-factor for the electrons and Ŝz is the z-component of the spin in
units of ~

2 . Here gµB

2 is the magnetic moment of the electron.5 The spin susceptibility is defined
as the derivative of the magnetization with respect to the magnetic field at zero magnetic field.
In an ideal Fermi gas it works out to be

�S0 =
⇣gµB

2

⌘2

N(0) . (18)

In a Fermi liquid the energy of a quasiparticle of wave vector ~k and spin � in the presence of
the magnetic field becomes

E~k�(B) = E~k� +
1

2
gµBB� , (19)

5For free electrons g ' 2, but this value can be considerably different for electrons in a solid state environment,
due to the spin-orbit interaction: for example in GaAs one has g = �0.44.
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kF

kF + δkF

Fig. 2: Calculation of the compressibility in the Landau theory of Fermi liquids. The chemical
potential, i.e., the energy of a quasiparticle at the Fermi surface, changes due to (i) the variation
of the Fermi momentum, (ii) the addition of quasiparticles to the shaded region.

The inverse of Eq. (12) is

f""(cos ✓)± f"#(cos ✓) =
2

LdN⇤(0)

1X

`=0

F s,a
`

(
(2`+ 1)P`(cos ✓), 3D

(2� �`0) cos `✓, 2D
, (13)

where + is associated with s and � with a.

2.4 Compressibility and spin susceptibility

An important property of a Fermi liquid is the proper compressibility K,4 given by the relation

1

K
= n2@µ

@n
=

nkF
d

@µ

@kF
. (14)

The compressibility determines, among other things, the magnitude of the screening wave vec-
tor and the hydrodynamic sound velocity s = 1p

nmK
. For a non interacting system one simply

has the result

K0 =
N(0)

n2
. (15)

To evaluate the derivative @µ
@kF

within the Landau theory of Fermi liquids one must recall that,
according to Eq. (3), the change in µ as the Fermi surface expands to accommodate the addi-
tional density �n is the sum of two terms: one is the change in the bare quasiparticle energy
when the wave vector varies from kF to kF + �kF ; the other is the interaction energy with the
additional quasiparticles created by the expansion of the Fermi sphere (see Fig. 2). The first
term is responsible for changing the density of states in Eq. (15) from N(0) to N⇤(0), but the

4For a charged Fermi liquid the proper compressibility is calculated under the assumption that the system
remains charge-neutral during the compression and there is no energy cost associated with the compression of the
neutralizing background of charge.
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where, it must be noted, the g-factor of the quasiparticle coincides with that of the bare electron
(as long as spin-orbit interactions are neglected), because the many-body state described by the
quasiparticle at ~k� is an eigenstate of Ŝz with eigenvalue ~�/2. Because of the Zeeman energy,
the Fermi surfaces of up-spin and down-spin electrons shift by equal amounts in opposite di-
rections, i.e., the radius of the down-spin Fermi surface increases by an amount �kF#, while the
radius of the up-spin Fermi surface decreases by the same amount.
The equilibrium value of �kF# is determined by the condition that the energy of an up-spin
quasiparticle at the up-spin Fermi surface be equal to that of a down-spin quasiparticle at the
down-spin Fermi surface: if this were not the case one could gain energy by transferring quasi-
particles from one Fermi surface to the other. The common value of the energy is, of course, the
chemical potential (see Eq. (3)). The mathematical form of the equilibrium condition is thus

ẼkF"" +
1

2
gµBB = ẼkF## �

1

2
gµBB . (20)

Now, by making use of Eq. (7) and following the same procedure we used for the case of the
compressibility, we obtain the elegant result

�S

�S0
=

m?/m

1 + F a
0

, (21)

where the interaction enters both through the effective mass and through the Landau parameter
F a
0 . This has the same structure as Eq. (16). The ` = 0 component is selected by the spherical

symmetry of the quasiparticle distribution, and the a subscript reflects the spin-antisymmetry of
that distribution.
Looking at Eqs. (16) and (21) we see that measurements of K and �S , combined with a knowl-
edge of the effective mass from the heat capacity allow us to determine the values of the Landau
parameters F s

0 and F a
0 . Negative values of these parameters, arising from the exchange inter-

action enhance both the proper compressibility and the spin susceptibility. Because these two
quantities must be finite and positive in a stable ground state, we conclude that the uniform and
paramagnetic state will be unstable if F a

0 or F s
0 become less than �1.6

2.5 Galilean invariance and effective mass

The effective mass of quasiparticles that we have discussed in the previous section arises en-
tirely from the interaction between the Fermions in a translationally invariant Fermi liquid.
Translational invariance is a good assumption for liquid 3He or for nuclear matter, but hardly
so for electrons in a solid state environment. The interaction of the electron with the periodic
crystal potential and with lattice vibrations is an important source of effective mass renormal-
ization. But if the system is translationally invariant, in the sense that momentum is strictly
conserved, and if in addition the kinetic energy is of the Galilean-invariant form p2/2m with m

the bare particle mass, then an exact relation exists between the quasiparticle effective mass and
the interaction function:

6For the electron gas only the spin instability is real, as the density instability is preempted by the “improper”
contribution arising from the charged background.

(iv) Effective mass
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Fig. 4: Relation between the effective mass and the Landau parameters. When the original
Fermi surface centered at O is viewed from a reference frame moving at speed v it appears
to be shifted by an amount mv/~. The shift can be described in terms of quasiparticles and
quasiholes added to the original Fermi distribution in the shaded crescent-shaped regions.

m⇤

m
= 1 + F s

1 , (22)

where F s
1 is the ` = 1 (dipolar) component of the spin-symmetric Landau parameter.

The origin of this relation is illustrated in Fig. 4. We consider a quasiparticle of momentum
~p = ~~k in the reference frame in which the center of mass of the liquid is at rest. If we now
change the reference frame to one in which the center of mass of the liquid moves to the right
with velocity ~v the same quasiparticle will appear to have momentum ~~k +m~v where m is the
bare mass of the particle, not the quasiparticle mass! This is because under this transformation
the total momentum of the fluid changes by m~v. But the momentum of the quasiparticle is not
the only thing that changes. The entire momentum distribution shifts by m~v and the net result of
this shift can be described as the creation of quasiparticles and quasiholes in the shaded crescent-
shaped regions of Fig. 4, with quasiparticles residing in the right crescent, and an equal number
of quasiholes residing in the left crescent.
The corresponding change in energy of the quasiparticles (calculated to first order in ~v) has two
contributions:
(i) the change of the single quasiparticle energy E~k� due to the fact that the quasiparticle mo-
mentum is shifted from ~~k to ~~k +m~v.
(ii) the energy of interaction between the quasiparticle of momentum ~~k and the additional
quasiparticles and quasiholes that appear in the crescent-shaped regions of Fig. 4.
The first contribution involves the effective mass of the quasiparticle, and the second contribu-
tion involves the dipolar component of the Landau interaction function (reflecting the dipolar
structure of the additional quasiparticle distribution). Combining the two contribution must
yield the exact change in the energy of the system under the Galilean transformation, namely
�E = ~~v · ~k, which does not depend the particle mass. Clearly, this is possible only if a pre-
cise relation exists between the quasiparticle mass and the interaction function, and this is what
Eq. (22) gives us.
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with velocity ~v the same quasiparticle will appear to have momentum ~~k +m~v where m is the
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8. Calculation of macroscopic properties



9. Connection with microscopic theory 
(i) Existence of quasiparticles
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The transport coefficients (or, equivalently, the transport relaxation times defined by Eq. (54))
can be calculated with the help of the kinetic equation. For the neutral Fermi liquid 3He this was
first done by Abrikosov and Khalatnikov [13]. Explicit formulas for the transport coefficients
in terms of angular averages of quasiparticle scattering probability are known for the three-
dimensional case: see Eqs. 1.171 and 1.151 of Ref. [3]. The scattering probability is obtained
from the Fermi golden rule, just as in the calculation of the quasiparticle lifetime. We refer the
interested reader to Ref. [3] for details.

4 Microscopic basis of the Landau theory of Fermi liquids

Landau guessed the theory of interacting Fermi liquids largely on a basis of physical intuition.
Shortly afterwards, it was shown that indeed the theory could be “derived” (or, more accurately,
shown to be self-consistent) from the microscopic Hamiltonian under certain assumptions of
continuity and regularity. Nowadays the Landau theory is recognized as an early example
of renormalization, whereby the exact many-body Hamiltonian is transformed, through recur-
sive elimination of fast degrees of freedom, into an effective hamiltonian of weakly interacting
quasiparticles. A “poor man” version of this theory, based on seminal work by Hamann and
Overhauser [15], can be found in Section 8.6 of Ref. [2].

Without going into technical details, which can be easily found in the literature (including
Ref. [2]), we summarize the main correspondences between the Landau theory and the micro-
scopic theory.

4.1 Existence of quasiparticles and self-energy

The existence of long-lived quasiparticles, with an inverse lifetime that scales as |k � kF |2 for
k ! kF corresponds to the fact that the microscopic retarded Green’s function has the form

G(~k,!) = G(reg)(~k,!) +
Z~k

! � E~k
~ + i

2⌧~k

, (55)

where G(reg)(~k,!) is a regular function of ~k and !, and we have omitted the spin dependence
for simplicity. Thus, the retarded Green’s function is dominated by a single pole of strength
Z~k (0 < Z~k < 1) at the complex frequency z =

E~k
~ � i

2⌧~k
in the lower half of the complex

plane (as required by causality). The imaginary part of the frequency at the pole implies an
exponential decay, with a characteristic time ⌧~k, of the squared amplitude of a plane wave state.
The quasiparticle energy, the strength of the pole (also known as the renormalization constant),
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The renormalization constant Zk - a 
positive number between 0 and 1 
– measures the strength of the 
quasiparticle peak. Physically, 𝑍!!
is the probability that the liquid 
remains in the ground state  after 
injecting a particle at the Fermi 
surface. 



(ii) Quasiparticle energy, renormalization constant, effective mass, and 
quasiparticle lifetime can all be calculated from the “self-energy”, S(k,w), here 
shown in the so-called GW approximation

10. The central role of the self-energy

472 The normal Fermi liquid
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Fig. 8.17. Feynman diagram for the self-energy in the GW approximation. The wavy line denotes a
dynamically screened coulomb interaction.

8.7.1 The GW approximation

The exact expression for the self-energy in terms of the Green’s function, G, the dielectric
function, ε, and the vertex function, ", was given in Eq. (6.95) of Chapter 6. If both
the vertex correction and the screening of the interaction are neglected by setting " = 1
and ε = 1, one simply recovers the Hartree–Fock self-energy #σ (!k) = εxσ (!k), with all the
shortcomings discussed in Section 2.4.1. Notice that, after setting " = 1 and ε = 1 in
Eq. (6.95), it does not make any difference whether one uses the self-consistent G or the
noninteracting G = G(0). The reason is that a frequency-independent self-energy, such as
the HF self-energy, can be eliminated by the change of variable h̄ω → h̄ω + #σ (!k) in the
frequency integral.

To go beyond the HF approximation the first step is to screen the coulomb interaction
through the introduction of the frequency-dependent dielectric function. If one continues to
ignore the vertex correction – a major approximation that will be critically examined later
on – one arrives at what is known in the literature as the GW approximation (see Fig. 8.17).
In the finite temperature formalism we have

#σ (!k, iωn) = − 1
h̄β

∫
d !q

(2π )d

∞∑

m=−∞
Gσ (!k − !q, iωn − i(m)W (q, i(m) , (8.222)

where G is the temperature Green’s function and

W (q, iω) = vq

ε(q, iω)
= vq + v2

qχnn(q, iω) (8.223)

is the screened coulomb interaction. According to the general rules described in Chapter
6, ωn = (2n+1)π

h̄β
is a fermionic Matsubara frequency and the sum runs over all the bosonic

Matsubara frequencies (m = 2mπ
h̄β

. Notice that the Green’s function still depends on # in
the following manner:

Gσ (!k, iωn) = 1

iωn − ε̃!kσ +#σ (!k,iωn )
h̄

, (8.224)

where as usual ε̃!kσ ≡ ε!kσ − µ. Thus Eqs. (8.222) and (8.224) form a set of coupled equations
for #σ (!k, iωn). Only after this has been solved we can compute the retarded self-energy via

S(k,w) =

G(k-q,w)

(q,w)W(q,w)
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Fig. 10: Behavior of the plane wave states average occupation number in three dimensions at
rs = 2 (solid line) and rs = 5 (dashed line). The jump of nk at k = kF is the renormalization
constant ZkF .

and the plane wave lifetime are determined by the (retarded) self-energy function11 as follows

E~k = "~k + <e⌃ret
� (~k, E~k) , (57)

where "~k is the bare particle energy,

Z~k ⌘
 
1� 1

~
@

@!
<e⌃ret(k,!)

����
~!=E~k

!�1

, (58)

and
~
2⌧~k

⌘ Z~k|=m⌃ret(k, E~k�)| . (59)

Crucially, the validity of the Fermi liquid scenario requires that

=m⌃ret(~k, E~k�) ⇠ �a(k � kF )
2 , (60)

where a is a positive constant, and the approximate equality ⇠ disregards the possibility of
logarithmic terms ln |k � kF |. Microscopic calculations of the self-energy confirm that the
asymptotic form (60) is, at the very least, self-consistent, i.e., the presence of a pole of the form
(55) in the Green’s function guarantees the vanishing of the imaginary part of the self-energy,
which in turn implies a divergence of the quasiparticle life time.12

The existence of an infinitely sharp quasiparticle peak of strength Z~k� in the spectral function
(defined as the negative of the imaginary part of the retarded Green’s function) implies that the
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⌃ = G�1
0 �G�1 (56)

12It must be noted that the plane wave lifetime of Eqs. (55) and (59) is not exactly the same as the lifetime of a
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11. What about the Landau interaction function?

460 The normal Fermi liquid

Fig. 8.16. The two diagrams that contribute to the q → 0 limit of the irreducible electron–hole
interaction to first order in the coulomb interaction.

Changing only the occupation number of the quasiparticle state of wave vector "k ′ and
spin σ ′ from 0 to 1 we obtain

δGσ ′′ ("k ′′, ω) = −2π i ZkF σ ′δ

(
ω − E"k ′σ ′

h̄

)
δ"k ′ "k ′′δσ ′σ ′′

+ h̄−1G2
σ ′′ ("k ′′, ω)δ%σ ′′ ("k ′′, ω) , (8.172)

where, once again, we have made use of the reality of the self-energy for h̄ω % µ. Substi-
tuting (8.172) in Eq. (8.170) we see that the functional derivative of the self-energy with
respect to the quasiparticle distribution satisfies the integral equation

δ%σ ("k, ω)
δN"k ′σ ′

= 1
Ld

I"kωσ ; "k ′E"k′σ ′ σ ′ (0)ZkF σ ′

− 1
h̄Ld

∑

"k ′′σ ′′

∫
dω′′

2π i
I"kωσ ; "k ′′ω′′σ ′′ (0)G2

σ ′′ ("k ′′, ω′′)
δ%σ ′′ ("k ′′, ω′′)

δN"k ′σ ′
. (8.173)

Combining this with Eq. (8.169) we see that the Landau interaction function can be
written as

f"kσ,"k ′σ ′ = 1
Ld

ZkF σ ZkF σ ′ I f
"k E"kσ σ ; "k ′ E"k′σ ′ ,σ ′ (0) , (8.174)

where I f
"kωσ ;"k ′ω′σ ′ (0) is the solution of the integral equation

I f
"kωσ ; "k ′ω′σ ′ (0) = I"kωσ ; "k ′ω′σ ′ (0)

− 1
Ld

∑

"k ′′σ ′′

∫
dω′′

2π i
I"kωσ ; "k ′′ω′′σ ′′ (0)G2

σ ′′ ("k ′′, ω′′)I f
"k ′′ω′′σ ′′; "k ′ω′σ ′ (0) . (8.175)

Thus, we have expressed the Landau interaction function in terms of quantities that have
a well defined microscopic meaning and can be calculated (in principle, at least) from
diagrammatic perturbation theory.

As a simple application of this rather forbidding formalism consider the calculation
of f"kσ,"k ′σ ′ to first-order in the coulomb interaction. In this case the self-energy is just the
Hartree–Fock self-energy, which is independent of frequency, so Z "kσ = 1. The quasiparticle
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momentum state occupation number n~k has a discontinuity as a function of k at k = kF , the
magnitude of the discontinuity being given by ZkF . This is shown in Fig. 10. The fact that
the discontinuity occurs precisely at k = kF where kF is related to density by the ideal gas
relation, is known in the literature as Luttinger’s theorem. Notice that Z~k and the ground state
occupations n~k� are “invisible” in the Landau theory of Fermi liquids, which abstracts from
the detailed structure of the ground state. On the other hand, all the parameters of the Landau
theory can be calculated from the the microscopic theory following well-defined procedures.
For example, the effective mass of the quasiparticle works out to be

m⇤

m
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ZkF
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1 + m
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k=kF

# . (61)

The results of several microscopic calculations of the effective mass of quasiparticles in the 2D
and 3D electron gas are presented and critically discussed in Chapter 8 of Ref. [2].

4.2 Landau interaction function and scattering amplitude

What about the Landau interaction function? What is its representation in the microscopic
theory? Considering Eq. (7) and the microscopic expression, Eq. (57), for the quasiparticle
energy, combined with Eq. (58) for the renormalization constant we arrive at

f~k,~k0 = Z~kZ~k0
�⌃(~k, E~k)

�N~k0
, (62)

where we continue to ignore the spin for simplicity. The problem with this expression is that the
quasiparticle occupation number N~k0 is not a well-defined microscopic quantity. However, one
can calculate the change in the Green’s function that follows from a change in the corresponding
occupation number n~k0 of the non-interacting ground state from which the interacting state
is supposed to arise under adiabatic switching-on of the interaction. According to Landau’s
hypothesis of continuity, such a change will result in an identical change of the quasiparticle
occupation number, while at the same time propagating through the expression for the self-
energy to produce the desired �⌃. The analysis is quite complex (see Section 8.5.5 of Ref. [2]
for details) but the final result is simple, at least formally:

f~k,~k0 = Z~kZ~k0 lim!!0
lim
q!0

�~kE~k;~k0E~k0
(q,!) , (63)

where ~k and ~k0 lie on the Fermi surface and �~kE~k;~k0E~k0
(q,!) is the probability amplitude for

the two particles with momenta ~k and ~k0 and energies E~k and E~k0 respectively to scatter against
each other with momentum and energy transfers q and !, where both q and ! tend to zero in
the order specified by Eq. (63) (i.e., q must tend to zero before ! does). Notice that this is the
scattering amplitude between two particles embedded in the many-body system. As such it has a
very complex diagrammatic representation but it can, in principle be calculated by the methods
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rs F s
0 F a

0 F s
1 F a

1 F s
2 F a

2

1 -0.21 -0.17 -0.04 -0.0645 -0.0215 -0.0181
2 -0.37 -0.25 -0.03 -0.0825 -0.0168 -0.0126
3 -0.55 -0.32 -0.02 -0.0915 -0.0107 -0.0073
4 -0.74 -0.37 0.0 -0.0956 -0.0047 -0.0022
5 -0.95 -0.40 0.03 -0.0965 +0.0009 +0.0023

Table 1: Calculated values of Landau Fermi liquid parameters of the three-dimensional electron
liquid. The values of F a

1 ,F s
2 , and F a

2 were calculated by Yasuhara and Ousaka [5].

The importance of momentum conservation in the above discussion cannot be overemphasized.
Consider, for example, the following question: what is the spin-current j" � j#, carried by a
quasiparticle of wave vector ~k and spin "? Recall that the “spin current” is the difference be-
tween the current carried by spin-up particles and that carried by spin-down particles, where the
spin of a particle (as well as the spin of a quasiparticle) is a good quantum number. One might
be tempted to answer “~~k/m” on the (wrong) assumption that a spin-up quasiparticle carries no
down-spin current, but this is incorrect because the difference between the total up- and down-
spin momenta of the particles ~̂P" � ~̂P# is not a constant of the motion. In fact, the magnitude
of the spin-current is smaller than ~~k

m [4]. What happens is that in the process of switching-on
the interaction some momentum is transferred from the up- to the down-spin component of the
electron liquid. This reduces the spin current without altering the total momentum and spin. The
reduction can be expressed in terms of an effective spin mass mS > m such that j" � j# =

~k
mS

.
The relation between mS and m⇤ has the same form as the relation (22) between the “charge
mass”, m, and m⇤, i.e.

m⇤

mS
= 1 + F a

1 . (23)

Numerical values of several Landau parameters of the uniform electron liquid (in the jellium
model) obtained from approximate microscopic calculations [5] are listed in Table 2.5 for sev-
eral different densities.

2.6 Measuring m⇤
, K and �S

The effective mass, the proper compressibility, and the spin susceptibility of liquid 3He have
been the object of many experimental studies by a variety of techniques (see, for example,
Ref. [6]). Values of the effective mass, the spin susceptibility and the compressibility are re-
ported in Ref. [7]. The effective mass ratio m⇤/m ranges between 3 and 6 as the pressure is
increased from 0 to 33 bar. In the the same interval of pressures the spin susceptibility enhance-
ment factor (1+F a

0 )
�1 is nearly constant at a value between 3.5 and 4, while the compressibility

ratio K/K0 decreases from 6 to 1. [7]
For electron liquids the situation is generally complicated by the presence of solid-state effects
which are hard to identify and eliminate from the analysis. This is especially the case in what

Landau Fermi liquid parameters of the 
three-dimensional electron liquid. 

8.8 Calculation of quasiparticle properties 483

Table 8.5. Calculated values of some of the relevant Landau Fermi liquid parameters of the
two-dimensional electron liquid. The values of the effective mass are taken from the fourth
column of Table 8.4. Compressibility and spin stiffness are calculated from the formulas of

Section 1.8. Notice that Fs
0 becoming more negative than −1 is not a sign of instability,

but simply reflects the change in sign of the proper compressibility of the jellium model.

rs K0/K χP/χS Fs
0 Fa

0 Fs
1

1 0.533 0.691 −0.45 −0.29 0.03
2 0.018 0.525 −0.98 −0.40 0.15
3 −0.538 0.421 −1.68 −0.47 0.26
5 −1.737 0.296 −3.48 −0.58 0.43
8 −3.657 0.196 −7.03 −0.68 0.65

Table 8.6. Same as Table 8.4 for the three-dimensional electron liquid. The local field
factors G+(q) and G−(q) are taken from Eqs. (A11.5) and (A11.1) of Appendix 11, with

the parameter β− determined self-consistently to match the value of the spin susceptibility
enhancement. (Adapted from Simion et al. (unpublished).)

rs (m∗/m)R P A (m∗/m)G+ (m∗/m)G+&G− Z

1 0.97 (0.97) 0.95 (0.95) 0.96 (0.95) 0.88
2 0.99 (0.99) 0.95 (0.94) 0.97 (0.96) 0.80
3 1.02 (1.03) 0.96 (0.95) 0.98 (0.98) 0.73
4 1.04 (1.07) 0.96 (0.95) 1.00 (1.01) 0.67
5 1.06 (1.11) 0.97 (0.96) 1.03 (1.06) 0.62
6 1.08 (1.15) 0.97 (0.96) 1.06 (1.11) 0.58

Table 8.7. Calculated values of some of the relevant Landau Fermi liquid parameters of
the three-dimensional electron liquid. The values of the effective mass are taken from the

fourth column of Table 8.6. Compressibility and spin stiffness are calculated from the
formulas of Section 1.8.

rs K0/K χP/χS Fs
0 Fa

0 Fs
1

1 0.827 0.867 −0.21 −0.17 −0.04
2 0.645 0.770 −0.37 −0.25 −0.03
3 0.454 0.693 −0.55 −0.32 −0.02
4 0.256 0.631 −0.74 −0.37 0.0
5 0.052 0.580 −0.95 −0.40 0.03
6 −0.157 0.537 −1.17 −0.43 0.06

Landau Fermi liquid parameters of the 
two-dimensional electron liquid.
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Fig. 8.21. Effective mass enhancement in a strictly two-dimensional electron liquid calculated in the
G0W approximation with the following effective interactions: RPA, KO including only the density
local field factor G+, and KO including both the density and the spin local field factors G+ and G−.
The calculation is done both in the on-shell approximation (OSA), Eq. (8.249), and making use of
the formally exact Dyson equation (8.146) (D). The local field factors are given by Eq. (A11.8) in
Appendix 11. The curve labeled QMC shows the results of the quantum Monte Carlo calculation by
Kwon et al. (1994). The three sets of symbols with error bars (P/S1U, P/S1L, and PS2) represent data
from different Si inversion layers samples. (Pudalov et al., 2002). The crosses represent measured
values of the effective mass in 2-dimensional GaAs samples (Zhu et al., 2003). The inset shows an
enlargement of the results for 0 ≤ rs ≤ 1. From Asgari et al., 2004.
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Fig. 8.22. Effective mass enhancements for the three-dimensional electron liquid. Effective masses
calculated from Eq. (8.146) are shown as solid lines, while the ones obtained from the on-shell ap-
proximation of Eq. (8.249) are shown as dashed lines. The local field factors are given by Eqs. (A11.5)
(for G+) and (A11.1–A11.4) (for G−). From Simion and Guiliani, 2005.
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Fig. 8.22. Effective mass enhancements for the three-dimensional electron liquid. Effective masses
calculated from Eq. (8.146) are shown as solid lines, while the ones obtained from the on-shell ap-
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enhancement factor) larger than that of a noninteracting
Fermi system; here I=UNp. The enhancement can be
understood to be due to the existence of strong, low-
frequency spin fluctuations or "paramagnons" (for a re-
view, see Levin and Valls, 1983). However, within the
same approximation the effective mass can be calculated
via the specific heat, and one finds that (Doniach and
Engelsberg, 1966) m /m —I cain[1/(1 —I)] o:ln(X, /X, ).
So there is a renormalization of the mass, but it does not
explicitly enter the expression for X, (Levin and Valls,
1979a). For I~1 the static susceptibility diverges, indi-
cating a transition to a ferromagnetic state. It is therefore
often said that a system with a strongly enhanced Pauli
susceptibility is "close to a ferromagnetic transition" or
"almost ferromagnetic. " For X, /X, =1/(1 I ) t—o
describe the experimental data for liquid 3He, I has to be
as large as I=0.95 and, again, He is therefore often re-
ferred to as being almost ferromagnetic.
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FICx. 1. Experimental values (Greywall, 1983) of the normal-
ized effective mass m*/m, the ratio between spin susceptibility
and effective mass, (l+Fo) ', and the normalized compressi-
bility ~/&co.

B. Fermi-liquid theory and the contact-interaction
model

Comparing the above result for X, and c„with the one
of Landau theory one finds by identification

(m'/m)L
1+E;

(m /m)p ——(m'/m)1. ,

(6a)

(6b)

where the subscripts P and L refer to the paramagnon re-
sults and Landau theory, respectively. So the one parame-
ter I appears to combine two Landau parameters at the
same time, the one describing the enhancement of the sus-
ceptibility due to the effective mass (arising from a spin-
independent interaction, i.e., Fi ), as well as the one due to
spin-dependent interaction, i.e., I'0.
In Landau theory X, can thus be large (or even diverge),

mainly for two different reasons, either
(1) FO~1; this would correspond to I~1 and would

support the claim of the approaching ferromagnetic insta-
bility, or
(2) m'/m —+00 (while 1+Fo&0),which would indicate

that the particles carrying the spin become immobile and
"localize. "
In Fig. I the experimentally determined pressure depen-

dence of the effective mass m'/m (from the specific
heat), the ratio (X,/X, )/(m /m)=(1+F0) ' of the stat-
ic susceptibility and the effective mass, and the compres-
sibility tc//co as measured by Cxreywall (1983) are shown.
Anderson and Brinkman (1975,1978) pointed out that
while m*/m increases with pressure, the quantity
(1+F0) changes very little; in particular, it is essential-
ly pressure independent at high pressures. They argued
that the strong enhancement of the susceptibility w'as
essentially due to the effective mass, rather than to the
factor (1+F0) '. In view of this, Anderson and Brink-
man suggested that normal He should not be considered
"almost ferromagnetic" but rather "almost localized" or
"solid." This notion is also supported by the fact that the

compressibility (Fig. 1) is strongly reduced as pressure
increases —a feature that one would attribute to a system
that becomes more and more solidlike (Castaing and
Nozieres, 1979; Levin and Valls, 1979a). In fact, at 34.36
bars the He liquid solidifies such that the atoms are
indeed localized.
Paramagnon calculations for X,/m' lead to a different

behavior: there this quantity is found to diverge as I~l.
Paramagnon theory has been successful in determining
various properties of liquid He like the T lnT contribu-
tion to the specific heat [see the review of Baym and
Pethick (1978)] and the formation of spin-triplet states in
the superfluid (Layzer and Pay, 1971; Anderson and
Brinkman, 1973). It has also been applied to a calculation
of Landau scattering amplitudes Ai Fi/[ I+F~/——(21+1)]
(Levin and Valls, 1979a,1983). If I is chosen to fit the
spin susceptibility, the AI are in reasonable agreement
with the experiment. It appears essential that an interpre-
tation of paramagnon theory within the context of Lan-
dau theory is done via the AI parameters rather than the
Landau parameters I'I. In this way Galilean invariance is
maintained as I~ 1 and the equality (6a) is found to ap-
ply. The conclusion that normal He is close to a magnet-
ic instability, such that its properties are dominated by
the incipient ferromagnetic transition, is plausible only
within that particular picture. However, as will be seen
below, there are solutions of the Hamiltonian (3) which
come to exactly the same conclusions as those reached by
using Landau theory, namely, that He is almost localized
rather than ferromagnetic.
Anderson and Brinkman (1975,1978) argued that this

concept is closely related to that of "localization by corre-
lation". in the sense of Mott (1949) concerning the
behavior of electrons in narrow-band systems. Such sys-
tems have been investigated by the Hubbard model,
introduced by Cxutzwiller (1963,1964), Hubbard
(1963,1964), and Kanamori (1963) for 20 years now. In
this model the electrons are considered to be on a lattice,
their kinetic energy being due to hopping from one site to
another, while the interaction acts only on the same site.
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(Greywall, 1983).

=1+F)/3= (67)

we find

(68)

As the Landau parameter F~ is experimentally known as
a function of pressure, we thereby find the actual pressure
dependence of the interaction parameter I(P), which is
shown in Fig. 3. We see that at P=0, I=0.8 and at melt-
ing pressure (P =34.36 bars) I=0.9—i.e., the interaction
parameter varies like 0.8 &I&0.9 as pressure is changed.
This means that at all pressures one is rather close to the
transition I= 1. Note that the solidification of liquid He
occurs at an interaction strength U & U„where the num-
ber of doubly occupied sites is very small

experiment) but, in fact, approaches a value within a few
percent of the one experimentally measured. Using the
relation

(d =0.025—0.05) but still finite. Localization and solidi-
fication are hence not identical. This is not surprising,
because even in a solid there are interstitials and
vacancies —particularly so in a quantum solid such as
solid He (Andreev and Lifshitz, 1969). Furthermore, the
"localization" of particles in a liquid implies that they
want to keep apart as much as possible: this is then a first
step towards solidification into a crystalline structure
(Kirzhnits and Nepomnyashchii, 1971), which in the case
of He sets in by a first-order transition.
The pressure dependence of U/U, now permits us to

plot the pressure dependence of Fo, Fo according to ex-
pressions (50) and (54); using p given in (65), they are
shown in Figs. 4 and 5 in comparison with the actually
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experimental data at least at low pressures (Baym and
Pethick, 1978)], allows us to obtain an analytic result for
E1. In this approximation we have
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FIG. 7. The normalized compressibility of normal He as cal-
culated, in comparison with the experimentally obtained values
(Cxreywall, 1983).

We observe two points:

(i) the merely qualitative agreement between the result
for Eo and the experiment is quite unimportant here, be-
cause Fo is large and positive and therefore 1/Fo is small
in any case, and
(ii) the above expression for F& can depend only on I,

because Fo(I)=Fo( I) and—F~——3I /(1 I ). —
measured values (Cxreywall, 1983). While for Fo there is
only a qualitative agreement (the shapes of the curves are
very similar, and Fo is large and positive), the pressure
dependence of Eo agrees with the experimental one at all
pressures within a few percent. Using the results for Eo
and Fo, we can calculate the spin susceptibility 7, /X, and
the compressibility I~/~ as given by (1). The results are
shown in Figs. 6 and 7. Only the effective mass expres-
sion has been fitted to obtain the pressure dependence of
I; besides that, essentially no other parameter has to be
adjusted. In view of this fact, the agreement with the ex-
perimental points is indeed remarkable.
The fact that Eo approaches the value ——,'p, @=1,

finds an interesting analog in the results of Castaing
(1980). He showed that if (for any unknown reason) nor-
mal He could be described by a set of two-level systems,
such that t spins and g spins had different energies, then
Eo should tend towards a limiting value Eo————, as pres-
sure is increased, i.e., as the solid is approached. Just as
in Gutzwiller's approach spin correlations are neglected in
his model.

We find

8+—,pA
E1———3I—8( 1+I )+ —,

'
pA

(71)

while

3I
1 I @=1 3+I (72)

I (2+I)
(1+I)'

In both cases these Landau parameters have the limiting
value ——, as U~U, . In general, however, p&1 al-
though, as argued above, ii is always close to one. Setting
1—p =E, we expand to first order in c. and obtain

where 3 =—1+(4 I )(1—p—), 8=[1+I(1—p)j
4I (1 p) . —It is —interesting to note that the case

p =2 ~
Eo

~
%(0)= 1 proves to be a special one. In this case

2 =—1, 8 =-1, and one obtains

E. LBA18U parafA8t8r Fq

3I' 6(5+I')1+— E +0 e3+I' 3+I' (73)

g (A('+A(') =0 .
l=o

(69)

Keeping only Landau parameters with i &2 [which is
equivalent to the s-p appmximation (Dy and Pethick,
1969) and which is known to be in good agreement with

The remarkable quantitative agreement between theory
and experiment concerning Eo leads to a possible exten-
sion of the results: the calculation of one more Landau
parameter, namely, E1, involved in spin currents. Little is
known about E1, because there is no exact relation of it to
a measurable quantity, as in the case of Eo, Eo, and F»
and therefore even its measurement is rather indirect
(Cxreywall, 1983). To obtain an expression for F& we use
the forward-scattering sum rule for Landau parameters

The prefactor of the first-order correction term is always
between 9 and 10, i.e., is large. This has the consequence
that the pressure dependence of F1 depends extremely
sensitively on the size and sign of e, particularly at higher
pressures (where the s-p approximation is not very good,
anyway). To obtain a quantitative result for F; using (71)
we have to make a particular choice for p. We find that
only the case a=1—p &0 is able to reproduce the experi-
mentally determined behavior (Greywall, 1983) F& &0,
BF~/Bp ~0 (c,=0 is already sufficient for that). In that
case we find E1———0.S3 at P=0 decreasing to
E1———0.65 at melting pressure. However, as a small
change of c from, say, 0.01 to —0.01, already produces a
large change in the pressure dependence of F;, (71) and
(72) should not be used beyond the qualitative result that
for U—+U, F1 approaches a constant value, as does Fo.
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fication are hence not identical. This is not surprising,
because even in a solid there are interstitials and
vacancies —particularly so in a quantum solid such as
solid He (Andreev and Lifshitz, 1969). Furthermore, the
"localization" of particles in a liquid implies that they
want to keep apart as much as possible: this is then a first
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12c. Fermi liquid description of the Kondo 
effect at low temperature

P. Nozieres, J. Low Temp. Phys. 17, 31 (1974)

The electron gas for T<<TK is a Fermi liquid, with Landau parameters that can be 
calculated perturbatively (electrons interact with each other via the polarization 
they induce in the Kondo singlet)

Journal of Low Temperature Physics, Vol. 17, Nos. 1/2, 1974 

A "Fermi-Liquid" Description of the Kondo 
Problem at Low Temperatures 

P. Nozi6res 

Inst i tut  Laue-Langev in ,  Grenoble,  France 

(Received April 5, 1974) 

We take as granted Anderson's statement that in the low-temperature limit the 
usual Kondo s-d model evolves toward a fixed point in which the effective 
exchange coupling of the impurity with the conduction electrons is infinitely 
strong. The low-temperature properties (T << Tr) are then described phenomeno- 
logically in the same spirit as the usual Landau theory of Fermi liquids. The 
specific heat, spin susceptibility, and resistivity are expressed in terms of a 
small number of numerical parameters. In the strong coupling case the latter 
may be obtained via perturbation theory ; in the opposite weak coupling limit 
they must be fitted to Wilson' s recent numerical results. 

1. INTRODUCTION 

We consider a single magnetic impurity (spin 1/2) in a metal, described 
by the well-known Kondo Hamiltonian 

H ~ * = ~kCk~Ck~ + ~ (J/N)S" S~,C~oCh, ~, (1) 
k,~ ka 

k'er' 

In the case of antiferromagnetic coupling, J > 0, the existence of 
singular behavior near the Kondo temperature TK is well known. What 
happens below T~: was established by Anderson et al.,* using a "scaling 
approach" which was nearest to being rigorous. The validity of Anderson's 
views was demonstrated recently by Wilson. 2 His method, inspired by 
renormalization group considerations, is based on a numerical study of the 
lowest energy levels of the many-body system, carried out on an appro- 
priately simplified model. In this way he shows that when the energy scale 
goes to zero (or, equivalently, the size of the crystal goes to infinity) the distri- 
bution of eigenstates becomes similar to that which would prevail if J were 

• F o r  a r ecen t  review,  see A n d e r s o n )  
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This is the technical centerpiece of the Landau theory of Fermi liquids.  Based on a 
classical Hamiltonian for quasiparticles

the following Boltzmann equation is deduced for the phase space distribution function

5.24 Giovanni Vignale

lifetime can be inferred.
In practice, the interpretation of the experimental data is complicated by the presence of disor-
der, which leads to imperfect momentum conservation and a finite linewidth even in the limit of
zero temperature. This extrinsic contribution, however, is expected to be nearly independent of
temperature, and when one subtracts it from the data one obtains values that are in reasonably
good agreement with the theory presented in this section (see Fig. 9).

3.5 The kinetic equation

Perhaps the technical centerpiece of the Landau theory of Fermi liquid is the kinetic equation,
which governs the time evolution of the quasiparticle distribution function in out-of-equilibrium
situations, such as in the presence of slowly varying external fields. The main idea is to treat
the system as an assembly of quasiparticle wave packets characterized by an average position ~r

and an average momentum ~~k (k ' kF ). The quantum mechanical uncertainties in position and
energy are assumed to be negligible on the scale of spatial and temporal variation of the external
fields. This description makes sense only if the wavevector and frequency of the external field
are much smaller than the Fermi wave vector and the Fermi energy respectively. In addition,
the thermal energy kBT must be much smaller than the Fermi energy in order that the notions
of Fermi surface and quasiparticles be well defined. Under these assumptions the quasiparticle
wave packets can be treated as classical particles, with canonical coordinates and momenta ~r

and ~~k, described by a “classical” hamiltonian

Hcl(~r, ~~k, �) = E~k� � e��(~r, t) +
X

~k0�0

f~k�,~k0�0�N~k0�0(~r, t) (47)

where ��(~r, t) is a (generally spin-dependent) scalar potential. The last term on the right hand
side of Eq. (47) describes the effect of the short-range interaction between the quasiparticles. It
has the form of a mean effective potential whose strength is controlled by the Landau interaction
function. The long-range electrostatic potential (Hartree potential) is self-consistently included
in the external field.
The equation of motion for the quasiparticle distribution function follows immediately from
Liouville’s theorem for a classical flow in phase space

@N~k�(~r, t)

@t
+

1

~
@Hcl

@~k
·
@N~k�(~r, t)

@~r
� 1

~
@Hcl

@~r
·
@N~k�(~r, t)

@~k
=

✓
@N~k�(~r, t)

@t

◆

coll

. (48)

The collisional time derivative on the right hand side of Eq. (48) takes into account the fact
that the evolution of the quasiparticle distribution function is affected by collision processes
that are not included in the classical mean field hamiltonian. As discussed in previous sections,
quasiparticle collisions result in a finite lifetime of quasiparticles (⌧ (e)~k�

) and quasiholes (⌧ (h)~k�
)

near the Fermi surface. We can therefore write
✓
@N~k�

@t

◆

coll

= �
N~k�

⌧ (e)~k�

+
1�N~k�

⌧ (h)~k�

, (49)

The linearized version of this equation (for small deviations from equilibrium) 
is
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where the first term represents the rate at which quasiparticles leave the state ~k� and the second
is the rate at which they are scattered into it. Besides the interaction contributions derived in
Section 3, the total decay rates will in general include contributions from electron-impurity and
electron-phonon scattering.
It is evident that the collisional derivative must vanish when N~k� is the thermal equilibrium
distribution N eq

~k�
, i.e., the Fermi-Dirac distribution with energy E~k� (see Eq. (11)). This principle

of detailed balance leads to an exact relation between quasiparticle and quasihole lifetimes:

N eq
~k�

⌧ (e)~k�

=
1�N eq

~k�

⌧ (h)~k�

, (50)

which is satisfied (at the appropriate level of accuracy) by the formulas presented in Section 3
(see Eq. (28)). Expanding Eq. (48) to first order in the strength of the external fields we obtain
the linearized kinetic equation for the deviation of the distribution function from equilibrium.
This equation has the form

@�N~k�(~r, t)

@t
+ ~v~k� ·

@�N~k�(~r, t)

@~r
+ ~v~k� · ~F~k�(~r, t)�(E~k� � µ) =

✓
@�N~k�(~r, t)

@t

◆

coll

(51)

where v~k� = ~~k
m⇤ is the quasiparticle velocity, and

~F~k�(~r, t) = �~r~r

2

4�e��(~r, t) +
X

~k0�0

f~k�,~k0�0�N~k0�0(~r, t)

3

5 (52)

is the classical force acting on the quasiparticle. This equation is the starting point for most
applications of the Landau theory of Fermi liquids.
One outstanding application of the kinetic equation is the study of the macroscopic dynamics of
the quasiparticle distribution function in the absence of external fields, leading to the prediction
of self-sustained collective modes (i.e., normal modes of oscillation of the Fermi surface) of
different symmetries. In this manner one can obtain the (long-wavelength) dispersion of the
zero-sound mode in the neutral Fermi liquid and plasmons in the electron liquid. Focusing, for
example, on plasmons, we neglect the collision term (justified, since the collision rate is much
smaller than the plasmon frequency) and notice that ��(~r, t) is the self-consistent electrostatic
potential (Hartree potential) associated with a density fluctuation �n(~r, t) =

P
~k0�0 �N~k0�0(~r, t).

We take advantage of linearity by performing a Fourier transformation with respect to the vari-
ables ~r and t in Eqs. (51) and (52). This gives us

�
! � ~q · ~v~k�

�
�N~k�(~q,!) + ~q · ~v~k��(E~k� � µ)

X

~k0�0

h
vq + f~k�,~k0�0

i
�N~k0�0(~q,!) = 0 , (53)

where vq = 4⇡e2/q2 in 3D and vq = 2⇡e2/q in 2D. A nontrivial solution �N~k0�0(~q,!) 6= 0

of this equation exists only if ! equals the plasmon frequency !p(q). In the long wavelength
limit, q ! 0, we get !p(q) = (4⇡ne2/m)1/2 in 3D and !p(q) = (2⇡ne2q/m)1/2 in 2D. Notice
that these results involve the bare electron mass m, not the quasiparticle mass, which appears
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where the first term represents the rate at which quasiparticles leave the state ~k� and the second
is the rate at which they are scattered into it. Besides the interaction contributions derived in
Section 3, the total decay rates will in general include contributions from electron-impurity and
electron-phonon scattering.
It is evident that the collisional derivative must vanish when N~k� is the thermal equilibrium
distribution N eq

~k�
, i.e., the Fermi-Dirac distribution with energy E~k� (see Eq. (11)). This principle

of detailed balance leads to an exact relation between quasiparticle and quasihole lifetimes:
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, (50)

which is satisfied (at the appropriate level of accuracy) by the formulas presented in Section 3
(see Eq. (28)). Expanding Eq. (48) to first order in the strength of the external fields we obtain
the linearized kinetic equation for the deviation of the distribution function from equilibrium.
This equation has the form
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is the classical force acting on the quasiparticle. This equation is the starting point for most
applications of the Landau theory of Fermi liquids.
One outstanding application of the kinetic equation is the study of the macroscopic dynamics of
the quasiparticle distribution function in the absence of external fields, leading to the prediction
of self-sustained collective modes (i.e., normal modes of oscillation of the Fermi surface) of
different symmetries. In this manner one can obtain the (long-wavelength) dispersion of the
zero-sound mode in the neutral Fermi liquid and plasmons in the electron liquid. Focusing, for
example, on plasmons, we neglect the collision term (justified, since the collision rate is much
smaller than the plasmon frequency) and notice that ��(~r, t) is the self-consistent electrostatic
potential (Hartree potential) associated with a density fluctuation �n(~r, t) =

P
~k0�0 �N~k0�0(~r, t).

We take advantage of linearity by performing a Fourier transformation with respect to the vari-
ables ~r and t in Eqs. (51) and (52). This gives us
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where vq = 4⇡e2/q2 in 3D and vq = 2⇡e2/q in 2D. A nontrivial solution �N~k0�0(~q,!) 6= 0

of this equation exists only if ! equals the plasmon frequency !p(q). In the long wavelength
limit, q ! 0, we get !p(q) = (4⇡ne2/m)1/2 in 3D and !p(q) = (2⇡ne2q/m)1/2 in 2D. Notice
that these results involve the bare electron mass m, not the quasiparticle mass, which appears
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lifetime can be inferred.
In practice, the interpretation of the experimental data is complicated by the presence of disor-
der, which leads to imperfect momentum conservation and a finite linewidth even in the limit of
zero temperature. This extrinsic contribution, however, is expected to be nearly independent of
temperature, and when one subtracts it from the data one obtains values that are in reasonably
good agreement with the theory presented in this section (see Fig. 9).

3.5 The kinetic equation

Perhaps the technical centerpiece of the Landau theory of Fermi liquid is the kinetic equation,
which governs the time evolution of the quasiparticle distribution function in out-of-equilibrium
situations, such as in the presence of slowly varying external fields. The main idea is to treat
the system as an assembly of quasiparticle wave packets characterized by an average position ~r

and an average momentum ~~k (k ' kF ). The quantum mechanical uncertainties in position and
energy are assumed to be negligible on the scale of spatial and temporal variation of the external
fields. This description makes sense only if the wavevector and frequency of the external field
are much smaller than the Fermi wave vector and the Fermi energy respectively. In addition,
the thermal energy kBT must be much smaller than the Fermi energy in order that the notions
of Fermi surface and quasiparticles be well defined. Under these assumptions the quasiparticle
wave packets can be treated as classical particles, with canonical coordinates and momenta ~r

and ~~k, described by a “classical” hamiltonian
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where ��(~r, t) is a (generally spin-dependent) scalar potential. The last term on the right hand
side of Eq. (47) describes the effect of the short-range interaction between the quasiparticles. It
has the form of a mean effective potential whose strength is controlled by the Landau interaction
function. The long-range electrostatic potential (Hartree potential) is self-consistently included
in the external field.
The equation of motion for the quasiparticle distribution function follows immediately from
Liouville’s theorem for a classical flow in phase space
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The collisional time derivative on the right hand side of Eq. (48) takes into account the fact
that the evolution of the quasiparticle distribution function is affected by collision processes
that are not included in the classical mean field hamiltonian. As discussed in previous sections,
quasiparticle collisions result in a finite lifetime of quasiparticles (⌧ (e)~k�

) and quasiholes (⌧ (h)~k�
)

near the Fermi surface. We can therefore write
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where the first term represents the rate at which quasiparticles leave the state ~k� and the second
is the rate at which they are scattered into it. Besides the interaction contributions derived in
Section 3, the total decay rates will in general include contributions from electron-impurity and
electron-phonon scattering.
It is evident that the collisional derivative must vanish when N~k� is the thermal equilibrium
distribution N eq

~k�
, i.e., the Fermi-Dirac distribution with energy E~k� (see Eq. (11)). This principle

of detailed balance leads to an exact relation between quasiparticle and quasihole lifetimes:
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which is satisfied (at the appropriate level of accuracy) by the formulas presented in Section 3
(see Eq. (28)). Expanding Eq. (48) to first order in the strength of the external fields we obtain
the linearized kinetic equation for the deviation of the distribution function from equilibrium.
This equation has the form
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is the classical force acting on the quasiparticle. This equation is the starting point for most
applications of the Landau theory of Fermi liquids.
One outstanding application of the kinetic equation is the study of the macroscopic dynamics of
the quasiparticle distribution function in the absence of external fields, leading to the prediction
of self-sustained collective modes (i.e., normal modes of oscillation of the Fermi surface) of
different symmetries. In this manner one can obtain the (long-wavelength) dispersion of the
zero-sound mode in the neutral Fermi liquid and plasmons in the electron liquid. Focusing, for
example, on plasmons, we neglect the collision term (justified, since the collision rate is much
smaller than the plasmon frequency) and notice that ��(~r, t) is the self-consistent electrostatic
potential (Hartree potential) associated with a density fluctuation �n(~r, t) =

P
~k0�0 �N~k0�0(~r, t).

We take advantage of linearity by performing a Fourier transformation with respect to the vari-
ables ~r and t in Eqs. (51) and (52). This gives us
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�N~k0�0(~q,!) = 0 , (53)

where vq = 4⇡e2/q2 in 3D and vq = 2⇡e2/q in 2D. A nontrivial solution �N~k0�0(~q,!) 6= 0

of this equation exists only if ! equals the plasmon frequency !p(q). In the long wavelength
limit, q ! 0, we get !p(q) = (4⇡ne2/m)1/2 in 3D and !p(q) = (2⇡ne2q/m)1/2 in 2D. Notice
that these results involve the bare electron mass m, not the quasiparticle mass, which appears
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A nontrivial solution  (not identically 
zero) of this equation exists only if ω 
equals the plasmon frequency 
ωp

2(q)=4pne2/m in 3D or 
ωp

2(q)=2pne2q/m in 2D. On a 
microscopic level this plasmons are 
quite different from hydrodynamic 
sound.
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Fig. 5.8. Plasmon dispersion in three and two dimensional electron gas (full lines) for rs = 2. The
dashed line represents the approximate two dimensional dispersion given by Eq. (5.53).

As it turns out, in the two dimensional case Eq. (5.49) can be solved analytically at all
wave vectors (Czachor et al., 1982). The result (see Exercise 5) can be cast in the form:
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)
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, 2D. (5.54)

For the three dimensional case a numerical solution of Eq. (5.49) proves necessary.
Fig. 5.8 provides a plot of the RPA plasmon dispersion in two and three dimensions. Notice
that in all cases, the condition ω ! qvF is satisfied.

Both in three and two dimensions a solution is found only up to a critical wave vector
qc where the plasmon dispersion impinges onto the electron–hole continuum. In three
dimensions, for wave vectors exceeding this threshold, the plasma mode is heavily damped
and in practice ceases to exist. In the two dimensional case, on the other hand, the plasmon
dispersion eventually touches the upper edge of the electron–hole continuum remaining
parallel to it and then also ceases to exist (see discussion below). It is a straightforward
exercise to derive the equations determining the density dependent plasmon critical wave
vector within the RPA (see Exercises 4 and 5).

Plasmon oscillator strength

We now examine the strength of the plasmon contribution to the density fluctuation spectrum

"mχRPA
nn (q, ω) = "mχ0(q, ω)

[1 − vq$eχ0(q, ω)]2 + [vq"mχ0(q, ω)]2
. (5.55)
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in ~v~k�. How did the quasiparticle mass get converted back to the bare mass? The answer is
that the Landau interaction function, acting on the self consistent solution of Eq. (53) reinstates
the bare mass according to the Galilean invariance relation discussed in section 2.5. Inclusion
of the quasiparticle collision term does not change these results (if translational and Galilean
invariance are in force), but affects the dispersion and introduces damping of the collective
modes at finite wave vector.
The other classic application of the kinetic equation for quasiparticles is the calculation of the
transport coefficients of a Fermi liquid. These are the spin diffusion constant, Ds, the shear and
bulk viscosities, ⌘ and ⇣ respectively, and the thermal conductivity . Ds is the constant of pro-
portionality between the spin current and the gradient of spin density that drives it. Similarly,
⌘ and ⇣ can be viewed as the traceless and traceful components of a diffusion tensor for the
momentum density – with the momentum current being driven by a gradient in the macroscopic
velocity field. Lastly,  is the constant of proportionality between the heat (entropy) current and
the gradient of temperature that drives it. Quasiparticle collisions, which are responsible for the
finite quasiparticle lifetime, are absolutely essential to calculate these transport coefficient. In
fact, these coefficients would all be infinite if those collisions were neglected, which of course
becomes a better and better approximation as the temperature is reduced. This counterintu-
itive result (divergence of the transport coefficients for T ! 0) follows from the “asymptotic
freedom” of the Landau quasiparticles in this limit. Indeed, one can show that the transport
coefficient are qualitatively described by the following formulas

Ds ⇠ v2F ⌧s , ⌘ ⇠ S⌧⌘ , ⇣ ⇠ B⌧⇣ ,  = ncvv
2
F ⌧q , (54)

where S and B, are, respectively, the high-frequency shear modulus and the bulk modulus (both
on the order of n✏F ) and cv is the heat capacity (per particle) of the Fermi liquid. Here ⌧s, ⌧⌘
etc... are transport relaxation times which are related to the quasiparticle lifetime (since they
all depend on the same scattering probabilities) but are not identical with it or with each other.
All these scattering times diverge in the limit of zero temperature as 1/T 2 in three dimensions.
In two dimensions the situation is more delicate as the scattering times associated with spin
diffusion and thermal conductivity diverge as 1/(T 2 lnT ), while the scattering time associated
with the viscosity continues to diverge as 1/T 2 [14]. This is due to the fact that the scattering
processes that are responsible for the logarithmic divergence have zero momentum transfer and
therefore do not contribute to the transfer of momentum within the liquid. The divergence is
eventually cut off when the quasiparticle mean free path becomes comparable to the macro-
scopic size of the system, at which point the coefficients lose their hydrodynamic significance.
You might wonder why the density diffusion constant Dn does not appear in our list of transport
coefficients. The answer is that in the absence of impurities or external potentials quasiparti-
cle collisions cannot change the total particle current: this leads to an infinite conductivity and
then, via the Einstein relation – which connects the conductivity to the diffusion constant – to an
infinite diffusion constant! The physical interpretation of this surprising result is that a density
imbalance in a Fermi liquid does not relax via a diffusion process, but through the emission of
sound waves.

The transport scattering times are similar to quasiparticle lifetimes, 
but there are differences in detail. For example , in the 2D electron 
gas, the scattering times associated with spin diffusion and thermal 
conductivity diverge as 1/(T2 ln T ) (same as the quasiparticle 
lifetime),  but the scattering time associated with the viscosity 
diverges as 1/T2.

(A.A. Abrikosov and I. M. Khalatnikov, 1959)
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Fig. 11: Band dispersion for massless Dirac Fermions in the vicinity of the crossing point
(Dirac point). Also shown is the Fermi level which defines our Fermi liquid.

robust in this new situation, in particular we expect to find long-lived quasiparticles with an
effective mass m⇤ that is somewhat different from mc due to the presence of electron-electron
interaction. Nevertheless there are some important differences to be kept in mind. We list them
below.

1. First of all, the range of validity of the Fermi liquid theory shrinks to zero as the Fermi en-
ergy approaches the crossing point of the bands, also known as the “Dirac point”. When
✏F = 0 there is no Fermi surface and no Fermi liquid. The length and time scales provided
by k�1

F and ~✏�1
F diverge, and the system becomes scale-invariant (or quantum-critical).

The only energy scale left is kBT itself and the inverse lifetime of electrons and holes
must be proportional to kBT , which is of the same order of magnitude as the energy of
the excitations. This defines the so-called “Planckian regime”, and we see that the whole
concept of quasiparticle falls apart in this regime. The nature of the quantum critical
state at ✏F = 0 (also known as the charge neutrality point) is not completely understood
at present. Strong electron-electron interactions have been dealt with by a hydrodynamic
description, where individual particles are superseded by collective variables such as den-
sity and current. Alternatively, it has been suggested that electrons and holes in the upper
and lower band bind together to produce a gapped state known as “excitonic insulator”.

2. Although, for finite kF , the structure of the low-energy excitations remains the same as in
the standard parabolic case, there are some important differences in the structure of higher
energy excitations. In particular, the presence of electrons in the fully occupied lower
band cannot be ignored, as it gives a significant contribution to the Fermi liquid properties.
These contributions fall into two categories: (i) contributions to the Landau interaction
function arising from interactions between the electrons near the Fermi surface and those
in the fully occupied bands, (ii) contributions to the quasiparticle lifetime arising from
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✏k = ~vk

The linear energy-momentum relation 𝜖! = ℏ𝑣𝑘 is characteristic of massless 
relativistic particles.  However, its form is indistinguishable from that of an ordinary 
Fermi liquid in the vicinity of the Fermi energy.  The role of (non-interacting) effective 
mass is played by the “cyclotron mass”, 𝑚' = ⁄ℏ𝑘( v, which is density-dependent. 
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The dominant contribution to the quasiparticle decay 
rate comes from nearly collinear (forward) scattering 
processes.  The density of states for such processes 
diverges as )
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Fig. 11: Band dispersion for massless Dirac Fermions in the vicinity of the crossing point
(Dirac point). Also shown is the Fermi level which defines our Fermi liquid.

robust in this new situation, in particular we expect to find long-lived quasiparticles with an
effective mass m⇤ that is somewhat different from mc due to the presence of electron-electron
interaction. Nevertheless there are some important differences to be kept in mind. We list them
below.

1. First of all, the range of validity of the Fermi liquid theory shrinks to zero as the Fermi en-
ergy approaches the crossing point of the bands, also known as the “Dirac point”. When
✏F = 0 there is no Fermi surface and no Fermi liquid. The length and time scales provided
by k�1

F and ~✏�1
F diverge, and the system becomes scale-invariant (or quantum-critical).

The only energy scale left is kBT itself and the inverse lifetime of electrons and holes
must be proportional to kBT , which is of the same order of magnitude as the energy of
the excitations. This defines the so-called “Planckian regime”, and we see that the whole
concept of quasiparticle falls apart in this regime. The nature of the quantum critical
state at ✏F = 0 (also known as the charge neutrality point) is not completely understood
at present. Strong electron-electron interactions have been dealt with by a hydrodynamic
description, where individual particles are superseded by collective variables such as den-
sity and current. Alternatively, it has been suggested that electrons and holes in the upper
and lower band bind together to produce a gapped state known as “excitonic insulator”.

2. Although, for finite kF , the structure of the low-energy excitations remains the same as in
the standard parabolic case, there are some important differences in the structure of higher
energy excitations. In particular, the presence of electrons in the fully occupied lower
band cannot be ignored, as it gives a significant contribution to the Fermi liquid properties.
These contributions fall into two categories: (i) contributions to the Landau interaction
function arising from interactions between the electrons near the Fermi surface and those
in the fully occupied bands, (ii) contributions to the quasiparticle lifetime arising from

-q

q
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k2

k3
k4

However, the dielectric screening also diverges when 𝜔 → 𝑣𝑞, so the decay rate remains 
finite. At the same time, non-collinear back-scattering processes with 2kF are strongly 
suppressed.
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coincides with energy conservation

This is known as the collinear singularity.



The results are very similar to those obtained for the two-
dimensional electron gas, except that large momentum scattering 
does not contribute  to the dominant (logarithmic) contribution to 
the decay rate.  

17. The quasiparticle lifetime I: Intra-band transitions

Notice that these formulas (valid in the low temperature/energy 
limit) do not depend on the strength of the interaction coupling 

constant   𝛼 = !!

"ℏ$
. Here L is an ultraviolet energy cutoff which 

marks the limit of validity of the linear dispersion model. 
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interband transitions at energies lower than or comparable to the Fermi energy.

Concerning (i) it must be noted that the relative strength of the electron-electron interac-
tion, as measured by the ratio of the potential energy to the kinetic energy, is no longer
density-dependent: rather it becomes a fixed constant ↵ = e2

~v of order 1. However, there
is now another measure of the importance of interaction effects, and that is ⇤/kF where
⇤ is an ultraviolet cutoff wave vector, which determines the largest momentum of the
occupied states for which the linear (massless) band model is still valid. This cutoff is
poorly defined, but is expected to be of order 1/a, where a is the lattice constant. So even
though ↵ is constant, interaction effects become stronger as kF tends to zero, which is
similar to the familiar situation, but leads to very different phenomenology in this case.
For example it can be shown that the inverse compressibility, proportional to @µ/@n,
is increased by interactions rather than decreased [20]. This happens because when the
electronic density is increased the Fermi level in the upper band moves farther away from
the lower band: the negative exchange energy that is lost due to this effect outweighs the
negative exchange energy that is gained by having more electrons in the upper band. The
same phenomenon is observed for the spin susceptibility, which is now suppressed, rather
than enhanced, by interactions.

Concerning point (ii), a detailed analysis presented in Ref. [21] shows that the quasipar-
ticle lifetime (in the upper band, +) is given by
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at zero temperature and
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at finite temperature. This is essentially the Giuliani-Quinn result [11] discussed earlier in
Section 3.3. Three main differences with respect to the classic calculation for an ordinary
two-dimensional electron gas have been identified in Ref. [21]: i) a simple Fermi golden
rule approach with statically screened Coulomb interactions is not viable in graphene as
it yields logarithmically-divergent intra-band scattering rates due to the collinear scatter-
ing singularity; ii) the leading-order contribution to the quasiparticle decay rate in the
low-energy and low-temperature limits is completely controlled by scattering events with
small momentum transfer: the 2kF contributions are suppressed by the chiral nature of
massless Dirac carriers in graphene; iii) because of point ii), the leading order contri-
bution to the quasiparticle decay rate is completely independent of the strength of the
background dielectric constant ✏: the result is therefore universal in that it does not de-
pend on the substrate on which graphene is placed.

3. As the Fermi level approaches the crossing point with decreasing density, the Fermi liquid
concept remains in force as long as kF > 0, but the effective mass of quasiparticles is
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⇤ is an ultraviolet cutoff wave vector, which determines the largest momentum of the
occupied states for which the linear (massless) band model is still valid. This cutoff is
poorly defined, but is expected to be of order 1/a, where a is the lattice constant. So even
though ↵ is constant, interaction effects become stronger as kF tends to zero, which is
similar to the familiar situation, but leads to very different phenomenology in this case.
For example it can be shown that the inverse compressibility, proportional to @µ/@n,
is increased by interactions rather than decreased [20]. This happens because when the
electronic density is increased the Fermi level in the upper band moves farther away from
the lower band: the negative exchange energy that is lost due to this effect outweighs the
negative exchange energy that is gained by having more electrons in the upper band. The
same phenomenon is observed for the spin susceptibility, which is now suppressed, rather
than enhanced, by interactions.

Concerning point (ii), a detailed analysis presented in Ref. [21] shows that the quasipar-
ticle lifetime (in the upper band, +) is given by
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at zero temperature and
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at finite temperature. This is essentially the Giuliani-Quinn result [11] discussed earlier in
Section 3.3. Three main differences with respect to the classic calculation for an ordinary
two-dimensional electron gas have been identified in Ref. [21]: i) a simple Fermi golden
rule approach with statically screened Coulomb interactions is not viable in graphene as
it yields logarithmically-divergent intra-band scattering rates due to the collinear scatter-
ing singularity; ii) the leading-order contribution to the quasiparticle decay rate in the
low-energy and low-temperature limits is completely controlled by scattering events with
small momentum transfer: the 2kF contributions are suppressed by the chiral nature of
massless Dirac carriers in graphene; iii) because of point ii), the leading order contri-
bution to the quasiparticle decay rate is completely independent of the strength of the
background dielectric constant ✏: the result is therefore universal in that it does not de-
pend on the substrate on which graphene is placed.

3. As the Fermi level approaches the crossing point with decreasing density, the Fermi liquid
concept remains in force as long as kF > 0, but the effective mass of quasiparticles is

T=0

xk=0



18. What about interband transitions?
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Fig. 11: Band dispersion for massless Dirac Fermions in the vicinity of the crossing point
(Dirac point). Also shown is the Fermi level which defines our Fermi liquid.

robust in this new situation, in particular we expect to find long-lived quasiparticles with an
effective mass m⇤ that is somewhat different from mc due to the presence of electron-electron
interaction. Nevertheless there are some important differences to be kept in mind. We list them
below.

1. First of all, the range of validity of the Fermi liquid theory shrinks to zero as the Fermi en-
ergy approaches the crossing point of the bands, also known as the “Dirac point”. When
✏F = 0 there is no Fermi surface and no Fermi liquid. The length and time scales provided
by k�1

F and ~✏�1
F diverge, and the system becomes scale-invariant (or quantum-critical).

The only energy scale left is kBT itself and the inverse lifetime of electrons and holes
must be proportional to kBT , which is of the same order of magnitude as the energy of
the excitations. This defines the so-called “Planckian regime”, and we see that the whole
concept of quasiparticle falls apart in this regime. The nature of the quantum critical
state at ✏F = 0 (also known as the charge neutrality point) is not completely understood
at present. Strong electron-electron interactions have been dealt with by a hydrodynamic
description, where individual particles are superseded by collective variables such as den-
sity and current. Alternatively, it has been suggested that electrons and holes in the upper
and lower band bind together to produce a gapped state known as “excitonic insulator”.

2. Although, for finite kF , the structure of the low-energy excitations remains the same as in
the standard parabolic case, there are some important differences in the structure of higher
energy excitations. In particular, the presence of electrons in the fully occupied lower
band cannot be ignored, as it gives a significant contribution to the Fermi liquid properties.
These contributions fall into two categories: (i) contributions to the Landau interaction
function arising from interactions between the electrons near the Fermi surface and those
in the fully occupied bands, (ii) contributions to the quasiparticle lifetime arising from

k1

k3

-q

k2

k4

Thus, interband transitions do not contribute to the decay rate in a Fermi 
golden rule approximation (they can contribute, however, at higher order in 
the interactions)

In this case momentum and energy conservation are in 
conflict with each other:
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19. Anomalous behaviors I
The Fermi liquid of massless Dirac fermions exhibits some remarkable anomalies.  

The effect of interactions on the compressibility and spin  susceptibility is the opposite 
of what one finds in the two-dimensional electron liquid: these responses are reduced 
by interactions rather than enhanced.  This is due to the interaction of electrons at the 
Fermi level with “spectator electrons” in the occupied bands and can be understood by 
examining the behavior of the exchange self-energy.
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20. Anomalous behaviors II
The Fermi velocity diverges logarithmically as kF tends to 0.

Elias et al., Nature Physics 7, 701 (2011).
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21. The breakdown of Fermi liquid theory at eF,kF=0

Low-energy excitations 
are electrons and holes 
(possibly bound in pairs)

Dirac Liquid

EF

Their decay rate of electrons and holes, turns out 
to be [Trushin, PRB 94,205306, (2016)]

<latexit sha1_base64="edUYrlh9f3rI3Frh803oq27XTbY="></latexit>

1

⌧
' ↵2kBT

~ ln↵
This is known as “Planckian” regime, and in this 
regime the liquid is not a Fermi liquid anymore 
(because the energy uncertainty is comparable to 
the excitation energy).  
While the viscosity of the Fermi liquid is very high, 
the viscosity of the Dirac liquid is very low, closed 
to a conjectured lower bound [Müller et al., PRL 

103, 025301 (2009)] :
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Deviations from standard Fermi liquid behavior are observed in a variety of situations.
(i) Disordered electronic systems : Scattering rates of quasiparticles scale with non-
standard exponents, such as T3/2 in 3D and T ln T in 2D.  In the latter case the 
electron liquid is found to be a marginal Fermi liquid.
(ii) One-dimensional liquids.  These systems are known as Luttinger liquids 
because the fermionic quasiparticles do not exist (no pole in the Green’s 
function).  The low-energy excitations are bosons.
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Fig. 12: Schematic behavior of the local spectral function at A(kF ,!) for a Luttinger liquid
in the weak coupling regime (thin line) and in the strong coupling regime (thick line). In both
cases A(kF ,!) ⇠ 1

|!�µ
~ |

⌫ for ! ! µ
~ , with the exponent ⌫ tending to 1 for weak interactions and

becoming negative for strong interactions. Notice the absence of the quasiparticle �-function
peak at ! = µ

~ .

electron lacks the appropriate correlations with the pre-existing electrons, the state of the N+1-
electron system after the injection is essentially orthogonal to the ground-state. In mathematical
terms, the orthogonality catastrophe implies that the renormalization constant Z, defined in
Section 4, vanishes in the thermodynamic limit.18 We take this to be the defining feature of a
non-Fermi liquid state.
A classic example of non-Fermi liquid behavior is the so-called “Luttinger liquid” [28], which
is realized in quasi-one dimensional electronic systems such as Bechgaard salts, TTF-TCNQ,
and carbon nanotubes, as well as in confined systems of Fermionic cold atoms. The reduced
effective dimensionality of these systems hinders single particle motion to the point that the
particles must be regarded as strongly correlated even when their interactions are weak.
An immediate consequence of this situation is the disappearance of the quasiparticle �-function
peak in the spectral function A(kF ,!) at the chemical potential: there are no single-electron
quasiparticles. For weak interactions the �-function peak is replaced by a power-law divergence
for ! ! µ

~ . With increasing coupling strength a sort of energy gap develops, whereby A(kF ,!)

vanishes with a power law for ! ! µ
~ as shown in Fig. 12. The position of the lateral maxima in

the spectral function is a rough measure of the energy of the disturbance created by the injection
of the new electron in the liquid, while the “width” of these maxima is inversely proportional
to the time needed for the many-electron system to adjust to the presence of the new electron.
Another consequence of the vanishing of Z is that the plane wave occupation number nk is no
longer discontinuous at k = kF , even though a singularity persists in its derivatives with respect
to k.
Luttinger liquids exhibit anomalous transport properties. For example, the electrical conduc-
tivity is expected to vanish at zero temperature. One might find this not so surprising since it
is known that in a one dimensional system any amount of random disorder causes localization
of the one-electron states, and hence a vanishing conductivity at T = 0. But, in the Luttinger

18It can be shown that the renormalization constant is the square of the overlap between the excited state of the
system immediately after the injection of an electron and the ground-state of the system.

Schematic behavior of the spectral function A(kF,ω) (at T=0) 
for a Luttinger liquid in the weak coupling regime (thin line) 
and in the strong coupling regime (thick line). Notice the 
absence of the quasiparticle δ-function peak at ω =µ. 

(iii) Two-dimensional quantum liquids, in particular the quantum Hall liquid 
in the two-dimensional electron gas at high magnetic field.

22. Non-Fermi liquid behavior


