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1. The Fermi liquid

When many interacting fermions condense in a state close to the minimum energy
allowed by the Pauli exclusion principle one obtains a Fermi liquid. Physical realizations
of the Fermi liquids concept range from interacting electrons in metals and

semiconductors to liquid 3He, to gases of cold Fermionic atoms, to nuclear matter,
electrons in white dwarves, and neutron stars.
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The behavior of Fermi liguids confronts us with a puzzle: in spite of strong mutual
interactions the particles appear to behave as if they were non-interacting.

It was not until the late 1950s that this puzzling state of affairs was clarified from
a theoretical point of view by L. D. Landau.



2. Principle of adiabatic continuity

The low-lying states of the interacting liquid are in one-to-one
correspondence with those of the ideal Fermi gas.
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Note: the adiabatic continuation principle does not say anything

about the microscopic structure of the interacting states. It only

says that these states can be labelled in terms of “quasiparticles”,
which are defined relative to the Fermi sphere.



3. Adiabatic continuity and quasiparticle lifetime

At low temperature, the Pauli principle
greatly reduces the phase space available
to the mutual scattering of particles under
constraint of momentum and energy
conservation. In 3D this leads to
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The adiabatic “switching on” of interactions is justified on a time scale that is

long on the scale of excitation frequencies, yet short on the scale of the
(diverging) lifetime.



4. “Golden rule” calculation of the quasiparticle lifetime
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5. Measuring the quasiparticle lifetime

Momentum-conserving tunneling between two

/ identical quantum wells separated by a potential
| | difference eV . Because of energy conservation,

Er.x the tunneling probability decreases rapidly when

eV

eV exceeds the spectral width I of the single-
AEOU particle states in each band. Adapted from Sheena

Murphy (2004)
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6. The Landau energy functional

Expand the energy to second order in the deviation of the quasiparticle
distribution from the ground state distribution N]-E»g)
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7. Going to finite temperature

We obtain the equilibrium distribution of quasiparticles at finite temperature by
maximizing the entropy
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subject to the constraints of constant energy and number
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This gives the usual Fermi-Dirac distribution function
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Notice that, to the order of our expansion J\Lq is not affected by the
interaction function.



8. Calculation of macroscopic properties

(i) Heat capacity depends only on the effective mass. No contribution from interaction
2
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9. Connection with microscopic theory

(i) Existence of quasiparticles

The 1-particle Green’s function G(k,w) = —i/ dt (Ta(t)ak(0))e™"
has a pole at the quasiparticle energy &k
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is the probability that the liquid
remains in the ground state after
injecting a particle at the Fermi

JL surface.




10. The central role of the self-energy

(ii) Quasiparticle energy, renormalization constant, effective mass, and
qguasiparticle lifetime can all be calculated from the “self-energy”, Z(k,®), here
shown in the so-called GW approximation
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11. What about the Landau interaction function?
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12a. Some numerical results for the electron liquid

re| Fo | Fo | EF | E° Fy Fe

1 | -0.21]-0.17 | -0.04 | -0.0645 | -0.0215 | -0.0181
2 |-0.37 | -0.25 | -0.03 | -0.0825 | -0.0168 | -0.0126
3 |-0.55 | -0.32 | -0.02 | -0.0915 | -0.0107 | -0.0073
4 1-0.74 [-037 | 0.0 |-0.0956 | -0.0047 | -0.0022
5 | -0.95 | -0.40 | 0.03 | -0.0965 | +0.0009 | +0.0023

Landau Fermi liquid parameters of the
three-dimensional electron liquid.
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0.533
0.018
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0.691
0.525
0.421
0.296
0.196

—0.45
—0.98
—1.68
—3.48
—7.03

—-0.29
—-0.40
—-0.47
—0.58
—0.68

0.03
0.15
0.26
0.43
0.65

Landau Fermi liquid parameters of the
two-dimensional electron liquid.
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12b. Some results for 3He

D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)
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12c. Fermi liquid description of the Kondo
effect at low temperature

P. Nozieres, J. Low Temp. Phys. 17, 31 (1974)
Kondo s-d model
H = Z skcl’i:o'cko' + Z (J/N)S ) So'a'c;]:ock’a"
k,o ‘50‘,
T

The electron gas for T<<T is a Fermi liquid, with Landau parameters that can be
calculated perturbatively (electrons interact with each other via the polarization

they induce in the Kondo singlet)
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13. The kinetic equation

This is the technical centerpiece of the Landau theory of Fermi liquids. Based on a

classical Hamiltonian for quasiparticles . .
mean-fleld potential

]
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the following Boltzmann equation is deduced for the phase space distribution function
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14a. Notable applications of the kinetic equation |

Collective modes/Plasmons (Collisionless)
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A nontrivial solution (not identically
zero) of this equation exists only if w e -
equals the plasmon frequency 3 [ <D
w,2(q)=47tne?/min 3D or = el / -
w,%(q)=2ntne?q/min 2D. On a L
microscopic level this plasmons are 1 o
quite different from hydrodynamic / o
sound. 0



14b. Notable applications of the kinetic equation |

Transport coefficients
(A.A. Abrikosov and I. M. Khalatnikov, 1959)
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The transport scattering times are similar to quasiparticle lifetimes,
but there are differences in detail. For example, in the 2D electron
gas, the scattering times associated with spin diffusion and thermal
conductivity diverge as 1/(T2In T ) (same as the quasiparticle

lifetime), but the scattering time associated with the viscosity
diverges as 1/T2.



15. Fermi liquid theory of massless Dirac fermions

€L — hvk

The linear energy-momentum relation €, = hAvk is characteristic of massless
relativistic particles. However, its form is indistinguishable from that of an ordinary

Fermi liquid in the vicinity of the Fermi energy. The role of (non-interacting) effective
mass is played by the “cyclotron mass”, m,. = hky /v, which is density-dependent.

hk
€L = € F(k—kp)
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16. The quasiparticle lifetime — Collinear singularity

The dominant contribution to the quasiparticle decay

9 ke rate comes from nearly collinear (forward) scattering

k .
kg% ) ) processes. The density of states for such processes
F
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conservation

ki =ks + kg — ko
coincides with energy conservation
k1 =ks+ kg — ko
ks Kk
—/k' { This is known as the collinear singularity.
1

However, the dielectric screening also diverges when w — vq, so the decay rate remains

finite. At the same time, non-collinear back-scattering processes with 2k; are strongly
suppressed.



17. The quasiparticle lifetime I: Intra-band transitions

The results are very similar to those obtained for the two-

dimensional electron gas, except that large momentum scattering
does not contribute to the dominant (logarithmic) contribution to

the decay rate.
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Notice that these formulas (valid in the low temperature/energy

limit) do not depend on the strength of the interaction coupling
2

constant a = ;—v . Here A is an ultraviolet energy cutoff which

marks the limit of validity of the linear dispersion model.




18. What about interband transitions?

In this case momentum and energy conservation are in
conflict with each other:

\ ki = ks + ks — ko
makes
k1= ks + ks + ko
k;
ks ks
/k' ::_/k2
impossible!

Thus, interband transitions do not contribute to the decay rate in a Fermi
golden rule approximation (they can contribute, however, at higher order in
the interactions)



19. Anomalous behaviors |

The Fermi liguid of massless Dirac fermions exhibits some remarkable anomalies.

The effect of interactions on the compressibility and spin susceptibility is the opposite
of what one finds in the two-dimensional electron liquid: these responses are reduced
by interactions rather than enhanced. This is due to the interaction of electrons at the

Fermi level with “spectator electrons” in the occupied bands and can be understood by
examining the behavior of the exchange self-energy.
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20. Anomalous behaviors Il

The Fermi velocity diverges logarithmically as k¢ tends to O.

Ve (108m s™)

-40 =20 0 20 40 60
n (109 cm2)



21. The breakdown of Fermi liquid theory at ¢ k=0

Dirac Liquid

Low-energy excitations
are electrons and holes
(possibly bound in pairs)

Their decay rate of electrons and holes, turns out
to be [Trushin, PRB 94,205306, (2016)]
1 OéQkBT
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This is known as “Planckian” regime, and in this
regime the liquid is not a Fermi liquid anymore
(because the energy uncertainty is comparable to
the excitation energy).

While the viscosity of the Fermi liquid is very high,
the viscosity of the Dirac liquid is very low, closed
to a conjectured lower bound [Mller et al., prL
103, 025301 (2009)] :
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22. Non-Fermi liquid behavior

Deviations from standard Fermi liquid behavior are observed in a variety of situations.

(i) Disordered electronic systems : Scattering rates of quasiparticles scale with non-
standard exponents, such as T3¥2in 3D and T In T in 2D. In the latter case the

electron liquid is found to be a marginal Fermi liquid.

(ii)) One-dimensional liquids. These systems are known as Luttinger liquids
because the fermionic quasiparticles do not exist (no pole in the Green’s
function). The low-energy excitations are bosons.

A(w)
E Schematic behavior of the spectral function A(kg,w) (at T=0)
C for a Luttinger liquid in the weak coupling regime (thin line)
and in the strong coupling regime (thick line). Notice the
absence of the quasiparticle 6-function peak at w =p.
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(iii) Two-dimensional quantum liquids, in particular the quantum Hall liquid
in the two-dimensional electron gas at high magnetic field.



