

Why calculate in infinite dimensions?

Dieter Vollhardt

Autumn School on Correlated Electrons: Dynamical Mean-Field Theory of Correlated Electrons Forschungszentrum Jülich; October 4, 2022

Outline

- Spatial dimensions: From zero to infinity
- Classical many-body systems in infinite dimensions
- Correlated electrons in infinite dimensions
- Dynamical mean-field theory (DMFT)
- Application of DMFT to correlated electron materials
- Beyond mean-field theory

Spatial dimensions: From zero to infinity

Coordination number Z = # nearest neighbors Hypercubic lattices: Z=2d

Bethe "lattice"/Cayley tree: connected cycle-free graph

N=5 $C_{N} \sim Z^{N} \xrightarrow{N \to \infty} \infty$

Bethe lattice is "infinite dimensional"

Non-integer dimensions

Fractal dimensions

Fractal objects with non-integer fractal dimension

Continuous dimensions

Analytic continuation of d to continuous values, e.g., in RG theory: ε -expansion with $\varepsilon = d_{\text{crit}} - d \ll 1$, e.g., $d_{\text{crit}} = 4$

 $\int d^d k_1 d^d k_2 \cdots f(k_1, k_2, \cdots)$

Volume 28, Number 4	PHYSICAL REVIEW LETTERS	24 January 1972
	Critical Exponents in 3.99 Dimensions*	
Laboratory of Nuclear	Kenneth G. Wilson and Michael E. Fisher	thaca New York 14850

The limit $d, Z \rightarrow \infty$

d=3 (face-centered cubic)

Z=12

 $\xrightarrow{d,Z \to \infty}$ what happens?

- Mathematical expressions simplify (if scaled properly)
- Fluctuations decrease
- "Mean-field" solution of many-body problems

Illustration: Derivation of Bohr's atomic model from the Schrödinger equation

Bohr model of the atom

+ Postulates:

- discrete energies E_n , n = 1, 2, 3, ...
- frequency of emitted light = $E_n E_m / h$

Bohr (1913)

• quantization condition for circular orbits

Circumference $u_n = n\lambda_{de Broglie}$

Modern day applications: highly excited Rydberg atoms, cavity QED, ...

Can the Bohr model be derived from "proper" quantum mechanics? How?

38 PHYSICS TODAY / JULY 1980

Quarks, atoms, and the 1/N expansion

Problems in quantum chromodynamics that are currently impossible to solve may have useful approximate solutions when one assumes that quarks can have a large number, N, of "colors" instead of three.

Simple example: Hydrogen atom with $N \equiv d \rightarrow \infty$

Illustration: Derivation of Bohr's atomic model from the Schrödinger equation

Svidzinsky, Scully, Herschbach (2014)

Hydrogen atom: radial Schrödinger equation for electron in *d* dimensions (atomic units)

$$\begin{bmatrix} -\frac{1}{2} \left(\frac{d^2}{d\rho^2} + \frac{d-1}{\rho} \frac{d}{d\rho} \right) + \frac{l(l+d-2)}{2\rho^2} - \frac{1}{\rho} \end{bmatrix} R(\rho) = \varepsilon R(\rho) \qquad \rho = r/a_0 \\ \varepsilon = E/(e^2/a_0) \\ (i) \text{ Eliminate 1st order derivative by writing } R(\rho) = \frac{u(\rho)}{\rho^{(d-1)/2}} \qquad d = 3: R(\rho) = \frac{u(\rho)}{\rho} \checkmark \\ \begin{bmatrix} -\frac{1}{2} \frac{d^2}{d\rho^2} + \frac{\Lambda(\Lambda+1)}{2\rho^2} - \frac{1}{\rho} \end{bmatrix} u(\rho) = \varepsilon u(\rho) \\ d \ge 3 \\ (ii) \text{ Keep centrifugal term finite for } d \to \infty : \text{ dimensional rescaling } \\ \begin{bmatrix} R:= (\frac{d-1}{2})^{-2}\rho \\ \varepsilon:= (\frac{d-1}{2$$

=
$$\infty$$
 Kinetic energy = 0; classical energy $\mathcal{E}(\mathcal{R}) = \frac{1}{2\mathcal{R}^2} - \frac{1}{\mathcal{R}}$

minimal at
$$\,\,{\cal R}\,=\,1,\,{\cal E}\,=\,-1/2$$

- No quantum fluctuations

 $d \gg 3$

d

- Bohr's model justified in $d = \infty$

Application to He atom and H₂ molecule with 1/d corrections \rightarrow excellent results

1.0

2.0

NORMALIZED RADIUS \mathcal{R}

3.0

Classical many-body systems in infinite dimensions

Ising Model in $d = \infty$

Ising model

Ising model with random coupling in $d = \infty$: The spin glass problem

~ 1970: investigation of magnetic systems with static ("quenched") disorder, e.g. Cu/Mn, Au/Fe, ...

Edwards-Anderson model (1975)

 $H = -\sum_{\langle i,j \rangle} J_{ij} \mathbf{S}_i \mathbf{S}_j \qquad \text{Heisenberg model}$

"Spin glass freezing transition" to disordered configuration of magnetic moments

$$J_{ij}$$
: random, short-range couplings , $\langle J_{ij} \rangle = 0$, $\langle J_{ij}^2 \rangle = 1$

Investigate properties and construct order parameter of spin glass state by "replica trick": introduce *n* copies

$$\ln \mathcal{Z} = \lim_{n \to 0} \frac{\mathcal{Z}^n - 1}{n} \to F_{av} = -k_B T \left\langle \ln \mathcal{Z} \right\rangle_{av}$$

Ising model with random coupling in $d = \infty$: The spin glass problem

~ 1970: investigation of magnetic systems with static ("quenched") disorder, e.g. Cu/Mn, Au/Fe, ...

Sherrington-Kirkpatrick (1975) : mean-field treatment

 $H = - \sum_{\langle i,j \rangle} J_{ij} S_i S_j \quad \text{Ising model}$

"Spin glass freezing transition" to disordered configuration of magnetic moments

 J_{ij} : random, infinite-range couplings, $\langle J_{ij} \rangle = 0$, $\langle J_{ij}^2 \rangle = 1 \rightarrow \text{Scale } J_{ij} \rightarrow \frac{J_{ij}^*}{\sqrt{L}}$

L: # lattice sites

Alternative: finite-range J_{ij} and infinite d or Z

→ Scale	$J_{ij} \rightarrow \frac{J_{ij}^*}{\sqrt{Z}}$
---------	--

Problem: negative entropy for $T \rightarrow 0$ Origin: "replica symmetry" assumed Almeida, Thouless (1978)

Solution in $d \rightarrow \infty$: "Replica symmetry breaking" / multiple equilibria /infinite # order parameters in spin glass phaseParisi (1979)

Nobel Prize in Physics 2021 "for groundbreaking contributions to our understanding of complex systems".

Hard-sphere fluid in
$$d = \infty$$

Interaction of hard-core spheres
Continuum system
Continuum system
Continuum system
Frisch, Rivier, Wyler (1985)
Wyler, Rivier, Frisch (1987)
1.2 close and
1.3 close
 $\geq 2,3$ in general infinitely distant in $d = \infty$
Coal: equation of state
by virial expansion
 $\frac{PV}{k_BT} = N \sum_{l=0}^{\infty} B_{l+1} n^l$
 $n.z$
Partition function: $Z = e^{Z_c - 1}$, Z_c sum of connected graphs
 $Z_c = \sum_{l=0}^{\infty} b_l \left(\frac{Z}{\lambda^d}\right)^l$, $Z = e^{\mu/k_BT}$ fugacity
 $\lambda = \hbar\sqrt{2\pi/mk_BT}$ thermal wave length
Typical scale of volume: volume of hard sphere
 $\Rightarrow B_2 = \frac{1}{2} v_d(a), B_{l>2} = 0$
Scale: $a = d^v a^*$, with $v_d(a) \equiv v(a^*) = \text{const}$
 $\Rightarrow v = 1/2 \Rightarrow a = \sqrt{da^*}, a^* = \text{const}$
 PV

Conclusion: only 2-particle interaction important in $d = \infty$

Conclusion: only 2-particle interaction important in $d = \infty$

Correlated electrons

Electronic correlations (I): Effects beyond factorization of the interaction (Hartree-Fock)

Wigner (1934)

Early 1960s

Two fundamental, unsolved intermediate-coupling problems in solid state physics:

- Ferromagnetism in *3d* transition metals
- Mott metal-insulator transition

Minimal many-body model of correlated electrons?

Related questions:

Magnetism and localized magnetic states in metals

Anderson impurity model ("single-impurity Anderson model"):local interaction between d-electrons $Un^d_{\uparrow}n^d_{\downarrow}$ Anderson model")

Anderson (1961) Wolff (1961)

Single-impurity Anderson model

Anderson (1961)

Single-impurity Anderson model

Anderson (1961)

1963: Minimal lattice model of correlated electrons

(for ferromagnetism of transition metals ?)

Hubbard model

- tight binding
- extreme screening assumed: only local interaction
- \rightarrow no classical analogue

Gutzwiller (1963) Hubbard (1963) Kanamori (1963)

$$H = \sum_{\mathbf{k},\sigma} \boldsymbol{\mathcal{E}}_{\mathbf{k}} n_{\mathbf{k}\sigma} + \boldsymbol{U} \sum_{\mathbf{i}} D_{\mathbf{i}}, \quad D_{\mathbf{i}} = n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow}$$

Diagonal in momentum space (waves) Diagonal in position space (particles)

 $\left\langle H_{\rm int} \right\rangle \!=\! 0$ in the ferromagnetic phase

- How to solve ?
- No fully numerical solution possible even today
- \rightarrow Find good approximations

Gutzwiller variational approach

$$H = \sum_{i,j,\sigma} \mathbf{t}_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \mathbf{U} \underbrace{\sum_{i} n_{i\uparrow} n_{i\downarrow}}_{\mathbf{D}}$$

Gutzwiller (1963) Hubbard (1963) Kanamori (1963)

• Gutzwiller variational wave function $|\Psi_G\rangle = e^{-\lambda D} |\Psi_0\rangle$

$$E_{G}(\lambda) = \frac{\left\langle \psi_{G} \right| H \left| \psi_{G} \right\rangle}{\left\langle \psi_{G} \right| \psi_{G} \right\rangle}$$

One-particle wave function

• Gutzwiller approximation (GA):

Gutzwiller (1963/65)

Semi-classical evaluation of expectation values by counting classical spin configurations

Gutzwiller variational approach

 $\frac{\partial E_G}{\partial d} = 0$

Conditions for ferromagnetic ground state?

Brinkman, Rice (1970)

$$d = \frac{1}{4} \left(1 - \frac{U}{U_c} \right) \quad \boxed{U_c = 8\varepsilon_0} \quad q = 1 - \left(\frac{U}{U_c} \right)^2 \quad E_G = -L\varepsilon_0 \left(1 - \frac{U}{U_c} \right)^2$$
$$\frac{m^*}{m} = q^{-1} \xrightarrow{U \to U_c} \infty \qquad \frac{\text{describes}}{\text{metal-insulator}}$$
$$\frac{m^*}{m} = q^{-1} \xrightarrow{U \to U_c} \infty \qquad \boxed{\frac{describes}{metal-insulator}}$$

Application of Gutzwiller-Brinkman-Rice theory

$$\frac{E_G(\lambda)}{L} \stackrel{GA}{=} \boldsymbol{q}(d) \boldsymbol{\varepsilon}_0 + \boldsymbol{U} d$$

Normal liquid ³He: close to Mott transition ? Anderson, Brinkman (1975)

Gutzwiller approximation ↔ Landau Fermi liquid theory DV (1984)

→ Lecture Giovanni Vignale

Gutzwiller approximation: - very "physical" + gives remarkably good results

- mean-field-like
- how to improve?

Systematic derivation using quantum many-body methods?

- Slave boson mean-field theory

Kotliar, Ruckenstein (1986)

- Infinite dimensions

Metzner, DV (1987-89)

Correlated electrons in infinite dimensions

Gutzwiller wave function

Analytic evaluation of $E_G = -$

<u>----</u>

m = 1 m =2

 $\frac{\langle \psi_G | H | \psi_G \rangle}{\langle \psi_G | \psi_G \rangle} \text{ in } d=1$

Metzner, DV (1987/1988)

000 000

 ∞

0

m=1

m=2

PHYSICAL REVIEW LETTERS

16 JANUARY 1989

Correlated Lattice Fermions in $d = \infty$ Dimensions

Walter Metzner and Dieter Vollhardt

Institut für Theoretische Physik C, Technische Hochschule Aachen, Sommerfeldstrasse 26/28, D-5100 Aachen, Federal Republic of Germany (Received 28 September 1988)

$$\left\langle \hat{H}_{\text{kin}} \right\rangle_{0} = -t \sum_{\mathbf{i},\sigma} \sum_{\substack{\mathbf{j}(NN \ \mathbf{i}) \\ \mathbf{Z}}} \underbrace{\left\langle \hat{c}_{\mathbf{i}\sigma}^{\dagger} \hat{c}_{\mathbf{j}\sigma} \right\rangle_{0}}_{g_{ij,\sigma}^{0}} = \text{Probability amplitude for hopping } \mathbf{j} \rightarrow \text{NN } \mathbf{i}$$

Amplitude for hopping
$$\mathbf{j} \rightarrow NN \mathbf{i} \Big|^2 = Probability$$
 for hopping $\mathbf{j} \rightarrow Z NN \mathbf{i} \propto \frac{1}{Z}$

$$\Rightarrow \text{ Amplitude for hopping } \mathbf{j} \rightarrow \text{NN } \mathbf{i} = g_{ij,\sigma}^0 \propto \frac{1}{\sqrt{Z}} \text{ or } \frac{1}{\sqrt{d}} \text{ , } Z = 2d \text{ (hypercubic lattice)}$$

PHYSICAL REVIEW LETTERS

16 JANUARY 1989

Correlated Lattice Fermions in $d = \infty$ Dimensions

Walter Metzner and Dieter Vollhardt

Institut für Theoretische Physik C, Technische Hochschule Aachen, Sommerfeldstrasse 26/28, D-5100 Aachen, Federal Republic of Germany (Received 28 September 1988)

Amplitude for hopping
$$\mathbf{j} \rightarrow NN \mathbf{i} \Big|^2 = Probability$$
 for hopping $\mathbf{j} \rightarrow Z NN \mathbf{i} \propto \frac{1}{Z}$

$$\Rightarrow \text{ Amplitude for hopping } \mathbf{j} \rightarrow \text{NN } \mathbf{i} = g_{ij,\sigma}^0 \propto \frac{1}{\sqrt{Z}} \text{ or } \frac{1}{\sqrt{d}} \text{ , } Z = 2d \text{ (hypercubic lattice)}$$

PHYSICAL REVIEW LETTERS

16 JANUARY 1989

Correlated Lattice Fermions in $d = \infty$ Dimensions

Walter Metzner and Dieter Vollhardt

Institut für Theoretische Physik C, Technische Hochschule Aachen, Sommerfeldstrasse 26/28, D-5100 Aachen, Federal Republic of Germany (Received 28 September 1988)

Z or $d \rightarrow \infty$

Collapse of all connected, irreducible diagrams in position space

→ Great simplification of many-body perturbation theory, e.g., self-energy diagram purely local

Holds also for time-dependent propagator, since $g_{ij,\sigma}^0 = \lim_{t\to 0^-} G_{ij,\sigma}^0(t)$

PHYSICAL REVIEW LETTERS

16 JANUARY 1989

Correlated Lattice Fermions in $d = \infty$ Dimensions

Walter Metzner and Dieter Vollhardt

Institut für Theoretische Physik C, Technische Hochschule Aachen, Sommerfeldstrasse 26/28, D-5100 Aachen, Federal Republic of Germany (Received 28 September 1988)

$$\left\langle \hat{H}_{\rm kin} \right\rangle_{0} = - \underbrace{t}_{\substack{\alpha = \frac{1}{\sqrt{Z}}}} \sum_{\mathbf{i},\sigma} \underbrace{\sum_{\mathbf{j}(NN \ \mathbf{i})}}_{Z} \underbrace{\left\langle \hat{c}_{\mathbf{i}\sigma}^{\dagger} \hat{c}_{\mathbf{j}\sigma} \right\rangle_{0}}_{g_{ij,\sigma}^{0} \alpha = \frac{1}{\sqrt{Z}}}$$

Quantum $t = \frac{t^*}{\sqrt{2d}}$

 $\xrightarrow{Z \text{ or } d \to \infty}$ Collapse of all connected, irreducible diagrams in position space

Correlations remain non-trivial even in infinite dimensions

Example: Correlation energy of Hubbard model

Excellent approximation for d=3

 $d \rightarrow \infty$: new mean-field limit for fermions

Mean-field limit of the Hubbard model in $d \rightarrow \infty$

$$H = -\frac{t^*}{\sqrt{Z}} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + \frac{U}{U} \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow}$$

Purely local interaction: independent of *d*,*Z*

Thou shalt not factorize:

$$\langle n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} \rangle \neq \langle n_{\mathbf{i}\uparrow} \rangle \langle n_{\mathbf{i}\downarrow} \rangle$$

Local quantum fluctuations always present \rightarrow dynamic

Quantum fluctuations neglected \rightarrow static

Hartree(-Fock)

Mean-field limit of the Hubbard model in $d \rightarrow \infty$

Mean-field limit of the Hubbard model in $d \rightarrow \infty$

CPA-type self-consistent mean-field theory

Janiš (1991)

How to solve?

Mean-field limit of the Hubbard model in $d \to \infty$

Jarrell (1992)

- physically appealing **and** powerful
- directly numerically accessible by quantum Monte Carlo for SIAM Hirsch, Fye (1986)

Mean-field theory of the Hubbard model in $d \rightarrow \infty$

Fully dynamical, but mean-field in position space

Dynamical Mean-Field Theory (DMFT)

Exact in $d, Z \rightarrow \infty$

New type of mean-field theory for quantum particles

Self-consistent equations of DMFT

Characteristic features of DMFT

Kotliar, DV (2004)

Better definition of electronic correlations:

- transfer of spectral weight
- finite lifetime of excitations

Experimentally detectable (PES, ARPES, ...)

\rightarrow DMFT describes Mott metal-insulator transition

Mott metal-insulator transition: T-(U,P) phase diagram

Mott metal-insulator transition: T-(U,P) phase diagram

McWhan, Menth, Remeika, Brinkman, Rice (1973)

Mott metal-insulator transition: T-(U,P) phase diagram

Application of DMFT to correlated electron materials

Computational scheme for correlated electron materials

Anisimov, Poteryaev, Korotin, Anokhin, Kotliar (1997) Lichtenstein, Katsnelson (1998)

PHYSICAL REVIEW B

VOLUME 57, NUMBER 12

15 MARCH 1998-II

Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach

A. I. Lichtenstein Forschungszentrum Jülich, D-52428 Jülich, Germany

M. I. Katsnelson Institute of Metal Physics, Ekaterinburg 620219, Russia (Received 11 July 1997)

Computational scheme for correlated electron materials

Anisimov, Poteryaev, Korotin, Anokhin, Kotliar (1997) Lichtenstein, Katsnelson (1998)

Material specific electronic structure (Density functional theory: LDA) Local electronic correlations Double counting correction (Many-body theory: DMFT)

 \rightarrow Lecture Alexander Lichtenstein

 \rightarrow Lecture Eva Pavarini (+ linear response)

Computational scheme for correlated electron materials

More general:

X= DFT (LDA, GGA)

GW

Biermann, Aryasetiawan, Georges (2003)

 \rightarrow Lecture Ferdi Aryasetiawan

Material specific electronic structure (Density functional theory: LDA, GGA, ...) or GW

Local electronic correlations

Double counting correction (LDA, GGA)

(Many-body theory: DMFT)

Contact with experiment via, e.g., the DMFT spectral function

k-integrated spectral function \rightarrow PES

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} \mathbf{G}(\omega)$$

→ ARPES $G(\mathbf{k}, \omega) = [\omega - \Sigma(\omega) - \mathbf{H}_{LDA}^{0}(\mathbf{k})]^{-1}$

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \operatorname{Im} Tr \mathbf{G}(\mathbf{k},\omega)$$

Early results of DFT+DMFT

(Sr,Ca)VO₃: 3d¹ test system

Electronic structure

Crystal structure

SrVO₃: $\angle V - O - V = 180^{\circ}$

orthorhombic distortion \downarrow CaVO₃: $\angle V - O - V \approx 162^{\circ}$ $\begin{array}{c} \mathbf{e}_{\mathbf{g}} \\ 3d^{1} \\ \mathbf{Cubic} \\ \mathbf{systal field} \\ \mathbf{t}_{2g} \\ \mathbf{t}_{2$

No correlation effects/spectral transfer

LDA+DMFT results

Constrained LDA: U=5.55 eV, J=1.0 eV

Osaka - Augsburg - Ekaterinburg collaboration: Sekiyama et al. (2004)

LDA+DMFT results

Constrained LDA: U=5.55 eV, J=1.0 eV

0.10

0.05

-0.05

-0.10

0.6

k (√3π/a)

Osaka - Augsburg - Ekaterinburg collaboration: Sekiyama et al. (2004)

Byczuk, Kollar, Held, Yang, Nekrasov, Pruschke, DV (2007)

Electronic correlations \rightarrow

- quasiparticle damping
- band narrowing
- "kinks"
- at energy $\omega_* = Z_{FL} \times (\text{bare energy scale})$
- sharpen with increasing interaction $\propto (Z_{FL})^{-2}$
- Fermi liquid regime terminates at \mathcal{O}_*

LDA+DMFT for (Sr,Ca)VO₃: Comparison with experiment (Spring-8 beamline)

Sekiyama et al. (2004, 2005) [Osaka - Augsburg - Ekaterinburg collaboration]

(i) bulk-sensitive high-resolution photoemission spectra (PES)
 → occupied states
 (ii) 1s x-ray absorption spectra (XAS)
 → unoccupied states

Applications of DMFT during 1997-2022: Current status

DMFT used to investigate/explain electronic correlations in:

- Many bulk materials
- Heterostructures, interlayers, surfaces

Lechermann, Obermeyer (2015)

Okamoto, Millis (2004) Peters, Tada, Kawakami (2016) Janson, Held (2018) Chen, Hampel, Karp, Lechermann, Millis (2022)

 \rightarrow Lecture Frank Lechermann

- Molecular electronics, quantum chemistry, ligand binding

Jacob, Haule, Kotliar (2010)

Cole, Weber (2020)

Weber *et al.* (2013) Chioncel *et al.* (2015) Pudleiner, Kauch, Held, Li (2019)

- Topological materials

Markov, Rohringer, Rubtsov (2019)

- Nonequilibrium

Perfetti et al. (2006)

Tada *et al.* (2012) Irsigler, Grass, Zheng, Barbier, Hofstetter (2021) Krüger, Potthoff (2021)

 \rightarrow Lecture Michael Potthoff

Turkowski, Freericks (2005) Eckstein, Kollar (2008) Freericks, Krishnamuthy, Pruschke (2009) Aoki, Tsuji, Eckstein, Kollar, Oka, Werner (2014) Ligges *et al.* (2018)

 \rightarrow Lecture Martin Eckstein

DMFT: Preliminary summary

Dynamical, local self-energy $\Sigma_{ij}(\omega) = \delta_{ij}\Sigma(\omega)$

can describe

- Spectral transfer, Mott-MIT
- Quasiparticle renormalization + damping
- Orbital, charge, magnetic LRO, ...

and is often accurate in d=3, as demonstrated for

- Fermionic atoms in 3D optical lattices

hole doping (x)

Beyond mean-field theory

- $d = \infty$ mean-field result $O(1/d^0)$
- $d < \infty$ beyond mean-field via expansion in 1/d ?

Ising model

$$H = -\frac{1}{2} J \sum_{\langle i,j \rangle} S_i S_j \qquad J \to \frac{J^*}{2d}, \ J^* \equiv 1$$

- interaction along bonds
- no dynamics, but thermodynamics

High-order expansion of free energy, susceptibilities ... in 1/d possible

(i) high-T (paramagnetic) phase

Fisher, Gaunt (1964)

(i) low-T (ferromagnetic) phase, high T $\Leftrightarrow 1/d$ expansion (valid even in low-T phase) Georges, Yedidia (1991)

- $d = \infty$ mean-field result $O(1/d^0)$
- $d < \infty$ beyond mean-field via expansion in 1/d ?

Ising model

$$H = -\frac{1}{2} J \sum_{\langle i,j \rangle} S_i S_j \qquad J$$

$$J \to \frac{J^*}{2d}, \ J^* \equiv$$

- interaction along bonds
 no dynamics, but thermodynamics
- $-\frac{\beta A}{N} = -\left[\frac{1+m}{2}\ln\frac{1+m}{2} + \frac{1-m}{2}\ln\frac{1-m}{2}\right] \cdot$ $+\frac{\beta}{2d} dm^{2} \quad \bullet \rightarrow$ Georges, Yedidia (1991)

+
$$\frac{1}{2} \left(\frac{\beta}{2d}\right)^2 d \left(1-m^2\right)^2$$

- + $\frac{2}{3} \left(\frac{\beta}{2d}\right)^3 d m^2 (1-m^2)^2$
- + $\left(\frac{\beta}{2d}\right)^4 \frac{d(d-1)}{2} (1-m^2)^4$
- $-\frac{1}{12}\left(\frac{\beta}{2d}\right)^4 d(1-m^2)^2(1+6m^2-15m^4) \quad \iff \quad$

+
$$2\left(\frac{\beta}{2d}\right)^{5} 2d(d-1) m^{2} (1-m^{2})^{4}$$

$$\left(\frac{\beta}{2d}\right)^{6} \left[d(d-1) + \frac{8}{3}d(d-1)(d-2)\right](1-m^{2})^{6}$$

Fisher, Gaunt (1964) (valid even in low-T phase)

$$T_{\rm c} = 1 - \frac{1}{2d} - \frac{1}{3d^2} - \frac{13}{24d^3} - \dots$$

asymptotic expansion (at best)

Fisher, Singh (1990) Halvorsen, Bartkowiak (2000)

A(T,m): Magnetizationdependent free energy N: # spins

```
(i) high-T (paran
```

(i) low-T (ferrom

- $d = \infty$ mean-field result $O(1/d^0)$
- $d < \infty$ beyond mean-field via expansion in 1/d ?

Hubbard model: Gutzwiller wave function

$$H = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} \qquad t \to \frac{t^{*}}{\sqrt{2d}}, \ t^{*} \equiv 1 \qquad \text{-local interaction} \\ - \text{ no dynamics, T=0} \qquad g^{0}_{ij,\sigma} \sim O(1/d^{\|\mathbf{i}-\mathbf{j}\|/2}), \ \|\mathbf{i}\| = \sum_{i=1}^{d} |\mathbf{i}|: \qquad \text{Length of i ("Manhattan metric")}$$

 $d = \infty$ Diagrammatic collapse \rightarrow only local ("single-site") diagrams Self-energy $\Sigma_{ij}^{(2)} = \mathbf{i} \underbrace{\mathbf{j}_{ij}^{1/\sqrt{d}}}_{1/\sqrt{d}} \mathbf{j}$ $\xrightarrow{d \to \infty}$ $\underbrace{\mathbf{j}}_{j} \underbrace{\delta_{ij}}_{\delta_{ij}}$

 $d < \infty$ 2,3,... -site diagrams ("pull local diagrams apart")

n=1

Gebhard (1990)

- $d = \infty$ mean-field result $O(1/d^0)$
- $d < \infty$ beyond mean-field via expansion in 1/d ?

Hubbard model: Gutzwiller wave function

van Dongen, Gebhard, DV (1990)

- $d = \infty$ mean-field result $O(1/d^0)$
- $d < \infty$ beyond mean-field via expansion in 1/d ?

Hubbard model: DMFT

$$H = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} \qquad t \to \frac{t^*}{\sqrt{2d}}, \ t^* \equiv 1 \qquad \begin{array}{c} - \text{ local interaction} \\ - \text{ quantum dynamics} \end{array}$$

1/d expansion using Luttinger-Ward functional $\Phi[G_{ii\sigma}]$

Sum of all vacuum-to-vacuum skeleton diagrams

Cluster approximation in O(1/d)

Schiller, Ingersent (1995)

Expand
$$\Phi$$
: $\Phi[G] = (1 - 2d) \sum_{\substack{i,\sigma \\ overcounting}} \Phi_{1-imp}[G_{ii\sigma}] + \sum_{\langle ij \rangle, \sigma} \Phi_{2-imp}[G_{ii\sigma}, G_{jj\sigma}, G_{ij\sigma}]$

Self-consistent formulation possible

Problems: - DOS $N(\omega) \Rightarrow G^0_{ii\sigma}$ non-analytic in $1/d \rightarrow$ take actual d-dimensional $G^0_{ii\sigma}$

- Required exact diagrammatic cancellations violated in approx. treatments \rightarrow acausal behavior

- Assure exact cancellation at each iteration step
- tested with FLEX, but success not guaranteed

Zarand, Cox, Schiller (2000)

- $d = \infty$ mean-field result $O(1/d^0)$
- $d < \infty$ beyond mean-field via expansion in 1/d ?

Hubbard model: DMFT

$$H = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} \qquad t \to \frac{t^*}{\sqrt{2d}}, \ t^* \equiv 1 \qquad \begin{array}{c} - \text{ local interaction} \\ - \text{ quantum dynamics} \end{array}$$

1/d expansion using Luttinger-Ward functional $\Phi[G_{ii\sigma}]$

Sum of all vacuum-to-vacuum skeleton diagrams

Cluster approximation in O(1/d)

Schiller, Ingersent (1995)

Expand
$$\Phi$$
: $\Phi[G] = (1 - 2d) \sum_{\substack{i,\sigma \\ overcounting}}} \Phi_{1-imp}[G_{ii\sigma}] + \sum_{\langle ij \rangle, \sigma} \Phi_{2-imp}[G_{ii\sigma}, G_{jj\sigma}, G_{ij\sigma}]$

Self-consistent formulation possible

Non-local effects: Beyond 1/d expansions

- "Extended" DMFT includes intersite quantum fluctuations → RKKY interaction Si, Smith (1996)
- Cluster extensions

• Diagrammatic extensions, e.g.:

Dynamical vertex approximation (DFA) Local two-particle vertex \rightarrow local + non-local self-energy diagrams

Dual fermion approach (DF)

Toschi, Katanin, Held (2007)

 \rightarrow Lecture Karsten Held

Rubtsov, Katsnelson, Lichtenstein (2008)

Lattice problem: Local reference system + coupling to nonlocal degrees of freedom

• DMFT+fRG:

Start fRG flow from DMFT solution

Taranto et al. (2014); Vilardi, Taranto, Metzner (2019)

Conclusion on DMFT

- DMFT is the natural mean-field theory of correlated lattice fermions
- DMFT can be extended beyond mean-field level
- DMFT now used to explain and predict the properties of correlated electron materials

Conclusion on infinite dimensions

Q: Why calculate in infinite dimensions?

A: Only accessible solution of many-body systems in d > 1,2

- thermodynamic limit
- closed form (self-consistent mean-field theory)
- thermodynamically consistent, controlled approximation