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Computational 
modelling

• Eniac – First programmable computer (US), Electronic 
Numerical Integrator and Computer (1940s)

• 30 tons and including 17,468 vacuum tubes.

History of computing: Colossus

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 9 / 47
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• Rapid progress with central 
architectures 

• But .. Most importantly progresses 
in algorithmic

• Fast Fourier Transform:  N2 to log(N) 
• Divide and conquer

Emergence of quantum modelling
History of computing: Cray 1

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 12 / 47

History of computing: Tianhe-2

National Super Computer Center in Guangzhou, most powerful computer
in the world in Nov. 2014

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 19 / 47

Algorithm

The Discrete Fourier Transform (of size N): it is an essential tool of
communication technology:

F (k) =
X

0j<N

!kj
N f (j), !kj

N = e2⇡i
jk
N 0  k < N

This is a (complex) matrix-vector product, so the cost is 8N2,but in 1965
Cooley and Tukey (re)discovered a way to do it in 5N log(N) !

Size DFT FFT
10 800 166

100 80000 3321.93
1000 8e+06 49828.9
5000 4e+08 307193

10000 8e+08 664386
50000 4e+10 3.90241e+06

100000 8e+10 8.30482e+06
500000 4e+12 4.73289e+07

1000000 8e+12 9.96578e+07

Things that would not exist without the FFT include: Satellite
communications, mobile phones, CAT, PET, VOIP, CD, JPEG, MPEG
DVD, DVTB. . .

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 36 / 47

Cray 1 Titan, Guangzhou (2014)
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Quantum 
wave-
function

1 atom, 10 electrons
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Kinetic 
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Potential 
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We are looking for a solution of the type of a wave function 
for many electrons: 

The problem is easy to write down …but the solution … 

Using the Born-Oppenheimer approximation: 

5 

Electrons system

),...,,( 21 NxxxΨ

Storage required: 

� 

x→10 ×10 ×10 = 1000 data

� 

10 electrons →  100010  data →  1030 ×16 bytes
= 16 ×1021 Gb

Impracticable!!! 
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Density functional theory

2.1 The electron density.

The electron density is the central quantity in DFT. It is defined as the integral over the spin
coordinates of all electrons and over all but one of the spatial variables (!x ≡ !r, s)

ρ(!r) = N

∫
...

∫
|Ψ(!x1, !x2, ..., !xN)|2ds1d!x2...d!xN . (20)

ρ(!r) determines the probability of finding any of the N electrons within volumen element d!r.

Some properties of the electron density:

• ρ(!r) is a non-negative function of only the three spatial variables which vanishes at infinity
and integrates to the total number of electrons:

ρ(!r → ∞) = 0
∫

ρ(!r)d!r = N (21)

• ρ(!r) is an observable and can be measured experimentally, e.g. by X-ray diffraction.

• At any position of an atom, the gradient of ρ(!r) has a discontinuity and a cusp results:

limriA→0 [∇r + 2ZA] ρ̄(!r) = 0 (22)

where Z is the nuclear charge and ρ̄(!r) is the spherical average of ρ(!r).

• The asymptotic exponential decay for large distances from all nuclei:

ρ(!r) ∼ exp
[
−2

√
2I|!r|

]
I is the exact ionization energy (23)

1.3 The Hartree-Fock approximation.

Suppose that Ψ0 (the ground state wave function) is approximated as an antisymmetrized product
of N orthonormal spin orbitals ψi("x), each a product of a spatial orbital φk("r) and a spin function
σ(s) = α(s) or β(s), the Slater determinant

Ψ0 ≈ ΨHF =
1√
N !

∣∣∣∣∣∣∣∣

ψ1("x1) ψ2("x1) ... ψN("x1)
ψ1("x2) ψ2("x2) ... ψN("x2)

... ... ...
ψ1("xN) ψ2("xN) ... ψN("xN)

∣∣∣∣∣∣∣∣
(9)

The Hartree-Fock approximation is the method whereby the orthogonal orbitals ψi are found
that minimize the energy for this determinantal form of Ψ0:

EHF = min(ΨHF→N)E [ΨHF ] (10)

The expectation value of the Hamiltonian operator with ΨHF is given by

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
N∑

i=1

Hi +
1

2

N∑

i,j=1

(Jij − Kij) (11)

Hi ≡
∫

ψ∗
i ("x)

[
−

1

2
∇2 − Vext("x)

]
ψi("x) d"x (12)

defines the contribution due to the kinetic energy and the electron-nucleus attraction and

0.- Motivation II.

The Density Functional Theory was introduced in two seminal papers in the 60’s:

1. Hohenberg-Kohn (1964): ∼ 4000 citations

2. Kohn-Sham (1965): ∼ 9000 citations

The following figure shows the number of publications where the phrase“density functional
theory”appears in the title or abstract (taken from the ISI Web of Science).
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W-F to density DFT a success story Jacob's ladder

combination of those (ensemble approach). This approach differs from the traditional selection based on
knowledge specific to the technique and data. Thus, the set of BigData andData Science, or simply BigData
analytics, can be seen as a new epistemological approach, where insights can be ‘born from the data’. The
contrast with traditionalmethods of testing a theory by analyzing relevant data (e.g.,fit the data to theory) is
striking [7].

A new research paradigm is related to thewaywe produce knowledge. As stated by the philosopher Thomas
Kuhn, ‘a paradigm constitutes an accepted way of interrogating the world and synthesizing knowledge common to a
substantial proportion of researchers in a discipline at any onemoment in time’ [9]. Periodically, the accepted
theories and approaches are challenged by a newway of thinking, and the framework encompassed by BigData
andML incarnates such paradigm inmultiple disciplines.

1.2.Development of computationalmaterials science
Novelmaterials enable the development of technological applications that are key to overcome challenges faced
by society. Even though the impact ofmaterials discovery throughout history is hard to quantify, ranging from
the StoneAge, going through to the Bronze and IronAges, up to themodern silicon technologies, their impact is
easily grasped [10]. Furthermore, it is estimated thatmaterials development enabled two-thirds of all
advancements in computation, and transformed other industries as well, such as energy storage [11].

Time tomarket for new technologies based on novelmaterials takes approximately 20 years, while their
development can span an even longer period [12].Moreover, once amaterial is consolidated for a technology, it
is rarely substituted owing to the costs associatedwith the establishment of large-scale production infrastructure
[13]. Silicon in the semiconductor industry is an enduring example of that. Therefore, the introduction of a
material for a specific sector is increasingly important for its establishment success, and recently several new
technological niches face demands for potentialmaterials.

Given the fast-growing demand for novelmaterials and relatively slow development of them, at the same
time that computational resources and algorithms face huge improvements, it seems almost natural to ask: how
can computational science improve the efficiency ofmaterials discovery?Other areas such as the pharmaceutical
and biotechnology industries have already given some hints [14, 15]. However, within the fourth data-driven
science paradigm, the computationalmaterials communityfinds itself somehowdelayed, in comparison to these
fields. This late arrival is related to bottlenecks in computational capability, but since the firstmaterials
simulationswere carried out, an ever increasing amount of research is taking placewithin this paradigm. In
figure 4, the number of publications indicate this situation.Novel emerging approaches usually face an initial
growth driven by over-enthusiasm, followed by a disillusionment due to unmet expectations.Maturity is
achieved after this periodwhen robust and steady developments result in realistic expectations and community
adoption.

Thefield is progressing at a fast pace and according toAllison et al, computationalmaterials design can lead
to returns on investment around 300%–700%and in a shorter time framework aswell [16]. Accordingly, such a

Figure 4.Chronological evolution of the number of publications forDFT,HT,ML, andmaterials informatics. Initial developments of
each discipline date tomany decades before actual adoption by the community. Data compiled from theWeb of Science platform,
using each keyword in the ‘Topic’ search term.

4

J. Phys.:Mater. 2 (2019) 032001 GRSchleder et al
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Computational 
experiment

• Stoichiometry / Geometry
• Structure optimization
• Accuracy test and validation
• Properties (spectroscopy, 

thermal/mechanical, electronic, …)
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Until recently ….
Charlotte

Yasmin

Yao

Where of course some characters are real and some are imaginary ….
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High Throughput 
& Automation

6

AiiDA architecture

Accelerates and 
automates material 
screening for desired 
properties
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DFT & machine learning, different strategies

Open Catalyst 2020 (OC20) Dataset and Community Challenges
Lowik Chanussot,¶ Abhishek Das,¶ Siddharth Goyal,¶ Thibaut Lavril,¶ Muhammed Shuaibi,¶

Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick,*
and Zachary Ulissi*

Cite This: ACS Catal. 2021, 11, 6059−6072 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuel
synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to
apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that
can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have
been smaller in catalysis than in related fields. To address this, we developed the OC20 dataset, consisting of 1,281,040 density
functional theory (DFT) relaxations (∼264,890,000 single-point evaluations) across a wide swath of materials, surfaces, and
adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short
timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day
catalyst modeling and comes with predefined train/validation/test splits to facilitate direct comparisons with future model
development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, and DimeNet++) to each of
these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was
identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both
provided as open resources as well as a public leader board to encourage community contributions to solve these important tasks.
KEYWORDS: catalysis, renewable energy, datasets, machine learning, graph convolutions, force field

1. INTRODUCTION
Advancements to renewable energy processes are needed
urgently to address climate change and energy scarcity around
the world.1,2 These include the generation of electricity
through fuel cells, fuel generation from renewable resources,
and the production of ammonia for fertilization. Catalysis plays
a key role in each of these by enabling new reactions and
improving process efficiencies.3−5 Unfortunately, discovering
or optimizing catalysts remains a time-intensive process. The
space of possible catalyst materials that can be synthesized or
engineered is vast, and modeling their full complexity under
reaction conditions remains elusive. Simulation tools such as
density functional theory (DFT)6 have greatly expanded our
field’s ability to develop reaction mechanisms for specific
materials, rationalize experimental measurements, and suggest
more active or selective structures for experimental testing.

Despite steady growth in computing resources from Moore’s
law, the computational complexity of DFT remains a limiting
factor in the large-scale exploration of new catalysts.7,8 Given
its societal importance, finding computationally efficient
methods for molecular simulations is of utmost necessity.
One potentially promising approach is the use of efficient
machine learning (ML) models trained with data produced
from computationally expensive models, such as DFT.

Received: October 19, 2020
Revised: March 16, 2021
Published: May 4, 2021

Research Articlepubs.acs.org/acscatalysis

© 2021 American Chemical Society
6059

https://doi.org/10.1021/acscatal.0c04525
ACS Catal. 2021, 11, 6059−6072
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Predicting energetics and forces from 
direct sampling, large compositional 
space for small molecules where 
accuracy matters

Facebook / Carnegie collaboration, 
OC20 database for catalysis

Finding the exchange functional with 
machine learning & non-local functional 
for correlation

G Csanyi & M Michaelides groups 

Kieron Burke group 

Inter-atomic potential trained with DFT data-set for specific 
systems

Global theme: 
data sharing & community driven
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ML allows faster & larger
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Scope and 
limitations
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Blockers, bottlenecks and 
challenges for ML-DFT: 

1. compositional material space is vast
2. Learning functionals challenging:  

complex nature of Kohn-Sham 
functionals

3. In DFT total energies (or other traced 
quantities) are meaningful 

4. Various codes and functionals, data-
base to adapt for each implementation, 
inter-operability

5. ML model for DFT won’t better DFT - 
issues for self-interaction and 
electronic interactions remain

are very computational-demanding, due to the large supercells involved. The PHONOPY code is a helpful
resource to obtain vibration related quantities such as phonon band structure and density of states, dynamic
structure factor, andGrüneisen parameters [86].

In summary, DFT is amature theory which is currently the undisputed choice ofmethod for electronic
structure calculations. A number of papers and reviews are presented in the literature [87–92], facilitating the
widespread of the theory and, thus, the entry of researchers into the field of computational solid state physics,
materials science, and quantum chemistry. Although the implementations of DFT take place inmany codes and
scopes (see table 1), it has been shown recently that the results are consistent as awhole [34].

2.1.2.1. Structure prediction
DFT calculations provide a reliablemethod to studymaterials once the crystalline ormolecular structure is
known. Based on theHellman–Feynman theorem [131], one can useDFT calculations tofind a local structural
minima ofmaterials andmolecules. However, a global optimization of such systems is amuchmore involved
process. The possible number of structures for a system containingN atoms inside a box of volumeV is huge,
given by the combinatorial expression

dW =
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )∣ ∣ ( )V

N
N
n 11

i
i

3

where δ is the side of a discrete boxwhich partitions the volumeV and ni is the number of atomic species i in the
compound. This number becomes very large (≈10N) even for small systems (N<20) and large discretization
box (δ=1Å). In order to probe such potential energy surface, one has to visit states in a 3N+3 dimensional
space ( -N3 3 degrees of freedom for atomic positions and 6 degrees of freedom for the lattice constants) and
assess their feasibility, usually by calculating the total energy in that particular configuration. This is a global
optimization problem in a high-dimensional space, which has been tackled by several authors. Herewe discuss

Table 1. Selection ofDFT codes according to their basis
types. GPL stands forGNUpublic license.

Name License Reference

Plane-waves basis sets
VASP commerciala [93–96]
QuantumEspresso GPL [97, 98]
CASTEP commercialb [99, 100]
ABINIT GPL [101–103]
CP2Kd GPL [104–108]
CPMD free [109–111]
ONETEP commercial [112]
BigDFT GPL [113]
Atom-centered basis sets
Gaussian commercial [114]
GAMESS free [115, 116]
Molpro commercial [117]
SIESTA GPL [80]
Turbomole commercial [118]
ORCA freec [119]
CRYSTAL commercialb [120]
Q-Chem commercial [121]
FHI-aims commercial [122]
Real-space grids
octopus GPL [123–125]
GPAWe GPL [126, 127]
Linearized augmented planewaves
WIEN2k commercial [128]
exciting GPL [129]
FLEUR MIT [130]

a Free for academic institutions inAustria.
b Free for academic institutions inUK.
c For academics.
d CP2K employsmixed plane-waves and atom-cen-
tered basis sets.
e GPAWcan also employ plane-waves or atom-cen-
tered basis sets.

9

J. Phys.:Mater. 2 (2019) 032001 GRSchleder et al
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( for DMFT & DFT+DMFT see 
lectures Prof. Vollhardt, Werner, 
Held & Lichtenstein )
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344 D. Sénéchal

Such a discrete hybridization function is naturally obtained from the following
Anderson impurity model:

HAIM D
X

˛;ˇ

t 0
˛ˇc!

˛cˇ C
X

˛;"

!
#˛"c!

˛a" C H:c:
"

C
NbX

"

""a!
"a" (11.10)

Electrons can hop between the cluster sites labelled ˛; ˇ and a set of effective
orbitals (the bath) labelled by ", with annihilation operators a". Let us demonstrate
this simple equivalence. The Green function associated with the noninteracting
Anderson model (11.10) is simply

G full.i!n/ D 1

i!n ! T
; (11.11)

where the full hopping matrix T for the combined cluster and bath system is

T D
#

t 0 !

!! "

$
(11.12)

t is the L"L hopping matrix within cluster degrees of freedom only, ! is the L"Nb

hopping matrix between bath and cluster orbitals, and " the diagonal Nb "Nb matrix
of bath energies "". The Green function obtained by tracing out the bath degrees of
freedom is simply the restriction of G full to the cluster degrees of freedom only. The
mathematical problem at hand is simply to invert a 2 " 2 block matrix

#
A11 A12

A21 A22

$
D

#
B11 B12

B21 B22

$!1

; (11.13)

where A11 D ! !t , A12 D A
!
21 D ! , A22 D ! !" and B11 is the Green function we

are looking for. By working out the inverse matrix condition, we find in particular
that

A11B11 C A12B21 D 1 (11.14)

B21 D !A!1
22 A21B11 (11.15)

and therefore
!
A11 ! A12A!1

22 A21

"
B11 D 1 : (11.16)

The Green function G 0 of the cluster is thus given by

G 0!1 D ! ! t 0 ! !
1

! ! "
!!; (11.17)
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4

FIG. 3: Series of schematic and mathematical representations of the physical system and Hamiltonian parameters
around a single impurity, demonstrating the DMFT process.
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bath

imp

bath imp

T is the full hopping matrix, bath and impurity



Weiss field

19

344 D. Sénéchal
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Such a discrete hybridization function is naturally obtained from the following
Anderson impurity model:

HAIM D
X

˛;ˇ

t 0
˛ˇc!

˛cˇ C
X

˛;"

!
#˛"c!

˛a" C H:c:
"

C
NbX

"

""a!
"a" (11.10)

Electrons can hop between the cluster sites labelled ˛; ˇ and a set of effective
orbitals (the bath) labelled by ", with annihilation operators a". Let us demonstrate
this simple equivalence. The Green function associated with the noninteracting
Anderson model (11.10) is simply

G full.i!n/ D 1

i!n ! T
; (11.11)

where the full hopping matrix T for the combined cluster and bath system is

T D
#

t 0 !

!! "

$
(11.12)

t is the L"L hopping matrix within cluster degrees of freedom only, ! is the L"Nb

hopping matrix between bath and cluster orbitals, and " the diagonal Nb "Nb matrix
of bath energies "". The Green function obtained by tracing out the bath degrees of
freedom is simply the restriction of G full to the cluster degrees of freedom only. The
mathematical problem at hand is simply to invert a 2 " 2 block matrix

#
A11 A12

A21 A22

$
D

#
B11 B12

B21 B22

$!1

; (11.13)

where A11 D ! !t , A12 D A
!
21 D ! , A22 D ! !" and B11 is the Green function we

are looking for. By working out the inverse matrix condition, we find in particular
that

A11B11 C A12B21 D 1 (11.14)

B21 D !A!1
22 A21B11 (11.15)

and therefore
!
A11 ! A12A!1

22 A21

"
B11 D 1 : (11.16)

The Green function G 0 of the cluster is thus given by

G 0!1 D ! ! t 0 ! !
1

! ! "
!!; (11.17)

344 D. Sénéchal
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3.2 outline of the machine learning protocol

Physical applications

After training the model, we are left with a data-driven impurity solver for a specific inverse
temperature b. In Fig. 3.9 we propose a workflow for solving the single-band Hubbard model
on a Bethe lattice within the DMFT approximation using a data-driven model that has been
trained on two approximate solutions. There is nothing special about using two solutions, only
that it simplifies the discussion. To setup the problem, the local impurity Green’s function takes
the form,

G(iwn) =
2

(pD)2

Z •

�•
de

p
D2 � e2

iwn � e
Q(D � |e|), (3.15)

where D is the half-bandwidth of the system. After the setup of the problem the only difference
between this scheme and the usual DMFT scheme [15] is that instead of solving the AIM once
per DMFT iteration it is solved twice with the different approximate solvers, which are then
used as inputs for the trained model M. Then the trained model produces the impurity Green’s
function GML

and(t) which is used to produce the momentum independent self-energy S(iwn). To
ensure that the self-consistency doesn’t diverge from previous iterations a mixing parameter a is
imposed when going from loop-to-loop, i.e D(t) = aD0(t) + [1 � a]D(t). By solving this model,
it is possible to analyse if the data-driven method is capable of capturing the Mott-transition.

Summary

Before we move onto analysing the results from using this protocol, we provide a brief summary
of its main features, by breaking it down as follows:

1. Database generation: by using approximate and exact solutions of the AIM generate a
database with input variables,

xi = {Gl1
and(t1, . . . , tN), Gl2

and(t1, . . . , tN)}

, and output variables yi = Gand(t1, . . . , tN). See Fig. 3.1 and Fig. 3.2.

2. Database transformations: prepare the data for the training model by choosing to (i)
augment the database with symmetry operations, (ii) transform into a different basis
and/or (iii) re-scale the model inputs as tailored for the chosen model. See Figs. 3.3 to 3.7.

3. Training a model solver: design an artificial neural network where the activation function
evaluates the input features as,

f (x.w + b) = f
⇣

w1Gl1(t1) + w2Gl1(t2) + . . . + w2nGl2(tN) + b1

⌘

, to produce a model GM. See Fig. 3.8

55

2.4 dynamical mean field theory

Figure 2.4: a DMFT spectral function A(w) (real frequency) for the Hubbard Model defined on a Bethe
lattice with b = 10 eV and t = 1 eV for different values of U b Self consistent convergence of
the spectral function A(w) for U = 2.0 eV and b = 10 eV in the DMFT approximation c The
quasiparticle weight illustrating the Mott transition on the Bethe lattice for different values of
the inverse temperature b d The imaginary part of the self energy =mS(iwn) for metallic and
insulating solutions as a function of imaginary frequency.
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2.5 impurity solvers for the anderson impurity model

to an approximate version, parametrised by the bath-parameters,

G�1
0 = iwn + µ �

Nb

Â
i=1

V2
i

iwn � ei
, (2.40)

where Nb is the number of bath-parameters. Once {ei, Vi} are known then Eq. (2.26) can be
diagonalised to obtain the Green’s function GAIM(iwn),

GAIM(iwn) = l† 1
iwn + µ � EAIM

l (2.41)

where l are found using Eq. (2.38). After this a new self-energy can be obtained via the Dyson
equation. The self-energy can be used to compute the Green’s function evaluated by calculating
the Hilbert transform,

GAIM(iwn) =
Z •

�•
dw0 r(w0)

iwn + µ � w0 � S(iwn)
, (2.42)

where r(e) is the density of states. Then a new Weiss field is calculated via G�1(iwn) =
GAIM(iwn) + S(iwn), that is used to parametrise the bath-parameters in Eq. (2.40). The above
procedure is repeated until there is a convergence in the self-energy as a function of discretised
hybridisation D(iwn).

2.5.3 Quantum Monte Carlo

Solving the AIM with perturbative methods is useful to gain a qualitative insight into specific
parameter regimes, however its predictive power cannot be relied upon in general, especially
when attempting to treat realistic materials systems. On the other hand, while ED is in principal
an exact method, it is plagued by its unfavourable exponential scaling, limiting its capabilities
to a maximum of ⇠ 25 [34] bath-parameters. The Monte Carlo methods take an alternative
approach, whereby the problem of solving the AIM is reformulated to calculating its partition
function Z as a path integral in imaginary time. Indeed, the Hirsch-Fye quantum Monte
Carlo method demonstrated the first quantitative solution of the AIM [50]. This method is
classified as the auxiliary-field approach, is formulated in discrete time, and was the primary
Monte Carlo method of choice for solving the AIM until the recent development of the more
powerful continuous-time methods [51]. Notwithstanding, the main goal of both approaches
is to express the partition function Z as a weighted average, from which expectation values of
observables can be calculated. In this thesis, we employ both discrete and continuous techniques
to solve the AIM for real materials and model systems. Specifically, Chapter 4 implements a new
reformulation of the auxiliary-field method that extends it to quasicontinuous time. With this is
mind, in what follows we give more attention to various details for the auxiliary-field technique
in contrast to its continuous-time counterpart, for which we only briefly summarise the main
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3.2 outline of the machine learning protocol

There are two choices in the implementation, the first is a semi-circular DOS given by,

A(e) =
2
p

D2 � e2

(pD)2 Q(D � |e|), (3.4)

and the second is a constant DOS, given by,

A(e) =
Q(D2 � e2)

2D
, (3.5)

where Q is the Heaviside step-function. Using either truncates the limits of integration in
Eq. (3.3) from �D to +D, hence D is known as the half-bandwidth. On the other hand, the
discrete representation of the hybridisation function is given by,

D(iwn) =
N

Â
i=1

V2
i

iwn � ei
, (3.6)

where Vi and ei are the bath parameters, as shown in Fig. 2.8, and which become an additional
parameter in the database construction. Specifically, along with the number of samples in the
database and the inverse temperature b, the number of bath parameters determine the overall
time it takes for the construction of the database. We will explore this parameter space later on,
especially in relation to finding the most optimal ED solver to use. After the number of bath sites
is chosen, random samples of each are drawn from the uniform distributions V 2 [Vmin, Vmax]
and e 2 [emin, emax]. To ensure that the hybridisation remains physical, as its energy scale is
related to the chosen values of U and D, a number of transformations must be made on the
random choices of ei and Vi before they enter in their final form in Eq. (3.6). Firstly, the hopping
parameters are normalised by setting Âi V2

i = 2D/p. Then, all of the bath parameters obey the
centering condition such that Âi eiV2

i = 0 which is absorbed into the ei parameters after they are
chosen. Finally, the ei parameters must span the total bandwidth, such that they are re-scaled to
ensure,

max[{e1, . . . , eN}]� min[{e1, . . . , eN}]
2D

= 1. (3.7)

Having established the criteria under which the hybridisation function is constructed, the next
step is to generate the database that will be used for the training of the data-driven model. To do
this, each instance of {Ui, Di, #i, Di(iwn)} is passed to the set of approximate solvers {l1, . . . , lN}
as well as one exact solver. In this case, the exact solution is obtained by the ED algorithm using
a large number of bath sites, generally between 4 � 6 is enough to ensure a converged solution.
The details of all solver implementations used in this chapter are are outlined in Section 2.5.
Fig. 3.2 illustrates what a typical database looks like, where in this case there are SN samples
that each use two approximate solvers to generate the input data for the model. We also note
that we have exclusively discussed the inputs and outputs of the database being defined in
the imaginary-time basis on a discrete and evenly spaced grid. We emphasise that this is only
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ML for DMFT, advantages:

1. compositional AIM space is moderate ~ 20-100 parameters
2. Various codes and implementations of DMFT, but low entry-cost 

to adapt-change solvers, inter-operability
3. ML model for DMFT will provide improvements beyond-DFT
4. Learning Green’s functions facilitated in some limits, e.g. high 

temperature, weak-coupling or atomic limits
5. We have fast solvers for generating Green’s functions, we only 

need to provide good models for corrections to known 
approximations

6. AIM exponential wall - large benefit and speed-up
7. DMFT iterations are resilient with respect to errors, high 

accuracy not always critical
8. AIM solutions might be applicable to several close combinations of  

structure and stoichiometry (structural relaxation, doping & 
pressure phase diagrams, phonons, …)



ML for DMFT - learning solutions of DMFT with 
regression kernels for the Hubbard model 

2

model (relating ∆ and G/Σ) or a ML process to solve
the entire DMFT self-consistency loop (relating ∆0 and
∆f , Gf/Σf ). In this paper, we only present results for
the full solution of DMFT. Use of ML as impurity solver
may also be valuable as an intermediate step, enabling
the rapid construction of a database of solved problems
in the real-materials context. Our formalism is general
enough to apply to this possibility.

We test our methods using the Hubbard model
defined on a three dimensional cubic lattice with
first and second-neighbor hoppings, with Hamilto-
nian H =

∑

kσ (εk − µ) c†kσckσ + U
∑

i ni↑ni↓. Here

µ is the chemical potential and εk = −2t
∑3

α=1 cos (kα)−
4t′ [cos (k1) cos (k2) + cos (k1) cos (k3) + cos (k2) cos (k3)].
The bare hybridization function is ∆0(ω) =

ω + µ −
(
∑

k
1

ω−εk+µ

)−1
. We define energy units

such that the full non-interacting bandwidth W = 2
where W = 12t if |t′| ≤ t/4 and W = 8t + 16|t′| if
|t′| > t/4. Varying the ratio t′/t changes the structure in
the density of states, in particular shifting the location
of the density of states peaks relative to the band
center (see Section I of the supplemental material for
examples).

We seek a machine that enables us to map a ∆0 to an
output local Green function or self-energy. DMFT ad-
mits two classes of solutions: metallic ones with a non-
vanishing density of states at the fermi level and a smooth
self-energy, and Mott insulating solutions with a gap at
the fermi level due to Coulomb repulsion and (in many
cases) a self-energy with a pole near the chemical poten-
tial. We have found it advantageous to introduce a bi-
nary classification step that identifies a given solution as
metallic or insulating and to use two different machines
to determine the properties of the two kinds of solutions.
For classification, we use the entire database minus one
as training and the one remaining as the testing prob-
lem. We then repeat for all members of the database.
We tested three different ML for classification: simple
support vectors machine svm[28] with ∼ 96% accuracy,
neural networks[29] with ∼ 97% accuracy and decision
forests[30] with ∼ 99.6% accuracy. The only misplaced
problems are critical metals extremely close to the tran-
sition. We only kept the decision forest as it outper-
formed the two others. Once the state of a new problem
has been decided, the Kernel Ridge Regression (KRR)
method [1, 22] (more details follow) is employed to de-
termine the solution using the sub-databases containing
only metal or Mott insulating solutions. The full ML
process for DMFT is shown in Fig. 1 while some details
about the parameters are explained later in the text.

The first step in implementing machine learning is
to generate a database of initial conditions, in other
words a set of bare hybridization functions that span
a range of physically reasonable possibilities. We con-
sider the set of hybridization functions defined by t′ =

[0,−0.1t,−0.2t,−0.3t] (the case of positive t′/t could
be accounted for by considering electron doping) and
µ = 0. Sections I and II.A of the supplemental ma-
terial give more details. We then obtain the database
of solved problems by using the exact diagonalization
(ED) method [25–27] to solve the single-site dynami-
cal mean field approximation for interaction strengths
in the range 0.16 ≤ U ≤ 4 and densities in the range of
0.6 < nd < 1.05. Particularities of the ED database are
discussed in Section II.B of the supplemental material.

Figure 1: (Color online) Schematic view of DMFT as seen in a
machine learning perspective. From an input description of a
problem we are seeking a solution, the ML chooses first if the
solution is metallic or insulating. Then the ML predicts the
solution for the correlation function of choice by predicting the
coefficients of the Legendre polynomials expansion of either
the Green’s function or self-energy. In the case of the self-
energy for the metal, the ML predicted quasi-particle weight
Z can also be extracted.

The second step in implementing machine learning is
the construction of a representation of the information
to be learned and of the descriptor D, a unique identifier
of a problem. Our input and output data are functions.
Functions may be specified as a vector of coefficients in a
space of basis functions φm (e.g. Σ(z) =

∑

m smφm(z)).
Our previous work[22], following work by Boehnke et

al.[31] found that Legendre polynomials were a very ef-
ficient choice of basis, so we adopt this representation
here. The Legendre representation is most naturally for-
mulated in imaginary time 0 < τ < β with β the in-
verse temperature and hence a correlation function is

f(τ) =
∑∞

l=0

√
2l+1
β

flPl(x(τ))[31], where Pl are the Leg-

endre polynomials. The Fourier transform to f(iωn) can
be done analytically[31]. The representation is general,
we fit either the local Green’s function or the self-energy
as shown in Fig. 1 (or even the hybridization function).
See Section IV of the Supplementary material for details.
The descriptor consists of the input function (hy-

bridization function) plus a few scalar parameters;
we denote the expansion coefficients of the func-
tion as f and the scalar parameters U (interaction

1. Inputs: information to be learned, vectors: 
hybridisation function (tau or Legendre) 

2. Outputs: ML prediction, vectors: DMFT 
iterations are

3. Descriptor D (Problem to be solved): input 
function + few scalar parameters (U & chem.pot.)

3

strength) and µ (chemical potential) such that D =
[(f1, f2, . . . , fN)input, U, µ] (see Fig. 1). Note that both
the full DMFT problem and the impurity solving part
are the same problem as far as ML is concerned, the only
difference being what database one chooses. The exact
diagonalization method used here provides a representa-
tion of the input hybridization function in terms of bath
level energies {εml} and hybridization parameters {Vml}
(m labels entries in the database and l labels the different
bath energies and hybridization parameters for a given
entry in the database) so in practice we use these for the
fm. We have also implemented machine learning using
the representation of the input function in terms of Leg-
endre polynomials, with essentially identical results (see
Section V of the supplementary material). Section II.A
of the supplemental material shows how the bare ED pa-
rameters are obtained from a known band structure.
Machine learning then estimates the solution f(z) →

f = (f1, f2, . . . , fN)output of a new problem in terms of an
interpolation between known solutions. We use KRR, an
expansion in the abstract multidimensional space of de-
scriptors (each point D of this space represents a unique
problem and the distance between two points is the dis-
tance metric), obtaining

{fm} ≈
∑

lm

αlmKm (Dl,D) , (1)

where l labels points in the dataset, m labels entries in
the output vector and the kernel K is a function whose
main characteristic is to weight most heavily the contri-
butions of l for which Dl is close to D. As in [22], we use
the weighted exponential kernel, and use the Manhattan
distance between Dl and D (both are defined in Sec-
tion III.A of the supplemental material). The expansion

coefficients αlm are α =
(

K + λI
)−1

f [22], where α is a

matrix containing all the αlm, K is the kernel matrix and
λ is a regularization parameter. λ and the free parameter
of the kernel are chosen using standard cross-validation,
see Section III.A of the supplemental material. In partic-
ular, as also found in [18], we found that the actual value
chosen for λ is not really important. This formalism is
very general and could be applied to the learning of other
types of functions.
As first two tests of our predictive power we

present scalar properties, the quasi-particle weight
Z = (1− dΣ′/dω|ω→0)

−1 and the lattice density of

electrons nLattice = −2/π
∫ 0
−∞

∑

k ImGLattice(k,ω) =

−2GLattice(τ = β−) as predicted from reconstructed cor-
relation functions with ML obtained Legendre polyno-
mial coefficients. We estimate Z from a quadratic fit
to the values of the reconstructed self-energies at the
three lowest Matsubara frequencies(see for example [32]
for why Z can be estimated on imaginary axis). As easily
seen from Fig. 11 of [31], values of G(iωn) (or Σ(iωn))
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Figure 2: (Color online) Machine Learning predicted quasi-
particle weight Z (black circles) as compared to the exact
results (red dots) as a function of filling of the impurity for
different U and t′ (1) U = 0.64 t′ = −0.3t, (2) U = 1.44
t′ = −0.1t, (3) U = 2.08 t′ = 0. Inset: Median relative
difference as a function of the size of the learning set
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Figure 3: (Color online) Machine Learning predicted lattice
density (black circles) as compared to the exact results (red
dots) as a function of the chemical potential (µ) for different
U and t′ (1) U = 0.64 t′ = −0.2t, (2) U = 1.44 t′ = 0, (3)
U = 2.08 t′ = −0.1t (axis shifted µ + 0.2). Inset: Median
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for the first few ωn are given solely by the first few coeffi-
cients of the expansion in Legendre polynomials. Hence,
the prediction of Z shows how well the first few coef-
ficients are learned. The results are shown in Fig. 2 for
typical values of interaction from weak to correlated met-
als and for different t′. The predictions for these specific
D from the database are obtained by using all other ex-
amples as the training set. The predictions are in gen-
eral very good with a slightly worst predicting power for
larger correlation close to half-filling where Z is close to
zero. To study the error in a more rigorous way, we
present in inset of Fig. 2 what we call the median relative
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the prediction of Z shows how well the first few coef-
ficients are learned. The results are shown in Fig. 2 for
typical values of interaction from weak to correlated met-
als and for different t′. The predictions for these specific
D from the database are obtained by using all other ex-
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:  Interpolate solutions using Kernel Ridge Regression
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difference (MRD) for Z as a function of the learning set
size (see supplemental material Section VI for details).
This shows the median value of predictions for fifty dif-
ferent random examples each re-calculated with twenty
different random learning set. As shown in the inset of
Fig. 2, the MRD of Z is slightly below 1% for a small size
of 500 and gets to around 0.1% for the largest learning
set. A predictive power of smaller than 1% error even
for a small database is very interesting especially since
choosing completely random datasets is the worst case
scenario.
In the case of the lattice density of electrons as a func-

tion of chemical potential, the ML path from Fig. 1 is
the one where we learn the Gl’s of the expansion of the
local lattice Green’s function then reconstruct it in imag-
inary time. Since Pl(1) = 1 for all l, the density is
nLattice = − 2

β

∑∞
l=0

√
2l + 1Gl. Therefore, contrary to

the case of Z, the prediction of the density uses all pre-
dicted coefficients of the expansion. We show results in
Fig. 3 for typical parameters, yet different than those
presented for Z. To improve readability, we shifted curve
(3) by 0.2. Once again the results are in good agreement
with slightly worst predictions for nLattice > 1. This re-
gion tends also to be more problematic for Z. This is not
fundamental but rather because our DMFT database is
not as well constructed there. In the inset of Fig. 3 we
show the MRD calculated the same way as for Z. ML
does even better in this case where the MRD is at worst
∼ 0.25%.
We now show in Fig. 4-(a) and -(b) the prediction of

the imaginary part of the impurity Green’s function in
Matsubara frequency for two typical set of parameters.
As can be seen, ML does a very good job at predicting
both the metal and the insulator, although the number
of insulating solutions in the database is not very large.
In the inset of Fig. 4-(a), we present the average relative
difference (ARD) for the metallic case as a function of the
size of the learning set. The ARD was defined in [22] as a
way to measure on average the accuracy of the prediction
of a full function using only one number. The values are
obtained by averaging predictions for many random test
sets. The global average prediction of a full function in
the metallic case has an error in the worst case of ∼ 0.8%
which shows the predictive power of our ML scheme.
We finally analyse the question of prediction of a to-

tally new problem and the importance of training. Be-
cause our database is very homogeneous, for out of
database predictions, we chose to use a width (arbitrarily
set to be 5W = 10) larger than the actual lowest possible
error in the cross-validation training used for previous re-
sults to avoid overfitting. In the supplemental material
(Section III.B.), we show how overfitting influences the
predictive power of our ML approach. We show in Fig. 5
that indeed we can very well predict DMFT solution for
new problems sharing no equal values of U , t′ and µ in the
database by choosing as an example t′ = −0.16t, U = 2
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Figure 4: (Color online) Machine Learning predicted impurity
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2.3.Machine learning (ML)
Having presented themost used approaches used to generate large volumes of data, nowwe examine the next
step of dealing and extracting knowledge from the information obtained. Exploring the evolution of the fourth
paradigmof science, a parallel can bemade between the 1960Wigner’s paper ‘TheUnreasonable Effectiveness of
Mathematics in theNatural Sciences’ [172] to the nowadays ‘TheUnreasonable Effectiveness ofData’ [173].
Whatmakes this unreasonable effectiveness of data in recent times? A case can bemade for the fifth ‘V’ of big
data (figure 3): extracting value from the large quantity of data accumulated.How is this accomplished? Through
machine learning techniques which can identify relationships in the data, however complex theymight be, even
for arbitrarily high-dimensional spaces, inaccessible for human reasoning.

ML can be defined as a class ofmethods for automated data analysis, which are capable of detecting patterns
in data. These extracted patterns can be used to predict unknown data or to assist in decision-making processes
under uncertainty [174]. The traditional definition states that themachine learning, i.e. progressive performance
improvement on a task directed by available data, takes placewithout being explicitly programmed [175]. This
researchfield evolved from the broader area of artificial intelligence (AI), inspired by the 1950s developments in
statistics, computer science and technology, and neuroscience. Figure 8 shows the hierarchical relationship
between the broader AI area andML.

Much of the learning algorithms developed have been applied in areas as diverse asfinances, navigation
control and locomotion, speech processing, game playing, computer vision, personality profiling,
bioinformatics, andmany others. In contrast, an AI loose definition is any technique that enables computers to
mimic human intelligence. This can be achieved not only byML, but also by ‘less intelligent’ rigid strategies such
as decision trees, if-then rules, knowledge bases, and computer logic. Recently, anML subfield that is
increasingly gaining attention due to its successes in several areas is deep learning (DL) [176]. It is a kind of
representation learning loosely inspired by biological neural networks, havingmultiple layers between its input
and output layers.

A closely related field and very important component ofML is the source of data that will allow the
algorithms to learn from. This is the field of data science, whichwe introduced in section 1.1 andfigure 3(left).

2.3.1. Types ofmachine learning problems
Formally, the learning problem can be described [177] by: given a known setX, predict or approximate the
unknown function y=f (X). The setX is named feature space and an element x from it is called a feature (or
attribute) vector, or simply an input.With the learned approximate function =  ( )y f X , themodel can then
predict the output for unknown examples outside the training data, and its ability to do so is called generalization
of themodel. There are a few categories ofMLproblems based on the types of inputs and outputs handled, the
twomain ones are supervised and unsupervised learning.

In unsupervised learning, also known as descriptive, the goal is tofind structure in the data given only
unlabeled inputs Îx Xi , inwhich the output is unknown. If f (X) isfinite, the learning is called clustering, which
groups data in a (knownor unknown)number of clusters by the similarity in its features. On the other hand, if
f (X) is in ¥[ )0, , the learning is called density estimation, which learns the featuresmarginal distribution.
Another important type of unsupervised learning is dimensionality reduction, which compresses the number of
input variables for representing the data, useful when f (X) has high dimensionality and therefore a complex data
structure to detect patterns.

In contrast, in predictive or supervised learning the goal is to learn the function that leads inputs to outputs,
given a set of labeled data (xi, yi)ä (X , f (X)), known as the training set (contrary to an unknown test set), with
i=N number of examples. If the output yi type is a categorical or nominal finite set (for example,metal or

Figure 8.Hierarchical description and techniques examples of artificial intelligence and itsmachine learning and deep learning sub-
fields.
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ML and neural network

Thematerials informatics workflow consists basically of the same general components (see section 2.3.1)
combined:

(1) Problem definition: one of the most important tasks, here the desired outcome (classification, regression,
clustering, optimization, probability estimation, etc)must be defined and translated into a specific,
measurable, attainable, relevant, and timely (SMART) goal that will be the learning algorithm target. Besides
the desired output, the possible inputs (data and representations) that are needed to describe the goalmust
be thought.Wewill briefly discuss types of problems that are or not suited toML at the end of this section.

(2) Data: the essential component of any data-driven strategy. It must be sufficient to describe the defined
problem. Aminimumdata set consists of ameasuredmaterial property for the set of available examples, i.e.
theML target output. Typically (but not always if the problem is tofind such information) this set is also
accompanied by an identification of each example, which can be used as input.We presented approaches
capable of data generation in previous sections, but this is not restricted to them, any data sources canwork.

(3) Representations: perhaps the most demanding task. The representation of materials will determine the
machine learning capacity and performance. The process goes alongmapping into a vector the accessible
descriptive input quantities that identify amaterial into the property of interest. In statistical learning, this
set of variables identifyingmaterials features is called a descriptor [194], orfingerprint. Due to the
importance of this topic, this is discussed in greater detail in the next subsection 2.3.3.1.

(4) ML algorithms andmodel selection, evaluation and optimization: according to the problem goal, a suitable
algorithmmust be chosen and evaluated. Special attention to the characteristics of the algorithm regarding
accuracy/performance, training time, and complexity/interpretability of themodelmust be taken.
Evaluation and optimizationmethods such asCV combinedwith RMSE,MAE, R2, should be performed.
The ultimate evaluation should always be performed on the unseen test data, whichwill reveal if bias/
variance ismodeled resulting in under/overfitting (figure 11).We presented a selection of algorithms and
their evaluation in the previous subsection 2.3.2.

Therefore, themodel creation can be synthesized in the following equation:

= + + +( ) ( )ML Model goal data representation learning algorithm and optimization. 41

The completematerials informatics workflow is summarized infigure 14.
The above steps are essentially incorporatingML techniques to update the historical way for addressing

materials science problems. Therefore, there are some relevant examples that follow the discussed strategy even
before these computational developments. The periodic table of elements is an influential example of a
successful representation, i.e., bymeans of the atomicmass and chemical properties, the 56 elements known at
the timewere organized. Impressively, this organization leads to a two-dimensional description given by two
simple numbers, the table row and column.Only 50 years later, quantummechanics brings the physical
reasoning behind this two-dimensional descriptor, the shell structure of the electrons. Despite this delayed
interpretation, the periodic table anticipated undiscovered elements and their properties, assuring its predictive
power [196]. On the other hand, the challenge to sort allmaterials ismuch complex, since there are potentially
millions ofmaterials instead of only 118 elements. Additionally, only a small fraction of these compounds have
their basic properties determined [197]. This problem is evenmore complex for the infinitely large dataset
formed by the all possible combinations of surfaces, interfaces, nanostructures, and organicmaterials, inwhich

Figure 14.Materials informatics workflow summarized as: (goal+) data+ representation+ learning algorithm and optimization.
Adapted from [195]. CCBY 4.0
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1. Neural networks: a subset of machine learning 
techniques, itself part of the larger scope of AI

3. What is machine learning: multi-step process to 
provide predictions based on previous observations
1. Dataset
2. Representation of datas (possibly classification 

into features)
3. Problem to solve (materials property)
4. Learning algorithm (compare the model with the 

dataset)
5. An inference process to make predictions

4.
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Supervised learning - linear regression

Model with two variables

x1: weight
x2: battery capacity

—> Predict : mileage

We want a good model for the dataset, we choose two parameters (weights) 
and a constant (bias):

                           (sake of notations, we add the variable x0=1)  
 
How can we find the parameters q ? We minimise a “distance” between model 
and dataset (or cost function):

5.4 Cedric Weber

nature of the many-body problem.
Here, we review the literature on machine learning and neural networks within the context of
condensed matter. We also address a simpler task than providing the whole solution of the
AIM from a data-science perspective. Instead, we use here physically inspired approximate and
cost efficient solvers to DMFT, and outline an approach to provide many-body corrections to
account for the obtained errors of the fast solver [19]. The credit to this work goes to the lead
author of this work, Dr Evan Sheridan (Phasecraft), and to Dr Francois Jamet (UK National
Physics Laboratory) and Zelong Zhao (King’s College London).

1.1 Supervised learning and linear regression

We illustrate here the concept of supervised learning within the framework of linear regression.
Let’s consider for instance a data set that we’d like to fit with a simple regression model. For
sake of illustration we’ll consider data obtained from electric vehicles, where we relate the
mileage in miles per gallon equivalent (MPGe) to the vehicle weight and battery capacity [20].

Vehicle List
Vehicle weight (Kg) Battery Capacity (kWh) Mileage (MPGe)
1000 54 108
1500 81 103
2000 108 98
2500 135 93
3000 162 88
3500 189 83
4000 217 78

The data set is composed of two-dimensional vectors, where xi
1 is the vehicle weight, and xi

2 the
battery capacity of a given vehicle. We note that the given features need to be chosen with care
for a given problem. To perform any sort of learning, we need to represent a model function for
the mileage:

h(x) = ✓0 + ✓1x1 + ✓2x2 (1)

The ✓ parameters, or weights, are the model parameters that will be learned throughout the
supervised learning process. Introducing the extra term x0 = 1, the notation simplifies as:

h(x) =
dX

i=0

✓ixi (2)

In the spirit of regression, we need to identify the optimal parameters ✓i that provides the best
model for the known dataset (training set), and ultimately for inferring the mileage on future
vehicles (inference process). How can we learn from the available data at hand, and obtain the
model parameters? To address this question, we need to define a figure of merit of our model,
or a cost function:

J(✓) =
nX

i=1

�
h✓(x

(i))� y(i)
�2
, (3)
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2 the
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where yi are the known mileage obtained from the table above. Minimising the cost function
will hence provide the theoretical model. This can be achieved with a gradient descent algorithm
for instance, starting from a initial guess for ✓, and repeatedly updating the parameter values by
following the steepest gradient,

✓j := ✓j � ↵
@

@✓j
J(✓). (4)

The gradient descent update is performed over all parameters ✓j simultaneously and the proce-
dure iterated until convergence is achieved. The parameter ↵ plays the role of a learning rate,
indeed for small ↵ changes in the model parameters ✓ are small and progress is slow, with the
caveat that a large number of iterations is required to reach convergence, whereas for large ↵

changes in the model parameters are rapid, but convergence might be hampered from sudden
jumps in the iteration process. To implement the algorithm, one can analytically calculate the
derivative and one can easily check that the following is obtained:

@

@✓j
J(✓) = (h✓(x)� y) xj, (5)

and combined with equation (4) we obtain the following training rule, also known as Widrow-
Hoff rule:

✓j := ✓j + ↵
�
y(i) � h✓(x

(i))
�
x(i)
j . (6)

As mentioned above, the learning rate is proportional to the proportional coefficient ↵, but
perhaps counter-intuitively the amplitude of the learning is proportional to the error rate y(i) �

h✓(x(i)). Thus, this algorithm learns most from large deviation from the sample, i.e. when our
prediction has a large error and h✓(x(i)) deviates most from y(i). Some practical considerations
are absent from the discussion above. In particular, the parameter ✓ can be updated for every
measurement or known data point of the training set, albeit the latter is in reality finite. This
highlights the importance of the learning rate. Furthermore, our model is limiting in terms of
dependencies and extensions: what if we would like to add a parameter in the model related
to the weight of the battery, which is a function of both the total vehicle weight and battery
capacity? Such a parameter should feed from the previous variable and provide a higher level
model parameter. In the next section we will extend this simple model and learning process to
a more general framework that allows for this flexibility. The formulae obtained above are of
course nothing else than the well known linear regression method, but it provides a mean to set
the terminology and general extension to neural networks, discussed in the section hereafter.

1.2 A single layer neural network: the perceptron model

Neural networks are a flexible ensemble of data-driven models, largely inspired by the human’s
brain network of synapses and neurons, that provide non-linear neural connections. In contrast
to a biological neuron, inside the artificial neural network the neuron, or perceptron, is in the
form of a simple function whose operation is to take an input vector x = {x1, . . . , xn} (the
feature vector, and activate a logical threshold if the signal is large enough,

f(x) = �(x.w + b), (7)
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via the brain neuron cells in the learning process. The simplest model of an artificial neuron con-
siders a simple proportional relation between input and output signals via a weight coefficient
!i and a constant applied bias bi (see Fig. 1.b). This model omits the time-dependence of the
output signal and many other factors, but provide a basic building block for inter-neuron con-
nection. Typically, the perceptron model consist of a layer of artificial neuron cells, connected
to a set of input signals xi (see Fig. 2a). To mimic the learning process, a sum-rule is applied
to the neuron layer, which collects the weighted sum of all input signals. A threshold logic unit
is then applied which determines the outcome of the final output binary signal, typically the
output signal being z = 1 if the learning outcome is positive, and z = 0 in the alternative. This
provides typically a mean to classify data in two categories (classifier). A typical example is
a set of data points in Euclidean space which are delimited in two classes, as to whether they
lie above a delimiting line, or below it (see Fig. 2b). The line coefficient !i are unknown, but
instead we know for a group of points whether they belong to the class +1 or -1.
In this example, we are provided with a given training data set {(xi,yi) : i=1,n}. We define the
activation function fw(x) = wTx:

• y = +1, if wTx > 0

• y = �1, if wTx < 0

The prediction of the perceptron model is the sign of the activation function sign(fw(x)). The
aim of this approach is to learn from the data set and minimize the classification error.
We will use a two neuron model, and following the general recipe, we will set the weights to
random initial values: !1 = 0.4 and !2 = �0.2 (note that weights can be either positive or
negative). Our training set is set as follow:

Training set
x1 x2 outcome
0.8 0.3 1
0.4 0.1 0

The learning process occur by testing the algorithm on the training set, to adjust in turns the
network weights in the learning process. Weights are typically adjusted by comparing the pre-
diction of the network on a given data point, and correcting for errors obtained in the evaluation.
We provide here a simple example and recipe to optimise weights in the single layer neural net-
work, with a simple learning algorithm and objective function. To be more specific, we use the
objective function C :

z = 1, if
nP

i=1
xi!i  ✓

z = 0, if
nP

i=1
xi!i > ✓

where ✓ is the threshold value. This part defines the logical activation function that converts the
signal, modulated by the network weights, into a prediction. The task of the learning process
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Fig. 2: a) Schematic of the perceptron model. Inputs xi are weighted with !i, and collected by
a sum-rule ⌃, before entering a threshold logic unit and triggering the activation function. The
output is then obtained and compared to the training set. The perceptron learns by the error
correction method, where the weights are updated based on the obtained error. b) A typical
classification task where the training set consists in a set of data points labeled as circles or
squares. After the learning process, the perceptron weights !i correspond to the equation of the
separation line.

is to train the network weights, for a given objective function, such that the training set is
reproduced accurately. For sake of illustration, we use here a threshold value ✓ = 0.1.

Training set
x1 x2 !1 !2 Prediction P Dataset D
0.8 0.3 0.4 -0.2 1 1
0.4 0.1 0.4 -0.2 1 0

Applying our randomised neural network, we observe that the first training data point is actually
well classified by the network with original choice of weights. However, for the second data
point, our network produces a wrong prediction. After every error of the network, we perform

Correct

Wrong! 

DMFT.AI 5.7

via the brain neuron cells in the learning process. The simplest model of an artificial neuron con-
siders a simple proportional relation between input and output signals via a weight coefficient
!i and a constant applied bias bi (see Fig. 1.b). This model omits the time-dependence of the
output signal and many other factors, but provide a basic building block for inter-neuron con-
nection. Typically, the perceptron model consist of a layer of artificial neuron cells, connected
to a set of input signals xi (see Fig. 2a). To mimic the learning process, a sum-rule is applied
to the neuron layer, which collects the weighted sum of all input signals. A threshold logic unit
is then applied which determines the outcome of the final output binary signal, typically the
output signal being z = 1 if the learning outcome is positive, and z = 0 in the alternative. This
provides typically a mean to classify data in two categories (classifier). A typical example is
a set of data points in Euclidean space which are delimited in two classes, as to whether they
lie above a delimiting line, or below it (see Fig. 2b). The line coefficient !i are unknown, but
instead we know for a group of points whether they belong to the class +1 or -1.
In this example, we are provided with a given training data set {(xi,yi) : i=1,n}. We define the
activation function fw(x) = wTx:

• y = +1, if wTx > 0

• y = �1, if wTx < 0

The prediction of the perceptron model is the sign of the activation function sign(fw(x)). The
aim of this approach is to learn from the data set and minimize the classification error.
We will use a two neuron model, and following the general recipe, we will set the weights to
random initial values: !1 = 0.4 and !2 = �0.2 (note that weights can be either positive or
negative). Our training set is set as follow:

Training set
x1 x2 outcome
0.8 0.3 1
0.4 0.1 0

The learning process occur by testing the algorithm on the training set, to adjust in turns the
network weights in the learning process. Weights are typically adjusted by comparing the pre-
diction of the network on a given data point, and correcting for errors obtained in the evaluation.
We provide here a simple example and recipe to optimise weights in the single layer neural net-
work, with a simple learning algorithm and objective function. To be more specific, we use the
objective function C :

z = 1, if
nP

i=1
xi!i  ✓

z = 0, if
nP

i=1
xi!i > ✓

where ✓ is the threshold value. This part defines the logical activation function that converts the
signal, modulated by the network weights, into a prediction. The task of the learning process

DMFT.AI 5.9

a weight update with the following learning rule :

�!i = ↵ (t� z) xi, (8)

where t is the target value (training set), z the current output, ↵ the learning rate, !i the weight
associated with input i, xi the corresponding input value. We note the direct correspondence
with the parameter update obtained in equation (6) in the steepest descent approach. The fol-
lowing pseudo-code provide the general approach for a single or multiple layer neural network:

Algorithm 1 Neural network pseudo-code
inputs for sample data point: ✓,!i,xi

Require: C = 0
call Evaluation function: xi, ↵, ✓, !i, Di output !i

Prediction Pi 

nP
i=1

xi!i  ✓

Cost function kD � Pk

Learning !i ↵ (D � P) xi

Iterate over training set

The weights obtained from the neural network will eventually provide a mean to predict the
class of an unknown data point yi. The weights have a very simple geometrical interpretation,
they represent the line parameters (see Fig. 2.b). In the simple perceptron model, the relation
between outputs and inputs remain linear, due to the limited complexity of the model.
We note that in our approach, the choice of the threshold value ✓ and logical rule to determine
whether the weighted signal falls within class A or B is entirely arbitrary. The mathematical
formulation of the logical threshold unit is denoted as activation function. In general, there is a
breadth of possible choices available and studied in the literature, providing different learning
efficiency and resilience towards noise, typical examples are the step function and the sigmoid
function (1/ (1 + e�z)), ReLU (max(z, 0)), or tanh (see Fig. 3).
To expand the scope of this approach, and allow for identifying non-linear boundaries between
more complex sample sets, the perceptron model can simply be extended by allowing for several
neuron layers between inputs and the logical threshold function. The current is simply modu-
lated several times, by the weights of the respective layers. Furthermore, we can also allow for
connection between a neuron of one layer with multiple neurons of the next layer, allowing for
a large number of weight parameters. This is the realisation of a so-called neural network.

1.3 Neural networks

A neural network is a direct extension of the perceptron model. It has essentially two main
components: (i) the network architecture in terms of number of layers, neuron per layer, and
how neurons are inter-connected, and (ii) the parameters defining connections (weights), with
the task to learn the parameters for achieving a given task. In our application to DMFT, this task
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Fig. 2: a) Schematic of the perceptron model. Inputs xi are weighted with !i, and collected by
a sum-rule ⌃, before entering a threshold logic unit and triggering the activation function. The
output is then obtained and compared to the training set. The perceptron learns by the error
correction method, where the weights are updated based on the obtained error. b) A typical
classification task where the training set consists in a set of data points labeled as circles or
squares. After the learning process, the perceptron weights !i correspond to the equation of the
separation line.

is to train the network weights, for a given objective function, such that the training set is
reproduced accurately. For sake of illustration, we use here a threshold value ✓ = 0.1.

Training set
x1 x2 !1 !2 Prediction P Dataset D
0.8 0.3 0.4 -0.2 1 1
0.4 0.1 0.4 -0.2 1 0

Applying our randomised neural network, we observe that the first training data point is actually
well classified by the network with original choice of weights. However, for the second data
point, our network produces a wrong prediction. After every error of the network, we perform

Correct
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via the brain neuron cells in the learning process. The simplest model of an artificial neuron con-
siders a simple proportional relation between input and output signals via a weight coefficient
!i and a constant applied bias bi (see Fig. 1.b). This model omits the time-dependence of the
output signal and many other factors, but provide a basic building block for inter-neuron con-
nection. Typically, the perceptron model consist of a layer of artificial neuron cells, connected
to a set of input signals xi (see Fig. 2a). To mimic the learning process, a sum-rule is applied
to the neuron layer, which collects the weighted sum of all input signals. A threshold logic unit
is then applied which determines the outcome of the final output binary signal, typically the
output signal being z = 1 if the learning outcome is positive, and z = 0 in the alternative. This
provides typically a mean to classify data in two categories (classifier). A typical example is
a set of data points in Euclidean space which are delimited in two classes, as to whether they
lie above a delimiting line, or below it (see Fig. 2b). The line coefficient !i are unknown, but
instead we know for a group of points whether they belong to the class +1 or -1.
In this example, we are provided with a given training data set {(xi,yi) : i=1,n}. We define the
activation function fw(x) = wTx:

• y = +1, if wTx > 0

• y = �1, if wTx < 0

The prediction of the perceptron model is the sign of the activation function sign(fw(x)). The
aim of this approach is to learn from the data set and minimize the classification error.
We will use a two neuron model, and following the general recipe, we will set the weights to
random initial values: !1 = 0.4 and !2 = �0.2 (note that weights can be either positive or
negative). Our training set is set as follow:

Training set
x1 x2 outcome
0.8 0.3 1
0.4 0.1 0

The learning process occur by testing the algorithm on the training set, to adjust in turns the
network weights in the learning process. Weights are typically adjusted by comparing the pre-
diction of the network on a given data point, and correcting for errors obtained in the evaluation.
We provide here a simple example and recipe to optimise weights in the single layer neural net-
work, with a simple learning algorithm and objective function. To be more specific, we use the
objective function C :

z = 1, if
nP

i=1
xi!i  ✓

z = 0, if
nP

i=1
xi!i > ✓

where ✓ is the threshold value. This part defines the logical activation function that converts the
signal, modulated by the network weights, into a prediction. The task of the learning process
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a weight update with the following learning rule :

�!i = ↵ (t� z) xi, (8)

where t is the target value (training set), z the current output, ↵ the learning rate, !i the weight
associated with input i, xi the corresponding input value. We note the direct correspondence
with the parameter update obtained in equation (6) in the steepest descent approach. The fol-
lowing pseudo-code provide the general approach for a single or multiple layer neural network:

Algorithm 1 Neural network pseudo-code
inputs for sample data point: ✓,!i,xi

Require: C = 0
call Evaluation function: xi, ↵, ✓, !i, Di output !i

Prediction Pi 

nP
i=1

xi!i  ✓

Cost function kD � Pk

Learning !i ↵ (D � P) xi

Iterate over training set

The weights obtained from the neural network will eventually provide a mean to predict the
class of an unknown data point yi. The weights have a very simple geometrical interpretation,
they represent the line parameters (see Fig. 2.b). In the simple perceptron model, the relation
between outputs and inputs remain linear, due to the limited complexity of the model.
We note that in our approach, the choice of the threshold value ✓ and logical rule to determine
whether the weighted signal falls within class A or B is entirely arbitrary. The mathematical
formulation of the logical threshold unit is denoted as activation function. In general, there is a
breadth of possible choices available and studied in the literature, providing different learning
efficiency and resilience towards noise, typical examples are the step function and the sigmoid
function (1/ (1 + e�z)), ReLU (max(z, 0)), or tanh (see Fig. 3).
To expand the scope of this approach, and allow for identifying non-linear boundaries between
more complex sample sets, the perceptron model can simply be extended by allowing for several
neuron layers between inputs and the logical threshold function. The current is simply modu-
lated several times, by the weights of the respective layers. Furthermore, we can also allow for
connection between a neuron of one layer with multiple neurons of the next layer, allowing for
a large number of weight parameters. This is the realisation of a so-called neural network.

1.3 Neural networks

A neural network is a direct extension of the perceptron model. It has essentially two main
components: (i) the network architecture in terms of number of layers, neuron per layer, and
how neurons are inter-connected, and (ii) the parameters defining connections (weights), with
the task to learn the parameters for achieving a given task. In our application to DMFT, this task
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Fig. 1: a) Schematic of a biological neuron, which consist of a cell nucleus, synapses connected
via dendrites to the cell, myelin sheat that embeds the axon that ultimately provides the output
signal via the axon terminal to another neuron. b) Simplified artificial neuron model: input
singals Ini are multiplied by a proportional weighting factor W and a constant bias b is added
to the signal, providing the output Outi that connect with the other neurons.

where � is a continuous activation function, w is a set of parameters that are specific to the
neuron, and b is the bias parameter. Connecting a network of neurons together and adjusting
the weights to match the value of a target output provide a mean to use the network to build
non-linear predictive responses for different given inputs, which is foundation of learning.
The perceptron model was originally introduced by Frank Rosenblatt, who simulated and built
purpose hardware for this model on in the early 1960s that provided a direct and parallel im-
plementation of perceptron learning [21]. This model is the first neural network learning model
introduced, which is simple and limited, but provide the basic concepts and is a good learning
tool. The original motivations for deriving this theory was related to the physiology of the brain
learning process, and in particular pattern recognition. The theory is based on a simplified model
for the brain neuron: the latter consist of a complex interplay between input signals carried by
synapses, interconnected with the neuron cell which provides a time-dependent output signal
transported via the axon terminals (see Fig. 1.a). Many complex physiologic phenomena occur
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Fig. 2: a) Schematic of the perceptron model. Inputs xi are weighted with !i, and collected by
a sum-rule ⌃, before entering a threshold logic unit and triggering the activation function. The
output is then obtained and compared to the training set. The perceptron learns by the error
correction method, where the weights are updated based on the obtained error. b) A typical
classification task where the training set consists in a set of data points labeled as circles or
squares. After the learning process, the perceptron weights !i correspond to the equation of the
separation line.

is to train the network weights, for a given objective function, such that the training set is
reproduced accurately. For sake of illustration, we use here a threshold value ✓ = 0.1.

Training set
x1 x2 !1 !2 Prediction P Dataset D
0.8 0.3 0.4 -0.2 1 1
0.4 0.1 0.4 -0.2 1 0

Applying our randomised neural network, we observe that the first training data point is actually
well classified by the network with original choice of weights. However, for the second data
point, our network produces a wrong prediction. After every error of the network, we perform
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Fig. 3: a) Activation step-function. b) Activation sigmoid function.

Fig. 4: Simple extension of the perceptron model, where we have now an intermediate neuron
layer between the input fully connected layer and the binary output.

will consist in learning the errors of a given approximate solver to the Anderson impurity model.
In our context, the input will consist of a Green’s function G(⌧) represented in imaginary time,

which is essentially a vector of d dimension (x(i)
1 , x(i)

2 , ..., x(i)
d . We’ll come back to our main

aim in the next sessions, but for now we extend the example of the perceptron model where we
want to classify an input in a binary class ŷ = 0 or ŷ = 1 (see Fig. 4). On the left of this figure,
the input is connected to the first layer, the fully connected layer. The second layer is denoted
as a hidden layer, as its presence merely provide additional degrees of freedoms to propagate
the information forward to the logical threshold unit. It is worth noting that we have so far only
considered forward propagation of the information throughout the network. After doing a first
single forward pass through the network, for a given initial choice of weights !i and a given
input vector xi, we need to update the parameters for the learning process.
Here, we need to generalise the learning formula introduced in the context of the perceptron
model. This extensions leads to the concepts of training loss, and validation loss. The former
is a metric used to assess how the model fits the training data, i.e. it assesses the error of the
model on the training set. It is worth noting that the training set is a portion of the entire dataset
used to initially train the model. Computationally, the training loss is calculated by taking the
sum of errors for each example in the training set. It is also important to note that the training
loss is measured after each batch, that is usually visualized by plotting a curve of the training
loss after each update of the weights. The latter (validation loss) is a metric used to assess the
performance of the learning model on the validation set. The validation set is another portion of

High confidence y=0 (cat), 
weak contribution

High confidence y=1 (dog), 
weak contribution
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the dataset set aside to validate the performance of the model, usually a smaller portion of the
dataset as the largest chunk is used to train the model instead (typical splits of the entire dataset
in validation/training are 20% validation and 80% training).
The loss function used in neural networks is based on the binary cross-entropy formula:

L = � (yilog(ŷi) + (1� yi)log(1� ŷi)) , (9)

where y represents the expected outcome and ŷ the outcome produced by the model. Let’s
have a look at a simple example: for a neural network that tries to determine whether a picture
contains a cat, the outcome is either of 1 (cat) or 0 (no cat). With a sample that has two pictures,
the first of which contain cats, whilst the second doesn’t. Let’s imagine that the neural network
is 80% confident that the first image contains a cat: y = 1 and ŷ = 0.8. The loss function in
equation (9) gives L = 0.32. For the second image, the network gives a 90% probability that
there aren’t any cats in the picture, y = 0 and ŷ = 0.1, with L = 0.15. The loss function
is designed such that either the first term yilog(ŷi) or the second term (1 � yi)log(1 � ŷi) are
naught or small when the network has a large confidence in asserting the classification, whilst
the loss function is large in uncertain situations. The loss function can be averaged over the
training sample (or onto the validation sample), leading to the overall cost function C:

C = �
1

N

NX

i=1

(yilog(ŷi) + (1� yi)log(1� ŷi)), (10)

For DMFT we are however not focusing on binary classification, and instead our predicted and
model values are in general real. The fairly straightforward extension to real number can be
achieved simply by generalising the cost function with a regression model for instance:

C =
1

N

NX

i=1

(yi � ŷi)
2, (11)

1.4 Back-propagation

Once the error is established, the weight update is less obvious than in the case of the pere-
ceptron model, where the error obtained on each components xi could directly be linked and
associated with a well defined weight !i.
Although the gradients of the loss function will provide eventually the weight update, as a
generalisation of the linear update that we have seen in the previous section, the connection
between error and weights is convoluted due to the multiple intermediate layers. Let us first
introduce more specific notations for the neural network. Fig. 5 provides a schematic of a
maximally connected feed-forward network, where the web of neuron connections is illustrated,
with the associated activation values h and the prediction made in the final layer h4

1. In what
follows, we consider training the network on input data X = {x1, . . . , xN} and their associated
outputs Y = {y1, . . . , yN}. The first-pass through the network consists of assigning h0

i = xi
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where S is the training set and fj is the relative frequency ofmember of the j-th class in this set. If one is interested
in usingCART for a regression task, there are twomain differences to be considered. First, the nodes predict real
numbers instead of classes. Second, the splitting criterion, in this case, is theminimization of the resubstitution
estimate, which is basically amean squared error
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where yi is the label of the i-th examplewhile ŷi is the corresponding predicted value. The consequence of such
partitioning is that for each partition, the predicted value is the average of the values within that partition. Thus,
CARToutputs a piecewise constant function for regression.

One of themajor issues with regression trees is that once they are trained,most of the time they suffer from
overfitting. A couple of strategies to overcome this problemhave been proposed, such as pruning the trees’
structures in order to increase its generalization power, loosing however some of their accuracies.More
advancedmethods include RandomForests, which is an ensemblemethod based on training several decision
trees and averaging their predictions [191]. In this case, the trees are smaller versions of the structures described
previously, trained using a randomly chosen subset of the features of the dataset, and usually a bootstrap sample
of the same set. In some sense, building a series of weaker learners and combining their predictions enables the
algorithm to learn particular features of the dataset and better generalize to new, unseen data.

Artificial Neural Networks (ANNs) corresponds to a class of algorithms that were, at least in their early
stages, inspired by the brain structure. AnANNcan be described as a directedweighted graph, i.e, a structure
composed of layers containing processing units called neurons, which are in turn connected to other such layers,
as depicted infigure 13.Many kinds of ANNs are used for a variety of tasks, namely regression, and classification,
and some of themost popular architectures for such networks are feed-forward, recurrent, and convolutional
ANNs. Themain difference between these architectures is basically on the connection patterns and operations
that their neurons performon data.

Typically in anANN, an input layer receives the descriptor vectors from the training set, and a series of non-
linear operations is performed as data forward propagates through the subsequent hidden layers. Finally, the
outcome of the processing is collected at the output layers, which can be either a binary ormultinary
(probabilistic) classification, or even a continuousmapping as in a linear regressionmodel.

In anANN, the input ( )zi
k of the i-th neuron in the k-th layer is a function of the outputs -( )yj

k 1 of the

previous layer
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where w( )
ij
k is thematrix elementwhich connects the adjacent layers. The element ( )wi

k
0 is referred to as the bias,

because it is not part of the linear combination of inputs. The input is then transformed via a non-linear, or
activation function, such as the sigmoid,

Figure 13.Example of a feed-forward ANNwithNhidden layers and a single neuron in the output layer. Red neurons represent
sigmoid activated units (see equation (35))while yellow ones correspond to the ReLU activation (equation (37)).
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the dataset set aside to validate the performance of the model, usually a smaller portion of the
dataset as the largest chunk is used to train the model instead (typical splits of the entire dataset
in validation/training are 20% validation and 80% training).
The loss function used in neural networks is based on the binary cross-entropy formula:

L = � (yilog(ŷi) + (1� yi)log(1� ŷi)) , (9)

where y represents the expected outcome and ŷ the outcome produced by the model. Let’s
have a look at a simple example: for a neural network that tries to determine whether a picture
contains a cat, the outcome is either of 1 (cat) or 0 (no cat). With a sample that has two pictures,
the first of which contain cats, whilst the second doesn’t. Let’s imagine that the neural network
is 80% confident that the first image contains a cat: y = 1 and ŷ = 0.8. The loss function in
equation (9) gives L = 0.32. For the second image, the network gives a 90% probability that
there aren’t any cats in the picture, y = 0 and ŷ = 0.1, with L = 0.15. The loss function
is designed such that either the first term yilog(ŷi) or the second term (1 � yi)log(1 � ŷi) are
naught or small when the network has a large confidence in asserting the classification, whilst
the loss function is large in uncertain situations. The loss function can be averaged over the
training sample (or onto the validation sample), leading to the overall cost function C:

C = �
1

N

NX

i=1

(yilog(ŷi) + (1� yi)log(1� ŷi)), (10)

For DMFT we are however not focusing on binary classification, and instead our predicted and
model values are in general real. The fairly straightforward extension to real number can be
achieved simply by generalising the cost function with a regression model for instance:

C =
1

N

NX

i=1

(yi � ŷi)
2, (11)

1.4 Back-propagation

Once the error is established, the weight update is less obvious than in the case of the pere-
ceptron model, where the error obtained on each components xi could directly be linked and
associated with a well defined weight !i.
Although the gradients of the loss function will provide eventually the weight update, as a
generalisation of the linear update that we have seen in the previous section, the connection
between error and weights is convoluted due to the multiple intermediate layers. Let us first
introduce more specific notations for the neural network. Fig. 5 provides a schematic of a
maximally connected feed-forward network, where the web of neuron connections is illustrated,
with the associated activation values h and the prediction made in the final layer h4

1. In what
follows, we consider training the network on input data X = {x1, . . . , xN} and their associated
outputs Y = {y1, . . . , yN}. The first-pass through the network consists of assigning h0

i = xi

Regression cost function
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notation afforded through vectorisation. At the end of the first-pass through the network the
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Figure 2.9: Schematic of a feed-forward neural network. An input vector is propagated through the
system, via a number of “hidden layers”, triggering the activation functions hj

i of each neuron
i in layer j. This process parametrises a model encapsulated in the output layer, containing a
single value neuron for univariate supervised learning or multiple neurons for multivariate
supervised learning.
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Fig. 5: Schematic of a feed-forward neural network. An input vector is propagated through the
system, via a number of hidden layers, triggering the activation functions hij of each neuron i
in layer j.

and evaluating the activation functions at each layer of the network as,
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Given the nested structure of this function and the sheer number of parameters that Wij can
have, it is prohibitive to find analytical solutions for the combination of weights that minimise
equation (15). Instead, established gradient descent methods are applied [22] and define what
is now known as the backpropagation approach.
The central question of the backpropagation method is to calculate the varitation of the cost
function with respect to all of the network parameters, @C/@wl

jk and @C/@blj , and to use these
gradients to update the weights. The first step to obtaining these expressions is to express the
error in the j’th neuron of layer l as,
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Given the nested structure of this function and the sheer number of parameters that Wij can
have, it is prohibitive to find analytical solutions for the combination of weights that minimise
equation (15). Instead, established gradient descent methods are applied [22] and define what
is now known as the backpropagation approach.
The central question of the backpropagation method is to calculate the varitation of the cost
function with respect to all of the network parameters, @C/@wl

jk and @C/@blj , and to use these
gradients to update the weights. The first step to obtaining these expressions is to express the
error in the j’th neuron of layer l as,
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where we have applied the chain rule. In this form, �lj doesn’t exploit the connectivity of the
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shows that variation of the cost in layer l with respect to its weight is dependent on the activated
output in the preceding layer. Hence, relating the errors from layer-to-layer can allow for a
systematic way to calculate the variation of the cost in each layer of the network:
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Similarly, @C/@blj can be found as @C
@blj

= �lj . All weights in the network can then be updated by
gradient descent in the following manner,
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where ⌘ is the so-called learning rate. The origin of the name backpropagation refers to the
equations above as for the update �lj one must first know all errors in the subsequent layer �l+1

k ,
and hence the error propagates backward through the network.
In summary, the learning process in the neural network consists of repeated forward- and
backward-passes throughout the network, after each pass the cost function is reduced. The
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forward-pass propagates the input forward for the evaluation of the cost function, while the
backward-pass updates the network weights starting in the output layer and back-propagating
the information to the input layer, that in turns implements the weight updates that reduce the
cost function on the next forward pass.

2 Generating a quantum database for the Anderson impu-
rity model

We have now introduced all the concepts in the field of data science required for designing
a data-driven approach for solving quantum many-body hamiltonians. To apply the learning
process outlined above, we need first to decide on a compact representation of the many-body
quantities that will be used in the neural network.

2.1 Polynomial basis method

One way to represent the Green’s function in a compact formulation is via a polynomial support
basis. We expand G(⌧) in an arbitrary orthogonal polynomial basis P (k)

i [x(⌧)] (e.g. Legendre,
Chebyshev, or else) where i is the polynomial order, k is the species and x(⌧) = 2⌧

� � 1 is a
transformation to absorb the temperature dependence from [�1,+1] to [0, �]. The expansion is:

G(k)(⌧) =
X

i�0

P (k)
i [x(⌧)]G(k)

i . (22)

Applying the orthogonality constraints obeyed by the polynomials, i.e.,
Z �

0

d⌧G(k)(⌧)P (k)
i0 [x(⌧)]W (x(⌧)) =

Z �

0

d⌧P (k)
i [x(⌧)]P (k)

i0 [x(⌧)]W (x(⌧))G(k)
i . (23)

This condition is generally obeyed by the family of polynomials P (k)
i [x(⌧)] is

Z �

0

d⌧P (k)
i [x(⌧)]P (k)

i0 [x(⌧)]W (x(⌧)) = W̃ (i)�i,i0 , (24)

and so this provides a mean to obtain the basis coefficients that can be calculated as

G(k)
i =

1

W̃ (⌧)

Z �

0

d⌧G(k)(⌧)P (k)
i [x(⌧)]W (x(⌧)). (25)

For the purpose of this discussion one restrict the analysis only to the Legendre polynomials,
where W (⌧) = 1 and W̃ (i) = 1

2i+1 .
With Gi, we can express G(⌧) on an arbitrarily fine imaginary time ⌧ grid, absent from dis-
cretisation constraints. For a given G(⌧), the procedure outlined above provides us with the gl
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• Epochs: the number of sweeps of the neural network.

• Activation functions: the family of non-linear neuron activation functions, including
tanh, elu and relu.

• Cross-validation split: the %-split of the database between training/validation samples.

• Basis functions: the equidistant ⌧ -basis, adaptive ⌧ -basis or Legendre Gl-basis.

Typically a hyperparameter grid search is employed over these parameters and by doing so, the
model is trained iteratively as the learning steps occur across different values of its parameters.
Ultimately it will produce the final optimised value of the cost function for both the training and
validation datasets, where the minimum cost function provies a measure for the optimum choice
of parameters to be used ultimately for the inference process in future DMFT calculations.

3.1 Data processing: symmetry, augmentation and transformation

Once the database of approximate and exact solutions is obtained, and before the data is passed
on to the machine learning algorithm for training, there are a number transformation operations
that allow the database to be augmented through symmetry operations. Without having to re-run
the impurity solver, there are a number of ways to both extend and transform the database in
ways that are optimal for learning a model.
For simplicity, we assume a database under consideration is expressed in either the imaginary-
time or in the Legendre polynomial basis.
The first symmetry operation makes use of the fact that the Green’s function can be decomposed
into its symmetric and anti-symmetric contributions by decomposing it into the Legendre basis,

GS(⌧) =
X

l�0
even

p
2l + 1

�
Pl[x(⌧)]Gl

and

GAS(⌧) =
X

l�0
odd

p
2l + 1

�
Pl[x(⌧)]Gl, (43)

where GS(⌧) and GAS(⌧) are respectively the symmetric and anti-symmetric parts of total
Green’s function which give the total Green’s function when summed i.e.,

G(⌧) = GS(⌧) +GAS(⌧). (44)

In practice, if performed in the ⌧ basis, the latter requires an intermediate step of generating the
Legendre coefficients, or reading them in from a database which has them stored already. For
the size of the databases dealt with in this lecture (typically less than 40k samples), the lattercan
be added practically at no additional computational cost. Physically, the symmetric part of
the Green’s function represents the physics at half-filling while the anti-symmetric component
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encodes the information away from half-filling. This operation need not only be used for the
augmentation of the database, it can similarly be used for partitioning it. Specifically, instead
of training a model on both the symmetric and anti-symmetric components simultaneously, two
separate models can be trained on the symmetric and anti-symmetric components separately,
after which they are recombined to produce the total answer in Eq. (44).
The same procedure can be followed in the Legendre basis, where the symmetric part of Gl is
encoded in the even coefficients and the anti-symmetric part in its odd ones. For both bases,
this operation allows the database to be augmented by a factor of two.
The strategy to learn different features on a given dataset is very much akeen to the concepts
developed in deep learning: an image would be decomposed in different features with different
characteristics, and the neuron model optimised for such.
The second symmetry operation on G(⌧) that we can consider is particle-hole equivalency, i.e.
Ge(⌧) = Gh(�� ⌧) where Ge is the electron Green’s function and Gh is the hole Green’s func-
tion. Therefore, for every entry in the database that is away from half-filling, the corresponding
electron (if hole-type) or hole (if electron-type) Green’s function can be generated simply by
flipping G(⌧). If, however, the database is expressed in the Legendre basis instead, this trans-
formation requires that the odd coefficients be multiplied by �1. We note that for both basis
representations, this can double the size of the database.

3.2 Activation function with many-body quantities

In addition to augmenting the database by exploiting symmetry operations, the data must also
be transformed into a representation appropriate for how the training data will be manipulated,
an in particular for designing a suitable activation function.
Scaling the input and output variables so that they are normalised is a standard technique when
preparing data for training algorithms such as neural networks. One example for instance:
standard activation functions, as seen in the early chapters of this lecture, are dealing usually
with positive signals, so care will be needed to manipulate and transform the Green’s functions
in a suitable format.
Another need for the mapping lies with protecting the weights that are learned in the model from
becoming too large or biased towards large input values. Specifically, this is essential for when
input variables are the Legendre coefficients, as the Legendre basis has no inherent scale for the
coefficients. On the other hand, while an inherent scale exists for G(⌧), i.e. �1  G(⌧)  0

when ⌧ > 0, it is also possible to create a family of scaling transformations and test their efficacy
throughout the training process. The following scaling transformations work regardless whether
the aforementioned symmetrisation or augmentation procedures have been followed.
T0 is the unscaled Green’s function and each transformation is a function of T0. For G(⌧) the
situation is quite simple, there are only a few transformations that can be done to normalise in
between the range [0, 1] or [�1, 1]. We note that if GAS(⌧) is used, i.e. the anti-symmetric part of
the Green’s function, it is important to ensure that the scaling operations do not shift the data out
of the scaling range, and so an extra constant shift should be applied in these cases to counteract
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this behaviour. For the Legendre basis, it is clear that the unscaled data is not normalised.
Fortunately, by applying a tanh function this can readily be achieved. In the example shown,
we see the first anti-symmetric component of the Green’s function, G1, is scaled to be much
closer to G0 and G2, the either-side symmetric components. As stated above for the ⌧ basis, the
dependence of training the model is also assessed as a function of these transformations.
Moreover, we emphasise that to recover the physical Green’s function it is necessary to apply
the relevant inverse transformation T

�1, which are tabulated in Fig. 8.

Fig. 8: Scaling transformations for a G(⌧) and b Gl

3.3 An error correction approach for solving DMFT

Here we present results that pertain to the machine learning framework outlined above. We
begin with a discussion of the different aspects of the generated databases, and this is followed
by detail on the training of an artificial neural network with those generated databases. We con-
clude by illustrating how the generated data-driven solver is able to capture the Mott transition
in the half-filled single-band Hubbard model the using DMFT scheme presented above.

3.4 Database of solutions for the Anderson Impurity Model

Using the procedure outlined the previous section we generate a database of size Ns = 103

at inverse temperatures of � = {1, 2, 5, 10, 20, 50} eV�1 over the parameter ranges indicated
in Table 1 for discrete sets of bath parameters. The range of temperatures chosen represent
the high-temperature and intermediate temperature limits, whereby the features of the Green’s
function are smoother, and hence our choice of the range. Each database entry constitutes a
random combination of all parameters in Table 1. The parameters chosen cover a range of
physical features, for example the Hubbard U is uniformly randomly sampled over the range



39

Learning corrections to known approximations

Instead of predicting Green’s functions of the AIM for wide range of parameters, we 
learn the error or corrections of known approximations to the exact result

less ambitious - but requires fast solvers

Library of solvers for ML : Hubbard-I (H1), Iterative perturbation theory (IPT), 
Exact diagonalisation (Nb~2,3,4) (ED-Nb)

ML : model for corrections to known approximation

Solvers used individually, or collectively (input and output vector x msolver )

Motivation: combining approximations obtained from different limits, interpolation

Cost function: 

DMFT.AI 5.21

V 2
i . Alternatively, it is possible to create discrete representations of the bath by treating ✏i and Vi

as fit parameters in Eq. (38) to a continuous representation generated from the half-bandwidth
W .
The next step is to generate the database that will be used for the training of the data-driven
model. To do this, each instance of {Ui,Wi, "i,�i(i!n)} is passed to the set of approximate
solvers {�1, . . . ,�N} as well as one exact solver. In this case, the exact solution is obtained
by the ED algorithm using a large number of bath sites, generally between 4 � 6 is enough to
ensure a converged solution for the single-site AIM.

3 Training a model solver to solve the Anderson impurity
model

We now outline the details of the multivariate maximally connected neural network regression
model that is used for the training against the database we have just constructed. As established
above, the set of inputs for the model are X = {x1, . . . ,xNs}, where xi is a set of different
approximate solutions of the AIM, while the outputs are Y = {y1, . . . ,yNs}, where yi is an
exact solution of the AIM given by ED. For all models trained in this section, they proceed by
minimising the cost function,

C(X,Y,↵) =
1

Ns

NsX

j

[yj � g↵(xj)]
2, (39)

with respect to the parameters ↵ to produce a model g↵(xi) := GM(xi), where GM(xi) is the
model Green’s function of the problem. GM(xi) is constructed such that the error between it
and the true solution yi is minimised, and therefore GM(xi) corrects for the error between the
approximate solution xi and the exact one yi, for all Ns entries in the database. The neural
network we use is shown as a schematic in Fig. 7. In the input layer, each neuron evaluates,

f(x.w + b) = f

 
X

i,j

wijG
�j(ki) + b1

!
(40)

with f(. . .) being the activation function of the input layer neurons (coloured pink), index i

is associated to the feature (i.e mesh point) and index j indicates the approximate solver used,
wij are the set of neural weights, and xi is in general of the format �N entries, despite the
depiction in Figure 40 that suggests that the number of approximate solvers is 2. This procedure
then repeats itself as the values propagate forward through the network such that f(x.w + b)

of each neuron are used as the inputs for the next layer in the network, until eventually the
output layer is reached. As the neural network is being used to solve a regression problem,
the output layer applies a linear activation function to its neurons, which doesn’t modify its
input data. Therefore, when the output layer is reached the cost function in 39 is evaluated for
a ”mini-batch” of samples, after which the weights throughout the entire network are updated

Training set: ED with Nb=8
(or CTQMC)

Model that provides 
corrections to known 
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Set of approximations of 
AIM

Set of exact solutions of AIM
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where k is the index for the bath level, m is the index for each orbital/spin. This entails minimis-
ing a distance between the Weiss field and the parameterised impurity Green’s function obtaine
in equation (28), using a cost function:

�2[✏k, Vk] =
n=ncX

n=0

An|GAnd(i!n : {✏k, Vk})� G0(i!n)|
2. (29)

For using ED as a solver for DMFT, it is common practice to weight the cost function towards
smaller imaginary frequencies by using a prefactor An ⇡ 1/i!2

n. This avoids fitting cost on the
asymptotic regions of the Green’s function, which are known analytically, but instead provides
a good solution in the low energy regime.
Once a set of ✏k, Vk has been identified, the calculation proceeds as a standard brute force matrix
diagonalisation by scanning quantum sectors of the AIM (either total spin Sz or numbers of up
and down particles). The focus in DMFT-AI is however reversed: one can limit the database to
the large ensemble of parameters ✏k, Vk which are tractable with typically 6, 7 or 8 bath sites,
such that the solution of the AIM remains exact without the need for iterative solvers (Lanczos,
Arnoldi, ....) and the computational cost reasonable. We hence limit ourselves to a large but
finite set of corresponding hybridisation function that will be used to train the neural network.
We now turn to the discussion of the fast and approximate solvers. Perturbation theory is a well-
known and successful diagrammatic method for solving quantum many-body problems in the
weak-coupling limit. It is quite often the first port of call in a scientist’s arsenal when tackling
the quantum many-body problem. The goal of weakly perturbative methods for the AIM is to
approximate ⌃(i!n) analytically with diagrammatic expansions in Coulomb repulsion U/t for
(t is the hopping term in the Hubbard model):

G�1
0 (i!n) = ⌃(i!n) +G�1(i!n). (30)

Weak coupling expansions in U/t up to second order, O(2), were successfully used for the
AIM [1] to capture the main features of the Mott transition at strong coupling in the nonpertur-
bative regime. This only applies at half-filling, and can be attributed to the simple form of the
the atomic Green’s function in the t/U ! 0 limit being proportional to U2 [1]. Nonetheless,
iterative perturbation theory (IPT) is extremely useful for generating solutions for the AIM at
low computational cost, in spite of the parameter regimes where the solution can be be quali-
tatively wrong. Specifically, the second order perturbation of ⌃(i!n) at inverse temperature �

and half-filling is given by,

⌃IPT (i!n) = ⌃1(i!n) +⌃2(i!n)

=
U

2
+ U2

Z �

0

d⌧ei!n⌧G2
0(⌧)G0(�⌧), (31)

where ⌃1,2(i!n) consist of the non-skeleton O(2) representations of the self-energy. Iterating
over 30 with the above form of the self-energy is the foundation of the IPT theory, that suc-
cessfully captures the Mott transition. Higher order diagrams can also be readily incorporated

5.16 Cedric Weber

where k is the index for the bath level, m is the index for each orbital/spin. This entails minimis-
ing a distance between the Weiss field and the parameterised impurity Green’s function obtaine
in equation (28), using a cost function:

�2[✏k, Vk] =
n=ncX

n=0

An|GAnd(i!n : {✏k, Vk})� G0(i!n)|
2. (29)

For using ED as a solver for DMFT, it is common practice to weight the cost function towards
smaller imaginary frequencies by using a prefactor An ⇡ 1/i!2

n. This avoids fitting cost on the
asymptotic regions of the Green’s function, which are known analytically, but instead provides
a good solution in the low energy regime.
Once a set of ✏k, Vk has been identified, the calculation proceeds as a standard brute force matrix
diagonalisation by scanning quantum sectors of the AIM (either total spin Sz or numbers of up
and down particles). The focus in DMFT-AI is however reversed: one can limit the database to
the large ensemble of parameters ✏k, Vk which are tractable with typically 6, 7 or 8 bath sites,
such that the solution of the AIM remains exact without the need for iterative solvers (Lanczos,
Arnoldi, ....) and the computational cost reasonable. We hence limit ourselves to a large but
finite set of corresponding hybridisation function that will be used to train the neural network.
We now turn to the discussion of the fast and approximate solvers. Perturbation theory is a well-
known and successful diagrammatic method for solving quantum many-body problems in the
weak-coupling limit. It is quite often the first port of call in a scientist’s arsenal when tackling
the quantum many-body problem. The goal of weakly perturbative methods for the AIM is to
approximate ⌃(i!n) analytically with diagrammatic expansions in Coulomb repulsion U/t for
(t is the hopping term in the Hubbard model):

G�1
0 (i!n) = ⌃(i!n) +G�1(i!n). (30)

Weak coupling expansions in U/t up to second order, O(2), were successfully used for the
AIM [1] to capture the main features of the Mott transition at strong coupling in the nonpertur-
bative regime. This only applies at half-filling, and can be attributed to the simple form of the
the atomic Green’s function in the t/U ! 0 limit being proportional to U2 [1]. Nonetheless,
iterative perturbation theory (IPT) is extremely useful for generating solutions for the AIM at
low computational cost, in spite of the parameter regimes where the solution can be be quali-
tatively wrong. Specifically, the second order perturbation of ⌃(i!n) at inverse temperature �

and half-filling is given by,

⌃IPT (i!n) = ⌃1(i!n) +⌃2(i!n)

=
U

2
+ U2

Z �

0

d⌧ei!n⌧G2
0(⌧)G0(�⌧), (31)

where ⌃1,2(i!n) consist of the non-skeleton O(2) representations of the self-energy. Iterating
over 30 with the above form of the self-energy is the foundation of the IPT theory, that suc-
cessfully captures the Mott transition. Higher order diagrams can also be readily incorporated

DMFT.AI 5.17

into this approach, to provide further corrections, but the complexity rapidly increases with the
diagrammatic order, limiting the scope manually correcting this approach.
Practically, this amounts to replacing 31 with

⌃(i!n) = ⌃1(i!n) +⌃2(i!n) +⌃3(i!n), (32)

where ⌃3(i!n) encapsulates all of irreducible third-order processes allowed, coming at an ad-
ditional computation cost due to calculating the integrals associated with the higher-order di-
agrams and their additional interaction vertices. IPT is a good example to illustrate the data-
driven approach outlined in these notes: the neural network that we will discuss below learns
the error obtained in IPT and provide a highly non-linear solution in a multi-dimensional space
to account for ⌃n(i!n) with n > 2, absent in standard IPT.
There are of course other approaches than neural networks that deals with corrections beyond
second order perturbation theories, and out of half-filling. For instance the Non-Crossing Ap-
proximation (NCA) is the lowest order strong-coupling perturbative method that sums up all
diagrams without crossing hybridisation lines. In this scheme the propagator of the impurity is
mapped to integro-differential Volterra equation that is solved for the strongly-coupled form of
the self-energy in equation (30).
Both NCA, IPT, and the exact-diagonalisation solver with a very small number of bath sites
(typically zero, also known as Hubbard-1, or with Nb = 1, 2, 3 bath sites) represent a valid
ensemble of approximate solvers which all introduce a negligible overhead in terms of calcula-
tions, and also all need corrections for providing quantitatively accurate solutions of the AIM,
covering both the weak- and strong-coupling limits in the phase-space of the AIM. Finally, we
note that those solvers are tractable and can also provide solutions in both real and matsubara
frequencies, but we’ll limit the discussion in a first instance for the imaginary time formalism
hereafter.

2.3 Data representation

The construction of a high-quality database of training samples is of key importance for any
data-driven approach. Specifically, there must be sufficient representative samples, such that
after the training process the inference process will produce the most likely outputs. Strate-
gies for generating databases in machine learning are key for the success of any data-driven
approach, and require great care in identifying robust and well thought strategies.
Before presenting the database construction at great lengths, we first need to view the AIM
from a data-science perspective. Bearing this in mind, we look at the AIM from a black box
perspective, and regard it only in terms of its inputs and outputs. In doing so, the AIM merely
provides a relation between input X = {x1, . . . ,xNS} and output samples Y = {y1, . . . ,yNS},
where NS is the number of database samples or images.
We limit our discussion to the single-orbital AIM, which is completely described by the set of
parameters {U,W, ", �, V }, where U is the Hubbard U parameter, W is the half-bandwidth of
the bath-states, " is the impurity on-site energy, � is the inverse temperature and V characterises

Reference approximate model correction ML:   Learn S3 ,  not S
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Fig. 7: Depiction of the maximally connected feed-forward artificial neural network used to
generate solutions of the Anderson Impurity Model to produce a model output GM(⌧) or GM(l).
In the schematic, there is 1 hidden layer with 5 neurons and the output layer has 5 neurons.

in accordance with the backpropagation method. This procedure is then repeated until GM is
found with weights ↵ that minimise C(X,Y,↵).
It is important to keep in mind the number of parameters in the model g↵(xi) so as to avoid
potential over-fitting scenarios. For the neural network presented in Fig. 7 the total number of
parameters N↵ can be determined by the following equation,

N↵ =
X

l

(N l
NN

l�1
N + 1), (41)

where N l
N are the number of neurons in layer l. For example, if there are 20 neurons in the

input and hidden layer, 100 neurons in the output layer and 200 is the length of the input vector,
then the total number of parameters of the network broken down per layer is given by:

N↵ = 20(200 + 1)| {z }
input layer

+20(20 + 1)| {z }
hidden layer

+100(20 + 1)| {z }
output layer

= 6540|{z}
total

. (42)

The value of N↵ is pertinent when considering sources of data over-fitting, as it should not ex-
ceed to the total number of feature observations in the database. In addition to what determines
the number of weights in the neural network, the the following series of adjustable parameters
have an effect on its performance - these are usually referred to as hyperparameters:

• Learning rate: step-size update for the weights of the network.

• Mini-batch size: the number of samples after which the neural network weights are
updated.
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{1, . . . , 10}, in addition to W 2 {1, . . . , 10} and " 2 {�1, . . . , 1}, then the various combina-
tions of U,W, " result in metals or insulators. Take for instance if {U,W, "} = {8, 2, 0} then
the result is insulating, and if {U,W, "} = {2, 8, 0} the result is metallic. In Table 1 we clarify
the notation for the Approximate solvers ED-[1,2,3]. ED-1 means solving the AIM with one
bath site only, and hence results in a truncated approximation to the exact ED solution of the
AIM (which in this case uses 4 bath sites). We note that these latter ED solvers are significantly
faster than the ED solution obtained at large cost for Nb > 6, due to the exponential increase of
the Hilbert space. Of course the latter are themselves approximate solutions, similar to IPT or
Hubbard-I, and the large error induced by the finite size effects of the bath discretisation. We
note that interestingly the machine learning framework does act in this respect as an Hilbert
space extrapolation tool, inferring information on small Hilbert spaces that remains pertinent
for larger dimensions.

U (eV) {1, . . . , 10}
Nbath, ✏i, Vi 4
W (eV) {1, . . . , 10}
" {�1, . . . , 1}
� (eV�1) {1, 2, 5, 10, 20, 50}
Nsamples 10,000
S Hubbard-I, IPT, NCA, ED-[1,2,3]

Table 1: Parameter selection for the database of AIM solutions shown in Fig. 9 where
{pi, . . . , pf} denotes that a parameter is randomly selected from this interval [pi, pf ]. U is
the Hubbard interaction, Nbath stands for the number of bath sites, W is the Half-bandwidth, "
is the electron on-site energy, � is the inverse temperature, Nsamples is the number of database
entries, and S denotes the total ensemble of approximate quantum solvers used in the ML ap-
proach. ED-[1,2,3] denotes the exact diagonalisation solver with respectively 1, 2, 3 bath sites.

Furthermore, in Fig. 9 we show the distribution of all chosen parameters for the 10, 000 samples
in the database corresponding to � = 20 eV�1. As expected, {U,W, "} are distributed evenly,
Nb = 4 is constant as the number of bath-sites is not changed, and {✏i, Vi} are chosen by
normalising to W . While the illustrated database is not the only one that could be considered,
it is not a special choice. For all other databases we analysed the distribution of parameters
behaves similarly to the � = 20 eV�1 case presented.
We review the strength and weaknesses of the Hubbard-I, IPT and NCA solvers for represen-
tative samples of the database against the corresponding exact diagonalisation results using the
solver of Ref. [?] at tempartures � = {1, 20, 50} eV�1 shown in Figure (??). The latter pro-
vide valid approximations of the AIM in different limits (Hubbard-I and IPT are good in the
weakly hybridised limit, NCA is a good approximation for stronger interactions). In general,
the Hubbard-I, IPT and NCA solvers are however in quantitative and qualitative disagreement.
For example, the Hubbard-I solver indicates for highly hybridised AIM an insulating solution
when in reality the system is metallic. Nevertheless, we emphasise that this behaviour is ex-
pected and welcomed, since the end-goal is to systematically correct for the error between the
approximate and exact solutions.
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Fig. 9: Typical statistical distribution of the Anderson Impurity Model parameter space for a
database for � = 20 eV�1, Nbath = 4 with 10,000 entries.

3.5 A Neural Network Impurity Solver

The very first step to training a machine learning model is the hyperparameter grid-search
over its independent parameters using tensorflow [24]. Specifically, for our neural network we
coarse-grain the number of epochs to 20, set the inverse temperature to � = 1 eV�1 and scan
across all combinations of parameters in Table 2. Ultimately, 401 different neural networks are
trained and the combination of parameters with the minimum cost function ⇠ 10�6 is given
by that combination of parameters shown in the ”Optima” column of Table 2. Additional fixed
parameters in the grid search are: evenly spaced time grid, Hubbard-I, IPT and NCA solvers as
inputs xi to the neural network as they all require minimal computational resources in compar-
ison to the ED methods, no data augmentation, and the T4 imaginary-time transformation from
Fig. 8. It is noteworthy that either increasing the complexity of the network, i.e. increasing its
depth beyond 1, or increasing the learning rate to an order beyond 10�2 has detrimental effects
on the minimisation of the cost function. Practically, it would be computationally prohibitive to
perform this grid search for every � and their additional free-parameters. In what follows, all
networks use the optimal values as specified in Table 2 and use an 80/20 cross-validation split,
i.e. 80% training data and 20% validation data.
We propose a collection of data scaling transformations of the input and output data which
improve the training of the neural network in the imaginary-time and Legendre bases. Fig. 10
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Hyperparameter Range Optima
⌘ [0.0001, 0.0002, 0.001, 0.01] 0.0002

Mini-batch size {4, 8, 16, 32, 64} 8
Optimiser {Adamax, Nadam} Nadam

Activation functions {elu, relu, tanh } tanh
Hidden Layers {1, 2, 3, 4} 1

Table 2: Hyperparameter grid-search over the neural network parameters with a fixed number
epochs = 20 and � = 1 eV�1

presents the validation loss for these scenarios, for � = 1 eV�1. For the Legendre basis the
effect of data transformations is quite siginificant, as shown in Fig. 10a. Here we see that by
applying a tanh-type Legendre transformations that the final value of the loss can be improved
by at least 2 orders of magnitude, reduced from 10�4 to 10�6. We expect the effect of this
transformation to by enhanced for larger values of � (lower temperatures), where the range
of Gl can greatly exceed the value of unity, and therefore necessitates the application of an
appropriate data transformation. At higher temperatures (i.e lower �), the Legendre coefficients
are often bounded close to unity, and so the neural network is less sensitive to the untransformed
input as compared to lower temperatures.

Fig. 10: Validation loss for the Legendre basis transformations at � = 1 eV�1. The transfor-
mations applied on the database lead to different figures of merit for the network predictions.

In Figure (11) we show the value of the cost function when trained in the Legendre basis using
the T1/2 data transformation. We observe for the training in the Legendre basis that higher
temperatures are more amenable to the training procedure and that including more approximate
solvers increases accuracy of the final validation loss. Therefore, we see that by executing
suitable basis transformations which are supplemented by a multitude of different approximate
solvers then the accuracy of the overall predictive quality of the neural network can be improved.
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this behaviour. For the Legendre basis, it is clear that the unscaled data is not normalised.
Fortunately, by applying a tanh function this can readily be achieved. In the example shown,
we see the first anti-symmetric component of the Green’s function, G1, is scaled to be much
closer to G0 and G2, the either-side symmetric components. As stated above for the ⌧ basis, the
dependence of training the model is also assessed as a function of these transformations.
Moreover, we emphasise that to recover the physical Green’s function it is necessary to apply
the relevant inverse transformation T

�1, which are tabulated in Fig. 8.

Fig. 8: Scaling transformations for a G(⌧) and b Gl

3.3 An error correction approach for solving DMFT

Here we present results that pertain to the machine learning framework outlined above. We
begin with a discussion of the different aspects of the generated databases, and this is followed
by detail on the training of an artificial neural network with those generated databases. We con-
clude by illustrating how the generated data-driven solver is able to capture the Mott transition
in the half-filled single-band Hubbard model the using DMFT scheme presented above.

3.4 Database of solutions for the Anderson Impurity Model

Using the procedure outlined the previous section we generate a database of size Ns = 103

at inverse temperatures of � = {1, 2, 5, 10, 20, 50} eV�1 over the parameter ranges indicated
in Table 1 for discrete sets of bath parameters. The range of temperatures chosen represent
the high-temperature and intermediate temperature limits, whereby the features of the Green’s
function are smoother, and hence our choice of the range. Each database entry constitutes a
random combination of all parameters in Table 1. The parameters chosen cover a range of
physical features, for example the Hubbard U is uniformly randomly sampled over the range
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Fig. 11: Cost function for the Legendre mesh for different inverse temperatures � using as input
the approximate solvers Hubbard-I, IPT and NCA.

We note that production of high quality data on larger values of � requires a larger number of
imaginary time slices or Legendre coefficients.

3.6 A data-driven approach to the Mott transition

The motivation behind developing the data-driven impurity solver is to alleviate DMFT calcu-
lations from the intensive computational burden imposed by Exact Diagonalisation and Monte
Carlo methods. In Fig. 12 we illustrate how the neural network solver, used in a DMFT cal-
culation, can predict the Mott transition at � = 20 eV�1, W = 1.0 eV (at half-filling). This is
compared with the equivalent exact CTQMC results.
For each value of U , both solvers are run for 30 iterations to a self-consistent solution. As
U is increased the Mott transition occurs at U/D ⇡ 4 6, consistent with other calculations in
the literature [1], up to a factor of 2 due to the choice of of D = 2eV . We emphasise that
the network uses approximate solutions as its input during its cycle, for which it predicts the
error-free corrected output instantly. By contrast the CTQMC has to be run long enough to
mitigate its statistical error bars. This proof-of-concept calculation highlights the power of the
data-driven method for a prototypical strongly correlated system, where the solver runs nearly
instantaneously, without any significant overheads.

4 Conclusion and code availability
We reviewed neural networks as a data-driven framework that can readily be trained for pro-
viding solutions of the Anderson impurity model. This provides an impurity solver capable of

data augmentation :  combining 
approximate solvers

Idea: use a neural network to learn the error between the true 
AIM solution and an approximate solution. 

1

2

3

Build a database of Anderson Impurity Model approximate and exact solutions

Train the neural network 

Perform the DMFT cycle with the Neural Network solver

NN Input generation
3rd order perturbative approximation

The database consists of 5000 AIM solutions

NN Output generation
Exact Diagonalistion/CTQMC

Parameters

correlation energy 

hybridisation 
impurity energy
temperature

Exact solutions 
validation : testing the network



Results Adaptive tau mesh learning loss functions

Target solution = ED-4 (4 bath sites) 
Database size: 10,000 samples

Validation data: 1,000 samples

Neural Network

Training data: 9,000 samples

• Fully connected  
• 2 layers  
• 51 neurons per layer  
• Tanh activations   
• Learning rate = 0.0002 
• Batch size = 8  
• Adaptive tau mesh = 51 
• 90/10 data split

ED-1, ED-2, ED-3, IPT, NCA, HI
Impurity solvers:

Beta (inverse temperature)
1, 2, 5, 10, 20, 50 
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Hubbard model : Coulomb repulsion U

One band crossing the Fermi level 

tunneling/transfer integral “t”  

Hilbert space 4N, simple theory, but hard to solve. 

Metal to insulator transition: 

U<<1: paramagnetic Metal                       

U>>1 : Mott insulator 

too simple but contains most of the 
physics 45

93

U

t 

Figure 5.1: A schematic of the Hubbard model for a square lattice. The on-site potential energy
(U) and the hopping energy (t) are shown schematically.

5.2.2 Hubbard model

The Hubbard model is used to describe the nature of a strongly interacting sys-
tem of electrons. Here, the physical picture is of a generic lattice for the transport
of electron with two energy scales namely: the on-site potential energy (U), which
describes the energy cost for any occupancy different from the allowed occupancy
number and the hopping energy (t), which gives the energy required for an electron
to hop from one lattice site to the neighboring lattice site. It is possible to develop
subtle variations in the model to describe systems with slightly different behavior. A
schematic of the Hubbard model is shown in figure 5.1. Earlier, we employed the non-
interacting electron picture and used the Boltzmann transport theory earlier to derive
the transport coefficients for semiconductors and metals. In the case of strongly cor-
related materials, many-body interactions are present rendering the non-interacting
picture irrelevant. Instead, we need to employ Kubo formalism.[189] The finer de-
tails of the derivation of the transport coefficients particularly, thermopower is given
elsewhere.[188, 33] It is also instructive to note that the derivations here are applicable
only at the high temperature limit, where U ! kBT ! t. The thermopower formula
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DMFT: good at describing the destruction of coherent 
quasiparticles (small QP coherence scale, short lifetime) near Mott 
transition
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Hallmark of the Mott transition, quasi-particle weight

Test of NeuraNet on Bethe lattice at half-filling :  Full DMFT iteration until 
convergence

5.30 Cedric Weber

Fig. 12: CTQMC and Neural Network solvers used for a DMFT prediction of the quasiparticle
weight Z as a function of U at � = 20 eV�1 and W = 1.0 eV for the single-band half-filled
Hubbard model on a Bethe lattice.

capturing the Mott transition using DMFT for the Hubbard model.
So far this approach remains robust at higher temperatures using approximate solutions results
in consistently reliable results. We anticipate that improved results at lower temperatures could
be attained by extending this method to larger databases or more compact representations of the
Green’s function.
The code discussed in these notes, coined Data driven Dynamical Mean field Theory (D3MFT)
is available on GitHub at http://github.com/zelong-zhao/d3mft. For the installation of this pack-
age, please make sure that you have Anaconda manager installed on your system, then simply
run ./install.sh d3mft. Once installed, there are different examples in examples/ which can be
run.
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12

Figure 12: The resultant spectral functions as computed
with the Neural Network solver for values of U = 3 eV
and U = 8 eV, � = 20 eV�1 and W = 1.0 eV using the
Pade method for analytical continuation.

data-augmentation techniques through exploiting physi-
cal symmetries, is the most effective route to minimising
the overall error of the network’s cost function. Never-
theless, using the raw untransformed datasets in either
of the two bases can still yield impressive predictive ca-
pabilities, often in better agreement with the exact so-
lution over the approximate solvers. The network shows
a strong dependence on the temperature at which the
database is built for as well as the approximate solvers
used. We find that training at higher temperatures using
approximate solutions results in consistently reliable re-
sults. We anticipate that improved results at higher tem-
peratures could be attained by extending into the inter-
mediate representation [47], which is currently the most
compact representation of the Green’s function available.
However, we also mention that since the entire protocol
is a supervised learning method, it implicitly depends on
the quality of the exact solution obtained. Therefore, the
quality of the data-driven solver produced at the end is
limited by this and will always rely on the precision of
the exact model that is used.

A natural extension to the single-band results pre-
sented here is to generalise the method for a multi-orbital
system. This will enable material-specific calculations to
be undertaken rather than model Hamiltonians. How-
ever, the extension to multi-orbital physics, especially for
realistic materials, must take into account various pro-

cesses that arise from the Slater-Kanamori representa-
tion, such as Hund’s coupling. Furthermore, this aspect
means that the simplicity of the perturbative solutions
is lost, which will have an effect on correcting their er-
rors in the training process. Additional extensions for
this machine learning based approach includes a system-
atic study of doping, temperature and magnetism for the
single-band Hubbard Model. To achieve this, the low-
temperature prediction capabilities of the method need
to be improved. Notwithstanding these considerations,
we expect our proposed framework will be a valuable in
stimulating efforts in this direction, and ultimately com-
plement the ongoing research efforts to devise fast and
accurate solvers for the AIM so that DMFT calculations
can be applied to a much broader class of problems that
are out of reach to current methods.
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Software download and testing

Github link :  https://github.com/zelong-zhao/
KCL_ml_dmft

Code development: Evan Sheridan 
(@phasecraft) and currently maintained/
developed further by Zelong Zhao (@KCL)

Linux : installation via conda

questions, pull request or contribute ->

zelong.zhao@kcl.ac.uk
cedric.weber@kcl.ac.uk

Zelong Zhao
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What’s next ? 

1. Feature layers, variational encoders : Compress information by using 
diminishing hidden layers (alternative to Legendre representation)

2. Geometrical conformation : use geometrical constraints on Green’s function, 
e.g. convex, smooth, angles etc… Inspired from image classification

3. Dynamic database :  super-perturbation theory, adapt automatically 
approximate solver entries with corrections provided by DMFT hybridisation 
(database adapt dynamically)

4. Beyond deep learning : Generative adversarial network (GAN), use another 
network to arbitrate the learning of Green’s functions - "indirect" training through 
another neural network that can tell how "realistic" the input seems, for instance to 
discriminate between the choice of approximate solvers



Conclusions
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Digital design - a need for accelerated many body 
calculations / engines  

Data driven approaches - error correction 
techniques 

Scope for very large speed-up and opens up new 
possibilities (material screening, MD, …) 

Work in progress - feature layers, VAE, …

Q&A
Thank you!


