Data-driven approaches and machine learning as DMFT solvers

Cedric Weber

King's College London

Juelich, October 2022

School of natural science Department of Physics

KCL group members

Top-bottom, left-right:

A. Haque, C. Weber, Y. Wei, F. Jamet Z. Zhao, E. Plekahnov, C. Lupo, E. Sheridan E. Chachkarova, H. Lee, T. Tse, D. Banerjee

External partners and funding agencies

4

Outline

Introduction

- Data-driven models
- AIM and ML
- Mott transition
- Conclusion

Introduction -

aims and motivations

Computational modelling

- Eniac First programmable computer (US), Electronic Numerical Integrator and Computer (1940s)
- 30 tons and including 17,468 vacuum tubes.

Emergence of quantum modelling

 Rapid progress with central architectures Cray 1

Titan, Guangzhou (2014)

- But .. Most importantly <u>progresses</u> <u>in algorithmic</u>
- Fast Fourier Transform: N² to log(N)
- Divide and conquer

Size	DFT	FFT
10	800	166
100	80000	3321.93
1000	8e+06	49828.9
5000	4e+08	307193
10000	8e+08	664386
50000	4e+10	3.90241e+06
100000	8e+10	8.30482e+06
500000	4e+12	4.73289e+07
1000000	8e+12	9.96578e+07

\bigcirc

Quantum wavefunction

1 atom, 10 electrons

We are looking for a solution of the type of a wave function for many electrons:

$$\Psi(x_1,x_2,\ldots,x_N)$$

The problem is easy to write down ... but the solution ...

Storage required:

 $x \rightarrow 10 \times 10 \times 10 = 1000$ data

10 electrons $\rightarrow 1000^{10} \text{ data} \rightarrow 10^{30} \times 16 \text{ bytes}$

Density functional theory

- Stoichiometry / Geometry
- Structure optimization
- Accuracy test and validation
- Properties (spectroscopy, thermal/mechanical, electronic, ...)

Until recently

Where of course some characters are real and some are imaginary

High Throughput & Automation

Accelerates and automates material screening for desired properties

DFT & machine learning, different strategies

Predicting energetics and forces from direct sampling, large compositional space for small molecules where accuracy matters

Facebook / Carnegie collaboration, OC20 database for catalysis

Global theme: data sharing & community driven

Finding the exchange functional with machine learning & non-local functional for correlation

Cite as: J. Chem. Phys. 153, 034702 (2020); doi: 10.1063/5.0005084 Submitted: 17 February 2020 - Accepted: 22 June 2020 -Published Online: 15 July 2020 Patrick Rowe,¹ Volker L. Deringer,² Piero Gasparotto,¹ Cabor Csányi,² and Angelos Michaelides¹ Cabor AFFILIATIONS ¹Thomas Young Centre, London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London, Gower Street, London, WCIE 66T, United Kingdom ¹Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OXI 3QR, United Kingdom ¹Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OXI 3QR, United Kingdom ¹Department of Chemistry, University of Cambridge, Trumpington Street, Cambridge CB2 IPZ, United Kingdom ¹Department of the 3CP Special Topic on Machine Learning Meets Chemical Physics. ¹Author to whom correspondence should be addressed: angelos.michaelides@ucl.ac.uk

G Csanyi & M Michaelides groups

ML allows faster & larger

Scope and limitations

- cost ~ N³
- Length scalesTime scales

Blockers, bottlenecks and challenges for ML-DFT:

- 1. *compositional material space* is vast
- 2. Learning functionals challenging: *complex nature of Kohn-Sham functionals*
- 3. In DFT total energies (or other *traced quantities*) are meaningful
- 4. *Various codes and functionals*, database to adapt for each implementation, inter-operability
- 5. ML model for DFT won't better DFT issues for *self-interaction and electronic interactions remain*

Plane-waves basis sets	
VASP	commercial ^a
Quantum Espresso	GPL
CASTEP	commercial ^b
ABINIT	GPL
CP2K ^d	GPL
CPMD	free
ONETEP	commercial
BigDFT	GPL
Atom-centered basis s	ets
Gaussian	commercial
GAMESS	free
Molpro	commercial
SIESTA	GPL
Turbomole	commercial
ORCA	free ^c
CRYSTAL	commercial ^b
Q-Chem	commercial
FHI-aims	commercial
Real-space grids	
octopus	GPL
GPAW ^e	GPL
Linearized augmented	l plane waves
WIEN2k	commercial
exciting	GPL
FLEUR	MIT

Machine learning and correlated materials

(for DMFT & DFT+DMFT see lectures Prof. *Vollhardt*, *Werner*, *Held* & *Lichtenstein*)

Anderson impurity model: Hamiltonian representation

$$\begin{aligned}
H_{\text{AIM}} &= \sum_{\alpha,\beta} t'_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} + \sum_{\alpha,\mu} (\theta_{\alpha\mu} c^{\dagger}_{\alpha} a_{\mu} + \text{H.c.}) + \sum_{\mu}^{N_{b}} \varepsilon_{\mu} a^{\dagger}_{\mu} a_{\mu} \\
G_{\text{full}}(i\omega_{n}) &= \frac{1}{i\omega_{n} - T} \\
& \text{bath imp} \\
T &= \begin{pmatrix} t' & \theta \\ \theta^{\dagger} & \varepsilon \end{pmatrix} \text{bath} \\
& \text{imp}
\end{aligned}$$
T is the full hopping matrix, bath and impurity 18

Weiss field

$$\boldsymbol{G}_{\text{full}}(i\,\omega_n) = \frac{1}{i\,\omega_n - \boldsymbol{T}}$$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}^{-1}$$

B₁₁=G_{imp}

 $A_{11} = \omega - t$ $A_{12} = A_{21}^{\dagger} = \theta$ $A_{22} = \omega - \varepsilon$

Weiss field

$$G_{\text{full}}(i\omega_n) = \frac{1}{i\omega_n - T}$$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}^{-1}$$

Inverse condition:

$$A_{11}B_{11} + A_{12}B_{21} = \mathbf{1}$$

$$B_{21} = -A_{22}^{-1}A_{21}B_{11}$$

$$\left(A_{11} - A_{12}A_{22}^{-1}A_{21}\right)B_{11} = \mathbf{1}$$

$$A_{11} = \omega - t$$
$$A_{12} = A_{21}^{\dagger} = \theta$$
$$A_{22} = \omega - \varepsilon$$

Weiss field

$$G_{\text{full}}(i\omega_n) = \frac{1}{i\omega_n - T}$$

$$(A_{11} - A_{12}A_{22}^{-1}A_{21}) B_{11} = 1$$

$$A_{11} = \omega - t$$

$$A_{11} = \omega - t$$

$$A_{12} = A_{21}^{\dagger} = \theta$$
Weiss field
$$\Delta(\omega)$$

$$A_{22} = \omega - \varepsilon$$

<u>hybridisation matrix Δ </u>: "dynamic transfer between impurity and bath"

Range of AIM parameters and energy scales - example of Bethe lattice

- Bethe lattice, semi-circular DOS with half bandwidth D
 (DOS from -D to +D)
- local impurity GF:

$$G(i\omega_n) = \frac{2}{(\pi D)^2} \int_{-\infty}^{\infty} d\epsilon \frac{\sqrt{D^2 - \epsilon^2}}{i\omega_n - \epsilon} \Theta(D - |\epsilon|)$$

- discretized GF approximation: $\mathcal{G}_0^{-1} = i\omega_n + \mu - \sum_{i=1}^{N_b} \frac{V_i^2}{i\omega_n - \epsilon_i},$
- **D** Bounds for database: $V \in [V_{\min}, V_{\max}]$ $\epsilon \in [\epsilon_{\min}, \epsilon_{\max}]$
- \square Range of parameters (V^2 and ε scale with bandwith):

$$\sum_{i} V_i^2 = D^2/4 \qquad \qquad \frac{\max[\{\epsilon_1, \dots, \epsilon_N\}] - \min[\{\epsilon_1, \dots, \epsilon_N\}]}{2D} = 1.$$

ML for DMFT, advantages:

- 1. *compositional AIM space* is moderate ~ 20-100 parameters
- 2. *Various codes and implementations of DMFT*, but low entry-cost to adapt-change solvers, inter-operability
- 3. ML model for DMFT will provide *improvements beyond-DFT*
- Learning Green's functions facilitated in some limits, e.g. *high* temperature, weak-coupling or atomic limits
- We have fast solvers for generating Green's functions, we only need to provide good models for *corrections to known approximations*
- 6. AIM exponential wall *large benefit and speed-up*
- 7. DMFT iterations are *resilient with respect to errors, high accuracy not always critical*
- 8. AIM solutions might be applicable to several close combinations of *structure and stoichiometry (structural relaxation, doping & pressure phase diagrams, phonons, ...)*

ML for DMFT - learning solutions of DMFT with regression kernels for the Hubbard model

Input

		Accepted	Collections	Authors	Referees	Search	Press	Abou
Mach	Machina learning for many body physics: The case of the							
Ande	erson imp	urity mo	del	ay priye			uic	
Louis-Fra	ancois Arsenau	lt. Aleiandro	Lopez-Bezanill	la. O. Anato	le von Lilienf	eld, and Andre	ew J. Millis	
Phys. Re	v. B 90 , 155136	– Published	31 October 20)14				
Article	References	Citing Ar	ticles (99)	PDF	HTML	Export Citation	,	
							_	
>								
>	ABS	FRACT						3
>	ABS	TRACT e learning met	hods are applied	I to finding th	e Green's fund	ction of the And	erson impur	ity mode
>	ABS ⁻ Machine a basic	FRACT e learning met model system	hods are applied of quantum mar	I to finding th ny-body conc	e Green's fund densed-matter	ction of the Ander physics. Different	erson impur ent methods	ity mode s of
>	ABS Machine a basic parame is found	FRACT e learning met model system trizing the Gre t to be superio	hods are applied of quantum mar en's function are r due to its limite	I to finding th ny-body cond investigated ad number of	e Green's fund densed-matter l; a representa coefficients a	ction of the Ander physics. Differe- tion in terms of I nd its applicabili	erson impur ent methods Legendre po ity to state o	ity mode s of olynomia of the art
>	ABS ⁻ Machinu a basic parame is found method	FRACT e learning met model system trizing the Gre I to be superio s of solution. T	hods are applied of quantum mar en's function are r due to its limite The dependence	I to finding th ny-body cond investigated ad number of of the errors	e Green's fund densed-matter ; a representa coefficients a on the size of	ction of the Ande physics. Differention in terms of I and its applicabili the training set	erson impur ent methods Legendre po ity to state o is determin	ity mode s of olynomia of the art ed. The

Inputs: information to be learned, vectors: hybridisation function (tau or Legendre) Outputs: ML prediction, vectors: DMFT iterations are

Descriptor D (Problem to be solved): input function + few scalar parameters (U & chem.pot.)

 $f(z) \rightarrow \mathbf{f} = (f_1, f_2, \dots, f_N)_{output}$

: Interpolate solutions using Kernel Ridge Regression

Limitation : <u>one database per model</u> (... and material)

Brief introduction to neural networks

Literature

- Andrew Ng class on machine learning (open access course <u>https://</u> <u>www.andrewng.org/courses/</u>) stepping stone to dive into the field
- 2. *Physics-based Deep Learning* (arxiv.org/abs/ 2109.05237) Focus on deep learning.
- 3. *Kieron Burke: Machine Learning in Materials Science and Electronic Structure Theory* (<u>https://</u> <u>www.youtube.com/watch?</u> <u>v=vceNTbOGU-4&t=282s</u>) covers regression, classification, outliers ...
- 4. .. many more!

[Submitted on 11 Sep 2021 (v1), last revised 25 Apr 2022 (this version, v3)]

Physics-based Deep Learning

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, Kiwon Um

This digital book contains a practical and comprehensive introduction of everything related to deep learning in the context of physical simulations. As much as possible, all topics come with hands-on code examples in the form of Jupyter notebooks to quickly get started. Beyond standard supervised learning from data, we'll look at physical loss constraints, more tightly coupled learning algorithms with differentiable simulations, as well as reinforcement learning and uncertainty modeling. We live in exciting times: these methods have a huge potential to fundamentally change what computer simulations can achieve.

Comments: PBDL v0.2, available online at: this https URL
Subjects: Machine Learning (cs.LG); Computational Physics (physics.comp-ph)
Cite as: arXiv:2109.05237 [cs.LG]
(or arXiv:2109.05237v3 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2109.05237 (3)

♥ WIEN

Kieron Burke: Machine Learning in Materials Science and Electronic Structure Theory

ML and neural network

Neural networks: a subset of machine learning techniques, itself part of the larger scope of AI

What is machine learning: multi-step process to provide predictions based on previous observations

- 1. Dataset
- 2. Representation of datas (possibly classification into features)
- 3. Problem to solve (materials property)
- 4. Learning algorithm (compare the model with the dataset)
- 5. An inference process to make predictions

Step 0: Problem

Supervised learning - linear regression

Model with two variables

x₁: weight x₂: battery capacity

-> Predict : mileage

Vehicle List				
Vehicle weight (Kg)	Battery Capacity (kWh)	Mileage (MPGe)		
1000	54	108		
1500	81	103		
2000	108	98		
2500	135	93		
3000	162	88		
3500	189	83		
4000	217	78		

We want a good *model* for the dataset, we choose two parameters (*weights*) and a constant (*bias*):

$$h(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \qquad \longrightarrow \qquad h(\mathbf{x}) = \sum_{i=0}^d \theta_i x_i$$

(sake of notations, we add the variable $x_0=1$)

How can we find the parameters θ ? We minimise a "distance" between model and dataset (or *cost function*):

$$J(\theta) = \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Minimising the cost functions (steepest descent)

Minimum of cost function will provide a model to predict mileages for *unknown* battery capacity and vehicle weights (*inference*)

Initial guess for θ_j and iterate by steps in directions that decrease the cost function (following derivatives or steepest gradients)

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \quad \longleftarrow \quad \frac{\partial}{\partial \theta_j} J(\theta) = (h_{\theta}(x) - y) x_j$$

 α : arbitrary parameter (*learning rate*) $\alpha >>1$: optimisation 'jumpy' $\alpha <<1$: large number of steps required

Iterative process:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

Changes in parameters according to the "error"

No changes / update when model is accurate.

Neural networks - perceptron model, two neurons model

Classification task - class 1 or 0

Two parameters dataset (same as battery, but now instead of mileage we predict whether commercially viable or not):

Training set			
x_1	x_2	outcome	
0.8	0.3	1	
0.4	0.1	0	

Find coefficients w to obtain model for the outcome:

$$egin{array}{lll} z &= 0, & ext{if} & \sum\limits_{i=1}^n x_i \omega_i \leq heta \ z &= 1, & ext{if} & \sum\limits_{i=1}^n x_i \omega_i > heta \end{array}$$

θ is *threshold* value

Neu.u model

J., .wo neurons

Training set			
x_1	x_2	outcome	
0.8	0.3	1	
0.4	0.1	0	

Correction to account for error, weights update:

Iterate until convergence

$$\Delta \omega_i = \alpha \left(t - z \right) x_i$$

$$\uparrow \qquad \uparrow$$
Model
Training set

$$\Delta \omega_i = \alpha \left(t - z \right) x_i$$

Training set

Input & *fully connected layer* (=perceptron model)

Addition : intermediate neuron middle layer (*hidden layer*)

Generalisation of learning formula - for each sample in training set calculate contribution to *cost function*, sum over entire training set (N samples):

Regression cost function

$$\mathcal{C} = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \hat{y}_i \right)^2$$

single value neuron for anivariate supervised reactin **Neural networks** a network of σ_i with many intermediate evaluations of σ_i whe **prop** (**agation**) of x_i with many intermediate evaluations of σ_{i} , h_i^4) $+b_i^L$. Layer 1 $\frac{1}{k}$ Layer 2 Layer 3/ Layer All is well h_i^L but now that there are up to the $x_i \dots b_i^{L-1}$ (2.78)connections between Fisperts and outputs, a feed-forward neural network. An input vector is prop how can we update weights after, the cost or "hidden layers", triggering the activation function i in layer j. This process parametrises a model encapsulated in the output function is evaluated? single value neuron for univariate supervised learning or multiple neur supervised learning. perceptron model: simple relation between inputs & weights, hidden way or complication $x_i^{\text{Layer 1}}$ with many intermediate evaluations of Evaluate activation function in each layer $\left\{ \sum_{k} w_{ik}^{Lh_{i}^{l}} = \left(\sum_{k} w_{ik}^{$ *h is a nested function*: $h_i^L = \sigma^L \left(\sum_{k} w_{ik}^L \sigma^{L-1} \left(\sum_{i} w_{ik}^L \sigma^{L-2} [\dots x_i \dots] + b_i^{L-1} \right) + b_i^L \right)$

Steepest gradient, minimise cost function with respect to weights and biases:

$$w_{jk}^l \to w_{jk}^l - \eta \frac{\partial C}{\partial w_{jk}^l}, \qquad b_j^l \to b_j^l - \eta \frac{\partial C}{\partial b_j^l},$$

Deep learning for the Anderson impurity model

Data representation

Green's function (Gimp or Weiss field) represented in imaginary time

Absorbing temperature dependence: $x(\tau) = \frac{2\tau}{\beta} - 1$ [-1, +1]

Compact representation of Green's function, polynomial support basis (Legendre or Chebyshev):

$$G^{(k)}(\tau) = \sum_{i \ge 0} P_i^{(k)}[x(\tau)]G_i^{(k)}$$

Data preparation: $G(\tau) = G^{S}(\tau) + G^{AS}(\tau)$ $\int_{G^{S}(\tau)} \int_{\frac{l \ge 0}{\beta}} \frac{\sqrt{2l+1}}{\beta} P_{l}[x(\tau)]G_{l}$ $G^{S}(\tau) = \sum_{\substack{l \ge 0 \\ \text{odd}}} \frac{\sqrt{2l+1}}{\beta} P_{l}[x(\tau)]G_{l}$

Each contribution *can be learned separately*, asymmetric is naught away from half-filling

Particle-hole symmetry - allows *augmenting database* at no cost: $G^{e}(\tau) = G^{h}(\beta - \tau)$

Activation functions for DMFT

Mapping/transforming input data, example Legendre coefficients:

	\mathcal{T}_l	\mathcal{T}_l^{-1}
\mathcal{T}_0	G_l	G_l
\mathcal{T}_1	$\tanh(G_l)$	$\tanh^{-1}(G_l)$
\mathcal{T}_2	$-\tanh(G_l)$	$-\tanh^{-1}(G_l)$

Negative and positive entries not treated

on same footing - activation functions not symmetric in general

From physical coefficients to intermediate representation layer (reversible transformation)

Helpful to map inputs to a scale suitable for *activation functions* (and avoids network being dominated by large weights)

Learning corrections to known approximations

Instead of predicting Green's functions of the AIM for wide range of parameters, we learn the error or corrections of known approximations to the exact result

less ambitious - but requires fast solvers

Library of solvers for ML : Hubbard-I (H1), Iterative perturbation theory (IPT), Exact diagonalisation (Nb~2,3,4) (ED-Nb)

ML : model for corrections to known approximation

Solvers used individually, or *collectively* (input and output vector x m_{solver})

Motivation: combining approximations obtained from different limits, interpolation

Cost function:
Set of exact solutions of AIM

$$C(\mathbf{X}, \mathbf{Y}, \boldsymbol{\alpha}) = \frac{1}{N_s} \sum_{j=1}^{N_s} [\mathbf{y}_j - g_{\boldsymbol{\alpha}}(\mathbf{x}_j)]^2$$
Set of approximations of AIM
Set of approximations of AIM

$$Training set: ED with Nb=8$$
(or CTQMC)

$$Model that provides corrections to known approximated solutions 39$$

Learning corrections to known approximations

Dyson equation : $G_0^{-1}(i\omega_n) = \Sigma(i\omega_n) + G^{-1}(i\omega_n)$

Learning self-energy = *learning corrections from free GF*

Physically insightful : we know the free GF analytically

But not meaningful for the network : offers a generalisation, learn corrections to an effective theory as a starting point, any theory valid.

Absorbs steep behaviour in self energies in the reference theory. Example, IPT:

$$\Sigma^{IPT}(i\omega_n) = \Sigma^1(i\omega_n) + \Sigma^2(i\omega_n)$$
$$= \frac{U}{2} + U^2 \int_0^\beta d\tau e^{i\omega_n\tau} G_0^2(\tau) G_0(-\tau)$$

correction ML: Learn Σ^3 , not Σ

$$\Sigma(i\omega_n) = \Sigma^1(i\omega_n) + \Sigma^2(i\omega_n) + \Sigma^3(i\omega_n)$$

Neural networks for AIM

Database ~ 10'000

Parameter range:

U (eV)	$\{1,\ldots,10\}$		
$N_{\text{bath}}, \epsilon_i, V_i$	4		
W (eV)	$\{1,\ldots,10\}$		
ε	$\{-1,\ldots,1\}$		
β (eV ⁻¹)	$\{1, 2, 5, 10, 20, 50\}$		
N _{samples}	10,000		
S	Hubbard-I, IPT, NCA, ED-[1,2,3]		

Generate random parameters for training set, here with ED and Nb=4.

Training : 80% of database

Validation : 20% of database

Provide mean to test the network on reference data that aren't include into the training set (inference)

Hyperparameter gridsearch - optimising the network

data transformation : transforming inputs in adequate format for activation

data augmentation : combining approximate solvers

 τ

42

Results Adaptive tau mesh learning loss functions

Target solution = ED-4 (4 bath sites) Database size: 10,000 samples Training data: 9,000 samples Validation data: 1,000 samples

Beta (inverse temperature)

1, 2, 5, 10, 20, 50

Impurity solvers:

ED-1, ED-2, ED-3, IPT, NCA, HI

Neural Network

- Fully connected
- 2 layers
- 51 neurons per layer
- Tanh activations
- Learning rate = 0.0002
- Batch size = 8
- Adaptive tau mesh = 51
- 90/10 data split

Data-driven approach to the Mott transition

Hubbard model : Coulomb repulsion U

$$H_{Hubbard} = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

One band crossing the Fermi level

tunneling/transfer integral "t"

Hilbert space 4^N, simple theory, but hard to solve.

Metal to insulator transition:

U<<1: paramagnetic Metal

U>>1 : Mott insulator

too simple but contains most of the physics

Hallmark of the Mott transition, quasi-particle weight

Test of NeuraNet on Bethe lattice at half-filling : Full DMFT iteration until convergence

Software download and testing

Github link : <u>https://github.com/zelong-zhao/</u> KCL_ml_dmft

Code development: Evan Sheridan (@phasecraft) and currently maintained/ developed further by Zelong Zhao (@KCL)

Linux : installation via conda

questions, pull request or contribute ->

zelong.zhao@kcl.ac.uk cedric.weber@kcl.ac.uk

Search or jump to	Pull requests	Issues Marketplace Explore
읍 zelong-zhao/KCL_n	nl_dmft (Private)	③ Watch 2
<> Code ① Issues 11	Pull requests 🕑 Actions	🗄 Projects 🖽 Wiki 🛈 Security 🗠 In
្រំ main 👻 វិ branch	⊘0 tags	Go to file Add file - Code -
ZZ updated		578afeb 3 days ago 🕚 134 commits
Document	updated	12 days ago
ML_dmft	updated	3 days ago
ML_models/RF	pytorch train added to bin	2 months ago
bin 📄	updated	3 days ago
dist	updated	2 months ago
💼 example	example updated for G to G	traning 4 months ago
torch_bin	dataset method updated	10 days ago
C README.md	random walk in parameters	2 months ago
🗋 clean.sh	done	21 days ago
🗋 files.txt	updated	2 months ago
install_pytorch.sh	added patch.sh	29 days ago
patch.sh	error corrected	29 days ago
🗋 setup.py	ML database deleted	4 months ago
🗋 update.sh	added patch.sh	29 days ago

Evan Sheridan

Zelong Zhao

What's next ?

1. *Feature layers, variational encoders* : Compress information by using diminishing hidden layers (alternative to Legendre representation)

2. **Geometrical conformation** : use geometrical constraints on Green's function, e.g. convex, smooth, angles etc... Inspired from image classification

3. *Dynamic database* : super-perturbation theory, adapt automatically approximate solver entries with corrections provided by DMFT hybridisation (database adapt dynamically)

4. *Beyond deep learning* : Generative adversarial network (GAN), use another network to arbitrate the learning of Green's functions - "indirect" training through another neural network that can tell how "realistic" the input seems, for instance to discriminate between the choice of approximate solvers

Conclusions

Digital design - a need for accelerated many body calculations / engines

Data driven approaches - error correction techniques

Scope for very large speed-up and opens up new possibilities (material screening, MD, ...)

Work in progress - feature layers, VAE, ...

Thank you!

