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1 Introduction

The properties of quantum materials, such as 3d transition-metal oxides, are largely governed
by the collective behavior of their strongly interacting electrons and the material’s response is
subject to a complex interplay of the local spin, charge, and orbital quantum degrees of free-
doms [1]. This manifests itself in various properties such as Mott metal-to-insulator transitions,
different types of magnetic order (ferro-, ferri-, and anti-ferromagnetic), orbital order, and un-
conventional superconductivity [2, 3]. These diverse properties have been extensively studied
in bulk materials over the past decades and are of great importance for both, fundamental and
applied solid state research.
In recent years, technological advances have enabled the synthesis of heterostructures of quan-
tum material oxides with ultra-thin layers and atomic layer precision, thereby providing differ-
ent opportunities to manipulate correlated electron systems [4, 5]. Research is primarily aimed
at rational materials design through the targeted realization of interfacial reconstructions. The
investigation of model systems with specific reconstructions, the generation and understanding
of new materials properties, in particular the stabilization of technologically interesting phases
under ambient conditions are central motivations of the research area [6–8].
In heterostructures, electronic and magnetic phases that are inaccessible in the bulk can be sta-
bilized and controlled by biaxial strain induced by epitaxy with a single-crystalline substrate,
electronic confinement, interfacial doping, or magnetic interactions [9]. The success of these
efforts depends on a detailed understanding of the interfacial interactions and reconstructions in
these artificially layered materials, which often span only a few atomic layers. The presence of
only a very small volume of the material of interest poses a problem for many solid-state spec-
troscopy methods, such as neutron scattering, muon spin relaxation, or optical spectroscopy,
which are normally used to study bulk materials.
In this lecture I like to introduce soft X-ray spectroscopy, with special focus on X-ray absorption
and resonant elastic X-ray scattering and reflectivity, as a non-destructive spectroscopic method,
which provides important insights into the physics and chemistry of transition-metal oxide het-
erostructures. As these methods require soft X-rays with variable energy and polarization, it is a
synchrotron technique. The rather shallow probing depth of soft X-ray spectroscopy compared
to, e.g., neutron scattering, which is sometimes considered a disadvantage in the study of bulk
materials, proves to be extremely advantageous for the study of epitaxial heterostructures that
are typically not much thicker than 100 nm.

2 Spin, charge, orbital, and lattice degrees of freedom in
epitaxial multilayers

A large number of 3d transition-metal oxides with strongly-correlated spin, charge, and orbital
degrees of freedom crystallize in the perovskite structure with composition ABO3, where B is
a transition-metal ion, i.e., Sc – Zn, and A either an alkaline-earth (Mg – Ba), or a rare-earth ion
(La – Lu) (Fig. 1(a)). This relatively simple, pseudo-cubic structure allows to combine different
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Fig. 1: When combining different transition-metal oxide perovskites, ABO3 (a), in an epitax-
ially strained heterostructure (b), different lattice (c), charge (d), orbital (e), and magnetic (f)
reconstructions can occur at their interfaces.

compounds in a cube-on-cube fashion in an epitaxial heterostructure (Fig. 1(b)). In this way, an
artificially layered material can be created with emergent phases that are not present in the bulk
phase diagrams of the individual components.

In fully strained heterostructures, the different B cation positions have a defined in-plane re-
lationship resulting from the adaptation of the lattices at growth temperature. For cube-on-
cube growth of the perovskite structure on a cubic substrate, exerting isotropic, biaxial strain
(Fig. 1(b)), the simplest modification of the unit cell is a tetragonal distortion. This then leads to
elongation (green material) or compression (blue material) of atomic distances along the growth
direction, depending on the elastic properties of the material. However, the structural degrees
of freedom in transition-metal oxide perovskites allow far more complex distortions, which can
be understood in good approximation as tilts and rotations of rigid octahedra around the three
cubic axes [10], as indicated in Fig. 1(c). These are determined by the lattice mismatch with the
substrate, its crystal symmetry, the choice of the facet, and the connectivity conditions at the
interfaces, and thus affect the lengths and angles of the B-O bonds. Therefore, it is important
to consider structural distortions in the design, and to study them in detail in the grown het-
erostructures. Ab-initio theories such as density functional theory (DFT) have been shown to
provide good predictions for structural modifications (see, e.g., Ref. [11]). Lower-energy scale
electronic reconstructions, such as interfacial charge transfer or charge order can occur between
multi-valence B ions (Fig. 1(d)). In addition, orbital polarization due to electronic confinement
or reduced hopping across the interface due to a change in chemical bonding (Fig. 1(e)), as well
as magnetic reconstruction, e.g., due to interfacial exchange coupling, can occur (Fig. 1(f)).
The examples in Fig. 1 sketchily show different possible reconstructions, but in section 4 I will
give concrete examples for different spin, charge, and orbital reconstruction mechanisms in
heterostructures that our group has synthesized and studied in the past years.

The combination of theory, either by considering minimal models that capture the essential
properties and ab-initio calculations that can investigate small, but relevant material differences,
together with different experimental spectroscopy methods has proven to be a very powerful ap-
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Fig. 2: Scanning transmission electron microscopy (STEM) images of YVO3-LaAlO3 super-
lattices. (a) Low magnification image, (b,c) High-resolution images for two different crystal-
lographic projections, revealing small structural distortions. (e) STEM-EELS maps show the
elemental order in the layers. Reproduced from Refs. [19, 18].

proach to predict and describe the properties of new material combinations. In addition, tremen-
dous progress in the growth of epitaxial complex oxide heterostructures with atomic-layer pre-
cision by pulsed-laser deposition [4, 12, 9], magnetron sputtering [13, 14], and molecular-beam
epitaxy [15–17] has been made. Nowadays it is possible to grow superlattices with altering
layers of only a few unit cells (about 1 nm) of two materials with very high structural and
chemical precision. As an example the scanning transmission electron microscopy (STEM) im-
ages of a YVO3-LaAlO3 superlattice, grown by pulsed-laser deposition on a NdGaO3 substrate
is shown in Fig. 2. The low-magnification annular dark-field STEM image, shown in Fig. 2(a)
covers a lateral range of more than half a µm and the superlattice structure, i.e., the six-times
repeated stacking of four unit cells of YVO3 and eight unit cells of LaAlO3, is highly ordered.
The images with atomic resolution Fig. 2(b,c), which were taken in different projections with
reference to the orthorhombic NdGaO3 substrate structure, reveal structural distortions in form
of tilts and rotations also in the superlattice layers. These structural modifications were repro-
duced by DFT+U calculations [18]. Based on the DFT-relaxed structures, the layer-resolved
band structures were then calculated and brought into agreement with the orbital occupations
determined in the experiment [19] (see section 4). In general, STEM is an important experimen-
tal method to study the structural distortions in heterostructures. In addition, electron energy
loss spectroscopy (STEM-EELS) allows to study the element specific electronic structure with
atomic resolution. However, typically only small spatial volumes are studied (often only a
cross-section of 50 nm × 50 nm of a sample of 20 nm thickness is analyzed). Furthermore,
the preparation of the electron-transparent TEM-lamella and high-energy electron beam dam-
age can be critical issues for oxides, where the oxygen content is variable and often crucial for
physical properties such as conductivity and magnetism.

Non-destructive X-ray spectroscopy, which includes X-ray absorption, resonant elastic and in-
elastic scattering, provides important additional and complementary experimental information,
which I will discuss in detail in the following.
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Fig. 3: Schematic of X-ray absorption (XAS; left) and resonant elastic X-ray scattering pro-
cesses (REXS; right).

3 Soft X-ray spectroscopy

This lecture deals with the study of the spin, charge and orbital degrees of freedom of 3d

transition-metal oxides. Therefore, we focus on the soft X-ray range as the relevant transition-
metal L3,2, oxygen K, and the rare-earth M5,4 absorption edges fall into this energy window.
The latter often occupy the A-cation sides in the ABO3 perovskites and can lead to interesting
exchange interactions between the localized Lanthanoide 4f and the transition-metal 3d mo-
ments (see section 4 and [20]). The soft X-ray range typically covers X-ray energies in the
range from 50 to 1500 eV, corresponding to a wavelength range of 413–8.3 Å. We are inter-
ested in the spectroscopic information contained in the absorption fine structure that arises from
dipole transitions of photo-exited core electrons to empty final states (Fig. 3). Fermi’s golden
rule provides the transition rate up to second order perturbation theory [21]

W =
2π

~

∣∣∣∣∣〈f | Hint | i〉+
∑
n

〈f | Hint | n〉〈n | Hint | i〉
Ei − En

∣∣∣∣∣
2

δ(Ei−Ef ), (1)

where | n〉 denotes the intermediate (virtual) state and the sum runs over all possible intermedi-
ate states with energy En. The delta function reflects energy conservation and only depends on
the energy of the initial and final state, and not on the energy of the virtual, intermediate states.
The interaction Hamiltonian of X-rays with matter can be approximated by [22, 23]

Hint =
e

mc
p · Â +

e2

2mc2
Â · Â, (2)

where m denotes the electron mass, p the electron momentum, and Â is the vector potential
which characterizes the radiation field

Â(rk, t) ∝
∑
i,k

1√
k
εi

(
ak,i(t)e

ikr + a†k,i(t)e
−ikr
)
. (3)

The first term in (2) is linear in creation ak,i (emission) and annihilation a†k,i (absorption) of a
photon (with polarization vector ε), i.e., it describes processes with changes of ±1 photons and
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Fig. 4: Schematic of the scattering geometry in a REXS experiment. θ is the scattering angle
and kin and kout are the momentum vectors of incident and scattered waves, respectively. The
scattering vector is defined by q = kin−kout. The components of the polarization vectors
are defined parallel π (π′) and perpendicular σ (σ′) to the scattering plane for the incident
(scattered) beam. Absorption can be measured in fluorescence yield (FY) by a photodiode, or in
total electron yield (TEY) by the drain current. REXS intensities are detected by a photodiode
moving with the 2θ angle.

therefore is relevant for the description of X-ray absorption spectroscopy (XAS). In the second
term in (2) the vector potential is applied twice, i.e., it describes processes that change the
number of photons by ± 2, or 0. That is the case in the scattering process (photon-in-photon-
out). Resonant X-ray scattering thus is sensitive to the intermediate state (or the final state of
the absorption). When the energy is conserved in the scattering process, i.e., ~ωin = ~ωout,
we refer to it as being elastic and call it resonant elastic X-ray scattering (REXS) or in the
case of ~ωin 6= ~ωout to resonant inelastic X-ray scattering (RIXS). In the following we only
consider elastic scattering. Restricting our self to electric dipole transitions (E1-E1 transitions
in Ref. [24]) the interaction Hamiltonian simplifies toHint ∝ ε̂′rε̂, where r is the dipole operator
and ε̂ and ε̂′ are again the polarization vectors of the incident and scattered light, respectively.
They can be expressed by the orthogonal basis vectors perpendicular ε̂σ and parallel ε̂π to the
scattering plane, ε̂ = σε̂σ + πε̂π, and accordingly for the one of the scattered photon (see sketch
in Fig. 4).
In a crystal, each lattice site acts as a scattering center for the incident X-rays and is described
by the atomic scattering amplitude

F (E,q) = f0(q) + f non-res
mag + f ′(E) + if ′′(E). (4)

Here q = kin−kout is the scattering vector. The first term in (4), f0(q) ∝ Zr0, is the so-called
Thomson scattering, which is due to elastic scattering by a free charged particle. It arises from
the scalar, isotropic polarizability of the scatterer, f0(q) = f(q) ε̂′ · ε̂, where f(q) is the form
factor, i.e., the Fourier transform of the particle’s charge distribution. The second term is the
non-resonant magnetic scattering amplitude f non-res

mag that contains the interaction between the
magnetic field of the incoming wave with the spin of the electrons. As this term is usually
small compared to the resonant terms, we will neglect it in the following. The last two terms
in (4) are the so-called energy-dependent anomalous dispersion corrections f ′(E) and f ′′(E).
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The imaginary part f ′′(E) is proportional to the XAS cross section, as we will see in the next
section, and both terms, f ′(E) and f ′′(E), determine the energy-dependent scattering studied in
REXS. In a single-crystal diffraction experiment, photons are scattered with individual atomic
scattering amplitudes Fi(E,q) at different lattice sites i at position ri in the lattice and interfere.
The scattering cross-section then is proportional to

∣∣∑
i e
iq·riFi(E,q)

∣∣2 and in the most general
form F (E,q) is a 3×3 tensor with complex entries

F̂ =

 F xx F xy F xz

F yx F yy F yz

F zx F zy F zz

 . (5)

3.1 X-ray absorption and dichroism

The X-ray mass absorption coefficient µ(E) is defined by the Lambert-Beer law that describes
the transmitted intensity through a material of density ρ and thickness d

I = I0e
−µ(E)ρd. (6)

The atomic absorption coefficient is energy dependent and in the region between the absorption
edges a continuous function, µ(E) ∝ Z4/E3, where Z is the atomic number. This means
that X-rays with higher energy penetrate deeper. The inverse 1/µ(E) is called the attenuation
length as it describes the X-ray penetration depth into the material measured along the surface
normal, where the intensity of the X-rays falls to 1/e of the value at the surface. Soft X-rays
are strongly absorbed by matter, and typically the attenuation lengths in materials are less than
0.5 µm.1 This means that the experiments have to be carried out in ultra-high vacuum and
transmission measurements are not possible for most samples, except for powders or ultra-thin
films on transparent membranes such as SiN. However, the decay products of the absorption
process can be used to estimate the absorption. There are two principle decay processes of
the created core hole: (i) emission of a fluorescence photon, and (ii) Auger decay, followed by
secondary processes that emit electrons. The absorption cross section is then proportional to
the (total) fluorescence yield (FY) that can be measured by using a photodiode that is placed
at a position where elastic scattering is minimal (see Fig. 4). Alternatively, and optimally in
addition to FY, the so-called total electron yield (TEY) can be measuring, e.g., by the drain
current. When the photoelectrons leave the sample surface, a (small) current is generated by
grounding the sample (Fig. 4). Both methods have advantages and disadvantages. Total FY
measurements are bulk sensitive, but saturation effects in the vicinity of strong absorption lines
can falsify the relative intensities in the fine structure. There are very interesting alternative
measurement methods, which are, however, experimentally more complex [25]. The problem
of saturation is less relevant in TEY measurements [26], but this type of detection is rather
surface sensitive, because it depends on the effective escape depth of the photoelectrons, which
is often less than 5 nm, and can vary strongly [27]. Since we focus on thin-film structures,
which are usually thinner or about 5 nm thick, surface sensitivity is not a critical issue.

1The X-ray attenuation length for different solids can be looked up, for example, at https://henke.lbl.gov.
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Fig. 5: L-edge XAS spectra of a series of 3d transition-metal oxides. Taken from Ref. [29]

By varying the energy, which can be done with high resolution (a typical energy band width is
∼100 meV) and over a wide energy range at a synchrotron beamline, one can observe the above
discussed absorption edges, when the energy of the incoming X-rays match the intra-atomic
transition energies (see the X-ray data booklet [28]). These transitions have well separated
energies, which is the reason for the element sensitivity of the method. As mentioned above,
we will focus on electric-dipole transitions, since they have the largest cross section. In forward
direction q ≈ 0, the imaginary part of the scattering amplitude is related to the absorption cross
section

IXAS ∝ −
1

E
Im
[
ε̂ · F (E)

]
∝
∣∣〈f | ε̂ · r | i〉∣∣2 δ(Ei−Ef−~ω). (7)

Only transitions are allowed, which fulfill the dipole selection rules: ∆L = 1, ∆m = ±1. It
is common to use spectroscopic notation to label specific transitions depending on the involved
core level, i.e., the K-edge corresponds to 1s to, e.g., 2p or 4p, the L3,2 to 2p → 3d, 4d, ...,
and the M5,4 edge to 3d → 4f, 5f orbital transitions, where the indices refer to the spin-orbit
split core levels p1/2, p3/2, and d5/2, d3/2, respectively. For the energy of K-edges EK ≈
Z(Z−1)×13.6 eV provides a good approximation. Here Z is the atomic number of the element
and the Z−1 term accounts for the screening of the nuclear charge by the second 1s electron.
The L- and M -edges have a more pronounced fine structure. Here separated absorption lines
are observed due to the spin-orbit splitting of the core levels, e.g., the two L3,2 lines arise
from the spin-orbit splitting of the 2p3/2 and 2p1/2 core levels (see Fig. 3). Their separation
accordingly increases in the 3d transition-metal row from Sc to Zn as Z increases (Fig. 5). The
XAS fine structure measured with higher energy resolution then provides detailed information
about the valence state of a particular ion, its spin state, orbital occupation, as well as spin and
orbital contribution to the magnetic moment and possible antiferromagnetism. For this purpose,
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however, the fine structure must be examined closely, as its interpretation depends on whether
the final states are more localized (like f -states) or delocalized (like p-states). The d-states,
which are of particular interest to us here, lie somewhere in between, i.e., they are neither fully
localized nor fully itinerant [1], which is precisely the cause of the strong correlation of local
degrees of freedom that gives rise to their interesting physics.
While K-edge spectra corresponding to transitions from the single 1s core level to rather de-
localized, empty p states, reflect the site- and symmetry projected unoccupied density of states
and are often sufficiently described by mean-field approaches, e.g., local density approximation
(LDA) or DFT, the M edges of the rare-earth ions have strong, sharp peaks near the edges that
show strong atomic multiplet effects. These multiplet effects show when a core other than a
1s is present in the initial state and because of the strong 4f localization, since then there is
significant overlap of core and valence wave functions in the ground state. This also applies for
transition-metal L edges, where the multiplet structure, which is hardly screened in the solid as
compared to the core potential, determines the spectral shape and influences the L3,2 or M5,4

branching ratio [30]. Different valence states show in a shift of spectral weight of the absorp-
tion lines. For anions (cations) with different valence state the absorption edge is shifted to
lower (higher) photon energies, because of the lower (higher) ionization potential. Information
on orbital occupations and magnetic moments can be obtained from the polarization-dependent
fine structure. To describe the fine structure of L or M edges, many-body ligand-field cluster
calculations have been shown to be particularly successful to determine important parameters,
such as the crystal field splittings in NiO and spin states in cobaltates from the comparison with
the experimental data [29]. When deriving a minimal tight-binding model from downfolding
the DFT band structure to localized Wannier orbitals, important hopping parameters to the lig-
and ions can be derived in an ab-initio fashion from DFT(+U ) [31]. X-ray dichroism, that is
the dependence of X-ray absorption on the polarization of the incident photons, occurs when
the spherical symmetry at the site of the atom is broken by a magnetic or (crystalline) electric
field [35]. Then the charge density around an atom becomes anisotropic. Depending on its ori-
gin and the light polarization used to detect it, one distinguishes X-ray natural linear dichroism
(charge anisotropy due to crystal field), X-ray magnetic linear dichroism (charge anisotropy
parallel and perpendicular to the magnetization axis) [36], and X-ray magnetic circular dichro-
ism [35]. In the first case, for example, the scattering tensor of an atom whose 3d states are split
by a tetragonal crystal field has unequal diagonal elements along the x and z direction

F̂ =

 F xx 0 0

0 F xx 0

0 0 F zz

 . (8)

Therefore, the linear polarization dependence of transition-metal L edge XAS provides infor-
mation on the 3d orbital occupation of the system. The intensity of polarized XAS along x, y
and z direction is proportional to the number of holes (h) in xz, yz, xy, x2−y2, and 3z2−r2

orbitals that have lobes along that direction. Sum rules allow to relate the d-orbital occupations
(h to the total, integrated intensities Ii measured with i = x, y and z linear polarized X-rays
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Fig. 6: (a) Example for natural XLD in a La2−xSrxCuO4 thin film measured in FY (taken with
permission from Ref. [32]), where the data were reproduced from Ref. [33]). (b-d) Exam-
ple for circular magnetic dichroisms measured in a iron thin film (taken with permission from
Ref. [34]).

over the entire L3,2 edge [32]

Ix =
1

2
hxy +

1

2
hxz +

2

3
hx2

Iy =
1

2
hxy +

1

2
hyz +

2

3
hy2

Iz =
1

2
hxz +

1

2
hyz +

2

3
hz2 .

(9)

For clarity, we write these for symmetric eg-orbitals x2, y2, z2, which are related to the real
wave functions as given in Ref. [29]. For 3d electron systems with fully filled t2g and partially
filled eg orbitals, the sum rules simplify, and we can directly relate the ratio of eg holes to the
integrated XAS intensities for in-plane (Ix,y) and out-of-plane (Iz) polarization

X =
h3z2−r2

hx2−y2
=

3Iz
4Ix,y − Iz

, (10)

where hx2−z2 and h3z2−r2 denote the number of holes in the dx2−z2 and d3z2−r2 orbitals, respec-
tively. Since for t2g-systems the eg-orbitals have finite hole occupations, the orbital occupations
cannot be determined directly from the measured spectra, but cluster calculations can be used,
as we will see in section 4.
The Cu-L3,2 XAS data measured by Chen et al. [33], which are reproduced in Fig. 6(a), pro-
vide a very clear example for X-ray natural linear dichroism that originates from differences in
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orbital occupation. In the parent compound (x = 0) of the high-temperature superconductor
La2−xSrxCuO4 the valence configuration of Cu is 3d9. The Cu ions are square-planar coor-
dinated by four oxygen ions, and the D4h crystal field splitting results in one hole occupying
the highest-energy dx2−y2 orbital in the ground state. The 2p core electrons can be excited to
this empty state with in-plane x or y polarization (E ⊥ c in Fig. 6(a)), but no empty states are
available for excitation with z polarization (E ‖ c in Fig. 6(a)).

X-ray magnetic circular dichroism (XMCD) is the difference in absorption spectra measured
with circular positive (σ+) and negative (σ−) polarization, and allows to study magnetism.
Again, we consider the 3d transition metal L edges, since the magnetic properties are mainly
determined by their d-valence electrons. In the absorption process, σ+ and σ− polarized pho-
tons transfer their angular momentum, ±~, respectively, to the excited photoelectron. Due to
spin-orbit coupling in the core level, which is l+s for 2p3/2 and l−s for 2p1/2, i.e., opposite in
sign, the angular momentum is in part transferred to spin momentum, and the different polar-
izations create photoelectrons with opposite spins at L3 and L2. The spin-split 3d final states
can then only be reached by excited photoelectrons with the appropriate spin. The quantization
axis is given by the magnetization direction, i.e., the maximum dichroism is measured, when
magnetization axis and photon momentum are parallel.

Considering the scattering tensor for cubic, ferromagnetic materials with in-plane aligned mag-
netization in the scattering plane, the diagonal elements are equal, but two off-diagonal elements
are non-zero and proportional to the XMCD signal measured in an absorption experiment [37]

F̂ =

 F xx iF xy 0

−iF xy F xx 0

0 0 F xx

 . (11)

Important sum rules can also be derived for circular dichroism. The sum of the integrated
intensities IL3 and IL2 of the polarization-averaged spectrum is again proportional to the total
number of d-holes (charge sum rule). Following the notation in Ref. [35], we label energy
integrals over the XMCD difference spectrum as A for the energy range of the L3 edge and
B for the L2 edge, respectively. Then the sum rules allows to quantitatively determine the
spin moment from the measured intensity A−2B, and the orbital moment is obtained from the
dichroic intensity A+B [35].

An example for X-ray magnetic circular dichroism in ferromagnetic iron is given in Ref. [34].
The spectra are shown Fig. 6(b), where intensities measured with right and left circular polarized
light (labelled with µ+ and µ−, respectively) show a clear difference. In the XMCD spectrum
(Fig. 6(c)) it can clearly be seen that this difference has an opposite sign for L3 and L2 edges.
By integrating the spectrum over the respective energy ranges and integrating the polarization-
averaged spectrum over the whole energy range (Fig. 6(d)), spin and orbital moments ofmspin =

1.98 and morb = 0.085 µB/Fe were determined from the sum rules [34].
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3.2 Resonant X-ray scattering

Resonant scattering combines information on spatial modulation from diffraction with the spec-
troscopic information provided by X-ray absorption in a single experiment [38, 23]. Resonant
scattering is element sensitive due to the strong enhancement of the cross section. Furthermore,
the strong dependence of the intermediate state on the spin, orbital, and charge configuration of
the resonant scattering centers provides access to local properties that I have already discussed
in the context of XAS. This information is contained in the energy-dependent f ′(E) and f ′′(E)

terms, which are connected via the Kramers-Kronig relation. Both, real and imaginary part are
required for the description of resonant elastic X-ray scattering (REXS). If the incident photon
energy ~ωi is very different from the resonance energy Ei−Ef of the system, we say that we
are in the non-resonant regime and assume that the scattering is largely independent of energy.
Here, however, one must be careful when analyzing scattering intensities as a function of en-
ergy, since strong, sharp intensity variation across the resonances in the imaginary part f ′′(E),
(which is proportional to the absorption cross section as discussed above) lead to broader struc-
tures in the real part. Depending on how the real and imaginary part mix for a given momentum
transfer, anomalous scattering signals can already occur for incident photon energies smaller
than those in f ′′(E). To make this point a little clearer we can look at the example in Fig. 7.
Since the fine structure is not captured by tabulated theoretical values [39, 40], the real part is
usually obtained via the Kramers-Kronig relation from the imaginary part by including mea-
sured or calculated resonance lines. The example shows the procedure for La-M5,4. These
correspond to transitions from the La 3d core electron to completely empty 4f states. There-
fore, the f ′′(E) fine structure consists essentially of two sharp Lorentzian lines (middle panel in
Fig. 7). When using the Kramers-Kronig relation, sufficient extrapolation of the data outside the
measurement range is important, since the integral runs over frequencies from zero to infinity.
Therefore, the measured or calculated absorption fine structure data are scaled to tabulated data
that are available over a wide energy range (up to 400 keV [40]). From the example in Fig. 7
it can be seen that if we choose an energy well before or in between the resonances in f ′′(E),
intensity variations in f ′ are still clearly visible, i.e., scattering signals measured even more than
100 eV away from the absorption resonance lines measured in XAS cannot generally be called
“non-resonant”. Since the REXS cross section

IREXS ∝
∑
n

∣∣∣∣〈f | ε̂ · r | n〉〈n | ε̂′ · r | i〉Ei − En

∣∣∣∣2 δ(Ei−Ef−~ω), (12)

is sensitive to the intermediate state |n〉, which is the final state in XAS, all spectral infor-
mation that can be gained from XAS, and was discussed above, is contained in the scattered
intensity. Moreover, in the REXS experiment, one sees the spatial modulation of the respective
properties due to the q dependence. To exploit this, different scan types are used to measure
the moment-, energy- and polarization-dependent scattering intensity, which then need to be
carefully analyzed, and simulations are often required to obtain quantitative information about
modulations of the orbital occupation, charge order, or direction and magnitude of the mag-
netic moments [23]. However, element-specific electronic and magnetic properties can then be
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Fig. 7: Real and imaginary part of the energy-dependent scattering factor for the compound
LaAlO3 in the energy range of the La-M5,4 absorption edge. The real f ′(E) with resonance (red
curve in the top panel) was obtained by Kramers-Kronig transformation of the experimentally
determined XAS scaled and extrapolated with the tabulated data of f ′′(E) (middle panel). The
bottom panel shows the normalized X-ray reflectivity of a 30 nm thick film of LaAlO3 on SrTiO3

substrate at two different, fixed qz values over the same energy range.

determined, especially in transition-metal heterostructures, which are not accessible with other
experimental techniques, as I will show in the examples in section 4. A disadvantage of REXS
in the soft X-ray range is the relatively limited, accessible Ewald sphere, i.e., the limitation
of momentum transfer by the wavelength of the incoming X-rays. For soft X-rays, the Ewald
sphere is in the order of 0.1 Å−1, which is sufficient to probe Bragg planes with separation of at
least 10 Å.

3.3 X-ray resonant reflectometry

X-ray reflectometry, usually measured in the hard X-ray range far away from strong resonances,
is an established method for the structural characterization of thin films and multilayers (see
sketch in Fig. 8). It is based on the simple concept of multiple reflection and refraction of ra-
diation at a surface and interfaces. In a typical experiment, the intensity of a scattered beam
R(θ), normalized to the incoming intensity I0, is measured as a function of the incident angle θ.
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Vacuum

Fig. 8: Specular scattering geometry (θin = θout, qz parallel to the surface normal) and typical
set of structural parameters used to simulated XRR data. The sketch shows an example of an
ABO3-A′B′O3 superlattice with two repetitions of the bilayer, and with energy-dependent op-
tical constants δ1,2(E) and β1,2(E). The layer thicknesses d and root-mean-square roughnesses
σ of different layers are usually fitting parameters.

In such a scattering process, a momentum q = 4π sin(θ)/λ is transferred.2 The term reflec-
tometry refers to specular scattering with θin = θout, i.e., qz points along the surface normal z
(Fig. 8). As is known from optics, when light emerges from an optically denser medium into
an optically thinner one, there is a critical angle θc (depending on the wavelength λ), below
which all incoming intensity is reflected on the surface (total internal reflection). Above θc, part
of the radiation penetrates the material, interacts and parallel beams obtain a phase difference
and interfere [41]. This results in characteristic features in the X-ray reflectivity of multilayers,
such as Kiessig fringes, superlattice peaks, and changes in slope due to surface and interface
roughness. By fitting the structures using calculated scattering factors (see Refs. [40,39]) struc-
tural parameters, such as the individual layer thicknesses and roughnesses (di and σi in Fig. 8),
can be determined with high precision. When analyzing X-ray resonant reflectivity (XRR) data
measured at energies near or at the resonances, and where one aims to determine layer-resolved
changes in the energy-dependent scattering factors, the structural parameters are kept fixed.
Since only an out-of-plane momentum transfer is considered, the layers can be treated as a ho-
mogeneous medium and the reflectivity can be described in the so-called optical approach. To
do this, we introduce the complex refractive index in the X-ray range3

2It is practical to note the conversion between wavelength λ and energy E: λ[Å] = 12398.4244/E[eV]
3In some references the refractive index is defined by n = 1−δ−iβ, consistent with an opposite sign in the

wave equation.
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Fig. 9: Example for the momentum-dependent XRR from a superlattice composed of ten rep-
etitions of a [SrVO3 (30 nm) / SrCrO3 (30 nm)] bilayer on a SrTiO3 substrate. The labels
indicate characteristic features in the reflectivity curve, such as the total thickness D, the bi-
layer thickness dSL, and possible surface roughness σ. The simulated XRR curves are shown for
X-ray energies at 8 keV, i.e., far from resonances, and close to the V-L2-resonance at 523 eV to
demonstrate the effect of the energy-dependent change of contrast from the scattering factors.
Since both materials have very similar electron densities the superlattice reflections (00l)SL
are invisible in the non-resonant data, but clearly show in the V-L2 data (see Fig. 12(a)). Note
that the (002)SL reflection is not allowed in this specific superlattice structure with identical
thicknesses of SrCrO3 and SrVO3 and no interface roughness.

n = 1− δ + iβ. (13)

At energies (E) close to the resonance edges in a material, the atomic scattering factor (Eq. 4)
shows strong variations in the energy-dependent real f ′(E) and imaginary f ′′(E) part of the
dispersion corrections. In case of forward scattering (Q ≈ 0) and negligible non-resonant
magnetic scattering fmag

non-res [42], equation (4) reduces to

F (q ≈ 0, E) = Z∗ + f ′(E) + if ′′(E), (14)

where Z∗ = Z − (Z/82.5)2.37 is the atomic number Z with a small relativistic correction [28].
The optical theorem connects the imaginary part of the scattering factor to the dielectric function
ε(E) by

f ′′(E) = − E2

2π(c~)2Np

Im
√
ε(E), (15)

where c is the speed of light, ~ the Planck constant,Np the number of photons, andE the energy
of the X-rays. Just like the F (E) (Eq. 5), ε(E) has the form of a 3×3 tensor

ε̂ =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 , (16)
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with complex entries εij = (ε1)
ij + i(ε2)

ij (i, j = x, y, z) that are related to δij and βij by
εij1 = (1−δij)2− (βij)2 and εij2 = 2(1−δij)βij . In a compound consisting of N different atoms,
δ and β are then given by the sums of atomic scattering factors weighted by the density ρ of the
material

δ(E) =
2πρr0(c~)2

ME2

N∑
j=1

Cj
(
Z∗j + f ′j(E)

)
(17)

β(E) =
2πρr0(c~)2

ME2

N∑
j=1

Cjf
′′
j (E). (18)

Here C denotes the number of atoms of type j per formula unit, M is the molar weight of
the compound, and r0 is the Thompson scattering amplitude (classical electron radius). Fur-
thermore, we know from equation (7) that f ′′(E) is proportional to the X-ray absorption cross
section IXAS. Therefore, we can combine both relations to obtain reliable resonant tensor entries
δ and β, for the different layer stacks, as shown in Fig. 7 for LaAlO3. These can then be further
modeled to obtain layer-specific optical constants, corresponding to the different reconstruction
scenarios in a given material system. These can be, for example, different, layer-dependent
orbital polarizations, as we have studied in the examples I will show in the next section 4.

Depending on the symmetry of the material, the dielectric tensor (Eq. 16), just like the scatter-
ing tensor takes on a simplified form [43]. For example, for materials with cubic, tetragonal
and orthorhombic symmetries, all non-diagonal elements are zero. Going from orthorhombic
to tetragonal and cubic symmetry, the tensor further simplifies with εxx = εyy for tetragonal
and εxx = εyy = εzz for cubic symmetries. Just as for F (E), the dielectric tensor of ferromag-
netic materials has specific, non-zero off-diagonal elements that are proportional to the X-ray
magnetic circular dichroism (XMCD). Therefore, X-ray resonant magnetic reflectivity allows
to measure magnetic moments of deeply buried atomic, magnetic layers in a multilayer [44].

4 Case studies

In the following, I will present some of our studies on complex oxide heterostructures, each with
a different type of interface reconstruction as outlined in the introductory Fig. 1, and which
we investigated using the different X-ray spectroscopy techniques presented in the previous
section. In the first example, we show how the element sensitivity of XAS can be used to
investigate an interfacial doping mechanism in a cuprate-nickelate hybrid structure. The second
example shows how linearly polarized resonant X-ray reflectometry can be used to determine
depth-resolved orbital polarization profiles in a quantitative manner. The last example shows
how resonant elastic X-ray scattering provides unique information about noncollinear magnetic
orderings and how such ordered moments can interact with other moments across interfaces.
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2 nm

(La2CuO4)m=3 /LaO/(LaNiO3)n=4

Fig. 10: Left panel: High-angle annular dark field (HAADF) STEM image of the m = 3,
n = 4 cuprate-nickelate hybrid structure grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) substrate.
Middle panel: Sketch of the bilayer structure with the composition indicated in the above label.
Right panel: Spatially-resolved elemental distribution extracted from the electron energy loss
spectra (EELS) with color code: La–green, Cu–blue, and Ni–red, respectively. Reproduced
with permission from Ref. [45].

4.1 Interfacial doping in La2CuO4-LaNiO3 hybrid structures

Layer-by-layer oxide molecular-beam epitaxy allows to grow complex oxides with atomic layer
precision. We used this technique to synthesize a cuprate-nickelate multilayer structure (Fig. 10)
and showed that these structures allow a clean separation of dopant and doped layers. The mul-
tilayer growth of La2CuO4 and LaNiO3 can only be achieved with two LaO layers separating
cuprate and nickelate blocks. This translates to an extra La3+O2− atomic layer in the bilayer
formula (La2CuO4)m/LaO/(LaNiO3)n (m,n integers), resulting in an additional charge of +1

at each interface, which we suspected to lead to a change in the nickel or copper electronic
structure. We investigated this in detail using XAS and explicitly exploited element sensitiv-
ity. The spectra measured with soft X-rays across the Cu-L3,2 and Ni-L3,2 absorption edges
are shown in Fig. 11(a,b). The measurements were performed with linearly polarized X-rays
parallel (Ix) and perpendicular (Iz) to the interfaces. While the Cu-L spectra are characteristic
of Cu2+ [46], the Ni-L edge spectrum shows signs of a mixture of Ni2+ and Ni3+. The oc-
tahedral crystal field splits the Cu and Ni 3d levels into energetically lower t2g and higher eg
orbitals. An additional elongation of the CuO6 and NiO6 octahedra along the [001] direction,
observed by STEM [45], leads to a further splitting of the eg orbitals. This is reflected in the
polarization dependence, where Ix (Iz) probes holes in the dx2−y2 (d3z2−r2) orbital. The result-
ing normalized linear dichroic difference spectrum (Ix−Iz)/(2Ix+Iz) at the Cu-L edge is very
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(c)

(b)

(a)

Fig. 11: XAS spectra measured with the polarized X-rays parallel (orange curves) and per-
pendicular (black curves) to the sample surface across (a) the Cu-L3,2 (b) the Ni-L3,2 edges
for the m=3, n=4 cuprate-nickelate hybrid structure shown in Fig. 10. In the bottom pan-
els the normalized dichroic signals (grey curves) are shown. (c) Temperature-dependent
resistivity of [(La2CuO4)m/LaO/(LaNiO3)n]l (m=1 n= 2, 3, 4, and l= 7, 10, 9) with average
formal Ni valences of 2.5+, 2.67+, and 2.75+ for n= 2, 3, 4, respectively, compared to
[(LaNiO3)n(LaAlO3)n]k superlattices with n= 2, 4 and k= 6, 3 with 3.0+ Ni valence. Taken
with permission from Ref. [45].

pronounced (Fig. 11(a) to be compared with Fig. 6(a)) and arises from a Jahn-Teller distortion
that lowers the energy of the d3z2−r2 orbital [32], leaving a hole in the dx2−y2 orbital for the
XAS final state. The Ni-L edge spectra also show linear dichroism, although less pronounced.
To quantify this effect, we used the sum rules for eg linear dichroism (Eq. 10). While DFT+U

results show X = 1 for bulk LaNiO3 with rhombohedral structure (space group R3̄c, where all
Ni-O distances are equal), we find a smaller Xav = 0.94 from XAS, corresponding to a higher
d3z2−r2 occupation on average in the LaNiO3 stacks in the hybrid structures [45]. The layer-
resolved DFT+U calculations show that the effect is most pronounced in the interface layers
(XIF = 0.84), which correlates with the stronger elongation of the interfacial NiO6 octahedra
in the [001] direction as seen by STEM [45]. The corresponding value in the central layers is
XC = 0.91.

In addition, DFT+U predicts a charge disproportionation between neighboring in-plane Ni
sites that occurs predominantly in the interface layers and causes a band gap in the density of
states of the interface layers. To test this prediction we preformed in-plane electronic transport
measurements on different hybrid structures with m=1 and decreasing LaNiO3 layer thickness
n= 4, 3, 2 (Fig. 11 (c). The temperature-dependent resistivity shows metallic behavior for n=4,
which we attribute to currents running through the inner, at most weakly disproportionated,
metallic LaNiO3 layers. When decreasing LaNiO3 from four to three monolayers, we observe a
metal-to-semiconductor transition, and finally, for n=2, a semiconducting behavior. Consistent
with this observation, DFT+U results for n=2 indicate a band gap of 0.28 eV [45]. To dis-
tinguish confinement and doping effects, we compare the (La2CuO4)m/LaO/(LaNiO3)n hybrid
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structures with [(LaNiO3)n(LaAlO3)n]k (n=2, 4 and k=6, 3) superlattices, where the nickelate
layers are confined to the same thickness, while remaining undoped (Ni3+). The latter superlat-
tices will be discussed in detail in the next section. Leaving differences in the lattice parameters
of the two systems aside, it is interesting to note that the resistivity of the LaNiO3-LaAlO3 su-
perlattice with two nickelate layers is comparable to the nickelate-cuprate hybrid structure with
four nickelate layers. This implies that only the inner two layers are conducting, as predicted
by the DFT calculations. In conclusion, our study on the cuprate-nickelate hybrid structures
showed that doped electrons are accommodated primarily in the interfacial nickelate layers,
where they induce a digital modulation of the Ni valence state and a rearrangement of the Ni-3d
orbital occupation.

4.2 Orbital reflectometry of nickelate and vanadate superlattices

The d orbital occupations and the strength of hybridization with the oxygen ligands determine
the electronic transport properties and the magnetic exchange interactions and their anisotropy,
via the Goodenough-Kanamori-Anderson (GKA) rules for superexchange [47, 48]. As pointed
out in the introductory section a common effect created at interfaces is the confinement of elec-
trons. We have studied heterostructures of two prototypical correlated oxides, Mott-Hubbard
insulting YVO3 and the negative charge-transfer systemRNiO3 (R = rare-earth ion) [49]. While
the vanadates are a 3d-t2g electron system, in the nickelate the higher-lying eg states are partially
occupied. If we consider an interface of LaNiO3 (YVO3) with a wide band-gap insulator, such
as LaAlO3, the (virtual) hopping of electrons along the Ni(V)-O-Al bond is largely suppressed,
due to the band-gap of LaAlO3, which leads to the preferential occupation of the orbitals with
lobes in the plane of the interface. In addition, the character of the Ni-O-Al or V-O-Al chemical
bond changes, which is accompanied by a change in the oxygen hybridization of the d states.
Last but not least, the modification of the local crystal fields impacts orbital polarization, as
at the interface it is expected to be different from both, the bulk as well as in layers deeper in
the stack that are further away from the interfaces. In superlattices of LaNiO3 or YVO3 with
LaAlO3, this interface is repeated several times periodically (see Fig. 2), which facilitates the
investigation by means of XRR. The modulation in the electronic structure of interface and
central layer in stacks of LaNiO3 or YVO3 is seen in so-called orbital reflectometry, where one
measures the XRR with linear polarized light. A simple calculation of the structural factors
shows this sensitivity (Fig. 12). If we consider a symmetric superlattice with the same thick-
ness of stacks of two compounds ABO3 and AB′O3 (the example in Fig. 12(a) show a (6/6)

superlattice, with six pseudo-cubic unit cell of each material), without any symmetry breaking
the even-order, (00l), l= 2, 4, . . . superlattice peak intensities vanish. If, however the electronic
structure of interface (IF) and central (C) layers are different, resulting in different scattering
factors f IF and fC due to interface reconstructions, this selection rule is broken and the intensity
becomes proportional to the difference in the scattering factors (Fig. 12(b)). The same sensi-
tivity for interface reconstructions arises in asymmetric (8/4) and (4/8) at the (003) reflection
(Fig 12(c)). We take advantage of this in orbital reflectometry and simulate the polarization-
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Fig. 12: Scattering factors for different stacking of two materials ABO3 (green) and AB′O3

(blue) in a superlattice (the shown bilayer is repeated several times). (a) In case of a symmetric
SL (dABO3=dAB′O3) the (002) reflection of the SL structure vanishes. (b) When the ABO3 in-
terface layers reconstruct, resulting in different scattering factors in interface (f IF) and central
layers (fC), the (002) reflection becomes allowed. (c) In the case of an asymmetric stacking se-
quence with (2dABO3=dAB′O3 (left) or dABO3=2dAB′O3 (right)), the (003) superlattice reflection
is most sensitive to a difference of f IF and fC .

dependent spectra, measured at fixed momentum transfer at (002) or (003) as a function of
energy over the corresponding L edges of Ni or V. To ensure a unique fitting result, we only
allow a redistribution of the dichroism in f IF and fC , so that the layer-weighted average, mea-
sured in XAS is fixed, i.e., IXAS ∝ n Im(f IF) +m Im(fC) with n, m the number of unit cells of
IF and C layers, respectively. The results of the simulations that best match the experimentally
measured XRR then provide layer-specific linear dichroism spectra that can be quantitatively
evaluated using the sum rules or cluster calculations to obtain orbital occupancies.
Since the t2g orbital lobes point between the B-O bonds, while for eg orbitals they point along
the bonds, it is interesting to systematically compare reconstructions at YVO3-LaAlO3 and
RNiO3-LaAlO3 interfaces. as I will discuss in the following. Our studies on LaNiO3/LaAlO3

superlattices showed that both, epitaxial strain and confinement effects at the interface lead to
changes in the Ni-eg orbital polarization depth profiles [50, 51]. In YVO3-LaAlO3 superlat-
tices the interface effects produce an inverted orbital polarization in the layers next to LaAlO3,
compared to the central part of the YVO3 layer stack [19].

4.2.1 Orbital polarization profiles in nickelate superlattices

The Ni3+ ion in RNiO3 with R = rare-earth ion has nominally a 3d7 electron configuration and
the octahedral crystal-field of the perovskite structure splits the atomic 3d orbital manifold into
a lower-lying triply degenerate t2g level that is fully occupied by six electrons, and a higher-
lying doubly degenerate eg level with a single electron. In bulk RNiO3 the two Ni-eg orbitals
with dx2−y2 and d3z3−r2 symmetry are equally occupied. Model calculations have shown that
the in-plane dx2−y2 orbital occupation can be stabilized by epitaxial strain and confinement in
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Fig. 13: Experimental data and simulations of XRR data of a LaNiO3-DyScO3 (4/4) superlat-
tice. (a) qz-dependent reflectivity at fixed energy: non-resonant (Cu-Kα) and resonant to Ni-L2.
(b) Linear dichroism measured in XAS. (c,d) Energy-dependent linear-polarized reflectivity at
(002) and the dichroic difference spectrum. Data reproduced from Ref. [50].

a superlattice geometry, resulting in an electronic structure similar to that of the cuprate high-
temperature superconductors [52–54]. In order to gain experimental insight on the relative
effects of strain and confinement, we have grown superlattices with four-unit-cell-thick layers
of metallic LaNiO3 and layers of different band-insulating RXO3 (R = La, Gd, Dy and X =
Al, Ga, Sc) by pulsed-laser deposition on substrates that impose either compressive or tensile
strain. Using such a symmetric superlattice geometry allows to determine depth-resolved orbital
polarization profiles in a quantitative manner by exploiting the depth-dependence of reflectivity
at momentum transfer qz close to the (002) reflection. As introduced in section 3, the XRR
analysis relies on optical constants and a structural model. For the analysis we used the software
package ReMagX [55]. The structural parameters are obtained by fitting non-resonant, qz-
dependent hard X-ray reflectivity data (Fig. 13(a)), which are then fixed in the following analysis
steps. To implement the energy-dependent fine structure across the relevant La-M and Ni-L
absorption edges, we used the measured linear polarized XAS (Fig. 13(b)) to build the optical
constants of LaNiO3 in the way shown in Fig. 7.4 Then we simulated the reflected intensity
measured with fixed qz as a function of energy (E) (Fig. 13 (c)) and its normalized dichroic
difference spectrum (Fig. 13 (d)). To this end, we considered models with different tetragonal
scattering tensors (Eq. 8) for f IF in interface layers (B), and fC in central layers (A) of the
LaNiO3 stacks, keeping the averaged value from XAS fixed. In this way, we were able to
determine the redistribution of dichroism between the IF and C layers and the layer-dependent
spectra [51]. Then we evaluated them using the sum rule for linear dichroism (Eq. 10), and
defined the orbital polarization as

P =

(
4

neg
− 1

)
X−1

X+1
,

4For superlattices with the band insulator LaAlO3 it is important to include the La-M resonances in their optical
constants (see Fig. 7), as they are very close to the Ni-L3 resonance.
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Fig. 14: Layer-resolved orbital polarization, PC and PIF , as a function of in-plane lattice
parameter aSL for LaNiO3-RXO3 superlattices, grown on different strain-inducing substrates
and with different composition of the buffer layers as indicated in the labels. The open symbols
show the orbital polarization PXAS obtained from the linear dichroism measured in XAS. Data
reproduced from Refs. [50, 51].

where neg = 4−heg is the sum of eg electrons. The nickelates are negative charge-transfer insu-
lators with a dominant 3d8L contribution in the ground state [56,49], whereL denotes an oxygen
ligand hole. Therefore the local, atomic Ni-eg orbitals have rather neg∼ 2. However, to compare
superlattices with possibly different hybridization, i.e., possibly different neg , we calculated or-
bital polarization with neg= 1 for all different compositions. This means that the orbital polar-
izations we compare in Fig. 14 can be understood as those of the extended Wannier orbitals,
which also have d-orbital symmetry. An illustration of the wave functions, obtained from DFT
calculations, and further discussion can be found in Ref. [50]. The layer-resolved orbital po-
larizations PC and PIF , together with the layer-averaged values obtained from XAS,PXAS, are
shown in Fig. 14 as a function of their in-plane lattice parameters aSL. The lattice parame-
ters have been determined by X-ray diffraction for various (4/4) LaNiO3-RXO3 superlattices
grown on substrates with different lattice mismatch. We observed a tendency in all superlattices
for the IF layers to have higher orbital polarization than the C layers with values up to 25%,
which can be attributed to the confinement effect. However, it can be seen that the strain is the
more effective control parameter (yellow line in Fig. 14), while the polarization attributed to
the confinement effect from the band insulator layers falls into a comparatively narrow band of
∼ 5% width (grey shaded area in Fig. 14).
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Fig. 15: (a) YVO3-LaAlO3 superlattices with three different stacking sequences, with (8/4),
(6/6) and (4/8) consecutive unit cells, were investigated to be as sensitive as possible to orbital
reconstructions in interface layers (modelled with scattering factors f IF) and central layers
(fC). (b) Representative qz-dependent and (c) E-dependent scans at momenta fixed to the
superlattice reflections (00l) with l = 1, 2, 3 for the (4/8) superlattice at room temperature.
Reproduced from Ref. [19].

4.2.2 Vanadates - A t2g system

To extend the methodology of orbital reflectometry to a t2g system we have studied YVO3-
LaAlO3 superlattices [19]. The compound YVO3 is a strongly-correlated Mott-Hubbard in-
sulator that shows no metal-insulator transition up to its melting point. The bulk crystallizes
in an orthorhombic crystal structure (space group Pbnm with lattice parameters ao, bo, and
co) at room temperature with a V3+ electronic configurations shown in the left of Fig. 16(b).
The low-temperature properties are governed by different orbital (OO) and spin (SO) ordered
phases, which arise from competing crystal-field and superexchange interactions. Below 200 K
C-type OO is observed, i.e., there is antiferro-orbital order in the orthorhombic abo plane, while
along co there is ferro-orbital coupling. At 115 K the onset of corresponding G-type SO, and
at 77 K a change to G-type OO and C-type SO phase was found [57]. In Ref. [19] we ex-
plored possible changes in the orbital occupations in YVO3-LaAlO3 superlattices. While the
STEM(-EELS) images shown in Fig. 2 confirmed the high quality of the superlattice structure
and the V3+ valence state, detailed X-ray diffraction characterization showed that Pbnm-type
distortions are also present in the superlattice and that its structure follows the orientation of
the substrate, i.e., the orthorhombic co axis lies in the interface planes. Accordingly, we ro-
tate the coordinate system for the t2g orbitals for better comparison with the bulk configuration
(Fig. 16(b)). To obtain the depth-resolved information, we choose three superlattice struc-
tures, with (YVO3)n/(LaAlO3)m bilayers with varying thicknesses of n= 4, 6, 8 and m= 8, 6, 4
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Fig. 16: (a) Experimental (symbols) and fitted (lines) linear dichroism profiles between two
polarization pairs for the central (C) layers of all three superlattices (top) and the interfacial
(IF) layers of the (8/4), (6/6), and (4/8) superlattices. (b) Schematic representation of the
orbital polarization for the bulk, C and IF layers of the superlattices. Taken from [19].

pseudo-cubic unit cells (Fig. 15(a)) to be maximally sensitive to interface reconstructions in the
XRR measurements (Fig. 12). We simulated the linear dichroic reflectivity (qz and E depen-
dent, Fig. 15(b,c)) for different models of the heterostructure, again with f IF and fC , but now
of orthorhombic symmetry, i.e., non-zero Fxx 6= Fyy 6= Fzz in the scattering tensor (5). This is
necessary because the t2g, dxy, dxz and dyz orbitals have pairwise lobes in the same spatial di-
rections. In comparison, in the eg system the dx2−y2 orbital with z polarization is not accessible.
By comparing the results, and then iteratively refining the model we obtained layer-resolved
X-ray linear dichroism profiles (Fig. 16(a)) that were then compared with ligand-field cluster
calculations to obtain the layer-dependent t2g-orbital polarizations (P1 and P2 in Fig. 16(b)).
As explained in section 3, the sum rules are not applicable to determine t2g occupations. The
results show that dxz and dyz orbital degeneracy is lifted in the superlattices unlike in bulk at
room temperature, the dxz-dyz polarization is inverted between the C and IF layers, and the
dxy occupation in the IF layers depends on the number of YVO3 layers (Fig. 16(b)). We also
measured the temperature dependence of the spectra shown in Fig. 15(c) and found that the
reconstructed orbital occupations are preserved down to 30 K [19].

4.3 Noncollinear magnetic order in nickel oxide heterostructures

As mentioned in the introduction, the accessible Ewald sphere in the soft X-ray region is of-
ten limiting for the study of perovskites with comparatively small lattice constants around 4 Å.
For example, the ordering vector q = (1/2 1/2 1/2) for the G-type antiferromagnetic order in
YVO3 is not accessible at energies near the V-L edge. The unusual magnetic order observed
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Fig. 17: (a) Sketch of the magnetic order and REXS scattering geometry to study the magnetic
order in LaNiO3 superlattices. The sketch shows the wave vectors of the incoming and out-
going photons (light arrows), the corresponding momentum transfer q, the incoming photon
polarization vectors εσ and επ, and the azimuthal angle ψ. (b) Scans around qmag at T = 10 K
andE= 853.4 eV for LaNiO3-LaAlO3 superlattices with (2/2) and (4/4) consecutive unit cells.
(c) Comparison between XAS and energy dependence of the magnetic Bragg intensity around
the Ni-L3 edge at ψ= 0◦. (d) Sketch of the Ni-Dy exchange interaction at the interface of a
LaNiO3-DyScO3 superlattice derived from the azimuthal dependence (e) of the scattering at
qmag, measured resonant to the Dy-M5 and Ni-L3 edge at T = 4 K. The azimuthal dependence
measured at Ni-L3 at T = 25 K corresponds to that of LaNiO3-LaAlO3 (2/2). Figures (a-c) and
(d,e) were reproduced from data published in Ref. [58] and Ref. [20], respectively.

in bulk rare-earth nickelates (R 6= La) with an ordering vector qmag = (1/4 1/4 1/4) in cubic
notation is a fortunate exception. It was first studied in NdNiO3 by REXS at the Ni-L edge
in Ref. [59]. We used REXS at the Ni-L edge to study the LaNiO3-RXO3 superlattices that
I already introduced in the previous section. LaNiO3 is the only bulk rare-earth nickelate that
is paramagnetic and metallic down to the lowest temperatures [60]. We have shown that when
this compound is grown epitaxially between RXO3 layers in a superlattice, and the thickness is
reduced to two unit cells, a magnetic order with qmag is observed [58]. Figure 17(a) shows the
scattering geometry used to access the magnetic Bragg peak at energies resonant to the Ni-L3

edge. While a magnetic Bragg reflection is observed for the (2/2) with two consecutive unit
cells each of LaNiO3 and LaAlO3, this is not the case in (4/4) superlattices with thicker layer
stacks (Fig. 17(b)). The scattered intensity is strongly enhanced at the Ni-L3 energy (Fig. 17(c))
and shows an azimuthal dependence (Fig. 17(e)) that is characteristic for a commensurate, non-
collinear magnetic order with a (↑→↓←↓)-type order of moments along the cubic perovskite
[111] direction (see sketch in Fig. 17(a)). In such an azimuthal scan, the Bragg condition is
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preserved and the scattered intensity is measured, while the sample rotates around qmag. During
this, the projection of the polarization vectors εσ and επ onto the magnetization axis is changed.
In the case of the noncollinear order in bulk nickelates, one therefore observes a π-periodic
intensity modulation as a function of ψ [59]. For superlattices that are under biaxial strain from
the substrate, the direction of the sublattice moments changes due to the changes in d-orbital oc-
cupation that controls the magneto-crystalline anisotropy via the spin-orbit coupling [58]. The
precise direction of the sublattice magnetization can be determined by simulating the azimuthal
dependence (solid lines in Fig. 17(e)). From this and the fact that we observed considerable
conductivity in the magnetically ordered state, we conclude that a spin-density wave phase is
stabilized in the epitaxial LaNiO3 superlattice, which has no bulk analogue.
In a second REXS study we examined more closely the (2/2) LaNiO3-DyScO3 superlattice,
which, as pointed out above, shows noncollinear qmag order in the Ni spin system below 100 K
[20]. Taking advantage of the element sensitivity of REXS by measuring the azimuthal depen-
dence of the scattered intensity at qmag and at energies resonant to Ni-L and Dy-M (Fig. 17(e)),
we derived the following scenario. Upon cooling below 18 K, Dy-Ni exchange interactions at
the LaNiO3-DyScO3 interfaces lead to a collinear magnetic ordering of the interface Dy mo-
ments (note the 2π-periodicity in intensity in the ψ scan) as well as a reorientation of the Ni
spins in a direction dictated by the strong magnetocrystalline anisotropy of Dy (Fig. 17(d)).
Such exchange interactions between local, paramagnetic rare-earth moments with the magnetic
order of transition-metal ions is potentially interesting for manipulating spin structures in de-
vices, as the large Dy moments provide anchoring points to external magnetic fields.
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