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1 Introduction

Coupled cluster theories are widely-used to study many-body systems in nuclear physics, molec-
ular quantum chemistry and solid state physics. This chapter introduces fundamental concepts
of coupled cluster (CC) theory and discusses its application to the electronic structure theory
problem. The present chapter serves as a primer to this topic. A more general overview of
coupled cluster theory and its applications in quantum chemistry can be found in Ref. [1]. For
an introduction to the theoretical formalism from the perspective of theoretical chemistry we
recommend Refs. [2–5]. During the past decades a large body of well-written scientific articles
and text books on coupled cluster theory has been published. Many of these can be found in the
bibliographies of Refs. [1–4].

Coupled cluster theory was first proposed by Fritz Coester and Hermann Kümmel in the field
of nuclear physics [6, 7]. Jiri Cizek and Josef Paldus introduced the method for electron corre-
lation [8, 9]. Since then, coupled cluster theory has successfully been applied to study many-
electron Hamiltonians for a wide range of systems, including atoms, molecules and even solids.
At the same time, many of the most popular model Hamiltonians including lattice Hamiltoni-
ans and the uniform electron gas have also been explored and used to benchmark the accuracy
of coupled cluster theories. It is therefore fair to say that CC theories are among the most
successful approaches to treat many-body problems in quantum physics.

2 Fundamental concepts of coupled cluster theory

A fundamental approach to solve the time-independent Schrödinger equation for many-electron
systems is based on finding accurate approximations to the true many-electron wavefunction
|Ψ〉. An important challenge of these so-called wavefunction based methods revolves around
finding a representation of the many-electron wavefunction that is at the same time compact
and accurate in describing electronic correlation effects. Here, compactness not only means
that the number of parameters used in the expansion of the wavefunction is within the limits
of the available computational resources and scales with a favorable power law with respect to
the system size. It also implies that the evaluation of the required matrix elements of quan-
tum mechanical operators can be carried out in a computationally efficient manner. Successful
wavefunction based methods typically optimize the balance between complexity in the ansatz
and efficiency in evaluating matrix elements or expectation values. In this regard, for example,
variational quantum Monte Carlo techniques achieve a good balance by combining stochastic
integration techniques with a sophisticated many-body correlation function referred to as Jas-
trow factor. As will be explained in the present section, coupled cluster methods employ an
Ansatz for the wavefunction that benefits significantly from an effective factorization of the
many-electron wavefunction that can be systematically improved.
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2.1 Hartree-Fock theory and Slater determinants

Hartree-Fock theory employs the simplest possible Ansatz to the many-electron wavefunction
that is antisymmetric under exchange of two coordinates or orbitals, as required for a fermionic
wave function. For an N -electron wavefunction in real space the Hartree-Fock wavefunction is
given by a Slater determinant constructed from one-electron (Bloch) orbitals with an appropriate
pre-factor to ensure normalization such that

ΦHF(x1, . . . ,xn) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕn(x1)

... . . . ...
ϕ1(xn) · · · ϕn(xn)

∣∣∣∣∣∣∣ . (1)

The HF determinant is constructed from a set of orthonormal one-electron orbitals, ϕi(x), that
are obtained by minimizing the Hartree-Fock energy, whereby all the coupling terms of the
Hamiltonian between the Hartree-Fock determinant and the corresponding single-excited Slater
determinants vanish, which is also referred to as Brillouin’s theorem. Here x is a compound
index of spatial and spin coordinate. In periodic systems the index i is a compound index of the
Bloch wave vector ki used to sample the first Brillouin zone and the band index ni. Hartree-
Fock (HF) theory can be regarded as a low rank tensor approximation to the many-electron
wavefunction, employing an antisymmetrized outer product of single electron orbitals to ap-
proximate the many-body wavefunction. Hence, by construction, HF theory neglects electronic
correlation effects that cannot be captured using products of one-electron functions only. For
brevity we will use to the following notation for the HF wavefunction |0〉 =

∣∣ΦHF
〉
.

2.2 The exponential Ansatz

The CC approximation is based on an exponential Ansatz for the electronic wavefunction [8, 1]
acting on a single Slater determinant |0〉,

|ΨCC〉 = eT̂ |0〉 , (2)

where the cluster operator consists of second-quantized neutral excitation operators

T̂ =
∑
µ

tµτ̂µ, tµ ∈ C (3)

with µ labeling excitation configurations. For instance, when considering only singles and
doubles excitations (Coupled Cluster Singles Doubles (CCSD)) the unrestricted CCSD cluster
operator is given by

T̂ =
∑
a,i

tai â
†
aâi +

1

4

∑
a,b,i,j

tabij â
†
aâ
†
bâj âi (4)

where the indices in {a, b, c, . . .} denote virtual or unoccupied spin orbitals and {i, j, k, . . .}
denote occupied spin orbitals. Orbitals are occupied or unoccupied with respect to the reference
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Slater determinant |0〉, which may come from a HF calculation. The excitation operators are
defined such that they create excited determinants when acting on |0〉 such that

â†aâi |0〉 =

∣∣∣∣∣ai
〉

â†aâ
†
bâj âi |0〉 =

∣∣∣∣∣abij
〉
. (5)

Note that the following equation is satisfied.

〈0| â†aâi = 0. (6)

We note in passing, that the nth-order CC ansatz including up to the nth-order excitation opera-
tor is exact for n-electron systems. One advantage of the different approximations to the cluster
operator is that they constitute a hierarchy, which starting from the one-particle HF approxima-
tion, allows for a systematic treatment of the quantum many-body effects that are captured with
an increasing level accuracy by employing CCSD, CCSDT and CCSDTQ theories. Calculated
ground state properties typically exhibit decreasing errors using higher levels of theory.
Here, we will restrict the discussion to the case of CCSD. Applying the Coupled Cluster (CC)
ansatz to the time-independent many-body electronic Schrödinger equation results in

H̄ |0〉 = e−T̂ ĤeT̂ |0〉 = ECC |0〉 (7)

where ECC is the coupled cluster energy, and we have implicitly defined the similarity trans-
formed Hamiltonian H̄ . The state |ΨCC〉 is parametrized by the coefficients tµ, which can be
obtained by projection. In the case of CCSD one projects the Schrödinger equation onto the
singles and doubles sectors of the Hilbert space

ECC = 〈0| H̄ |0〉 (8)

0 = 〈0| â†i âaH̄ |0〉 (9)

0 = 〈0| â†i â
†
j âbâaH̄ |0〉 . (10)

Equations (8–10) are a set of coupled non-linear equations in terms of the amplitudes tai and tabij
that are solved by iterative methods.

2.3 Hausdorff expansion

The similarity transformed Hamiltonian H̄ = e−T̂ ĤeT̂ occurring in the coupled cluster equa-
tions is an effective and non-Hermitian Hamiltonian, which can be expressed using the Haus-
dorff expansion

H̄ = Ĥ+
[
Ĥ, T̂

]
+

1

2!

[[
Ĥ, T̂

]
, T̂
]

+
1

3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂

]
+

1

4!

[[[
[Ĥ, T̂ ], T̂

]
, T̂
]
, T̂

]
+ · · ·

(11)
Recalling that Ĥ in second quantization is given by

Ĥ =
∑
pq

hpq â
†
pâq +

1

4

∑
pqrs

gpqrs â
†
pâ
†
qârâs (12)
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and [
â†pâq, â

†
aâi
]

= â†pδqaâi − â†aδipâq, (13)

it follows that Eq. (11) terminates exactly after the fourth nested commutator. We stress that the
set of indices {p, q, r, s, . . .} denotes both occupied or unoccupied orbitals.
Substituting the expression for H̄ in the equation for the coupled cluster energy yields

ECC = 〈0| H̄ |0〉 = 〈0| Ĥ |0〉+ 〈0| ĤT̂ |0〉 = EHF + 〈0| Ĥ
(
T̂2 +

1

2
T̂ 2
1

)
|0〉 . (14)

Note that this equation simplifies significantly using the Brillouin theorem (〈0| Ĥâ†aâi |0〉 = 0),
the fact that Ĥ can de-excite at most two electrons and due to 〈0| â†aâi = 0. Consequently, only
singles and doubles amplitudes contribute to the CC energy. If higher-order excitations in the
cluster operator are considered, their contribution to the energy is only indirect by the amplitude
equations. We note that the correlation energy is implicitly defined as the difference between
the exact ground state energy and the HF energy EHF. Similarly to the energy, the singles and
doubles amplitude equations defined in Equations (9–10) can be obtained.

2.4 Beyond the ground state

A common way to obtain excited states based on the CCSD theory is through diagonalizing
the similarity transformed Hamiltonian H̄ in a suitable subspace of the Hilbert space [10].
We present the neutral variant of this approach, also called electronically excited equation of
motion, for which the number of electrons is conserved. In consequence, restricting from now
on again the analysis to singles and doubles excitations, the ansatz for an excited state R̂ |ΨCC〉
is

Q̂ĤR̂ |ΨCC〉 = Q̂ĤR̂eT̂ |0〉 = ERQ̂R̂ |ΨCC〉 (15)

where
R̂ = r0 +

∑
a,i

rai â
†
aâi +

1

4

∑
a,b,i,j

rabij â
†
aâ
†
bâj âi , rµ ∈ C (16)

is a linear excitation operator, ER is its excitation energy and Q̂ is the projector onto the singles
and doubles excitations manifold of the Hilbert space, this is,

Q̂ =
∑
a,i

∣∣∣∣∣ai
〉〈

a

i

∣∣∣∣∣+
1

4

∑
a,b,i,j

∣∣∣∣∣abij
〉〈

ab

ij

∣∣∣∣∣ . (17)

Equation (15) is equivalent to a commutator equation only involving H̄ and the excitation en-
ergy difference ∆ER between ER and the correlated ground state ECC,[

Q̂H̄, R̂
]
|0〉 = ∆ER Q̂R̂ |0〉. (18)

It is worthwhile noting that the commutator on the left-hand-side means that only connected
diagrams need to be considered in the expansion. Equation (18) motivates the name equation
of motion due to its resemblance to the time-dependent Heisenberg picture differential equation
for the time evolution of an operator.
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2.5 The coupled cluster doubles equations

For computer implementations it is necessary to rewrite the above equations only in terms of
one- and two-electron integrals. Here we seek to give the final result of the corresponding ex-
pressions for CCD theory only. We note that in the case of, for instance, the uniform electron
gas (UEG) Hamiltonian, due to the symmetry, single excitations are absent. Therefore we con-
sider CCD a particularly instructive case to learn more about CC theory. The cluster amplitudes
tabij are obtained by solving the quadratic amplitude equations

〈
ab
ij

∣∣ e−T̂2ĤeT̂2||0〉 = 0 that in a
spin-orbital basis read

tabij =
1

εi+εj−εa−εb

(
〈ij||ab〉+ 〈cj||kb〉tacik + 〈ci||ka〉tbcjk + 〈cd||kl〉tdblj tacik

+
1

2
〈cd||ab〉tcdij +

1

2
〈ij||kl〉tabkl +

1

4
〈cd||kl〉tcdij tabkl

− 〈cj||ka〉tbcik − 〈ci||kb〉tacjk − 〈cd||kl〉tdalj tbcik

+
1

2
〈cd||kl〉

[
tablj t

cd
ik − tabli tcdjk + tdbij t

ac
kl − tdaij tbckl

] )
.

(19)

In the above equation repeated indices are summed over. We recall that the indices i, j, k and
l label occupied orbital indices, whereas a, b, c and d label virtual orbital indices. ε correspond
to the HF one-electron energies and the anti-symmetrized two-electron integrals are defined by
〈ij||ab〉 = 〈ij|ab〉 − 〈ij|ba〉 , where

〈ij|ab〉 =

∫
Ω

∫
Ω

dx1dx2

ϕ∗i (x1)ϕ
∗
j(x2)ϕa(x1)ϕb(x2)

|r1 − r2|
. (20)

In the above expression the spin-orbitals ϕ depend on the space-spin coordinate x = (r, σ) and
the spatial coordinates are integrated over all space. Equation (19) is solved for the amplitudes
in an iterative manner by updating the amplitudes in every iteration using the right-hand side
of Eq. (19). Convergence can be accelerated using standard techniques such as direct inversion
of the iterative subspace (DIIS) [11]. Once the amplitudes are obtained, the CCD correlation
energy can be calculated by

ECCD
c =

∑
ijab

1

4
〈ij||ab〉tabij . (21)

2.6 Size consistency and extensivity

We now discuss size extensivity and the convergence of computed ground state energies to the
thermodynamic limit (TDL). These concepts are highly relevant for the application to solids. In
contrast to molecular systems, properties of solids have to be calculated in the thermodynamic
limit to enable a direct comparison to experiment. The TDL can be approached using; for
example, (i) sampling of the Brillouin zone with increasingly dense k-point meshes and in
periodic boundary conditions, (ii) studying increasingly large supercells in periodic boundary
conditions, or employing (iii) increasingly large clusters with open boundary conditions and/or
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embedding methods. Once the thermodynamic limit is approached with respect to the number
of k-points or the number of atoms in the cluster, extensive properties such as the correlation
energy per atom are converged to a constant value.

An important advantage of truncated coupled cluster theories compared to, for instance trun-
cated configuration interaction methods is their size consistency. Size consistency is a concept
of particular importance in quantum chemistry, which judges if the calculated quantities have
the correct asymptotic size dependence or not. For extensive quantities, like the (correlation)
energy, a given size-consistent method should yield the asymptotic K1 dependence where K is
the number of wave vector sampling points in the Brillouin zone [12]. Obviously, the methods
with incorrect asymptotic Kα dependence of α < 1, like the truncated configuration-interaction
methods, lead, in the thermodynamic limit, to the total energy per unit cell equal to that of
the HF mean-field approximation. The size consistency of coupled cluster theories can also
be understood via either the diagrammatic criteria [13] or the supermolecule criterion [4]. It
was argued that approximate post-HF correlation methods cannot capture the variational and
size-consistent properties simultaneously [14].

The thermodynamic limit is approached as N → ∞, where N is the number of particles in
the simulation (super-)cell while the density is kept constant. Once the thermodynamic limit
is approached, correlation energies per atom need to be converged to a constant for periodic
systems, corresponding to α = 1. Finite size errors are defined as the difference between the
TDL and the finite simulation cell results. However, the convergence of calculated properties
to the thermodynamic limit is very slow, often exceeding the computational resources of even
modern supercomputers due to the steep scaling of the computational complexity of most post-
HF methods with respect to system size. We stress that many properties such as the binding
energy of molecules on surfaces converge slower than their counterparts calculated on the level
of mean-field theories such as density-functional theory (DFT). This originates from the fact
that correlated post-HF methods capture long-range electronic correlation effects such as van
der Waals interactions explicitly. Even though the corresponding long-ranged contribution to
the electronic correlation energy is small compared to short-ranged correlation energy contri-
butions, the accumulation of weak van der Waals interactions can become a non-negligible
contribution to the property of interest. Different strategies have been developed to correct for
finite size errors that are defined as the difference between the thermodynamic limit and the
finite simulation cell results. These strategies often involve extrapolation methods or range-
separation techniques. Local theories that employ correlation energy expressions depending
on localized electron pairs, can approximate correlation energy contributions of long-distant
pairs using computationally more efficient yet less accurate theories. Alternatively local theo-
ries can account for electron pairs that are disregarded based on a distance criterion by using
an R−6-type extrapolation [15]. Canonical implementations of periodic post-HF methods em-
ploy scaling laws for extrapolations to the thermodynamic limit that are based on an analogue
rationale [16–18]. Auxiliary field quantum Monte Carlo theory employs finite-size corrections
that are based on parametrized density functionals obtained from finite uniform electron gas
simulation cells [19].
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2.7 Caveats of coupled cluster theory

2.7.1 Basis set convergence

The many-electron wavefunctions introduced above are expanded in a basis of Slater determi-
nants constructed from (unoccupied) Hartree-Fock orbitals. The computational complexity of
canonical coupled-cluster methods scales polynomially with respect to the number of unoccu-
pied orbitals. Therefore the ability to span the relevant parts of the Hilbert space with as few
orbitals as possible is crucial for the implementation of efficient periodic correlated methods.
In practice all calculated quantities suffer from a basis-set incompleteness error that is caused
by the truncation of the employed unoccupied orbital manifold. The optimal choice of the un-
occupied orbital manifold minimizes the incompleteness error of the calculated quantity in a
controllable manner.
Some of the most widely-used basis sets for the expansion of unoccupied orbitals include plane
waves and Gaussian-type orbitals (GTOs). As an illustration of their respective characteristic
properties we consider two limiting cases, the uniform electron gas and an atom in a box. From
the perspective of the uniform electron gas, plane waves are the natural choice of basis to expand
one- and many-electron wavefunction quantities. Plane waves are eigenfunctions of the kinetic
energy operator, and exhibit the same periodicity as the simulation cell. In ab initio calculations,
these plane waves also have a number of appealing features. A single cutoff parameter that
limits the kinetic energy of the included plane waves is used to systematically expand the plane
wave basis to completeness which is free from basis-set superposition errors (BSSE) and linear
dependencies. However, there are obvious drawbacks to plane wave expansions. They lack
reference to the nature of the atomic environment, having equal basis coverage throughout the
cell. This can lead to a substantial waste of computational effort when studying an atom or
molecule in a box [20].
For atoms or molecules, GTOs form a very compact orbital basis. Their widespread use in
the field of quantum chemistry has lead to standardized tabulated basis sets of increasing size
and flexibility [21, 22]. Orbitals beyond the core and valence shells are included to account for
appropriate polarization of the atomic wavefunctions in bonding environments, and to provide
a description of correlation effects. Basis sets are commonly arranged in hierarchies so that
they can be systematically expanded to allow for consistent and extrapolatable convergence.
Gaussian-type orbitals are used in a range of periodic electronic structure codes. However,
the introduction of such local basis sets also leads to several shortcomings such as basis set
superposition errors (BSSE) and linear dependencies of diffuse atom-centered basis functions
in densely packed solids. These problems can partly be accounted for by counterpoise BSSE
corrections and removing linearly dependent basis functions. The local nature of these func-
tions is often used for reduced scaling techniques in order to approach linear scaling mean-field
treatments, and can also be extended to local treatment of correlation.
For the calculation of energy differences such as the adsorption energy of a molecule on a sur-
face it is beneficial to employ basis sets that can be truncated such that a large fraction of the
incompleteness error cancels in a controllable manner. GTOs exhibit this advantageous prop-
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erty, allowing for obtaining accurate estimates of interaction energies between weakly interact-
ing fragments such as binding energies of physisorbed molecules on surfaces, despite suffering
from large incompleteness errors in the respective absolute energies.
Another approach to obtain compact unoccupied orbital manifolds for the expansion of many-
electron wavefunctions is provided by natural orbitals [23]. Natural orbitals are obtained by
diagonalizing the unoccupied-unoccupied orbital block of the reduced density matrix and trun-
cating the obtained natural orbital manifold according to their occupation number. This pro-
cedure yields for many applications an optimal unoccupied orbital manifold. To reduce the
computational cost of this procedure it is possible to approximate the reduced density matrix at
a lower-level of theory such as low-order perturbation theory only. Natural orbitals “down-fold”
the unoccupied orbitals calculated using plane-wave basis sets for atoms and molecules in a box
to manifolds that are similarly compact as GTOs [20].
Despite all the considerations outlined above, the convergence of the many-electron wavefunc-
tion and that of calculated expectation values such as the correlation energy is frustratingly slow
with respect to the number of unoccupied orbitals [5, 24]. Therefore extrapolation techniques
that remove the remaining basis set incompleteness error are needed on top of these fairly large
basis set calculations. In the case of plane wave basis set calculations analytic and numeri-
cal results from perturbation theory suggest a 1/M decay of the basis-set incompleteness error
where M is the number of plane waves used in the calculation, allowing for straightforward
extrapolation to the complete basis set (CBS) limit [25]. Similar scaling laws are employed for
the extrapolation of correlation energies to the complete basis set limit using GTOs [5].
The slow convergence of properties calculated using wavefunction based methods with respect
to the number of orbitals originates from the difficulty to describe the many-electron wavefunc-
tion in the vicinity of the electron cusp. As the electrons coalesce, a derivative discontinuity or
‘cusp’ must arise, so that a divergence in the kinetic energy operator cancels an opposite one in
the potential. The shape of the wavefunction at the cusp is exactly defined to first-order in the
interelectronic distance by the Kato cusp conditions [26,27]. The a priori inclusion of the cusp
conditions in the wavefunction ansatz is a cornerstone of explicitly correlated or so-called F12
theories [28, 24, 29, 30]. Explicitly correlated methods augment the conventional wavefunction
expansions discussed in the previous section with additional terms that account for the cusp con-
ditions explicitly. Since electronic correlation is for the most part a short-ranged phenomenon,
the proper description of the wavefunction shape at short interelectronic distances allows for
capturing the largest fraction of the correlation energy in solids and molecules.

2.7.2 Computational cost

The scaling of the computational cost of canonical coupled cluster theory is dominated by the
contractions present in the amplitude equations. Although some terms can be contracted ef-
ficiently by finding the optimal order of contraction over the nested summations over orbital
indices, a limiting scaling remains. The scaling of CCSD and CCSDT is O(N6) and O(N8),
where N is a measure of the system size (occupied or unoccupied orbitals) and arises from the
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use of spatially delocalized canonical orbitals. Canonical orbitals are conceptually and compu-
tationally convenient. They are orthogonal and diagonalize the Fock matrix, greatly simplifying
the post-HF correlation schemes. However, these orbitals are spatially delocalized and their use
does not allow one to exploit the fact that electronic correlation is a short-ranged phenomenon.
The use of spatially localized, instead of canonical, orbitals allows to construct coupled clus-
ter algorithms that scale more favorably with system size, down to even O(N), at the price of
a significant increase in complexity of the underlying equations with respect to their canoni-
cal counterparts. Some of the most notable amongst them are (based on) the local correlation
method of Pulay and Saebø [31, 32], the so-called “Local Ansatz” of Stollhof and Fulde [33],
the method of increments of Stoll [34–36], or the use of truncated pair natural orbitals [37, 38].
The reduced scaling algorithms mentioned above require that the occupied orbitals can be lo-
calized, i.e., a unitary transformation over the manifold of occupied orbitals can be found which
optimizes the expectation value of an operator measuring the degree of localization. There exist
systems which do not allow for a sufficient degree of orbital localization. In these systems,
the character of electronic correlation is intrinsically more delocalized. A prominent example
where this is the case corresponds to the uniform electron gas.

3 Coupled cluster theory and its relation to the RPA

The random phase approximation (RPA) to the correlation energy dates back to the 1950s. It
was first introduced by Macke to predict convergent correlation energies [39] in the uniform
electron gas and was also developed by Bohm and Pines [40] for the collective description of
electron interactions. In the case of the uniform electron gas, the RPA captures the most im-
portant terms of the correlation energy expansion around the high-density limit (rs → 0). In
the field of ab initio computational materials science the exact-exchange plus correlation in
the random-phase approximation has attracted renewed and widespread interest in the last two
decades. This is due to the fact that computationally increasingly efficient implementations
have become available and that this method is capable of describing all interatomic bonding sit-
uations reasonably well: ionic, covalent, metallic, and even van der Waals bonding. The com-
putational complexity can even be lowered to O(N3) in real space formulations [41]. Thus, the
complexity of an RPA calculation does not exceed that of a canonical hybrid density functional
theory calculation, the prefactor is however considerably larger. The RPA correlation energy
can be derived from many-electron Green function theory, or using the adiabatic-connection
fluctuation-dissipation theorem (ACFDT) – or from coupled-cluster theory.
As shown in [42], it is possible to transform the RPA equations, that are usually expressed in a
general eigenvalue problem, to a quadratic Riccati equation that reads

tabij =
1

εi+εj−εa−εb

(
〈ij|ab〉+ 〈cj|kb〉tacik + 〈ci|ka〉tbcjk + 〈cd|kl〉tdblj tacik

)
. (22)

In the above equation we sum over repeated indices. We stress that in the above equation
the ε correspond to the DFT one-electron energies. Once the amplitudes are obtained, the RPA



Coupled-Cluster Theory 14.11

correlation energy can be calculated by

ERPA
c =

∑
ijab

1

2
〈ij|ab〉 tabij . (23)

Although the above formulation does not allow for an efficient computer implementation of the
RPA, it illustrates that the RPA and CCSD are closely related.
In the rings-only approximation, the second, third and fourth lines of Eq. (19) are disregarded.
Furthermore the random-phase approximation includes the direct rings only. This implies that
instead of using the (double bar) anti-symmetrized integrals, only 〈ij|ab〉 integrals are employed
in the RPA amplitude and energy equations, making it necessary to employ a different prefactor
in the correlation energy expression to stay consistent with many-body perturbation theory.
Consequently, RPA can not be viewed as a wavefunction theory although it can be obtained from
the coupled cluster amplitude equations as explained above. In a diagrammatic formulation the
close relationship between coupled cluster theory and the RPA becomes more obvious for both
ground and excited state properties as discussed in detail in Refs. [43, 42].

4 Coupled cluster theory applied to the uniform electron gas

One of the best studied systems in electronic structure theory is the uniform electron gas (UEG).
Here, we seek to illustrate important concepts of CC theory for the example of the UEG. In the
UEG, the one-electron orbitals are plane waves with wave vectors ~ki, ~kj and ~ka, ~kb. This allows
to write the two-electron repulsion integral as 〈ij|ab〉 = υabij = υ(q)δki−ka,kb−kj

. The momen-
tum transfer vector is given by q = ki−ka. The Coulomb kernel is defined as υ(q) = 4π

Ω|q|2 ,
with Ω being the volume of the simulation cell. We stress again that, due to the symmetry of
the UEG Hamiltonian, single excitations are absent. With this, the CCD correlation energy is
defined as

ECCD
c =

∑
ijab

υabij
(
2tabij−tabji

)
=
∑
q

υ(q)SCCD(q). (24)

The amplitudes tabij are obtained by solving the CCD amplitude equations. We note, however,
that this section employs a notation where the orbital indices refer to spatial orbitals, i.e., the
spin-coordinates have been integrated, which results in slightly different expressions. It is im-
portant to note that in the UEG tabij inherits the momentum conservation of the two-electron
operator in the Hamiltonian such that tij(q) = tabij δq,kb−kj

δq,ki−ka . The quantity tij(q) has
two indices that correspond to occupied orbital indices, representing plane wave vectors inside
the Fermi sphere, whereas q corresponds to a momentum transfer vector that excites electronic
states into regions outside the Fermi sphere. Likewise the transition structure factor S(q), in-
troduced in Eq. (24), depends on q, which gives access to the dependence of the correlation
energy on the interelectronic interaction distance. The transition structure factor is defined as

SCCD(q) =
∑
ijab

δυabij
δυ(q)

(
2tabij − tabji

)
. (25)
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-0.1

 0

 0  0.05  0.1  0.15  0.2

S(
|q

|)/
N

 (a
.u

.)

|q| (a.u.)

Fig. 1: Twist-averaged structure factors for CCD and 246 electrons in the uniform electron gas
simulation cell at density corresponding to rs = 20.

In the above equation, the functional derivative
δυabij
δυ(q)

= δq,kb−kj
δq,ki−ka enables a concise no-

tation.

We now study the behavior of the CCD correlation energy contribution for lim|q|→∞ and short
lim|q|→0. Figure 1 depicts the computed CCD transition structure factor for 246 electrons at
a density corresponding to rs = 20 a.u., showing that S(q) decays to zero in both limits. As
already discussed by Bishop and Lührmann [44, 45] as well as Emrich and Zabolitzky [46],
lim|q|→0 S(q) ∝ |q| and lim|q|→∞ S(q) ∝ 1/|q|4. It is important to note that the functional
behavior in these limits originates from two important physical principles. The lim|q|→∞ cor-
responds to the short-range limit in real space. It is known that as the electrons coalesce, a
derivative discontinuity or ‘cusp’ must arise, so that a divergence in the kinetic energy operator
cancels an opposite one in the interelectronic potential. Without proof, we stress that a linear
behavior in the wavefunction as a function of the interelectronic distance results in a 1/|q|4 be-
havior of S(q). In fact the relatively slow convergence of S(q) for large |q| is the cause for the
slow basis set convergence of correlation energies. In other words, large numbers of unoccupied
orbitals are needed in practice to capture significant contributions to the electronic correlation
energy in the vicinity of the cusp. In practice one might perform several correlation energy
calculations for different numbers of virtual orbitals and extrapolates the computed energies to
the complete basis set (CBS) limit. The lim|q|→0 corresponds to the long-range behavior of
the electronic correlation energy. Unlike the short-range, the long-range behavior qualitatively
differs between insulators and metals. Here, we consider the metallic uniform electron gas,
which leads to a linear slope of S(q) around |q| = 0. This behavior can be understood by the
close relationship between the RPA and CCD. Without proof, we stress that in the lim|q|→0

RPA becomes identical to CCD, [46] which also explains the slow convergence of computed
correlation energies to the thermodynamic limit.
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5 Conclusion and summary

In this chapter we have discussed fundamental concepts of coupled cluster theory and its rela-
tion to other widely-used methods. CC theories offer a systematically improvable hierarchy of
wavefunction based methods for the study of many-body problems. Due to their computational
complexity, however, most coupled cluster calculations in electronic structure theory are per-
formed at the truncation levels of CCSD and CCSD(T), where the effect of T is approximated
in a perturbative manner. We have discussed for the example of the uniform electron gas, that
converging the CC correlation energies to the complete basis set limit and the thermodynamic
limit is difficult, which can partly be explained by the slow asymptotic convergence of the un-
derlying electron structure factor. Another caveat of CC theories, which was not discussed
in the present chapter, is that these approximate wavefunction theories are not well-suited to
treat systems with strong static correlation effects, for example, bond dissociation problems.
However, CCSD(T) theory is one of the most accurate ab initio methods currently available to
compute, for example, reaction energies for a wide range of systems. Recent applications to
solids have also shown that CCSD(T) can achieve a similar level of accuracy for semiconduc-
tors and insulators. More work remains to be done to expand the scope of CC theories to more
complex systems and a larger number of properties which is beyond the scope of discussion of
the present chapter.
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