
17 Super-QMC: Strong Coupling Perturbation
for Lattice Models

Alexander Lichtenstein
I. Institut für Theoretische Physik
Universität Hamburg, 20355 Hamburg

Contents

1 Idea of reference system 2
1.1 Generic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Numerically exact lattice QMC 6
2.1 Hirsch-Fye DQMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Continuous-time QMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The DF-QMC method 8
3.1 Real-space scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 k-space scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results for 8×8 lattices 15

5 Discussion 19

E. Pavarini and E. Koch (eds.)
Orbital Physics in Correlated Matter
Modeling and Simulation Vol. 13
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17.2 Alexander Lichtenstein

1 Idea of reference system

In this lecture we give an introduction the to theoretical description of interacting electron sys-
tems based on non-perturbative, strong-coupling expansions around optimal reference system.
Density Functional Theory (DFT) and its Local Density Approximation (LDA) is based on
the simplest reference system related with a homogeneous electron gas with constant external
potential with the same Coulomb electron-electron interactions (see Fig. 1). Such a reference
system can be solved via a numerically exact diffusion Monte Carlo scheme for theground state
energy as a function of electron density [1]. On other hand, the Dynamical Mean-Field Theory
(DMFT) [2] for strongly interacting fermionic systems is based on a strong coupling expansion
around an effective impurity reference system (Fig. 1). This scheme become exact in the limit
of infinite lattice dimension [3].
In the finite lattice dimension we can start from the DMFT reference system and use an analyt-
ical perturbation for non-local correlation effects. The frequency dependent effective impurity
DMFT problem nowadays can be efficiently solved within continuous time quantum Monte
Carlo (CT-QMC) schemes [4]. Therefore the perturbation theory needs to be formulated in the
action path integral formalism. We discuss here a general way to include correlations beyond
the reference system [5] which is based on the dual-fermion path-integral formalism [6].
For DMFT an effective impurity model, tailored to the problem of strong correlations, serves
as the reference system, see Fig. 1. Since in the zeroth-order of this perturbative expansion,
i.e., on the level of the DMFT problem, we already have an interacting problem and since the
perturbation is momentum and frequency dependent, one is forced to replace the Hamiltonians
by actions within the path-integral formalism. Note that the fermion path integral can also be
used to formulate the DMFT itself [2]. The dual-fermion approach is not necessarily bound to
a specific starting point.
We recently developed a strong-coupling perturbation scheme for generic Hubbard models
around a half-filled particle-hole-symmetric reference system, which is free from the fermionic
sign problem [7]. The approach is based on the lattice determinant quantum Monte Carlo
(QMC) method in continuous and discrete time for large periodic clusters in a fermionic bath.
Considering the first-order perturbation in the shift of the chemical potential and of the second-
neighbor hopping gives an accurate electronic spectral function for a parameter range corre-
sponding to the optimally doped cuprate system for temperatures of the order of T/t=0.1, the
region hardly accessible for straightforward lattice QMC calculations. We discuss the formation
of a pseudogap and the nodal-antinodal dichotomy for doped Hubbard systems in the strong-
coupling regime with interaction parameter U equal to the bandwidth and the optimal value of
the next-nearest-neighbor hopping parameter t′ for high-temperature superconducting cuprates.
Extensive investigation of the fermionic sign problem in the lattice DQMC for the t-t′-U Hub-
bard model for U/t = 6, t′/t = −0.2 and its relation with a quantum critical point [8] gives
the generic “sign” phase diagram presented in Fig. 2. The red region in the temperature-doping
(chemical potential) diagram presents an “unacceptable” sign problem, where one can not do
any accurate simulations. It is interesting that the d-wave superconducting dome lies exactly in-
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Fig. 1: Schematic representation of reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by a fermionic
bath, specified by the hybridization function ∆. (iii) GW+DMFT with a correlated atom in a
fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening of
long-range Coulomb (V ) interactions.

Fig. 2: Schematic representation of the sign-problem in QMC lattice-fermion calculations. The
green circle shows the approximate position of maximum d-wave superconductivity with 15%
hole doping. The blue arrow give the “direction” of the reference system approach.

side the “red-region”. The arrow gives the directions which we would like to pursuit in order to
overcome the sign problem. We will start from the sign-free half-field particle-hole symmetric
case with µ=0 and move closer to the quantum critical point related with d-wave superconduc-
tivity in the cuprates. Comparing the density of states in Fig. 3 for the undoped case with a
pseudogap, which is free from the sign-problem, and the hole doped case with µ/t=−2 with
t′/t=−0.3 with a very sharp peak at the Fermi level, one can understand that a non-trivial reason
for the sign-problem may be related with a strong anomaly in the many-body spectrum.
The search for numerically exact solutions of the t-t′-U Hubbard model in the thermodynamic
limit at arbitrary interaction strength, long-range hopping and doping δ or, equivalently, chem-
ical potential µ at low temperature T=1/β is tremendously difficult. Modern computational
approaches, based on lattice determinant quantum Monte Carlo (QMC) methods have made
tremendous progress in the half-filled case without t′ [9], but face an unacceptable fermionic
sign problem for the general doped case related to the high-temperature superconductivity
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Fig. 3: Schematic representation of a half-filled reference system for the doped square lattice.
Bellow: calculated density of states (DOS) in presented scheme for U/t = 8, Left: undoped
case µ = 0 with t′ = 0, Right: doped case µ = −2 with t′/t = −0.3

(HTSC) problem, which is the main factor restricting the accuracy of QMC calculations for
interacting fermion systems [10–12, 8]. A very important and largely unresolved problem is
related to the next-nearest-neighbor hopping t′ in the Hubbard model and its role in super-
conductivity [13–19]. There are two recent successful attempts to resolve this long-standing
problem using zero-temperature a variational QMC scheme for realistic HTSC systems [20] in
combination with DMRG for the t-t′-U Hubbard model on a large ribbon geometry [21].

On the other hand, a new class of diagrammatic Monte Carlo scheme [22] is claimed to have
a “sign blessing” property which helps to reduce the effects of high-order diagrams. The
state-of-the-art diagrammatic Monte Carlo scheme in the connected determinant mode (C-
DET) [23], based on efficient Continuous Time Quantum Monte Carlo(CT-QMC) scheme in
the weak coupling technique (CT-INT) [24], gives unprecedented accuracy for the doped Hub-
bard model [25,26]. It becomes possible to study the formation of the pseudogap already at the
beginning of the strong coupling case with U/t=6 [25]. Nevertheless, the exponential conver-
gence of the C-DET scheme for weak interactions [27, 28] turns into a divergence at large U
values due to poles in the complex U -plane [26]. This means that calculations for interactions
close to the bandwidth U/t ≈ 8 and temperature T/t ≈ 0.1 are still within a prohibited area in
the phase diagram [26].
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There is a recent interesting attempt to use a dynamical variational QMC scheme for the doped
Hubbard model [29,30], which gives a very reasonable description of the spectral function. The
existence of the pseudogap can be explained in a simple model of electron fractionalization and
the appearance of “dark” fermions which is supported by 2×2 cluster Dynamical Mean Field
Theory (C-DMFT) [31, 17]. Moreover, the experimental RIXS spectra [32] of doped cuprate
materials can be interpreted in such a theoretical model of the pseudogap formation. Larger
clusters in the C-DMFT scheme for the doped case have, however, an unacceptable fermionic
sign problem within the QMC scheme.
Here we discuss a different route to tackle the “sign problem” in the determinant lattice QMC
scheme and design a strong-coupling perturbative solution for a general Hubbard model. The
starting point is related to the “reference system” idea [33] which is basically quite simple and
straightforward. The conventional choice of the noninteracting Hamiltonian as the reference
system for the perturbation [34] is motivated by Wick’s theorem which allows to calculate ex-
actly any many-particle Green functions: they are all expressed in terms of single-particle Green
functions. The choice of a single-site approximation like dynamical mean-field theory [35] as
the reference system leads to the dual fermion technique [6,33]. Actually, the reference system
can be arbitrary, assuming that we can calculate its Green functions of arbitrary order. It is
worthwhile to mention here the very successful Peierls-Feynman-Bogoliubov variational prin-
ciple [36–38]. In this case, a good variational estimate of the system’s free energy F with the
Hamiltonian H1 is achieved on an optimal reference system with the Hamiltonian H0, namely
F1 ≤ F0 + 〈H1−H0〉0. One can hope therefore that even first-order corrections to the properly
chosen reference system will already give a rich and adequate enough physical picture.

1.1 Generic Hamiltonian

The simplest model describing interacting fermions on a lattice is the single band Hubbard
model, defined by the Hamiltonian

Ĥα = −
∑
i,j,σ

tαij c
†
iσcjσ +

∑
i

U
(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(1)

where tij are hopping matrix elements including the chemical potential µ in the diagonal part

tαij =


t if i and j are nearest neighbors,

αt′ if i and j are next-nearest neighbors,

αµ if i = j,

0 otherwise,

(2)

and niσ = c†iσciσ. We introduce a “scaling” parameter α=0, 1, which distinguishes a reference
system H0 for α=0 and corresponds to the half-filled Hubbard model (µ0=0) with only nearest
neighbors hopping (t′0=0) from the final system H1 for α=1 with given µ and t′. Note that
long-range hoping parameters can be trivially included in the present formalism similar to t′.
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The reference system now corresponds to the half-filled (µ=0) particle-hole symmetric (t′=0)
case (Fig. 3), where lattice Monte Carlo has no sign problem and the numerically exact solu-
tion for any practical value of U is possible within a broad range of temperatures [39]. Then we
apply the lattice dual fermion perturbation theory [6,5,33] to find the first-order perturbative cor-
rections in µ and t′. To this end, it is sufficient to calculate the two-particle Green function, or,
equivalently, the four-leg vertex, which can be done with sufficient accuracy within continuous
time quantum Monte Carlo. Our reference system already has the main correlation effects in the
lattice and shows the characteristic “four-peak” structure [40] with high-energy Hubbard bands
around±U/2 and antiferromagnetic Slater bands close to the insulating gap (which can be seen
in the density of states in figure 3, left panel). After the dual fermion perturbation scheme
correlated metallic states with the DMFT-like “three peak” structure appear with a pseudogap-
like feature at high temperature (the density of states in figure 3, right panel). Results for the
strong-coupling case (U=W=8t) with practically interesting values of the chemical potential
and next-nearest-neighbor hoppings corresponding to cuprate superconductors have shown the
formation of a pseudogap and a nodal-antinodal dichotomy (that is, well-defined quasiparticles
in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal part),
which gives this approximation a perspective for practical applications.

2 Numerically exact lattice QMC

We briefly introduce here the main ideas of two different lattice QMC approaches for large
periodic clusters in a bath. The first is based on the Hubbard-Stratonovich transformation of the
local interaction in Eq. (2), the other is related with the continuous-time interaction (CT-INT)
expansion scheme. Both QMC methods are used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c∗i , ci]. The space-time bare Green
function Gij describes the non-interacting part of the Hamiltonian in Eq. (2) for Nx×Ny 2D-
space (N =Nx·Ny) and L×L discretized times in an effective bath representing the external
infinite lattice with space-time index here i ≡ (r, τ). Imaginary time slicing corresponds to
the mesh τ = l ∗ ∆τ with l = 0, . . . , L−1 and ∆τ = β/L with inverse temperature β. The
interaction part of the Hamiltonian Eq. (2) is decoupled by mapping to auxiliary Ising fields si
via a discrete Hirsch-Hubbard-Stratonovich transformation [41]

exp
(
−U∆τ(ni↑ni↓ − (ni↑+ni↓)/2)

)
=

1

2

∑
si=±1

exp
(
λsi(ni↑−ni↓)

)
, (3)

where λ = arccosh(eU∆τ/2) and for the best convergence of DQMC one uses the following
“rule of thumb” U∆τ/2 . 1. Then the effective lattice action become Gaussian

S[c∗, c] = −
∑
i,j,σ

c∗iσ G
−1
ijσ cjσ with G−1ijσ(s) = G−1ijσ − δi,jλsiσ , (4)
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where s ≡ {si} with i = 1, . . . , N ·L. Note that in time space the delta function should be
anti-periodic for fermions [42, 43, 2] and Eq. (4) has a schematic form. For such a Gaussian
action we can integrate-out fermionic the degrees of freedom and get for the partition function
the following formula used in the determinant QMC scheme

Z =
1

2NL

∑
s

∏
σ

det[G−1σ (s)] , (5)

where the sum over Ising auxiliary fields si performed with an importance-sampling Monte
Carlo algorithm with probability P (s) = det[G−1↑ (s)] · det[G−1↓ (s)] which is always positive
for the half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme the
exact single-particle Green function of the reference system can be calculated as

gσij =
1

Z

∑
s

P (s)Gσ
ij(s) . (6)

In practice of DQMC one uses a so-called fast-update formalism to calculate the lattice Green
function Eq. (4) with a single Ising spin-flip [42].

2.2 Continuous-time QMC

The interaction expansion (CT-INT) continuous-time quantum Monte Carlo algorithm for fermions
is based on a formal series expansion for the partition function in the interaction term of the ac-
tion [24]. In a schematic form with short notation ik ≡ (rk, τk) we have

Z =

∫
D[c∗, c] e−S0[c∗,c]

∞∑
k=0

(−U)k

k!

∫ β

0

dτ1···k c
∗
i1↑ci1↑ c

∗
i1↓ci1↓ . . . c

∗
ik↑cik↑ c

∗
ik↓cik↓, (7)

where S0 is the Gaussian part of the action related with Gσij . In this case we can integrate-out
the fermionic path integral in Eq. (7) to get the determinant of the k×k bare Green function Gσ

Z = Z0

∞∑
k=0

(−U)k
∫ β

0

dτ1 . . .

∫ β

τk−1

dτk
∏
σ

detGσk . (8)

In order to overcome a trivial sign problem related with factor (−U)k one uses a particle-hole
transformation related with a so-called α-shift [24]. The CT-INT scheme performes important
sampling in the space of k×k fermionic determinants. The probability to change k to k+1-order
in the Metropolis algorithm is related with ratio of the fermionic determinants [24]

P (k → k+1) = min

(
1,
βU

k+1

∏
σ

(detGσk+1

detGσk

)
. (9)

The optimal order of k-perturbation, which corresponds to the maximum of the distribution
function of the fermionic determinants [24] for a cluster of N -sites is of the order kopt ∼ βNU.
Finally, the exact reference Green function in CT-INT formalism is calculated as

gσij = Gσij −
∑
k,k′

Gσik ·Mσ
k,k′ · Gσk′j , (10)

where the M -matrix is equal to the Monte Carlo average the of inverse fermionic matrix in
Eq. (8).
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3 The DF-QMC method

We start with the strong-coupling theory of the dual fermion scheme [6, 44] for the t-t′-U Hub-
bard model on a square lattice. There are many important works on pure strong-coupling expan-
sions in the hopping t for Hubbard model [45–49]. The dual-fermion scheme [6] differs from
the pure strong-coupling expansion in the hopping t in a very important way: it is an expansion
from a reference system to the final system, or in the “difference” t̃ (Fig. 3) which converges
much better. The general strategy of the dual fermion approach as a strong coupling theory is
related to the formally exact expansion around an arbitrary reference system [33].

3.1 Real-space scheme

Let us consider a general lattice fermion model with local Hubbard-like interaction vertex U.
Using the path-integral formalism the partition function of a general fermionic lattice system
(Fig. 3) can be written as the functional integral over Grassmann variables [c∗, c]

Zα =

∫
D[c∗, c] e−Sα[c∗,c] . (11)

For the super-perturbation in the lattice Monte Carlo scheme we use a general dual-fermion
expansion around an arbitrary reference system within the path-integral formalism [6,33], sim-
ilar to a strong coupling expansion [47, 48]. In this case our N×N lattice and corresponding
reference systems represents an N×N -piece cut from the infinite lattice and periodize the bare
Green function Gα. The general lattice action for a discretized Nx×Ny×L space-time lattice
(for the CT-INT scheme imaginary time τ is continuous in the interval [0, β)) with general
interaction term reads

Sα[c
∗, c] = −

∑
1,2

c∗1 (Gα)−112 c2 +
1

4

∑
1234

U1234 c
∗
1c
∗
2 c4c3 . (12)

In order to keep the notation simple, it is useful to introduce the combined index |1〉 ≡ |i, τ, σ〉
(i being the site index).
To calculate the bare propagators (Gα)12 we start from the Nx×Ny cluster which is cut from
the infinite lattice and then force translation symmetry and periodic boundary conditions on the
finite Nx×Ny system. This procedure is easy to realize in the k-space, by doing first a double
Fourier transform of the bare Green function for a non-periodic N×N cluster Gαk,k′ , keeping
only the periodic part, Gαk δk,k′ .
The perturbation matrix related with the difference of the one-electron part of the action is

t̃ = G−10 − G−11 . (13)

In order to formulate an expansion around the reference action S0, we express a connection to
the final action S ≡ S1 with the same local interaction in the following form

S[c∗, c] = S0[c
∗, c] +

∑
12

c∗1 t̃12c2 . (14)
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The main idea of the dual fermion transformation is the change of variables from strongly cor-
related fermions (c∗, c) to weakly correlated “dual“ Grassmann fields (d∗, d) in the path integral
representation for the partition function from Eq. (14), followed by a simple perturbation treat-
ment. The new variables are introduced through a Hubbard-Stratonovich transformation with
the matrix t̃12 in real-space (assuming Einstein summation convention over repeated indices)

e−c
∗
1 t̃12 c2 = Zt

∫
D[d∗, d] ed∗1 t̃

−1
12 d2+d

∗
1c1+c

∗
1d1 (15)

with Zt = det
[
−t̃
]

and we always imply matrix inversion: t̃−112 ≡ (t̃−1)12. Using this transfor-
mation, the lattice partition function becomes

Z = Z0Zt

∫
D[c∗, c, d∗, d] ed∗1 t̃

−1
12 d2

〈
ed
∗
1c1+c

∗
1d1
〉
0

(16)

with the standard definition of average over S0

〈· · · 〉0 =
1

Z0

∫
D[c∗, c] · · · e−S0[c∗,c]. (17)

Now we can integrate-out the c∗, c fermions and show that the average over S0 can be rewritten
in the cumulant expansion [48] of connected correlators 〈· · · 〉0c

〈
ed
∗
1c1+c

∗
1d1
〉
0
= exp

[
∞∑
n=1

(−1)n

(n!)2
γ
(2n)
1···n,n′···1′d

∗
1 · · · d∗ndn′ · · · d1′

]
(18)

with cumulant of the reference system that can be calculated within QMC

γ
(2n)
1···n,n′···1′ = (−1)n 〈c1 · · · cnc∗n′ · · · c∗1′〉0c . (19)

We can write the effective action for “dual fermions” S̃[d∗, d] in the lowest-order approximation
for the dual interaction [7]. The first term in the cumulant expansion, Eq. (18), with n = 1 (γ(2)11′ ),
which is bilinear over the [d∗1, d2] Grassmann variable, corresponds to the exact Green function
of the reference system

g12 = −〈c1c∗2〉0 =
−1
Z0

∫
D[c∗, c] c1c∗2 e−S0[c∗,c] . (20)

Note, that all correlators of the reference system will be written in lowercase. Together with the
term t̃−112 in Eq. (16) it gives the bare Green function for the dual fermions

G̃0
12 =

[
t̃−1 − ĝ

]−1
12

. (21)

The second term in the cumulant expansion, Eq. (18), with n = 2 (γ(4)122′1′), which is biquadratic
over the [d∗1, d2] Grassmann variable, gives the effective two-particle interaction among the dual-
fermions. The corresponding connected four-point vertex has the form

γ1234 = 〈c1c2c∗3c∗4〉0 − 〈c1c∗4〉0〈c2c∗3〉0 + 〈c1c∗3〉0〈c2c∗4〉0 (22)
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Fig. 4: Feynman diagram for the first-order dual fermion perturbation for the self-energy
Σ̃12(ν): a line represents the non-local dual Green function G̃43(ν

′) and a box is the two-
particle vertex (cumulant) γ1234, (σ, σ′) are spin-indices.

with four-point correlator, or two-particle Green function, for the reference system

〈c1c2c∗3c∗4〉0 =
1

Z0

∫
D[c∗, c] c1c2c∗3c∗4 e−S0[c∗,c] . (23)

Finally, the dual-fermion action in the two-particle approximation has the form

S̃[d∗, d] = −
∑
12 νσ

d∗1νσ (G̃0
ν)
−1
12 d2νσ +

1

4

∑
1234

γ1234d
∗
1d
∗
2d4d3 . (24)

Note, that we change sign for the interaction terms using anti-commutation rules for Grassmann
variables in order to be consistent with the standard form for Coulomb interactions (Eq. (12)).
The first-order correction to the dual self-energy is given by the diagram shown in Fig. 4 and
can be calculated for a large system within the QMC-scheme as

Σ̃
(1)
12 =

∑
s−QMC

∑
3,4

γd1324(s) G̃
0
43 (25)

where the density vertex reads
γd1234 = γ↑↑↑↑1234 + γ↑↑↓↓1234 . (26)

The main trick for practical large system computations related to the fact that within the deter-
minant DQMC scheme using the Ising-fields {s} or within the CT-INT with stochastic sampling
of interaction order expansion {s}, for two-particle correlators we can use Wick’s theorem

γ1234(s) ≡ 〈c1c2c∗3c∗4〉s = 〈c1c∗4〉s 〈c2c∗3〉s − 〈c1c∗3〉s 〈c2c∗4〉s. (27)

In order to find exact relationship between real and dual Green function, we perform a variation
of lnZ in Eq. (17) and Eqs. (11,14) with respect to t̃ [50]

G12 =
δ lnZ

δ t̃21
= −t̃−112 + t̃−113 G̃34t̃

−1
42 . (28)
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Fig. 6: Three non-equivalent components of the Green functions for a 2×2 system as function
of imaginary time for U = 5.56, β = 5 and t′/t=−0.1, µ=0 (left), and t′/t=−0.3, µ=−1.3
(right). Note, that here we use the QMC definition with positive local Green function.

Using the definition of exact dual Green function G̃−1 = G̃−10 −Σ̃, we can get the expression
for the real Green function

G12 =
[(
g+Σ̃

)−1
− t̃
]−1
12
. (29)

The dual fermion transformation allows to use arbitrary reference systems and transforms the
strongly correlated lattice fermion problem to an effective action of weakly-coupled dual quasi-
particles. In this case even the lowest-order approximation can give reasonable results. The
exact diagrammatic series for the dual self-energy presented is in Fig. 5. The second-order di-
agram in G̃ which includes γ(6) is local within the cluster and can be calculated with a similar
QMC scheme.
For small systems of 2×2 clusters in the bath we can calculate the matrix of Green function
of Eq. (29) directly in the real space formalism. In this case we do not need any additional
periodization since the 2×2 cluster is “self-periodic”. Since there is almost no sign problem in
the DQMC method for the doped 2×2 cluster in the bath, we can compare the first-order dual-
fermion perturbation with numerically exact DQMC results. The all three non-equivalent Green
functions for 2×2 system are shown in Fig. 6, using the first-order DF-correction within the
Hirsch-Fye QMC formalism. For a small perturbation, ∆µ = −0.3 and ∆t′ = 0, a comparison
with exact DQMC results (points on Fig. 6) is perfect. For a large perturbation, ∆µ = −1.5
and ∆t′ = 0.15, one can already see small differences from the exact DQMC Green function.
Nevertheless, the results of DF-QMC with only first-order corrections for the dual self-energy
are very satisfactory.
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3.2 k-space scheme

For large system (N ≥ 4) it is much faster to calculate the dual self-energy in k-space with
within the QMC Markov chain. The dual action in k-space reads

S̃[d∗, d] = −
∑
k νσ

d∗kνσ G̃
−1
0kν dkνσ +

1

4

∑
1234

γ1234d
∗
1d
∗
2d4d3 . (30)

Using the short notation k ≡ (k, νn) with the fermionic Matsubara frequencies νn = (2n+1)π/β,
n ∈ Z, the dual Green function is equal to

G̃0
k =

(
t̃−1k − ĝk

)−1
. (31)

Since the bare dual Green function is calculated in the independent QMC run for the reference
system, it is fully translationally invariant G̃0

34 ≡ G̃0(3−4) and we use the Fourier transform
to calculate the k-space dual Green function G̃0

k. Within the QMC Markov chain the lattice
auxiliary Green function is not translationally invariant, therefore for gsσ12 = −〈c1σc∗2σ〉s we use
the double Fourier transform to calculate gsσkk′ . Note that here we have explicitly written the
fermionic spin σ and the auxiliary Ising spins si. To include the “disconnected part” of the
vertex in equation Eq. (22) we just subtract the exact Green function from the previous QMC
run of the paramagnetic reference system

g̃sσ12 = gsσ12 − g12. (32)

In the k-space this subtractions has the form

g̃sσkk′ = gsσkk′ − gk δkk′ . (33)

For the transformation of the vertex γd1234 in Eq. (26) within the QMC step in k-space we take
into account that indices (3, 4) are “diagonal” in k-space due to the multiplication by the trans-
lationally invariant dual Green function G̃0

34, which transforms as G̃0
kδkk′ , and indices (1, 2)

become translationally invariant after the QMC-summation, which finally leads us to the equa-
tion for the spin-up components of the first-order dual self-energy Σ̃k in the paramagnetic phase

Σ̃
(1)
k =

−1
(βN)2ZQMC

∑
s−QMC

∑
k′

(
g̃s↑kkg̃

s↑
k′k′ − g̃

s↑
kk′ g̃

s↑
k′k + g̃s↑kkg̃

s↓
k′k′

)
G̃0
k′ . (34)

The additional normalization factor 1
(βN)2

comes from the Fourier transform in k and from
the k′-sum with N lattice sites and summation over Matsubara frequency: 1

β

∑
ν′(...). For

paramagnetic calculations we average over the two spin projections. The corresponding lattice
Green function reads

Gk =
[(
gk+Σ̃k

)−1
− t̃k

]−1
. (35)

We note that if we neglect the dual self-energy, Σ̃k = 0, this approximation is equivalent to
cluster-perturbation theory (CPT) [51] and was recently implemented in the DQMC scheme [52].



Super-QMC 17.13

0 2 4 6 8 10

τ

-0.5

-0.4

-0.3

-0.2

-0.1
G

(τ
) Periodized Cluster 8x8

DCA 2x2
DCA 4x4
DCA 8x8

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

G
 (τ

)

DCA 2x2
DCA 4x4
DCA 8x8
P 2x2
P 4x4
P 8x8

0

0 1 2 3 4 5

τ
0

0.05
0.1

Δ
G

Fig. 7: Periodized Green function in imaginary time τ for clusters of sizeN×N withN = 2, 4, 8
for our scheme compared to the DCA approach for the reference system with U=5.56 and β=10
for t′=0 and µ=0. The local Green function (left) and first nearest-neighbor (right).

Tests for different system sizes show reasonable convergence of the first-order dual-fermion ap-
proximation for small perturbations.

For practical calculations of a bare Green function for Nx×Ny system we use a special scheme
to reduce the dependence on the cluster size. We start from the non-interacting Green function
with given t′/t and µ for a infinite lattice (in practice 50Nx×50Ny with periodic boundary
conditions). We then cut the Green function to only our small N×N system, which results in
a non-periodic Green function Gij(νn) with (i, j = 0, N−1). In order to periodize the Green
function for the small system, we average the corresponding distance, for example G0,n and
G0,N/2−n. In practice, we use the “double” Fourier transform on i and j from Gij to Gkk′ and
take the diagonal (periodic) part Gkδkk′ . In this way the local Green function does not depend on
the size of our cluster and the non-local part (Fig. 7) has much faster converge in comparison to
the standard periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-
local Green function and exact local Green function is related with the real space periodization,
while DCA makes the average patches in the k-space. For the 8×8 system both periodization
schemes converge for the nearest-neighbors Green function in comparison with 16×16 ‘test’
cases (Fig.7).

We analyze the performance of the DF-QMC formalism as a function of∆µ and∆t′ for the 4×4
periodic cluster with and without fermionic bath. The DQMC sign-problem for 4×4 systems is
also mild and we can compare our DF-QMC with numerically exact tests for the same µ and t′.
We use a value of U=5.56 which corresponds to a degenerate ground state of the plaquette [19].
For all Hirsch-Fye DQMC calculations we use imaginary time discretization with L=64 slices.
Fig. 8(a) shows DF-QMC results for a small perturbation t′/t = −0.1 and β = 5 in comparison
with exact DQMC. The agreement is very good which shows the strength of dual fermion
QMC theory for a small perturbation. Next, we compare for the t′/t = −0.3 case which
corresponds to optimal next-nearest hopping in cuprate materials (Fig. 8(b)). In this case one
can see the difference from exact DQMC results on the first Matsubara frequency, but still the
overall agreement in all 6 non-equivalent k-points of the 4×4 system is quite satisfactory. The
effects of a chemical potential shift µ=−0.5 is presented in Fig. 8(c). Qualitatively, agreement
between perturbative DF-QMC and exact DQMC is similar to the case of t′/t=−0.3, but the
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(a) t′/t = −0.1 and µ = 0

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0  2  4  6  8  10

R
e 

G
(k

,ω
n)

ωn

QMC
DFQ

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  2  4  6  8  10

Im
 G

(k
,ω

n)

ωn

QMC
DFQ

(b) t′/t = −0.3 and µ = 0
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(c) t′/t = 0 and µ = −0.5
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Fig. 8: Green functions from DF-QMC (DFQ) in comparison with numerically exact DQMC
results (QMC) for the 4×4 system in Matsubara space with U=5.56, β=5 and t′/t, µ as incated
above the plots. Real part (left) imaginary part (right).

structure of all 6 non-equivalent Green functions of the 4×4 system is very different. Still, the
dual-fermion strong coupling perturbation in k-space works reasonably well.
Fig. 9 shows the combined effect of a strong chemical-potential shift µ=−1 and next-nearest
hopping t′/t=−0.3. In this case we show results of the CT-INT approach with β=10. The
agreement is very good, and only one Green function (the lowest imaginary part) which corre-
sponds to the X-point (k = (π, π)) and is located close to the Fermi level (the corresponding
real part is close to zero) the dual perturbation shows a small discrepancy. In principle, one
can reduce the error of the dual perturbation if one can choose the reference closer to the target
system. The main condition is a weak sign problem for the reference system. Since this is
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from a reference system with t′/t=−0.1 in comparison with numerically exact QMC results
(CT-QMC) for the 4×4 system in Matsubara space with U=5.56, µ=0 and β=10. Real part
(left) and imaginary part (right).

always the case for small 4×4 clusters, we can show in the Fig. 10 the CT-INT results starting
from a reference system corresponding to t′/t=−0.1 for the target system with t′/t=−0.3. In
this case, for lower temperature, T=t/10, the DF-QMC results are still in a good agreement
with the exact solution. This example shows that we can also use an “over-doped” Hubbard
model (−µ/tw 4 in Fig. 3) as a reference system in order to tackle the optimally doped case
with super-QMC scheme.

4 Results for 8×8 lattices

For large 8×8 systems at β = 10, the average sign in DQMC is of the order of 10−3 even
with a fermionic bath, and calculations of the test Green function are no longer possible. For
much larger temperatures, corresponding to β=3 and not so large U=5.56 the sign problem
is not severe and it is still possible to prepare a DQMC test. Fig. 11 shows a comparison of
the Matsubara Green functions for all 15 non-equivalent k-points in dual-fermion perturbation
with Hirsch-Fye QMC and DQMC-test. The agreement is quite good, but one should remember
the very high temperature of this test (T=t/3) which results in metallic behavior of all Green
functions.
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Fig. 12: Spectral function −=G(k, ω)/π from dual-fermion QMC (CT-INT) for a 8×8 lattice
with U/t = 8, t′/t = −0.3, µ = −2.0, and β = 10.

We have calculated the Green function for the doped two-dimensional Hubbard model for a
periodic 8×8 system with U/t=8, t′/t=−0.3 and µ/t=−2 for β=10/t using a CT-INT ver-
sion of the CT-QMC scheme [24]. Note that for the non-interacting Green function we used
the infinite-lattice limit with periodic boundary conditions for the calculated 8×8 system. This
scheme reduces the cluster-size dependence for the bare Green function: in particular, the local
one does not depend at all on the choice of the “simulation box”. On the other hand, it may un-
derestimate the effect of U -interactions, since they appears only in the calculated cluster. This
may explain a small gap in the half-filled reference system compared to a standard lattice de-
terminant QMC scheme [40]. The results for the first-order dual-fermion perturbation from the
half-filled system indicate the formation of a correlated pseudogap electronic structure. Fig. 12
shows the color map of the spectral function along the irreducible path (Γ -X-M -Γ ) in the
square Brillouin zone. For analytical continuation we used the newly developed scheme [54].
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Fig. 13: Spectral function −=G(k, ω)/π for two different k-points corresponding to the anti-
nodal (π, 0) and nodal (π/2, π/2) point in the dual fermion QMC (CT-INT) scheme for a 8×8
lattice with U/t = 8 t′/t = −0.3, µ = −2.0 and β = 10.

Several characteristic features of the correlated metallic phase in generic cuprate systems can
be detected: the formation of an extended pseudogap region around the X-point towards the
M -point, a shadow antiferromagnetic band at energy −2t near the M -point, a strongly renor-
malized metallic band near the nodal point around (Γ -M)/2. Overall, the spectral function for
U = W clearly shows strong correlation features of the electronic structure far beyond a simple
renormalized band paradigm.

In order to see the pseudogap and nodal-antinodal dichotomy more clearly we plot the energy
dependence of the two spectral functions at the X- and the (Γ -M)/2-point in the Brillouin
zone (Fig. 13). While at the X=(π, 0)-point there is a reasonably deep pseudogap formation
already at β=10, the nodal spectral function at (Γ -M)/2=(π/2, π/2) shows correlated metallic
behavior. A more unusual feature of the strong-coupling spectral function in Fig. 12 is related
with a “shark mouth” pseudogap dip starting at X in the direction to M until half way. One
can see from the energy dependence of the spectral function in the direction of X-M (Fig. 14
(middle)) that the pseudogap splitting of the sharp quasiparticle peak at zero for the (X-M)/4

point is even larger than at the X-point. The same feature was observed for a self-energy in a
diagrammatic Monte Carlo (C-DET) investigation of the doped Hubbard model atU/t = 6 [25].
We would like to point out that all these effects are not simply an artifact of the analytical
continuation with the MaxEnt scheme and can be detected by inspection of the original complex
Matsubara Green function from DF-QMC calculations (Fig. 15). If we compare the X=(π, 0)

and (X-M)/4=(π, π/4) points then both quasiparticle peaks are located almost at the Fermi
energy (the real part of G(k, ωn) is close to zero) but the pseudogap or upturn of the imaginary
part of G(k, ωn) for the first Matsubara frequencies are more pronounced at the (π, π/4)-point.
We have also checked this characteristic feature with the Hirsch-Fye QMC scheme [43] and
different MaxEnt implementations. The general structure of this spectral function is similar to
recent results of dynamical variational Monte Carlo schemes [29, 30].
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(top) Γ -X , (middle) X-M and (bottom) (Γ -M ) dual fermion QMC (CT-INT) for a 8×8 lattice
with U/t = 8 t′/t = −0.3, µ = −2.0 and β = 10.

We plot a broadened Fermi surface using the momentum-dependent spectral function for the
first Matsubara frequency (Fig. 16). Comparison with the non-interacting tight-binding Fermi
surface for the same doping shows a large region of the pseudogap around the X-point and
formation of Fermi arcs near the nodal point. Moreover, one can understand that the pseu-
dogap is more pronounced a bit away from the X-point towards the M -point, where the non-
interacting Fermi surface crosses the Brillouin zone. We also compare the Fermi surface plot for
smaller values of U/t=5.6, which was investigated with the diagrammatic Monte Carlo tech-
nique [55,56]; this value is related to a plaquette degenerate point [19]. While the Fermi surface
for small U/t=5.6 agrees well with the results of the diagrammatic Monte Carlo approach [56]
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and resembles the tight-binding one with only large broadening around the X-point, the U/t=8

results show already the formation of the pseudogap and Fermi arcs, that is, a nodal-antinodal
dichotomy.

5 Discussion

We developed, for Hubbard-like correlated lattice models, the first-order strong-coupling dual
fermion expansion in the shift of the chemical potential (doping) and in the second-neighbor
hopping (t′). The starting reference point corresponds to the half-filled particle-hole symmet-
ric system which can be calculated numerically exactly, without a fermionic sign problem.
For the physically interesting parameter range of cuprate-like systems (around 10% doping
and t′/t=−0.3 we can obtain a reasonable Green function for a periodic 8×8 lattice for the
temperature T=0.1t. The formation of the pseudogap around the antinodal X-point and the
nodal-antinodal dichotomy are clearly seen in the present approach.
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We would like to point out a few main reasons why such a “super-perturbation” scheme works:
first of all, the reference system already contains the main correlation effects which results in
the four-peak structure of the density of states for the half-filled lattice Monte Carlo calcula-
tions [40]; second, the first-order strong-coupling perturbation relies on the lattice four-point
vertex γ1234 (Eq. (23)) which is obtained numerically exactly and has all the information about
the spin and charge susceptibilities of the lattice; and third, if the dual perturbation Green func-
tion G̃0

12 (Eq. (21)) is relatively small, results will be reasonable. The complicated question of
convergence for such a dual-fermion perturbation can be checked numerically by calculating
the second-order contribution in Σ̃12. For this term one needs to calculate within lattice QMC
a six-point vertex γ(6) which will be a direction of future developments. In principle, one can
also discuss an instability towards antiferromagnetism or d-wave superconductivity, introducing
symmetry-breaking fields [15], which we also plan to investigate.
It is worthwhile to mention that for the starting reference system we can choose not only the
half-filled case, but any doped case where the sign problem is mild, so we can use a QMC
calculation to expand this numerically exact solution to “Terra Incognita” regions where the
sign problem is unacceptable for direct QMC calculations.
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[25] F. Šimkovic, R. Rossi, A. Georges, and M. Ferrero, arXiv (2022)
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