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1 Motivation

Since the earliest days of quantum mechanics researchers have philosophized about the physical
meaning of electronic wavefunctions and have often sought to find rigorous means for interpret-
ing both localized and canonical representations of the electronic degrees of freedom and for
building more effective or efficient theories based upon localized orbitals [1–27]. Two of the
earliest papers by Pauling and Koopmans highlight the dichotomy of viewpoints. Pauling [1]
pointed out that localized sp3 orbitals helped to explain energy differences between separated
and condensed phases while Koopmans [2] showed that it was in fact canonical orbitals that
best explained energy differences involving removal or addition of electrons. The discussion
continues today with reasons, both conceptual and rigorous, for thinking in terms of both pic-
tures. And the overlapping discussion spans all fields of quantum-mechanical inquiry especially
in cases where computational constraints require consideration of quantum-mechanical formu-
lations that are not unitarily invariant within their representation. Here these problems are dis-
cussed within the self-interaction correction to density functional theory and one aspect of this
discussion partially unifies early work of Pauling [1], Wannier [3], Löwdin [4] and Edmiston,
and Ruedenberg [5].
Before introducing the Fermi-Löwdin-Orbital formulation and discussing it within the frame-
work of the self-interaction correction (SIC) to density-functional approximations (DFA), we
motivate the use of the Fermi orbital with five questions, all of which have the same answer:

1. Can the concept of Wannier functions in condensed-matter physics [3], spn hybridized
orbitals in atomic physics, localized molecular orbitals in molecular physics [4, 5] be
formulated within a universal formulation?

2. Is there a means to generalize the concept of Wannier functions, which are currently only
defined in insulating systems, to metallic systems?

3. Is there a way to create a unitary transformation, generally thought of as a discrete op-
erator represented as an N×N matrix, that explicitly depends continuously on the one-
particle density matrix?

4. Is there a way to start with a set of Kohn-Sham orbitals and define a quasi-classical “elec-
tronic geometry” that is, in some way, the reciprocal lattice of the Kohn-Sham orbitals?

5. How does one re-formulate the self-interaction correction [8] to the density-functional
approximation in a manner that assures the resulting energy is both size consistent and
unitarily invariant?

The answer to all of the above questions is that there is indeed a common construction, now
commonly referred to as Fermi-Löwdin orbitals [19, 20] that are indeed the answer to all of
the above questions. In the early 1980’s Luken and coworkers [10], due to their interest in
electron diffusion, considered the use of the so-called Fermi-exchange hole, ρ(r, r′)/

√
ρ(r), to

define a set of orthonormal orbitals that sum to the total density of an electronic system. In
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Fig. 1: Qualitative comparison of electronic structures and excitations as approximated by the
local-spin-density approximation and the self-interaction-corrected approximations to density
functional theory: The HOMO/LUMO/Band gaps (Γ ) increase. The location of the defect levels
(δ) are moved away from the conduction band. The spin excitation spectrum narrows.

the following, we discuss how such orbitals address one of the greatest challenges to the field
of density-functional theory. In this chapter I try to compare and contrast the earliest versions
of the self-interaction corrected density functional [8] with a new formalism referred to as the
Fermi-Löwdin Self-Interaction Correction. The work discussed here was originally discussed
as parts of Ref. [9,11,19–21,25,27] and involved collaborations with many authors who I thank
and refer to here and in the acknowledgments. I have attempted to discuss the work in the most
sensible way based on today’s knowledge rather than on the chronological development.

SIC-induced improvements of spectroscopies

The qualitative differences between DFA and SIC-DFA are depicted in Fig. 1. The SIC pulls
down the occupied states relative to the unoccupied states which generally leads to a gap (Γ )
that is improved in comparison to experiment. Localized excitations in a vacuum or excitons
in a wide-gap insulator (depicted as E) can be difficult to identify within LSDA calculations
as they often appear above the conduction band. In DFA-SIC, with an approximation to the
particle-hole interaction (δ), the description of such excitations can be improved. For defects
in solids, where localized levels occupy the gap, LSDA and GGA calculations tend to place
the defect levels (labeled by ∆) too close to, or overlapping, with the unoccupied conduction
band. However, SIC-LSDA pulls the defect levels down and generally predicts shallow lev-
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els in a qualitatively correct location relative to the conduction level. With inclusion of SIC
and a particle-hole interaction, an unoccupied continuum of defect levels, expected from the
Mott-Gurney theorem, begins to emerge. Consensus is emerging in regard to the differences
between SIC and DFA charge-transfer excitations. Examples suggest that DFA can dramat-
ically underestimate these energies and that an approximate self-interaction-corrected energy
with a particle-hole interaction restores the correct asymptotic form for donor-acceptor and
other charge-transfer excitations. For example, in a vacuum, these energies are found to be
close to I−A−1/R, where I is the donor ionization energy, A is the acceptor electron affinity
and R is the separation between the particle and hole. For spin excitations, determined from
DFA-based derivations of Heisenberg Hamiltonians, a large number of calculations show that
the spin-excitation energies are overestimated due to DFA’s tendency to slightly delocalize the
d-electrons, since the kinetic exchange interactions increase exponentially as the d-electrons
delocalize. Therefore inclusion or partial inclusion of self-interaction corrections lowers the
spin-excitation energies and improves agreement with experiment. While not depicted in the
picture, vibrational spectra seem to be relatively well accounted for within DFA. However,
since polarizabilities are dependent on SIC, the Raman intensities are also expected to show
some dependence on the inclusion of self-interaction corrections. Original efforts and motiva-
tions within SIC sought to improve gaps and excitations through the use of eigenvalues. As
alluded to at the very beginning of this chapter, there are conditions for which eigenvalues
provide rigorous estimates for electronic processes but not for all possible changes in orbital
rearrangements. While a generalized Koopmans’ theorem is a good goal, changes in computa-
tional speed and the need for unambiguous accuracy will definitely favor total energy difference
calculations rather than uses of Koopmans-like pictures for all possible excitations. One of the
ways that the dialogue and interpretations about self-interaction-corrected and standard DFA
eigenvalue differences needs to change is that when there are qualitative differences it often
means that delta-SCF calculations are not possible within DFA but are within SIC. That is,
a qualitatively correct electronic structure within SIC allows for total energy differences but a
qualitatively incorrect DFT electronic structure does not.
In 1981 Perdew and Zunger formulated the self-interaction correction to ensure that any approx-
imation to the density-functional would be correct in the one-electron limit. This was accom-
plished by modifying any approximation to the universal density-functional, EDFA

xc ≡ [n↑, n↓],
according to

EDFA
xc → ESIC-DFA

xc = EDFA
xc −

∑
i,σ

(
U [ρi,σ] + Eapprox

xc [ρi,σ, 0]
)
. (1)

In the above equation, the SIC (localized) orbitals {ϕiσ} are used to define orbital densities ac-
cording to: ρiσ(r) = |ϕiσ(r)|2. The terms U [ρi,σ] andEapprox

xc [ρi,σ, 0] are the exact self-Coulomb
and approximate self-exchange-correlation energies, respectively. In the original formulation by
Perdew and Zunger, the density-functional was approximated in terms of spin densities only but
the formulation is not constrained by such an assumption. Modern-day approximations to the
exchange-correlation energy generally include gradients of the spin densities which would then
require corresponding gradients of orbital densities.
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In reference to the work discussed in this section, the original PZ formulation led to a definition
for the energy functional that did not transform like the density and posited that atomic-like
orbitals might be the most appropriate set of orbitals for defining the SIC. This idea was for-
malized between 1981–1986 through the concept of localized and canonical orbitals in orbital-
dependent density functional theory. It was demonstrated that, within the constraint that the
orbitals used for constructing the SIC were orthonormal and constructed from a unitary trans-
formation on the occupied orbital space, that the orbitals which minimize the self-interaction
corrected functional satisfy the following equations [9](

Ho + V SIC
i

)
|ϕi〉 =

∑
j

λji |ϕj〉 and
〈
ϕiσ
∣∣V SIC

iσ −V SIC
jσ

∣∣ϕjσ〉 = 0, (2)

with V SIC
iσ the partial functional derivative of Eq. (1) with respect to the orbital density niσ. A

Jacobi-like approach for solution of the “localization equations” was shown to work well [9,11]
and it was determined that in analogy to Koopmans’ theorem in Hartree Fock, the eigenvalues
of the Hermitian Lagrange multiplier matrix were expected to be in good agreement with ex-
perimental electron removal energies [11]. The localized orbitals obtained from these equations
were found to be topologically similar to sp3 hybrids in atoms, alternative energy-localized or-
bitals in molecules, and Wannier functions in insulating solids. While this formulation offered
some advantages over density-functional approximations it was still not explicitly formulated
as an energy that was dependent only on the density matrix. As a result this version of the
self-interaction correction was neither unitarily invariant nor size consistent.

2 Introduction to Fermi-Löwdin orbitals and
preliminary applications

The orbitals introduced here, for the purpose of implementation of the self-interaction correc-
tion, have been proposed by Luken et al. in the early 1980s and more recently (since 2014)
considered for improving density-functional approximations. Within the group of scientists
interested in the self-interaction error to density-functional theory they are now commonly re-
ferred to as Fermi-Löwdin orbitals because they are based on the concept of the exchange hole
in Hartree-Fock, often referred to as the Fermi-exchange hole, and because their construction
relies upon a technique known as Löwdin’s method of symmetric orthormalization. To fur-
ther motivate the derivation of the Fermi-Löwdin orbitals let us algebraically manipulate the
expression for the exact exchange energy for spin σ as

Ex
σ = −1

2

∫
d~a

∫
d~r

∣∣∑
α ψ
∗
ασ(~r)ψασ(~a)

∣∣2
|~r−~a|

= −1

2

∫
d~a ρσ(~a)

∫
d~r

∣∣∑
α ψ
∗
ασ(~r)ψασ(~a)

∣∣2
ρσ(~a) |~r−~a|

(3)

= −1

2

∫
d~a ρσ(~a)

∫
d~r

[
ρσ(~r,~a)√
ρσ(~a)

][
ρσ(~a, ~r)√
ρσ(~a)

]
1

|~r−~a|

= −1

2

∫
d~a ρσ(~a)

∫
d~r

∣∣F~aσ(~r)∣∣2
|~r−~a|
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with the Fermi-orbital, defined as F~aσ(~r) ≡ ρσ(~r,~a)/
√
ρσ(~a). In the above equation, the ex-

act exchange energy has first been expressed in terms of the single-particle density matrix,
ρσ(~r,~a) =

∑
αψ
∗
ασ(~r)ψασ(~a) and then the expression within the double integral has been mul-

tiplied and divided density ρσ(~a) = ρσ(~a,~a). Examination of the expression shows that the
Fermi-Exchange hole, evaluated at any point in space, ~a, integrates to unity and that one can
think about the exchange energy density as the interaction of the total density ρσ(~a) interacting
with the Fermi-Exchange-hole density F~aσ(~r) that is redefined at each point, ~a.
Because the Fermi-Exchange-Hole transforms like the density under unitary transformations
any quantity that depends on the Fermi-Exchange-Hole is also unitarily invariant. As such, the
following reformulation of the Perdew-Zunger self-interaction was developed in terms of the
spin-density-matrix and N electronic positions according to the following prescription:

1. For a trial set of Kohn-Sham (KS) orbitals {ψασ} find a special set of Nσ positions in
space {a1σ,a2σ, . . . ,aNσσ} which provide a set of Nσ normalized linearly independent,
but not orthogonal Fermi-orbitals {F1σ, F2σ, . . . , FNσσ}. By their construction from the
density matrix, these Fermi-orbitals will always lie in the space spanned by the KS or-
bitals but are not guaranteed to span that space (For example if one defines each Fermi-
orbital in terms of the same position the N Fermi-orbitals would be identical. These
positions are now called Fermi-Orbital Descriptors (FODs).

2. When a set of N FODs, that provide a set of Fermi-orbitals that span the space of the
Kohn-Sham orbitals is found, use Löwdin’s method of symmetric orthonormalization to
transform the set of FOs to a set of localized orthonormal orbitals {ϕ1σ, ϕ2σ, . . . , ϕNσσ}
that are a unitary transformation on the KS orbitals. The resulting Fermi-Löwdin orbitals
(FLOs) depend upon the set of FODs which means that the self-interaction energy also
depends on the FODs.

3. Minimize the energy as a function of the KS orbitals and the set of FODs. The minimiza-
tion with respect to the FODs can be performed using methods that are commonly used
to optimize molecular geometries.

In this section some simple applications of this FLOSIC methodology are presented. The goal is
to introduce both real and (briefly) complex SIC orbitals and compare them within the context of
the original version of self-interaction corrections and the FLOSIC version of self-interaction
corrections. By considering simple atoms, the N2 molecule, and a cubic Brillouin zone with
uniform density the reader should gain an understanding that complex Kohn-Sham orbitals do
not require complex FODs or complex local orbitals, that there are times when symmetry con-
siderations or energy considerations argue for the use of complex orbitals, and there are times
when bond-breaking-considerations argue for FLOs that break spin symmetry. Appreciating
these issues early on will help prepare practitioners for future improvements in the theory and
implementation of the FLOSIC formulation. However the reader will also be prepared for the
discussions about complex FLOs that appears later in this chapter.
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2.1 Closed shell atoms

As a way of introducing Fermi-Löwdin orbitals and the Fermi-orbital-descriptors that define
them and as a way of attempting to encourage universality across disciplines we can start by
thinking about the 2sp3-hybrids. This also provides a simple analytical example that can be
based upon the hydrogenic orbitals. For principal quantum numbers n = 2, the hydrogenic
orbitals are given by

ψ2s(~r )=
exp−r/2 (2−r)√

32π
ψ2px(~r )=

x exp−r/2√
32π

ψ2py(~r )=
y exp−r/2√

32π
ψ2pz(~r )=

z exp−r/2√
32π

Let us then guess that the set of FODs, that minimize the energy are determined by a tetrahedron
with vertices chosen such that ψ2s(~a ) = ψ2px(~a ) = ψ2py(~a ) = ψ2pz(~a ). The condition that
allows for this equality is to choose FODS which satisfy

|ax| = |ay| = |az| = 2− |a| with |a| =
√
3|ax|

Under these conditions, it then follows that a choice for the FLOs is given by

|F1〉 =
1

2

(
|ψ2s〉+ |ψ2px〉+ |ψ2py〉+ |ψ2pz〉

)
=
∣∣ϕFLO1

〉
!

|F2〉 =
1

2

(
|ψ2s〉 − |ψ2px〉 − |ψ2py〉+ |ψ2pz〉

)
=
∣∣ϕFLO2

〉
!

|F3〉 =
1

2

(
|ψ2s〉 − |ψ2px〉+ |ψ2py〉 − |ψ2pz〉

)
=
∣∣ϕFLO3

〉
!

|F4〉 =
1

2

(
|ψ2s〉+ |ψ2px〉 − |ψ2py〉 − |ψ2pz〉

)
=
∣∣ϕFLO4

〉
!

In the above, the exclamation mark has been added because this choice of FODs leads to the
rare, but sought-after, condition that the Fermi-orbital and Fermi-Löwdin orbital are in fact
identical. A second rarity is that for this special case, the FLOs also satisfy the localization
equations within their subspace. A third rarity, and curiosity, is that if the set of four FODs is
broken up into two pairs of FODs, the Fermi-Löwdin orbitals are invariant as the vertices are
pinched toward one another. As a first illustration, calculations on some closed shell atoms will
be discussed. The appearance of hybridization is common within the FLO formalism and not
limited to sp-hybridization. In Fig. 2, the sp3d5 and sp3d5f 7 hybrids that are found for systems
like Kr and Rn are illustrated.
In columns 1–4 of Table 1, the total energies for rare-gas atoms and a few lighter atoms with
closed spin shells are presented. For completeness we also include the Hartree-Fock value of
the energy that is calculated with the self-consistent FLOSIC orbitals. In a later section, the
possibility of complex FLOs is introduced and the fifth column of this table will be discussed in
that section. In preparation for that discussion it is a useful exercise to consider the possibility
of multiplying any of the 2s/2p orbitals by

√
−1 = i. The reader can convince themselves that

the resulting FLOs would still be orthonormal and therefore a viable local orbital set within the
original formulation of the self-interaction correction.
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A (sp3d5f7)

C (sp3d5) D (sp3d5)

B (sp3d5f7)

Fig. 2: Relatively regularly polyhedra, referred to here as “flotonic solids”, can be used for
initializing FOD geometries that form a reciprocal lattice from closed shell atomic Kohn-Sham
orbital sets. In this picture, isosurface plots of the orbital densities of inequivalent FLOs for the
Radon n = 4 shells (4s4p34d54f 7, top) and n = 3 (3s3p33d5, bottom) shells. For the n = 4
shell, there are four FLOs that resemble FLO A and 12 FLOs that resemble FLO B. For the
n = 3 shell, there are six FLOs that resemble FLO C and three FLOs that resemble FLO D.
The flotonic solid for the n = 2 shell is a tetrahedron and it leads to standard sp3 hybrids.

Atom HF (Ha) Exp. (Ha) LSDA (Ha) rFLOSIC (Ha) cFLOSIC (Ha) ∆E (eV)
H -0.5000 -0.500 -0.4786 -0.4999 -0.4999 0.00
He -2.8615 -2.903 -2.8344 -2.9197 -2.9197 0.00
Li -7.4320 -7.478 -7.3432 -7.5091 -7.5091 0.00
Be -14.5715 -14.668 -14.4461 -14.7066 -14.7066 0.00
N -54.3997 -54.612 -54.1342 -54.7407 -54.7578 -0.47
Ne -128.5392 -129.053 -128.2297 -129.2805 -129.3339 -1.45
Ar -526.7984 -528.223 -525.9395 -528.5365 -528.6767 -3.82
Kr -2752.0206 -2750.1330 -2757.6071 -2758.0253 -11.39

Table 1: Total energies (in Ha) of atoms from experiment, LSDA, rFLOSIC, cFLOSIC, and the
total energy difference between the complex and real methods, ∆E = cFLOSICrFLOSIC (in
eV). The cFLOSIC energies are evaluated using the self-consistent rFLOSIC electron density.
Structures based upon the flotonic solids, described in the last section of this paper, appear
to lead to the lowest energy solutions. It is only here that the Hartree-Fock energy has been
systematically tracked as a function of the FLOSIC energy. So far it appears that the Hartree-
Fock energy decreases as the FLOSIC energy decreases. (Calculations performed by Pederson
and Withanage)

2.2 The closed-shell N2 molecule

The N2 molecule, with a triple bond, is the second strongest diatomic molecule. Its isoelec-
tronic cousin, carbon-monoxide, is slightly stronger due to similar covalent bonding and some
degree of ionic enhancement. The molecule has cylindrical symmetry. Within the FLOSIC
formulation, there are three inequivalent FODs given by ~a1s = (0.628, 0.628, 0.628), ~alone-pair =

(1.311, 1.311, 1.311) and~abanana = (0.702,−0.702, 0.000). To make contact with the discussion
of sp3 hybrids in the previous section, note that relative to the nitrogen atom, the lone-pair FOD
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Mol. LSD GGA FLOSIC-LSD Hartree-Fock Expt
(PW92) (PBE) (PW92)

N2 11.58 10.49 10.24 4.87 9.84

Table 2: Atomization energies (eV) of N2 as determined from LDA(PW92), GGA(PBE),
FLOSIC-LSD(PW92), Hartree-Fock, and experiment. The same basis set is used for all calcula-
tions. For these calculations the nitrogen atoms were placed at the LDA equilibrium separation,
at R± = ±(0.598, 0.598, 0.598).

and the three-equivalent banana-bond FODs form an almost perfect tetrahedron and thereby
allow the nitrogen molecule to seamlessly dissociate into two atoms with anti-parallel spin po-
larization. The complete set of 14-FODs can be generated from the D3h symmetry operations.
Pictures of the resulting localized orbitals are shown in Fig. 3. The strongly covalent singlet N2

molecule, 1σ2
g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g , dissociates into an open-shell singlet with three unpaired 2p

electrons per atom. For comparison, the LSD(PW92) energy functional gives an atomization
energy of 11.54 eV at this bondlength and the GGA(PBE) energy functional gives an atomiza-
tion energy of 10.54 eV. In Fig. 3, the valence FODs are shown pictorially. Complex FODs
will be discussed in a later section. The real FODs 1sA± = (1σ′g±1σ′u)/

√
2, lone-pair states

on the exterior of the molecule, 2spA± = (3σ′g±2σ′u)/
√
2, and three bond-centered banana or-

bitals (e.g., ϕn =
(
2σ′g −

√
2[cos(2nπ

3
)πux + sin(2nπ

3
)πuy]

)
/
√
3, with n = −1, 0,+1 ). The

primes indicate that KS molecular orbitals of the same symmetry are mixed together by a uni-
tary transformation within each irreducible representation to minimize Eq. (1). For example the
{2σ′g, 3σ′g} are not perfect eigenstates. Instead they are determined by a nearly diagonal unitary
mixture of the {2σg, 3σg} KS eigenstates.

In the earliest implementation of self-interaction corrections to molecules a similar construction
of localized orbitals for the σ states was envisioned. However for the π-states, a symmetry
argument was made that the energy density should have the same symmetry as the total density.
This mandates using localized SIC orbitals for the π-states as |ϕ±〉 =

(
|ψπux〉+ i |ψπuy 〉

)
/
√
2.

Comments on Symmetry Breaking: Beginning with the earliest origins of the use of SIC
there have been assertions that the use of SIC breaks symmetry. Here we should mention that
there is spin-symmetry breaking, often needed in ordinary density-functional approximations,
for the description of bond breaking, which is needed for most approximations to the univer-
sal functional. It is further quite common to hear assertions that there is unphysical symmetry
breaking within the FLOSIC method. The experience of this author is that, while the inclusion
of self-interactions leads to slightly less numerical stability than is available in standard DFT
calculations, it is generally possible to find a lower energy solution that exhibits higher sym-
metry. A caution to readers is that when minor symmetry breaking is observed, it will always
be the case that a nearby symmetrical solution will be a critical point and the goal should be
to determine whether such solutions are lower in energy. Further it should be noted that when
broken symmetry solutions exist, especially for spin-ordered systems, the solutions generally
contain information about low-lying excited states.



13.10 Mark R. Pederson

Centroids of real FLOs

Side view

Centroids of complex FLOs

Side view

cFLOrF
LO

-0.34     -0.27

-0.34     -0.68

-0.34      -0.68

-0.68      -0.71

-0.68      -0.71

+0.97

+0.28

+0.28

+0.83

-0.72

Unitary
transformation

Fig. 3: Valence orbital densities of N2 for several different forms of density functional imple-
mentations. In the upper panel the standard canonical orbitals are shown. The shape of these
orbitals have minimal variation regardless of functional choice (Exchange-Only, Perdew-Wang
92, PBE-GGA, Hartree-Fock, etc). When self-interaction corrections are included and orbitals
are constrained to be real, the three bonding orbitals form banana bonds. These orbitals may
be thought of as bonding combinations of sp2 atomic orbitals) and this choice is, again, weakly
dependent on the functional. However, if the constraint of reality is dropped and complex FODs
are adopted, (cFLO) the orbitals soften their variability as shown on the far right. The SIC
energy ESIC[niσ] (in eV) is indicated next to each orbital. The expansion of each rFLO and
cFLO orbital in terms of the canonical orbitals is shown. The centroids of the rFLOs (left) and
cFLOs (right) are indicated in the gray boxes. For the rFLOs, these correspond closely to the
FOD positions. However, it is not generally true that the FOD position will correspond to the
orbital centroid.

2.3 A closed shell electron gas: Wannier functions, FLOs and FOs

Very early on, Wannier discovered a set of orthonormal functions, constructed from Bloch func-
tions, that now bear his name. This work was accomplished prior to the computer age. There-
fore, to make progress Wannier considered a uniform density gas. Rather that consider filling
a Fermi-Sphere with plane waves, Wannier imagined approximating an insulating crystal by a
cubic Brillouin zone. States on the inside of the “Wannier Cube” were occupied and states on
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the outside were unoccupied. The title of his land-mark paper [3] is: Structure of Electronic
Excitation Levels in Insulating Crystals. In it he wrote down Wannier functions of the form

ω(r−Rµ) =
1√
π3

∏
i

sin
(
qF (x

i−X i
µ)
)

√
qF (xi−X i

µ)
, (4)

with Rµ = (mx,my,mz)(π/qF ) and qF is half the width of the cubic Brillouin zone. By in-
scribing the largest possible “Wannier cube” (qF = kF/

√
3) within the Fermi sphere, a specific

set of Wannier functions may be derived. It has been shown early on by this author that this
set of functions leads to a negative self-interaction correction for of the plane-wave states en-
closed within the Wannier cube. So in the exchange-only limit, a limit that was perhaps the only
tractable problem in 1937, it is highly probable that either exact exchange or the self-interaction
correction would open up a HOMO-LUMO gap. By inspection, and related to the uncertainty
principle, it is clear that the original Wannier functions get more localized as the magnitude of
the qF -vector gets larger. It is easy to verify that Wannier functions are a sub-class of the Fermi
orbitals! The exclamation mark is included here because the original set of Wannier functions
join the sp3 hybrids as being an example where the Fermi orbitals are already orthogonal to one
another. The possibility that, for any system, there is a set of FODs that leads to orthonormal
FOs has been discussed and these orbitals were crowned “the most loved localized orbitals”. To
date there are very few exact cases, possibly only two, that satisfy this criterion. A few more
comments illustrate their physical and chemical nature. At r = ~aiσ, the value of the absolute
square of the FO is identically equal to the total spin density at ~r = ~aiσ. Further, the FO as-
sociated with any position, ~aiσ, in space is normalized to unity. Second, the absolute square
of the FO is minus the exchange-hole density at r around an electron at ~aiσ. There have been
several different attempts to find localized orbitals for the free-electron gas. Most of the work
discussed in these references was in regard to the standard free-electron gas which leads to a set
of occupied plane-wave states inside a Fermi sphere.

It is hypothesized that at low enough density, the limit of Wigner crystallization, despite the
large increase in kinetic energy associated with the deformation of a spherical Fermi surface to
a non-spherical Fermi surface, the derivative of the energy with respect to n1/3 is more negative
in the limit of n→ 0 (if the SIC-energy is indeed negative as is the case for the LSDA exchange-
only functional). It was shown analytically that, in the low-uniform-density limit, a state that is
based on a full band of plane waves/Wannier functions confined within a simple-cubic “Wannier
cube” is lower in energy than the standard state composed of plane waves confined to the Fermi
sphere. The author estimates that the crossover occurs at values of rs > 35 and that the uniform
density “insulating state” (plane waves within a “Wannier cube”) is lower than the metallic state.
However with a new theorem that guarantees that one can find solutions of the N−1 electron
problem when the N electron-problem is solved, it seems that some analytical progress toward
defining FLOs for the metallic free-electron gas is now possible. Knowing this may very well
determine if the sign of the SIC-energy of a localized orbital in the low-density limit must be
negative.
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3 Fermi-Löwdin orbitals:
An existence proof and their construction

Given the infinite number of points, one expects that it would be rather easy to find a set of
Fermi-orbital descriptors for construction of the Fermi-Löwdin orbitals. Further in the previ-
ous section, two simple examples requiring no computation have been shown to immediately
provide FLOs – in fact the most loved ones.
In practice it is much more difficult to do than expected. Here we provide a proof that a solution
always exists and that every time one initial solution is determined that an avalanche of solutions
for smaller systems follows. To determine the Fermi-Löwdin orbitals one first constructs the
overlap matrix

Sij = 〈Fi|Fj〉 =
∑

α ψα(ai)ψα(aj)√
ρ(ai)ρ(aj)

=

∑
αWαiWαj√
ρ(ai)ρ(aj)

. (5)

Give the overlap matrix, an intermediate set of its eigenvectors is derived according to

S ~Tα = Qα
~Tα. (6)

The eigenvectors Qα must be greater than zero and
∑

αQα = N , the number of Kohn-Sham
orbitals. The eigenvectors, |Tα〉 are defined in terms of the Fermi orbitals according to |Tα〉 =∑

i |F~a〉, with
∑

α TαiTαj = δij and
∑

i TαiTβi = δαβ . To obtain Fermi-Löwdin orbitals
from these intermediate orbitals we first normalize them, |T ′α〉 → |Tα〉/

√
Qα, and then back-

transform them according to

|ΦFLO
i 〉 =

∑
α

1√
Qα

Tαi |Tα〉. (7)

Because the T -matrix is unitary, it is clear that in the limit of small overlap the eigenvalues
(Qα) tend to unity and that |ΦFLO

i 〉 → |F~ai〉. In the following section, several well-known cases
in physics and chemistry are discussed. However, it is more common to find that some of
the overlaps vanish and here the discussion focuses first on demonstrating that it is formally
possible to find the Fermi-orbital overlaps. Subsequent to this discussion, ideas on how to find
them for hard cases are included. To see that there is always a solution, let us start with Eq. (5)
which relates the Fermi-orbital overlap matrix to the Kohn-Sham orbitals, and multiply both
sides of the equation by

√
ρ(~ai)ρ(~aj). We find∑

α

WαiWαj =
√
ρ(ai)Sij

√
ρ(aj) =

∑
pq

√
ρ(ap) δip Spq δqj

√
ρ(aj). (8)

In the above equationWαi = ψα(ai), which reminds us that we can think of the left-hand side of
the equation as a product of two matrices. The Kronecker delta function δip is a convenient way
to write the right-hand side as the product of three matrices. Since each element of the diagonal
matrix,

√
ρ(~ap) is now expressed as a manifestly positive definite matrix Pip ≡

√
ρ(ap) δip,

Eq. (8) becomes, in matrix form,

W×WT = P× S× PT , (9)
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and we can take the determinant of both sides which yields

det(W)2 = det(P)2 det(S). (10)

Inspection of the left-hand side of the equation shows that det(W) is identically equal to the
value of the many-electron Slater determinant, composed of the Kohn-Sham orbitals, evaluated
at the geometry of the Fermi-orbital descriptors (multiplied by

√
N !). The det(P) never van-

ishes except for the non-physical case that every Kohn-Sham orbital is zero at one or more FOD
positions. Therefore the determinant of the FO-overlap matrix is not zero if det(W ) is. Since
the det(W ) is the value of a Slater determinant constructed from the Kohn-Sham orbitals, a
sufficient condition for obtaining a positive definite Fermi-orbital overlap matrix is that W is
invertible. Alternatively, a sufficient condition is that a many-electron wavefunction exists for
the system. If a many-electron wavefunction exists, there must be at least one Slater deter-
minant that is non-zero somewhere. Since the product of the eigenvalues of the FO-overlap
matrix is identically equal to det(S), it follows that a set of Fermi-Löwdin orbitals must exist if
det(W )6=0. Let us now rewrite the Slater-Determinant in terms of an alternative set of orbitals
ϕi =

∑
Uiαψα. Since det(Uψ) = det(U) det(ψ), the many electron Slater determinant can, at

most, change by a phase factor

detW =

∣∣∣∣∣∣∣∣∣∣
ψ1(a1) ψ2(a1) · · · ψN(a1)

ψ1(a2) ψ2(a2) · · · ψN(a2)
...

... . . . ...
ψ1(aN) ψ2(aN) · · · ψN(aN)

∣∣∣∣∣∣∣∣∣∣
= eiθ

∣∣∣∣∣∣∣∣∣∣
ϕ1(a1) ϕ2(a1) · · · ϕN(a1)

ϕ1(a2) ϕ2(a2) · · · ϕN(a2)
...

... . . . ...
ϕ1(aN) ϕ2(aN) · · · ϕN(aN)

∣∣∣∣∣∣∣∣∣∣
. (11)

The orbitals (ϕ1, ϕ2, ...) can be any set of orbitals that are related to the Kohn-Sham orbitals
(ψα) by a unitary transformation, including the FLOs, if the determinant of W is non-zero. In
the above equation eiθ would be the determinant of the unitary transformation. It follows that, if
an N -electron wavefunction is not zero everywhere, there is at least one set of KS orbitals and
one set of FODs for any non-zero N -electron wavefunction. Therefore it is guaranteed that it is
always possible to find an initial set of KS orbitals and FODs. Once accomplished the gradient
techniques discussed in Sec. 3.1 may be used reach a stationary point. It will be important
for FLOSIC practitioners to learn when such stationary points are ground states and when they
represent excitations.

An avalanche of solutions

Because it is in fact difficult to find a starting solution, it is then worthwhile to make the most
out of every human-determined starting solution found. Here we consider the manifestations
of finding one viable solution. Since an N×N determinant can be analytically represented in
turns of a sum of N cofactors, it means that if an N×N determinant is non zero, that at least
one of its co-factors (N−1×N−1 determinants) is non zero. This means that once one initial
solution is found, a minimum of N−1 and a maximum of 2N−2 new starting solutions are
found for systems with fewer electrons. This provides a big advantage from the standpoint
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of finding solutions. Further, once a non-positive-definite overlap matrix is found for a set of
N -orthonormal orbitals, the resulting set of FLOs almost satisfy the following expression

ϕFLO
i (aj) ≈

√
ρ(ai) δij. (12)

In terms of the ultimate goal of using quasi-classical electronic positions to better inform
density-functional development, this proof suggests an alternative criterion for choosing FODs
for defining the self-interaction correction (SIC). One could maximize the determinant of the
FO-overlap matrix and then assert that the SIC energy is being defined by a region where the
amplitude of the many-electron KS Slater determinant was large. However, for now, we stick
to the necessity of subsequent optimization of the FODs based on energy minimization.
Existence proofs provide guarantees that solutions can be found but do not necessarily provide
a set of directions on how to find them. We will return to strategies for finding initial starting
points in a later section but first turn to the equations that are needed to find the optimal set of
Fermi-orbital descriptors once an initial starting set has been found.

3.1 Optimizing Fermi orbital descriptors and Fermi-Löwdin orbitals
using derivatives

Before embarking upon this section it is important to distinguish between Fermi-orbital de-
scriptors (FODs) and Fermi-Löwdin-orbital centroids. FODs are the variational parameters.
Fermi-Löwdin-orbital centroids correspond to the center of gravity 〈ϕFLO

i |~r |ϕFLO
i 〉. The cen-

troids are determined by the full set of descriptors. Sometimes, for example for sigma bonds,
the FOD and FLOC are similar but generally this is not the case.
To efficiently use a Fermi-orbital based construction of localized orbitals in large systems it
is necessary to have an analytic expression for the derivatives of the orbital-dependent energy
terms with respect to these classical electronic positions. An additional goal for the next pe-
riod of time should be to determine second derivatives of energy with respect to the Fermi-
orbital descriptors (FODs). In the following the details that go into determining FOD gradients
are discussed. The resulting equations depend on the evaluation of N sparse N×N matri-
ces and one full N×N matrix. As such the evaluations of the FOD gradients and subsequent
optimization of the SIC-DFT Hamiltonian is not necessarily more complicated than standard
density-functional-based methods. For simplicity, spin indices on the orbitals and the spin-
density matrices are suppressed. Since the goal of this section is to develop analytic expres-
sions for transformations between various orbital sets, there are four different sets of orbitals
that need to be considered. These four sets will were initially referred to as the Kohn-Sham
orbitals (KS), the Fermi Orbitals (FO), the Intermediate Löwdin Orbitals (ILO), and the Local-
ized Löwdin Orbitals (LLO), respectively [20,21]. However, the nomenclature for the latter set
is now Fermi-Löwdin Orbitals (FLOs). Also, in the original discussions of gradients [20, 21],
the positions were imprecisely referred to as Fermi-orbital centroids rather than Fermi-orbital
derivatives. The gradient of the FLO with respect to the FOD is needed to determine the optimal
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Fermi-orbital descriptors for constructing the SIC energy. It is given by

∇aiσFiσ(r) =

∑
α ψ
∗
ασ(r)∇aiσψασ(aiσ)√

ρ(aiσ)
− Fiσ(r)∇aiσρ(aiσ)

2ρ(aiσ)
(13)

=
∑
α

Fα
iσ

(
∇aiσψασ(aiσ)

ψασ(aiσ)
− ∇aiσρ(aiσ)

2ρ(aiσ)

)
with Fα

iσ ≡
ψ∗ασ(r)ψασ(aiσ)√

ρ(aiσ)
. (14)

By construction, each of the FOs is normalized to unity and the set of Fermi orbitals spans the
same space as the KS and FLO orbitals as long as the set of FODs, aiσ, are far enough from
one another. The ILO also span the space of the KS and FLO but they are neither orthogonal
in orbital space nor normalized. The ILO are referred to as |Tα〉 in the forthcoming equations.
Their normalization, Qα, is determined by the standard (i.e. non-general) diagonalization of the
FO-overlap matrix according to

∑
j

SijTαj = QαTαi where |Tα〉 =
∑
j

Tαj |Fj〉 and Sij = 〈Fi|Fj〉 (15)

The FLO, designated by ϕk, are then constructed from the ILO and their associated eigenvalues
according to

|ϕk〉 =
∑
αj

1√
Qα

TαkTαj |Fj〉 ≡
∑
j

ϕFkj|Fj〉. (16)

Because the FO overlap matrix is real and symmetric, the inverse transformation between Fermi
orbitals and the FLO is also determined from

|Fl〉 =
∑
βn

Tβl
√
QβTβn |ϕn〉. (17)

Although no analytical use for the following equation has been identified, it is formally inter-
esting and computationally useful to note that, since the FLO are unitarily equivalent to the KS
orbitals, the Fermi orbitals may also be constructed from the FLO according to

Flσ(r) =

∑
n ϕ
∗
nσ(r)ϕnσ(alσ)√∑
n |ϕnσ(alσ)|2

≡
∑
α

Cσ
ln ϕnσ(r). (18)

In other words, the inverse transformation coefficients determined by Eq. (17) are also deter-
mined by knowing the values of the FLO at the FODs. Possibly this equality could be used to
derive something useful. Even if it is not found to be useful for analytic purposes, it is compu-
tationally useful since it shows that one can use a previous guess of FLOs to construct a new set
of FO and that the resulting matrices will be sparse. Assuming an initial set of FODs, {am},
have been determined the derivative of the total SIC energy with respect to a specific FOD is
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given by

dESIC

dam
=
∑
k

(〈 dϕk
dam

∣∣V k
SIC

∣∣ϕk〉+ 〈ϕk∣∣V k
SIC

∣∣ dϕk
dam

〉)
(19)

=
∑
kl

(〈 dϕk
dam

∣∣ϕl〉〈ϕl|V k
SIC|ϕk〉+ 〈ϕk|V k

SIC|ϕl〉
〈
ϕl
∣∣ dϕk
dam

〉)
(20)

=
∑
kl

λkkl

(〈 dϕk
dam

∣∣ϕl〉+ 〈ϕl∣∣ dϕk
dam

〉
+
〈 dϕl
dam

∣∣ϕk〉︸ ︷︷ ︸
=d〈ϕl|ϕk〉/dam

−
〈 dϕl
dam

∣∣ϕk〉) (21)

=
∑
kl

λkkl

(〈 dϕk
dam

∣∣ϕl〉− 〈 dϕl
dam

∣∣ϕk〉) ≡∑
kl

′ λkkl∆lk,m, (22)

with λkkl ≡ 〈ϕl|Ho+V
SIC
k |ϕk〉. This is a general formula that does not depend on the Kohn-Sham

orbitals being eigenstates of any Hamiltonian. Eq. (22) follows from Eq. (19) because the FO
construction does not allow a FO to escape the space of the KS or FLO. In cases where one
is determining analytic derivatives (such as Hellmann-Feynman forces), the orthonormality of
the KS orbitals and the symmetry of the Lagrange-multiplier matrix leads to a simplification of
the derivatives. In this more complicated case, the derivative of a FLO with respect to a FOD is
determined by differentiating Eq. (16) and remembering that Qα and Tαk depend on the entire
set of FODs, {~am}, for any value of k but that the FO is only dependent on its own FOD. Since
|ϕk〉 = Σαj

1√
Qα
TαkTαj|Fj〉 and remembering that only Fm depends on am, it follows that

∣∣∣ dϕk
dam

〉
= |D1,km〉+ |D2,km〉+ |D3,km〉 ≡

∑
l

∆m
kl |ϕl〉 (23)

|D1,km〉 =
∑
αj

1√
Qα

TαkTαj

∣∣∣ dFj
dam

〉
=
∑
α

1√
Qα

TαkTαm

∣∣∣dFm
dam

〉
(24)

|D2,km〉 = −
1

2

∑
αj

1

Q
3/2
α

dQα

dam
TαkTαj|Fj〉 (25)

|D3,km〉 =
∑
αj

1√
Qα

(dTαk
dam

Tαj + Tαk
dTαj
dam

)
|Fj〉 (26)

Each term |Dn,km〉 for n = 1, 2, 3 in the above equation is discussed separately:

Term 1

To determine the direct part of the FOD derivative, according to Eq. (22), the interest is in
determining the difference of the matrix elements 〈ϕl|D1,km〉 − 〈ϕk|D1,lm〉 which, using the
expansion for the FLO in terms of the FO, Eq. (16), (|ϕl〉 =

∑
βn

1√
Qβ
TβlTβn|Fn〉), can be

rewritten as

〈ϕl|D1,km〉 =
∑
α

TαkTαm√
Qα

〈
ϕl
∣∣dFm
dam

〉
=
∑
αβn

TαkTαm√
Qα

TβlTβn√
Qβ

〈
Fn
∣∣dFm
dam

〉
(27)
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The difference of these two terms is then given by

∆1
lk,m ≡ 〈ϕl|D1,km〉−〈ϕk|D1,lm〉 =

∑
αβn

TαkTαmTβlTβn − TαlTαmTβkTβn√
QαQβ

〈
Fn
∣∣dFm
dam

〉
(28)

=
∑
αβn

(
TαkTβl − TαlTβk

)
TαmTβn√

QαQβ

〈
Fn
∣∣dFm
dam

〉
. (29)

Using ϕFkj = TαkTαj/
√
Qα defined in Eq. (16), it can be rewritten in the manifestly sparse form

∆1
lk,m =

∑
n

(
ϕFkmϕ

F
ln − ϕFlmϕFkn

)〈
Fn
∣∣dFm
dam

〉
= ϕFkm

〈
ϕl
∣∣dFm
dam

〉
− ϕFlm

〈
ϕk
∣∣dFm
dam

〉
. (30)

Term 2

Term 2 always vanishes: The term that is due to the gradient of the ILO eigenvalue with respect
to a Fermi-orbital position becomes, inserting the expression for |Fj〉 given in Eq. (17)

|D2,km〉=−
1

2

∑
αj

1

Q
3/2
α

dQα

dam
TαkTαj|Fj〉=−

1

2

∑
αjβn

1

Q
3/2
α

dQα

dam
TαkTαj Tβj

√
QβTβn|ϕn〉. (31)

It may be further simplified using the orthonormality of the ILOs,
∑

j TβjTαj = δαβ ,

|D2,km〉 = −
1

2

∑
αn

1

Q
3/2
α

dQα

dam
Tαk
√
QαTαn|ϕn〉 = −

1

2

∑
αn

1

Qα

dQα

dam
TαkTαn|ϕn〉 (32)

so that, from the orthonormality, 〈ϕl|ϕn〉 = δln, it follows that

〈ϕl|D2,km〉−〈ϕk|D2,lm〉 −
1

2

∑
α

1

Qα

dQα

dam

(
TαkTαl − TαlTαk

)
= 0. (33)

Term 3

In Ref. [20, 21] it was demonstrated that the analytical expression for the vector ∆kl,m can be
determined from sparse matrix manipulations and that the memory requirements scale better
than N2. In the above equations, the contributions from the direct |D1,km〉 are analogous to the
standard Hellmann-Feynman derivative since it arises from the explicit dependence of the FLO
on the FOD. The terms involving |D3,km〉 are more complicated. Qualitatively, these terms
would be zero if there was a Hellmann-Feynman theorem or alternatively if the FLO actually
satisfied the localization equations. However, because the FO-based formulation of the PZ-SIC
already leads to unitary invariance there is neither required nor correct to force the localization
equations [9, 11] need to be satisfied. The sum of the eigenvalues Qα is always equal to the
dimension of the KS space. The eigenvalues are bounded from below by zero and above by the
dimension of the KS space. For reasonable guesses of the FODs, the eigenvalues are close to
unity. For now, to make analytical progress, it is a assumed that FODs have been chosen that
break all degeneracies of the FO-overlap derivatives, or that a small perturbation that breaks all
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degeneracies has been added to Eq. (15). Then, a first-order perturbation analysis of Eq. (15)
can be used

dTαk
dam

=
∑
β 6=α

Tβk
〈Tβ| dSdam |Tα〉
Qα−Qβ

(34)

to determine that

|D3,km〉 =
∑
j

|Fj〉
∑
α,β 6=α

〈Tβ| dSdam |Tα〉

Q
1/2
α (Qα−Qβ)

(
TβkTαj + TαkTβj

)
(35)

=
∑
j

|Fj〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(Qα−Qβ)

(
TβkTαj + TαkTβj

)( 1

Q
1/2
α

− 1

Q
1/2
β

)
(36)

=
∑
j

|Fj〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(
TβkTαj+TαkTβj

)
(Q

1/2
β −Q

1/2
α )

(Qα−Qβ)(QαQβ)1/2
(37)

= −
∑
j

|Fj〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(
TβkTαj+TαkTβj

)
(Q

1/2
α +Q

1/2
β )(QαQβ)1/2

(38)

= −
∑
n

|ϕn〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

)
(Q

1/2
α +Q

1/2
β )(QαQβ)1/2

(39)

where in the last step we have used Eq. (17) and the orthonormality
∑

j TβjTαj = δαβ∑
j

(
TβkTαj+TαkTβj

)
|Fj〉 =

∑
γnj

(
TβkTαj+TαkTβj

)
TγjQ

1/2
γ Tγn|ϕn〉 (40)

=
∑
n

(
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

)
|ϕn〉. (41)

It is noted that at the end of the analysis there is no division by zero in the first-order perturbative
expressions even when the energy denominator vanishes! Now, to circle back to Eq. (22), it is
possible to evaluate the difference

∆3
lk,m ≡ 〈ϕl|D3,lm〉 − 〈ϕk|D3,lm〉 (42)

=−1

2

∑
αβ

′
〈Tβ| dSdam |Tα〉

((
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

)
−
(
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

))
(Q

1/2
α +Q

1/2
β )(QαQβ)1/2

= −1

2

∑
αβ

′ 〈Tβ| dSdam |Tα〉

(Q
1/2
α +Q

1/2
β )(QαQβ)1/2

(
TαkTβl − TαlTβk

)(
Q

1/2
β −Q

1/2
α

)
. (43)

Expanding〈
Tβ
∣∣ dS
dam

∣∣Tα〉 =∑
i

(
Tβi

dSim
dam

Tαm + Tβm
dSmi
dam

Tαi

)
=
∑
i

dSim
dam

(
TβiTαm + TβmTαi

)
(44)

and combining the above two equations together a computationally useful expression is found:

∆3
lk,m =

1

2

∑
αβi

dSim
dam

(
TβiTαm+TβmTαi

)(
TαkTβl−TαlTβk

) Q
1/2
α −Q1/2

β

(Q
1/2
α +Q

1/2
β )(QαQβ)1/2

. (45)
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The above forms reduce the expression to the calculation of quantities that are symmetric under
interchange of α and β and in terms of quantities that exhibit the sparsity. It shows that, if the
calculation is performed in terms of Kohn-Sham eigenstates, the calculation of the derivatives
may scale as poorly as N4 in the small N limit. However, if one constructs the FOs in terms
of the FLOs, the T matrix then becomes sparse and each bracketed quantity scales as N2. The
sparsity of the FLO SIC matrix elements (〈ϕk|Ho+V

SIC
k |ϕl〉 already shows that one never needs

to calculate all possible products of TαkTβl. It is also noted that one does not need to calculate
the contributions due to Ho since that contribution to the λiij matrices is always symmetric. To
determine the final derivatives one simply evalutates ∆lk,m in Eq. (22) according to

∆lk,m = ∆1
lk,m +∆3

lk,m. (46)

Once the gradients are calculated, the great expectation was that it would be as easy to step
to the local minimum as it is for gradient-based optimizations of molecular, cluster, and solid-
state geometries. While it is probably the case that the best possible optimization method has
not been found, some lessons from optimization of molecular geometries still hold. First, as is
the case for molecular geometries, the LBFGS method (implemented in FLOSIC by Jackson
and Withanage) is generally more efficient than conjugate-gradient when one is reasonably
close to a solution. Second, the use of approximations of second derivatives, determined by
atomic calculations but then used for all systems, also provides for more efficient stepping to the
minimum. Finally, the use of conjugate-gradient methods is more stable when one is far from
solution as is the case for the optimization of molecular geometries. Additional efforts are being
made to more efficiently use force information. A final comment is that since dm〈ϕk|ϕl〉

damp
= 0 for

any values ofm, k, l, and p, it is possible that higher order analytic derivatives can be determined
in the frozen density regime.

3.2 Complex Fermi-orbital descriptors and
complex Fermi-Löwdin orbitals

In one of the earliest applications of SIC to molecules, Pederson [9] suggested that the bonding
πu states should be complex to ensure that the symmetry was not broken. Early consideration
of complex orbitals by Klüpfel et al. [18] were based on an energy minimization. The Fermi or-
bital is explicitly real if it is possible to represent the Kohn-Sham orbitals as real orbitals and if
the FODs are constrained to be real. So in this sense the 2014 version of FLOSIC represented a
self-consistent real theory. This section introduces the use of complex Fermi-orbital descriptors
(FODs) in the Fermi-Löwdin self-interaction-corrected density functional theory (FLOSIC).
With complex FODs, the Fermi-Löwdin orbitals (FLOs) used to evaluate the SIC correction
to the total energy become complex. Complex FLO-SIC (cFLOSIC) calculations based on the
local spin density approximation generally produce lower total energies than those found with
FLOSIC restricted to real orbitals (rFLOSIC). The cFLOSIC results are qualitatively similar to
earlier energy-localized Perdew-Zunger SIC (PZ-SIC) calculations using complex orbitals [18].
The energy lowering stems from the exchange-correlation part of the self-interaction correction.
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The Hartree part of the correction is more negative in rFLOSIC. The energy difference between
real and complex solutions is greater for more strongly hybridized FLOs in atoms and for FLOs
corresponding to double- and triple-bonds in molecules. The case of N2 is examined in de-
tail to show the differences between the real and complex FLOs. We show that the complex
triple-bond orbitals are simple and physically appealing combinations of π and σg orbitals that
have been discussed only recently [25]. Consideration of complex FODs, and resulting unitary
transformations, underscores the fact that FLO centroids are not necessarily good guesses for
FOD positions in a FLOSIC calculation (It is for this reason that we pointed out earlier that
the use of the term Fermi-orbital centroids was imprecise). Another reason to introduce com-
plex FODs into FLOSIC is more practical. Gradient searches for optimal FOD positions fail
when the FODs obtained at a given step in the search produce Fermi orbitals that are not lin-
early independent. Transition metal systems are particularly prone to this problem because the
n = 3 orbitals have considerable spatial overlap. Complex FODs provide a larger parameter
space and lead to smoother, numerically more tractable, orbitals. Using complex FODs as start-
ing points helps avoid non-positive-definite FO-overlap matrices and makes the search process
more efficient. The complex Fermi orbitals are defined by

Fi(r) =

∑
α ψ
∗
α(ai+ibi)ψα(r)√∑

α ψ
∗
α(ai+ibi)ψα(ai+ibi)

. (47)

In the above, the FODs are allowed to be complex, ai+ibi. Evaluating the ψα at complex
positions leads to complex Fermi orbitals, Fi. The complex FOs have the same, and orthonor-
mal complex FLOs (cFLOs) have similar characteristics. In calculations using Gaussian-type
basis functions, evaluating ψα(ai+ibi) gives rise to positive exponential terms that can cause
numerical difficulties. Because the terms appear in the numerator and denominator, they can be
managed if handled carefully. Within a Gaussian-orbital construction, the wave function is ulti-
mately decomposed in terms of polynomials (which become complex in cFLOSIC) and Gaus-
sian envelope functions of the form exp(−β(ai+ibi−A)2), where A usually coincides with the
position of an atom. The real part of the exponent becomes −β(|ai−A|2−|bi|2). In general,
the values of β span many orders of magnitude ranging from 0.02 to approximately 50Z10/3 for
atomic number Z. There is a combination of the quantities {β,A,ai+ibi} that leads to the most
positive exponent Γmax that can be determined by sweeping through all combinations of Gaus-
sian decay parameters, atomic positions, and FOD parameters. Γmax can then be subtracted from
all the exponents in the Gaussians prior to evaluating the exponential. This effectively multi-
plies the numerator and denominator of Eq. (47) by the same number and ensures that none of
the terms diverge prior to division. This has no effect on the computer time. A similar approach
will be needed for plane-wave basis functions (which as noted elsewhere will be interesting for
finding FLOs for metallic model systems). In such cases, the envelope functions would have the
form exp(kbi). Again, multiplying and dividing each plane wave by the appropriate largest ex-
ponential will ensure that there are no numerical problems associated with exponentiation. For
starting guesses, it is possible to choose the imaginary part of the FOD such that:|bi| < |ai−A|,
where A is the nuclear position closest to ai, to ensure decaying functions. One way to do this
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is to choose bi = cos(α)|A−ai|u with u =
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
. For the

cFLOSIC results shown below, the FOD positions, ai+bi, are updated using a gradient opti-
mization scheme. To optimize the complex FOD positions, we began by adding small random
imaginary parts to the optimized (real) FODs from the corresponding rFLOSIC calculation.
For each atom or molecule studied, 100 random complex FOD sets were generated. For each,
the cFLOs were created and the corresponding SIC energies were calculated. The set with
the lowest SIC energy was chosen as the starting point for a gradient optimization using en-
ergy gradients corresponding to both the real and imaginary parts of the FODs. The gradients
corresponding to the imaginary parts required computing a numerical derivative of the orbital
with respect to the component. The basis sets and integration grids used in the rFLOSIC and
cFLOSIC calculations reported here were identical.

3.3 Atoms

Table 1 presents the total energies of atoms from Hartree-Fock LSDA, rFLOSIC and cFLOSIC
calculations in Hartree (Ha) units. The energy difference cFLOSIC – rFLOSIC is also shown
in electron volts (eV) for each atom. For most of the atoms in Table 1 the LSDA total energy
is higher than the experimental reference energy, while the rFLOSIC and cFLOSIC total en-
ergies are lower. Thus both rFLOSIC and cFLOSIC correct the atomic total energies in the
right direction, but often over-correct. The rFLOSIC and cFLOSIC total energies are identi-
cal up to Be. After that, the cFLOSIC energies are always lower. For Ne, Ar, and Kr, for
example, the cFLOSIC energy is lower by −1.45, −3.82, and −11.39 eV, respectively. The
Jackson-Withanage analysis can be used to identify how close the FLOSIC energies are to the
SIC calculations with full variational freedom. They previously compared the FLOSIC method
against the traditional implementation of PZ-SIC with full variational freedom (where a lo-
calization condition is invoked, known as the SIC-LE method) and have shown that rFLOSIC
orbitals satisfy the LEs (symmetric Lagrange multiplier matrix) up to carbon. In real FLOSIC,
the number of constraints is 3N where N is the number of occupied orbitals while the num-
ber of constraints in real orbital SIC-LE is N(N−1)/2. We find that orbitals from cFLOSIC
(where the number of constraints is 6N ) satisfy the LEs (Hermitian Lagrange multiplier matrix)
for complex orbital SIC up to Ne with or without freezing the 1s FOD. We understand that this
is due to the added variational freedom due to the complex FODs.
Since the rFLOSIC and cFLOSIC total energies in Table 1 are evaluated based on the same total
electron density, the DFT parts of the energies are the same and any differences are entirely due
to the SIC corrections. In Ref. [25] the values of the corrections for the valence electron local
orbitals of selected first row atoms are shown. Values for n = 3 and 4s local orbitals for Zn are
also shown. The corrections are shown for both the majority and minority spin channels (for
the spin-polarized cases). For the first-row atoms, the local orbitals are hybrids of 2s and 2p

canonical orbitals. The Zn n = 3 local orbitals are hybrids of 3s, 3p, and 3d canonical orbitals.
The canonical orbitals contributing most to each FLO are listed in the table. The magnitude of
the orbital corrections increases across the first row atoms as the orbitals become more compact
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−
∑

i UC [ni] −
∑

i Uxc[ni]
Atom rFLOSIC (eV) cFLOSIC (eV) rFLOSIC (eV) cFLOSIC (eV)

Ne -296.03 -288.49 267.44 258.44
Ar -704.76 -683.55 634.10 609.07
Kr -2046.10 -1962.77 1842.74 1748.02

Table 3: The total self-Hartree and self-exchange-correlation contributions to the total SIC
energy (in eV) for the closed-shell atoms Ne, Ar, and Kr. The cFLOSIC energies were obtained
from calculations using the self-consistent rFLOSIC electron densities.

with increasing atomic number. For example, for the Be 2s orbital, the correction is −0.17 eV
in both theories. For the N 2s2p3 FLO, the correction is −0.60 and −0.71 eV for rFLOSIC and
cFLOSIC, respectively. For the Ne 2s2p3 FLO the corrections are−1.02 and−1.20 eV. For the
n = 3 Zn FLOs the corresponding corrections are −1.35 and −1.58 eV and for the n = 4 FLO,
−0.10 and −0.11 eV. The difference between the cFLOSIC and rFLOSIC corrections depends
on the nature of the FLO. For s-type FLOs, the corrections are equal in the two approaches.
The difference increases with increasing p-character in the FLO. For example, for the 2s and
2sp FLOs of Be and B, the corrections are essentially equal for the cFLO and rFLO. For the
C 2sp2 FLOs, the cFLO correction is −0.02 eV lower than for the rFLO. For the N 2s2p3

FLO, the cFLO correction is −0.11 eV lower than for the rFLO. Similarly, for the minority
spin FLOs of F the 2sp2 cFLO correction is −0.04 eV lower than for the rFLO, while for the
Ne 2s2p3, the cFLO is −0.18 eV lower than the rFLO. Finally, for the Zn 3s3p33d5 FLOs, the
cFLO corrections are −0.23 eV lower than the rFLO. Figure 2 shows iso-surface plots of the
rFLO orbital densities, n = ϕ2. (Only the density for first FLO listed for each atom is shown.)
For the cFLOs, iso-surface plots of ϕ2

R−ϕ2
I may be found in Ref. [25]. These plots highlight an

effective smoothing of the FLOs, referred to as lobedness by Perdew, that may be an important
issue for higher-level functionals. The SIC corrections include self-Hartree and self-exchange-
correlation components. The former are negative, while the latter are positive. Table 3 shows
the total self-Hartree and self-exchange-correlation parts of the SIC corrections separately for
the representative atoms Ne, Ar, and Kr. The self-Hartree contributions are more negative in
rFLOSIC in every case. This implies that the rFLOs are more localized than the cFLOs. On the
other hand, the self-exchange-correlation energies are less positive for cFLOSIC. The combined
corrections are more negative in cFLOSIC than rFLOSIC, as seen in Table 1. This implies that
the cFLOSIC – rFLOSIC difference between the self-exchange-correlation components must
be more negative that the self-Hartree difference is positive. For Ne, for example, the rFLOSIC
self-Hartree component is 7.54 eV more negative, while the cFLOSIC overall correction is
1.45 eV more negative (cf. Table 1). Thus, the magnitude of the self-exchange energy for Ne
is 8.99 eV smaller in cFLOSIC than rFLOSIC. Allowing complex degrees of freedom does
not result in more localized atomic orbitals, but instead decreases the magnitude of the self-
exchange-correlation energy of the orbitals.
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Molecule HF LSDA rFLOSIC(g) rFLOSIC cFLOSIC ∆ E (eV)
Li2 -14.8693 -14.7237 -15.0561 -15.0561 -15.0561 0.00
N2 -108.9803 -108.6923 -109.8645 -109.8581 -109.9087 -1.38
C2H2 -76.8431 -76.6250 -77.6106 -77.6077 -77.6402 -0.88
CO -112.7756 -112.4706 -113.6548 -113.6503 -113.6997 -1.34
HCN -92.9016 -92.6541 -93.7304 -93.7244 -93.7662 -1.14
CH4 -40.2103 -40.1187 -40.7021 -40.7003 -40.7014 -0.03
C2H6 -79.2537 -79.0720 -80.1912 -80.1878 -80.1900 -0.06
NH3 -56.2173 -56.1067 -56.7742 -56.7729 -56.7779 -0.14
LiF -106.9827 -106.7022 -107.7350 -107.7340 -107.7796 -1.24
HCl -460.0940 -459.3330 -461.7452 -461.7451 -461.8655 -2.61

Table 4: Total energies (in Ha) of molecules in Hartree-Fock (HF), LSDA, rFLOSIC(g),
rFLOSIC, and cFLOSIC and the total energy difference ∆E = cFLOSIC – rFLOSIC (in
eV). The cFLOSIC energies are evaluated using the self-consistent rFLOSIC electron den-
sity. rFLOSIC(g) corresponds to energies relaxed with FLOSIC while rFLOSIC corresponds to
LSDA equilibrium geometries. rFLOSIC and cFLOSIC results, at LSDA geometries, are from
Ref. [25].

3.4 Molecules

For completeness HF, LSDA, rFLOSIC, and cFLOSIC total energies calculated for selected
molecules, taken from Ref. [25], are shown in Table 4 in Ha units. The energy difference
cFLOSIC – rFLOSIC is shown in the last column in eV. The rFLOSIC total energy is consid-
erably lower than the LSDA energy for each molecule in the table and the cFLOSIC energy is
lower than rFLOSIC in all cases except Li2. The complex/real energy difference depends on the
nature of the molecule. For molecules involving only C H or N H bonds the differences are
less than 0.15 eV . The differences are much larger for molecules with multiple bonds (C C,
C N, C O, N N, O O). For example in N2, which has a triple bond, the cFLOSIC energy is
1.4 eV lower than for rFLOSIC. For O C O, with two double bonds, the energy difference is
2.8 eV. The largest energy difference is obtained for HCl, where the cFLOSIC energy is 2.61 eV
lower than the rFLOSIC energy. Cl is the heaviest atom appearing in our set of molecules and
the cFLOSIC energy of the isolated Cl atom is 3.34 eV lower than for rFLOSIC.

Atomization energies were calculated as the difference in the total energies of the molecules
(Table 4). The results (in eV) for LSDA, rFLOSIC, and cFLOSIC are shown in Table 5, along
with reference experimental values from which zero-point energies have been removed in or-
der to be directly comparable to the computed values. The cFLOSIC atomization energies are
sometimes larger and sometimes smaller than in rFLOSIC, but mostly larger than the LSDA
values. Exceptions where the cFLOSIC atomization energies are smaller than in LSDA are for
F2 and O3. Compared to the reference atomization energies, the FLOSIC methods have signifi-
cantly smaller mean errors (MEs) than LSDA. The ME for LSDA, rFLOSIC, and cFLOSIC are
1.92, 0.63, and 0.85. rFLOSIC and cFLOSIC also have smaller mean absolute errors (MAE)
than LSDA. The MAE for cFLOSIC (1.21 eV) is somewhat worse than for rFLOSIC (1.08 eV).
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Molecule Ref. LSDA (eV) rFLOSIC (eV) cFLOSIC (eV) ∆E (eV)
Li2 1.05 1.01 1.03 1.03 0.00
CH3 13.27 14.69 14.62 14.65 0.03
CH4 18.21 20.03 20.26 20.21 -0.05
C2H6 30.83 34.40 34.72 34.62 -0.10
NH3 12.88 14.60 14.49 14.16 -0.39
LiF 6.03 6.80 5.70 6.18 0.48
F2 1.65 3.42 1.70 0.92 -0.78
HCl 4.64 5.26 5.09 5.02 -0.07
C2H2 17.52 19.90 18.92 19.65 0.73
HCN 13.57 15.59 14.35 14.95 0.60
CO 11.32 12.95 11.14 11.80 0.66
CO2 17.00 20.46 16.11 17.58 1.47
N2 9.84 11.53 10.25 10.70 0.45
O3 6.42 10.47 4.73 4.71 -0.02
ME 1.92 0.63 0.85
MAE 1.92 1.08 1.21

Table 5: Atomization energy (in eV) of molecules in LSDA, rFLOSIC, and cFLOSIC, and dif-
ference ∆E = cFLOSIC – rFLOSIC. The reference atomization energies are zero-point energy
corrected experimental values. Mean error (ME) and mean absolute error (MAE) for each
method relative to the reference are also shown. The cFLOSIC values were obtained from cal-
culations using the self-consistent rFLOSIC density. Calculations performed by K. Withanage.

It is instructive to compare LiF and HCl which both have an outermost valence of 8 paired
FODs that form a distorted tetrahedron. For LiF, small energy differences (0.0025 in the case
of LiF) occur depending on whether the base or the vertex of the tetrahedron is found between
the two atoms. For LiF there are three nearest FODs to the Li atom. For HCl the tetrahedron is
inverted and there is only one FOD in close proximity to the hydrogen atom. This distinction
is due to changes in the energy splitting between the occupied s and unoccupied p states on the
column-1 element.

3.5 Returning to N2: complex vs. real FLOs

Pictured in Fig. 3 are isosurface plots of the valence orbital densities for N2. The figure in-
cludes the canonical orbitals (top), the rFLOs (left) and the cFLOs (right) from real and complex
FLOSIC calculations, respectively. The figure displays the SIC energy ESIC[niσ] for each or-
bital, as well as the expansion of the rFLOs and cFLOs in terms of the canonical orbitals. (Note
that the definition of the canonical orbitals varies slightly between the rFLOSIC and cFLOSIC
calculations. Primes are used to indicate this difference.) The centroids of the rFLOs and cFLOs
are also shown in the figure. For the rFLOs, the centroids are close to the FOD positions. The
canonical 2σu, 1πux, 1πuy and 3σg orbitals shown in Fig. 3 have positive SIC energy. The SIC
energies are all negative for the rFLOs and cFLOs. The centroids of the rFLOs associated with
the triple bond are positioned at the vertices of an equilateral triangle in a plane perpendicular
to the bond axis and passing through its midpoint. This is indicated in the gray inset on the left
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side of Fig. 3. For the rFLOSIC case, the centroids are close to the optimized FOD positions.
The topology of the triple-bond rFLOs is similar to that of the localized orbitals discussed by
Ruedenberg and Edmiston and also by Klüpfel et al. The optimal cFLOs on the right of the
figure appear very similar to the complex local orbitals shown by Klüpfel et al. The FLOs
corresponding to the lone pairs in N2 are similar in the rFLOSIC and cFLOSIC calculations,
although the cFLOs are slightly more localized.
The SIC energies shown in the figure indicate that the cFLOSIC total energy is lower than
the rFLOSIC total energy due to the SIC energies of the triple-bond orbitals. Interestingly,
one cFLO has a less negative SIC energy than any of the three equivalent rFLOs, but this is
compensated by a much larger difference for the other two orbitals that have a more negative
correction than the rFLOs. The cFLO optimization thus accepts an energy penalty for one
orbital in order to realize a larger energy reduction for the other two.
It is interesting to examine the unitary transformation connecting the rFLOs and cFLOs to the
canonical orbitals. This is shown in Fig. 3. The entries indicate that the three-triple bond
rFLOs are symmetry-related mixtures of the 2σg and πx and πy canonical orbitals, essentially
equivalent to bonding combinations of sp2 hybrids. For the cFLOs, one triple bond orbital is
a complex combination of the πx and πy orbitals yielding a cylindrical density. The other two
are σ-π hybrids resulting from a complex π orbital and a real 2σg orbital. To the best of our
knowledge, these simple expressions detailing the cFLOs have not been published previously.
The two lone pair orbitals have complex coefficients that essentially correspond to a real number
times the same complex phase factor for all three. Thus, these orbitals can effectively be taken
as real, showing that the cFLOSIC optimization may result in real orbitals, when these minimize
the energy. The centroids of the cFLOs are also shown in the panel on the right of Fig. 3. For
the triple bond orbitals, these fall on a line passing through the bond center perpendicular to the
axis. It is worth noting that the centroid of the cylindrical orbital is at the bond center where
the π orbitals have zero amplitude. The Fermi orbital corresponding to a real FOD placed at
the center of the bond would therefore contain zero contribution from the π orbitals. This is a
reminder that orbital centroids do not always coincide with FOD positions.
To summarize, a scheme to introduce complex local orbitals (cFLOs) into the Fermi-Löwdin
orbital self-interaction correction (FLOSIC) method has been derived and tested.. The scheme
rests on allowing the Fermi orbital descriptors (FODs) to be complex. FOD optimization is
accomplished via gradient optimization as in the case of FLOSIC restricted to real orbitals
(rFLOSIC) and requires only the additional calculation of energy gradients with respect to
the imaginary part of the FODs. We demonstrated the complex FLOSIC (cFLOSIC) method
through applications to an array of atoms and molecules. The results of these applications are
similar to those obtained in complex PZSIC calculations. The cFLOSIC solutions are generally
lower in energy than in rFLOSIC. We showed that the optimal cFLOs are less localized than the
analogous rFLOs, as judged by having a less negative self-Hartree energy. The lower cFLOSIC
total energies thus arise from reducing the magnitude of the self-exchange-correlation energy
of the cFLOs relative to the rFLOs. Analyzed in terms of individual orbital corrections, we
find that the cFLOs lower the energy more for strongly hybridized orbitals and, in molecules,
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for double and triple bond orbitals. The cFLOSIC calculations reported here make use of the
self-consistent occupied orbitals from corresponding rFLOSIC calculations. A next step will be
to make the cFLOSIC calculations fully self-consistent. Self-consistent cFLOSIC calculations
will result in somewhat lower total energies that those presented in this section, but we do not
expect significant changes to any of our conclusions. It is also of interest to perform cFLOSIC
calculations with more sophisticated functionals such as PBE and SCAN. Finally, the results
presented in this section indicate that SIC calculations on molecules with multiple bonds or
transition metal atoms may be particularly affected by the use of complex orbitals.

4 Downward quantum learning:
Tricks for finding starting configurations

We now discuss a search method which we refer to as downward quantum learning. As dis-
cussed above, finding initial FODs that lead to a positive definite Fermi orbital overlap matrix,
a necessity for obtaining FLOs, is difficult especially for f -electron systems and open-shell
systems regardless of whether they are isolated or in molecules or solids. For systems where
charge-transfer exists between a cation and an anion, the Kohn-Sham orbitals obtained from a
starting calculation are generally inadequate for starting a calculation. The systems just men-
tioned are of course the systems for which self-interaction corrections are most needed. In an
earlier section an existence proof was provided. Let us now think about the manifestations of
this proof.

Existence of FLOs for the free-electron metallic state

It is generally not known how to find FODs and FLOs for metals. It is however known that
Wannier functions for a metallic state do not exist and this is why Wannier functions are in fact
a subset of FLOs. While there has not yet been a demonstration for an exact set of FLOs for the
metallic Brillouin zone, or Fermi-sphere, of the free-electron gas, we argue here that one exists.
Wannier’s demonstration in 1937 showed Wannier functions exist for a cubic (insulating) Bril-
louin zone and this chapter as well as earlier works by the author showed here these functions
coincide with FLOs. Therefore, there is now hope, in fact a guarantee, for a semi-analytic so-
lution of this problem. Once can start by inscribing a Fermi Sphere inside a Wannier Cube and
then successively remove one FOD and one FLO, from outside the sphere, and inside the cube
until only the Fermi Sphere remains.

Existence of FLOs for all Atoms

With respect to atoms it is generally quite easy to find starting positions for any rare-earth atom
and more generally for any atom/ion that has closed-shell spin states and a qualitatively correct
shell filling. The theorem proved above stated that for each of these “easy” solutions, one can
determine initial FODs for lighter atoms by removing one orbital and one FOD because at least
one N−1 dimensional cofactor has to be non-zero if the N -particle determinant is non zero.
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This means that by mining the quantum information contained within the resulting FLOs for
the heaviest rare-earth atom (Z=118, Oganesson) it is possible to obtain starting configurations
for every atom in the problem. In the following we demonstrate this capability. A recent
demonstration of principle is repeated here.

The existence proof reiterated above shows that viable FOD positions and complementary
Kohn-Sham orbitals do indeed exist if the many-electron wavefunction does not vanish every-
where. This solution is especially useful for open-shell atoms and ions from the d- and f -blocks
of the periodic table.

Nomenclature for FLO issues

To improve the nomenclature used for discussing the FLOSIC results and formulation, we out-
line five technical problems that arise. Three of these inconveniences are unique to FLOSIC
while the others are also present in standard DFT calculations. However, these issues have both
positive and negative attributes. Their presence often hampers a calculation technically when
the user is only interested in the ground state. However they also provide physical insights
for cases where energy- or electron-transfer is of interest. We refer to these issues as Fermi-
Orbital-Challenges (FOCs). First, the ability to start calculations by finding an initial set of
FODs and a Kohn-Sham density matrix that leads to a positive definite FO-overlap matrix must
be fully systematized (FOC1). FOC1 arises for all cases where density-functional algorithms
give qualitatively incorrect shell fillings – a problem that is prevalent in atoms containing 3d/4s
states and 4f /5d states. FOC2 is exemplified by systems that have multiple low-lying com-
peting electronic configurations which, depending on whether one is thinking in terms of DFT
or WF, are either Janak-like multi-reference systems respectively. For such systems there are
generally non-integer occupation numbers associated with the Kohn-Sham orbitals that oscil-
late from iteration to iteration. For standard DFAs, this leads to poor convergence in systems
as simple as the Nickel atom or Carbon dimer and results that are not easy to interpret. Within
FLOSIC, rather than finding a single fractionally occupied solution, multiple low-energy sta-
ble solutions with integer occupancy are determined. This feature readily provides the correct
pictures for problems such as charge transfer. When multiple solutions exist there are gener-
ally incompatibilities between the FODs for one solution, and Kohn-Sham orbitals for other
solutions. These incompatibilities complicate the determination of starting solutions. While
FOC2 is a significant frustration to users, it also identifies systems that may have interesting
low-energy excitations which is generally relevant in energy applications. FOC3 presents the
user with multiple stable states that are sometimes incorrectly associated with incorrect ground
states but most likely contain information about collective excitations such as plasmon oscil-
lation. Other aufbau-violating solutions associated with FOC3 may provide information about
x-ray excitations. A spin-conserving example of FOC3 is charge transfer excitations between a
halide and alkali in the stretched bond limit (NaCl→ Na+1Cl−1) or the charge transfer excita-
tions in light-harvesting systems. The latter are aufbau violating solutions at the DFT-level but
may be aufbau consistent solutions within FLOSIC. FOC3 is always a clear indicator of mul-
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tiple low-energy excitations or multi-reference character. It is a frustration when the primary
interest is on the ground state but is advantageous when one is interested in studying molecular
processes especially those related to luminescence and fluorescence in, for example, rare earths.
FOC4 and FOC5 are related to symmetry breaking in the density-functional formulation. It is
generally accepted that the description of stretched bonds or dissociated atoms, within density-
functional pictures, requires spin symmetry breaking with excess spin-up density on one atom
and excess spin-down density congregating on an otherwise symmetrically equivalent atom.
Such antiferromagnetic pictures lead to total densities that do not break the overall symmetry
of the molecular system. Analogous symmetry breaking occurs within systems that are treated
with FLOSIC (FOC4). Further when a partial open-shell structure occurs (ozone is a decep-
tively simple case), FLOSIC predicts spin separation but standard functionals do not. The co-
nundrums presented by FOC4 and FOC5 are similar but one is driven by the self-interaction cor-
rection rather than the energy functional it self. As such we label FOC4 and FOC5 as separate
challenges. Issues arising from FOC3–FOC5 raise the spectre for better descriptions of low-
energy spin-conserving (FOC3) and spin-changing (FOC4–FOC5) excited states. The count-
down paradigm discussed below is based on the rigorous existence proof presented above and
provides a new tool for constructing self-consistent aufbau-violating states for systems where
occupation number constraints might fail. The procedure does not circumvent FOC2 issues.
Such issues will continue to require improvements on the iterative process and/or additional
attention to occupation-number dependent FLOSIC formulations.
Generally speaking, closed shell atoms are the simplest cases for finding viable starting FODs.
Yet even in those cases locating useful FOD starting points can be difficult. To give an indication
of the challenge, we share our experiences for finding FODs in Radon (Z=86), We used a Monte
Carlo approach to generate many sets of FOD positions for individual shells corresponding to
the various principal quantum numbers n of the occupied orbitals. Each shell had a radius equal
to the average radial expectation value of the corresponding orbitals. A total of n2 positions were
randomly placed on each shell (a spin unpolarized atom was assumed). This approach resulted
in viable FODs in fewer than 8 percent of the trials. For other heavy atoms, especially those
between La and Hg, the success rate was even lower. Using a solution for Rn, removing FODs,
and starting from default atomic density-functional potentials, allowed successful calculations
for a small number of atoms (Eu, Yb, Au–Rn). This success, while limited, highlighted the
need for the solution discussed below.
Here we present a well-defined way to determine initial FOD positions to start a calculation.
The method is based on a proof given below that a set of viable FOD positions has the property
that a Slater determinant of the KS orbitals is non-zero when evaluated at the FOD positions.
The ability to extract FLOs and FODs from clearly closed-shell systems and then systematically
investigate on-atom Kossel-like solutions in the actinides and lanthanides is an additional need
that the method described here addresses. For the calculations reported here, we used a legacy
version of the NRLMOL software package that utilizes optimized cartesian gaussian basis sets
and a highly accurate numerical integration scheme. The version employed was developed
approximately 20 years ago to assess the possibility that scalar relativity could significantly
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impact second-order anisotropy energies in 4d molecular magnets. The possibility of using
f -electrons for post-processing of anisotropy Hamiltonians was incorporated at that time and
basis sets for nuclear charges between Ba–Rn were generated using the techniques. Shortly
after the MMQT group formed at UTEP in 2019, methods for performing self-consistent-field
calculations with f -electrons were completed. These methods used integral transforms, albeit
for gaussians. The Fermi-Löwdin methodology was simultaneously inserted into the legacy f -
electron code. However in contrast to the earlier versions of the FLOSIC code, the formulation
was implemented in a manner that preserved the group-theoretical methods that are part of
the legacy NRLMOL codes. We viewed this as a necessary addition from the standpoint of
efficiently finding FODs for heavy open-shell atoms. Group-theoretical techniques simplify the
optimization of the basis sets for elements between Rn and Og (Z=86–118).

4.1 Initializing FODs for principal quantum numbers with n=2, 3, and 4

In the motivation we asked if there are lattices that are reciprocal to an arbitrary set of Kohn-
Sham orbitals. For finite systems, we refer to these lattices, or polyhedra, as flotonic solids. We
have used the Td group operations to search for a set of equi-radial FODs with Td symmetry that
lead to a set of 16 points on the unit sphere with a large determinant. Td symmetry allows for
equivalent shells of 1, 4, 6, 12, and 24 points, respectively. To find a set of 16 points we have
followed the prescription of placing 12 points on the unit sphere and found that, in addition to
the dodecahedron there are many sets of 12-site shells that are compatible with Td symmetry
for which the 12×12 matrix constructed from l=2 and l=3 spherical harmonics leads to non-
singular matrices. We listed approximately 20 of these solutions and then combined them with
the 4-site Td shells to create a family of 16-site FODs. We then re-ordered the family of 16-site
solutions according to the determinant of the 16×16 W-matrix and found that there are two
solutions with anomalously large determinants. The solution with second largest determinant
turned out to be the best solution for the radon atom, strengthening the hypothesis that one
should use spherical harmonics to find universal sets of FODs. It appears that a key figure of
merit of a point group is that it must not contain the inversion operator since the presence of
inversion prevents mixing of states with opposite parity. The octahedral point group, Oh, has
two subgroups of order 16 which might provide additional solutions for the n=4 shells, but
so far we have not found such solutions. As known from the periodic-table and represented
in Table 6, noble-gas atoms correspond to atoms that contain subsets of electronic states that
share a principal quantum number and have a similar atomic radius. For each principal quantum
number n, there are n2 hydrogenic-like orbitals with n2 =

∑n−1
l=0 (2l+1).

We then can consider the lowest n2 spherical harmonics on a unit sphere. Depending on the
value of n this yields a sequence of matrices of dimension n2 =

∑n−1
l=0 (2l+1), or 1, 4, 9, and

16 for n=1, 2, 3, and 4, respectively. For each of these cases a W-matrix can be constructed



13.30 Mark R. Pederson

according to

W=


Y00(â1) Y1,−1(â1) Y1,0(â1) Y1,1(â1) · · · Yn−1,−n+1(â1) · · · Yn−1,n−1(â1)
Y00(â2) Y1,−1(â2) Y1,0(â2) Y1,1(â2) · · · Yn−1,−n+1(â2) · · · Yn−1,n−1(â2)

...
...

...
... · · · ... · · · ...

Y00(ân2) Y1,−1(ân2) Y1,0(ân2) Y1,1(â1) · · · Yn−1,−n+1(ân2) · · · Yn−1,n−1(ân2)


n2×n2

(48)

The goal then is to pick sets of n2 points on a unit sphere that, at the very minimum, guarantee
that no spherical harmonic with angular momentum less than or equal to n−1 vanishes at all
points but with the stricter and more difficult condition that the above matrix is non-singular.
A systematic and fast way to find sets of points is to generate all sets of points on a cubic grid
(nx, ny, nz) with |nx| < 7 (higher numbers do not change the outcome), and then normalize
them onto a unit sphere. One can then search over all point groups to find high-symmetry
arrangements of 4, 9, or 16 points. These can then be used to evaluate the determinant of W
in Eq. (48). The sets corresponding to the largest determinants then suggest the best sets of
FODs for electrons sharing the same principal quantum number. The effect of these sets on the
determinant of the FOD overlap matrix is shown in Table 7. The best 9-electron set located
so far, consisting of staggered triangles, gives sp3d5 hybrids and probably limits the symmetry
of the overall atomic spin density to C3v. The optimal shells obtained for element 118 (Og)
are presented and we show how these shells can be used to generate starting points for all
other noble-gas atoms. The tetrahedral (Td) shells, which describe sp3 (n=2, n2=4) systems
have been well understood for quite some time. However, the sp3d5 (n=3, n2=9) and sp3d5f 7

(n=4, n2=16) shells are significantly more difficult to determine as random guesses and are
deserving of additional discussion.
As a representative example, we describe the series of calculations beginning with the self-
consistent closed-shell calculation for Ar (Z=18) that features filled 3s and 3p sub-shells for
the outer electrons, in addition to completely filled n=1 and n=2 shells. For a shell with 4

electrons, FODs can be arranged at the vertices of a tetrahedron. The resulting FLOs are sp3

hybrid orbitals. We adopt radii of 1.73 and 0.45 Bohr for the n=2 and n=3 tetrahedrons, respec-
tively. We then computed the total energy self-consistently with the LSDA density functional,
obtaining a PZSIC total energy of −529.9441 Ha, and an orbital energy for the highest occu-
pied molecular orbital (HOMO) of −0.6141 Ha, corresponding to a predicted removal energy
(the negative of the HOMO energy) of 16.7 eV. The corresponding value in an uncorrected
LSDA calculation is 10.4 eV. The experimental ionization potential (IP) for Ar is 15.8 eV.
These results reflect the well-known effect of self-interaction in atoms that the HOMO eigen-
values are smaller than ionization energies. Calculated LSDA and FLOSIC removal energies
and corresponding experimental IPs are shown in Table 8.
From the self-consistent Ar calculation, one of the outermost FODs and one of the occupied
Kohn-Sham orbitals are removed in order to create starting FLOs for a FLOSIC calculation for
Cl. Similarly, two outer FODs and two KS orbitals are removed (of the same spin) to create
a starting point for a FLOSIC calculation for S. This process was repeated for all the atoms
of the second row. Predicted removal energies obtained from the calculations can be found in
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Config. ~A Sym. Nequiv ROg RRn RXe RKr RAr RNe RHe

s (0, 0, 0) N/A 1 0.0000 0.000 0.00 0.00 0.00 0.00 0.00

sp ~A1 Td 4 0.0356 0.074 0.12 0.19 0.44

spd ~A1
2 Td 6 0.1012 0.18 0.33

spd ~A2
2 C3V 3 0.1012 0.18 0.33

spdf(A) ~A1
3 Td 4 0.2808 0.43

spdf(B) ~A2
3 Td 12 0.2808 0.43

spdf − ~A1
3 Td 12 0.6138

spdf − ~A2
3 Td 4 0.6138

spd(C) − ~A1
2 Td 6 0.9045 1.00 0.85 0.60

spd(D) − ~A2
2 C3V 3 0.9045 1.00 0.85 0.60

sp − ~A1 Td 4 2.4656 2.47 2.28 1.92 1.68 1.07

Table 6: Reasonable starting FODs and radii for noble gas atoms. Symmetrized sets of unit-
vectors that maximize the n2×n2 determinant of spherical harmonics on a unit sphere are given
by: ~A1 = (1, 1, 1)/

√
3, ~A2

2 = (1, 0, 0) and ~A2
2 = (−1,−1, 2)/

√
6, ~A1

3 = (1, 1, 1)/
√
3 and ~A2

3 =
(−0.8789,−0, 3373,−0.3373). Based on Linnett-like structures for inverting FOD-positions
for opposite spins, the highest symmetry for the spin-densities in Ne and Ar is Td while the
symmetry of the density can be Oh. Similarly the highest symmetry for the spin-density for
Kr–Og is C3v while the symmetry for the total density can be D3d. A variety of lower point
group symmetries that would be compatible with incomplete shells of angular momenta are
possible in other ions. The flotonic solids that result from these vectors and the resulting n2

hybrids (for n=3 and 4) are illustrated in Fig. 2. While the shells for each principal quantum
number close to resolved, the relative orientation of each shell is not resolved at the time of
this writing. Standard optimization methods are not good at addressing such questions and
additional automation is required for perfecting that part of the FOD optimization.

Table 8, where it can be seen that the FLOSIC predictions are much closer to the experimental
values. Similar downward-quantum-learning calculations have been performed starting from
Og (Z=118), Rn (Z=86) and Ne (Z=10) [27].

Here, we have provided an existence proof that connects viable FOD positions to a non-zero
value for the many-electron wave function constructed from the Kohn-Sham orbitals for the
system and evaluated at the FOD positions. The proof relies only on the properties of determi-
nants and it guarantees that if one finds viable FODs for a system of N electrons, it is always
possible to find viable FODs for electronic systems with fewer electrons (in each spin channel),
using a countdown algorithm that selectively removes FODs and orbitals from the N -electron
solution. For any set of orbitals unitarily equivalent to the KS orbitals, the algorithm identi-
fies at least N solutions of lighter systems constructed by successive removal of orbital-FOD
pairs. It is very possible that successive removal of FLO-FOD pairs will generate a total of∑N−1

n=1

(
N
n

)
= 2N−2 initial solutions for atoms containing between 1 and N−1 electrons of a

specific spin. We demonstrated that the algorithm can successfully generate FODs for lighter
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Z det1/2 Z det1/2 Z det1/2 Z det1/2 Z D1/2 Z D1/2

59 0.0003 58 0.0003 57 0.0004 56 0.0004 55 0.0004 54 0.0008
53 0.0016 52 0.0033 51 0.0044 50 0.0059 49 0.0077 48 0.0101
47 0.0133 46 0.0171 45 0.0190 44 0.0210 43 0.0225 42 0.0241
41 0.0265 40 0.0284 39 0.0294 38 0.0333 37 0.0363 36 0.0377
35 0.0391 34 0.0403 33 0.0416 32 0.0426 31 0.0438 30 0.0453
29 0.0523 28 0.0600 27 0.0667 26 0.0740 25 0.0846 24 0.0967
23 0.1065 22 0.1298 21 0.1518 20 0.1606 19 0.1753 18 0.1943
17 0.2109 16 0.2289 15 0.2433 14 0.2638 13 0.3861 12 0.5644
11 0.8240 10 0.8683 9 0.9111 8 0.9456 7 0.9702 6 0.9870
5 0.9901 4 0.9943 3 0.9974 2 0.9993 1 1.0000

Table 7: Determinant (det1/2) of the Fermi-orbital overlap matrix for electronic configurations
of Og+Q. The fact that the determinant for every electronic configuration converges monotoni-
cally from the determinant of the neutral Og atom to 1 guarantees that it is possible to generate
relatively physical starting points for any charge and spin state of any atom.

atoms from a solution for the next-largest noble gas atom. This has been accomplished for all
atoms below Ne and Ar, and for select atoms beginning from solutions for Rn and Og (Z=86)
and Og (Z=118). The success of the algorithm across the periodic table demonstrates its utility
and numerically confirms the theorem repeated above and first demonstrated in Ref. [27]. For
atoms in d- and f -blocks of the periodic table, additional integration of existing and additional
techniques are progressing. These techniques include: (1) single-shot Z-dependent scaling of
the starting orbitals using a combination of the data in Table 1 and 6, and shell-by-shell virial-
like scaling, (2) optimization of FODs at the frozen density, (3) facile but more sophisticated
potential biasing of starting potentials that are discussed in Ref. [22] and [25], (4) new machine-
learning strategies that aid predicting which of the 2N solutions identified from the countdown
method are most likely to succeed, and (5) capitalizing on the ligand-induced changes in atom
coordination that ultimately define the allowable 3d and 4f valence configurations in atoms.
We expect that complete success in generating self-consistent solutions using the countdown
algorithm will require scaling the starting orbitals obtained for the heavier atoms. Because of
the larger Z, the wave functions of the closed-shell atoms are too compact for the lighter atoms.
This can cause problems during the self-consistent iteration process that cause the calculation
for the lighter atom to fail. An alternative approach will be to reduce the value of the nuclear
charge of the lighter in several steps from that of the closed-shell atoms to its correct value,
while generating self-consistent wave functions at each steps. The algorithm can be used to find
a variety of solutions for lighter atoms, corresponding to various occupations of the orbitals.
This means that the method could be used to generate a database of starting FODs for atoms
throughout the periodic table, in various charge states and oxidation states, beginning from a
solution for element Og, Z=118. With such a database automated starting points of viable FOD
positions could also be created for molecules and other condensed systems.

The method proposed here succeeded by considering sets of 4, 9, or 16 points created by sym-
metry equivalent normalized vectors and was then used for the common special cases for par-
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Atom LDA FLOSIC EXPT. Atom LDA FLOSIC EXPT.
Ar 10.38 16.71 15.76 Ne 13.54 24.35 21.56
Cl 8.30 14.16 12.97 F 10.34 20.20 17.42
S 6.24 11.91 10.36 O 7.40 16.39 13.62
P 6.34 10.95 10.49 N 8.39 15.76 14.53
Si 4.65 8.89 8.15 C 6.11 12.46 11.26
Al 3.05 6.98 5.98 B 4.10 9.36 8.30
Mg 4.78 8.49 7.65 Be 5.59 10.84 9.32
Na 3.11 6.46 5.14 Li 3.17 6.92 5.39
Rn 7.98 11.90 10.75 Og 7.44 11.20 8.9
At 6.68 10.52 9.22 Ts 5.99 9.89 7.70
Po 5.35 9.19 8.42 Lv 4.95 8.67 8.64
Bi 5.40 8.70 7.29 Mc 5.11 8.42 5.68
Pb 4.18 7.35 7.42 Fl 3.96 7.25 8.53
Tl 2.96 6.10 6.11 Nh 2.83 6.07 7.31

Table 8: Calculated (−1)HOMO energies from DFT-LDA and FLOSIC, and experimental ion-
ization energies of atoms (in eV). Ionization energies for the superheavies may be found on
the web. Some of the early experimental results are inconsistent with our FLOSIC results and
trends expected from the Rn row.

tially filled electronic shells. It points further to an improved method for rapid characterization
of other solutions. If we loop over point groups, one can then create sets of equivalent points that
are compatible with that point group. Given a set of Q points one can ask whether there are ex-
actly Q combinations of the first 16 spherical harmonics that are linearly dependent on the unit
sphere. When this condition holds FOC1 has been bypassed for a specific partially filled shell
of angular momenta sharing the same principal quantum number. A further improvement for
this case would be to hypothesize that the local coordinate system should be oriented such that
some of the Q points coincide exactly with the zeros of the missing spherical harmonics. This
point is expected to be particularly useful for molecular magnets for which local Jahn-Teller
distortions, defined by the ligand structures, mandate shell fillings with holes in the frontier d-
or f -shells.

4.2 Challenge: Simulating tetra-anionic Mn12-Acetate in water

Learning how to control solar-induced splitting of water into oxygen and hydrogen would have
immense value from the standpoint of the world energy and climate concerns. For computa-
tional materials scientists and physicists to help with this problem there are many multi-scale
problems that need to be solved and quantum-mechanical methods for understanding these
problems will require scientists to accurately simulate highly charged molecular systems in
aqueous environments. Typical problems that occur when simulating a single ion near water is
that fractionally occupied states occur at the Fermi level with the excess electron spread over
the solvent (water) and the solute (anion). In Table 9 we show energy differences, calculated
within PBE-GGA, for a chemical system containing four excess electrons. In going from S0
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State Molecular Configuration Energy (eV/H2O)
S0 Mn12O12(COOH)16(H2O)4 + 4H2O + 4e- 0.00
S1 Mn12O12(COOH)16(OH−)4 + 4H2O +2H2 0.95
S2 Mn12O12(COOH)16(H2O)4 + 4(OH−) +2H2 1.34
S3 Mn12O12(COOH)16(H2O)4−4 + 4(OH) +2H2 2.62
S4 Mn12O12(COOH)16(H2O)4 + 4H2O + 4e- 0.00

Table 9: A cyclic catalytic water-splitting reaction sequence. The energy scale for various
tetra-anion configurations are somewhat consistent with the experimental observation that four
electrons are needed to split water. Full scale simulation on this type of problem requires
corrections to the LUMO levels of solvated anions in water. Recent work suggests that FLOSIC
will correct for such issues. [23]

to S1, terminating water molecules expel neutral hydrogens which then form molecular hydro-
gen leaving behind the isoelectronic hydroxyl anions in place of the waters. In going from S1

to S2, waters of solvation replace the hydroxyl anions which returns the molecule to its initial
state. In the following two steps the electrons are transferred back to the molecule and the neu-
tral hydroxyl radicals could convert into additional molecular oxygen and hydrogen. This is a
straw-man hydrogen production cycle which may or many not hold water when put to rigorous
computational testing. But the problem with computationally testing this hypothesis is, due to
the self-interaction error, the HOMO level of the tetra-anion is predicted to be 6 eV above the
LUMO of the surrounding molecule. FLOSIC calculations performed on the fragments suggest
that inclusion of SIC for the entire system would place the tetra-anionic HOMO level very close
to the LUMO level of the surrounding water molecules. Such conditions would be ideal for
solar-induced hydrogen production. Problems such as this and other problems associated with
highly charged anions in solution are one of many fertile areas for exploration with FLOSIC
over the coming years. Additional discussion of this problem may be found in Ref. [23].

5 Summary and outlook

Including self-interaction corrections to density functional approximations (SIC-DFA) has been
a long-standing challenge especially from the standpoint of maintaining the inherent efficiency
of DFA methods in applications to molecular systems and devices. Early applications of SIC-
DFA, based upon solutions of the localization equations [9, 11], succeeded in addressing the
lack of unitary invariance in SIC-DFA and introduced a Koopmans’ theorem [11]. We have re-
viewed a new implementation of the self-interaction-correction [19], now referred to as Fermi-
Löwdin-Orbital Self-Interaction Correction (FLOSIC), that restores much of the formal struc-
ture expected from a DFA. Use of the density matrix, constructed from Kohn-Sham orbitals,
and a physically appealing classical electron geometry, determines a density-dependent N×N
unitary transformation that connects the occupied Kohn-Sham orbitals to the ideal localized or-
bitals for evaluation of the self-interaction correction. In the small N limit the FLOSIC method
is at least N times slower than DFA. However, at the time of this writing, recent progress that
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capitalizes on the intrinsic sparsity of the problem significantly reduces the cost. A downward-
counting algorithm and existence proof have demonstrated applicability to all atoms in the pe-
riodic table [27]. This paper also provided an interesting connection between the FLOs and the
amplitude of a Slater determinant composed of Kohn-Sham orbitals and raised the possibility
of stronger connections between density-functional and wave-function pictures. Together with
a sparse implementation of FLOSIC, there is now the possibility that the cost of a FLOSIC cal-
culation, relative to LDA/GGA/SCAN, will have the exact same scaling as DFT and be within
a factor of 10 of the cost. For example a soon to be reported application to a tri-anion-water
system, CrIII(C2O4)3:(H2O)117, reduced the overhead from a factor of 1300 to, at most, 30.
The discussion here on the Fermi-Löwdin formulation of the self-interaction correction has
attempted to provide the reader with the knowledge needed to embark upon their own origi-
nal investigations. While the author opines that self-interaction corrections might decrease the
need for spin-density-gradients in functionals, this has definitely not been proven here nor else-
where. Complete analysis still requires a significant focus on implementation and efficiency
but there are good reasons to expect that, as the FLOSIC community grows, new algorithms
for implementation will be invented and the number of applications amenable to inquiry within
the FLOSIC formalism will grow. The use of the FLO formalism is not limited to SIC and
one can imagine applying the formulation to other quantum theories where unitary invariance
is lacking. What is clear at this time is that basis set quality is seldom the accuracy limiting
step in electronic structure calculations and it is probably still not time for the community to
seriously invest their time in considering uncertainties due to basis sets. I have also provided
my perspective on the status of the FLOSIC formulation and have tried to avoid encumbering
the reader with too much cross comparison to other methods. The reader interested in works
by others is encouraged to perform literature searches for the researchers mentioned in the ac-
knowledgements. Finally, readers that are inspired to apply FLOSIC to problems that they are
interested in, are encouraged to visit https://www.flosic.org to download the latest
version of the publicly available FLOSIC code. Within that distribution, or via email to this
author, it will also be possible to obtain a portable version of the legacy code which has some
learning modules attached to it.
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enthusiastic early efforts. There are numerous researchers from the Naval Research Laboratory,
Max-Planck-Institut für Festkörperforschung, Daresbury National Laboratory, Linnaeus Uni-
versity, Freiberg Institute of Technology, University of Iceland and the University of Texas at
El Paso that I have had stimulating discussions with on this problem. I note important contri-
butions – both technical, computational, and scientific – from Dr. D.V. Porezag, Dr. J. Peralta,
Dr. Yoh Yamamoto, Dr. Zahra Hooshmand, Dr. Kushantha Withanage, and Dr. Rajendre Zope.
And thank you for reading this. I hope you will find time to read many interesting and im-
portant papers by these authors. The later part of this work (post 2020) was supported by the
CCS FLOSIC project under the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under award number DE-SC001833.



SIC-DFT 13.37

References

[1] L. Pauling, J. Am. Chem. Soc. 53 1367 (1931)

[2] T. Koopmans, Physica 1 104 (1934)

[3] G.H. Wannier, Phys. Rev. 52, 191 (1937)
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[18] S. S. Klüpfel, P. Klüpfel, and H. Jónsson, Phys. Rev. A 84, 050501 (2011)

[19] M.R. Pederson, A. Ruzsinszky, and J.P. Perdew, J. Chem. Phys. 140, 121103 (2014)

[20] M.R. Pederson, J. Chem. Phys. 142, 064112 (2015)

[21] M.R. Pederson and T. Baruah: Self-Interaction Corrections Within the Fermi-Orbital-
Based Formalism, Adv. At. Mol. Opt. Phys. 64, 153-180, ed. by E. Arimondo, C.C. Lin,
and S.F. Yelin (Academic Press, 2015)

[22] D.-Y. Kao, K. Withanage, T. Hahn, J. Batool, J. Kortus, and K.A. Jackson,
J. Chem. Phys. 147, 164107 (2017)

[23] J. Batool, T.Hahn, and M.R. Pederson, J. Comput. Chem. 40 2301 (2019)

[24] S. Akter, Y. Yamamoto, C.M. Diaz, K.A. Jackson, R.R. Zope, and T. Baruah,
J. Chem. Phys. 153, 164304 (2020)

[25] K.P.K. Withanage, K.A. Jackson, and M.R. Pederson, J. Chem. Phys. 156 231103 (2022)

[26] J.I. Melo, M.R. Pederson, and J.E. Peralta, J. Phys. Chem. A 127, 527 (2023)

[27] M.R. Pederson, A.I. Johnson, K.P.K. Withanage, S. Dolma, G.B. Flores, Z. Hooshmand,
K. Khandal, P.O. Lasode, T. Baruah, and K.A. Jackson, J. Chem. Phys. 158 (2023)


	Motivation
	Introduction to Fermi-Löwdin orbitals and preliminary applications
	Closed shell atoms
	The closed-shell N2 molecule
	A closed shell electron gas: Wannier functions, FLOs and FOs

	Fermi-Löwdin orbitals: an existence proof and their construction
	Optimizing Fermi orbital descriptors and Fermi-Löwdin orbitals using derivatives
	Complex Fermi-orbital descriptors and complex Fermi-Löwdin orbitals
	Atoms
	Molecules
	Returning to N2: complex vs. real FLOs

	Downward quantum learning: tricks for finding starting configurations
	Initializing FODs for principal quantum numbers with n=2, 3, and 4
	Challenge: Simulating tetra-anionic Mn12-Acetate in water

	Summary and outlook

