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Forschungszentrum Jülich, 2023, ISBN 978-3-95806-689-2
http://www.cond-mat.de/events/correl23

http://www.cond-mat.de/events/correl23


12.2 Simon Trebst

1 Introduction

Kitaev materials – spin-orbit entangled Mott insulators with strong bond-directional Ising-like
interactions – have attracted considerable interest over the past 15 years as candidate com-
pounds to realize quantum spin liquid physics in experiment. This chapter will guide you on a
journey through this field, which many expect to be fertile ground for many future discoveries,
both experimentally and theoretically. We will start from building a conceptual perspective on
the broader context by first providing a gentle introduction to spin liquids in frustrated magnets,
both in the classical and quantum realm. A key player in this field is the Kitaev honeycomb
model, to which we will devote a separate section. We will then move the conceptual underpin-
ning to the materials side and introduce the broad class of spin-orbit entangled Mott insulators
that are found in 4d and 5d materials and see how they distinguish themselves from more con-
ventional Mott insulators, which have long been discussed in the context of cuprates and other
3d materials. Having set the stage as such, we will then turn to the family of Kitaev materials
and discuss some prominent members such as RuCl3 and the iridates Na2IrO3 and Li2IrO3. The
chapter will close with an overview of more recent advances and an outlook what to expect in
the near future.
This chapter is based on lecture notes [1], which I have prepared for a 2017 Jülich spring school
under the heading “Topological Matter – Topological Insulators, Skyrmions and Majoranas”
(48th IFF Spring School). Together with Ciarán Hickey these lecture notes were later turned
into a substantially expanded 2022 review article [2] that gives a more in-depth introduction to
this field. We should mention that a few other closely related reviews might be good pointers for
the interested reader, such as two early reviews on spin-orbit entangled materials [3, 4], along
with review-style articles directed towards Kitaev materials [5, 6]. We will mention additional,
topical reviews in the subsequent sections that guide to pedagogical introductions or in-depth
discussions of the broader context of Kitaev materials.

2 Spin liquids

Let us start our exploration of the conceptual background of (quantum) magnets by reminding
ourselves of a paradigm that was first established in the context of the Ising model – spontaneous
symmetry breaking. Cast in most general terms, the idea here is that the low-temperature ground
state of a system has less symmetry than the high-temperature phase which still reflects all
symmetries of the underlying Hamiltonian. Case in point of the Ising model is the magnetic
ordering of the ground state which breaks the Z2 symmetry of the original Ising Hamiltonian.
This happens at a finite-temperature phase transition, at which it is precisely this Z2 symmetry,
still present in the high-temperature paramagnetic phase, which is spontaneously broken as one
traverses the transition towards the low-temperature magnetically ordered phase. This is all very
well understood – the finite-temperature transition itself arises from the competition of energy
and entropy, while the formation of magnetic order accompanying the spontaneous symmetry
breaking can be elegantly captured in terms of Landau-Ginzburg-Wilson theory.
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Fig. 1: Frustrated magnetism. While conventional magnets are expected to show a magnetic
ordering transition around the temperature scale associated with the Curie-Weiss scale ΘCW,
frustrated magnets instead exhibit an expanded temperature regime (below ΘCW) in which the
magnetic susceptibility χ continues to follow a Curie-Weiss law – as if it were still a paramag-
net. This regime is often referred to as “cooperative paramagnet”. Eventually, the system might
order at some very low temperature scale Tc.

But, quite intriguingly, the exact opposite can also happen – a magnetic system’s ground state(s)
can have more symmetry than the original Hamiltonian and associated high-temperature phase.
This is, in fact, what one might define as one of the trademarks of frustrated magnets and the
emergence of spin liquid physics.

2.1 Frustrated magnets

A frustrated magnet distinguishes itself from a conventional magnet by the absence or strong
suppression of the finite-temperature phase transition to a magnetically ordered state. For any
conventional magnet, we expect that this phase transition occurs roughly at the Curie-Weiss
temperature ΘCW (set by the various magnetic couplings of a given system). For a frustrated
magnet, in contrast, the magnetic susceptibility χ continues to follow a Curie-Weiss law, i.e.

χ ∝ 1

T −ΘCW

,

even way below the Curie-Weiss temperature. That is, the system keeps behaving as if it were
in a paramagnetic phase. But since the system keeps loosing entropy as one goes to lower and
lower temperature, there must be a distinction from the high-temperature paramagnet after all.
In fact, the system might build up local correlations, which however do not reach correlation
lengths of the order of the system size and the system therefore eludes the formation of long-
range magnetic order. One often refers to this regime as “cooperative paramagnet” – a precursor
of the spin liquid physics we might see at the very lowest temperatures (and which we will
discuss in the next section) if that physics is not preempted by a magnetic ordering transition.
The latter might occur also in a frustrated magnet, albeit at a much lower temperature than in a
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conventional magnet as depicted in Fig. 1. In fact, the ratio of the Curie-Weiss temperature and
the suppressed transition temperature Tc

f =
ΘCW

Tc

is a good quantifier of how frustrated a certain system really is and to distinguish a conventional
magnet from a “highly-frustrated” magnet. For a conventional magnet f ≈ 1, while one speaks
of a highly-frustrated magnet if f & 10. In the most extreme case of a system that exhibits no
magnetic order transition whatsoever f goes to infinity.
So you might ask what is the microscopic origin of such frustration effects and the ultimate
suppression of any magnetic order? The source here are competing interactions that cannot be
simultaneously satisfied, e.g., by a single state (such as a magnetically ordered one). Instead
it is a multitude of states that are all found to be equally well suited to satisfy most of the
interactions, that is one finds a manifold of states that all exhibit the same (minimal) energy,
though they might differ in their microscopic details. Such an emergence of a low-temperature
residual entropy really is the defining signature of a frustrated magnet.
One of the most cited and earliest examples here is the triangular lattice Ising antiferromagnet,
depicted on the left in Fig. 2. If all couplings are antiferromagnetic, each triangle will exhibit
one bond that is left unsatisfied by the choice of the spin alignment around it. Going to a
finite lattice with many such triangles this will lead to a ground-state degeneracy that will grow
extensively with the number of spins (triangles). This emergence of a residual entropy was
first discovered and quantitatively described by Wannier in a seminal 1950 work [7, 8]. Today,
we refer to the underlying mechanism as geometric frustration to indicate that the source of
residual entropy formation really arises from the underlying (non-bipartite) lattice geometry,
which is simply non-commensurable with the formation of an antiferromagnetic Néel state.1

Famous other examples of such non-bipartite lattice geometries are the kagome lattice in two
spatial dimensions and the pyrochlore lattice in three spatial dimensions.
Another source of frustration, which will be more relevant in the context of the current chapter,
is so-called exchange frustration. Consider the arrangement on the right-hand side of Figure 2
where a classical, three component Heisenberg spin is subject to three competing interactions
that want to align this spin along one of the three principal spin axes via a pairwise interaction

blue bond: Sxi S
x
j green bond: Syi S

y
j brown bond: Szi S

z
j

to match a correspondingly {x, y, z}-aligned spin on the other side of the bond. Due to the
orthogonality of the three principal spin axes, it is impossible to simultaneously satisfy all three
exchange terms. Instead, if one picks one of the three principal spin axes (which energetically
is more favorable than pointing, e.g., along the [111] direction) one has three equally good
(or bad) choices, which again points to the formation of a residual entropy if one continues the

1One has to be rather careful, though, in designating geometric frustration to certain spin model. Note, for in-
stance, that the antiferromagnetic Heisenberg model on the triangular lattice is not subject to geometric frustration.
Here the spins will, at low temperatures, simply align in one of two 120 degree ordered states and as such there is
no residual entropy.
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Fig. 2: Sources of Frustration. (left) Geometric frustration arises from non-bipartite lattice
geometries which are incompatible with the formation of a Néel state in antiferromagnetic sys-
tems, such as an Ising antiferromagnet on the triangular lattice. (right) Exchange frustration
arises from competing interactions that cannot be simultaneously satisfied, even for a single
site. An example of this are the three bond-directional interactions favoring alignment of the
spins in orthogonal directions.

tricolored bond assignment for all bonds of, say, a honeycomb lattice. Such exchange frustration
is equally capable of suppressing magnetic order as the geometric frustration introduced above.
Notably, exchange frustration can also occur for ferromagnetic interactions on a bipartite lattice
geometry (as in the example above) – that is, in systems, which typically are considered to give
rise to simple ferromagnets.

2.2 Classical spin liquids

We now want to consider a frustrated magnet, which indeed shows no magnetic order down to
zero temperature. Examples in the realm of classical spins are the triangular lattice Ising anti-
ferromagnet – the principal example of geometric frustration in Figure 2, and the Heisenberg
model with bond-directional (ferromagnetic) Ising-like interactions on the honeycomb lattice –
the principal example of exchange frustration in Figure 2. The latter example, which in fact is
the Kitaev model of the subsequent section, will stay with us throughout the chapter, but for
now we might think of it as simply a classical, spin-anisotropic Heisenberg model with no mag-
netic ordering. For both systems we know that as a result of frustration there will be no single,
magnetically ordered ground state but instead there will be a significant residual entropy at zero
temperature – in these cases extensive manifolds of states that all equally well satisfy the ener-
getics of the underlying Hamiltonians. But what is the difference between these state manifolds
and the high-temperature paramagnet? And can we identify, as alluded to in the introduction of
this section, a higher symmetry in these ground states than what the Hamiltonians suggest?
The answers to these questions will introduce us to the concept of classical spin liquids. Let
us approach such a classical spin liquid by considering the ground state manifold of the bond-
directional Heisenberg model on the honeycomb lattice, i.e. the classical Kitaev model with
ferromagnetic interactions. The aforementioned exchange frustration in this model results in
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Fig. 3: Coulomb phase. (left) Ground-state configuration of the classical Kitaev model where
the bond-directional Ising-like interactions pair up spins in “dimers” (middle) Dimer covering
of the honeycomb lattice, corresponding to the spin configuration on the left. (right) Mapping to
a divergence-free magnetic field configuration where each site has an equal number of incoming
and outgoing field lines if the orange arrows carry twice the field strengths of the blue arrows.

a large number of ground states, which can be characterized as illustrated in the left panel of
Figure 3: every spin pairs up with one of its three neighboring spins to form a “dimer” of spins
pointing along one of the three principal spin axes (such that exactly one of three interaction
terms per spin is fully satisfied while two remain completely unsatisfied). In more abstract
terms, any such spin configuration can be conceptualized as a dimer covering of the honeycomb
lattice2 as illustrated in the middle panel of Fig. 3 for the exact same spin configuration. This
simplifies the description, as a whole lot is known about dimer coverings such as, for instance,
how many there are for a given lattice geometry and system size – that is, a direct measure
of the residual entropy of our spin model at hand. Even more enticing is the fact that we can
rewrite the local condition of “every spin is part of exactly one dimer” into a configuration of an
artificial magnetic field that is divergence-free at every site, see the right panel in Fig. 3. This is
a powerful correspondence, which tells us that the ground state of the classical Kitaev model (or
the triangular lattice Ising antiferromagnet) is described by a Coulomb phase [9]. It readily lets
us conclude that there are longer range, power-law decaying correlations in these ground states
and that the elementary excitations are violations of the divergence-free conditions – magnetic
monopoles. In other words, the ground state manifold of our classical magnets are described by
emergent magnetostatics, a much more elegant description than what we might have anticipated
when considering the quite ordinary nature of their underlying Hamiltonians.
It is precisely this theme of an emergent description of the low-energy states that sets apart the
low-temperature phase of a highly frustrated magnet from both the high-temperature paramag-
netic phase, which does not allow for an equally elegant description, or the symmetry-broken
ground state of a conventional magnet. This naturally brings us to the question what additional
effects zero-temperature quantum fluctuations might entail. On a pessimistic note one might ar-
gue that they will simply split the accidental degeneracy of the aforementioned classical ground

2Notably, Wannier showed that every ground state configuration of the triangular lattice Ising antiferromagnet
can also be mapped to a dimer covering of the honeycomb lattice by marking the unsatisfied bonds of the triangular
lattice to its dual honeycomb lattice. As such, all arguments applied to the ground state manifold of the classical
Kitaev model also apply to the Ising case.
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states in a mechanism referred to as order-by-disorder and thereby destroy all beauty. But this
is, fortunately, not true after all and there will be even more to discover when going deep into
the quantum realm of strongly fluctuating magnetic moments.

2.3 Quantum spin liquids

Like their classical counterparts, quantum spin liquids are not defined by the absence of mag-
netic order, but instead by the emergence of additional structures. As one might expect for a
proper quantum system, this additional structure comes in the form of entanglement, or more
precisely, long-range entanglement of the underlying quantum mechanical degrees of freedom.
To discuss this, we need to recall some basic notions of quantum many-body entanglement.
The latter is often quantified by an entanglement entropy defined via the reduced density matrix
for a bipartition of the system into two subsystems (say, A and B). This entanglement entropy
is quite distinct from a conventional thermal entropy (familiar from any statistical mechanics
course) in that it is not extensive, but instead obeys a boundary law, i.e., it scales with the length
of the boundary ∂A separating the two subsystems

S = a · ∂A− γ + . . . ,

where a is some non-universal prefactor in the boundary law, γ refers to an important O(1)
correction, and the dots indicate further subleading terms. Our focus here should, in fact, be
on the O(1) correction γ that indicates an emergent topological quantum field theory (TQFT)
description of the quantum state at hand – that is, an emergent structure that was not present in
the Hamiltonian giving rise to the ground state in front of us, somewhat akin to what we had
encountered in the classical context but on a whole new level. A TQFT is a complex theory
whose constituents are, in general, different types of anyonic particles. An elementary example
is the Ising TQFT with its ground state, denoted as 1, and two additional σ and ψ particles which
have quantum dimensions3 1,

√
2, 1, respectively. What is relevant here is that these quantum

dimensions define the topological correction of the entanglement entropy [10,11] in a universal
manner as

γ = ln

(√∑
d 2
i

)
,

which in the case of the Ising TQFT reveals a correction of γ = ln 2. Importantly, the topo-
logical correction to the boundary law always results in a negative correction to the leading
boundary-law. This is important as it indicates that we cannot deform the ground-state wave-
function into a simple product state, in which the boundary-law contribution would vanish and
thereby turn the entanglement entropy negative – a scenario that is as forbidden as a negative
thermal entropy. As such the emergence of such a topological correction instead signals the
formation of long-range entanglement that can only be destroyed by driving the system through
a quantum phase transition.

3The quantum dimension is a measure of how fast a Hilbert space spanned by N such particles grows with the
number N . For conventional quantum spin-1/2 we are used to the idea that their quantum dimension is 2, while
for the σ particle in the Ising TQFT it is apparently

√
2.
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If the ground state of a quantum spin model exhibits such a form of long-range entanglement
we have discovered a topological quantum spin liquid – a spin analogue of a fractional quantum
Hall state as first envisioned by Kalmeyer and Laughlin [12] back in 1987. We will shortly
see such a topological quantum spin liquid as the ground state of the Kitaev model in a mag-
netic field, and its relevance in the context of half-integer thermal quantum Hall states in the
discussion of RuCl3 in the last section.

The above description of quantum spin liquids is a pretty high-brow introduction using the
abstract measures of entanglement, which theorists might love as a distinct measure but experi-
mentalists will have a hard time to measure in the foreseeable future. Let us therefore introduce
an alternate approach to describe the emergent phenomena of a quantum spin liquid, which
might also be closer to experimental reality.

This alternative description of a spin liquid uses the concepts of fractionalization and emergent
gauge theories – concepts that will come to life in the next section when we discuss the ex-
act analytical solution of the quantum Kitaev model. Here we will simply introduce the main
ideas and point the interested readers to the excellent review by Lucile Savary and Leon Balents
on the subject [13]. In this framework, quantum spin liquids are emergent descriptions of the
ground states of quantum magnets in which the elementary degrees of freedom, typically mag-
netic moments with spin-1/2 or spin-1, decompose into novel, fractionalized quantum particles
– a parton (such as a Majorana or complex fermion) coupled to a gauge field. One then distin-
guishes the different types of possible quantum spin liquids by their different gauge structure
into (i) Z2 quantum spin liquids, (ii) U(1) quantum spin liquids, and (iii) chiral spin liquids
(with an emergent Chern-Simons theory). The aforementioned topological quantum spin liquid
is an example of the latter, while the Kitaev model (without a magnetic field) is often considered
as the quintessential model harboring a Z2 quantum spin liquid ground state.

3 Kitaev honeycomb model

Let us now turn to the main motivation that has set off the search for Kitaev materials – the
original Kitaev honeycomb model [14] and its rich physics [15]. The model itself is a variant
of a quantum compass model [16], as discussed in much broader context in the accompanying
chapter of Jeroen van den Brink. As such it has a deceivingly simple looking Hamiltonian of
bond-directional, Ising-like interactions that couple elementary quantum spin-1/2 degrees of
freedom on a honeycomb lattice

HKitaev =
∑
i,γ

Kγ S
γ
i S

γ
j ,

where γ = x, y, z denotes the three principal directions of the honeycomb lattice (depicted in
blue/green/brown in Figure 4) and, at the same time, the three principal spin orientations.
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Fig. 4: Kitaev model. (left) Bond-directional Ising-like interactions between spin-1/2 mo-
ments make the Kitaev model an example of a quantum compass model. Its analytical solution
is sketched as the decomposition of the original spin degrees of freedom into four Majorana
fermions (circles), which are then recombined in a pairwise fashion to result in a Z2 gauge field
on the bonds (ellipses) and a free, itinerant Majorana fermion (yellow circle) hopping on the
lattice in the background of a static Z2 gauge field. (right) The phase diagram of the Kitaev
model in the plane Kx+Ky+Kz = 1, which exhibits three gapped spin liquid phases and an
extended gapless spin liquid phase around the point of isotropic coupling.

3.1 Fractionalization and spin liquid ground states

What sets this spin model apart from basically every other interacting quantum spin system is
that Alexei Kitaev could solve this model exactly at zero temperature, i.e., he could analytically
derive its entire ground-state phase diagram [14]. The latter is depicted in the right panel of
Figure 4 and shows four highly non-trivial ground states as a function of the coupling parameters
Kx, Ky, and Kz plotted in the plane defined by Kx+Ky+Kz = 1. If one of the three couplings
dominates, corresponding to the light blue triangles, one finds a topological spin liquid ground
state, i.e., a gapped spin liquid that is characterized by a non-trivial γ = ln 2 correction to the
boundary-law entanglement scaling and which corresponds to a toric code [17] phase. The
phase around the point of isotropic coupling Kx = Ky = Kz is, in contrast, a gapless spin
liquid. The nature of this gapless phase becomes apparent when briefly describing how Kitaev
solved the underlying spin model.

The analytical approach is quite ingenious in that it directly employs the fractionalization of
the elementary spin degrees of freedom. Every spin-1/2 is rewritten in terms of four Majo-
rana fermions (as depicted schematically by the four circles on the left in Figure 4), which
are subsequently recombined by fusing two such Majorana fermions adjacent to a given bond
into a single Z2 variable on every bond (depicted by the ellipses in Figure 4). The latter is the
Z2 gauge field, while the “left-over” fourth Majorana fermion per spin is the complementary
parton degree of freedom. Kitaev’s solution thus explicitly introduces the emergent fractional-
ized degrees of freedom via an exact operator decomposition. Importantly, these two degrees
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of freedom have very different dynamics. While the Majorana fermion is free to traverse the
lattice (as a free fermion), the Z2 gauge field turns out to be completely static, i.e., it does not
fluctuate and any gauge excitations (so-called visons) are static as well and cannot move at all.
This makes the emergent lattice gauge theory description of the Kitaev model particularly sim-
ple4 and amenable to an exact solution. The problem factorizes, in that one can first identify the
ground state of the gauge field – which due to another ingenious contribution of Elliott Lieb [18]
we can readily identify with the flux-free configuration – and then solve for the free Majorana
fermion problem with this fixed gauge configuration. But the latter is also trivial, since we
know very well what the spectrum of free fermions on a honeycomb lattice is from the study
of non-interacting electrons in graphene – a band structure with a Dirac cone dispersion, where
due to the particle-hole symmetry of Majorana fermions the ground state of the spin model sits
exactly at the tip of this Dirac cone. Returning to the phase diagram of the Kitaev model, this
picture of Majorana fermions hopping in the background of a Z2 lattice gauge structure, lets
us readily understand the gapless quantum spin liquid in the center of the phase diagram as a
Majorana metal (or, more precisely, a semi-metal with a point-singular Fermi surface due to the
Dirac cone in the Majorana band structure).
Going away from the pure Kitaev model, its analytical solution still allows to understand the ef-
fect of certain perturbations. For instance, if one applies a magnetic field in the (111)-direction,
i.e., a field that couples to all three spin components, one introduces a mass term in the Dirac
equation. As a consequence the gapless spin liquid gaps out and turns into a chiral spin liquid
(with non-Abelian topological order and gapless edge modes). When rephrased in terms of
complex fermions this gapped state corresponds to a p-wave superconductor [19], which one
can conceptualize to undergo a Higgs transition to a gapless metal that, recast into the language
of the quantum spin model, would correspond to a gapless U(1) spin liquid (with a spinon
Fermi surface). It has been argued that this indeed what happens for the antiferromagnetic
Kitaev model for an intermediate-strength magnetic field [20–23]. Another important perturba-
tion of the pure Kitaev model is the inclusion of an isotropic Heisenberg interaction [24, 25],
which endows the vison excitations of the Z2 gauge field with their own dynamics [26], i.e.,
they can start to disperse, become soft, condense and thereby drive the system into a magneti-
cally ordered state. Of course, one could consider many other perturbations to the Kitaev model
– a topos which we will return to when discussing the miscroscopics of the actual materials
considered to realize some of this Kitaev physics.

3.2 Thermal signatures of fractionalization

Staying on the conceptual level, let us instead turn to the finite-temperature characteristics of
the Kitaev model. While such features are not amenable to a direct analytical treatment, they
can be captured by numerically exact quantum Monte Carlo (QMC) simulations. At first sight,
this might sound counter-intuitive as the spin Hamiltonian seems to exhibit a strong sign prob-

4Typically one would expect to find a fluctuating gauge field, which then would have required further steps
such as a mean-field decoupling, i.e., the application of some approximative approach.
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Fig. 5: Thermal signatures of fractionalization. (top) The specific heat exhibits a character-
istic two-peak structure. The feature at the higher temperature scale T ∗ is a thermal crossover
associated with the fractionalization of the elementary spin degrees of freedom, while the lower
temperature scale Tc is associated with the onset of order in the Z2 gauge sector (for finite sys-
tem sizes). (bottom) The nearest-neighbor spin-spin correlations are found to saturate already
at T ∗, the higher temperature scale. This is in very good agreement with resonant inelas-
tic X-ray spectroscopy (RIXS) measurements discussed in Section 5. Figure reproduced from
Ref. [27].

lem [28] – at least when looking at it from the perspective of traditional QMC techniques such
as the stochastic series expansion (SSE) [29], which is typically the first choice of QMC for
quantum spin models. But at second sight and inspired by the exact solution, one should in-
stead set up a QMC approach that samples in the fractionalized basis of Majorana fermions and
the Z2 gauge field. That is, an approach that samples the many different Z2 gauge field config-
urations which become relevant at finite temperature as one allows for the thermal excitation
of visons, while solving for the respective free Majorana fermion models for such modified Z2

gauge configurations. This is precisely what Yuki Motome’s group has spearheaded to arrive at
a quasi-exact solution of the finite-temperature physics of the Kitaev model [30].

The key features of the thermodynamic behavior of the Kitaev model are summarized in Fig-
ure 5. The specific heat shows a distinct two-peak structure that is intimately linked to the
physics of the Kitaev model. The higher-temperature feature appears at the scale of the ex-
change couplings and indicates the fractionalization of the elementary spin degrees of freedom
and the formation of a Majorana fermion band structure. This fractionalization is a purely local
phenomenon and as such the higher-peak is in fact a crossover phenomenon (as opposed to a
phase transition, which due to its diverging length scales is rather sensitive to finite system sizes
and therefore exhibits strong finite-size scaling effects whereas a crossover peak is completely
insensitive to system sizes as found here). The second, lower-temperature feature is hugely
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suppressed and occurs at a temperature scale of order Tc ≈ K/100, i.e., two orders of magni-
tude lower than the high-temperature feature (note the logarithmic scale of the horizontal axis
in Figure 5). This second feature is found to be associated with the ordering of the Z2 gauge
field, i.e., it is at this temperature scale that the system enters the flux-free ground state of the
Z2 lattice gauge theory. Above this temperature scale one finds thermally excited vison exci-
tations and as such one might not be surprised to hear that the magnitude of this temperature
scale is linked to the size of the vison gap [31]. Now, in two spatial dimensions (as it is the
case for a honeycomb lattice geometry) such a vison excitation is a point-like excitation, e.g., a
Z2 flux threaded through a single plaquette, which can easily proliferate. This is an important
observation which points us to the fact that in the thermodynamic limit of very large system
sizes, this lower-temperature ordering transition scales to zero temperature, i.e., ceases to exist.
This is a well known statement about two-dimensional Z2 lattice gauge theories [32,33], which
in the context of the Kitaev model, tells us that the zero-temperature quantum spin liquids of
the ground-state phase diagram are all unstable to finite-temperature fluctuations.5 This puts
the higher-temperature crossover feature back into the focus of a potential experimental signa-
ture of Kitaev materials. Indeed it should be noted that this crossover goes hand-in-hand with
a build-up of nearest-neighbor spin-spin correlations as shown in the lower panel of Figure 5.
Such strong correlations between neighboring spins (but not beyond) are indeed another hall-
mark of the Kitaev spin liquid states [35], which is also reflected in their dynamical structure
factor [36, 37] and response in resonant inelastic X-ray spectroscopy (RIXS) [38, 27].

4 Spin-orbit entangled Mott insulators

Let us now enter the realm of materials physics and ask where we might look for microscopic
situations that enable the emergence of Kitaev physics. At this stage, probably the most dis-
tinct feature of the Kitaev Hamiltonian is its lack of an SU(2) spin symmetry and the bond-
directionality of its interactions – both of which features that do not come naturally in con-
ventional electronic Mott insulators, which typically exhibit spin-isotropic Heisenberg interac-
tions and bond-by-bond variations are often limited to differences of the respective coupling
strengths. So, we need to look further and this is where models of orbital moments might come
to mind – for these it is quite natural to expect a strong bond-directionality and anisotropic
interactions. Think, for instance, of a p-orbital model with px, py, and pz orbital degrees of free-
dom where, simply due to the different spatial shapes and alignments of these three orbitals, the
interactions in x, y, and z direction will take an Ising-like form, i.e., px orbitals couple strongly
with one another along the x-direction but not at all along the y or z-directions and similarly
for the other orbital components. So orbital physics seems to be the right ingredient to realize
Kitaev-like interactions, but then orbital-only models are rare to find.

5As a side remark we note that this situation is very different for Kitaev models in three spatial dimensions [34],
where the elementary vison excitations are extended flux loops and thereby allow for a different competition
between energy and entropy leading to the existence of a true finite-temperature gauge ordering transitions, albeit
ones that are still suppressed by two orders of magnitude with regard to the coupling strength [31].
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diagram exhibit distinct behavior. For smallU and λwe are in the realm of non-interacting elec-
tronic band structures, which allow for the formation of metals and band insulators. Cranking
up the spin-orbit coupling one can induce a band inversion to create a topological band insu-
lator (or, similarly, a topological semi-metal). For strong correlations we expect to see Mott
insulators, which in the presence of strong spin-orbit coupling can turn into a distinct class of
Mott insulators with local, spin-orbit entangled moments. The Kitaev materials of interest in
this chapter form a subclass of these spin-orbit entangled Mott insulators as discussed in the
text. Figure adapted from Reference [3].

This is where the new class of spin-orbit entangled Mott insulators enter the game. To concep-
tually understand what these new types of Mott insulators are, it is quite instructive to consider
a general phase diagram in the presence of electronic correlations, i.e., a Hubbard U, and spin-
orbit coupling λ as it is mapped out in Figure 6. Let us start in the lower left corner of this
phase diagram, i.e., in the limit of small correlations and small spin-orbit coupling. This is the
realm of non-interacting band theory which tells us that there are two principal states of matter
– metals and band insulators. If one now adds substantial spin-orbit coupling, i.e., one moves
to the right in the phase diagram, we have learned that, for a band insulator, this can lead to a
band inversion and the formation of a topological band insulator [39,40] with protected gapless
surface modes. Similarly, we can also create a topological metal via strong spin-orbit coupling,
such as a Weyl semi-metal [41]. Now, let us add electronic correlations to the mix. In the regime
of small spin-orbit coupling we know that electronic correlations can induce an insulating state
of matter that is distinct from a band insulator – a so-called Mott insulator (which, in contrast
to band insulators, can occur even at half filling). The local moments in such an electronic Mott
insulator are typically SU(2) spin-1/2 (or higher-spin) degrees of freedom – a good place to im-
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Fig. 7: Spin-orbit entanglement. Schematic illustration of the formation of spin-orbit entan-
gled j=1/2 moments in 5d5 or 4d5 materials with five electrons in the d orbital. Placing such
d-orbitals within an octahedral crystal field such as an IrO6 cage will split the five orbitals
into three low-energy t2g orbitals and two high-lying eg orbitals. The five electrons with a total
spin s=1/2 in the low-lying t2g orbital with an effective orbital moment l=1 will experience
further level splitting upon the introduction of strong spin-orbit coupling. This will result in a
low-lying, completely filled j=3/2 and high-lying, half-filled j=1/2 state. This j=1/2 multiplet
can now be turned into a Mott insulating states with an effective j=1/2 moment with relative
small electronic correlations (Hubbard U ).

plement a Heisenberg model. If, however, we crank up the spin-orbit coupling in this strongly
correlated regime we might end up in a different type of Mott insulator – so-called spin-orbit
entangled Mott insulators, in which the local degrees of freedom have both spin and orbital
components that are intimately linked to one another.

This scenario plays out in a class of 5d and 4d materials, which we will now zoom in on.
Specifically, we will be interested in 5d5 and 4d5 materials, that is d-orbitals which are occu-
pied with 5 electrons. This is, for instance, the case for the Iridates, in which the 5d iridium ions
typically have an electronic Ir4+ configuration, and also for RuCl3 with its 4d Ru3+ ions. As
schematically illustrated in Figure 7, a conspiracy of crystal-field splitting, spin-orbit coupling
and relatively weak electronic correlations can turn such materials into Mott insulators with lo-
cal, spin-orbit entangled moments. Historically, this was somewhat unexpected to happen since
one might expect 4d and particularly 5d materials to generically form metallic states, which –
compared to the standard class of 3d Mott insulators such as the cuprates – exhibit much larger
atoms resulting in relatively large electronic overlap in their crystalline structures, which would
have to be compensated by strong electronic correlations. But the increased atomic size also
gives rise to a much enhanced spin-orbit coupling, which in a crude estimation scales with the
fourth power of the atomic number, λ ∝ Z4. It is through this spin-orbit coupling that the
Mott lobes of the j=1/2 (and j=3/2) states exhibit a much smaller bandwidth and a relatively
small amount of electronic correlations can split them to form Mott insulating states. As such
these Mott insulators are also called “spin-orbit assisted” Mott insulators [3]. Their physical
reality was first observed, some fifteen years ago, in 2008 in experiments on the perovskite iri-
date SrIr2O4 [42, 43]. The latter is an isostructural analogue of La2CuO4, the parent compound
of the cuprate superconductors, which, at the time, set off a flurry of activities searching for
(topological) superconductivity in the presence of strong spin-orbit coupling [4].
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Fig. 8: Exchange path geometries. The lattice geometries of perovskite and honeycomb iri-
dates (and related materials) distinguish themselves by the way the elementary octahedral oxy-
gen cages are connected – either in a corner-sharing fashion for the perovskite iridates such as
SrIr2O4, while the honeycomb iridates such as Na2IrO3 exhibit edge-sharing geometries. The
effect on the exchange of the j=1/2 moments (at the center of the octahedral cages) is profound:
while the corner-sharing geometry gives rise to Heisenberg interactions, the edge-sharing ge-
ometry exhibits a dominant bond-directional Kitaev-type exchange.

Prior to these experimental developments, Giniyat Khaliullin had already worked out a j=1/2

moments theory [44], which would consider the effect of different lattice geometries on the ex-
change paths of such spin-orbit entangled moments and their resulting effective interactions. In
particular, two scenarios have turned out to make a crucial distinction as depicted schematically
in Figure 8. Whereas the perovskite iridates exhibit a corner-sharing, square lattice geometry
of the octahedral oxygen cages, other iridates with an underlying honeycomb lattice geometry
would have edge-sharing oxygen cages. This difference in corner- versus edge-sharing ge-
ometries turns out to heavily influence the microscopic exchange of the spin-orbit entangled
j=1/2 moments at the center of the octahedral cages. While in the corner-sharing scenario
one finds an isotropic Heisenberg exchange, the edge-sharing scenario induces a suppression of
this isotropic Heisenberg exchange (via destructive interference of two Ir-O-Ir exchange paths)
turning the next-order bond-directional exchange into the dominant coupling. This turns out to
be the sought-after Kitaev-type interaction which we have been looking for.

5 Kitaev materials

In 2009 Jackeli and Khaliullin turned this thinking about spin-orbit entangled j=1/2 Mott in-
sulators with edge-sharing geometries into a concrete proposal – they went out and postulated
that honeycomb iridates such as Na2IrO3 and Li2IrO3 should be an ideal place to look for Ki-
taev physics [45]. The boldness of this proposal should be appreciated – while we might have
become accustomed to the idea that we can theoretically predict materials properties of weakly-
coupled materials and then await experimental verification in a newly synthesized compound
(this has been a recurring motif in the synthesis of topological insulators), such a conceptual
prediction for strongly-correlated Mott materials has been without much precedent. Neverthe-
less, this proposal turned out to be extremely influential and opened the field of Kitaev spin
liquid physics to experimental exploration of actual materials which rapidly happened.
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5.1 Honeycomb iridates Na2IrO3 and Li2IrO3

The first samples of Na2IrO3 were synthesized basically within a year of the theoretical proposal
by the groups of Takagi [46] and Gegenwart [47]. Many other groups would follow and today
single crystals of Na2IrO3 are readily available in labs around the world. But there was an ele-
ment of initial disillusion too – Na2IrO3 exhibits an ordering transition [48] around TN ≈ 15 K,
i.e., it is clearly not showing a quantum disordered spin liquid ground state. Resonant X-ray
magnetic scattering [49] and neutron scattering experiments [50, 51] would later reveal that the
local moments form a zig-zag order. But on the positive side, the local moments themselves
would turn out to be indeed the sought-after spin-orbit entangled j=1/2 moments, as seen from
magnetic susceptibility measurements [47, 48]. Another uplift came when a direct experimen-
tal observation of bond-directional exchange was reported in diffuse magnetic X-ray scattering
experiments [52], which later would be substantiated as Kitaev-type interactions in resonant
inelastic X-ray spectroscopy (RIXS) [53]. It also posed new puzzles such as the observation of
short-range spin-spin correlations in RIXS experiments [54,27] on temperature scales far above
the ordering temperature, see Figure 5. Such a high-temperature formation of spin-spin cor-
relations would be a signature of a low-temperature Kitaev spin liquid as argued in the earlier
section on thermal signatures of fractionalization. So maybe Na2IrO3 is, after all, not that far
away from spin liquid physics?
Such puzzles coming out of the experimental exploration of the first Kitaev candidate material,
Na2IrO3, have spurred more theoretical activity. Starting with the addition of a Heisenberg
interaction to the pure Kitaev model [24, 25, 55–58], the effect of more and more perturbations
of the Kitaev model have been explored leading to a refined microscopic model [59]

H =
∑

γ−bonds

J SiSj +K Sγi S
γ
j + Γ

(
Sαi S

β
j + Sβi S

α
j

)
,

which also includes a bond-directional, off-diagonal Γ -exchange. Complementing this more
and more detailed microscopic understanding, the general concept of a “proximate spin liq-
uid” [60, 61] was developed whose central idea is sketched in Figure 9. While additional
“non-Kitaev” interactions (as in the Hamiltonian above) might induce magnetic ordering (as
observed, for instance, in Na2IrO3), there might be a window of opportunity (indicated by the
red arrow in the figure) to observe some of the thermal signatures of a nearby/proximate spin
liquid ground state. Physically this finite-temperature proximate spin liquid regime opens up,
as the free energy of a thermal spin liquid state (with all its fluctuations) is generically expected
to be lower than the free energy of a thermally excited magnetically ordered state (which shows
little fluctuations). It might be in this regime that we indeed see remnants of spin liquid physics
above magnetically ordered states, such as signatures of fractionalization and the unexpected
build-up of local spin-spin correlations [27].
The synthesis of the sister compound Li2IrO3 has led to yet another surprising discovery – this
material exists in several polymorphs [48,62,63] which have been dubbed α-Li2IrO3, β-Li2IrO3,
and γ-Li2IrO3 in the sequence of their discovery. The first one, α-Li2IrO3, is a honeycomb ma-
terial akin to Na2IrO3, which shares most of its experimental signatures: local j=1/2 moments
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Fig. 9: Proximate spin liquid. Conceptual phase diagram of the Kitaev model perturbed
by some additional interactions parametrized by a coupling strength g, such as a Heisenberg
and/or off-diagonal Γ -exchange, that will induce some type of magnetic ordering if sufficiently
strong, g > gc. At finite temperatures we would expect the spin liquid state, stabilized as a
ground state for g < gc, to dominate over the magnetically ordered state, since its fluctuations
will lower its effective free energy more strongly than those of the ordered state. As such the
magnetic ordering transition will bend to the right as indicated. This, however, opens a tem-
perature window, indicated by the red arrow, in which one might see the thermal signatures
of the proximate spin liquid such as the thermal fractionalization crossover and accompanying
build-up of local spin-spin correlations shown in Figure 5.

form, but undergo a magnetic ordering transition at TN ≈ 15 K to what is a somewhat unusual
magnetic ordering pattern with counter-rotating spin spirals [64–66]. The other two polymorphs
are materials in which the local j=1/2 moments are arranged in three-dimensional lattice ge-
ometries. These lattice structures, however, retain an important ingredient of the honeycomb
lattice – they are still tri-coordinated, i.e., every site is connected to only three other sites (which
is a highly unusual setting in a three-dimensional geometry), just as in the honeycomb case and
the two polymorphs, β-Li2IrO3, and γ-Li2IrO3 have been dubbed hyperhoneycomb and stripy
honeycomb to convey this point. Experimentally, these two 3D polymorphs turn out to be
relatively close to their 2D counterpart in that they exhibit an ordering transition to a counter-
rotating spin spiral state.

But again experimental discovery has spurred theoretical advances, here in the form of an in-
vestigation of three-dimensional generalizations of the Kitaev model [67,68]. The key observa-
tion is that the tri-coordination of the 3D lattice geometries still allows for the same analytical
approach devised by Kitaev for the 2D honeycomb geometry (via a four Majorana fermion de-
composition and subsequent bond-wise recombination, as illustrated in Figure 4). This has led
to an extensive classification of three-dimensional Kitaev models, both in terms of their spin
liquid ground states which can be recast as different types of Majorana metals [34] as well as
their thermodynamic signatures [31].
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Hall conductance for the 2D pure Kitaev model calculated with the 
quantum Monte Carlo method show that quantization occurs slightly 
below ∆F/kB. Experimentally, ∆F/kB is estimated25 to be 10 K, which 
is consistent with the persistence of the thermal Hall quantization up 
to around 5 K.

In the plateau regime of κxy, no anomaly is observed in κxx, probably 
because phonon contributions largely dominate over fermionic excita-
tions arising from spins in κxx in the whole temperature range28,29. 
Moreover, owing to the strong spin–phonon coupling in α-RuCl311, the 
phonon conductivity is expected to show complicated H and T depend-
ences. The observed behaviour of the plateau as a function of H and T 
therefore demonstrates that κxy/T is not affected by spin–phonon scat-
tering in the plateau regime, providing strong support for topological 
protection. The fact that κxy vanishes at the highest fields, as shown 
in Fig. 3a–c, e–g, provides direct evidence that the thermal Hall effect 
is not influenced by phonons, demonstrating that κxy is a unique and 
powerful probe in the search for Majorana quantization.

We stress that a half-integer thermal Hall conductance in a bulk 
material is a direct consequence of the chiral Majorana edge current. 
Recent experiments based on the proximity effect between a quantum 
anomalous Hall insulator and a conventional superconductor have 
reported a signature of chiral Majorana edge modes20. However, this is 
based on the observation of half-integer quantization of the longitudi-
nal electrical conductance via the scattering matrix effect between the 
edge states of the insulator and superconductor. Moreover, Majorana 
fermions in Kitaev magnets and topological superconductors have 
essentially different features. In the former, strong correlations give 
rise to Majorana fermions, whereas in the latter they do not play a role. 
In addition, Majorana fermions exist inside the bulk of a sample in the 
Kitaev QSL state, in sharp contrast to topological superconductors, 
where they appear only at the edges. This distinct nature of Majorana 
fermions is supported by the fact that the quantum plateau disappears 
below about 400 mK in a topological superconductor device20, whereas 
it is preserved up to around 5 K in α-RuCl3.

At θ = 60°, κ /H T( )xy
2D  increases slightly from the quantized value 

before going to zero at a high field at 4.3 K and 4.9 K, which is repro-
duced in a different crystal (Extended Data Fig. 5a). However, such a 
behaviour is not observed at θ = 45°. On the other hand, an overshoot 
is also observed in the temperature dependence of κxy2D, irrespective of 
the angle (Fig. 4) and crystal (Extended Data Fig. 5b); therefore, there 
seem to be certain high-energy corrections that are responsible for the 
excess conductivity at high fields and high temperatures. These over-
shoots are in contrast to the numerical results of the thermal Hall effect 
for the 2D pure Kitaev model with a weak magnetic field16. Meanwhile, 
it has been pointed out that non-Kitaev interactions, such as Heisenberg 
and off-diagonal ones, are important for α-RuCl3

30,31. Hence, the 

discrepancy may be attributed to high-field effects or non-Kitaev inter-
actions, which deserves further study.

The near vanishing of κ /Txy
2D  after its rapid suppression in the high-

field regime (Fig. 3a–c, e–g) demonstrates the disappearance of chiral 
Majorana edge currents. As shown by the open blue square in Fig. 1c, 
the temperature at which κ /Txy

2D  vanishes decreases rapidly with 
decreasing H∥. This suggests a topological quantum phase transition 
from the non-trivial QSL to a trivial high-field state, where the thermal 
Hall effect is absent, at µ0H∥ ≈ 9 T, as shown by the red circle in 
Fig. 1c32. The specific heat at 0.47 K for θ = 60° exhibits a dip-like 
anomaly in the vicinity of 9 T, which can be associated with an abrupt 
change of the spin gap at the topological transition, strongly supporting 
the presence of a characteristic field revealed by κxy/T (Extended Data 
Fig. 7a–c). The vanishing of κxy/T at the highest fields is unlikely to be 
due to the crossover to a simple forced ferromagnetic state because the 
magnetization at 9 T is less than 1/3 of the fully polarized value, indi-
cating that paramagnetic spins still remain. The observation of half- 
integer thermal Hall conductance reveals that topologically protected 
chiral Majorana edge currents persist in α-RuCl3, even in the presence 
of non-Kitaev interactions and a parallel field. This observation opens 
a possibility of using Majorana fermions and their link to non-Abelian 
anyons, which are important for topological quantum computing, 
revealing novel aspects of strongly correlated topological quantum 
matters.
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Fig. 10: Quantized Thermal Hall Effect. Thermal Hall conductivity of α-RuCl3 in a tilted
magnetic field. (left) The thermal Hall conductivity κxy/T appears to saturate at a 1/2-
quantized value within a temperature range of 4–6 K (for two tilted magnetic field configu-
rations). The inset shows the higher-temperature behavior of κxy/T, overshooting the half-
quantized value with increasing temperature and reaching a maximum at∼ 14K before decreas-
ing again for even higher temperatures. (right) The thermal Hall conductivity as a function of
increasing magnetic field, at a fixed angle of 60◦ away from the c-axis for the three different
temperatures. The plateau appears to be stable over an extended field and temperature range.
Figure adapted from Ref. [75].

5.2 α-RuCl3

The biggest impact on the field of Kitaev materials has come in the form of the 4d compound
α-RuCl3, which had long existed but has been appreciated as another candidate material for
honeycomb Kitaev physics only in 2014 [69]. By then a well-oiled sequence of initial exper-
iments set in which quickly established the j=1/2 nature of the local moments [70, 71] and
again the onset of zig-zag order [61], though at a slightly lower temperature of TN ≈ 7 K. But
what sets α-RuCl3 apart from the two honeycomb iridates discussed above has been a second
round of spectacular experiments that have solidified its status as a front runner to indeed ex-
hibit telltale signatures of Kitaev spin liquid physics. The first came in the interpretation of
Raman scattering data as having fermionic excitations across a broad energy and temperature
range [72–74], indicating the absence of a conventional magnetic state which only has bosonic
excitations (magnons and phonons), but allowing for a more speculative state such as the Kitaev
spin liquid which would indeed exhibit (Majorana) fermion excitations. The second in the form
of the observation of a diffuse scattering continuum [60,61] in the inelastic neutron scattering of
α-RuCl3, reminiscent of what one would expect for fractional excitations such as spinons or, in
the context of Kitaev models – spinless Majorana fermions. This observation at finite excitation
energies above a magnetically ordered ground state is what triggered the conceptual idea of a
proximate spin liquid, introduced in the previous section.



Kitaev Magnets 12.19

The most spectacular experimental result, reported by the Matsuda group in Kyoto [75], has
come in the form of a field-induced state that appears to exhibit a half-quantized thermal Hall
effect over a temperature range of 4–6 K, different orientations of the tilted magnetic field,
and an extended plateau forming as a function of the magnetic field strength, as reproduced in
Figure 10. It is precisely such a 1/2-quantized thermal Hall effect that one would theoretically
expect for the field-induced, chiral spin liquid mentioned in the theory introduction. While
gapped in the bulk, this chiral spin liquid would have gapless Majorana edge modes that would
carry precisely a 1/2 (thermal) charge quantum. While similar to electronic fractional quantum
Hall states (such as the one introduced [76] for filling fraction ν=5/2, which gained exper-
imental support through careful thermal Hall measurements [77]), an important difference is
that the electronic Hall state arises due to the formation of Landau levels (and Coulomb in-
teractions). In contrast, the chiral spin liquid state at hand is a non-trivial Chern insulator of
Majorana fermions. One important distinction between the two scenarios is that the latter can
also form in a planar field configuration, while the formation of Landau levels always requires
an out-of-plane field component. As such, it has been quite reassuring to see that the Matsuda
group could indeed reproduce their observation of a thermal Hall plateau for such an in-plane
field configuration only [78]. There is grain of salt, however, in that these results have only been
partially reproduced by the Takagi group [79], while others have openly questioned the quality
of the quantization and have instead argued that the observation of quantum oscillations in fact
points to the formation of a field-induced gapless spin liquid [80].
We are left to state that the observation of a field-induced Kitaev spin liquid remains a much-
discussed topic in the community of Kitaev material aficionados that will come to a final con-
clusion only by further experimental evidence or all-encompassing theoretical models. Or to
put it with a more positive spin – there is still much to be done here.

5.3 Other materials

Following the initial proposal [45] of the honeycomb iridates Na2IrO3 and Li2IrO3, a plethora
of alternative compositions of honeycomb iridates have been put forward and synthesized, in-
cluding H3LiIr2O6 [81], Ag3LiIr2O6 [82] and Cu3LiIr2O6 [83], in which the interlayer alkali Li
ions of Li2IrO3 have been replaced by H, Ag or Cu, respectively. In a similar vain, but starting
from Na2IrO3, we have seen the synthesis of Cu3NaIr2O6 [83] and Cu2IrO3 [84]. For readers
interested in learning more about this “second generation” of honeycomb Kitaev materials we
point to our recent review of Kitaev materials [2].
Going beyond the Jackeli-Khaliullin mechanism, much recent attention has gone into the ques-
tion whether 3d7 materials such as cobaltates can also exhibit Kitaev physics [85,86], despite the
reservation one might have that these systems will exhibit considerably smaller spin-orbit cou-
pling than the 4d and 5d compounds discussed so far. Initial experimental efforts have focused
on Na2Co2TeO6 [87, 88] and Na3Co2SbO6 [87] as potentially interesting materials, which like
their d5 counterparts both exhibit zigzag magnetic order at low temperatures [89–91]. Inelas-
tic neutron scattering measurements have been argued to show evidence for dominant Kitaev
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exchange interactions [92, 93], though this interpretation still remains under debate. Applica-
tion of a magnetic field to Na2Co2TeO6 points to a field-induced disordered state that could
potentially harbor spin liquid physics [94, 95]. For another set of cobaltates, BaCo2(AsO4)2
and BaCo2(PO4)2, which have also been considered to be potential Kitaev materials, it by now
seems increasingly likely that their original theoretical description, in terms of an XXZ J1-J2-J3
model, better captures their essential physics [96–99].

In further broadening the search for Kitaev materials, it may be worthwhile to look beyond 4d
and 5d transition metals and consider rare-earth magnets [100] whose 4f electrons are much
more localized than the 5d or 4d electrons in iridates and ruthenates and at the same time expe-
rience a considerably stronger spin-orbit coupling – thus potentially providing another path to
Kitaev materials in the future. New materials that realize antiferromagnetic Kitaev interactions,
in contrast to the ferromagnetic interactions believed to occur in the current set of known Kitaev
materials, will be particularly welcome both as a means to explore a new area of the extended
phase diagrams and for their distinct in-field properties. At the level of materials synthesis, the
search for Kitaev materials continues unabated.

If we adopt an even broader definition of what a Kitaev material (or Kitaev magnet) is by re-
quiring that a given material is (i) a spin-orbit entangled Mott insulators with local j=1/2 mo-
ments, which (ii) interact via bond-directional Kitaev-type interactions, a much broader class
of materials comes into view. In particular, these might realize lattice geometries well beyond
the honeycomb structure of the original Kitaev model. This includes, for instance, the dou-
ble perovskite Ba2CeIrO6, which turns out to be a pristine j=1/2 Mott insulator where the
moments are subject to frustrated magnetism on the face-centered cubic lattice with Kitaev
interactions [101].

6 Outlook

The field of Kitaev materials has come a long way since its inception by the introduction of the
Kitaev honeycomb model [14] in 2006 and the bold proposal in 2009 to look for its physics in
transition-metal oxides [45]. Along the way, we have seen one compound after the other be-
ing synthesized in unprecedented speed – broadening the search well beyond the initial trio of
Na2IrO3, Li2IrO3, and α-RuCl3 to other iridates, ruthenates, and even cobaltates. Experimental
exploration has kept the pace and showered us with results, some of which reporting highly
unusual observations that point to quantum spin liquid physics, such as Raman scattering data
pointing to fermionic excitations, inelastic neutron scattering data showing a broad diffusive
spectrum indicating fractionalized excitations, and a half-integer quantized thermal Hall effect.
Further experimental efforts will need to go in the validation and verification of these results
on different samples and by complementary approaches. On the theory side, the experimen-
tal discoveries have spurred lots of activities in refining the microscopic description of Kitaev
materials beyond the pure Kitaev model, devising new concepts such as proximate spin liquid
physics, and classifying Kitaev physics also in three-dimensional lattice geometries.
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Looking into the future is impossible in a field with so much activity. But one might wish for
some developments that seem promising today. On a materials synthesis side, this will include
ideas to engineer novel Kitaev materials in hybrid devices such as heterostructures of α-RuCl3
and graphene [102–104]. On the experimental side, novel probes such as two-dimensional co-
herent spectroscopy (2DCS) [105] to pick up the non-linear response of, for instance, fractional
excitations might turn out to be rather insightful. Such novel spectroscopic methods should, of
course, be complemented by theoretical activities predicting such non-linear response for the
various Kitaev magnets of interest [106].
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