Multiplets in transition metal ions and introduction to multiband Hubbard models
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3d and 4f transition metals and their compounds - a sure bet for spectacular physics...

Metallic Ferromagnets like Fe, Co, Ni

Mott insulators like NiO

Heavy Fermion compounds such as CeColn;

High temperature superconductors such as copper oxide superconductors or iron pnictide superconductors

and many more......



The reason for these phenomena: Small radius of the 3d or 4f shell
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The small radius of these shells enhances the Coulomb repulsion between electrons in these shells
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Up to 10eV increase in energy!

The reason for exotic physics: strong Coulomb interaction in partly filled atomic shells
- let us discuss this



Coulomb interaction between electrons - Simplest guess

The simplest guess for the energy of d” would be

E[d"] %n-ed—kU-@.
¢;. Energy of the d-orbital
U: Average Coulomb energy for a pair of electrons
For a nondegenerate orbital we have
0) I 9 1)

ni0 1 1 2

E«/0 0 0 U

This is equivalent to H = Uny n, - see Hubbard model or Anderson model

However, for a degenerate orbital there are additional aspects.....



Coulomb scattering within an atomic shell
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e Electrons in a partially filled shell scatter from each other due to their Coulomb interaction
e For L* to be conserved the scattering electrons must ‘move along the m-ladder’ in exactly opposite ways

e The Coulomb interaction between electrons in partially filled atomic shells gives rise to multiplet splitting



e We consider an Ni**-ion in vacuum - it has electron configuration [Ar] 3d®

e From textbooks of atomic physics we know that d® has the multiplets (or terms) °F, °P, G, 'D and 1S

e This is what they look like in experiment (taken from NIST database):

3p°3d° IE |4 0.0
3 1 360.7
2 2 269.6
3p53d° ‘D 2| 24 e3s
3p°3d° Ib | 2| 166616
i 16 877.8

0| 17 230.7
3p%3d’ e |4 | 23ieR7

3p°3d° 's | 0| 523530

The splitting of the multiplets is caused by the Coulomb interaction between electrons



Coulomb scattering within an atomic shell
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m=—2 m=-1 m=0 m=1 m=

e Electrons in a partially filled shell scatter from each other due to their Coulomb interaction

e For L? to be conserved the scattering electrons must ‘move along the m-ladder’ in exactly opposite ways



We take into account processes like this one...
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We do not take into account processes like this one...
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We do not take into account processes like this one...
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We take processes like this one
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e The states which are mixed by the Coulomb scattering all have the same orbital energy n €3,

e If we consider the orbital energy as H;, the Coulomb interaction as perturbation H;, we have the textbook
situation of degenerate 1°* order perturbation theory



The textbook procedure to deal with this is as follows:
e Find all degenerate states |v) of d”
e Set up the secular matrix (u|H;|v) - H; is the Coulomb interaction

e Diagonalize it to obtain the 15 order energies and wave functions

e These are the energies and wave functions of the multiplets



Basis functions

As basis funtions we use atomic orbitals (z = (r,0), r — (1,0, ¢))

wni,li,mi,ai(x) - Rni,li(r) ifli,mi((aa ¢) 50’,0'1'

n; - Principal quantum number (n; = 3 for 3d-shell)
l; - Total orbital angular momentum quantum number (I; = 2 for 3d-shell)
m; - z-component of orbital angular momentum (—I; < m; < [;)

o, - z-component of spin g; = :I:%

We will often use the ‘compound index’ v;
(ni7 li) my, O-Z') =V

so that we write for example

U lymio(T) = Yy ()



Basis functions

As basis funtions we use atomic orbitals (z = (r,0), r — (1,0, ¢))

¢ni,l,’,mi,o—i($) — er,',li(/r) ni,mi((a? ¢) 50’,0'1'

n; - Principal quantum number (n; = 3 for 3d-shell)
l; - Total orbital angular momentum quantum number (I; = 2 for 3d-shell)
m; - z-component of orbital angular momentum (—I; < m; < [;)

o, - z-component of spin g; = :I:%

We will often use the ‘compound index’ v;
(ni7 li) my, O-Z') =V

so that we write for example

U lymio(T) = Yy ()



Basis functions

As basis funtions we use atomic orbitals (z = (r,0), r — (1,0, ¢))

wni,li,mi,ai(x) - Rni,l,j(r) iflj,mi(@a ¢) 50’,0'1'

n; - Principal quantum number (n; = 3 for 3d-shell)
l; - Total orbital angular momentum quantum number (I; = 2 for 3d-shell)
m; - z-component of orbital angular momentum (—I; < m; < [;)

o, - z-component of spin g; = :I:%

We will often use the ‘compound index’ v;
(ni7 li) my, O-Z') =V

so that we write for example

U lymio(T) = Yy ()



Basis functions

As basis funtions we use atomic orbitals (z = (r,0), r — (1,0, ¢))

wni,li,mi,ai(aj) — Rni,li(r) ni,m,'((aa ¢) 50’,0'1'

n; - Principal quantum number (n; = 3 for 3d-shell)
l; - Total orbital angular momentum quantum number (I; = 2 for 3d-shell)
m; - z-component of orbital angular momentum (—I; < m; < [;)

o, - z-component of spin g; = :I:%

We will often use the ‘compound index’ v;
(ni7 li) my, O-Z') =V

so that we write for example

U lymio(T) = Yy ()



Basis functions

As basis funtions we use atomic orbitals (z = (r,0), r — (1,0, ¢))

wni,li,mi,ai(x) - Rni,li(r) ifli,mi((aa ¢) 50’,(71j

n; - Principal quantum number (n; = 3 for 3d-shell)
l; - Total orbital angular momentum quantum number (I; = 2 for 3d-shell)
m; - z-component of orbital angular momentum (—I; < m; < [;)

o; - z-component of spin g; = j:%

We will often use the ‘compound index’ v;
(ni7 li) my, O-Z') =V

so that we write for example

U lymio(T) = Yy ()



Coulomb interaction in second quantization

f

We pass to second quantization and introduce Fermionic creation/annihilation operators: cli =Cp 1o
1% 1771

The Coulomb Hamiltonian becomes (see e.g. Fetter-Walecka or Negele-Orland)

1
H, = 5 ZV(ui,Vj,uk,l/l) el e e

vy I/j Ve ~V]
i?j7k7l

62

V(or, vos v, 1) — / I / d' o (x) 7, (o) bor () 1, (@)

/da:... = ;/dr...

[ — |



We need to calculate

Vv, v, v3,1y) = /d:v/dx’ Yy, (x) by, ()

62

thy,(7) 1, (2)

7|

Now insert

?ﬁl(ﬂ?) ¢§2($/> = Rnl,ll('r) lf,ml(@7¢) 50,01 Rng,lg('r/) l;7m2(6/9¢/) 50’,02

2 c© k 2 k
e 4re r
)k:m(c7¢) = )k’*m (Cl7¢/)

¢V4<SC) 1%, (I/) - Rn4,l4<r> Y24,m4(@7 Cb) 50,04 Rng,lg (T/> }/}3,7%3 (@/7 gb,) 50’,03



We need to calculate

Vv, v, v3,1y) = /d:v/d:v’ Yy, (x) by, ()

62

thy,(7) 1, (2)

7|

Now insert

¢I>{/<1 (I) w;{;g (x,) - Rnl,ll (T) l?ml (@7 ¢) % Rng,lg (T/) l;m2(@/7 ¢,) 50”,0‘2

2 © Kk 2k
€ dre” 1l . L
|’T’ — ’T’/| - Z Z }/}ﬂm (@7 ¢) ok + 1 T];+1 }/k:,m (@ ) ¢)
k=0 m=—Fk

¢V4<x) wl/g ('CU/> - er4,l4<r> }/24,7%4(@7 ¢> 6(],04 Rng,lg <T/> }/}3,7%3 (@la Cb/) 50/703

Spin-sum over o

E :50 70150 o4 T 501,04

g



We need to calculate

Vv, v, v3,1y) = /d:v/d:v’ Yy, (x) by, ()

62

thy,(7) 1, (2)

7|

Now insert

?ﬁl(x) ?ﬁg(xl) = Rnl,ll('r) lf,ml(@7¢) 50,01 Rng,lg('r/) l;7m2(6/7¢/) 50’,02

2 © Kk 2k
€ dre” 1l . L
|’T’ — ’T’/| - Z Z }/}ﬂm (@7 ¢) ok + 1 T];+1 }/k:,m (@ ) ¢)
k=0 m=—Fk

¢V4<x) wl/g ('CU/> - er4,l4<r> }/24,7%4(@7 ¢> 6(],04 Rng,lg <T/> }/}3,7%3 (@la Cb/) 50/703

Spin-sum over ¢’

E :50’,0250’,03 = 009,04

0./



We need to calculate

Vv, v, v3,1y) = /d:v/d:v’ Yy, (x) by, ()

62

thy,(7) 1, (2)

7|

Now insert

?ﬁl(x) ?ﬁg(xl) = Rnl,ll('r) lf,ml(@7¢) 50,01 Rng,lg('r,) l;7m2(6/7¢,) 50’,02

9 00 k 9 I
e 4dre r
= Y, (© = vy, (0,4
|’T’ — ’T’/| Z _Z k,m ( 7¢) 2]6 + 1 T};+1 k,m ( 7¢)

¢V4<x) wl/g ('CU/> - er4,l4<r> }/24,7%4(@7 ¢> 60,04 Rng,lg <T/> }/}3,7%3 (@la Cb/) 50/703

(©, ¢)-Integration




We need to calculate

2
vww%ww@:b/mjbfmumwyf> (@) ()

7|

Now insert

wiﬁl(w) ?ﬁg(x') = Rnl,ll(r) liml(@7¢) 0001 an,lz( ) ly, mg(@/ ¢) Og 09

9 o© k ) k

e dme” r
— }/}{: m (@7 ¢) = }/}{*m (@la ¢,)

k=0 m=—k

¢y4<x> wl/g (I,> — R”4J4<T> }/}4,m4(@7 Cb) 5(7:(74 Rng,lg <T/> Y}?,,mg (@/7 gb,) 50’,03

| Am .
2 _|_1 /dQ Y21,m1<@7¢) Yk,m<@7gb> n4,7n4(@7¢>
Vo [ ¥5,,(0.8) ¥i,(©06) Vi (©)6)

(©, ¢)-Integration

(©', ¢')-Integration




We need to calculate

Vv, v, v3,1y) = /d:c/d:c’ vy () Uy, (2)

62

thy,(7) 1, (2)

7|

Now insert

w’il(x) ?ﬂ;(x/) - Rnlﬁll(r) l?m1(@’¢) 50701 an,lz(rl) l;k,mg(@/7¢/) 50’,02

2 © kK 2 Lk

e de r
— Y @ < Y* @l /
= Y Y 00 T Y, 006)

k=0 m=—k

¢y4<'17> ¢y3 (33'/) - Rn4,l4<7n> }/14,77),4<@7 ¢> 50’,0’4 Rng,lg <T/> }/13,777,3 (617 ¢,> 50’,0’3

(7, 7")-Integration

Tk

o0 (0.9)
R¥(n1ly, noly, nsls, nyly) = €2 /0 dr r? /0 dr' v Ry, 1,(1) Ry, (1) rk—il Ry (1) Rog iy (1)
>

Note: R* does not involve any m and has the dimension of energy

For scattering within - say - the 3d-shell all (n;,[;) are equal: n; =3, [; =2



Gaunt coefficients

In calculating the Coulomb matrix elements we had obtained integrals over three spherical harmonics

\/ 2]€-|-1 /dQ l1 m1 ) 5//<:,m<@7¢> Y}4>m4<@7¢>

These are called Gaunt coefficients

We now use the fact that Y;,,(0, ¢) = P,,(0) ™ with P;,,(0) real (e.g.: Landau-Lifshitz):

2m
/dQ I, m1(@ gb) Ykmb<@7¢> Yl4;m4<@>§/)> X / gilmatm=m) ¢ dp =2 5m,m1—m4
0

This is real and the remaining factor of [ dO P ,,,(©) P

k.m

(©) Py, m,(©) is real as well

— all Gaunt coefficients are real



Reminder:

2m
/dQ lh, m1(@ ¢) Ykm(@7¢> Yimy(0,9) / gi(matm=mi) ¢d¢:27r O, my—my
0

We introduce a shorthand notation for Gaunt coefficients

\/ Qk / df2 Y, ll ml ) }/}{:,ml—rn,4<@7 ¢) 5/14,77),,1<@, ¢) — Ck(ll, ma, 147 m4)
[ A . |
- 2k + 1 / i Yél’ml (@7 Cb) Yvk’m(@’ Cb) }/14,77),,1<@, Qb) - 5m,m1—m4 Ck(lla o 147 m4>

The factor from the (©’, ¢') integration was

[ 4w
2]€ / dQ/ l; m2 @/7 ¢/) }/}{*rn<@/7 ¢/> }/l&m?)(@/’ ¢/>
[ A p / / Y
- 0% + /dQ Y}s mg @ Qb) )/km(@ 7¢> Y22>m2(@ 7¢)

- m ,,M3—M9 (l37 ms; l27 m2)




Collecting everything:

2
Vi) = [ do [ e (@) i) 5 o0 0, 0)

=]

00 k
— 01 o 02 o3 E E 57)7 M —1y (lla my, l47 m4) 5m ,M3—Mma (l37 s, 127 m2>

k=0 m=—
RF(nyly, nala, nals, naly)
o0
B Z k . k .
- 50‘1,04 50’2,0’3 5m1—|—m2,m3+m4 c (lh ey, l47 m4) & (l37 s, 127 m2>
k=0

R¥(nly, nola, nsls, nyly)

Ck(llp ml; 147 m4) — \/ Qk /dQ ll m1 ) Yk,ml—m4<@7 ¢) }/24:777/4(@7 ¢)

k
r

Rk(nlll, nglg, nglg, n4l4) = / dr r / d?“/ 2 Rm L\r ) Rn2712(7”’) Tk—il RTZ4>Z4(T> Rn37l3<7”/>

>

with
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Collecting everything:

2
Vi) = [ do [ e v @) v ) o0 0,0)

=]

00 k
— 01 o4 02 03 E E 57)7 S —My (lla my, l47 m4) 57)7 ,1N3—1M9 <137 13, l27 m2>

k=0 m=—
RE(nyly, nala, nals, naly)
0
_ k . k , k
= 50—1,04 50—2,03 E 5m1+m2,m3+m4 c (11,m1,l4,m4) & (53,m3,l2;m2) R (77»111;77/212,”313,714
k=0

with

Ck(llv my; 147 m4) - \/ 2]€ /dQ l1 m1 ) Yk,ml—m4<@a ¢) }/245777/4(@7 ¢)

00 00 k
Rk<n1l1,n2l2,nglg,n4l4> — ¢’ /0 dr r? 0 dr' r”? Ry 1, (1) Ry, (1) :—< Ry, (1) Ry i(17)



Conditions on nonvanishing Gaunt coefficients |: Triangular condition

The Wigner-Eckart theorem tells us that Gaunt coefficients are proportional to Clebsch-Gordan coefficients:

| 4w
2k + 1 /dQ lekyml (@7 ¢) Yk‘,m<®7 ¢) }/ld,m4<@7 QS) X <l1,m1\/€,m, l4,’lﬂ4>

The three angular momenta in a Clebsch-Gordan coefficient have to obey the triangular condition: [y < o+ 13

It follows that ...

A .
I: \/; /dQ Y217m1<@;§b> }/k:,m<®7¢> }/}4,/rrz4<@,¢>

.. is different from zero only if & < [, + 4

For Coulomb scattering in a d-shell this means &k < 4, in a p-shell £ < 2



Conditions on nonvanishing Gaunt coefficients Il: Parity

A1 .
- \/; [ 492 %:,,(0.0) Y,.,(0.6) Yiin©.0

The parity of Y}, is (—1)! (e.g.: Landau-Lifshitz)

For I # 0 the integrand must have even parity
It follows that [; + k& + [, must be even

For Coulomb scattering within an atomic shell we have [; = [, — k& must be even



For Coulomb scattering in a d-shell our final result is:

E k . k :
V<V17 Va, V3, V4) — 501,04 502,03 5m1+m2,mg+m4 C (lla mri, l47 m4> C <l57 ms, 12; mQ)
ke{0,2,4}

RF(nqly, nala, ngls, naly)

e The radial wave function R35(r) enters only via the three integrals R', R? and R*
e These may be viewed as ‘Hubbard-U for k-pole interaction’
e In many applications they are computed from Hartree-Fock wave functions for free atoms/ions

e The nonvanishing c’“(ll, my; Ly, my) are few in number and tabulated in textbooks



The textbook procedure to deal with this is as follows:

e Find all degenerate states |v) of d”

e Set up the secular determinant (u|H:|v) - Hy is the Coulomb interaction
e Diagonalize it to obtain the 15 order energies and wave functions

e These are the energies and wave functions of the multiplets



Basis states and Fermi statistics

We define the basis states for d” ( Reminder: v; = (n;, l;, m;, 0;) )

v, v 1) = 021022 ...l 10)

For a 3d-shell: all n; = 3, all [; = 2, only m; and o; vary
Ordering convention (absolutely necessary!)

mp <mg <mg<---
If two m are equal the corresponding ¢ must be 1 and |

Then we order them as

] t
e C39m) C3omt -+ - 10)

Every state with n electrons in the d-shell is included exactly once in this basis



We consider the matrix element

<,LL1, o . .. ,LLn‘ V()\l, )\2, )\3, )\4) 6116126)\36)\4 ’Vl, V... Vn>

= (Olc,, ---c,, VA1, A2, Az, Ay) c&lcTAQcABCM ¢ el ooocl o)

M1 vyTro T ln

For this to be nonzero, A3 and \; must appear amongst the 1; - then we have a product like

i ot ! ! F10y = (—1)mstm of o ! ’f f
CrsCry CoCly - Crg - Cyy -2 € [0) = (1) ChCly -+ CryCry -+ Cr,Cr,y -+ €1, [0)

Doing the same with c&lcg2 we obtain the total matrix element
(_1>n1+n2+n3+n4 V<)\17 )\27 )\37 )\4)

The Fermi sign (—1)"7"277374 must be computed by keeping track of all interchanges of Fermion operators

This is absolutely necessary to obtain correct results!



Solution of the Coulomb problem by exact diagonalization

Number of basis states with n electrons
10!

(10 — n)! n!

~ 100...500

Ne =

These can be coded as integers

459=0111001011
0111001011

T
m=-2 -1 0 1 2

0011111010 25C

<250‘H1‘459> = (_1>r11+n2+n3+n4 501’04 502’03 Z 5m1+m2,m3+m,1 Ck‘(lla my, l47 m4> Ck<l37 s, l27 m2) Rk
ke{0,2,4}



Comparison to experiment for Ni**

3p°3d° *F | 4 0.0
3 1 360.7
2 2 269.6
3p°3d° 'D | 2| 14036
3p°3d° 3> | 2| 16666
1 16 977.8
0| 17 2%.7
3;)530(8 5 4 23 108.7
3p°3d® s |ip| B2spn

— Relative error < 10% (except for 'S)

ESL n Term Ecap
0.0000 1 3 21 3F 0.0000
18420 0 2 5 'D 1.739
19200 1 1 9 3P 20829
27380 0 4 9 G 2.8649
132440 0 0 1 1S 6.5129



Remember that we neglected processes like these:

- 3
g WWW\U\W

m=—2 m=-1 m=0 m=1 m=2 m=—2 m=-1 m=0 m=1 m=

VRIS 4
s 1) 1)



Comparison to experiment for Ni**

3p°3d° *F | 4 0.0
3 1 360.7
2 2 269.6
3p°3d° 'D | 2| 14036
3p°3d° 3> | 2| 16666
1 16 977.8
0| 17 2%.7
3;)530(8 5 4 23 108.7
3p°3d® s |ip| B2spn

— Relative error < 10% (except for 'S)

ESL n Term Ecap
0.0000 1 3 21 3F 0.0000
18420 0 2 5 'D 1.739
19200 1 1 9 3P 20829
27380 0 4 9 G 2.8649
132440 0 0 1 1S 6.5129



We had

V17V27I/37V4

An Identity

/dx/dx w,/l

/daz/daz vk (@)

V(V27 Vi, Vy, V3>

V2

_ /da:/da:’ ¥ (') 07, () Vi,

Vl



Diagonal matrix elments of the Coulomb interaction

We want to calculate the diagonal matrix elements of the Coulomb Hamiltonian
1
H, = 5 Z V(vi, v, v, 1) CZZ_ cij Cy, Cy,
0.k

In diagonal terms the product cii clj ¢y, €, must not change the occupation numbers - therefore:

V1 V9 T TV V1 -V 9 1

1
Hi ging = 5 Z ( Vv, va, vy, 1) el el e e +V(z/1,y2,1/2,y1) ol e ¢

<9

+ V(v v, 11, 10) c el e e + V(va, 11, 19, 11) e el e e )+

v v T v T2

- Z (V(v,ve,v0,01) = V(v1, 00, 01,12) ) My My + - -

1<y
>, <1, Means that each pair (11, 15) is counted only once

e We must have 1| # 15 - otherwise ¢! ¢! = 0!

S



We consider V (v, vy, 15, 1) — V (1, /9, 11, 15) whereby v = (n, [, m, o) and recall

%)
E k . k . k

V(Vla Vo, V3, ) — 501, 502,03 5m1+m2,m3—|— C (lla mry, ) C (137 ms, l27 m2) R (nllla n2l27 n3137
k=0

This gives

V(v va,10,1)) = c(Lima; Iy, ma) ¢ (lama; Iy, ma) RF(naly, naly, naly, nily)

M 1M

V (v, o, V1, 15) = 6504 F(limy; Iy, ma) (1imy; o, mo) RF(nily, naly, nily, maly)

il

0



We consider V (v, vy, 15, 1) — V (1, /9, 11, 15) whereby v = (n, [, m, o) and recall

V (v, 19,03, 71) = 05y 0, Oy f: Sy sy € (L, s ) (I3, m3; Iy, ma) R¥(nily, mala, nals, n4l1)
k=0
This gives
Vv, v, 9, 11) = i a"(lymy; lo, mo) R¥(nily, nola, naly, mily)
k=0
V(vi, v, v1,18) = 64,0, i b* (lymy; I, a) RF(nily, mala, nyly, nolo)

il
=)



We consider V (v, vy, 15, 1) — V (1, /9, 11, 15) whereby v = (n, [, m, o) and recall

V (v, 19,03, 71) = 05y 0, Oy f: Sy sy € (L, s ) (I3, m3; Iy, ma) R¥(nily, mala, nals, n4l1)
k=0
This gives
Vv, v, 9, 11) = i a"(lymy; lo, mo) F¥(nily, naly)
k=0
V (v, 09,01, 18) = Goy.0 i b* (1ymy; Iy, mo) G*(n1ly, naly)

il
=)



We consider V (v, vy, 15, 1) — V (1, /9, 11, 15) whereby v = (n, [, m, o) and recall

V(Vla Vo, V3, ) — 501, 502,03 Z 5'm,,1+m2,m3+ Ck(lla mry, ) Ck(l37 ms, l27 m?) Rk(nllh n2l27 n3137 )
k=0
This gives
V(vi,ve,19,11) = Z a*(lymy; Iy, mo) F¥(nyly, mals)
k=0
V(vi,va,v1,12) = 00y 0, Z b (lym; Ly, mo) G*(naly, nal)
k=0
.. and obtain
V(vi,ve, 10,11) — V(v 100,01, 10) = Z( a®(lymy; lo, ma) F¥(nyly, naly)
!

0y, 09 B (lymy; Lo, M) GF(nyly, moly) )



F* and G* are called Slater-Condon parameters

00 00 k
Fk<n1Z1, n2l2> = R (nlll, nglg, nglg, n1l1 62 / d?“ 7“2 / / 7,/2 R2 (7“) T< R2 (7’/)
0 0

ni,l k+1 n2,la
rs
00 00 Tk
k 2 2 / 2 < /
G"(nyly, msoly) = RF (n1ly, nola, nily,nols) =€ / dr r / "% Per(T) T Pez (1)
0 0 >

pex(’l“> = Rnl,h(T) anJz(ﬂ

F* is a Coulomb-like integral, G* and exchange-like integral

For (ny,1;) = (ns,[3) (scattering within a shell) we have F'* = G*



The diagonal part of the Hamiltonian therefore is

Hdiag - Z (V<V17V27V27V1> - V<V17V27V17V2>) Ty Ny,

1<y
k k k k
= Z (Z a’(lymy, la,me) F" — 65, .0, Z b (Limy, la, mse) G ) Ty Moy
1 <19 k k
To calculate the diagonal matrix element of this for a state like |U) = cllcl2 .cl, |0) we have to sum this

over all occupied pairs

(V| Hi|W) =) (S‘ a* (Limi, iymy) F¥ =6, 0y Y W (limi, 1, m)) Gk> M, M,

1<J k

This will be used later on....



We consider again a partially filled shell: all n; = n and all [; = [, for each k only one F* = G*

— we only sum over m1, Mo, o1 and o

1
Hdiag — § Z Z a}l{:(mth) Fk - 501,02 Z bk(mla m2> Fk Ny o1 Mmg,oo

(m1,01)#(meo,09) ke{0,2,4} ke{0,2,4}



We consider again a partially filled shell: all n; = n and all [; = [, for each k only one F* = G*

— we only sum over m1, Mo, o1 and o

Hdz’ag — a (m17 m2) F T 50’1,02 b (mlme) F n’ml,(fl nﬂlg,ag

(m1,01)#(ma,09) ke{0,2,4} ke{0,2,4}

Ve Ve

N | —

g

1
- A ( Uml,mg T 501,02 Jml,mg ) nml,al nmg,ag
2
(m1,01)#(mg,02)
e Recall that (my,01) # (ma, 032) (otherwise ¢f, ¢, = 0)

e In the first term we may have m; = my but then 09 = —0y

e In the second term o; = oy therefore m; # myo

1
Hgiag = E : Unn,m Mo nm,¢+§ E : Unnymy E : Mmy,0Mmg,0" — Iy, ma E : Ny oMmg,o |
m 0‘0'/ g

m17#ma



Recall:

1
Hl,diag - E : Um,m N AMm, | + 5 E : Um1,m2 E : Ny, oMmg,0! — Jm1,m2 E : Nmy,oMmg,o | 5
m 0'0'/ g

m17#ma

Introduce 1, = Nyt + Ny and 257, = N+ — Ny |, then

E Nmy,o0 Mmg,o’ = Mimy Mimg
o'

Ty, T
_ z z m17vm9

z : nmba nm270' _ QSml Sm2 + 9
o



Recall:

1
Hl,diag — E Um,m N A Tm, |, + 5 E Uml,mg § Nmy,0Tmy 0! — Jml,mg E Ny, 0Mmo,o )
m o 0'/ g

m17#ma

Introduce 1, = Nyt + My and 257, = N+ — Ny |, then

E Nmy,o Mg of = Mimy Mimg
0,0’

Ty, T
_ z z m17vm9

z : nmlva nm270 _ QSml Sm2 + 9
o



Recall

1
Hl,diag - E Um,m N A Tm, |, + 5 E Uml,mg E Nmy,0Mme,o! — Jml,mg E Nmy,0Mme.o )
m o o'/ o

m17#ma

Introduce 1, = Nyt + My and 257, = Ny 4 — Ny |, then

E nml,a nmz,al - nml nmg
0,0’

My M
_ z z m1tma

g Nmy,o Mmg,oc = QSml Sm2 + 9
o



Recall

Hl,diag E Umm N A Tm, |, "|’ E Uml,mg E Nmy,0Mme,o! — Jml,mg E Ny, 0Mmo,o
/ o

ml #ma

Introduce 1, = Nyt + Ny and 257, = N+ — Ny |, then

E Nmy,o Mg’ = Ty Ty

Ny Mom
D Mo Mmpe = 285, S5, + =
o
so that

1 1 P
Hdiag — Z Um,m Nt M, |, + 5 Z ( (Uml,mg - 5 Jml,mg) Ny My — Jml mo Smls )

m1#£mo



All in all

1 1
Hdiag — Um,m N Mom, | =+ 5 (Um,,l,mg — 5 J'm,,l,'m,,2> Ny Mimy — 2Jml,mg Smlsm2

m my7#ms

Unpmy = Y, a'(my,mg) F = Y~ (I, ma; 1y, ma) (g, mo; by, my) F*
k €{0,2,4} k €{0,2,4}

Jml,mQ - Z bk<m17 m2> Fk — Z Ck(h) mi; l27m2)2 Fk
k €{0,2,4} k €{0,2,4}

e This is the sum of a Hubbard-like term for each m, and both, a density-density interaction and a
ferromagnetic Ising-like "Hunds rule exchange’, between electrons in different orbitals

e An additional approximation is to replace U,,, ,, and J,,, ,,, by their average values

e A 'Coulomb Hamiltonian’ of this type can often be found in the literature

e It has to be kept in mind that this is not the full Coulomb Hamiltonian but the sum of diagonal elements



All in all

1

1
Hdiag — Um,,,'m,, N Mom, | =+ é ( (Uml,mg — 5 J’rm,mg) Ny My — 2Jm1,m2 Sml Sm2

m mi#ms
e By adding a selected class of off-diagonal elements one can ‘complete the Hund's rule exchange'

to obtain the fully spin-rotation invariant Hamiltonian

. 1

1
Hl — § Um,m nm,T nm,i + 5 E ( (Umlmg - 5 memg) nmlnmg - 21]771/1,771/2 Sml ’ Smg
m

m1#msa

e However this still contains only a subset of all Coulomb matrix elements
Only the full Coulomb Hamiltonian derived above is really the correct one which gives agreement

with experiment



Multiplets of p? - calculated by the diagonal sum-rule

e One can derive analytical expressions for the energies of all multiplets using the so-called diagonal sum-rule

e This is explained in my notes - for example the multiplets of p* are

5

EPP] = F'— — F?
215
E['D] = F’+ — F*
D] + o5
10
E['S] = F'+ — F*
5] + o5

This allows for a simple cross-check:

T = =

E('S)— E('D) 3
E('D)— E(3P) 2

The values of F” and F? have dropped out in 7!

This should be obeyed by all atoms/ions with p” or - by particle-hole symmetry - with p* configuration!



Multiplet energies can be obtained from databases e.g. at NIST

Example: Multiplets of S**

E('S) - E('D)
/]”:
ey e
25%2p° Pl o 0.000 Si Pr 5%
1 —— 3P [ 0.0000 0.0000 0.0000
2 ;
e ID|0.7809 1.1013 1.4038
25%2p? 'D | 2| =23 15 11.9087 2.6750 3.3675

2522;]2 15 0 43 185, 74 r | 1.4442 1.4289 1.3988




Summary so far

The Coulomb interaction in a partially filled 3d /4f-shells is particularly strong

The Coulomb interaction in a free atom /ion leads to the formation of multiplets

The matrix elements of the Coulomb interaction can be expressed in terms of Gaunt oefficients
and Slater-Condon parameters

Reasonable agreement with experiment can be obtained

MUItlpIet E(n) =ney +A n (n_l)
splitting 2

\ =— /
\ /
A\ —_—

-~ /
—
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f\ p
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d-shell occupation

Energy

9
d

\
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We considered an atom/ion in vacuum but in solid state physics we are interested in an atom/ion in a solid

Will the results for the free atom retain any significance in this case? - Probably yes:

osf

Vshell

VWigner—Seil‘oz3

0z

0

04

Ly

of

T(\\% 3d Tl
4f ct In

MWLU Ga

00

st d'f!

[ oy

‘Nuclear charge’

(&leje
ool

W|gner Seitz

There are two mechanisms by which the environment can affect the electron states of the embedded ion:

Crystalline Electric field and Charge Transfer




Crystalline Electric Field

e A transition metal ion in a crystal is subject to the electrostatic potential V¢ pr of the surrounding ions

e This is called the Crystalline Electric Field (CEF)

o

T
o 0O
O

O

»

e Vogr is not spherically symmetric = the symmetry is lowered = degeneracies are lifted

e We represent the ions surrounding the TM ion - called ligands - as point charges



The Crystalline Electric Field

e We represent the ligands as n point charges of strength Z,e at the positions R,

e Using again the multipole expansion of the Coulomb potential we find the electrostatic potential

n

1
Vepr(r) = — E TR 7 e*
i=1 '



The Crystalline Electric Field

e We represent the ligands as n point charges of strength Z,e at the positions R,

e Using again the multipole expansion of the Coulomb potential we find the electrostatic potential

n 1
VCEF(T) = _Z m Z; 62

7\

OO k k

4
— _Sj y: y: Yk*m 2]{11 RZ+1 Yk,m(@a(b) Zi 62
=1 k=0 m=—k
che 00 k
— Rav Z Z Yik,m <

k=0 m=-k

g 4dm
Y,
) 2k+ 1 k,m(@a(b)a

av

n
A7

Zi Rav k+1 .
2%k L1 21 7 (R, ) Yy (O5, 0:).

n—
L—

Yem —

e R, and Z,,: average distance and charge of the ligands

e The geometry of the ligands is encoded in the dimensionless parameters ;. ,,



The Crystalline Electric Field

e The corresponding Hamiltonian in second quantization then is

Hepr = E Vepr(vi, v;) CLCV].,
i,J

Verr(v i) = / 4z %, (2) Verr(r) ,,(z)

v, = (ni7 l’h mi, O-Z')

¢n,’,li,m,’,a¢ (.CU) - an’,lz‘ (T) Yzi,m,’((aa ¢) 50’,0'1'



We need the matrix element

Verr(v,m) = / dz %, (2) Verr(r) b, (¢)

wﬁl(ﬂf) — Rm,ll(T) lf,ml(Gvgb) 50',0’1

Z €2 - b r
Verrlr) = ~ 225 57 3 i (R
av ]C: av

0 m=—k

wl/g('r) = Ry 1, (1) Yipmy(0,0) do0,

'




We need the matrix element

Verr(vi,1n) = /de Yy, ()




We need the matrix element

Verr(v, ) = / dz %, (2) Verr(r) b, (¢)

Veer(vi, 1n) =




We need the matrix element

Verr(v, ) = / dz %, (2) Verr(r) b, (¢)

Uy, (@) = Ry ,(7) nm(©:90)  logy
T N < r o\ Am
Voer(r) = — }Cg;v kz% mz;k%m Rav) 1 Yim (©,9)
Uy, (1) = Ry 1,(7) Yipmy(©,0)  do,
ok
Vepr(v, 1) = Z Z Ve e Oy (lumal,mo) 65,0
k=0 m=—k

Doing the m-sum we find

00
k .
VC'EF(V17V2) — 501,02 § Vk,mi—me Ik C (l17m17l27m2)
k=0



We specialize to a d-shell:

K .
Vepr(vi,12) = 05,0 E Yemi—my Lk € (2,m0;2,m5)
ke{0,2,4}

ki
Recall that 7, oc [ 224 ] - since 24 < 1 we can terminate this for the lowest & > 0 where v ,, # 0
Ralf RG/U fy )

k+1
Yem = \/ 2k+1 Z av ( i ) Ykm(®m¢i>

For an ideal octahedron of identical charges (R; = R and Z; = Z) one finds 7, = 0 for 0 < k < 4 and

Now consider

35
8

/@/ Yoo = % (see my notes)
NEE
8




Using the tabulated values of the ¢*(2,m;:2,my) (see notes) we thus find

(1 0005\

L] 0-10 000
VCEF(ml,mg):E 0O 0 6 0 O
00 0 —40

\5 000 1)



Using the tabulated values of the ¢*(2,m;:2,my) (see notes) we thus find

(10005

L]0 -to 00
VCEF(ml,mg):E 0O 0 6 0 0
00 0 —40

\5 00 0 1

Eigenvalues: Iy, —% 1y, —% 14




Using the tabulated values of the ¢*(2,m;:2,my) (see notes) we thus find

(1 00 0 5
;04000
VCEF(ml,mg):él 006 0 0
0 0 0 —4 0

\5 00 0 1

Eigenvalues: Iy, —% 1y, —% 1y, %5 14




Using the tabulated values of the ¢*(2,m;:2,my) (see notes) we thus find

(1 0005\

L] 0-10 000
VCEF(ml,mg):E 0O 0 6 0 O
00 0 —40

\5 000 1)

Eigenvalues: Iy, —% 1y, —% 1y, % 1

All in all: I, (2 times), —% I, (3 times)

Recall: .
Zav 2 0
Ik; = — Raj ‘/O d?“ T2R372<T) (}%iw> R;;jg(?")

e All information about the radial wave functions is condensed in a single parameter

o For negatively charged ligands (e.g. 0?7) I, > 0

e The difference between the eigenvalues is g I, - this is often called 10q — for the octahedron Dg = %



Eigenfunctions

21y

e The eigenfunctions for eigenvalue —=t = —4Dq are the real-valued spherical harmonics d,,, d,. and d,.

1 15 zy

dpyy = —= (Yo _9—Y50) =1/— —,

v =5 (Yo, 2 — Ya2) 2

1 15 yz

d,., = — (Yo_14+Y51)=1/— =,

y NG (Yo 1+ Ya1) I 2

1 15 xz

dp. = — (Yo_1 =Y 1) =1/— —,

7 (Yo 1 — Y1) 2

e The eigenfunctions for eigenvalue Iy

6Dq are the real-valued spherical harmonics d,2_ » and dj.2_ .-

1 [ 15 2% —y?
2 —y2 \/§ ( 2,—2 T 2,2) 167 r2
5 322 — 2
38 20 16m 12

® d, d;. and d,. are called the t,, orbitals, d,2_ 2 and d;,>_,» are the ¢, orbitals



Effect of the CEF on Multiplets

e We have now calculated the matrix elements Vopp(v;, ;) of the Crystalline Electric Field
Hopr =Y Vepr(vivj) c, Cy,
i,J
e For octahedral coordination this involves a single parameter 10Dq = E(e,) — E(ts,) which depends on
the radial wave function - this can again be determined by fit to experiment

e To find how the multiplets of the TM-ion are affected by the CEF we can simply include it into the exact
diagonalization program (mind the Fermi sign!)

AECER

WL

m=-2 m=-1 m=0 m=1 m=,

e The splitting of multiplets can also be calculated analytically using the Wigner-Eckart theorem



Eigenvalue spectrum for

Effect of the CEF on Multiplets

Ni?* and Co?" as 10Dgq increases

o7
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>
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2+ 4
0
10Dq [eV]

Energy [eV]

10

such plots are called Tanabe-Sugano-diagrams

10Dq [eV]




A colorful application: Transition metal ions in aqueous solution

TM ions immersed in water surround themselves by an octahedron of water molecules whereby all 6 dipole
moments point away from the ion

Such an object - TM (H50)¢ - is called a complex
This also creates an electric field with cubic symmetry which splits e, and ¢, levels
The multiplets are split according to the Tanabe-Sugano diagrams

Phonon assisted optical transitions between the CEF-split multiplets involve energy differences correspond-
ing to photons with wavelengths in the visible range give such solutions intense colors



A colorful application: Transition metal ions in aqueous solution

TM ions immersed in water surround themselves by an octahedron of water molecules whereby all 6 dipole
moments point away from the ion

Such an object - TM (H30); - is called a complex
This also creates an electric field with cubic symmetry which splits e, and ¢, levels
The multiplets are split according to the Tanabe-Sugano diagrams

Phonon assisted optical transitions between the CEF-split multiplets involve energy differences correspond-
ing to photons with wavelengths in the visible range give such solutions intense colors

Co Cr Ni Cu Mn

CEF-splitting observed with the bare eye!



The absorption spectra can be analyzed quantitatively using the Tanabe-Sugano diagrams e.g. Ni*" or d®

10 —————————r ————————r
Electronic Spectra of Ni(ll) Complexes
A i 8| i
® R i 5
S Ni(OH,) )" e
= (1 fi NOHE A
4 < <
S 6 I _
z =
£y o 1 g
5 ; M [Ni(NH,) J* 5
> Tm ‘ E
< 1 3 1
4 - :

10 000 15000 20000 25000 30000

Lem I . 2

10Dq [eV]



Charge transfer

e Due to the overlap of the TM 3d wave functions and the atomic orbitals on the ligands there

may be charge transfer, i.e. electrons may tunnel from a ligand orbital into a TM 3d orbital

e This modifies the multiplets of the TM-ion by a mechanism called level repulsion



A toy model

Consider a single ‘ligand-orbital’ |1);) (energy €;) coupled
to a single ‘d orbital’ |1)5) (energy €3):

H = 6161Cl+620562—t(0162—|—0561)

The hybridization matrix element is —t = (1| H |1))

We make the ansatz |¢)) = u|¢)) + v]1)y) - this leads to

€1 —1 €1 + €9
= = b, =
( —1 €2 ) = 2

Let € > €9 - then ...

.. with some A > 0 = E,=¢+A

2
€1 — €9
+ t?
\/( 2 )*




A toy model

Consider a single ‘ligand-orbital’ |1);) (energy €;) coupled
to a single ‘d orbital’ |1)5) (energy €3):

H = ech{cﬁ—ezc;%—t(cJ{CQ—chcl)

The hybridization matrix element is —t = (1| H |1))

We make the ansatz |¢)) = u|¢)) + v]1)y) - this leads to

€1 —1 €1 + €9
= = Fi =
( —1 €2 ) = 2

Let € > €9 - then ...

.. with some A > 0 = Ei=6+A

2
€1 — €9
+ t2.
\/( 2 )*




d-level splitting by level repulsion

Y\/X

d%—f
@,

o

e All orbitals other than s-like have ‘lobes’ which point in different directions
e The matrix element — = (¢1|H |1)y) will be larger/smaller if the lobe points towards the ligand

e Different d-orbitals get ‘repelled’ differently depending on the position of ligands



Toy model 2 real material

We recall the toy model
H=¢ c]; c, + € Cg Co— (t CJ{ Co +H.c.> :

More realistic version

H = Z €y; C:Licl/i_‘_z G/I’j lel,Uj_Z (tl/,’,/l,j CJLZ, l,Uj —|—HC)
! J

0]
. c;ﬂl_ with v; = (my, 0;), m; € {—2,...,2}, are creation operators for d-electrons
o le with 1; = (R, 85, 05), B; € {s, pz, py, P} are creation operators for electrons in ligand orbitals
e The orbital energies of d-orbitals/ligand orbitals are ¢y, and €,
e The hybridization integrals 7, , may be expressed in terms of relatively few parameters by

using the Slater-Koster tables (see notes for an example)



Charge transfer

The Hamiltonian including hybridization:

H = Heoy + Hopr + Z €y, clicyi + Z €, lljlﬂj— Z (fu,-,,ﬂj cll_ lﬂj + H.c.)
U J

0,

This is easily implemented in the exact diagonalization program (mind the Fermi sign!)

R PN

m=-2 m=-1 m=0 m=1 m=2



Charge transfer

The Hamiltonian including hybridization:

H = Hcoy + Hopr + Z €y, CLCVZ, + Z €, l}; luj Z (twlj cll_ lﬂj + H.c.)
U J

0,

This is easily implemented in the exact diagonalization program (mind the Fermi sign!)

wwwwwwwwww

m=—2 m=-1 m=0 m=1 m=2



Charge transfer

The Hamiltonian including hybridization:

H = Hcoy + Hopr + Z €y, CLCVZ, + Z €, l}; luj Z (twlj cll_ lﬂj + H.c.)
U J

0,

This is easily implemented in the exact diagonalization program (mind the Fermi sign!)

‘/—\
wwwwwwwwww

m=—2 m=-1 m=0 m=1 m=2

wwwwwwwwww

m=—2 m=-1 m=0 m=1 m=2



Charge transfer

e For an ideal octahedron of ligands with s- or p-orbitals this procedure gives the same splitting as the CEF

e The 5-fold degenerate d-level is again split into the three ty, levels and the two e -levels

e See my notes for details

e This is no coincidence but can be understood in terms of irreducible representations of the cubic group -
see the book by Griffiths cited in my notes

e In general the effects of CEF and charge transfer have to be added



An important application of multiplet theory: cluster simulation of experimental spectra

e Various spectroscopies on transition metal compounds can be simulated by calculating these spectra for a
cluster which consists of a TM ion and its nearest neighbors:

Examples are

e X-ray photoemission spectra (XPS)
e X-ray absorption spectra (XAS)
e Core-level photoemission spectra (XPS)

e Resonant inelastic X-ray scattering (RIXS)



Cluster calculation of XPS spectra - results for 3d transition metal compounds with rocksalt structure

T T T T T T T T T LI I
T T T T T T T I
NiO Co0 XPS
MnO
XPS I
(Kowalczyk et al) "w‘ EXPT Py
SAT. E hv =1253.6 eV "“‘_.r.". .-'_
= '-"h ’ ":‘
z : :
g : ) 1.'-‘«""‘"\"&':: e ““',.
E — o ?‘_'_ T
= n [}
S ¢ z Cl THEORY
n ] = 10-
al { » Z | Mn0Y- CLUSTER
Z C
§ = | expt 5
2 2
o 4Ty E
o
CI THEORY 'é
an o
e o nodel g sfle Ty
E| T
7 - .
TTIF’*T‘J“J _!__,»/nl'fT’q[ _____ |_ o) A ._‘.‘....mthl.‘.xk‘.lu..l‘l.‘.. ..L..“n fill
1 | I | 1 1 1 1 i | PP SR R I | | 1 | 1 ! | !
% 12 10 8 [ 4 2 0 15 10 5 0 16 12 8 4
BINDING ENERGY (eV) Binding energy [eV) BINDING ENERGY (eV)

NiO: A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984)
CoO: J. van Elp et al., Phys. Rev. B 44, 6090 (1991)
MnO: A. Fujimori et al., Phys. Rev. B 42, 7580 (1990)



Experimental XPS spectra versus TM 3d-like DOS from LDA calculations
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What determines the spectrum is not the single-particle band structure but the multiplets of the TM ion!




Intensity {arb, units)

Cluster calculation of XAS
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Taken from A. E.

Core-level photoemission: Experiment vs Cluster spectra
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Multiband Hubbard models

e All in all, the most complete Hamiltonian to describe transition metal compounds would be like this

1 )
H =3 > Vlnvivm) elcl e, e+ ) Vopr(vivy) e, + ) Vsoclvivy) die,

VN i,J 0,J

_ ] T )
Z (tw,uj Cy, lujJrH.c.) +Z € lujlu,ﬂLZ €y C.Cy

] J
This comprises

® The Coulomb interaction in the TM d/f-shell ® ‘r\“ TM-ion
® The Crystalline electric field in the TM d/4-shell

® The spin-orbit coupling in the TM d/f-shell ‘ Ligand ‘

® The charge transfer between TM d/f-shell and ligands O ‘ O

e The orbital energies

This is probably an accurate description but the number of orbitals/unit cell often is prohibitively large....



Multiband Hubbard models

e The large number of orbitals/unit cell is a major problem - we need simplifications!

1 .
H = 5 Z V(Vi, Vjy Vk, Vl) C:Li CL]_ Cy,. Cy, + Z VCEF(%’, I/j) CL;CV]- + Z VS()(7<V,;, Vj> C]‘/jcyj

0,79,k i,J i,J

_Z (tw,uj cll_ lﬂj+H.c.) +Z € leluj+Z €y ClC,,

i,J J
Frequently used simplifications are
® \We can ‘project out’ ligands and derive a Hamiltonian with only d/ f-orbitals

e \We can use the limit of large CEF-splitting and omit high-energy d-levels

e We can use the simplified form of the Coulomb interaction



Projecting out the ligands

e Consider a toy model with to ‘d-levels’ and one ‘bridging orbital’

H = Alfl—t ( Al +1'd, + dbl + z*d2> :

EA
e [ is invariant under the exchange 1 <> 2 |
A -
e Introduce symmetric and antisymmetric combinations /—:t/ ®
i Loty °
dy = — (dy+d d d
+ \/i ( 1 2) 1 2

= H = A= o (di+ i)

— One solution is d' |0) with energy 2 = 0 - for the remainder make the ansatz [¢)) = (A, d’ + Ajl1)|0):
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Now let A >t or L < 1 E )
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Eigenfunctions:
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Now let A >t

0

Eigenfunctions:
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= Effektive Hamiltonian for ‘low energy sector’
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Projecting out the ligands

= E A

S |

e When ligand orbitals are high in energy one may omit the ligands and instead introduce
‘effective d-d-hopping integrals’ which describe ‘excursions’ into the high-energy ligand orbitals
e This reduces the number of orbitals significantly

e The effective hopping integrals may be deduced by a fit to the band structure - but using

only bands with d-character!



Limit of strong CEF

e Let us consider Cr?* - this has d* - in octahedral coordination

e Considering only the CEF and assume large 10Dgq:

10Dq

e For large 10Dq we may consider only the ¢,, orbitals — reduction in ther number of orbitals
e To deal with the Coulomb scattering within the d-shell it is advantageous to compute the Coulomb matrix

elements with d,,(©, ¢), . .. instead of the Y5,,(0, ¢) - see the textbook by Griffiths (referenced in notes)

V(or, o, v, 1) = / da / a2’ 7, () 95, (2') Vi, @) (@) 6, ()



Simplified Coulomb interaction

e Lastly one can use the simplified Coulomb interaction ...

~ 1 1
Hl - ZUnm,Tnm,i—Fé Z ((Ul—éj)nmlnm2_2J5m15m2)



Summary

The Coulomb interaction in partly filled shells of transition metals is particularly strong - this leads to
numerous interesting phenomena

The Coulomb interaction can be described by multiplet theory - this is an extremely successful theory
which describes many experimental results quantitatively

The Coulomb Hamiltonian derived in multiplet theory therefore is a natural starting point for building
models for transition metal compounds - i.e. multiband Hubbard models

Unfortunately the resulting Hamiltonian is quite complex, but simplifications are possible



