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Ab-initio calculations of many-electron systems
KS-DFT versus traditional QC wavefunction theories

HΨ = EΨ

Kohn-Sham theory using approximate xc

|Ψ⟩ ≈ (1 + C) |Ψ0⟩

Approximate wavefunction
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Why CC theory?



Hierarchical methods and Jacob‘s ladder
Systematic improvability
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Wavefunction methods: HF

Approximate wavefunctions
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The Hartree-Fock approximation
|Ψ⟩ ≈ |Φ0⟩

Single Slater determinant Energy expectation value

One-body operators

Two-body operatorsOrbital optimization
Constraint minimization

Eigenvalue equation for effective one-body problem

HF approximation
• Correct antisymmetry of wavefunction 
• Cubic scaling of comp. complexity wrt. N 
• Self-interaction free and exact for 1 electron 
• By definition no electronic correlation



Approximate wavefunctions
Full CI (Exact NR)
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Wavefunction methods: Full CI



The exact wavefunction
CI expansion

The CI expansion Determining the CI vectors
Variational method leads to 

linear algebra problem to determine coefficients

Due to presence of at most two-body 
operators in H the above matrix becomes 

sparse

Number of SDs = M!
N!(M − N )!

M!
N!(M − N )! × M!

N!(M − N )!

However, Hamiltonian-Matrix is of size:

=> Compact approximations to CI vector are needed!



Approximate wavefunctions
Full CI (Exact NR)
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Wavefunction methods: CCSD



|Ψ⟩ = eT̂ |Ψ0⟩
F. Coester and H. Kümmel (1950s) 

Jiři Čížek (1966)

A compact approximation to the many-electron wave function

Stoll, Paulus, Sauer, Schwerdtfeger, 
Manby, Chan, Berkelbach, Schütz, Usvyat, Hirata, … 

Applications of CC theories to periodic systems:

Coupled Cluster Theory

Rodney J. Bartlett and Monika Musiał 
Rev. Mod. Phys. 79, 291 (2007)

Arponen, Bishop, Freeman, …
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Coupled Cluster Theory
A compact approximation to the many-electron wave function

Rodney J. Bartlett and Monika Musiał 
Rev. Mod. Phys. 79, 291 (2007)
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Coupled Cluster Theory
A compact approximation to the many-electron wave function

Recall algebra for creation and annihilation operators from second quantization 
for general states p and q



Coupled Cluster Theory
Energy: ⟨Ψ0|e−T̂HeT̂ |Ψ0⟩

Hausdorff expansion for H containing 2-electron operators yields

Ab initio Hamiltonian in second quantization is given by

CC theory employs a similarity transformed H



Coupled Cluster Theory

contains a string of operators

To compute                               we need to evaluate action of operators on 
bra- and ket-state. 

⟨Ψ0|e−T̂HeT̂ |Ψ0⟩

Example:

because and deexcites two electrons at most

⟨0 | Ĥ ̂T |0⟩ = ⟨0 | Ĥ ( ̂T1 + ̂T2 + 1
2

̂T1
2) |0⟩ = Ecorr.



Coupled Cluster Theory
Energy: ⟨Ψ0|e−T̂HeT̂ |Ψ0⟩

= tabij

= ⟨ij|ab⟩

EC = + + SinglesEC =

= EHF + Ecorr.



Coupled Cluster Theory
⟨Ψµ|e−T̂HeT̂ |Ψ0⟩ = 0

µ = 1 → tai

Amplitudes:

µ = 2 → tabij

...

T̂ = T̂1 + T̂2 + ...T̂ = T̂1 + T̂2 + ...Example: CCD Amplitudes ( )



Coupled Cluster Theory

= + + + +++ ...

...
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Amplitude Equations (     )tabijT̂2



The QC hierarchy
CCSD theory

• Exact to 3rd-order PT 
• ph-RPA, pp-RPA, hh-RPA 
• Exact for 2e systems

O(N6)

CCSD(T) theory

• “Chemical Accuracy” 
• Exact for 2e systems

O(N7)

T̂3

T̂ = T̂1 + T̂2 + T̂3
T̂ = T̂1 + T̂2

in perturbative manner

Rodney J. Bartlett and Monika Musiał 
Rev. Mod. Phys. 79, 291 (2007)

MP2 theory

• Exact to 2nd-order PT

|Ψ⟩ = eT̂ |Ψ0⟩

O(N5)

+...

T̂ = T̂2



Why use CCSD in solids?

High-density limit 
in UEG

Low-density limit 
in UEGAntisymmetry

Exact 2-electron Wavefunction

= + + + +++ ...

Amplitude Equations (     )tabijT̂2

Energy: ⟨Ψ0|e−T̂HeT̂ |Ψ0⟩ = EHF + EC

= tabij

= ⟨ij|ab⟩
EC = + + Singles



CC theory for excited states
• Charge-neutral excitation can be computed using the EOM approach

J. F. Stanton and R. J. Bartlett, The Journal of Chemical Physics 98, 7029 (1993) 

where 

• The following state-specific vector represents the excited state wrt •  
the CC wavefunction (here at the level of  CCSD)

• Rewriting the equation yields an „equation-of-motion“ 

• Extending this to Fock-space yields quasi-particle energies (EOM-IP/EA)



Challenges for CC calculations

• Scaling of computational complexity w.r.t. 
• #electrons  
• #virtual orbitals 
• #auxiliary basis functions

• Computer implementation of equations (hundreds of terms)



Quantum Chemistry methods

Accuracy

Precision

MP2
CCSD

Comp. parameters, e.g. #grid points, basis set …
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Convergence of cohesive energy of 
carbon diamond w.r.t. system size

Computational bottle necks in
periodic coupled cluster calculations

Convergence of energy (UEG) 
w.r.t. basis set

1/N

O(N6) O(n2M4)

Computational complexity of CCSD

1/M



Convergence of cohesive energy of 
carbon diamond w.r.t. system size

Computational bottle necks in
periodic coupled cluster calculations

Convergence of energy (UEG) 
w.r.t. basis set

1/N

• Scaling of computational complexity w.r.t. number of 
• virtual orbitals -> (OSVs, NOs, F12) 
• basis functions -> (Low rank approximations) 
• electrons -> (Local approximations, finite size corr.)

1/M



• Applications: Phase diagrams of solids



Phase diagrams of C and BN
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Low-density (Graphitic) vs. high-density (Diamond)

T. Gruber and A. Grüneis, PRB 98, 134108 (2018)    



Phase diagrams of C and BN
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• Applications: Molecules on surfaces



Water on h-BN

Y. S. Al-Hamdani, M. Rossi, D. Alfè, T. Tsatsoulis, B. Ramberger,
J. G. Brandenburg, A. Zen, G. Kresse, A. Grüneis, A. Tkatchenko and A. Michaelides,

JCP 147, 044710 (2017) 

• Good agreement between CC and DMC



Water on Graphene

J. G. Brandenburg, A. Zen, M. Fitzner, B. Ramberger, G. Kresse, T. Tsatsoulis, A. Grüneis, 
A. Michaelides, D. Alfè,  JPCL 10, 358 (2019) 



• Applications: Defects in solids



A. Gallo et. al. J. Chem. Phys. 154, 064106 (2021)

Excited states in F centers



Final Remarks

Acknowledgements

• Traditional QC methods such as MP2 and CC theory ...
• become more widely-used for materials science
• achieve high accuracy and can serve as useful benchmark methods

• Open challenges include
• overcoming the computational complexity bottle necks
• treatment of strong correlation in solids using CC-related techniques
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Thank 
you!


