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10.2 Lara Benfatto

1 Introduction

Almost 50 years after the seminal work by Berezinskii [1] and Kosterlitz and Thouless [2] the
Berezinskii-Kosterlitz-Thouless (BKT) transition remains one of the most fascinating examples
of topological phase transitions in condensed-matter system, and as such it has been acknowl-
edged by the 2016 Nobel Prize in Physics. Its universality class describes several phenom-
ena ranging from the quantum metal-insulator transition in one dimension to the Coulomb-gas
screening transition in 2D, and of course the metal-to-superfluid transition in 2D [3]. As such it
has been investigated in neutral superfluids, as, e.g., thin He films [4,5] and cold-atoms systems
made of bosons [6] or neutral fermions [7]. Nonetheless, despite the fact that in the original
paper by Kosterlitz and Thouless [2] the authors argued that the BKT transition should not be
observed in (quasi) two-dimensional (2D) superconductors, this is certainly the field where it
has been most widely discussed. As we will see in this Chapter, the conditions under which
BKT physics can be seen in quasi-2D superconductors are not always met. Nonetheless, in
the past and recent literature the BKT physics has been invoked to explain observations in a
wide class of systems: thin films of conventional [8–10] and unconventional [11–13] super-
conductors, but also to the 2D electron gas confined at the interface between two insulators in
artificial heterostructures [14–16], or in the top-most layer of ion-gated superconducting (SC)
systems [17]. Due to the breadth of literature on the subject, the references provided in the
present lecture cannot be at any extent exhaustive: the reader must be conscious that they just
reflect the personal choice of the author in providing few (over many) examples for each cate-
gory of problems that will be discussed.

The aim of this lecture is twofold. From one side, I will provide a general introduction to the
basic theoretical concepts behind the understanding of the BKT transition, and from the other
side I will summarize the efforts done over the years to understand how one can measure and
interpret experimental signatures of BKT physics in real materials, especially superconductors.

For the first part, I will start from the description of the BKT transition within the classical XY-
model, which describes Heisenberg interactions between two-component classical spins in a 2D
lattice. The physical transition behind this model is then the paramagnetic-ferromagnetic transi-
tion in 2D, and it allows one to understand easily the basic difference between “order” and “spin
rigidity” that is at the heart of the BKT physics. In addition, it allows one to easily visualize the
topological excitations as spin vortices that appear in 2D in addition to the more conventional
spin waves. As a second step, I will show the formal mapping between this problem and the
screening transition for the Coulomb gas, always in 2D. This analogy allows one to grasp an
intuition on the role of vortices to break the “quasi-long-range” order of the low-temperature
phase as an effect analogous to the screening of Coulomb interaction by charges that are free
to move. Finally, I will also mention the mapping into the sine-Gordon model, that describes
again a completely different physical problem, i.e., a quantum field in one dimension. Such a
mapping turns out to provide an alternative, elegant way to derive the renormalization-group
equations of the BKT transition via quantum-field theory techniques, as beautifully described
in the book by T. Giamarchi [18], that is also rather powerful to describe the role played by
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screening currents in a charged superfluid [19, 20].
For the second part, I will discuss to what extent the BKT transition can be observed in su-
perconductors, and what we can define as “2D superconductors” within the context of BKT
physics. I will then discuss in detail the benchmark experimental determination of the BKT
transition, i.e., the well-known BKT universal jump of the superfluid density [21], that has been
beautifully confirmed few years after the theoretical prediction by Nelson and Kosterlitz by ex-
periments in He films [5]. After a critical discussion of what exactly “universal jump” means
within the context of experiments in superconductors, as compared to the case of neutral su-
perfluids, I will review the results of the last ten years or so to identify this signature in real
systems. As we shall see, in most of the hypothetical quasi-2D superconductors where a BKT
jump could be expected it appears somehow hidden by inhomogeneity effects, that systemati-
cally smear it out, hindering its observation. Nonetheless, I will present few paradigmatic cases
where BKT physics seems to be supported by the experiments, once the “textbook” results
are properly analyzed by taking into account the role of inhomogeneity. In the last Section I
will also discuss two other celebrated examples of experimental observations of BKT physics
connected to vortex transport, i.e., the non-linear I-V characteristics below TBKT and the expo-
nential temperature dependence of the paraconductivity above TBKT [22]. Also in these cases
I will point out physical effects present in real materials that can overscreen a pure BKT phe-
nomenon, requiring a careful analysis of the experimental conditions under which BKT physics
can be disentangled from other phenomena.

2 The XY-model

The pioneering works of Berezinkii [1] and Kosterlitz and Thouless [2] in the late 70’s were
originally motivated by the ongoing discussion at the time on the possibility to observe some
sort of transition in 2D, that could be still consistent with the expectation of the Mermin-Wagner
theorem [23]. The Mermin-Wagner theorem states that a 2D system cannot break spontaneously
a continuous symmetry at finite temperature. The reason, as we shall see below via an explicit
computation, is that the thermal fluctuations of the Goldstone (massless) mode which emerges
when a continuous symmetry is broken completely spoil the order parameter of the transition
itself. At that time, the contribution of Berezinkii from one side, and Kosterlitz and Thouless
from the other, was to shown that a phase transition can still take place, but it must be identified
by starting from a more general definition of “quasi-ordered” state, that is no more characterized
by a finite order parameter, but rather by a finite “rigidity” of the state itself. Once established
that a phase transition can be identified on the basis of the presence (below TBKT) or the absence
(above TBKT) of rigidity, they showed that topological vortex-like excitations play a central role
in driving the transition. It must be noted that the concept of rigidity as manifestation of a
phase transition is not limited to the BKT case. Just to mention the most intuitive case, when
translational symmetry is broken to form a solid the system becomes indeed “rigid” (we can
walk on it!). The Goldstone modes of the transition in this case are the acoustic phonons,
whose energy scales with the gradient of the lattice deformation. As such, as the wavelength of
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the deformation goes to infinity, i.e., the momentum goes to zero, it cost nothing to create
the phononic distortion, i.e., the mode appears “massless”. This analogy will be useful to
understand the results we will derive in this Section.
To start the discussion on the basic concepts behind the BKT transition let us introduce theXY -
model, where these effects were originally discussed. The model describes the ferromagnetic
interactions between planar spins with fixed modulus (|Si| = 1), placed on a square lattice. Its
Hamiltonian reads

HXY = −J
∑
〈i,j〉

Si · Sj = −J
∑
〈ij〉

cos
(
θi−θj

)
, (1)

where the sum
∑
〈i,j〉 is restricted to nearest neighbors spins, J is a positive coupling constant

and θ represents the angle that each spin form with the x direction. For convenience of language,
and for the sake of the analogy with the role played by θ within the context of the superfluid
transition, we will refer to it as to a “phase” variable. From (1), it is straightforward to recognize
that the system shows two different symmetries

• q continuous and global symmetry U(1): ∀i : θi → θi+c

• q discrete and local symmetry Zm: θi → θi+2πm

In the following, we will see that these two symmetries are connected to two different phase
excitations below TBKT. Let us start to analyze the Hamiltonian (1) trying to guess the low-
temperature ground state. It can be easily understood that the minimum value of the energy
corresponds to a situation in which all the spins are aligned in one particular direction, say θi=0

for all spins, breaking in this way the U(1) symmetry of the Hamiltonian itself. Whenever this
happens, the system has a finite macroscopic magnetization in the x direction, i.e. 〈S〉 = x̂. Let
us see why this is not possible, as expected on the basis of the Mermin-Wagner theorem.
At finite temperature, the phase θi of each site can fluctuate with respect to the ground-state
value. We are interested in computing the contribution of such phase fluctuations to 〈S〉 in a
low-temperature phase, where the difference in phase between neighboring spins is very small,
so that we can rewrite the Hamiltonian (1) by expanding the cosine up to the second order in
its argument. Furthermore, by taking the continuum limit on the lattice we can approximate
θi−θi+δ̂ ≈ a ∂θ(r)/∂δ̂, where θ(r) is a smooth function and δ̂ = x, y. Finally, we get

HXY '
J

2

∫
dr
(
∇θ(r)

)2
=
J

2

∫
dq

(2π)2
q2 |θq|2. (2)

Thanks to the Gaussian approximation (2) to the XY-Hamiltonian we can easily compute the
effect of phase fluctuations as

〈Si〉 =
〈
eiθi
〉

= e−〈θ
2
i 〉/2 , (3)

where in the last passage we have used a well known property of the average over a Gaus-
sian distribution (see Appendix A), while the average 〈· · · 〉 is defined as the average over the
canonical ensemble of the system

〈A〉 =
1

Z

∫ 2π

0

dθ1· · ·
∫ 2π

0

dθN Ae
−βHXY , (4)
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where as usual β = 1/T . By using the approximation (2) the calculation (3) is straightforward

〈
θ2i
〉

=

∫
dq

(2π)2
〈
|θq|2

〉
=

∫ 1/a

1/L

dq

(2π)2
T

Jq2
=

T

2πJ
ln
L

a
, (5)

where we used the fact that from Hamiltonian (2)〈
θq1θq2

〉
=

T

Jq2
1

δq1,−q2 , (6)

and we denoted with L the linear size of the system and with a the lattice spacing between two
neighboring spins. Substituting the result (5) into Eq. (3) we get

〈Si〉 = e−
T

4πJ
ln(L/a) =

( a
L

) T
4πJ −−−→

L→∞
0 . (7)

Hence, at any nonzero temperature the system cannot sustain a spontaneous magnetization in
the thermodynamic limit, since the spin wave excitations suppress the long-range order. As one
can immediately see from Eq. (2), spin waves appear as smooth variations of the phase, that cost
no energy in the long-wavelength (q → 0) limit. Thus, in the 2D XY-model they are indeed
“massless” at long-wavelength, and as such they can be recognized as the Goldstone modes of
the system. We then proved explicitly the Mermin-Wagner theorem.
However, it is worth to mention that very often real systems are quite far from the thermo-
dynamic limit so that they could exhibit a finite magnetization in the low-temperature regime.
Indeed, if we estimate the exponent of (7), using the universal relation between the renormalized
stiffness J and the temperature at the critical point (we will come back on this point in the next
pages), we obtain that it is ≤ 1/8. It means that for a microscopic scale a ∼ 10 nm one would
need a system with a linear size L ∼ 100000 km to have 〈Si〉 = 0.01. In short, if a real finite
system exhibits a spontaneous symmetry breaking, it does not mean that the Mermin Wagner
theorem is violated, but that the system studied is far away from its thermodynamic limit.
Anyway, at the time of its formulation, the generally accepted conclusion was that in the XY-
model1 there is no transition to an ordered state at any nonzero temperature. The merit of
Berezinskii, Kosterlitz and Thouless was first of all to overcome this idea, by realizing that a
different kind of transition was possible.

2.1 Correlation functions and rigidity

Even though we have explicitly seen that a conventional order-parameter description of the
phase transition is not possible, since 〈Si〉 = 0 at any temperature, the close investigation of the
behavior of the spin correlation functions suggests that a change of behavior should still happen
between the low and high-temperature phase. The correlation function between two sites i and
j is defined as

C(ri−rj) =
〈
Si · Sj

〉
=
〈
cos(θi−θj)

〉
. (8)

1More generally in a two-dimensional system with a continuous symmetry and short-range interactions.
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Let us try to estimate its behavior in the low-temperature βJ � 1 and high temperature limit
βJ � 1, respectively. At low temperature we can rely on the same approximated Gaussian
Hamiltonian (2) used above for the calculation of the average order parameter. Using again the
properties of Gaussian averages we get

C(r) =
〈
ei(θ(r)−θ(0))

〉
= e−

1
2〈θ(r)−θ(0)2〉, (9)

where the quantity in the exponent is computed in Fourier space as〈
(θ(r)−θ(0))2

〉
=
〈∫ dq1

2π
θq1

(
eiq1r−1

)∫ dq2

2π
θq2

(
eiq2r−1

)〉
=

∫
dq

(2π)2
(
2−2 cos(q·r)

)〈
|θ(q)|2

〉
=

T

πJ

(∫ 1/a

1/L

dq

q

(
1− cos(q · r)

))
∼ T

πJ

∫ 1/a

1/r

dq
1

q
=

T

πJ
ln
r

a
, (10)

where the result (6) for the phase correlation function of the Gaussian model has been used.
Finally, by substituting this result in Eq. (9) we obtain

C(r) = e−
T

2πJ
ln(r/a) =

(a
r

) T
2πJ

. (11)

In the high-temperature regime one can attempt an estimate of the correlation function in power
law of the small parameter βJ � 1. In this regime one is not authorized to assume small
fluctuations of θi−θj , and in general the full cosine structure of Eq. (1) should be retained, along
with its periodicity modulo 2π. The details of this calculation can be found in Ref. [24]. The
final result is that the correlation function decays in this regime exponentially, with a correlation
length ξ depending on the temperature

C(ri−rj) ' e−|r1−r2|/ξ, ξ = ln
2T

J
. (12)

Let us compare the results (11) and (12) with the standard expectations for a second-order phase
transition according to Landau theory. Denoting with m = 〈S〉 the average order parameter
below Tc, one usually finds

C(r) ' Ae−rξ+ , T > Tc (13)

C(r) ' m2 + Be−rξ− , T < Tc (14)

where A,A′ are constants, and the correlation length above ξ+ and below ξ− both diverge as Tc
is approached as

ξ±(T ) ∼ 1

|T − Tc|ν
, T → Tc, (15)

with ν = 1/2 in the mean-field case. In other words, the correlation function for the observable
that represents the order parameter decays exponentially to zero in the disordered state, while
it tends exponentially to the square of the order parameter in the ordered state. The results
found above for the XY-model are radically different: at high temperature we recover indeed
an exponential decay to zero, Eq. (12), but the correlation length does not diverge at any finite
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temperature. On the other hand, in the low-temperature expansion (11) the correlation length
tends to zero with a power-law instead of an exponential behavior. Strictly speaking, such a
scaling implies that ξ→∞ in the ordered state. Observe also that both results are consistent
with the Mermin-Wagner theorem: the system does not display a non-zero order parameter at
any finite temperature. On the other hand, such a drastic change of behavior of the correlation
functions cannot occur without the emergence of a phase transition in between: the transition in
this case cannot be characterized by a vanishing of the order parameter (that is always zero at
finite temperature in the thermodynamic limit), but by the change of scaling of the system corre-
lation functions. At low temperature, the long-wavelength spin fluctuations, or spin waves, have
a finite spin (or phase) stiffness, encoded in the finite coefficient of the

(
∇θ
)2 term of Eq. (2).

The direct consequence of this rigidity against phase fluctuations is the (weak) power-law decay
of correlation functions at large distances, encoded into Eq. (11). On the other hand, at high
temperature, a full cosine-like interaction term should be considered in the Hamiltonian, and
the system recovers a standard exponential decay (12) of the correlation function, and the phase
rigidity, that controls the power-law decay of the low-temperature expansion (11), is lost. To
understand how this transition occurs, we must take into account vortices, not considered so far.

2.2 The role of vortices

Let us tackle the problem starting from the low-temperature expansion (2). It is clear that this
approximation cannot be the end of the story: the model (2) is purely Gaussian, and as such
it cannot induce any transition. On the other hand, as emphasized above, the pure exponential
decay (12) of the correlation functions can only be recovered by retaining the full cosine struc-
ture of the Hamiltonian. As a consequence, one recognizes that while going from the original
model (1) to the approximated one (2) we have lost one important discrete symmetry of the
original XY-model, mentioned at the beginning: the invariance under a local transformation

θi → θi ± 2πm , (16)

with m ∈ Z, for each site i of the lattice. The presence of this discrete symmetry leads to
the existence of a new kind of phase excitations that are topological in character and cannot
be smoothly connected to the unperturbed ground state. These are vortices, characterized by a
winding of the phase by ±2π by going around their center∮

∇θ · ~d` = 2πn . (17)

It is clear that if a vortex excitation is present in the system, one cannot make the assumption of
smoothness of the phase variations in neighboring sites, that led us to the approximate form (2).
Thus, vortices are good candidates to be responsible for the phase transition we are looking
for. The question to be answered is then: how much energy does it cost to introduce a vortex
in the system? Indeed, the answer to this question can also help us understanding what is the
temperature scale where the vortex proliferation occurs.
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To make this estimate we would like to keep the continuum notation for θ(r) but allowing also
for configurations that are singular in a position r0. The easiest way to introduce vortices into
the low-temperature model (2) is to assume that the Gaussian Hamiltonian admits both smooth
solutions θSW , that represent the longitudinal spin waves, and singular solutions θV , which
represent vortices. These two solutions are obtained by a variational principle applied to the
Hamiltonian (2): the variational equation δH = 0 reads in general

∇2θ(r) = 0. (18)

We will then describe spin-waves as solutions of Eq. (18) in all space, and vortices as solutions
that satisfy Eq. (18) everywhere except than in isolated points, that represent the vortex center

∇2θSW (r) = 0 , (19)

∇2 θV (r) = 2πq δ(r−r0), (20)

where q is an integer (positive or negative) number representing the vorticity of the topological
excitation at r0. The solution of Eq. (20) for q = 1 in 2D is exactly

θV = arctan
y−y0
x−x0

, (21)

that is the configuration of a vortex. Indeed, since∇θV =
(
−(y−y0), x−x0

)
/R2, withR=|r−r0|,

one immediately sees that by computing, e.g., Eq. (17) along a circle of radius R around r0 that
∇θV ‖ ~d`, so that from Eq. (17) we get∮

∇θV · ~d` =
1

R

∮
d` =

1

R
2πR = 2π . (22)

By inserting the solution (21) into the Hamiltonian (2) we can then calculate the energy of the
vortex configuration as

E =
J

2

∫
dr
(
∇θV (r)

)2
=
J

2

∫ L

a

dr 2πr
1

r2
= πJ ln

L

a
, (23)

where we used the fact that the distance R from the vortex center is limited below by the lattice
spacing and above by the system size L. This energy is diverging logarithmically with the
system size L, disfavoring the generation of vortices in the thermodynamic limit. However, at
finite temperature we must consider also the gain in entropy in forming the vortex configuration.
Since the number of independent places where a vortex can be located is ∼ L2/a2, we obtain
that also the entropy has a logarithmic dependence on the system size

S = ln
L2

a2
= 2 ln

L

a
. (24)

In conclusion we have that the free energy of a vortex configuration is

F = E − TS =
(
πJ−2T

)
ln
L

a
, (25)
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so that as soon as

T > TBKT =
πJ

2
, (26)

the emergence of an isolated vortex is entropically convenient. Even though we did not prove
it yet, it is physically plausible that when vortices proliferate they destroy the quasi-long-range
order encoded in the power-law correlation functions (11). More precisely, we will demonstrate,
by means of the renormalization-group equations, that the phase rigidity goes to zero. It is worth
stressing where the dimensionality entered crucially in the above argument. The entropic cost to
obtain a vortex is always logarithmically increasing with the system size, as in Eq. (24) above.
However, in dimensions larger than two the energetic cost of vortex configuration would scale
faster than log(L), making the energy term always predominant over the entropic one. Thus,
unless additional effects enter to cut-off at large distance the energetic cost of a vortex (as it
happens, e.g., in charged superconductors [25]) the free energy of a vortex configuration cannot
spontaneously change sign as temperature increase.
The above argument is the one provided in the original paper by Kosterlitz and Thouless [2].
Even though it is qualitatively correct, it neglects two effects. (i) While going from the lattice to
the continuum model one misses the energetic costs to form the vortex at the length-scale of the
lattice spacing. This energy, that is usually referred as vortex-core energy µ, is a constant that
must be added in Eq. (23). Even though it does not change considerably the estimate (26), where
only the terms growing with the system size are relevant, it can be nonetheless relevant if one
wants to make a direct comparison with experimental data in real superconducting systems, as
we will discuss extensively below. (ii) We estimated the transition temperature by considering
a single vortex with infinite size, while the reality could be more complicated, with several
vortex excitations occurring on shorter scales. For example, if one puts a vortex at r+ and an
antivortex (with same vorticity) at r−, at scales larger than ∼ |r+−r−| the phase configuration
remains unperturbed. In the spirit of Eq. (23), the log divergence of the integral is cut-off at
a scale or order |r+−r−|. This implies that such vortex “pairs” are energetically possible also
below Tc, and can change the “effective” large-distance J that enters Eq. (26). These additional
effects are beautifully explained, as we shall see in the next sections, by the renormalization
group (RG) analysis of the BKT transition, that was developed by Kosterlitz [26] right after the
publication of the original paper with Thouless. The starting point to carry on this analysis was
the explicit construction of the mapping into the Coulomb-gas problem, that we will discuss in
the next section.

3 Mapping to the Coulomb-gas and sine-Gordon model

As we discussed in the previous Section, vortex-like fluctuations can be introduced into the
Gaussian model (2) by allowing for singular solutions (20) of the δH = 0 variational equation.
We can try to pursue this analogy further by writing down a model that also includes interactions
between vortices, mediated by spin-wave excitations. This is the idea that was followed by
Kosterlitz [26] to write down a partition function for multiple vortices, to be further studied by
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means of the RG approach. It turns out that the Hamiltonian describing interactions between
vortices is formally equivalent to the Hamiltonian of the Coulomb gas in two dimensions. I will
review here in detail the derivation of the mapping, as it is discussed in [24], since it allows
one to grasp several aspects of the vortex physics, besides providing an additional example
of a completely different problem (the screening transition for the 2D Coulomb gas) that still
belongs to the BKT universality class.
Let us start again from the low-temperature model (2) and let us promote the phase gradient to
a generic current density j

∇θ ⇒ j , (27)

so that the Hamiltonian (2) becomes more generally

H =
J

2

∫
dr j2(r). (28)

Such a terminology is further motivated by the application to the case of superconductors, where
∇θ is directly connected to the physical electronic current density in the SC state (see Eq. (64)
below). In full generality, we can always decompose j in its longitudinal j‖ and transverse j⊥
components, defined as usual as

j = j‖ + j⊥ with ∇× j‖ = 0 and ∇ · j⊥ = 0 . (29)

By close inspection of the spin-wave (19) and vortex-like (20) phase excitations we also real-
ize that the former are connected to the longitudinal component, while the latter represent the
transverse components. Indeed we see that only j⊥ contributes to vortices, since∮

j · d~̀=

∫
S

(
∇× j

)
· ds =

∫
S

(
∇× j⊥

)
· ds = 2π

∑
i

qi , (30)

where qi is an integer (positive or negative number) defining the vorticity of the i-th vortex.
Eq. (30) is a generalization of Eq. (22) in the case where several vortices with different vorticity
are present. The longitudinal and transverse components can be defined in terms of scalar
functions as

j‖ = ∇θSW and j⊥ = ∇×(ẑW ) =
(
∂yW, −∂xW, 0

)
. (31)

In this way we also have that ∇× j⊥ =
(
0, 0, −∇2W

)
. Inserting this relation into Eq. (30) we

then conclude that W must satisfy the equation

∇2W (r) = −2πρ(r), (32)

ρ(r) =
∑
i

qi δ(r−ri). (33)

Eq. (32) is exactly the Poisson equation in 2D for the potential W generated by a distribution
of point-like charges qi at the positions ri. Its solution is in general

W (r) = 2π

∫
dr′ V (r−r′)ρ(r′), (34)
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where V (r) is the Green’s function of the Poisson equation, i.e., the solution of the homoge-
neous equation (corresponding to the Coulomb potential in 2D) that reads

∇2V (r) = −δ(r) ⇒ V (r) =

∫
dk

(2π)2
· e

ik·r

k2
. (35)

Notice that here we denote as Coulomb potential in 2D the Fourier transform of 1/k2 in two
spatial dimensions, so that we obtain V (r) ' − ln r at large distances, instead of the usual
1/r of the 3D case. If we use the decomposition (29) in Eq. (28) we immediately see that the
mixed terms vanishes since

∫
dr j‖ · j⊥ =

∫
dr∇θL ·

(
∇×(ẑW )

)
= θL

(
∇×(ẑW )

)
· n̂S
∣∣
∂S

= 0,
since the integration surface S can be taken larger than the sample area, leading to a vanishing
current at the border ∂S. As a consequence, we obtain that longitudinal and transverse degrees
of freedom decouple H = H‖ + H⊥, and we can focus on the term H⊥ = (J/2)

∫
dr j2⊥ that

describes the interaction between vortices. Thanks to the result (34) it can be written as

H⊥ =
J

2

∫
dr j2⊥ =

J

2

∫
dr
(
∇×(ẑW )

)2
=
J

2

∫
dr
(
∇W

)2
= −J

2

∫
drW∇2W

= πJ

∫
drW (r)ρ(r) = 2π2J

∫
drdr′ρ(r)V (r−r′)ρ(r′) = 2π2J

∑
ij

qiqjV (ri−rj). (36)

Eq. (36) expresses the interaction energy between vortices in the same form of the electrostatic
energy of point-like charges qi, leading to a global charge density ρ(r), interacting via a 2D
Coulomb potential V (r). An interesting outcome of the derivation (36) is that, due to the
divergence of the potential V (r) as r → 0, only neutral configurations contribute to the partition
function. If we compute V (r) from Eq. (35) we see that at the shortest scale of the system, i.e.,
when we put two vortices on the same site, it has a contribution diverging with the system size

V (r=0) =

∫ 1/a

1/L

dk
1

2πk
=

1

2π
ln
L

a
→∞ for L→∞. (37)

It we separate this divergent term by defining

V (r) = V (0) +G(r), (38)

where now G(r=0) = 0, in Eq. (36) we obtain

2π2J
∑
ij

qiqj
(
V (0)+G(ri−rj)

)
= 2π2JV (0)

(∑
i

qi

)2
+ 2π2J

∑
ij

qiqjG(ri−rj). (39)

Since the Boltzmann weight of each configuration is e−βH⊥ the divergence of V (0) in the ther-
modynamic limit leads to a vanishing contribution to the partition function, unless∑

i

qi = 0. (40)

Using the neutrality condition (40) and the fact that G(0) = 0, the last term of Eq. (39) can be
written as

2π2J
∑
ij

qiqjG(ri−rj)=2π2J
∑
i

q2iG(r=0)+2π2J
∑
i 6=j

qiqjG(ri−rj)=2π2J
∑
i 6=j

qiqjG(ri−rj),

(41)
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such that ri−rj in the last term is at least of order of the lattice spacing. The precise form of
the function G(r) follows from the evaluation of the integral (35) on the lattice, that allows one
to define the energetic cost to create the vortex on the shortest scale r = a. More specifically,
one can promote the continuum gradient into a discrete one, and define the Fourier transform of
the potential as V (k) = a2/

(
4−2 cos kxa−2 cos kya

)
, that reduces to V (k) ∼ 1/k2 as ka� 1.

From such a discretization the G(|r|=a) potential reads

G(r=ax̂) = V (r=ax̂)−V (0) =

∫
d2k

(2π)2
(
eik·r−1

)
V (k) =

∫
d2k

(2π)2
a2
(

cos kxa− 1
)

4−2 cos kxa−2 cos kya

=
1

2

∫
d2k

(2π)2
a2
(

cos kxa+ cos kya−2
)

4−2 cos kxa−2 cos kya
= −1

4
. (42)

This result allows us to rewrite the G(r) potential at the scale relevant for Eq. (41) as

G
(
r&a

)
' −1

4
− 1

2π
ln
(r
a

)
, (43)

so that Eq. (36) can be written as

H⊥ = 2π2J
∑
i 6=j

qiqjG(ri−rj) = −2π2J
∑
i 6=j

(
1

4
+

1

2π
ln
rij
a

)
qiqj

= −π
2J

2

∑
i 6=j

qiqj − πJ
∑
i 6=j

qiqj ln
rij
a

= µ
∑
i

q2i − πJ
∑
i 6=j

qiqj ln
rij
a
, (44)

where we used
∑

i 6=j qiqj=−
∑

i q
2
i from Eq. (40) and identified the vortex-core energy µ with

µ ≡ µXY =
π2J

2
. (45)

Finally, we can use the neutrality condition (40) by imposing that vortices should appear in n
pairs of opposite vorticity. Moreover, we shall consider in what follows only vortices of the
lowest vorticity qi=±1, so that H⊥ reads

H⊥ = 2nµ− πJ
2n∑
i 6=j

εiεj ln
rij
a
, εi = ±1 . (46)

The above equation (46) shows the complete analogy between the vortex problem in the XY-
model and the problem of the Coulomb gas in two dimensions, where the electrostatic interac-
tion between charges is written as

U(r) = −q20
2n∑
i<j

εiεj ln
rij
a
, (47)

where the logarithmic Coulomb interaction arises from solving the Poisson equation (35) in
strictly 2D, as we mentioned before. This also means that to preserve the correct dimension of
U(r) one should assume that the fictitious charge q0 in Eq. (47) has dimensions of (Energy)1/2.
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This is also consistent with the comparison between Eq. (46) and (47), that allows one to identify
the effective charge of the XY-model as

q20 = 2πJ, (48)

an equivalence that will be useful below. It is worth discussing what is the physical effect behind
the BKT transition within the context of the mapping into the Coulomb-gas problem. As we
explained before, we expect that in the low-temperature phase vortices can only exist in pairs,
and the correlation function display the quasi-long-range order (11) characterized by a power-
law decay. The interaction between charges is provided by Eq. (47) and it is unscreened (in the
usual language of charged objects). In contrast, in the high-temperature phase the charges are
free to move, leading to the usual metallic screening of the potential. As a consequence, within
the context of the Coulomb gas the transition occurs between an unscreened (low-temperature)
phase and a screened (high-temperature) phase, where long-range 2D Coulomb interactions are
suppressed by the existence of free charges, able to move. Such an analogy is sometimes used
to discuss the effect of vortices in terms of an effective dielectric function that screens the bare
Coulomb interaction, especially within the context of finite-frequency effects [27, 22].
Eq. (46) describes the interaction between vortices in a given configuration with n vortex pairs.
In the partition function of the system we must consider all the possible values of n, taking into
account that interchanging the n vortices with same vorticity gives the same configuration (so
one should divide by a factor 1/(n!)2). In conclusion Z reads (up to an irrelevant multiplicative
factor ZSW accounting for the partition function of spin-wave excitations connected to the term
H‖ in the Hamiltonian)

Z =
∞∑
n=1

1

(n!)2

∫
dr1 · · · dr2ne−β2nµe

πβJ
2n∑
i 6=j

εiεj ln
rij
a

=
∞∑
n=1

y2n

(n!)2

∫
dr1 · · · dr2ne2πβJ

∑2n
i<j εiεj ln

rij
a

(49)
where we introduced the vortex fugacity

y = e−βµ. (50)

The explicit derivation of the partition function (49) has the great advantage to introduce one
further formal mapping between the original XY-model and a completely different physical
problem, that still belongs to the BKT universality class: the quantum sine-Gordon model,
defined by the Hamiltonian:

Hsg =
vs
2π

∫ L

0

dx
(
K
(
∂xθ
)2

+
1

K

(
∂xφ
)2 − 2g

a2
cos(2φ)

)
, (51)

where θ and ∂xφ represent two canonically conjugated variables for a 1D chain of length L,
with

[
θ(x′), ∂xφ(x)

]
= iπδ(x′−x), K is the Luttinger-liquid (LL) parameter, vs the velocity of

1D fermions, and g is the strength of the sine-Gordon potential [18]. In this formulation, the
role of the spin angle or phase is played by the field θ. Indeed, when the coupling gu = 0 one
can integrate out the dual field φ to get the action

S0 =
K

2π

∫
dx dτ

((
∂xθ
)2

+
(
∂τθ
)2)

, (52)
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equivalent to the gradient expansion (2) of the model (1), once considered that the rescaled
time τ → vsτ plays the role of the second (classical) dimension. The dual field φ describes
instead the transverse vortex-like excitations. This can be easily understood by considering the
quantum nature of the operators within the usual language of the sine-Gordon model. Indeed,
a vortex configuration requires that

∮
∇θ · ~d` = ±2π over a closed loop, see Eq. (22) above.

Since φ is the dual field of the phase θ, a 2π kink in the field θ is generated by the operator
ei2φ, [18] i.e., by the sine-Gordon potential in the Hamiltonian (51). More formally, one can
show that the partition function of the φ field in the sine-Gordon model corresponds to the (49)
derived above. To see this, let us first of all integrate out the θ field in Eq. (51), to obtain

SSG =
1

2πK

∫
dr
(
∇φ
)2 − g

π

∫
dr cos(2φ). (53)

The overall factor Z‖ = Πq>0

(
1/βJq2

)
due to the integration of the θ field (corresponding

to the longitudinal excitations Z‖ =
∫
Dθ‖e−βH‖ in Eq. (28) above) will be omitted in what

follows. We can treat the first term of the above action as the free part

S0 =
1

2πK

∫
dr
(
∇φ
)2
, (54)

and expand the exponential of the interacting part in series of powers, so that

Z =

∫
Dφ e−S0

∞∑
p=0

1

p!
dr1 · · · drp

( g
π

)p
cos
(
2φ(r1)

)
· · · cos

(
2φ(rp)

)
. (55)

Here
∫
Dφ is the functional integral over the φ field. When we decompose each cosine term as

cos
(
2φ(ri)

)
=
eiφ(ri) + e−iφ(ri)

2
=
∑
ε=±1

eiεφ(ri)

2
, (56)

we recognize that in Eq. (55) we are left with the calculation of average value of exponential
functions over the Gaussian weight S0, i.e of factors〈

e2i
∑
i εiφ(ri)

〉
= e2K

∑
i<j εiεj ln

rij
a . (57)

Here we followed the analogous steps leading to Eq. (11) above, by recognizing that the above
expectation value computed over the Gaussian model (54) is non zero only for neutral config-
urations

∑p
i=1 εi = 0, in full analogy with the result found above for the vortices. We then put

again p = 2n. Taking for instance ε1, . . . εn = +1 while εn+1, . . . ε2n = −1 the combinatorial
prefactor 1/p! ≡ 1/(2n)! in Eq. (55) should be multiplied times the number

(
2n
n

)
= (2n)!/(n!)2

of possibilities to choose the n positive εi values over the 2n ones. Thus, Eq. (55) reduces to

Z =
∞∑
n=1

1

(n!)2

( g
2π

)2n∫
dr1 · · · dr2n e2K

∑2n
i<j εiεj ln

rij
a . (58)

By comparing Eq. (49) and Eq. (58) we see that the vortex problem (as well as the Coulomb-gas
problem) is fully mapped into the sine-Gordon model, provided that we identify

K =
πJ

T
and g = 2πe−βµ . (59)
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Once more, we have shown that the partition function (58) bears the same structure of the par-
tition function of the interacting system of vortices, or the interacting 2D Coulomb gas. The
same equation corresponds however to different physical problems: within the 1D case, we are
dealing with a quantum phase transition in 1+1 dimension, that describes how the properties of
the one-dimensional Luttinger liquid get modified by the interaction term controlled by g. In
general, when g increases the φ field tends to get trapped in one of the minima of the cos(φ)

term, and the field becomes “massive”. As a consequence, the correlation function of the Lut-
tinger liquid lose the power-law decay characteristic of the “massless” phase, and the system
typically describes a (spin or charge) ordered state. Further details on the physical aspects of
the 1D analogy are discussed in Ref. [18].
As it is clear from the above derivation, within theXY-model there exists a precise relation (45)
between the value of the vortex-core energy µ and the value of the superfluid coupling J. This
is somehow a natural consequence of the fact that the XY-model (1) has only one coupling
constant, J. Thus, when deriving the mapping on the continuum Coulomb-gas problem (46), µ
is fixed by the short length-scale interaction, that determines the behavior of G(r) in Eq. (43)
and consequently the vortex-core energy (45). In contrast, within the sine-Gordon language
µ is determined by the value of the interaction g for the model (53), that can attain in princi-
ple arbitrary values. This aspect will be relevant later-on when we discuss the non-universal
properties of the BKT transition observed in real systems, that do not necessarily follow the
same expectations of the XY-model, which is only one of the possible models admitting a BKT
transition.

4 BKT physics in superfluids and superconductors

Before discussing the renormalization-group (RG) equations for the BKT model, I will first
clarify why BKT physics should be relevant for the superfluid to metal transition in 2D. To
understand it, one can start from the very basic consideration [24, 25] that a superconductor
develops below Tc a complex order parameter ψ = ∆0e

iθ0 , whose amplitude ∆0 is connected to
the SC gap appearing in the quasiparticle spectrum Ek =

√
ξ2k +∆2

0, where ξk is the excitation
energy above the Fermi level. Below Tc then two possible collective fluctuations [28] of the
order parameter are possible, related either to its amplitude ∆ or to its phase θ

ψ(r) =
(
∆0 +∆(r)

)
ei(θ0+θ(r)). (60)

In analogy with the assumption made before for the XY-model that the modulus of the spins is
fixed, under certain circumstances we can assume that the amplitude fluctuations are frozen, and
only the phase of the order parameter fluctuates. In this view (that intrinsically assume some
form of “preformed” pairing above TBKT, as we shall discuss below) the phase fluctuations are
described at Gaussian level by a kinetic-energy term completely analogous to Eq. (2) above.
The simplest way to understand this is to start from the order parameter (60) and interpret it
as a collective electronic wave function. Within the standard Ginzburg-Landau description of
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the SC transition [28] one directly expresses the current density in the form analogous to the
particle current in first quantization

j =
~q

2m∗

(
−iψ∗∇ψ + iψ∇ψ∗

)
− q2|ψ|2

m∗c
A =

q|ψ|2

m∗

(
~∇θ − q

c
A
)

(61)

where A is the gauge potential. As usual, in the absence of phase fluctuations (∇θ = 0)
one recovers the standard diamagnetic response of the superconductor, as given by the London
equation [25]

j = −e
2ns
mc

A = − c

4πλ2
A, (62)

where ns is the superfluid density, m the electronic mass and λ the penetration depth. As it is
well known [25,28], the value of the charge q = −2e in Eq. (61) is fixed by the flux quantization,
and it physically represents the fact that the SC order parameter is formed by a Cooper pair. The
ratio |ψ|2/m∗ is then equivalent to the combination ns/4m in the London equation (62). One
usually defines m∗ = 2m and |ψ|2| ≡ ns/2 so that Eq. (61) reads

j = − ens
2mc

(
~∇θ +

2e

c
A

)
≡ −ensvs, (63)

with vs superfluid velocity. Once established, the relation (63) between the superfluid current
and the phase gradient, one can write down the kinetic energy of superfluid electrons in 2D at
A = 0 as

Hs =
1

2
mn2d

s

∫
dr v2s(r) =

~2n2d
s

8m

∫
dr
(
∇θ
)2
, (64)

where we made explicit the emergence of a 2D superfluid electron density n2d
s such that the

quantity ~2n2d
s /m has the dimension of an energy. By direct comparison between Eq. (64) and

Eq. (2) we understand that Gaussian fluctuations of the SC phase of the order parameter are
described by the same model obtained by a low-energy approximation to the XY-model. In this
case, the role of the coupling J of the XY-model is played by the energy scale connected to the
superfluid density in 2D. To make a further connection to the physically-measured penetration
depth λ, appearing in the London equation (62), we must convert the 3D superfluid density ns
given in Eq. (62) to an effective 2D one, by using a transverse dimension d. This can represent
the film thickness in a thin film, or the distance between planes in weakly coupled layered
superconductors (as it is the case for cuprate superconductors). We can then identify the so-
called superfluid rigidity or stiffness as the energy scale set by the superfluid density in 2D

J =
~2n2d

s

4m
=

~2c2d
16πe2λ2

. (65)

To get an idea of the energy scales, it can be useful to express J in Kelvin: since usually the
penetration depth is given in microns, one obtains

J = 0.62× d[Å]

λ2[µm2]
[K] (66)
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Typical values [25] of the penetration depth at T=0 can range from around λ(T=0) ∼ 0.045 µm
in conventional BCS superconductors, like Al, to λ(T=0) ∼ 0.16 µm in cuprate superconduc-
tors. As a consequence, if one computes the stiffness per plane in a typical cuprate system,
putting the inter-plane distance at d ∼ 5 Å in Eq. (65), one gets a stiffness of the order of
Js ∼ 120 K, i.e., not far from the critical temperature of these materials, and much smaller than
the pseudogap scale measured above Tc (that can be as large as 20–30 meV). Such an observa-
tion motivated, in a milestone paper in the middle 90ties, the proposal that phase fluctuations
(and eventually BKT physics) could be relevant for this class of materials [29]. However, as we
shall discuss below, the expectation that a layered superconductor with weakly-coupled planes
should behave as a quasi-2D system is not always obviously realized, and nowadays convincing
evidence of the occurrence of a BKT transition in bulk layered cuprates is still lacking.
It is worth stressing that the Gaussian phase-only model (64), that we discussed within a clas-
sical Ginzburg-Landau picture, can be derived by starting from a microscopic BCS model by
integrating our the fermionic degrees of freedom, as discussed, e.g., in Ref. [24, 30] and ref-
erences therein. More specifically, one can show in full generality that in the SC state the
coefficient of the

(
∇θ
)2 term in the effective phase-only action is given by the physical super-

fluid density, defined as the static transverse limit of the current-current correlation function, as
it is implicit in the London equation (62). This has also the relevant consequence that J from
Eq. (65) should already include the temperature depletion due to quasiparticle excitations, not
captured by the BKT physics, that only deals with the temperature effects due to proliferation of
vortexes. This point will be relevant below while discussing the physical conditions for the ob-
servation of BKT physics in effectively 2D superconductors. Indeed, while in 3D the superfluid
density is expected to go to zero continuously at the BCS transition Tc, that we will denote in
what follows as the mean-field one, within the BKT theory the hallmark of vortex proliferation
will be the emergence of a discontinuous jump of the superfluid density at TBKT, as we shall see
in the next Section.
Finally, it is crucial to realize that the BKT physics only deals with classical transverse phase
fluctuations, as it is evident from the phase-only model (64), where no dynamics of the phase
degrees of freedom is included. We then expect that such a description can only be valid near
Tc, where quantum effects are suppressed and phase fluctuations can be treated as classical. In
contrast, as T → 0 one should promote the classical model (64) to a quantum one, adding to
Eq. (64) the energetic cost to perform a phase gradient in time , that is controlled by the charge
compressibility κ0 [24, 31], so that Eq. (64) is replaced at T = 0 by the quantum action

S =
~2

8

∫
dt dx

(
κ0
(
∂tθ
)2 − ns

m

(
∇θ
)2)

. (67)

For weakly-interacting neutral systems κ0 in the static long-wavelength limit can be approxi-
mated with the density of states at the Fermi level, and by Fourier transforming Eq. (67) one
recognizes the so-called [31] Anderson-Bogoliubov sound mode

ω2 = v2s |k|2, (68)
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where v2s = ns/mκ0 is the sound velocity. The appearance of the charge compressibility as
a coefficient of the time gradient in Eq. (67) is a direct consequence of the fact that density
and phase are quantum-mechanically conjugate variables [28]. However, in the case of charged
superconductors this also implies that the charge compressibility at long wavelength is modified,
as compared to the neutral case, by he presence of long-range Coulomb interactions, so the
term κ0 in Eq. (67) is replaced in Fourier space by κ(k) = κ0/

(
1+V (k)κ0

)
, where V (k)

is the Coulomb potential in generic D dimensions. Since for k → 0 one has κ → 1/V (k)

the spectrum of the phase mode, that reflects the one of density fluctuations, identifies now
a plasma mode, whose energy vs. momentum dispersion depends on the dimensions. In the
standard isotropic three-dimensional (3D) case one recovers [30,31] the well-known dispersion

ω2 = ω2
p + v2s |k|2, (69)

where ω2
p = 4πe2ns/m is the isotropic plasma frequency. The main consequence of the emer-

gence of a gapped plasmon in the phase spectrum is that the longitudinal phase fluctuations,
that are the main source of the low-T suppression of the stiffness within the classical XY-
model [24, 32] (see also next Section), are converted from the sound-like mode of Eq. (68) to a
gapped plasma mode, leading to a thermal suppression of any contribution to the stiffness due
to anharmonic phase fluctuations beyond Gaussian level [30], due to the fact that the plasma
frequency at zero temperature can be as large as the normal-state one, that is of the order of eV.
This is the main reason why the BCS theory, that only accounts for the effects of quasiparti-
cle excitations on the temperature depletion of the superfluid stiffness, successfully describes
the temperature dependence of Js(T ) in all 3D superconductors: quantum phase fluctuations
beyond Gaussian level barely contribute to deplete the superfluid density, due to the large ener-
getic cost of their thermal excitation. On the other hand, as T approaches Tc the energy scale of
Eq. (65) is progressively suppressed by thermal quasiparticle excitations, the phase fluctuations
recover a classical behavior, and transverse vortex-like excitations can become relevant in 2D
systems. Their effect will then add to the one of quasiparticle excitations, as we will discuss in
the next Section.

5 Renormalization-group equations for the BKT transition

I will not derive here the renormalization-group (RG) equations of the BKT model, but I will
rather discuss their consequences. Their derivation can be found in the original paper [26] and
in various book, like, e.g., in Ref. [18]. On very general grounds, the RG equations represent
the result of a coarse-graining procedure: the physical goal is to integrate out the interaction
effects at the short scale, in order to capture the long-scale behavior of the system, that is the
relevant one in the thermodynamic limit. To fix also the language once and for all, I will discuss
the RG results within the context of 2D superconductors, referring then to a transition from a
superfluid state, where the superfluid stiffness (65) is finite, to a metallic one, where n2d

s = 0

and the system is no more superfluid.
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The derivation of the partition function for the Coulomb-gas model (49) and for the sine-Gordon
model (58) has shown that in both cases it can be expressed in terms of the two quantities K
and g defined in Eq. (59). Within the context of the SC transition, the large-distance behavior of
K defines the large-distance behavior of the phase rigidity J , that tells us if the system remains
superfluid in the thermodynamic limit [21]: in other words, the physical value of the superfluid
density Js, that is the quantity experimentally accessible, is obtained under RG flow from the
limiting value of K as `→∞

Js ≡
TK(`→∞)

π
. (70)

On the other hand, the behavior of the vortex-fugacity g at large distances will tell us if vortices
proliferate, leading to a growing of g, or remain bound in pairs, that slightly renormalize Js with
respect to the short-scale value J , without suppressing the superfluid behavior. We will use here
the two variables from (59), that naturally occur as coupling constant in the sine-Gordon model.
We will assume at each temperature as starting values

K(`=0) =
πJ(T )

T
and g(`=0) = 2πe−βµ(T ) , (71)

where J(T ) is given by the value of the stiffness including all other thermal effect besides vortex
excitations. For example, within the context of superconductors it will be the stiffness (65) at a
given temperature, including the thermal suppression due to quasiparticles. For what concerns
the vortex-core energy µ(T ) we will always assume a constant ratio µ(T )/J(T ) = const, so
that µ(T ) also includes thermal effects due to other excitations of the system. Eqs. (71) identify
a line in the (K, g) plane where the RG flow starts, as shown in Fig. 1. Using these two variables
the RG equations read

dK

d`
= −K2g2 and

dg

d`
=
(
2−K

)
g . (72)

By direct inspection of Eqs. (72) one sees that there are two main regimes, represented in Fig. 1:
forK & 2 the r.h.s. of Eq. (72) is negative, so that g → 0 andK tends to a finite valueK → K∗

that determines the physical stiffness Js, according to Eq. (70). Instead for K . 2 the vortex
fugacity grows under RG flow, K in Eq. (72) scales to zero, and Js = 0. The BKT transition
temperature is defined as the highest value of T such that K flows to a finite value. This occurs
at the fixed point K = 2, g = 0, so that at the transition one always has

K(`→∞, TBKT) = 2 ⇒ πJs(TBKT)

TBKT
= 2. (73)

As soon as the temperature grows above TBKT, K → 0, so also Js → 0. As a result, one
finds J(T+

BKT ) = 0, i.e., the superfluid density jumps discontinuously to zero right above the
transition. The equation (73) describes the so-called universal relation between the transition
temperature TBKT and the value of the superfluid stiffness Js at the transition, and represents
a more refined version of the relation (26) based on the balance between the energy and the
entropy of a single-vortex configuration.
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Fig. 1: RG flow for the BKT problem. The solid black line identifies, for each temperature, the
starting values of K(`=0) and g(`=0) (denoted with circles) given by Eq. (71). Under the RG
flow K(`), g(`) evolve along the lines shown in blue (for T<TBKT) and green (for T>TBKT). For
T<TBKT the flow at `→∞ reaches the point (K∗, 0) =

(
K(`→∞), 0

)
, denoted with squares,

where vortices disappear and the system has a finite stiffness. At T=TBKT the RG equations flow
to the fixed pointK=2, g=0, that allows one to establish the universal relation (73). Above TBKT

the flow tends to (0,∞), so free vortices proliferate and the stiffness goes to zero.

To better visualize the role of vortex-antivortex pairs it is instructive to derive the temperature
dependence of Js(T ) as obtained by numerical solutions of the RG equations. As an example
we show in Fig. 2 the expected temperature dependence in the XY-model. As explained above,
the BKT RG equations account only for the effect of vortex excitations, so that any other exci-
tation that contributes to the depletion of the superfluid stiffness must be introduced by hand in
the initial values of the running couplings. For example, in real superconductors there are also
quasiparticle excitations, as we explained above, while in the XY-model there are also longi-
tudinal phase fluctuations, that give rise to a linear depletion to the superfluid stiffness at low
temperature J(T ) = J0

(
1−T/4J

)
(see e.g. Ref. [32] and references therein). One could then

be tempted to use the relation (73) to estimate the TBKT value by looking for the intersection be-
tween the universal line 2T/π and the J(T ) expected from the remaining excitations except the
vortices. However, such a procedure can only be approximate, since in relation (73) the temper-
ature dependence of Js(T ) is determined also by the presence of bound vortex-antivortex pairs,
which can renormalize Js already below TBKT. This effect is connected to the difference between
the initial value of K(0) at each temperature, and its asymptotic value K∗ = K(`→∞), that
determines Js according to Eq. (70). The crucial observation at this point is that the difference
between K and K∗ quantitatively depends on the value of µ: as µ decreases the renormaliza-
tion of Js due to bound vortex pairs below TBKT increases, the Js(T ) curve starts to deviate
from the bare dependence of J(T ) (due to other excitations besides vortices) and consequently
TBKT is further reduced with respect to the mean-field critical temperature Tc (i.e. the one where
J(Tc)=0). As an example we show in Fig. 2 the behavior of Js(T ) using a bare temperature
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Fig. 2: Solution of the RG equations by using a linear temperature dependence for J(T ) =
J0(1−T/4), with J0 = 1, to mimic the behavior of the bare stiffness within the XY-model. Dif-
ferent curves correspond to different values of the ratio µ/J , measured in units of the value (45)
it has within the XY-model. Notice that for small µ values the deviation of Js(T ) from J(T )
starts much before than the temperature where the universal jump occurs: this is due to the
larger density of vortex-antivortex pair present below TBKT, due to smaller the energetic cost to
create them on the shortest length scale.

dependence as in the XY-model and switching the vortex-core energy from the value (45) to
values smaller or larger. As one can see, for decreasing µ the effect of bound vortex-antivortex
pairs below TBKT is significantly larger, moving back the transition temperature to smaller val-
ues. In the light of this observation, one must be very careful in defining what is universal: TBKT

is not universal, what is universal in the relation between the renormalized superfluid density
and the transition temperature, as encoded in Eq. (73).
Finally, it is worth spending still some time on the RG equations (72) to derive the expression
of the correlation length ξ close to the BKT critical point. Let us start with a convenient change
of variables

x = K−2 and y = 2g , (74)

so that the RG equations with this choice read

dx

d`
= −(x+2)2

y2

4
' −y2, (75)

dy

d`
= −xy, (76)

where we approximated the first RG equation around the fixed point x = 0, y = 0. We can
easily solve these differential equations by noticing that they can be rewritten as

x
dx

d`
− ydy

d`
= 0, (77)

whence
x2 − y2 = A2. (78)
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Eq. (78) is nothing but the RG flow, close to the fixed point (x, y)=(0, 0), in the new x-y plane.
The resulting flow lines are hyperbolas, whose symmetry axis can be: y = 0 if A2 > 0 (equiva-
lent to the green lines in the region (B) of Fig. 1) or x = 0 if A2 < 0 (region (A) of Fig. 1). The
critical line corresponds obviously to A2 = 0.
Approaching the critical point A→ 0+, Eq. (75), can be rewriten as

dx

d`
= −x2, (79)

whose solution is
x =

1

`+ c
, (80)

where c is a constant connected with the initial value of the RG flow ` = 0 and x(0). Along
the critical line x will finally flow to zero but in an extremely slow fashion, i.e., with the log
of the rescaled lattice spacing ` = ln(a′/a). Analogously we find in the regime A2 > 0 that x
(and then K) flows to a finite value: it then corresponds the low-temperature region, having a
finite superfluid stiffness and vanishing g. Indeed, by substituting x2 = y2+A2 in (76), we get
a first-order differential equation for y

dy

d`
= −y

√
y2 + A2, (81)

whose solution is
y(`) =

A

sinh
(
A`+ arcsinh(A/y0)

) −−−→
`→∞

0. (82)

On the other hand, following the same procedure, the solution for x will be

x(`) =
A

tanh
(
A`+ arcsinh(A/y0)

) −−−→
`→∞

A. (83)

Hence, as expected the superfluid stiffness tends to a finite value, while the coupling accounting
for the vortices vanishes under coarse graining.
The opposite regime, the one where A2 < 0, corresponds to the region T > TBKT. Here the
superfluid stiffness goes to zero, and we can definite the correlation length as the scale where
this happens. In other words, the correlation length can then be estimated as the scale `∗ at
which x(`∗) = 0. For simplicity let us introduce another constant C, such that: −A2 = C2 > 0.
After having expressed y2 = x2 + C2, we can solve the differential equation (75):

dx

d`
= −

(
x2+C2

)
=⇒ x

C
= tan

(
−C`+ arctan(x0/C)

)
. (84)

From (84), we then have that x vanishes at the scale

arctan
x

C
= c`∗. (85)

Near the transition, we also know that x0 ∼ y0, hence: C2 = y20−x20 = (y0−x0)(y0+x0) '
2y0(y0−x0). Since at the transition is x=y, the difference between the initial values y0−x0 is
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at leading order proportional to the distance from the transition temperature, i.e. (y0−x0) ∝
(T−TBKT)/TBKT. Thus we obtain

C = α
√
t, (86)

where α is a constant of order one and t is the reduced critical temperature

t =
T − TBKT

TBKT
. (87)

Finally, since we are working in the limit t � 1 → arctan(x0/C) ' π/2, from Eq. (84) we
derive that

C`∗ ∼ O(1) =⇒ `∗ =
b√
t
. (88)

Since `∗ = ln(ξ/a), we have that
ξ/a = eb/

√
t . (89)

The parameter b in Eq. (89) depends on the specific model studied. Eq. (89) shows one of
the most prominent hallmarks of the BKT transition: by approaching the critical temperature
from above the correlation length displays an exponential divergence in the reduced critical
temperature t, instead of the usual power-law divergence observed in ordinary Ginzburg-Landau
transition, see Eq. (15) above.

6 Superfluid density in thin films of superconductors

In the previous Section we identified at least two typical signatures of BKT physics that are sig-
nificantly different from the analogous expectations for 3D superconductors: the discontinuous
and universal jump (73) of the superfluid stiffness Js at TBKT, to be contrasted with the contin-
uous suppression of Js at the critical temperature Tc in 3D, and the exponential activation (89)
of the correlation length as TBKT is approached from above. Let us first discuss under which
conditions the universal jump of Js has been measured in real systems, where additional effects
not discussed so far very often make such a jump rather elusive.
The first experimental observation of the universal jump (73) has been actually done in thin
films of superfluid helium [4, 5]. An example is shown in Fig. 3. Here the experimentally
accessible quantity is the shift of the rotation period ∆P (T ) of a torsion pendulum immersed
in liquid helium. The rotation period depends on the inertia momentum of the pendulum, that
changes below TBKT due to the fact that it cannot drag anymore with it the superfluid fraction
of the liquid. As a consequence ∆P (T ) ∝ Js(T ), so that the ∆P jump corresponds to the
jump (73) of the superfluid stiffness due to the free-vortices proliferation. As one can see,
regardless of the T = 0 value of Js the jump always occurs when Js(T ) intersects the BKT line
2T/π: thus, as evidenced above, TBKT is not by itself universal, but the universal relation (73) is
always satisfied.
As mentioned at the beginning, in the original paper by Kosterlitz and Thouless [2] it was ques-
tioned the possibility to realize a BKT transition in SC films. The objection arises from the fact
that in a charged superfluid, as is the case for superconductors, a vortex carries a supercurrent,
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Fig. 3: Superfluid-density measurements via the oscillator period shift ∆P (T ) of a torsion
pendulum for different films of pure 4He. Each curve corresponds to a different value of the
thickness d, such that ∆P (T=0) decreases with decreasing d. The intersection with the solid
line 2T/π represent the TBKT temperature as defined by the universal-jump relation (73). The
experimental data have been taken from Ref. [5].

that contributes itself to the interaction between vortices. In the usual 3D case this mechanism
cut-offs the interaction between vortices at a scale λ fixed by the penetration depth [25], leading
to a failure of the long-distance log interaction between vortices that is at the heart of the in-
teracting Hamiltonian (46). However, a crucial observation [33, 22] in this respect is that when
the SC system becomes a thin film, the interaction between vortices is screened by the super-
currents at a much larger distance Λ = λ2/d, set by the film thickness d itself, the so-called
Pearl length from the name of the scientist who discussed this issue for the first time [34]. An
additional effect is that when the film thickness decreases also the relative effects of disorder
increase, contributing to a significant increase of λ due to the paramagnetic suppression of the
superfluid density [25]. This implies that in practice, for sufficiently thin films with large dis-
order, where λ is very large, and for temperatures near the mean-field critical temperature Tc,
where J is further suppressed by thermal quasiparticle excitations, the electromagnetic screen-
ing effects come in at a scale Λ even larger than the system size, making the occurrence of a
BKT transition possible. It is worth noting that, on very general grounds, this discussion implies
that the BKT transition in charged superconductors is possible whenever d is very small or λ is
very large. From the relation (65) it follows that whatever mechanism suppresses n2d

s /m it also
leads to a large λ, allowing one for a description of the vortex interaction as the one expected
in a neutral superfluid. While in thin films of conventional superconductors [10] this usually
happens as an effect of disorder on n2d

s , in unconventional superconductors like the cuprates
this suppression is observed by proximity to a Mott phase, loosely speaking as an effect of
mass-renormalization enhancement [29]. In other words, systems with low intrinsic superfluid
rigidity are better candidates for the observation of BKT physics, since screening effects are
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BKT fit, obtained by using µ/J = 1.19 for d = 3 nm and µ/J = 0.61 for d = 6.5 nm. Notice
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relevant only above a very large Pearl length Λ. In addition, as we commented already before in
relation to Eq. (66), a low stiffness implies an energy scale for Js comparable to the mean-field
Tc, making in practice the intervale Tc−TBKT larger. To understand this, we should consider that
within BCS theory [25] the temperature-dependent bare stiffness J(T ) which enters the BKT
RG equations vanishes near Tc in a Ginzburg-Landau fashion [28] as

J(T ) ' J0

(
1− T

Tc

)
, (90)

where
J0 ∼ γJ(T=0), (91)

and γ is a constant of order 1. As a consequence, an order-of-magnitude estimate of the TBKT

temperature obtained by the universal relation (73) is

J0

(
1− T

Tc

)
=

2

π
TBKT ⇒ Tc − TBKT

Tc
=

1

1 + π
2
J0
Tc

. (92)

One then understands that as J0/Tc decreases, as it happens when the film thickness decreases
or the superfluid fraction is suppressed by disorder and/or correlations, the distance between Tc
and TBKT increases, making it easier to discriminate the two in experiments. In this view, the
mean-field temperature Tc can be interpreted as the temperature where pairing forms, so that the
amplitude fluctuations can be neglected at T < Tc and one goes back to an effective phase-only
model as the one assumed within the BKT approach. In this sense the BKT physics implies a
“preformed pairing” in a rather small temperature range, i.e., between Tc and TBKT.
The first observations of BKT physics in thin films of SC date back to the late 80’s. However,
they were not based on the direct measurement of Js, but rather to its indirect estimate via
I-V characteristics [8, 9], that we will discuss below. This is due to the fact that only in the
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late nineties emerged an experimental technique able to measure the penetration depth of thin
films via the so-called two-coil mutual inductance technique [35] (an experimental technique
triggered, as many others, mostly by the investigation of high-temperature cuprate superconduc-
tors). Fig. 4 shows one example of λ−2 measured in thin films of NbN, a conventional s-wave
superconductors, taken from Ref. [10]. As established in Eq. (65) above, this is directly pro-
portional to the superfluid stiffness Js(T ) of the system. Here one can recognize two different
theoretical curves: the fit of the low-temperature part JBCS(T ), which is based on a standard
BCS-like suppression of Js(T ), present also in 3D samples, and the BKT fit, that reproduces
the experimental observations, along with the universal 2T/π line, rescaled to get an inverse
length squared. As one can see, Js(T ) displays a rapid downturn around the intersection with
the 2T/π line, but this is not the sharp jump predicted by Eq. (73). This experimental finding
has been interpreted [10] as an effect of sample inhomogeneity, that one can phenomenolog-
ically model as a finite probability Pi of having a range of possible J is(0) values, leading to
different T iBKT temperatures. The measured Js(T ) appears then as an average of the different
J is(T ) realizations: since, according to Eq. (92), smaller J is(0) lead to smaller T iBKT, the averaged
Js(T ) will display a smeared jump, as observed experimentally. Even though the concept of
inhomogeneity has been introduced at the beginning as phenomenological, more recently [36]
we worked on a theoretical validation of it based on Monte Carlo simulations on a disordered
version of the XY-model (1)

HXY = −
∑
〈ij〉

Jij cos
(
θi−θj

)
, (93)

where the local couplings Jij have a finite randomness around an average value J̄ij that sets the
scale of the transition. The main point is that in principle one would expect that the universal
jump (73) is insensitive to the presence of randomness on the Jij coupling. The reason relies on
the so-called Harris criterium [37], which establishes under which condition finite-size effects
due to disorder are more relevant that the finite size L of the system itself. This estimate can
be done by considering that Tc can still be well identified if the temperature indetermination
|T − Tc| itself is larger that the Tc indetermination ∆Tc due to disorder, i.e. |T − Tc| � ∆Tc
as T → Tc. In D dimensions one can estimate ∆Tc by the following argument: let us assume
that the system is ordered on a typical scale of size ξ, the correlation length of the pure system,
and let us estimate the variance of the local values of Tc in the disorder system via the central
theorem, stating that it scales with the square root of the N possible values of the variable itself,
that in turn scales with the volume ξD. Thus we could say that

∆Tc ∼
1√
ξD(T )

=
1

ξD/2(T )
. (94)

If we plug into Eq. (94) the usual power-law scaling of ξ(T ) from Eq. (15) we obtain that
disorder-induced uncertainty in the transition is irrelevant when

|t| � 1/|t|νD/2 ⇒ ν > 2/D , (95)
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Fig. 5: Monte Carlo simulations on the disordered XY-model (93) for different types of disor-
der, implemented via the space structure of the local couplings Jij . (a) Diluted XY-model. In
this case P (Jij) = 1 with probability p. As one can see, as disorder increases the Js(T=0) is
suppressed, along with TBKT, but the universal relation (73) is always observed. Figure adapted
from Ref. [32]. (b) Correlated disorder, as generated via a quantum XY-model in random
transverse field. A typical map of the local coupling at the disorder level W/J = 10 is shown
in panel (c). More details on the generation of the maps of local couplings can be found in
Ref. [36]. In this case as the disorder strength W/J increases not only the overall scale of
the stiffness is suppressed (see inset), but the universal jump is progressively smeared out by
disorder. Figures adapted from Ref. [36]

with t = (T−Tc)/Tc. The reasoning is that under the condition (95) weak disorder decreases
under coarse graining and becomes unimportant on large length scales, making the clean critical
point stable against weak disorder. As we have seen before, in the BKT transition the corre-
lation length ξ(T ) diverges exponentially as T → TBKT, which means that ν = ∞ within the
context of the Harris criterium (the exponential is faster than any power law). One would then
conclude that the Harris criterium (95) is always satisfied for BKT physics, disorder is always
irrelevant, and the BKT jump (73) should be robust against disorder. Such a result holds in-
deed for uncorrelated short-range disorder, as it is shown in Fig. (5)a, where we show results
for a disordered XY-mode with link dilution [36]. However, when disorder is correlated, as
it happens, e.g., when the local coupling constants Jij have a “granular” structure, see Fig. 5c,
the Harris criterium does not hold and one could expect modifications of the BKT jump. Such
an effect has been proved by means of Monte Carlo simulations in Ref. [36]: here it has been
shown that when the Jij couplings realize a fragmented SC state the BKT jump is symmetri-
cally smeared out with respect to the expected transition, see Fig. 5b, in strong analogy with the
experimental observations in thin SC films as the one reported in Fig. 4. This result has been
explained in terms of an unconventional vortex-pairs nucleation in the granular SC state. In-
deed, the presence of large regions with low couplings Jij allows the system to nucleate several
vortex-antivortex pairs already well below TBKT, leading to a continuous downturn of the Js(T )

instead of the expected jump.

A second aspect relevant for the understanding of the BKT transition in real materials is the role
played by the vortex-core energy. Indeed, apart from the smearing of the jump, the measured
Js(T ) appears to deviate from the BCS behavior significantly before the intersection with the
BKT line 2T/π. As we discussed within the context of Fig. 2, this is an effect of the vortex-
antivortex pair renormalization of the stiffness that occurs already below TBKT, and it depends



10.28 Lara Benfatto

on the value of the vortex-core energy. Within the XY-model (1) there exists a single energy
scale, J , so that, when we mapped it into the continuum Coulomb-gas problem, the ratio µ/J
simply followed from the regularization of the functionG(r) at the length scale a of the original
lattice model, see Eqs. (42), (43) and (45). However, in a BCS superconductor one would rather
fix the value of the vortex-core energy by computing exactly the energy per unit-length of a
vortex line [25]

I =

(
Φ0

4πλ

)2(
log

λ

ξ0
+ ε

)
≡ πJ

(
log

λ

ξ0
+ ε

)
so that according to our definition µ = πεJ . A precise estimate of ε ' 0.497 for the vortex core
in three-dimensional geometry is given in Refs. [38, 39], so that within BCS theory one could
eventually expect values of µ significantly smaller than within the XY-model,

µBCS ' πJ/2 ' µXY /π. (96)

A similar result can be obtained by using a different argument, i.e., by estimating µ from the
condensation energy lost in creating the vortex core [10]. In this case one would put

µBCS = πξ20εcond, (97)

where εcond is the condensation-energy density. In the clean case Eq. (97) can be expressed in
terms of Js by means of the BCS relations for εcond and ξ0. Indeed, since εcond = dN(0)∆2/2,
whereN(0) is the density of states at the Fermi level,∆ is the BCS gap, and ξ0=ξBCS=~vF/π∆,
where vF is the Fermi velocity, assuming that ns=n at T=0, where n=2N(0)v2Fm/3, one has

µBCS =
π~2nsd

4m

3

π2
= πJs

3

π2
' 0.95Js , (98)

that is again of the same order of magnitude of Eq. (96) above. Interestingly, in Ref. [10]
it was observed that as the film thickness decreases, the ratio µ/Js extracted from the fitting
of the Js(T ) curve increases. This effect can be understood within a model for disordered
superconductors, resulting from an increasing separation between the energy scales associated
with the gap and the stiffness, that emerged as a signature of the superconductor-to-insulator
transition induced by disorder [40].
The possibility of observing BKT jumps has been discussed in a wide variety of thin films of
superconductors: besides the conventional NbN mentioned above, one could list InOx films,
cuprate superconductors, but also the 2D electron gas formed at the interface between artificial
heterostructures made of insulating oxides as LaAlO3/SrTiO3, LaTiO3/SrTiO3 [14,15] and more
recently even Al/KTiO3 interfaces [16]. A review of these systems and some relevant references
can be found in [20]. A related but slightly different issue is instead the observation of BKT
physics in bulk cuprate superconductors. In this case, one is dealing with a full 3D system, but
with weakly coupled SC layers. As we mentioned before, one could argue [29] that each unit
behaves as a 2D superconductor, with a characteristic effective thickness d corresponding to the
interlayer distance, with the interlayer coupling leading simply to a rounding of the BKT jump.
However, as we discussed in Ref. [19], this expectation is only partly realized, and actually the
effective BKT temperature of a layered 3D system can move considerably away from the BKT
temperature of each isolated unit as the vortex-core energy increases.
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7 Signature of BKT physics in other experimental quantities

7.1 I-V characteristics

As mentioned in the previous Section, direct measurements of the universal jump (73) of the su-
perfluid density were possible only from the middle nineties. Nonetheless, Halperin and Nelson
in their milestone paper on the applicability of BKT physics to superconductors [22] proposed
to access indirectly the Js jump via a measurement of the I-V characteristics below TBKT. The
basic idea is that below TBKT the vortices are bound in pairs: however, a large enough applied
current can unbind a certain fraction of vortices, leading to a power-law dependence of V on I
that is controlled by the superfluid stiffness. To understand how these two quantities are related,
let us consider a film of length L along x and width W along y, and let us consider a finite
current I along x, corresponding to a current density j = I/(Wd)x̂. This current produces
a force (Magnus force or Lorentz force) per unit length of the vortex line that moves vortices
perpendicularly with respect to j, with a direction determined by the sign of the vorticity εi=±1

f = εi js × ẑ
Φ0

c
. (99)

There are several way to derive Eq. (99): the easiest is to think that this is just a consequence of
the Lorentz force between the current and the magnetic field carried by the vortex [25], or that
f is analogous to the usual Magnus effect, where a lift force acts on a spinning object moving
through a fluid. The movement of vortices along y causes in turn an electric field Ex along x
that contrasts the applied current, giving rise to power dissipation to maintain a steady state. In
particular, Ex can be estimated as follows: each time a vortex drifts across the sample width W,
a phase slip of 2π occurs through the sample. The number of vortices that escape the sample
in the interval ∆t is nvvL∆t, where vL is the drift velocity of vortices along y and nv is the
(two-dimensional) density of free vortices. Thus the rate of phase slip is

d∆θ

dt
= 2πnvLvL . (100)

Thanks to the Josephson relation∆V = (~/2e) d∆θ/dt, this corresponds to a fieldEx = ∆V/L

equal to

Ex =
Φ0

c
nvvL . (101)

Notice that Eq. (101) can also be seen as a consequence of Faraday law: as soon as a vortex
escapes the sample there is a flux variation of Φ0, so that the induced electric field is E =

B×vL/c, that corresponds to Eq. (101), with B = nvΦ0. In the steady state the drift velocity vL
will be simply proportional to the applied Magnus force (99), so that

vL = µV f = −εiµV
jΦ0

c
ŷ , (102)

where µV = D/kBT is the vortex mobility and D is the diffusion constant of vortices. In
summary, we obtain that free-vortex motion gives a contribution to the resistivity of the material
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as

ρ =
Ex
j

=

(
h

2e

)2

nvµV . (103)

It is worth noting that Eq. (103) is a typical example of duality relation: indeed, the resistiv-
ity of the real (electronic) charges is expressed as a “conductivity” of the dual vortex charges
h/2e, given as usual by the charge squared times the density of charges and their mobility.
Eq. (103) can be further simplified by using the Bardeen-Stephen [25] expression for the vortex
mobility µV , derived by an estimate of the dissipation due to the (normal) vortex core

µV = 2πξ20c
2ρnΦ

2
0, (104)

where ρn is the normal-state resistivity and ξ0 is the correlation length, which sets the size of
the vortex core. By inserting Eq. (104) into Eq. (103) one obtains

ρ = ρn2πξ20nv. (105)

All the above discussion assumes that one has a finite density nv of free vortices. However,
below TBKT vortices are bound in pairs, and one would then expect to have zero resistance.
Nonetheless, when the applied current is large enough a finite free vortex density nv can be
induced even below TBKT. To understand it, we should consider how the magnus force (99)
modifies the interaction energy between vortices that we derived in Eq. (46): in particular, the
energy per unit length in a film of thickness d of a vortex-antivortex pair at distance r will now
read

E

d
=

2πJs
d

ln
r

ξ0
− f · r =

2πJs
d

ln
r

ξ0
− I

Wd

Φ0

c
y. (106)

As one can see, the log potential tends to confine (i.e. bind) the vortexes, while the current tends
to unbind them. The energy has a maximum at the scale where its derivative vanishes, i.e., when
∂E(y∗)/∂y = 0, where

y∗ =
2πJscW

IΦ0

. (107)

This means that for separations y > y∗ it becomes energetically favorable for a vortex pair
to unbind. Since the maximum separation between vortices is cut-off by the sample width W,
whenever y∗ > W the vortex pair cannot be dissociated within the sample. In contrast, when
the current is large enough to get y∗ ≤ W free vortexes are generated. The minimum current
required to unbind the vortices is then such that y∗ = W , so that

I∗ = 2πJs
c

Φ0

, (108)

and for I > I∗ a free vortex density nv(I) will be present. To estimate it one can use a kinetic-
like equation for nv such that

dnv
dt

= Γ (T, I)− n2
v (109)

where Γ is the rate at which vortices are unbound, and can be taken as e−E(y∗)/T, where E(y∗)

is the energy of a vortex pair at the threshold instability determined above. The second term in
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Eq. (109) accounts for the vortices recombining to form pairs again. In the steady state then one
has

nV = Γ 1/2 = e−E(y∗)/2T . (110)

From Eq. (105) we already established that ρ ∼ nv, where ρ = Ex/j ∝ V/I . We conclude that

V ∼ nvI. (111)

Let us then estimate nv by means of Eq. (110). By using the y∗ value (107) in Eq. (106) we get

E(y∗) = 2πJs ln
2πJscW

ξ0Φ0I
− 2πJsc

d
= 2πJs ln

I∗W

Iξ0
− 2πJsc

d
. (112)

Since only the first term depends on the applied current, we obtain from Eq. (110) that the
vortex density scales with the current I as

nv = e−E(y∗)/2T ∼ e−πJs ln(I
∗/I)/T =

(
I

I∗

)πJs/T
. (113)

When replaced into Eq. (111) this implies that above I∗ one should observe a non-linear I-V
characteristic controlled by the exponent

V ∝ Ia(T ), a(T ) =
πJs(T )

T
+ 1 . (114)

From Eq. (73), it follows then that a should jump discontinuously from a = 3 at T = T−BKT

to a = 1 at T = T+
BKT. Below TBKT, the exponent a is expected to increase with decreasing T

since the superfluid density increases. The extraction of the superfluid-density jump from the
exponent of I-V characteristics has been one of the very first demonstration of BKT physics
in thin films of superconductors [8, 9]. Later on, it has been used to characterize the BKT
transition in several systems, even when its application can be questioned (see Ref. [41] and
discussion therein). The main problem is the identification of the correct range of temperatures
and currents where Eq. (114) should be applied. As explained above, non-linearity is expected
only below TBKT and above I∗. In real samples even below TBKT finite-size effects always
lead to a finite nv even for I → 0, that is orders of magnitude smaller than the normal-state
one [42]. So the effect of vortex unbinding will manifest in the experiments as a deviation from
a linear characteristic to a non-linear one as I overcomes the threshold value I∗ for vortex-pair
proliferation [13, 41, 42]. To get an idea of its value, one can use the universal relation (73) to
replace 2πJs with 4kBTBKT in the previous equation. Then using c/Φ0 = 0.5·1015 A / J one has

I∗[A] =
c

Φ0

4kBTBKT ' 2.67 · 10−8 TBKT[K] (115)

In conventional superconductors where TBKT ∼ 10 K this corresponds to a current of order of
10−7 A. In experiments the crossover is observed for larger currents (usually around 10−5 A),
an effect that has been ascribed to sample inhomogeneity [42]. However, this also implies that
one should avoid to confuse the threshold current for vortex-pair unbinding with the real critical
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current of the superconductor, where Cooper pairs break down. In Ref. [41] it has been shown
how taking into account the effect of inhomogeneity on the smearing of the superfluid-density
jump, that we described before, one can get an excellent agreement between the Js(T ) depen-
dence extracted from direct measurements of the inverse penetration depth via two-coils mutual
inductance in NbN (see Fig. 4) and the one extracted from the I-V exponent (114). On the
other hand, as discussed in Ref. [41], there have been several examples in the literature where
the existence of BKT physics has been claimed based on the analysis of I-V non-linearity in
a wrong temperature/current regime. One paradigmatic example is provided by SrTiO3-based
oxide interfaces, where the SC transition has a considerable broadening, that seems to indicate
a percolative transition in a network of SC islands of micrometer size, rather that the inhomo-
geneity on nanometer scales observed in thin films of conventional superconductors, as NbN.
In this case non-linear I-V characteristics have been actually measured, but at temperatures
larger than the real Tc. In Ref. [41] we then argued that in these systems the non-linearity of
the I-V characteristics cannot be simply ascribed to vortex-antivortex unbinding triggered by
a large current, as it happens within the BKT scheme, since this would lead to dramatically
overestimate the BKT transition temperature. In contrast, the observed I-V characteristics can
be well reproduced theoretically by modeling the effect of mesoscopic inhomogeneity of the
superconducting state, as a consequence of pair-breaking effects in the weaker SC regions, that
leads to a progressive non-linear increase of the voltage as the driving current increases, see
Fig. 6. In general, one should be very careful in drawing any conclusion about BKT physics
for non-linear characteristics measured above the real transition temperature, i.e., the one where
resistivity drops to zero (within the available experimental resolution).

7.2 Vortex contribution to transport: paraconductivity

A second possible identification of a BKT transition, still related to vortex transport, is con-
nected to the temperature dependence of the resistivity as one approaches TBKT from above, that
can be used to experimentally determine the characteristic exponential divergence of ξ(T ) that
we derived in Eq. (89) above. As we mentioned, this temperature variation is radically different
from the usual power-law divergence (15) observed for ordinary Ginzburg-Landau (GL) fluctu-
ations, where ξ2GL ∼ Tc/(T−Tc) as one approaches Tc from above. The difference between the
two regimes can be eventually tested experimentally by extracting the temperature dependence
of the so-called paraconductivity, i.e., the contribution of SC (amplitude and phase) fluctuations
to the conductivity. Indeed, both within GL and BKT theory [22] the contribution σs of SC fluc-
tuations to the normal-state conductivity σN diverges as T approaches the transition temperature
as ξ2

σs
σN

=

(
ξ(T )

ξ0

)2

. (116)

Within GL theory the above result is the consequence of SC fluctuations of the order parame-
ter, that can be technically understood as the so-called Aslamazov-Larkin correction to the bare
current-current correlation function with Cooper-pair fluctuations above the critical temperature
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Fig. 6: Adapted from Ref. [41]. Sketch of the difference between I-V non-linearity arising
from BKT physics and from inhomogeneity. In the BKT case, the vortices, which are bound
below TBKT in pairs with opposite vorticity (a), get unbound by a sufficiently large current I (b).
This generates an extra voltage drop proportional to the average density of unbound vortices,
leading to nonlinear characteristics, as given by Eq. (114). In the case of inhomogeneous
superconductors, instead, the system segregates into puddles with different strength of the local
SC condensate (c). As a consequence, a finite applied current I can turn weak SC puddles into
normal ones (d), nonlinearly increasing the global resistivity.

Tc [43]. The main theoretical paradigm behind this result is the idea that one can describe SC
fluctuations above Tc via a Gaussian GL functional, where the fluctuations of the complex order
parameter are described by a diffusive mode, that dresses the metallic fermionic response. In
this view such Gaussian fluctuations do not distinguish the amplitude from the phase (a distinc-
tion that is only possible below Tc), and essentially describe the incipient formation of Cooper
pairs with size ξ(T ) above Tc. The progressive divergence of σ as ξ(T ) increases by approach-
ing Tc, encoded in Eq. (116), is an indication of the formation of fluctuating Cooper pairs with
increasing size. As a consequence the resistivity, given by ρ = 1/(σN+σs), decreases contin-
uously to zero in the range of temperatures where ξ(T ) increases. This effect is then expected
to be present regardless of the dimensionality of the system: all non-universal effects, that ac-
count for example for the range of temperatures where the paraconductivity can be appreciated
experimentally, depend on the specific parameters of the GL functional, that are not universal.
A detailed description of GL fluctuations can be found in Ref. [43].
Within the BKT theory one should then expect, as suggested by Halperin and Nelson in [22],
that as T decreases one first observes a regime of GL fluctuations, and then a BKT fluctuation
regime between the mean-field temperature Tc (that one would observe in the 3D case) and
the 2D BKT temperature TBKT. This corresponds to the same range of temperatures where
the stiffness is suddenly suppressed by vortex proliferation, as discussed above. To make a
correspondence between the GL and the BKT result for the paraconductivity let us go back to
Eq. (105) above, where we established a general relation between the dissipative motion of free
vortices and the vortex density nv. While in the previous Section we derived the vortex density
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induced below TBKT by a large current nv(I), above TBKT we already have a finite nv(T ) due to
the thermal dissociation of vortex-antivortex pairs. In particular, since ξ is the scale where the
superfluid density vanishes above TBKT, we can identify

nv ≡
1

2πξ2(T )
(117)

so that from Eq. (105) we obtain exactly the form (116), provided that ξ(T ) is given by eq. (89).
In principle, the experimental determination of such exponential behavior via paraconductivity
measurements could represent a clear signature of BKT physics. However, as the above discus-
sion demonstrates, the validity of Eq. (89) is limited to a narrow range of temperatures between
Tc and TBKT. In addition, the value of the parameters appearing in the BKT correlation length
ξ ∼ ae−b/

√
t are not arbitrary, since they depend on the distance (92) between Tc and TBKT, as

originally discussed in Ref. [22], and on the value µ of the vortex-core energy, as more recently
discussed in Ref. [42], where it has been shown that

b = 2
µ

µXY

√
Tc − TBKT

TBKT
. (118)

For conventional superconductors, such as NbN, usually
√

Tc−TBKT
TBKT

∼ 0.1, while µ/µXY ∼ 0.5,
as estimated by the fit of Js(T ) in [10]. In general, all these parameters are constrained one to
the other. However, it is not uncommon in the literature that a fit to the resistivity ρ(T ) above Tc
is attempted with a BKT formula like Eq. (116), without a check a-posteriori that the obtained
b value is consistent with its expression via Eq. (118). Some examples of potential problems of
this kind are discussed in Ref. [42, 41].

8 Conclusions

In this lecture I gave an introductory overview on the properties of the BKT transition, as it was
originally formulated within the classical XY-model, the Coulomb-gas model and the sine-
Gordon model. The mapping among these physically different problems turned out to be useful
for the analytical derivation of various properties, including the celebrated RG equations. The
two most spectacular effects obtained by the RG equations are the universal and discontinuous
jump of the superfluid stiffness as the transition is approached from below, and the exponential
divergence of the correlation length as the transition is approached from above. I then discussed
how these rather specific signatures can be observed in real materials, focusing in particular
on the case of superconducting systems. My personal view after several years of intense work
in close connection with experiments is that BKT physics has been clearly observed in some
cases, but often in the literature the observation of BKT signatures has been based on a naive
application of the celebrated BKT formulas. This caveat should be taken by the readers to
develop a critical attitude towards the identification of BKT signatures in experiments.
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Appendix

A Averages over Gaussian variables

To understand Eq. (11) let us consider a generic Gaussian model with real variables u(r) ≡
(1/Ω)

∑
q e

iq·ruq (where Ω is the volume) whose Hamiltonian in momentum space reads

H =
1

2

∑
q

G(q) |uq|2. (119)

To compute the partition function let us define the integrals over the complex variables uq in
the usual way ∫

duqdu
∗
q

2πi
e−auqu

∗
q ≡

∫
dReuq d Imuq

π
e−auqu

∗
q =

1

a
, (120)∫

duqdu
∗
q

2πi
uqu

∗
qe
−auqu∗q =

1

a2
. (121)

Since we have only N independent u(r) variables we use the relation u∗q = u−q to halve the
number of allowed q values in Eq. (119), so that

H =
1

Ω

∑
q>0

G(q)
(
(Reuq)2 + (Imuq)2

)
, (122)

where we used the symbolic short-hand notation ”q > 0”. We can then easily compute the
partition function as

Z =

∫
Du e−βH[u] =

∏
q>0

(
Ω

βG(q)

)
, (123)

while the average values read

〈uquq′〉 = δq+q′
Ω

βG(q)
. (124)

Finally, one can easily get the average values of exponential of linear functions in the u vari-
ables. Indeed, if we define in general

R(r) =
1

Ω

∑
q

uqC−q(r), (125)

we see that〈
eiR(r)

〉
=

1

Z

∫
Du e−

1
Ω

∑
q>0G(q)uqu−q+

i
2Ω

∑
q>0 uqC−q(r)+

i
2Ω

∑
q>0 u−qCq(r)

=
1

Z

∫
Du e−

1
Ω

∑
q>0G(q)[uq−iCq/2G(q)][u−q−iC−q/2G(q)]e−

1
2Ω

∑
q

CqC−q
G(q) = e−

1
2
〈[R(r)]2〉

(126)
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