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Preface
Emergent phenomena are the essence of condensed-matter physics and at the same time what
makes the behavior of correlated materials appealing for applications. They are, however, hard
to understand at a fundamental level. It is the interplay of several competing interactions—
none of which can be treated as a mere perturbation, leading to the emergence of effective
interactions—that makes their description a grand challenge. Addressing it requires mastery of
a wide spectrum of theoretical concepts, ranging from materials modeling using first-principles
approaches to advanced many-body methods based on dynamical mean-fields, stochastic simu-
lations and renormalization techniques. The concepts of symmetry, topological invariance and
the classification of transitions between phases are of crucial importance to bring order to the
plethora of observed phenomena. The goal of this year’s school is to provide students with an
overview of the state-of-the-art in the field of emergent phases in strongly correlated systems
and the many techniques used to investigate them. After introducing the fundamental models
and concepts, lectures will turn to emergent phenomena, focusing on superconductivity, Kondo
behavior, Mott phases, quantum magnetism, and Kosterlitz-Thouless transitions. Experimental
lectures will explore phenomena under normal and extreme conditions.

A school of this size and scope requires backing from many sources. We are very grateful for
all the practical and financial support we have received. The Institute for Advanced Simulation
at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the major part
of the funding and were vital for the organization of the school as well as for the production
of this book. The Institute for Complex Adaptive Matter (ICAM) continued also this year to
endorse the school and supplied additional funds.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly-correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Elaheh Adibi, Amit Chauhan, Qiwei
Li, and Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini and Erik Koch

August 2024
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1.2 Martin R. Zirnbauer

1 Introduction

Symmetries have played a major role in the development of physics from ancient history to
modern times – be it as exact symmetries leading to exact conservation laws by Noether’s the-
orem and its variants, or as approximate symmetries providing a guide to the essential features
of a physical system. In the twentieth century, a major physics strand was the development of
the Landau theory (or Landau-Wilson-Ginzburg paradigm) of phase transitions. The hypothesis
there was that thermodynamic phases and phase transitions between them can be characterized
by the appearance (or disappearance) of a so-called order parameter breaking a continuous or
discrete symmetry. Now in recent decades that Landau paradigm was challenged by the discov-
ery of a variety of topological states of matter and quantum phase transitions, where different
phases are not distinguished by symmetry breaking but rather by some kind of topological in-
variant taking different values in different phases. Intriguingly, this challenge to the Landau
framework has in turn been counter-challenged in recent years: it is currently being investi-
gated [1] whether topological (non-Landau) phase transitions could still be subsumed under a
generalized Landau framework invoking a generalized symmetry concept called higher-form
symmetries, where the conserved “charges” may be magnetic fluxes and or higher-dimensional
analogs thereof. Motivated by that general setting, the present lecture focuses on just one detail
out of the grand picture: particle-hole symmetry as one of the anti-unitary symmetries that play
a role in the classification of so-called symmetry-protected topological phases.

In developing the concept of symmetries and their consequences, we are somewhat hampered
by the fact that there exists no consensus as to what exactly is meant by a “symmetry” in
quantum mechanics. Therefore, our lecture begins with an attempt to offer various definitions
and clarifications. Quantum symmetries in our sense act primarily on quantum states, and by
Wigner’s Theorem they lift to unitary or anti-unitary operations on the Fock-Hilbert space of the
quantum system. Since the energy of a stable system (quantum or not) is bounded from below
by the ground-state energy (which we may take to be zero), it follows that any operation of
symmetry must transform positive-energy eigenstates into other positive-energy eigenstates. So,
operations that anticommute with the Hamiltonian (and hence reverses the sign of the energy)
cannot qualify as symmetries. Examples of such non-symmetries are chiral “symmetry” or
sublattice “symmetry”, and Bogoliubov-deGennes “symmetry”. We also emphasize that there
exists no such thing as a gauge “symmetry”; in fact, gauge invariance can never be broken,
neither explicitly nor spontaneously, whereas symmetries can be.

The cacophony of language is particularly severe in the case of particle-hole symmetries. Major
review articles say that every superconductor is particle-hole symmetric. We strongly discour-
age the use of such language, as it confuses the notion of symmetry with a structural element
of the theoretical formalism. In a similar vein, particle-hole symmetries (usually of antilin-
ear type) must not be confused with the linear symmetry of charge conjugation, which plays
a prominent role in the relativistic quantum theory of the Dirac field (as part of the CPT the-
orem). Understood in our sense, the transformation of a particle-hole symmetry exchanges
particle-like excitations of a Fermi-liquid state with hole-like excitations. Acting on a single
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band, it transforms the Fock vacuum into the totally occupied state. As such it can be a symme-
try of the ground state only in a situation of half filling. An informative comparison is with the
operation of time-reversal symmetry T : while T acts on (charge density, current density, elec-
tric field, magnetic field) as (ρ, j;E,B) 7→ (ρ,−j;E,−B), a particle-hole symmetry acts as
(ρ, j;E,B) 7→ (−ρ, j;−E,B). Complementary to the anti-unitary symmetry of time reversal,
particle-hole symmetries are phenomenologically relevant for systems in zero electric field but
nonzero magnetic field.
The present lecture is an excerpt from a review article [2] written a few years ago. Following our
basic definitions and list of non-symmetries, we will illustrate the notion of particle-hole sym-
metry at the example of the Su-Schrieffer-Heeger model and the Kitaev-Majorana chain. Then,
simplifying some of the mathematical abstractions in [2], we define particle-hole symmetry in-
variantly, i.e., without fixing any preferred single-particle basis of Hilbert space. We finish the
lecture with the fascinating story of composite fermions in the half-filled lowest Landau level.

2 What’s a symmetry in quantum mechanics?

In the general setting of quantum theory (and other theories, for that matter) one has two basic
structures: observables and states. These are dual to each other in that there is a pairing between
them, viz. the operation of taking the expectation value of an observable in a state,

observables ⊗ states→ real numbers. (1)

Physical observables are realized as self-adjoint operators A = A† on a Hilbert space V. The
same goes for states, by what is known as the state’s density matrix, ρ, a positive self-adjoint
operator of unit trace:

ρ = ρ†, 0 ≤ ρ ≤ 1, TrV ρ = 1. (2)

Adopting the Hilbert-space realization, one writes the pairing (1) as a trace:

A⊗ ρ 7→ TrV ρA. (3)

The (square of the) overlap between two states (sometimes called the “transition probability”
for short) is

Wf←i = TrV ρfρi . (4)

The observables A,B, . . . of quantum theory form an associative algebra: (AB)C = A(BC).
For present purposes, note that an automorphism of the operator algebra is a transformation
A 7→ S(A) that preserves the operator product,

S(AB) = S(A)S(B). (5)

Since the algebra of quantum observables is an algebra over C (the complex numbers) one
distinguishes between two kinds of automorphism:

S linear : S(λA) = λS(A) (λ ∈ C), (6)

S antilinear : S(λA) = λ̄S(A). (7)
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Remark. The bar operation λ → λ̄ denotes complex conjugation, i.e. the operation fixing the
real axis and inverting the imaginary axis:

(Reλ, Imλ) 7→ (Reλ,− Imλ). (8)

It should be stressed that (8) is just one out of many automorphisms of C, and from the algebraic
viewpoint there is nothing special about the real axis. Indeed, reflection at any line through zero
in C does the same job. If there is only one copy of C in play, one will simply define the real
axis to be that special line of reflection! This freedom of simplification no longer exists for
a complex vector space V ∼= Cn of dimension n > 1, as one can make different choices of
“real axis” in the different subspaces of V. This prompts a warning: in the absence of further
structure, no a priori notion of complex conjugation exists for a complex vector space V with
dimV > 1.
Now, what do we mean by a symmetry in quantum mechanics? There are two sets of require-
ments. The first set is this:

• A symmetry operation, S, is a transformation of the space of states, 0 ≤ ρ 7→ S(ρ) ≥ 0.

• S leaves all transition probabilities invariant:

TrV S(ρf )S(ρi) = TrV ρfρi . (9)

Note that we have been careful to introduce symmetry operations S as transformation on the
space of states or density matrices. This prompts the natural question whether S [subject to
condition (9)] lifts to an operator on the Hilbert space V. In other words, one asks whether
there exists an operator Ŝ : V → V, ψ 7→ Ŝψ such that

S(ρ) = Ŝ ◦ ρ ◦ Ŝ−1. (10)

The answer to this question turns out to be YES and is known as Wigner’s Theorem (see [3] for
an old and [4] for a modern proof). One has to distinguish between two cases. For a given S,
the operator Ŝ is either unitary, 〈

Ŝψf , Ŝψi
〉

= 〈ψf , ψi〉, (11)

or anti-unitary, 〈
Ŝψf , Ŝψi

〉
= 〈ψf , ψi〉. (12)

Here, 〈ψf , ψi〉 denotes the Hermitian scalar product of the quantum Hilbert space V.
Having introduced the basics of symmetry operations on states, let us now turn to the dual side
of physical observables. On general grounds, an operation ρ 7→ S(ρ) on states induces an
operation A 7→ S ′(A) on observables. This comes about because the pairing between states
and observables is required to be invariant: the expectation value of the symmetry-transformed
observable S ′(A) in the symmetry-transformed state S(ρ) must be equal to the expectation
value of A in the state ρ. In the realization of both A and ρ as operators on V, this forces that

S ′(A) = Ŝ ◦ A ◦ Ŝ−1. (13)
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Remark. It follows that a symmetry operation is automatically an automorphism of the algebra
of observables: S ′(AB) = S ′(A)S ′(B).

Next comes an important inference. Recall that the density matrix ρ of any state (pure or mixed)
in quantum mechanics is a semi-positive self-adjoint operator of unit trace. In particular, ρ has
the property ρ ≥ 0, and this property has to be preserved by symmetry transformations. By
the principle of invariant pairing between states and observables, it follows that a symmetry
operation takes a semi-positive observable A to another such observable:

A ≥ 0⇒ S ′(A) = ŜAŜ−1 ≥ 0. (14)

Now, any Hamiltonian H in quantum mechanics must be bounded from below (or else the
theory would not have a ground state) to be acceptable. As an operator bounded from below,
H can be made positive by shifting the zero on the energy axis. Applied to the Hamiltonian,
Eq. (14) says that H ≥ 0 remains positive under any symmetry transformation. Thus an opera-
tion (such as “chiral symmetry” or “sublattice symmetry”, see Sect. 4) that reverses the sign of
the Hamiltonian does not qualify as a symmetry.

The set of symmetry operations we have described so far is a large set containing many “silly”
operations that are of little practical consequence and interest. We shall now sharpen the sym-
metry concept by adding a restriction: by a symmetry (in the true and final sense) we mean an
operation that leaves the quantum dynamics invariant (i.e., maps solutions to solutions). Then,
to decide the question of symmetry or no symmetry, we need a model of quantum dynamics.
For a prototype we may look at the Schrödinger equation of single-particle quantum mechanics,

i~ ∂tψ = Hψ . (15)

We see that if ψ is a solution of Eq. (15) and ψ 7→ Ŝψ is a unitary operation, then Ŝψ is a
solution if the operator Ŝ commutes with the Hamiltonian:

Ŝ ◦H ◦ Ŝ−1 = H. (16)

In the case of an anti-unitary operation, Ŝ iŜ−1 = −i, we still have a symmetry if Eq. (16) holds,
provided that one qualification is made: solutions with time running forward get transformed
by Ŝ to solutions with time running backward, as i→ −i is to be compensated by ∂t → −∂t.
In summary, a symmetry in quantum mechanics is subject to two conditions: (i) acting on the
space of states it preserves all transition probabilities, and (ii) acting on the space of observables
it commutes with the Hamiltonian, or the generator of the quantum dynamics.
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3 Quantum billiard with magnetic fluxes

While our focus in the main part of this lecture will be on anti-unitary symmetries of particle-
hole type, let us begin with a few words on a famous (and non-controversial) cousin, namely
time reversal T. By non-relativistic reduction of the time-reversal operation on Dirac spinors,
T acts on spinful electrons as an antilinear operation with square T 2 = −1. The presence
of the minus sign has an important consequence known as Kramers degeneracy, as follows.
Let T be a symmetry (TH = HT ). Then if ψ is an eigenvector of H , so is Tψ. Assuming
the proportionality Tψ ?

= λψ (λ ∈ C), one quickly gets a contradiction with Tλ = λ̄T and
T 2 = −1. It follows that ψ and Tψ must be linearly independent. Thus they form a so-
called Kramers pair {ψ, Tψ} of degenerate energy eigenvectors. (As a brief aside, this kind of
Kramers pair rose to prominence in recent activities on the quantum spin Hall effect.)
We now present an example showing that T -symmetry may have non-trivial consequences even
in the absence of spin (when T 2 = +1). Consider the quantum chaotic billiard of a spinless
free particle moving in a compact domain with von Neumann boundary conditions at the con-
cave boundary. Let the billiard have fourfold rotational symmetry. Assume that the quantum
particle is charged and that four magnetic flux insertions with alternating circulation reduce the
rotational symmetry to a twofold one as shown in Fig. 1.
The group of unitary symmetries of this system is Z2 = {Id, Rπ}, consisting of the neutral
element and rotation through π about the central point. In this simple example, the Hilbert
space of a single particle decomposes into two subspaces: the Rπ-even and the Rπ-odd states.
The magnetic billiard also has two anti-unitary symmetries; these are time reversal followed
by rotation through either +π/2 or −π/2 (to restore the magnetic circulation). Denote the
first of these by T ′ ≡ Rπ/2 ◦ T. Because time reversal commutes with space rotations, so
does T ′. Moreover, the anti-unitary operator T ′ squares to Rπ and thus to +1 on the Rπ-
even and −1 on the Rπ-odd sector. As a result, there exists a qualitative difference between
the energy spectra for the two sectors: the Rπ-even eigenstates generically come with non-
degenerate energy eigenvalues, whereas theRπ-odd eigenstates organize into Kramers doublets.
(Speaking the language of the Tenfold Way [5], the Rπ-even sector is of symmetry type AI,
while the Rπ-odd sector is of symmetry type AII.)

4 “Symmetries” that aren’t symmetries

Having given a reasonably precise definition and a simple example of what we mean by a
symmetry, we now address the real-life complication that “symmetry” is often used in a sloppy
and even misleading sense.
The literature often speaks of gauge “symmetries”. This prompts us to emphasize that electro-
magnetic gauge invariance is not a symmetry in our sense. Rather, gauge invariance is simply a
consistency condition, which arises because one prefers (for convenience, not by necessity) to
work with gauge-dependent quantities, even though the physics is gauge-invariant and a formu-
lation avoiding gauge fields altogether would in principle be feasible. (Indeed, mathematically
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Fig. 1: Quantum billiard with four magnetic flux insertions that alternate in circulation. The
symmetry group is G = Z4 =

{
T ′0, T ′1, T ′2, T ′3

}
generated by time reversal in combination

with rotation by an angle of π/2.

speaking, the wave functions of quantum mechanics are sections of a complex vector bundle
and as such invariant under gauge transformations.) The crux of the matter can be explained by
way of an informative analogy: in principle, a vector v in a vector space is invariantly defined,
but in practice one expresses it by its components with respect to one basis or another:

v =
∑

ei v
i =

∑
ẽi ṽ

i. (17)

Choosing a fixed basis {ei} is like “fixing the gauge”, and changing to another basis {ẽi}
amounts to making a gauge transformation. Gauge invariance in this context is the simple
fact that any expression with physical meaning can depend on the components vi or ṽi only
in a way that allows the expression to be rewritten in terms of the invariantly defined vector
v (without invoking any basis). Once it is understood that gauge invariance is no more than a
consistency condition, it is clear that:

• Gauge “symmetries” can never be broken, neither explicitly nor spontaneously (whereas
symmetries can be broken).

• Gauge “symmetries” do not entail any conservation laws (whereas continuous symmetries
do, by Noether’s principle).

In particular, the conservation of electric charge should not be attributed to local U(1) electro-
magnetic gauge invariance (as is often done). We will not go deeper into this subject here, but
refer our audience to the literature [6, 7].
Our next non-symmetry is chiral “symmetry”, also known as a sublattice “symmetry” in the
condensed matter context. So, assuming the setting of a lattice, consider a bipartite system
whose Hilbert space V decomposes as V = VA⊕VB. Let the Hamiltonian be off-diagonal with
respect to that decomposition:

H = HA←B +HB←A . (18)
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If one defines a so-called sublattice transformation S by reversing the sign of the wave function,
say, on the B-sublattice S : ψA + ψB 7→ ψA − ψB, then S anticommutes with H:

SH = −HS. (19)

This is an example of a chiral or sublattice “symmetry”. Since S does not commute with the
Hamiltonian, it is not a true symmetry in our sense. (It can, however, be turned into a symmetry
in a suitable many-fermion setting; cf. Sect. 6.)
Another non-symmetry to be mentioned here is the particle-hole “symmetry” of the Bogoliubov-
deGennes equations for a superconductor treated in the Hartree-Fock-Bogoliubov mean-field
approximation. To spell that out, we invoke the formalism of second quantization (which we
assume to be understood). Written in terms of the creation (c†) and annihilation (c) operators for
some choice of single-particle basis, the second-quantized Hamiltonian is of the general form

H =
∑
ij

(
Aijc

†
icj + 1

2
Bijc

†
ic
†
j + 1

2
Cijcicj

)
, Aij = Aji, Cij = Bji = −Cji . (20)

The information contained in H can be recast as a matrix with block structure by organizing the
expression as

H = 1
2

∑
ij

(
c†i ci

)(Aij Bij

Cij −Aij

)(
cj
c†j

)
+ const. (21)

The resulting matrix h,

h ≡

(
A B

C −A

)
, (22)

or written in tensor-product notation,

h = A⊗ 1
2
(1+σ3) +B ⊗ σ+ + C ⊗ σ− − A⊗ 1

2
(1−σ3), (23)

is Hermitian (h† = h), and by construction it always satisfies the relation

h = −Σ1 hΣ1 , Σ1 = 1⊗ σ1 . (24)

The matrix h is known the Bogoliubov-deGennes (BdG) “Hamiltonian”, and the relation (24)
is sometimes called the “particle-hole symmetry” of the BdG Hamiltonian – with the bizarre
corollary that every superconductor is particle-hole symmetric (?!). In actual fact, neither is h a
Hamiltonian, as it is not bounded from below in general, nor is the relation (24) a symmetry in
the proper sense. Indeed, that relation is no more than a reflection of (h = h† and) the canonical
anticommutation (CAR) relations for fermion Fock operators:

c†ic
†
j + c†jc

†
i = 0 = cicj + cjci , c†icj + cjc

†
i = δij . (25)

Since these CAR relations constitute an algebraic foundation that cannot ever be violated, the
relation (24) should really be attributed to the structure of the theoretical formalism, not to any
symmetry of the Hamiltonian.
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5 The conundrum of charge conjugation

Having gone through a list of popular “symmetries” that aren’t symmetries, we now turn to a
true symmetry which, however, is not a particle-hole symmetry: charge conjugation.
Charge conjugation is a symmetry operation of the relativistic quantum theory of the Dirac field.
It is one of the protagonists of the CPT-theorem, which states that any relativistic QFT with
“reasonable” properties must be invariant under the combined operations of charge conjugation,
parity transformation, and time reversal. A main stay in the realm of particle physics, charge
conjugation has also come up in condensed matter physics, although it is of little relevance
there. Let us spend a few words about it.
For a newcomer to the field, the situation with charge conjugation C may seem somewhat
confusing. One the one hand, charge conjugation can be seen as an operation that transforms
solutions of the Dirac equation to other solutions. As such, it is anti-unitary [8]. Indeed, the
Dirac equation for a relativistic Dirac particle with mass m and momentum p is

i~ ∂tψ = hψ , h = βmc2 + c
∑

αl pl , pl =
1

i

∂

∂xl
(26)

(in zero electromagnetic field). A popular choice for the Dirac matrices β and αl is

β =

(
1 0

0 −1

)
, αl =

(
0 σl
σl 0

)
(l = 1, 2, 3).

For that choice, one checks that solutions t 7→ ψ(·, t) of the Dirac equation map to solution
t 7→ Cψ(·, t) (with the time t still running forward) by the transformation

Cψ = βα2ψ, (27)

which is antilinear. On the other hand, authoritative texts [9] state that charge conjugation is a
linear operation, hence a unitary symmetry of the quantized Dirac field theory.
What’s the resolution of this conundrum? In short, it is necessary to distinguish between two
closely related but different notions. The anti-unitary operation C in (27) is no more (and no
less) than a symmetry of the Dirac equation, which for present purposes is best viewed as a
classical field equation. To arrive at a satisfactory quantum theory, some processing needs to
be done; in particular, one has to come up with a good Fock vacuum (the “Dirac sea” of filled
negative-energy states) converting the sign-indefinite h of the Dirac equation into an operator
bounded from below. It turns out that the appropriate process of quantization does not take the
anti-unitary symmetry C of the Dirac equation (26) to an operation acting on the Fock-Hilbert
space of the quantum theory. To obtain something meaningful, C must be composed with
a second antilinear operation (essentially, the Dirac ket-to-bra bijection, a.k.a. Fréchet-Riesz
isomorphism), so that the finished product, Ĉ, is complex linear and unitary.
For a quick diagnostic of what’s wrong with C, one observes that Ch = −hC. Thus in view of
our mantra that symmetries always commute with the Hamiltonian, we have to concede that (i)
either h is not the Hamiltonian, or (ii) C cannot be a symmetry. We’ll leave it at that here and
refer to the Appendix for more detail.
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The take-away message here is that charge conjugation, properly understood as an operation on
Fock-Hilbert space, is a unitary transformation. A brief characterization is

(ρ, j)
C−→ (−ρ,−j),

(
E,B

) C−→
(
− E,−B

)
. (28)

In most (if not all) condensed matter settings of interest, at least one of the components E,B of
the electromagnetic field will be present. Therefore, charge conjugation symmetries are of little
relevance to condensed matter physics.
To summarize, particle-hole symmetry should not be confused with charge conjugation sym-
metry. The latter is unitary whereas the former is anti-unitary. The electromagnetic field (E,B)

is sent by the latter to (−E,−B), but by the former to (−E,B).

6 Su-Schrieffer-Heeger model

Building on the non-example of chiral “symmetry”, we now develop our first example of a true
symmetry of particle-hole type. We adopt an informal style (relegating the more formal aspects
to the following section) and first convey the basic and general idea.
Let us recycle from Sect. 4 the setting of a bipartite system (with sublattices A and B) and
Hilbert space decomposition V = VA ⊕ VB. We then second-quantize the Hamiltonian of
Eq. (18) as an operator acting on the fermionic Fock space generated by V :

H =
∑
ij

(
c†AiHAi,Bj cBj + c†BjHBj,Ai cAi

)
. (29)

Consider now transforming the operator algebra by an automorphism K which is defined by

K(cAi) = c†Ai , K(cBj) = −c†Bj , (30)

in conjunction with the property of being antilinear and involutive:

K(HAi,Bj) = HAi,Bj , K2 = Id. (31)

It is easy to see that this operation K leaves the Hamiltonian invariant:

K(H) =
∑
ij

(
K(c†Ai)K(HAi,Bj)K(cBj) +K(c†Bj)K(HBj,Ai)K(cAi)

)
=
∑
ij

(
cAiHBj,Ai

(
−c†Bj

)
− cBjHAi,Bj c

†
Ai

)
= H, (32)

where in the last step we used the CAR relations to restore normal ordering, putting annihilation
operators in the right and creation operators in the left position. K satisfies all the structural
requirements posited in the opening section (i.e., it is an automorphism of the operator algebra
and preserves all transition probabilities). Hence the relation K(H) = H tells us that K is a
symmetry of the many-fermion system with Hamiltonian H . Since K is antilinear, the sym-
metry is of anti-unitary type. We note that K is qualitatively different from the anti-unitary
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symmetry of time reversal T : the latter transforms creation operators amongst themselves and
annihilation operators amongst themselves, whereas the former mixes/exchanges creation with
annihilation operators. (For that reason, K was called a “mixing symmetry” in the foundational
paper [5].)
Let us now take the general setting of a bipartite system and specialize it to a model actively
studied in contemporary condensed matter physics. For this we associate one single-particle
state with each site of a one-dimensional chain of sites labeled by the integers n ∈ Z. The
single-particle states on even sites (n ∈ 2Z) span the subspace VA, those on odd sites span VB .
The Hamiltonian is a kinetic energy of hopping between adjacent sites

Hkin =
∑
n∈Z

(
tn+1,n c

†
n+1cn + tn,n+1 c

†
ncn+1

)
, tn,n+1 = tn+1,n. (33)

This Hamiltonian has the particle-hole symmetry K(Hkin) = Hkin given by

K(cn) = (−1)nc†n , K(c†n) = (−1)ncn , K(i) = −i . (34)

Notice that there is no condition on the hopping amplitudes tn,n+1: these can be complex and
even n-dependent in some random way and K will still be a symmetry.
We now take a closer look at translation-invariant systems with real hopping: tn,n+1 ≡ −t0 ∈
R+. In that case, it is useful to transform to the momentum representation by introducing

ak =
∑
n∈Z

e−ikncn , a†k =
∑
n∈Z

e+iknc†n (k ∈ R/2πZ). (35)

Note that these momentum-space operators satisfy the anticommutation relations

a†kak′ + ak′a
†
k = 2π δ(k−k′). (36)

The Hamiltonian H ≡ Hkin of the translation-invariant system then takes the diagonal form

H =

∫
dk

2π
ε(k) a†kak , ε(k) = −t0 cos k. (37)

In the momentum basis, the operation K of particle-hole symmetry acts as

K(ak) = a†k+π , K(a†k) = ak+π , K(i) = −i . (38)

Note thatK(H) = H holds more generally for any k-odd dispersion relation ε(k±π) = −ε(k).
The situation is illustrated graphically in Fig. 2 for the cosine band ε(k) = −t0 cos k. The
figure also indicates the fact that the lift K̂ of K to the many-fermion Fock space leaves the
free-fermion ground state invariant only if the cosine band is at half filling.
Finally, in order to arrive at the Su-Schrieffer-Heeger (SSH, [10]) model, one staggers the hop-
ping amplitude:

0 < t0 = t2n−1,2n < t1 = t2n,2n+1. (39)

Thus the chain alternates between weak bonds (with hopping amplitude t0) and strong bonds
(amplitude t1 > t0). The alternation reduces the group of translation symmetries from Z to 2Z
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Fig. 2: Particle-hole symmetry of the cosine band at half filling. The particle-hole transfor-
mation K exchanges the single-particle creation operator at momentum k with the single-hole
creation operator at the shifted momentum k ± π.

(translation by two lattice sites). A good way to handle the situation is to double the unit cell in
real space (and cut the Brillouin zone in momentum space in half). The single band of before
then splits into two bands, and the staggered hopping opens an energy gap between the two. At
half filling, the upper one is a conduction band, the lower one a valence band.
Let us now discuss some physical consequences of the particle-hole symmetry of the SSH
model. When the Fermi energy lies in the gap between the conduction and valence bands,
the SSH model is an example of a topological (band) insulator in one space dimension. Such
systems have been under active investigation over the last two decades. More specifically, the
SSH model represents a so-called symmetry-protected topological phase (SPT phase), with the
protecting symmetry being the particle-hole symmetry K. Let us give a brief exposition.
By a principle known as bulk-boundary correspondence, the hallmark of any SPT phase is
the appearance of gapless edge modes in a system with boundary (when there is something
“topological” and non-trivial about the ground state of the bulk system without boundary). In
the case of the SSH model, it is quite easy to exhibit the relevant effect. For that purpose,
consider the SSH model on the half-space lattice N ∪ {0} (i.e. the positive integers including
zero). Let the bond between the boundary site n = 0 and its neighbor n = 1 be weak (t0), the
bond between n = 1 and n = 2 strong (t1), and so on. Then it is easy to check that the operator

ψ =
∑
n≥0

(−t0/t1)n c†2n (40)

commutes with the SSH Hamiltonian H , and so does its adjoint ψ†:[
H, ψ

]
= 0 =

[
H, ψ†

]
. (41)

Thus, when acting on the ground state of H (or any eigenstate, for that matter), the operators
ψ /ψ† create/annihilate an excitation of zero energy. Since t0 < t1, the magnitude

∣∣−t0/t1∣∣n =

e−n/ξ (ξ > 0) of the coefficients in the sum (40) decreases exponentially with increasing dis-
tance from the boundary n = 0. In other words, the operator ψ creates a zero mode exponen-
tially localized near the system boundary. That’s the gapless edge mode of the SSH model.
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One may now ask: is the gapless edge mode a fluke/outlier unique to the SSH Hamiltonian H ,
or is there some robustness to the phenomenon, i.e., does the gapless feature survive when we
deform H to, say, complex or even disordered hopping amplitudes? A detailed look into this
question is outside the scope of the present 90 minute lecture. So, we just state the known
outcome [11]: the gapless edge mode does remain in place as long as the deformation preserves
particle-hole symmetry and leaves the energy gap of the bulk system open. Owing to their
topological protection by symmetry, we can make the gapless edge disappear only by tuning
the system through a phase transition where the energy gap of the bulk system closes.
Let us add a little precision to this story. One can imagine stacking a numberN of identical SSH
chains, all with boundary at n = 0. Then instead of one gapless edge mode we have N such
modes. When we couple the chains within the parameter space of the free-fermion Hamiltonian,
all N modes are known to remain gapless (as long as particle-hole symmetry is preserved and
the bulk energy gap is kept open). What happens when electron-electron interactions are turned
on (still preserving the particle-hole symmetry)? The answer is that interactions can change the
number N of gapless edge modes without passing through a phase transition, but the change
∆N is always an integer multiple of 4. In other words, the topological classification of one-
dimensional topological insulators with particle-hole symmetry (known as symmetry class AIII
in the Tenfold Way) is Z/4Z. So, we can take away the message that the anti-unitary symmetry
of particle-hole transformation has some utility!

7 Kitaev-Majorana chain

Another example of interest can be generated by varying the previous one. Let us take the
Hamiltonian Hkin of Eq. (29) and add pair creation and annihilation terms:

HBDI = Hkin +
∑
n∈Z

(
∆n+1,n c

†
n+1c

†
n +∆n,n+1 cncn+1

)
, ∆n,n+1 = ∆n+1,n . (42)

This extended Hamiltonian still has the particle-hole symmetry K of Eq. (34) for any choice
of pairing amplitudes ∆n+1,n (randomly depending on n). It can serve as the Hamiltonian for
a superconductor (of spinless or spin-polarized electrons with zero chemical potential) in the
Hartree-Fock-Bogoliubov (HFB) mean-field approximation.
Let us insert a quick comment on notation and language. The previous example (SSH) featured
two symmetries: the U(1) symmetry behind particle-number conservation and a particle-hole
symmetry K. In the present case, the U(1) symmetry is gone; this change modifies the symme-
try class from AIII to BDI in the Tenfold Way [5].
The Hamiltonian HBDI is very easy to analyze (and still informative) when the hopping and
pairing amplitudes are chosen in a special translation-invariant way, so that

HBDI ≡ H = t
∑
n∈Z

(
cn+1 − c

†
n+1

)(
cn + c†n

)
. (43)

We refer to this H as the Hamiltonian of the Kitaev-Majorana chain. We can characterize
its ground state fully by the complex lines Ak of its quasi-particle annihilation operators. By
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Fourier transformation these are

Ak = Cαk , αk =
∑

n
eikn

(
i sin(k/2) cn + cos(k/2) c†n

)
.

Indeed, one easily checks that the αk obey the commutation relation [H, αk] = −tαk and thus
lower the energy by t > 0. The state of lowest energy, known as the superconducting ground
state in the HFB mean-field approximation, is the one annihilated by all these energy-lowering
operators. Note that although αk is double-valued as a function of k ∈ R/2πZ, the fiber bundle
of complex lines Ak = Cαk is well-defined. (Mathematically speaking, we are facing a line
bundle in a non-trivial isomorphism or K-theory class. The “square-root nature” of the αk
signals the existence of a topological invariant which is robust against deformation and, by
bulk-boundary correspondence, protects gapless edge modes of Majorana type.)
Application of the particle-hole transformation (34) to the annihilation operators αk gives

KAkK
−1 = Aπ−k . (44)

This means that the superconducting ground state is particle-hole symmetric, as K transforms
the set of quasi-particle annihilation operators amongst themselves. (It should be mentioned
that this property gets lost when the chemical potential moves away from zero.)

8 Lifting ph-symmetry to Fock space

To achieve a satisfactory understanding of the workings of particle-hole symmetry K, we need
its lift K̂ to the fermionic Fock space F =

∧
(V ), i.e. a mapping K̂ : F → F such that

K(A) = K̂ ◦ A ◦ K̂−1. (45)

The lift K̂ can be described at various levels of sophistication. Here, to keep things simple, we
shall restrict our setting to that of a finite-dimensional single-particle Hilbert space V. (This
setting encompasses the SSH chain of finite length and the lowest Landau level of a quantum
Hall system with finite area.) For the general case of infinite dimension, we refer our audience
to the technical chapters of the review article [2].
The transformation K of a particle-hole symmetry is a concatenation of two operations: (i) a
system-dependent transformation, say Γ, which arises already in the initial setup of a single-
particle Hilbert space V, and (ii) a universal operation that we refer to as particle-hole conjuga-
tion. In the example of the SSH chain, Γ is the momentum shift k → k±π (or, more generally,
the sublattice transformation ψA + ψB 7→ ψA − ψB); while particle-hole conjugation is always
the same, namely the operation, say A 7→ A[, of switching between creation and annihilation
operators (ak ↔ a†k). We hasten to add that particle-hole conjugation differs from Hermitian
conjugation (even though the two coincide on Fock operators: a[k ≡ a†k). Indeed, particle-hole
conjugation is an algebra automorphism whereas Hermitian conjugation A 7→ A† is an algebra
anti-automorphism, viz.

(AB)[ = A[B[ vs. (AB)† = B†A†. (46)
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Fig. 3: Transforming n particles into n holes, the antilinear operatorΞn of particle-hole conju-
gation is invariantly defined as the concatenation of the Fréchet-Riesz isomorphism γn with the
wedge isomorphism ωn . In the occupation-number representation with respect to any orthonor-
mal single-particle basis, it takes filled orbitals to empty ones and vice versa. Consequently,
particle-hole conjugation can never be a symmetry of any Fermi liquid.

In brief, our story is going to unfold as follows. A short calculation [similar to that in Eq. (32)]
shows that the universal operation of particle-hole conjugation sends every traceless Hermitian
one-body Hamiltonian to its negative (H[ = −H). If the (non-universal) operator Γ anti-
commutes with the single-particle Hamiltonian (cf. chiral “symmetry”), then the concatenation
K of Γ and particle-hole conjugation leaves the Hamiltonian of the second-quantized theory
invariant,

K(H) =
(
Γ (H)

)[
= H, (47)

and is thus a particle-hole symmetry of H . As we shall see, the mapping A 7→ A[ is necessarily
complex antilinear. Typically, Γ is complex linear (the case of charge conjugation being an
exception). If so, the concatenation K is an anti-unitary operation. That will be the upshot of
the current section.
After this overture with road map, we turn to the main agenda point here: constructing the Fock
space lift, Ξ : F → F , of particle-hole conjugation:

A[ = Ξ ◦ A ◦ Ξ−1. (48)

To give a very simple (if preliminary) description of Ξ , fix some orthonormal single-particle
basis and work in the occupation number representation of F , i.e., express states in Fock space
as linear combinations of the basic states that have each single-particle state either occupied
or empty. In this representation, the lift Ξ of particle-hole conjugation flips all occupations
(0 ↔ 1), see the lower part of Fig. 3. This is the rough picture of Ξ . From that picture, it is
more or less clear that such Ξ will swap creation with annihilation operators as desired. For the
fine picture, we must take into account possible sign factors (due to the fermion algebra) that
may have to be built into Ξ .
In an effort to be pedagogical, we defer the precise (and invariant) description of Ξ until later
and stick for now with the occupation number representation w.r.t. a fixed orthonormal basis,
which we label by i ∈ {1, . . . , N}. Adopting Dirac notation, we denote the Fock vacuum by
|vac〉, and we express n-particle states with definite occupation numbers as

Φn = c†i1c
†
i2
· · · c†in|vac〉. (49)
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Now since our Hilbert space V is assumed to be finite-dimensional, we can also speak about
the state of total filling (i.e., the state with maximal particle number N = dimV, where every
single-particle state is occupied). That state, |sea〉, is only unique up to normalization and phase.
So we make some fixed choice of |sea〉. Then the particle-hole conjugate ΞΦn is defined to be
the state vector which is empty for each single-particle state occupied in the Φn of Eq. (49):

ΞΦn = ci1ci2 · · · cin|sea〉. (50)

(Notice that the order of the index sequence remains unchanged.) This expression for ΞΦn su-
persedes the hand-waving definition of Ξ (• ↔ ◦) of before, by specifying the sign factors in-
volved. It is good enough for most practical purposes. Nonetheless, as careful thinkers we wish
to convince ourselves that Ξ actually exists as an invariantly defined (hence basis-independent)
operation. That will occupy us for the rest of this section.
The invariant definition of Ξ uses two isomorphisms, which we refer to as “Fréchet-Riesz” and
“wedge”. We begin with the former. As a quantum mechanical Hilbert space, V is equipped
with a Hermitian scalar product and hence an antilinear mapping

γ : V → V ∗, v 7→ 〈v, ·〉 . (51)

In physics, this mapping is also known as the Dirac ket-to-bra bijection, |v〉 7→ 〈v|. It immedi-
ately generalizes to an antilinear Fock-space isomorphism

γn : Fn ≡
n∧

(V )→ F∗n =
n∧

(V )∗ ∼=
n∧

(V ∗) (52)

by distributing γ over exterior products:

v1 ∧ · · · ∧ vn 7→ γv1 ∧ · · · ∧ γvn . (53)

This defines the Fréchet-Riesz isomorphism γn .
The definition of the wedge isomorphism is a little more involved. Recall that we have fixed a
choice of fully occupied state vector ψsea ∈

∧N(V ). By taking an n-particle wave function ψn
and wedging it (by exterior multiplication, which includes antisymmetrization) with an (N−n)-
particle wave function ψN−n, we get some complex multiple of ψsea. Thus we may define

B : Fn ⊗FN−n → C, ψn ⊗ ψN−n 7→ B(ψn, ψN−n) (54)

by the identification
ψn ∧ ψN−n ≡ B(ψn, ψN−n)ψsea . (55)

The pairing B is complex bilinear and non-degenerate. Therefore, by a basic principle of linear
algebra, it gives us a linear isomorphism

ωn : F∗n → FN−n, (56)

called wedge isomorphism, by the definition

ω−1
n (ψN−n) = B(·, ψN−n) ∈ F∗n . (57)
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The finished product [12] of invariantly defined particle-hole conjugation ξ (restricted to the
n-particle subspace Fn ⊂ F) then is the two-step process

Ξn : Fn
γn−→ F∗n

ωn−→ FN−n . (58)

Remark. Our informed audience may recognize some similarity between Ξ and the Hodge
star operator ? on differential forms in Riemannian geometry. The difference is that, given our
setting in quantum mechanics, we are operating over C (not R) and Ξ is antilinear (not linear).

9 Half-filled lowest Landau level

We have stressed that the universal operation of plain particle-hole conjugation can never be a
symmetry of a Fermi liquid state or anything close to a free-fermion ground state. Recall the
simple reason: particle-hole conjugation redistributes the population from the Fermi sea to the
Fermi non-sea. Therefore, in order to stabilize the free-fermion or Fermi liquid ground state, a
system-specific second transformation (Γ ) must be applied.
Of course this no-go argument is void for interacting systems far from the free-fermion limit.
The remainder of this lecture will be devoted to one rather spectacular example of a strongly
correlated system – the half-filled lowest Landau level – where plain particle-hole conjugation
does take the role of a symmetry.
To begin with history, it was Girvin [13] who pointed out the relevance of particle-hole con-
jugation for the physics of the quantum Hall effect (QHE). Recall that QHE takes place in
a two-dimensional electron gas subject to a magnetic field. In the limit of a very strong
magnetic field, one may project the single-electron Hilbert space to the lowest Landau level
(LLL), say V0 . Adopting the symmetric gauge for a homogeneous magnetic field of strength
B = −|B| dx ∧ dy, the LLL wave functions are given by complex-analytic functions ψ of the
dimensionless variable z = (x+iy)/`. Here ` =

√
~/|eB| is the magnetic length, and x, y are

Cartesian coordinates for the plane R2. The Hermitian scalar product on V0 is

〈ψ, ψ′〉V0 =

∫
dµ(z) ψ(z)ψ′(z), dµ(z) =

|dx dy|
2π`2

e−|z|
2/2. (59)

The description of V0 is particularly simple in the case of a disk-shaped system. There, if the
magnetic flux totals N flux quanta, V0 is spanned by the N functions zj for j = 0, 1, . . . , N−1.
The many-electron wave function ψsea ∈

∧N(V0) for the state of total filling can be expressed
as a normalized Vandermonde determinant,

ψsea(z1, z2, . . . , zN) = N−1/2
∏

1≤i<j≤N

(zi−zj). (60)

Particle-hole conjugation Ξn :
∧n(V0)→

∧N−n(V0) here takes the concrete form

(ΞnΨ)(zn+1, . . . , zN) =

∫ n∏
j=1

dµ(zj) Ψ(z1, . . . , zn)ψsea(z1, . . . , zn, zn+1, . . . , zN). (61)
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Thus a complex-analytic and skew-symmetric function of n variables is particle-hole conjugated
to another such function of N−n variables. It is not difficult to see that Eq. (61) amounts to the
same as (58).

9.1 Symmetry under particle-hole conjugation

The hallmark of quantum dynamics projected to the lowest Landau level (or any Landau level,
for that matter) is that the kinetic energy of the charge carriers is totally quenched (if disorder or
inhomogeneities in the background potential can be neglected), leaving no one-body component
in the Hamiltonian of the bulk system. Now since the particle-hole conjugation operatorΞ sign-
inverts the local charge density with respect to half filling, ΞQ(x)Ξ−1 = −Q(x), any residual
two-body charge-charge (or current-current) interaction, in particular the Coulomb interaction,
commutes with Ξ .
In the sequel, we assume our Hamiltonian H to be exactly particle-hole conjugation symmetric
(ΞH = HΞ). Under that assumption, we would expect the ground state Ψ0 to be particle-hole
conjugation symmetric (ΞΨ0 ∈ CΨ0) at half filling. If so, we face an immediate complication
from the free-fermion perspective: since Ξ exchanges filled single-particle levels with empty
ones, a ground state invariant underΞ cannot be of Fermi-liquid type (at least not in the original
electron degrees of freedom).
The theoretical treatment of the subject took off in 1993 with the work of Halperin–Lee–Read
(HLR, [14]), who did propose a Fermi-liquid ground state for the lowest Landau level at half
filling. Converting electrons into composite fermions by a procedure called magnetic flux at-
tachment, they argued that the latter could form a Fermi sea; the rough picture was that, by
attaching two (fictitious) flux quanta to each electron, one cancels the background magnetic
field on average, thus allowing the composite fermions to move as free fermions, at half filling.
The technical step of flux attachment is carried out by introducing a fictitious gauge field, a,
and adding to the field-theory Lagrangian a Chern-Simons term a ∧ da.
Although the HLR proposal was quite successful in fitting the observed phenomena, one both-
ersome issue remained: there exists no manifest particle-hole symmetry in the HLR field-theory
Lagrangian. That’s a serious worry because, as explained above, the Coulomb interaction pro-
jected to the lowest Landau level does have the particle-hole conjugation symmetry Ξ . Now
much light and renewed interest has been thrown on the issue by a recent proposal of Son [15],
which we summarize briefly.

9.2 Son’s proposal and its physical meaning

Son [15] starts by observing that, for the purpose of developing a low-energy effective theory,
one may realize the lowest Landau level as the subspace of zero modes of a massless Dirac
fermion ψ, say with charge q = +|e|, in a homogeneous magnetic field:

S = i~c
∫
dt

∫
d2r ψ̄ γµ

(
∂µ − iqAµ/~

)
ψ + · · · , (62)
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where the ellipses indicate residual interaction terms. In fact, adopting the symmetric gauge
A = |B|

(
x1dx2−x2dx1

)
/2 for B = |B| dx1∧dx2, and choosing the gamma matrices γ0 = σ3 ,

γ1 = iσ2 , γ2 = −iσ1 , one arrives at a Dirac Hamiltonian D of the form

D ∝

(
0 ∂z−z̄/4

∂z̄+z/4 0

)
, z =

(
x1+ix2

)√
|eB|/~ ,

and the zero modes of this Hamiltonian,

ψ0 =

(
f(z)

0

)
e−|z|

2/4, ∂z̄f(z) = 0,

are in bijection with the states spanning the lowest Landau level; see above.
For the relativistic system (62), one has command of the discrete symmetry operations of charge
conjugation C, parity P, and time reversal T. The product CT is antilinear in second quantiza-
tion and sends the electromagnetic field (E,B) to (−E,B). Thus it is an anti-unitary symmetry
of the massless Dirac fermion (62) in zero electric field E and for any magnetic field B. It is
straightforward to check that CT coincides with our operation Ξ of particle-hole conjugation
upon restriction to the zero-energy Landau level of the theory (62).
Let us emphasize once again that a Ξ-symmetric half-filled Fermi-liquid ground state does not
exist, neither in the quantum Hall electron variables nor in the low-energy equivalent theory
(62). In view of that no-go situation, one is motivated to look for a good change of variables by
which to develop a Fermi-liquid description of some sort.
Assuming the starting point (62), Son [15] performs a so-called fermionic particle-vortex trans-
formation to pass to a dual formulation (known as QED3) by another Dirac field ξ coupled to
a dynamical gauge field a (which coincides with the Chern-Simons dynamical gauge field a of
HLR but for a pseudoscalar multiplicative factor, the Hall conductivity at half-filling):

Sdual = 2πi~vF
∫
dt

∫
d2r ξ̄γµ

(
∂µ − 2iaµ/q

)
ξ +

∫
A ∧ da+ · · · , (63)

where we adopt the convention dx0 = vF dt and ∂0 = v−1
F ∂t , as our physical system with

characteristic speed vF has only Galilean invariance (not Lorentz invariance). The dynamical
gauge field a = aµdx

µ is a gauge potential for the charge-current two-form J = da of the
two-dimensional electron gas. In particular, its time component a0 is proportional to the orbital
magnetization m of the 2D electron gas. The two-component spinor field ξ in (63) is called the
Dirac composite fermion. It has the physical dimension of length−1, and it is charge-neutral
as it does not couple directly to the external gauge field A. In view of the fundamental duality
between magnetic flux and electric charge, the coupling to the charge one-form a suggests that
ξ carries an emergent magnetic flux. In fact, what ξ carries is vorticity, a quantity tied to the
presence of magnetic flux; see below.
The half-filled lowest Landau level features a nonzero orbital magnetization 〈m〉, and according
to (63) the magnetization 〈m〉 ∼ 〈a0〉 as the time-component of a acts as a chemical potential
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for the Dirac composite fermion ξ. Therefore one may well expect the latter to form a Fermi-
liquid ground state by populating a Fermi sea up to the chemical potential 〈m〉.
Let us now take a closer look at the objects of the dual theory (63). For the benefit of our
audience, we here adopt component notation (with respect to a Cartesian basis), assuming fa-
miliarity with epsilon tensors and the summation convention. We write

J = 1
2
Jµν dx

µ ∧ dxν , Jµν = εµνλJ
λ, J0 = ρexc , J l = jl (l = 1, 2), (64)

with jl the components of the electric current vector field and ρexc ≡ ρ the excess electric charge
density with respect to half filling, and we put

a = aµdx
µ = mdt− εil pidxl. (65)

The equation J = da then splits into three equations:

ρ = −∂ipi, jl = εil∂im+ ∂tp
l (l = 1, 2). (66)

The physical interpretation of the dynamical gauge field a should now be clear: pi are the
components an electric polarization vector field ~p, and m is an orbital magnetization function
for the 2D electron gas. These are determined only up to gauge transformations

m 7→ m+ ∂tφ , pl 7→ pl − εil∂iφ , (67)

by a pseudoscalar function φ with the physical dimension of electric charge.
Turning to the Dirac composite-fermion field ξ, we expand on the statement that ξ carries vor-
ticity by way of an emergent magnetic field. To start the argument, we observe that Sdual in (63)
has a symmetry under global U(1) phase rotations (not to be confused with gauge transforma-
tions a 7→ a+ dφ and ξ 7→ e2iφ/qξ),

ξ(x) 7→ eiθξ(x), ξ̄(x) 7→ e−iθξ̄(x), (68)

which entails a conserved current:

∂µΦ
µ = 0, Φµ = ξ̄γµξ. (69)

Hence, the physical meaning of ξ hinges on the interpretation of the conservation law implied
by ∂µΦµ = 0. To uncover it, we introduce

b12 =
2h

q
Φ0 , ei =

2h

q
vF εijΦ

j (h = 2π~, i = 1, 2). (70)

The continuity equation (69) then takes the form

∂tb12 + ∂1e2 − ∂2e1 = 0 , (71)

which can be interpreted as Faraday’s law of induction (written in components and transcribed
to 2+1 space-time dimensions), with the consequence that the total space integral of b12 is
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independent of time. To reinforce the Faraday interpretation, we do an integration by parts,∫
A∧ da =

∫
dA∧ a, and we decompose the electromagnetic field strength into its electric and

magnetic parts: dA = B + E ∧ dt. We then see that the coupling aµΦµ between the dynamical
gauge field aµ and the conserved current Φµ enters into the dual action (63) as a shift:

B → B + b , E → E + e (b = b12 dx
1 ∧ dx2, e = ei dx

i). (72)

Thus b and e are to be interpreted as emergent magnetic and electric fields. Moreover, taking
the dual action (63) for granted, we see that the functional integral over a0 pins the emergent
magnetic field b to the external magnetic field B:

Beff ≡ b+B = 0. (73)

This constraint indicates that the conservation law
∫
b ∝

∫
Φ0 d2r = const reflects the con-

servation of magnetic flux,
∫
B = const. Now, which conserved property of the electron gas

is tied to the total external magnetic flux? There exists only one good answer to this question:
the integrated vorticity, viz. the total number of zeroes in the one-body density matrix for the
many-electron wave function; see [2] for more detail.
A follow-up comment concerns the factor of 2 in the expression ∇µ = ∂µ − 2i aµ/q for the
covariant derivative in (63). By canonical quantization of the Dirac composite field ξ, the
presence of this factor means that single-particle excitations of ξ carry two emergent magnetic
flux quanta 2h/q and hence two vortices due to the constraint (73). (The argument for that
uses the Dirac quantization condition, stating that the lattice of quantized electric charges is
h-reciprocal to the lattice of quantized magnetic fluxes.)
To add some perspective, it had long been appreciated that the LLL composite fermion is a
composite object made from one electric charge quantum (electron) and two magnetic flux
quanta (vortices). The traditional approach of HLR was to build the theory around the electron
degrees of freedom and attach Chern-Simons magnetic flux as a subsidiary feature. The more
recent approach of Son turned the emphasis around, by taking the vortex degrees of freedom
(which carry magnetic flux but no electric charge) as primary and coupling them to fluctuations
in the charge current J via the magnetization/polarization one-form a. Although the physical
predictions turn out to be quite similar, the change of approach does make for some differences.
For one, the number of composite fermions in the HLR approach is given by the number of
electrons, whereas in Son’s proposal it is given by half the number of magnetic flux quanta. For
another, the realization of symmetries is different; see the next subsection.

9.3 Symmetry considerations

We now address the symmetry aspects of Son’s proposal and especially the issue of particle-
hole (conjugation) symmetry. Since particle-hole conjugation Ξ is realized in the (zero Landau
level of the) Dirac fermion representation (62) by CT, we shall elucidate the corresponding
operation CT in the dual representation (63).
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As we are going to see, the operation of time reversal T is realized on the fermionic vortex
field ξ in an unfamiliar way that makes the symmetry aspects quite striking. To spell them
out, we begin by reviewing how T acts on the electromagnetic gauge field A and on the charge
current J . The guiding principle here is that the field-matter interaction A ∧ J must transform
as a space-time density, so that

Sint =

∫
A ∧ J =

1

2

∫
Aµdx

µ ∧ Jνλ dxν ∧ dxλ =

∫
AµJ

µ|d3x| (74)

is invariant under all space-time diffeomorphisms including those that are orientation reversing,
and is invariant under time reversal in particular. Now the two-form J = da for the charge
3-current (in 2+1 dimensions) is a time-even differential form, which means that it transforms
under time reversal T by straight pullback: J 7→ +T ∗J . It then follows from J = da and
T ∗ ◦ d = d ◦ T ∗ that the magnetization/polarization one-form a = aµdx

µ is also time-even:
a 7→ +T ∗a; in components we have

T : a0(r, t) 7→ −a0(r,−t), al(r, t) 7→ +al(r,−t) (l = 1, 2). (75)

In contrast, the electromagnetic gauge field A is a time-odd one-form; thus it transforms under
time reversal by negative pullback (A 7→ −T ∗A) or

T : A0(r, t) 7→ +A0(r,−t), Al(r, t) 7→ −Al(r,−t) (l = 1, 2). (76)

(Of course, the opposite behavior of J 7→ +T ∗J versus A 7→ −T ∗A is just what is needed in
order for A ∧ J = AµJ

µ|d3x| to transform as a scalar under time reversal.)
The sign-opposite transformation law for a as compared with A has a surprising effect. To see
that most clearly, consider the first-quantized Hamiltonian h of the vortex field ξ in a given
gauge field a = mdt− p:

h(p,m) = ~vF
2∑
l=1

σl

(
1

i

∂

∂xl
+

2

q
pl

)
− 2~

q
m, (77)

where m = vFa0 is the local magnetization, and p =
∑
pl dx

l is the local polarization, treated
here as a co-vector field (or form). To determine how T acts on ξ, one observes that if ξ is a
solution of the Dirac equation i~ ∂tξ = hξ, then by time-reversal invariance (or equivariance) so
is Tξ. There exist two different scenarios by which to realize that equivariance condition. The
standard scenario is that T commutes with both h and i~ ∂t . Since ∂t changes sign under t 7→
−t, this means that T must be antilinear (T i = −iT ). The second scenario for time-reversal
symmetry of the Dirac equation is that T anticommutes with both i~ ∂t and the Hamiltonian h.
Given Eq. (77), it is clear that the time-even property of a, namely T : m 7→ −m and pl 7→ +pl
(l = 1, 2), forces the latter scenario. Thus in the present instance, time reversal is realized
as an operation that is complex linear (T i = +iT ) and anticommutes with the vortex-field
Hamiltonian h. Explicitly,

T : ξ(r, t) 7→ σ3ξ(r,−t), h(p,m) 7→ σ3h(p,−m)σ3 = −h(p,m). (78)
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This is how time reversal acts (in first quantization, i.e., viewing the Dirac equation as a classical
field equation) on the fermionic vortex field ξ of the dual representation.
The other factor of the symmetry operation CT is charge conjugation C. We recall that the
electromagnetic gauge field A transforms under C as A 7→ −A. In order for the field-matter in-
teraction

∫
A∧da to be charge-conjugation invariant, the dynamical gauge field amust conform

to the same transformation law as A (thus, C : a 7→ −a). This is achieved by the antilinear
transformation

C : ξ 7→ σ1ξ̄. (79)

It follows that C anticommutes with the operator i~ ∂t − h and hence reverses the sign of h:

C : h(p,m) 7→ σ1 h(−p,−m)σ1 = −h(p,m). (80)

Next, we turn to the combined operation CT. By the properties of its factors C and T, the
product CT is an antilinear symmetry of the first-quantized Hamiltonian:

CT : h(p,m) 7→ σ2 h(−p,m)σ2 = +h(p,m). (81)

Note that the emphasis here is on symmetry (as opposed to antisymmetry h 7→ −h). The field-
matter interaction

∫
A ∧ J for J = da,∫
A ∧ da =

∫
dA ∧ a =

∫
(B + E ∧ dt) ∧ (mdt− p), (82)

augments the vortex-field Hamiltonian by a term

hint =

∫
(Bm− E ∧ p), (83)

which is invariant under both T and C. The combined action of these operations on the electro-
magnetic field and the dynamical gauge field is

(E,B)
CT−→ (−E,B), (p,m)

CT−→ (−p,m). (84)

Now from our condensed-matter perspective, the electromagnetic field is to be regarded as a
given background (not to be transformed). We then see that CT remains a symmetry for E ≡ 0

(zero external electric field) and any magnetic field B.
We can now deliver the (symmetry) punch line of Son’s proposal. In the original formulation
(62) by a massless Dirac fermion projected to the zero Landau level, the operator CT acted
as particle-hole conjugation Ξ . Thus it exchanged particles and holes (or antiparticles) when
acting on the Fock space of the second-quantized theory, thereby posing an obstruction to the
existence of any Fermi-liquid ground state (with symmetry Ξ). Now in the dual representation
(63) this obstruction has disappeared! Indeed, the operation CT on the fermionic vortex field ξ
and the dynamical gauge field a is a proper symmetry of the Hamiltonian; when acting on the
Fock space constructed by canonical quantization of the dual theory (63), it sends particles, or
particle-like excitations of the vortex field, to particles, and it sends antiparticles to antiparticles.
In Son’s language, the Dirac composite fermion ξ is its own antiparticle. This, then, is how CT

(alias particle-hole conjugation) may emerge as a symmetry of a Fermi-liquid ground state.
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9.4 Microscopic picture of the composite fermion

To augment the field-theoretic symmetry considerations, which may seem quite abstract, we
now offer a glimpse of the microscopic picture of the Dirac composite fermion. From exper-
iment and theory one knows that the composite fermion at half filling (ν = 1/2) is a charge-
neutral excitation made, roughly speaking, from one electron and two fictitious magnetic flux
quanta. How is this crude picture refined in view of Son’s proposal?
For quantum Hall states and other systems with an energy gap where the quantum adiabatic
theorem holds, one knows that the adiabatic insertion of a magnetic flux line (in 3D, or flux
point in 2D), with circulation equal to that of the strong magnetic background field, expands the
electron gas radially outward from the point of insertion. (We expect this to be still true for the
gapless system of the half-filled lowest Landau level.) The adiabatic flux insertion gives rise
to spectral flow resulting in a zero (or vortex) of the many-electron wave function. Adopting
the symmetric gauge with respect to the insertion point, z0 , one can express the effect of flux
insertion as multiplication by the operator

Uz0 =
∏

j
(zj−z0), (85)

where zj (j = 1, 2, ...) are the electron coordinates of the holomorphic representation; see the
very beginning of this Section. In the occupation-number representation n = {n0, n1, n2, ...}
w.r.t. the single-particle basis (z−z0)le−|z−z0|

2/4 (l = 0, 1, 2, ...), the effect of the vortex operator
Uz0 is a shift n 7→ {0, n0, n1, . . .} leaving the zero orbital (l = 0) vacant. The vacancy amounts
to a local charge deficit: for filling fraction ν, that deficit is −νe. Thus, the electric charge of a
vortex excitation at half filling is −e/2.
Now from the particle-hole conjugation symmetry of the half-filled LLL, we expect the vortex-
type excitation of charge−e/2 to be accompanied by its antiparticle, the “antivortex”. Centered
at position z1, the antivortex is created by the particle-hole conjugate operator

U [
z1

= ΞUz1Ξ
−1. (86)

By construction, an antivortex excitation carries the opposite charge (+e/2) and the same en-
ergy, provided that the ground state is particle-hole symmetric. Doing a short calculation in the
occupation-number representation of above, one finds that U [

z1
has the same effect as Uz1 but

for one characteristic difference: while Uz1 leaves the zero orbital (w.r.t. z1) always empty, the
particle-hole conjugate U [

z1
leaves it always occupied. Thus U [

z1
creates a vortex with charge

deficit−e/2 centered at z1 and at the same time adds an electron in the zero orbital at z1, thereby
producing a total charge increment of +e/2.
Given the basic building blocks of Uz0 and U [

z1
, Wang and Senthil (WS, [16]) proposed to

think of Son’s composite fermion as a (more or less loosely) bound state of one vortex and one
antivortex. Indeed, (i) there is an attractive electric force between a vortex and an antivortex,
(ii) the total charge of a bound pair at ν = 1/2 is zero, and (iii) the bound vortex-antivortex pair
is its own antiparticle as the vortex component gets transformed under particle-hole conjugation
to the antivortex component; cf. Fig. 4.
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Fig. 4: Semiclassical picture at ν = 1/2 of a composite fermion (left-hand side) and its particle-
hole conjugate (right-hand side). The composite fermion is an electric dipole made from a
vortex with positive charge −e/2 and an antivortex with negative charge +e/2. In a state of
motion, the velocity ~v and the dipole moment ~d form an orthogonal pair positively oriented with
respect to Bext .

The composite fermions of observable consequence are those in a state of rapid motion (at the
Fermi speed of the composite Fermi liquid). These carry an electric dipole moment ~d propor-
tional to the relative position z1−z0, and the dipole vector ~d is perpendicular to the velocity ~v
of the motion – a phenomenon known as “spin-momentum” locking and anticipated in early
work by N. Read [17]. Assuming the limit of large separation |z1−z0| between the vortex and
antivortex constituents, WS argued that the process of adiabatically transporting a composite
fermion around the Fermi surface, or rotating its k-vector through 2π, gives a Berry phase of π.
(The latter had been recognized as an important ingredient [18,15] for the correct phenomenol-
ogy of the composite Fermi liquid.) It should be added that while the whole scenario sounds
very plausible, its details still await confirmation by rigorous work.
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Appendix

A Charge conjugation explained

In order to appreciate the symmetry of charge conjugation, one needs some understanding of
the process of canonical quantization of the Dirac field. The latter requires three pieces of
basic input: (i) the complex phase space W of classical solutions of the free Dirac equation,
(ii) an invariantly defined symmetric bilinear form B : W ⊗W → C (in order to construct
the canonical anticommutation relations for the Dirac field), and (iii) a compatible complex
structure J on the space WR of real fields (to construct the proper ground state upon which to
build the Fock space of physical electron and positron states of the Dirac field).
In this appendix, we focus on the first input, (i), as this already provides plenty of insight into
the intricacies of charge conjugation. A key point is that one should think of the (complex)
Dirac field as an object with two parts to it: a spinor part ψ that solves the free Dirac equation

Dψ = 0, D = −i~γµ∂µ +mc, (87)

and a co-spinor part ψ̃ that solves the adjoint equation,

ψ̃ ◦D = 0. (88)

(You may think of the spinor as a column vector and of the co-spinor as a row vector.) In other
words, the complex phase space for the Dirac field is a direct sumW = V ⊕Ṽ of two subspaces:
that of the spinor solutions (ψ ∈ V ), and that of the co-spinor solutions (ψ̃ ∈ Ṽ ). The elements
of the complex phase space W of solutions are pairs:

(
ψ, ψ̃

)
∈ V ⊕ Ṽ .

Now the Dirac operator D is formally adjoint to D† = γ0Dγ0. Therefore, the co-spinor ψ̃ =

ψ†γ0 solves the adjoint equation (88) if the spinor ψ solves Eq. (87). We say that the complex
vector space W has a real subspace WR spanned by the “real” solutions

(
ψ, ψ̃

)
=
(
ψ, ψ†γ0

)
.

To construct the quantum theory of the Dirac field, one has to work with the complex phase
space W of solutions, as follows. One separates the spinor solutions ψ into their positive-
frequency and negative-frequency parts, ψ = ψ+ + ψ−, by a so-called mode expansion (here
indicated in schematic notation):

ψ+ =

∫
d3k u(k) e−iωkt, ψ− =

∫
d3k v(k) e+iωkt (ωk > 0). (89)

This defines a decomposition V = V+ ⊕ V−. The same procedure applied to the co-spinor
solutions defines a decomposition Ṽ = Ṽ+ ⊕ Ṽ−. (We remark that by the bilinear form B not
here specified, one has the duality V ∗± ∼= Ṽ∓.)
By the process of canonical quantization one turns elements of (more precisely: the coefficients
appearing in the mode expansion of)

• V+ into electron creation operators,

• V− into positron annihilation operators,
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• Ṽ+
∼= V ∗− into positron creation operators,

• Ṽ− ∼= V ∗+ into electron annihilation operators.

The Fock space of the quantized Dirac field then is the exterior algebra

F =
∧(

V+ ⊕ Ṽ+

)
=
∧(

V+ ⊕ V ∗−
)
. (90)

Given this information, we can explain how charge conjugation works.
The operator ψ 7→ Cψ = γ2ψ̄ of Eq. (27) defines a mapping

C : V± → V∓ , (91)

which swaps positive-frequency and negative-frequency solutions. Thus, upon quantization, it
takes an electron creation operator ψ ∈ V+ and turns it into a positron annihilation operator
Cψ ∈ V− (and vice versa). Such an operator does not act on the Fock space F of physical
states. To obtain an operator that does act on F , one needs to compose C with the mapping, say
C ′, from spinor solutions to co-spinor solutions:

C ′ : V∓ → Ṽ± , ψ 7→ ψ†γ0. (92)

Note thatC ′ involves complex conjugation (via †) and hence switches between positive-frequency
and negative-frequency solutions. Both C and C ′ are antilinear, so their concatenation Ĉ =

C ′ ◦ C : V± → Ṽ± is complex linear. Altogether, Ĉ maps electron creation operators to
positron creation operators (and likewise for the annihilation operators). That’s the unitary
symmetry Ĉ of charge conjugation of the relativistic Dirac field. (We re-iterate that Ĉ is not a
good model for anything of much relevance in condensed matter physics.)
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1 Many-electron states

One of the great surprises of quantum mechanics is the existence of indistinguishable objects.
Classically this is not possible: objects can always be distinguished at least by their position
in space, meaning that indistinguishable objects must be identical. This is Leibniz’ Principle
of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty principle
makes the distinction of particles by their position impossible. This allows for the existence
of elementary particles. They form the basic units of all matter. So, quite remarkably, all the
different objects we know are made of indistinguishable building blocks.
In the formalism of quantum mechanics, indistinguishability means that no observable lets us
distinguish one of these particles from the other. This means that every observable for, e.g.,
electrons, must treat each electron in the same way. Thus, in principle, observables must act on
all electrons in the universe. In practice we can, of course, distinguish electrons localized on the
moon from those in our lab to an excellent approximation. Thus, for all practical purposes, we
can restrict our description to the electrons in the system under consideration, assuming that the
differential overlap with all other electrons vanishes. Any observable M(x1, . . . , xN) for the N
electrons in our system must then be symmetric under permutations of the variables xi.
The consequences are straightforward: An observable M(x) acting on a single-particle degree
of freedom x must act on all indistinguishable particles in the same way, i.e.,

∑
iM(xi). Like-

wise, a two-body observable M(x, x′) must act on all pairs in the same way,
∑

i,jM(xi, xj)

with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i 6=j

M (2)(xi, xj) +
1

3!

∑
i 6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, while for two or more identical coordinates the operator is really one of lower order:
M (2)(xi, xi), e.g., only acts on a single coordinate and should be included in M (1).
For the many-body wavefunctions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, the wavefunction should transform
as one-dimensional (irreducible) representations of the permutation group. Which irreducible
representation applies to a given type of elementary particle is determined by the spin-statistics
theorem [2,3]: The wavefunctions of particles with integer spin are symmetric, those of particles
with half-integer spin change sign when two arguments are exchanged. From an arbitrary N -
particle wavefunction we thus obtain a many-electron wavefunction by antisymmetrizing

AΨ(x1, . . . , xN) :=
1√
N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
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N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
. (4)

For N=1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) while for
N=2 we get the familiar expression Φα,α′(x, x′) =

(
ϕα(x)ϕα′(x

′)−ϕα′(x)ϕα(x′)
)
/
√

2 for the
two-electron Slater determinant.
Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∑

n

ϕn(x)ϕn(x′) = δ(x−x′) (complete)
∫
dxϕn(x)ϕm(x) = δn,m (orthonormal) . (5)

To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕn} as

a(x1, . . . , xN) =
∑
n1

an1(x2, . . . , xN)ϕn1(x1)

with expansion coefficients that depend on the remaining coordinates

an1(x2, . . . , xN) =

∫
dx1 ϕn1(x1) a(x1, x2, . . . , xN).

These, in turn, can be expanded as a functions of x2

an1(x2, . . . , xN) =
∑
n2

an1,n2(x3, . . . , xN)ϕn2(x2).

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

n1,...,nN

an1,...,nN ϕn1(x1) · · ·ϕnN (xN)

with
an1,...,nN =

∫
dx1 · · ·

∫
dxN ϕn1(x1) · · ·ϕnN (xN) a(x1, . . . , xN).

For an antisymmetric N -particle function Ψ the expansion coefficients are thus antisymmetric
under permutation of the indices: anp(1),...,np(N)

= (−1)Pan1,...,nN . Fixing some particular order
of the indices, e.g., n1 < n2 < . . . < nN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

n1<...<nN

an1,...,nN

√
N !Φn1,...,nN (x1, . . . , xN).

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φn1,...,nN (x1, . . . , xN)
∣∣∣ n1 < n2 < · · · < nN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)(xn)ϕαp′(n)(xn)

=

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determi-
nant Φα1,...,αN (x), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant. Thus, strictly, a Slater determinant is not
determined by the set of indices we usually give, but, up to a phase, by the N -dimensional sub-
space spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert space. The projector to
this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi 6=n(x2, . . . , xN) , (9)

where Φαi 6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals), with
eigenvalues (natural occupation numbers) either one or zero. Any many-electron wavefunction
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals the Slater determinant Φ(x) up to a
phase, i.e., |〈Ψ |Φ〉| = 1.
We can generalize this procedure and calculate higher order density matrices by introducing the
generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N−p indices
and the remaining p indices separately, summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wavefunctions. It
is called second quantization.



Hartree-Fock and BCS 2.5

2 Second quantization

Second quantization is the generalization of the Dirac notation to many-electron states [5, 6].
The idea is to separate the wavefunction into coordinate and state, ϕα(x) = 〈x|α〉, and absorb
the coordinate in the operators, so that expectation values are rewritten as∫

dxϕα(x)M(x)ϕβ(x′) = 〈α|
∫
dx |x〉M(x)〈x|β〉 =: 〈α|M̂ |β〉.

For many-electron systems the coordinates are represented by the field-operators Ψ̂(x). To
implement antisymmetry, they need to anticommute Ψ̂(x)Ψ̂(x′) = −Ψ̂(x′)Ψ̂(x). They can be
thought of as removing an electron with coordinates x=(r, σ) from the system. Applying them
on a state with no electrons thus gives zero. Their conjugate operators insert an electron to the
system. The entire formalism is defined by a compact set of properties of the vacuum state |0〉
and the anticommutation relations of the field operators:

Ψ̂(x)|0〉 = 0
{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
〈0|0〉 = 1

{
Ψ̂(x), Ψ̂ †(x′)

}
= δ(x−x′)

(11)

where the curly braces denote the anti-commutator {A, B} := AB+BA. As a direct conse-
quence we obtain the Pauli principle: Ψ̂ †(x)Ψ̂ †(x) = 0.

2.1 Creation and annihilation operators

For a single-electron state ϕα(x) we can define an operator

c†α :=

∫
dxϕα(x) Ψ̂ †(x), (12)

that inserts an electron at position xweighted with the amplitude ϕα(x) — hence called creation
operator for state |α〉. Note that the creation operators transform in the same way as the single-
electron states they represent, not like operators in first quantization,

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i |0〉 =
∑
µ

c†αµ|0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (13)

The anticommutator with the field annihilator just gives back the single-electron wavefunction

{
Ψ̂(x), c†α

}
=

∫
dx′ ϕα(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕα(x) . (14)

Thus, together with their adjoints, the annihilation operators,

cα :=

∫
dxϕα(x) Ψ̂(x), (15)
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they form the algebra

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(16)

The notation of second quantization has two principal advantages: (i) it is impossible to write
unphysical states which are not antisymmetric or operators which are not acting on all electrons
in the same way, and (ii) operators are independent of particle number, so that it becomes
straightforward to work in Fock space. This simplifies many-body calculations significantly.

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to give the
coordinates for the real-space representation:

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣0〉. (17)

Note how writing the Slater determinant as an expectation value of annihilation and creation
operators nicely separates the coordinates on the left from the orbitals on the right. This is just
the desired generalization of the Dirac notation ϕ(x) = 〈x|ϕ〉.
Not surprisingly, the proof of (17) is by induction. As a warm-up we consider the case of a
single-electron wavefunction (N = 1). Using the anticommutation relation (14), we see that〈

0
∣∣ Ψ̂(x1) c†α1

∣∣0〉 =
〈
0
∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣0〉 = ϕα1(x1). (18)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣0〉 =
〈
0
∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣0〉
=

〈
0
∣∣ Ψ̂(x1)c†α1

∣∣0〉ϕα2(x2)−
〈
0
∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2). (19)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wavefunction. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N−1 terms with alternating sign〈

0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

· · · c†α1

∣∣0〉 =

+
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN−1

· · · c†α1

∣∣0〉 ϕαN (xN)

−
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣0〉 ϕαN−1
(xN)

...
(−1)N−1

〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN · · · c

†
α2

∣∣0〉 ϕα1 (xN) .
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Using (17) for the N−1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (17) for N -electron states,

completing the proof by induction.
Given this representation of Slater determinants it is easy to eliminate the coordinates so we can
work with N -electron states rather than N -electron wavefunctions—just as in Dirac notation.
In particular we can rewrite the basis of Slater determinants (6) into a basis of product states{

c†nN · · · c
†
n1
|0〉
∣∣ n1 < · · · < nN

}
, (20)

which allows us to express any N -electron state as

|Ψ〉 =
∑

n1<···<nN

an1,...,nN c
†
nN
· · · c†n1

|0〉. (21)

2.3 Representation of n-body operators

To work with N -electron states rather than Slater determinants, we also have to rewrite the
N -electron operators M(x) appropriately. This is easily done by incorporating the coordinates
that we have separated from the Slater determinants into the operators such that the expectation
values remain unchanged. This is, again, analogous to the Dirac formalism:∫

dxϕn(x)M(x)ϕm(x) = 〈ϕn|
∫
dx |x〉M(x)〈x|︸ ︷︷ ︸

=:M̂

ϕm〉 = 〈ϕn|M̂ |ϕm〉. (22)

For N -electron Slater determinants it becomes∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN〈0|cβ1· · · cβN Ψ̂

†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c
†
α1
|0〉

=
〈
0
∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣0〉
with the representation of the n-body operator in terms of field operators

M̂ :=
1

N !

∫
dx1 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (23)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 1. Keeping this in mind, we can work entirely in terms of our algebra (11).
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To see what (23) means, we look, in turn, at the different n-body parts of M(x), (2):

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (24)

We start with the simplest case, the zero-body operator, which, just a number M (0). Operating
on an N -electron wavefunction, it gives

M̂ (0) =
M (0)

N !

∫
dx1dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
M (0)

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
M (0)

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
M (0)

N !
1 · 2 · · · N = M (0) , (25)

where we have used that the operator∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

counts the creation/annihilation operators: Applied to the vacuum state it gives N̂ |0〉 = 0, while
its commutator with any creation operator produces that operator

[N̂ , c†n] =

∫
dx [Ψ̂ †(x)Ψ̂(x), c†n] =

∫
dx Ψ̂ †(x) {Ψ̂(x), c†n} =

∫
dx Ψ̂ †(x)ϕn(x) = c†n. (26)

where we have used the simple relation [AB, C] = A{B, C}−{A, C}B. Commuting with an
annihilator we pick up a minus sign [N̂ , Ψ̂(x)] = −Ψ̂(x), i.e., N̂ Ψ̂(x) = Ψ̂(x)

(
N̂−1

)
. Thus,

commuting N̂ through a general product state, we obtain for each creation operator that we
encounter a copy of the state, while for each annihilator we obtain minus that state, giving in
total the original state times the difference in the number of creation and annihilation operators.
Remarkably, while we started from an operator acting on N -electron states, the resulting opera-
tor in second quantized form is independent of the number of electrons. We will see that this is
an important general feature of operators in second quantization which makes working in Fock
spaces amazingly simple.
We note that (25) just means that the overlap of two Slater determinants (7) is equal to that of
the corresponding product states∫

dx Φα1,...,αN (x)Φβ1,...,βN (x) =
〈
0
∣∣ cα1
· · · cαN c†βN · · · c

†
β1

∣∣0〉. (27)
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2.3.1 One-body operators

Next we consider one-body operators
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N−1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x) (28)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. In between these
field operators we are left with a zero-body operator for N−1 electrons, producing, when M̂ (1)

acts on an N -electron state, a factor of (N−1)!. Again we notice that we obtain an operator that
no longer depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (29)

The matrix elementsM (1)
nm = 〈ϕn|M (1)|ϕm〉 transform like a single-electron matrixM (1): From

(13) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (30)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.
We note that the expression (29) not only works for local operators but also for differential
operators like the momentum or kinetic energy: we have taken care not to exchange the order
of M (1) and one of its field operators. We can write truly non-local operators in a similar way.
As an example, the one-body density operator is given by

Γ̂ (1)(x;x′) = Ψ̂ †(x)Ψ̂(x′) (31)

so that one coordinate is not integrated over, rather setting it to x in the bra and x′ in the ket. In
an orthonormal basis it becomes

Γ̂ (1)(x;x′) =
∑
n,m

ϕn(x)ϕm(x′) c†ncm . (32)
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2.3.2 Two-body operators

For the two-body operators
∑

i<jM
(2)(xi, xj) we proceed in the familiar way, anti-commuting

first the operators with the coordinates involved in M (2) all the way to the left and right, respec-
tively. This time we are left with a zero-body operator for N−2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N−2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N−1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′|M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (33)

where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index
for the second, while taking the adjoint of the operators changes their order. Mnn′,mm′ =

〈ϕnϕn′|M (2)|ϕmϕm′〉 transforms like a fourth-order tensor: Transforming to a different basis
(13) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (34)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (33) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n, m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (35)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).
The procedure of rewriting operators in second quantization obviously generalizes to observ-
ables acting on more than two electrons in the natural way. We note that, while we started from
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a form of the operators (24) that was explicitly formulated in an N -electron Hilbert space, the
results (25), (29), and (33) are of the same form no matter what value N takes. Thus these op-
erators are valid not just on some N -electron Hilbert space, but on the entire Fock space. This
is a particular strength of the second-quantized formalism.

2.4 Transforming the orbital basis

We noted in (13) that the creators transform in the same way as the orbitals they represent

|βi〉 = U |αi〉 =
∑
j

|βj〉〈αj|αi〉 =
∑
µ

|αµ〉 〈αµ|U |αi〉︸ ︷︷ ︸
=:Uµi

; c†βi =
∑
µ

c†αµ Uµi , (36)

so the “operators” really transform like states. Writing the transformation matrix as U = eM ,
where M is anti-Hermitian, M † = −M when U is unitary, but can be any matrix when U is
merely invertible, we can write the basis transformation in a form appropriate for operators:

c†βi = ec
†Mc c†αµ e

−c†Mc . (37)

To see this, we use the Baker-Campbell-Hausdorff formula in the form

eλAB e−λA = B + λ [A, B] +
λ2

2!

[
A, [A, B]

]
+
λ3

3!

[
A,
[
A, [A, B]

]]
+ · · · , (38)

where the expansion coefficients follow by taking the derivatives of the left hand side at λ = 0,
together with the commutator

[c†αµcαν , c
†
ακ ] = c†αµ δν,κ (39)

from which we obtain for the repeated commutators[∑
µ,ν

Mµνc
†
αµcαν ,

∑
κ

c†ακ
(
Mn
)
κi

]
=
∑
µνκ

c†αµMµν δν,κ
(
Mn
)
κi

=
∑
µ

c†αµ
(
Mn+1

)
µi
. (40)

To keep the derivation simple, we have chosen to transform an operator from the orthonormal
basis that we also used to write the exponential operator. Being linear, the transform works, of
course, the same for an arbitrary creation operator.
Using this form of the basis transformation and noticing that e−c†Mc|0〉 = |0〉, we immediately
see that acting with the exponential of a one-body operator on a product state results in another
product state

ec
†Mc

∏
c†αn
∣∣0〉 =

∏
ec
†Mc c†αne

−c†Mc
∣∣0〉 =

∏
c†βn
∣∣0〉 . (41)

This is, e.g., used when working in the interaction picture. Anticommutators with transformed
operators, (36), are simply

{
cαj , e

c†Mc c†αi e
−c†Mc

}
= 〈αj|eM |αi〉.

Annihilation operators, being the adjoint of the creators, transform in just the expected way

cβi = e−c
†M†c cαµ e

c†M†c , (42)

which means that for unitary transformations, where M is anti-Hermitian, creators and anni-
hilators transform in the same way. Note that in the imaginary-time formalism the annihilators
are, via analytic continuation, chosen to transform in the same way as the creators, making them
different from the adjoint of the creators.



2.12 Erik Koch

3 Variational methods

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (43)

Its variation is

E[Ψ+δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (44)

The first-order term vanishes for H|Ψ〉 = E[Ψ ] |Ψ〉, which is the Schrödinger equation. Since
the eigenfunctions

H|Ψn〉 = En|Ψn〉 , (45)

can be chosen to form an orthonormal basis, we can expand any wavefunction as

|Ψ〉 =
∑
n

|Ψn〉 〈Ψn|Ψ〉 (46)

and determine, as long as 〈Ψ |Ψ〉 6= 0, its energy expectation value

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
m,n〈Ψ |Ψm〉〈Ψm|H|Ψn〉〈Ψn|Ψ〉∑
m,n〈Ψ |Ψm〉〈Ψm|Ψn〉〈Ψn|Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 . (47)

Since by definition no eigenenergy can be lower than the ground state energy E0, we immedi-
ately see that the energy expectation value can never drop below the ground state energy

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 ≥
∑

nE0

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 = E0 . (48)

We can use the same argument to generalize this variational principle: Assume we have ar-
ranged the eigenenergies in ascending order, E0 ≤ E1 ≤ · · · , then the energy expectation value
for a wavefunction that is orthogonal to the n lowest eigenstates, can not drop below En

〈Ψ⊥n|H|Ψ⊥n〉
〈Ψ⊥n|Ψ⊥n〉

≥ En if 〈Ψi|Ψ⊥n〉 = 0 for i = 0, . . . , n−1. (49)

This generalized variational principle is, of course, only of practical use if we know something
about the eigenstates, e.g., when we can use symmetries to ensure orthogonality.
For an ab-initio Hamiltonian of N electrons in the field of nuclei of charge Zα at positionRα,

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

, (50)

the Schrödinger equation is a partial differential equation. In second quantization it becomes
a linear-algebra problem: We introduce an orbital basis set {ϕk | k}, which for simplicity we
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assume here to be orthonormal, from which we construct an orthonormal basis of N -electron
product states, {Φk1,...,kN | k1< · · ·<kN}. To simplify the notation we sort the basis states, e.g.,
lexicographically in the orbital indices k = (k1, . . . , kN) and define the row vector of basis
states |Φ〉 :=

(
|Φ1〉, |Φ2〉, . . .

)
. The expansion of a state |Ψ〉 in this basis can then be written as

|Ψ〉 =
∑

k1<···<kN

ak1,...,kN |Φk1,...,kN 〉 =
∑
i

ai |Φi〉 = |Φ〉a , (51)

where a is the vector of expansion coefficients. Likewise we can write the Schrödinger equation
as a matrix eigenvalue problem

Ha = 〈Φ|Ĥ|Φ〉a =

〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · ·
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · ·

...
... . . .


a1

a2

...

 = E

a1

a2

...

 = Ea . (52)

From the eigenvectors of the matrixH we easily recover the eigenstates of the Hamiltonian

Han = Enan ; Ĥ|Ψn〉 = En|Ψn〉 with |Ψn〉 = |Φ〉an . (53)

Unfortunately, for an ab-initio Hamiltonian like (50) we need an infinite orbital basis set, so that
the Hamiltonian matrixH is infinite dimensional. A pragmatic approach to allow for computer
simulations is to simply restrict the calculation to a finite basis |Φ̃〉 :=

(
|Φ̃1〉, . . . , |Φ̃L̃〉

)
, i.e.,

work with a finite matrix H̃ := 〈Φ̃|Ĥ|Φ̃〉 of dimension L̃. The crucial question is then how the
eigenstates

H̃ãn = Ẽnãn ; |Ψ̃n〉 := |Φ̃〉 ãn (54)

are related to those of H . The answer is surprisingly simple [7]: The eigenvalues of H̃ , ordered
as Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼL̃−1, are variational with respect to those of H:

En ≤ Ẽn for n ∈ {0, . . . , L̃−1} . (55)

To show this, we construct a state in span
(
|Ψ̃0〉, . . . , |Ψ̃n〉

)
, which by construction has an energy

expectation value ≤ Ẽn, that is orthogonal to the exact eigenstates |Ψ0〉, . . . , |Ψn−1〉, so that by
the generalized variational principle its expectation value is ≥ En. Being the non-zero solution
of n−1 linear equations with n variables, such a state certainly exists, hence En ≤ Ẽn.
The convergence of the matrix eigenvalues with increasing basis size is surprisingly regular. Let
us extend our original basis of L̃ states by an additional L−L̃ states. Then, repeating the above
argument with the L-dimensional problem taking the role of Ĥ , we obtain (55) with En being
the eigenvalues of the L-dimensional Hamiltonian matrix H . Since H now is finite, we can
use the same argument for −H , obtaining

− EL−i ≤ −ẼL̃−i for i ∈ {1, . . . , L̃}. (56)

Taking the two inequalities together we obtain

En ≤ Ẽn ≤ En+(L−L̃) for n ∈ {0, . . . , L̃−1}. (57)



2.14 Erik Koch

For the special caseL = L̃+1 of adding a single basis state, this is the Hylleraas-Undheim/Mac-
Donald nesting property for eigenvalues in successive approximations

E1 ≤ Ẽ1 ≤ E2 ≤ Ẽ2 ≤ · · · ≤ ẼL ≤ EL+1 . (58)

For a finite basis sets of K single-electron functions the dimension of (52) for an N -electron
problem increase extremely rapidly: There are K · (K−1) · (K−2) · · · (K − (N−1)) ways of
picking N indices out of K. Since we only use one specific ordering of these indices, we still
have to divide by N ! to obtain the number of such determinants:

dimH(N)
K =

K!

N !(K−N)!
=

(
K

N

)
. (59)

For N = 25 electrons and K = 100 orbitals the dimension already exceeds 1023.
To get reliable results, we simply have to systematically increase the basis until the change in
the desired eigenvalues becomes smaller than the accuracy required by the physical problem.
The art is, of course, to devise clever basis sets such that this is achieved already for bases of
manageable dimensions.

3.1 Non-interacting electrons

Even when considering a system of N non-interacting electrons we have to solve the large
matrix eigenvalue problem (52). Writing the non-interacting Hamiltonian in the basis used for
the CI expansion (51) we obtain

Ĥ =
∑
n,m

Hnm c
†
ncm ,

which, in general, has non-vanishing matrix elements between Slater determinants that differ in
at most one operator. But we can simplify things drastically by realizing that we can choose any
single-electron basis for the CI expansion. If we choose the eigenstates of the single-electron
matrix Hnm as basis, the second-quantized Hamiltonian becomes

Ĥ =
∑
n,m

(
εn δn,m

)
c†ncm =

∑
n

εn c
†
ncn .

In this basis all off-diagonal matrix elements vanish and the CI Hamiltonian (52) is diagonal.
Thus all

(
K
N

)
eigenstates are Slater determinants

|Φn〉 = c†nN · · · c
†
n1
|0〉 with eigenenergy En =

∑
i

εni . (60)

This shows that choosing an appropriate basis for a CI expansion is crucial. A good general
strategy should thus be to solve the matrix problem (52) and at the same time look for the
basis set (of given size) that minimizes the variational energy. This is the idea of the multi-
configurational self-consistent field method (MCSCF) [8]. In the following we will restrict
ourselves to the simplest case where the many-body basis consists of a single Slater determinant.
This is the Hartree-Fock method.
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3.2 Hartree-Fock theory

The idea of the Hartree-Fock approach is to find an approximation to the ground-state of the
N -electron problem by minimizing the total-energy wave-function functional (43) allowing
only N -electron Slater determinants as variational functions. Since expectation values of Slater
determinants are determined by their one-body density matrix, this means that we want to find
the occupied subspace for which (43) is minimized.
To perform these variations we represent unitary transformations of the orbital basis as in
Sec. 2.4 (related to the Thouless representation of Slater determinants [9])

Û(λ) = eiλM̂ with M̂ =
∑
α,β

Mαβ c
†
αcβ hermitian . (61)

Using the Hausdorff expansion (38), the variation of the energy expectation value becomes

E(λ) = 〈Φ|eiλM̂ Ĥ e−iλM̂ |Φ〉

= 〈Φ|Ĥ|Φ〉+ iλ〈Φ|[Ĥ, M̂ ]|Φ〉+
(iλ)2

2
〈Φ|
[
[Ĥ, M̂ ], M̂

]
|Φ〉+ · · · (62)

The energy functional is stationary for ΦHF when

〈ΦHF|[Ĥ, M̂ ]|ΦHF〉 = 0 (63)

for every hermitian single-electron operator M̂ . This condition is most easily understood when
we work with orthonormal orbitals {|ϕ〉|n} from which the Slater determinant can be con-
structed: |ΦHF〉 = c†N · · · c

†
1|0〉. Then (63) is equivalent to

〈ΦHF|[Ĥ, c†ncm + c†mcn]|ΦHF〉 = 0 ∀ n, m

(in fact, n ≥ m suffices). Since

c†ncm|ΦHF〉 =

{
δn,m|ΦHF〉 if n, m ∈ {1, . . . , N}

0 if m /∈ {1, . . . , N}
,

i.e., (63) is automatically fulfilled if both n and m are either occupied or unoccupied (virtual).
This is not unexpected since transformations among the occupied or virtual orbitals, respec-
tively, do not change the Slater determinant. The condition thus reduces to

〈ΦHF|c†mcnĤ|ΦHF〉 = 0 ∀ m ∈ {1, . . . , N}, n /∈ {1, . . . , N} . (64)

In other words, for the Hamiltonian there are no matrix elements between the stationary Slater
determinant and determinants that differ from it in one orbital. This condition that for the
Hartree-Fock determinant the Hamiltonian does not produce single excitations is called the
Brillouin theorem.
Let us consider a Hamiltonian with one- and two-body terms

Ĥ =
∑
n,m

c†n Tnm cm +
∑

n>n′,m>m′

c†nc
†
n′

(
Unn′,mm′ − Unn′,m′m

)
cm′cm
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Then for each n > N ≥ m the singly-excited term(
Tnm +

∑
m′≤N

(
Unm′,mm′ − Unm′,m′m

))
c†ncm|ΦHF〉 = 0

must vanish. This is the same condition as for a non-interacting Hamiltonian with matrix ele-
ments

Fnm = Tnm +
∑
m′≤N

(Unm′,mm′ − Unm′,m′m) . (65)

F is called the Fock matrix. It depends, via the summation over occupied states, i.e., the
density matrix, on the Slater determinant it is acting on. So we cannot simply diagonalize the
single-electron matrix F since this will, in general, give a different determinant. Instead we
need to find a Slater determinant for which F is diagonal (in fact, it is sufficient if it is block-
diagonal in the occupied and virtual spaces). This is typically done by constructing a new Slater
determinant from the N lowest eigenstates of F and iterating. Alternatively, we can use, e.g.,
steepest descent methods to minimize the expectation value directly or optimizing the one-body
density matrix [10, 11]. At self-consistency the Fock matrix is diagonal with eigenvalues

εHF
m =

(
Tmm +

∑
m′≤N

(
Umm′,mm′ − Umm′,m′m

)︸ ︷︷ ︸
=:∆mm′

)
=

(
Tmm +

∑
m′≤N

∆mm′

)
(66)

and the Hartree-Fock energy is given by

〈ΦHF|Ĥ|ΦHF〉 =
∑
m≤N

(
Tmm +

∑
m′<m

∆mm′

)
=
∑
m≤N

(
Tmm +

1

2

∑
m′≤N

∆mm′

)
.

Removing an electron from the occupied orbital ϕa changes the energy expectation value by

〈ΦHF
a rem|Ĥ|ΦHF

a rem〉 − 〈ΦHF|Ĥ|ΦHF〉 = −
(
Taa +

1

2

∑
m′≤N

∆am′

)
− 1

2

∑
m 6=a≤N

∆ma = −εHF
a . (67)

When we assume that removing an electron does not change the orbitals, which should be a
good approximation in the limit of many electrons N � 1, this gives the ionization energy
(Koopmans’ theorem). Likewise, the energy expectation value of an excited Slater determinant
ΦHF
a→b with an electron moved from orbital a ≤ N to orbital b > N is

εHF
a→b = 〈ΦHF

a→b|Ĥ|ΦHF
a→b〉 − 〈ΦHF|Ĥ|ΦHF〉 = εHF

b − εHF
a −∆ab (68)

It can be interpreted as the energy of a state with an electron-hole excitation, again neglecting
relaxation effects. For the Coulomb interaction

∆ab =
1

2
(∆ab +∆ba) =

1

2

(〈
ϕaϕb

∣∣∣∣ 1

r − r′

∣∣∣∣ϕaϕb − ϕbϕa〉+

〈
ϕbϕa

∣∣∣∣ 1

r − r′

∣∣∣∣ϕbϕa − ϕaϕb〉)
=

1

2

〈
ϕaϕb − ϕbϕa

∣∣∣∣ 1

r − r′

∣∣∣∣ϕaϕb − ϕbϕa〉 > 0

so that the third term in (68) describes the attraction between the excited electron and the hole.
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3.2.1 Homogeneous electron gas

Since the homogeneous electron gas is translation invariant it is natural to write the Hamilto-
nian (for states with homogeneous charge density) in the basis of plane waves 〈r, σ|k, σ〉 =

(2π)−3/2 eik·r

Ĥ =
∑
σ

∫
dk
|k2|
2
c†k,σck,σ +

1

2(2π)3

∑
σ,σ′

∫
dk

∫
dk′
∫ ′
dq

4π

|q|2
c†k−q,σc

†
k′+q,σ′ck′,σ′ck,σ , (69)

where the prime on the q integral means that q = 0 is excluded since the homogeneous contri-
bution to the Coulomb repulsion of the electrons is cancelled by its attraction with the homo-
geneous neutralizing background charge density. It seems reasonable to consider as an ansatz a
Slater determinant |ΦkF 〉 of all plane-wave states with momentum below some Fermi momen-
tum, |k| < kF . The charge density for such a determinant follows, using the anticommutator of
the field operator

{Ψ̂ †σ(r), ck,σ} =

∫
dr′

e−ik·r

(2π)3/2
{Ψ̂ †σ(r), Ψ̂σ(r′)} =

e−ik·r

(2π)3/2
,

from the diagonal of the density matrix

nσ(r) = 〈ΦHF|Ψ̂ †σ(r)Ψ̂σ(r)|ΦHF〉 =

∫
|k|<kF

dk

∣∣∣∣ eik·r

(2π)3/2

∣∣∣∣2 =
k3
F

6π2
. (70)

It is independent of position, so |ΦkF 〉 looks like an appropriate ansatz for a homogeneous
system. Moreover, it fulfills the stationarity condition (64): To create just a single excitation one
of the creation operators in the Coulomb term of (69) must fill one of the annihilated states, i.e.,
q = 0 or q = k−k′. But this implies that the term is diagonal with q = 0 giving the direct and
q = k−k′ the exchange contribution. Since the q = 0 term is not present in the Hamiltonian,
the eigenenergies of the Fock matrix are just the sum of the kinetic and the exchange terms

εHF
k,σ =

|k|2

2
− 1

4π2

∫
|k′|<kF

dk′
1

|k − k′|2
=
k2

2
− kF

π

(
1 +

k2
F − k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣) (71)

It depends only on k = |k|. Interestingly the slope of εHF
k,σ becomes infinite for k → kF . Thus,

the density of states D(εk)dε = 4πk2 dk, given by

DHF
σ (ε) = 4πk2

(
dεHF

k,σ

dk

)−1

= 4πk2

(
k − kF

πk

(
1− k2

F + k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣))−1

(72)

vanishes at the Fermi level (see Fig. 1). This is not quite what we expect from a respectable
electron gas... It is clearly a defect of the Hartree-Fock approximation.
Instead of calculating the energy expectation value also directly in k-space, it is instructive to
look at the exchange term in real space. To evaluate the electron-electron repulsion we need the
diagonal of the 2-body density matrix, which is given in terms of the one-body density matrix

〈ΦkF |Ψ̂
†
σ′(r

′)Ψ̂ †σ(r)Ψ̂σ(r)Ψ̂σ′(r
′)|ΦkF 〉 = det

(
Γ

(1)
σσ (r, r) Γ

(1)
σσ′(r, r

′)

Γ
(1)
σ′σ(r′, r) Γ

(1)
σ′σ′(r

′, r′)

)
,
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Fig. 1: Hartree-Fock eigenvalues and density of states for the homogeneous solution |ΨkF 〉 of
the homogeneous electron gas compared to non-interacting values.

where the one-body density matrix vanishes unless σ′ = σ where it is evaluated as in (70)

Γσσ(r, r′) = 〈ΦkF |Ψ̂ †σ(r)Ψ̂σ(r′)|ΦkF 〉

=

∫
|k|<kF

dk
e−ik·(r−r

′)

(2π)3
=

1

4π2

∫ kF

0

dk k2

∫ 1

−1

d cos θ eik|r−r
′| cos θ

=
k3
F

2π2

sinx− x cosx

x3︸ ︷︷ ︸
x→0−→ 1/3

= 3nσ
sinx− x cosx

x3
(73)

with x = kF |r−r′|. Dividing the 2-body density matrix by n2
σ and subtracting the direct

term (which is canceled by the contribution of the background charge) we obtain the exchange
hole [11]

gx(r, 0)− 1 = −9

(
sin kF r − kF r cos kF r

(kF r)3

)2

. (74)

It is shown in Fig. 2. The exchange energy per spin is then the Coulomb interaction of the
charge density with its exchange hole

Ex =
1

2

∫
dr nσ

∫
dr′nσ

gx(r, r
′)− 1

|r − r′|
=

1

2

∫
dr nσ︸ ︷︷ ︸
=N

∫
dr̃ nσ

gx(r̃, 0)− 1

r̃
.

The exchange energy per electron of spin σ is thus

εσx =
4πnσ

2

∫ ∞
0

dr r2 g(r, 0)− 1

r
= −9 · 4πnσ

2k2
F

∫ ∞
0

dx
(sinx− x cosx)2

x5︸ ︷︷ ︸
=1/4

= −3kF
4π

. (75)
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Fig. 2: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kF rσ = (9π/2)1/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (75).

Together with the kinetic energy per electron of spin σ

εσkin = 4π

∫ kF

0

dk k2 k
2

2

/
4π

∫ kF

0

dk k2 =
3k2

F

10
(76)

we obtain the total energy per electron

εHF =
n↑
(
ε↑kin+ε↑x

)
+ n↓

(
ε↓kin+ε↓x

)
n↑ + n↓

=
3(6π2)2/3

10

n
5/3
↑ + n

5/3
↓

n
− 3

4

(
6

π

)1/3 n
4/3
↑ + n

4/3
↓

n
.

While the kinetic energy is lowest when n↑ = n↓, exchange favors spin polarization. For reason-
able electron densities the kinetic energy dominates, only at extremely low densities exchange
dominates and the solution would be ferromagnetic.
A ferromagnetic Slater determinant would, of course, have two different Fermi momenta, k↑F 6=
k↓F . It also would break the symmetry of the Hamiltonian under spin rotations. This is an
example of how we can lower the energy expectation value by allowing Slater determinants
that break a symmetry of the system. When we do not restrict the symmetry of the Slater
determinant, the approach is called unrestricted Hartree-Fock. For the electron gas this approach
actually gives Hartree-Fock states that even break translational symmetry, see, e.g., [12].

3.2.2 Hubbard model

As a simple example to illustrate the difference between restricted and unrestricted Hartree-
Fock we consider the Hubbard model with two sites, i = 1, 2, between which the electrons can
hop with matrix element −t and with an on-site Coulomb repulsion U

Ĥ = −t
∑
σ

(
c†2σc1σ + c†1σc2σ

)
+ U

∑
i∈{1,2}

ni↑ni↓ . (77)
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The number of electrons N and the total spin projection Sz are conserved, so the Fock space
Hamiltonian is block-diagonal in the Hilbert spaces with fixed number of up- and down-spin
electrons N↑ and N↓ with dimensions

N 0 1 2 3 4

N↑ 0 1 0 2 1 0 2 1 2

N↓ 0 0 1 0 1 2 1 2 2

dim 1 2 2 1 4 1 2 2 1 16

Exact solutions: The Hamiltonian for N = N↑ = 1 is easily constructed. By introducing the
basis states c†1↑|0〉 and c†2↑|0〉, we obtain the Hamiltonian matrix

〈
0
∣∣∣(c1↑

c2↑

)
Ĥ
(
c†1↑ c†2↑

) ∣∣∣0〉 =

(
0 −t 〈0|c1↑ c

†
1↑c2↑ c

†
2↑|0〉

−t 〈0|c2↑ c
†
2↑c1↑ c

†
1↑|0〉 0

)
=

(
0 −t
−t 0

)
.

This is easily diagonalized giving the familiar bonding and antibonding solution

|ϕ±〉 =
1√
2

(
c†1↑ ± c

†
2↑
)
|0〉 = c†±↑|0〉 . (78)

For N↑ = 1 = N↓, we obtain a non-trivial interacting system

〈
0
∣∣∣

c1↑c2↓

c2↑c1↓

c1↑c1↓

c2↑c2↓

 Ĥ
(
c†2↓c

†
1↑ c†1↓c

†
2↑ c†1↓c

†
1↑ c†2↓c

†
2↑

) ∣∣∣0〉 =


0 0 −t −t
0 0 −t −t
−t −t U 0

−t −t 0 U

 . (79)

To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic
states

|cov±〉 =
1√
2

(
c†2↓c

†
1↑ ± c

†
1↓c
†
2↑
)
|0〉 (80)

|ion±〉 =
1√
2

(
c†1↓c

†
1↑ ± c

†
2↓c
†
2↑
)
|0〉 (81)

It is then easy to verify that |cov−〉 is an eigenstate with eigenvalue εcov− = 0 and that |ion−〉
has eigenenergy εion− = U . The remaining two states mix(

〈cov+|
〈ion+|

)
Ĥ
(
|cov+〉 |ion+〉

)
=

1

2

(
U −

(
U 4t

4t −U

))
. (82)

Rewriting the matrix (
U 4t

4t −U

)
=
√
U2+16t2

(
cosΘ sinΘ

sinΘ − cosΘ

)
, (83)
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Fig. 3: Spectrum of the two-site Hubbard model as a function of U/t.

we find the ground state of the half-filled two-site Hubbard model

|gs〉 = cosΘ/2 |cov+〉+ sinΘ/2 |ion+〉 (84)

=
1√
2

(
cos Θ

2
c†2↓c

†
1↑ + cos Θ

2
c†1↓c

†
2↑ + sin Θ

2
c†1↓c

†
1↑ + sin Θ

2
c†2↓c

†
2↑

) ∣∣0〉 (85)

with an energy of εgs = (U −
√
U2+16t2)/2. Without correlations (U = 0 ; Θ = π/2), all

basis states have the same prefactor, so we can factorize the ground state, writing it as a product
c†+↓c

†
+↑|0〉 of the operators defined in (78). For finite U this is no longer possible. In the strongly

correlated limit U � t (Θ ↘ 0) the ground state becomes the maximally entangled state |cov+〉
and can not even approximately be expressed as a two-electron Slater determinant.

Hartree-Fock: We now want to see what Hartree-Fock can do in such a situation. Since the
Hamiltonian is so simple, we can directly minimize the energy expectation value. The most
general ansatz is a Slater determinant of an orbital ϕ(θ↑) = sin(θ↑)ϕ1 + cos(θ↑)ϕ2 for the
spin-up, and ϕ(θ↓) = sin(θ↓)ϕ1 + cos(θ↓)φ2 for the spin-down electron:

|Φ(θ↑, θ↓)〉 =
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

) ∣∣0〉 . (86)

The energy expectation value as a function of the parameters θσ is then

〈Φ(θ↑, θ↓)|Ĥ|Φ(θ↑, θ↓)〉 =− 2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)

+ U
(
sin2 θ↑ sin2 θ↓ + cos2 θ↑ cos2 θ↓

)
. (87)

If the Slater determinant respects the symmetry of the molecule under the exchange of sites
(mirror symmetry of the H2 molecule), it follows that the Hartree-Fock orbitals for both spins
are the bonding state ϕ+ (θ = π/4). This is the restricted Hartree-Fock solution. The corre-
sponding energy isE(π/4, π/4) = −2t+U/2. The unrelaxed excited determinants are obtained
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Fig. 4: Energy expectation value for a Slater determinant Φ(θ, π/2−θ) for U=0, t, 2t, . . . , 6t.
When U ≤ 2t the minimum is at θ = π/4. This is the Hartree-Fock solution with the bonding
orbitals ϕ+ occupied. For U ≥ 2t, θ = π/4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

by replacing occupied orbitals ϕ+ with ϕ−. Altogether we obtain the restricted Hartree-Fock
spectrum

E( π/4, π/4) = −2t+ U/2

E( π/4,−π/4) = U/2

E(−π/4, π/4) = U/2

E(−π/4,−π/4) = 2t+ U/2

(88)

Comparing to the energy for a state with both electrons of the same spin (E = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry [13]. The states (88) are
spin-contaminated [14]. Even worse, the Hartree-Fock ground state, and consequently all the
states, are independent of U . The weight of the ionic states is always 1/2, leading to an increase
of the energy with U/2.
To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. In an extended system this corresponds to an
antiferromagnetic spin-density wave. For U < 2t this does not lead to a state of lower energy.
For larger U , however, there is a symmetry-broken ground state

ΦUHF = Φ(θ, π/2−θ) with θ(U) =
π

4
± 1

2
arccos

(
2t

U

)
. (89)

Its energy is EUHF = −2t2/U . Still there is no triplet state (spin contamination) and, for
U →∞, the overlap with the true singlet ground state goes to

∣∣〈ΦUHF|Ψ−〉
∣∣2 = 1/2.

From Fig. 4 it might appear that there are just two degenerate unrestricted Hartree-Fock deter-
minants. But, remembering that we can chose the spin quantization axis at will, we see that by
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rotating the spins by an angle α about the axis n̂ (see App. A.2)

Rn̂(α) = e−in̂·~σ α/2 = cos(α/2)− i sin(α/2) n̂ · ~σ

we can produce a continuum of degenerate solutions R̂n̂(α)|ΦUHF〉. As an example we consider
the state we obtain when we rotate the spin quantization axis from the ẑ into the x̂ direction

Rŷ(−π/2) =
1√
2

(
1 1

−1 1

)
which transforms the creation operators according to (13) as(

c†i↑, c
†
i↓

)
Rŷ(−π/2) =

(
1√
2

(
c†i↑−c

†
i↓
)
,

1√
2

(
c†i↑+c

†
i↓
))

.

The determinant (86) thus transforms to

R̂ŷ(−π/2)|Φ(θ↑, θ↓)〉 =
1

2

(
s↓
(
c†1↑+c

†
1↓
)

+ c↓
(
c†2↑+c

†
2↓
))(

s↑
(
c†1↑−c

†
1↓
)

+ c↑
(
c†2↑−c

†
2↓
))
|0〉 (90)

where we introduced the abbreviations sσ = sin θσ and cσ = cos θσ. Since the Hamiltonian (77)
is invariant under spin rotations, R̂ŷ(−π/2) Ĥ R̂†ŷ(−π/2) = Ĥ , the energy expectation value of
the rotated state is still given by (87).

Attractive Hubbard model For negative U allowing the spin orbitals to differ, Φ(θ, π/2−θ),
does not lower the energy expectation value. The minimum is always obtained for the restricted
Hartree-Fock determinant Φ(π/4, π/4). In fact, for the attractive Hubbard model rather than
breaking spin symmetry, we should try to break the charge symmetry: For U < −2t the ansatz
Φ(θ, θ) minimizes the energy for the two states θ(U) = π/4 ± arccos(−2t/U) with energy
E(U) = 2t2/U + U . Thus, the unrestricted Hartree-Fock ground state breaks the charge sym-
metry, i.e., is a charge-density wave state. On the other hand, looking back to (90) we see
that Φ(θ, θ) is invariant under the spin rotation. This is actually true for any R̂n̂(α) so that
the unrestricted Hartree-Fock ground state of the attractive Hubbard model does not break spin
symmetry.
It seems strange that for the attractive model we only find two unrestricted Hartree-Fock states,
while for the repulsive model we have a continuum of states. To find the ’missing’ states we
consider a new kind of transformation that mixes creation and annihilation operators: When we
exchange the role of the creation and annihilation operators for the up spins only, i.e.,

c̃†i↑ = (−1)ici↑ and c̃†i↓ → c†i↓, (91)

the Hamiltonian (77) transforms into a two-site Hubbard model with the sign of U reversed

Ĥ = −t
∑
σ

(
c̃†2σ c̃1σ + c̃†1σ c̃2σ

)
− U

∑
i∈{1,2}

ñi↑ñi↓ + U(ñ1↓ + ñ2↓) . (92)

Let us see what happens to the Slater determinant (86) when we apply the same transformation.
In doing this, we have to remember that the vacuum state must vanish when acted on with an
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annihilator. For |0〉 this is no longer true for the transformed operators, but we can easily write
down a state

|0̃〉 = c†2↑c
†
1↑|0〉 (93)

that behaves as a suitable vacuum state: c̃iσ|0̃〉 = 0 and 〈0̃|0̃〉. We can then rewrite the trans-
formed Slater determinant (86) as

|Φ̃(θ↑, θ↓)〉 =
(

sin(θ↓) c̃
†
1↓ + cos(θ↓) c̃

†
2↓

)(
sin(θ↑) c̃

†
1↑ + cos(θ↑) c̃

†
2↑

)
|0̃〉

=
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
− sin(θ↑) c1↑ + cos(θ↑) c2↑

)
c†2↑c

†
1↑|0〉

=
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
+ sin(θ↑) c

†
2↑ + cos(θ↑) c

†
1↑

)
|0〉 .

Thus, the transformation takes the unrestricted state |Φ(θ, π/2 − θ)〉 for the repulsive Hubbard
model into the unrestricted state |Φ(θ, θ)〉 for the attractive Hubbard model. Transforming the
rotated state (90) in the same way, we find something remarkable:

1

2

(
s↓
(
c̃†1↑+c̃

†
1↓
)

+ c↓
(
c̃†2↑+c̃

†
2↓
))(

s↑
(
c̃†1↑−c̃

†
1↓
)

+ c↑
(
c̃†2↑−c̃

†
2↓
))
|0̃〉

=
1

2

(
s↓
(
−c1↑+c

†
1↓
)

+ c↓
(
c2↑+c

†
2↓
))(

s↑
(
−c1↑−c

†
1↓
)

+ c↑
(
c2↑−c

†
2↓
))
c†2↑c

†
1↑|0〉

=
1

2

(
(s↓c↑+c↓s↑)

(
c†1↓c

†
1↑+c

†
2↓c
†
2↑
)
|0〉+ 2

(
s↓s↑c

†
1↓c
†
2↑+c↓c↑c

†
2↓c
†
2↑
)
|0〉

+ (s↓c↑−c↓s↑)
(
c†2↓c

†
1↓c
†
2↑c
†
1↑−1

)
|0〉

)
.

The energy expectation value of this state is by construction the same as for the charge-density
state. For θ↓ = π/2−θ↑ the new state has a uniform density, but the wavefunction no longer has
a well-defined particle number, i.e., it breaks particle number conservation. It is still a product
state in the transformed operators and vacuum, but it is a state in Fock space. States of this type
are the key to describing superconductivity.

3.3 BCS theory

Next we consider the BCS Hamiltonian

ĤBCS =
∑
kσ

εk c
†
kσckσ −

∑
kk′

Gkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (94)

with an attractive interaction between pairs of electrons of opposite spin and momentum (Cooper
pairs). We now want to see if we can use the idea of product states in Fock space that we encoun-
tered for the attractive Hubbard model. To start, let us consider the determinant of plane-wave
states that we used for the homogeneous electron gas |ΦkF 〉. Since all states with momentum
below kF are occupied, we have

c†kσ|ΦkF 〉 = 0 for |k| < kF and ckσ|ΦkF 〉 = 0 otherwise.
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Thus |ΦkF 〉 behaves like a vacuum state for the transformed operators

c̃kσ = Θ(kF−|k|) c†kσ +Θ(|k|−kF ) ckσ =

{
c†kσ for |k| < kF
ckσ for |k| > kF

Allowing the operators to mix, we can generalize this transformation to

bk↑ = ukck↑ − vkc
†
−k↓

bk↓ = ukck↓ + vkc
†
−k↑

Notice how states with (k, σ) and (−k,−σ) are mixed. The corresponding creation opera-
tors are the adjoints, b†kσ = ukc

†
kσ − 2σvkc−k,−σ, where σ=±1/2. These Bogoliubov-Valatin

operators fulfill the canonical anticommutation relations

{bkσ, bk′σ′} = 0 = {b†kσ, b
†
k′σ′} and {bkσ, bk′σ′} = δ(k−k′) δσ,σ′

when (the non-trivial anticommutators are {bk↑, b−k↓} and {bkσ, b
†
kσ})

|uk|2 + |vk|2 = 1 . (95)

A vacuum state for the new operators can be constructed from the generalized product state∏
kσ bkσ|0〉. Expanding the operators

b−k↑bk↓bk↑b−k↓|0〉 = vk(uk + vk c
†
−k↑c

†
k↓) vk(uk + vk c

†
k↑c
†
−k↓) |0〉

and calculating the norm

〈0|(uk+vk c−k↓ck↑)(uk+vk ck↓c−k↑)(uk+vk c
†
−k↑c

†
k↓)(uk+vk c

†
k↑c
†
−k↓)|0〉 =

(
|uk|2 + |vk|2

)2

we see from (95) that the BCS wavefunction

|BCS〉 =
∏
k

(uk + vk c
†
k↑c
†
−k↓) |0〉 (96)

is the (normalized) vacuum for the Bogoliubov-Valatin operators.
To calculate physical expectation values we express the electron operators as

ck↑ = ukbk↑ + vkb
†
−k↓

ck↓ = ukbk↓ − vkb
†
−k↑

The expectation value for the occupation of a plane-wave state, e.g., is

〈BCS|n̂k↑|BCS〉 = 〈BCS|(ukb†k↑+vkb−k↓)(ukbk↑+vkb
†
−k↓)|BCS〉 = |vk|2 = 〈BCS|n̂−k↓|BCS〉.

Unlike the electron gas Slater determinant |ΦkF 〉, where nkσ is 1 below kF and vanishes above,
varying the parameter vk in the BCS wavefunction allows us to get arbitrary momentum dis-
tributions 〈nkσ〉. Since the BCS wavefunction has contributions in all particle sectors with an
even number of electrons, there are also less-conventional expectation values, e.g.,

〈BCS|c†k↑c
†
−k↓|BCS〉 = 〈BCS|(ukb†k↑ + vkb−k↓)(ukb

†
−k↓ − vkbk,↑)|BCS〉 = vkuk = 〈c−k↓ck↑〉.



2.26 Erik Koch

When minimizing the energy expectation value, we have to introduce a chemical potential µ
that is chosen to give the desired number of particles N =

∑
kσ |vk|2. We get

〈BCS|Ĥ−µN̂ |BCS〉 =
∑
kσ

(εk−µ) |vk|2 −
∑
k,k′

Gkk′ vkukvk′uk′ , (97)

where the last term is real since Gkk′ = Gk′k. Writing the Bogoliubov coefficients in polar
coordinates, uk = |uk|eiαk and vk = |vk|ei(αk+ϕk), we obtain

〈BCS|Ĥ−µN̂ |BCS〉 =
∑

(εk−µ) |vk|2 −
∑

Gkk′ |vk||uk||vk′ ||uk′| cos(ϕk′−ϕk), (98)

which is minimized when the relative phase ϕk is independent of k, i.e., all Cooper pairs in (96)
are phase coherent (while the αk merely contribute to the global phase)

|BCS(ϕ)〉 =
∏(
|uk|+ |vk|eiϕc†k↑c

†
−k↓
)
|0〉. (99)

Their overlap is 〈BCS(ϕ′)|BCS(ϕ)〉 =
∏

k

(
|uk|2 + |vk|2ei(ϕ

′−ϕ)
)

so that in the thermody-
namic limit they are orthogonal for ϕ 6= ϕ′. For a fixed phase ϕ the particle number fluctuates
〈N̂2〉−〈N̂〉2 = 4

∑
k |vk|2|uk|2 < 2〈N̂〉. Since the phase of a state with N/2 Cooper pairs is

eiϕN/2, we can project out states with fixed number of electrons by integrating over ϕ

|BCSN〉 =
1√
2π

∫ 2π

0

dϕ e−iϕN/2 |BCS(ϕ)〉.

It remains to minimize (97) with respect to the absolute values, written as |uk| = sinΘk and
|vk| = cosΘk with Θk ∈ [0, π/2). Setting the derivative of

〈BCS|Ĥ−µN̂ |BCS〉 =
∑
kσ

(εk−µ)
1+ cos 2Θk

2
−
∑
kk′

Gkk′
sin 2Θk

2

sin 2Θk′

2

with respect to Θk to zero we find the system of equations

tan 2Θk = −
∑

k′ Gkk′ sin(2Θk′)/2

εk−µ
= − ∆k

εk−µ
=

∆k

µ−εk
(100)

where we have introduced the gap function ∆k. Using (cosx)2 = 1/
(
1+(tanx)2

)
we obtain

the momentum distribution

〈nkσ〉 = |vk|2 =
1

2

(
1+ cos 2Θk

)
=

1

2

(
1− εk−µ√

(εk−µ)2 +∆2
k

)
. (101)

For ∆k ≡ 0 this is just the step function of a Fermi gas, for finite ∆ the transition is more
smooth. We still have to determine the parameters µ and ∆k. The chemical potential is fixed by

N =
∑
k

2|vk|2 =
∑
k

(
1− εk−µ√

(εk−µ)2 +∆2
k

)
(102)

while for ∆k we obtain from (100) and (101) the self-consistent gap equations

∆k =
∑
k′

Gkk′
sin 2Θk

2
=

1

2

∑
k′

Gkk′ tan 2Θk′ cos 2Θk′ = −1

2

∑
k′

Gkk′∆k′√
(εk′−µ)2 +∆2

k′

. (103)
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Fig. 5: Quasi-electron energy and density of states for the BCS state with and without gap.

To see that ∆ is indeed a gap, consider the (unrelaxed) quasi-electron states (εk > µ)

|k ↑〉 =
1

uk
c†k↑|BCS〉 = b†k↑|BCS〉. (104)

Adding an electron of momentum k destroys its Cooper pair, changing 〈nk↑+nk↓〉 from 2|v2
k|

to 1 and removing the interaction of the pair with all others:

〈k ↑ |Ĥ−µN̂ |k ↑〉 − 〈BCS|Ĥ−µN̂ |BCS〉 = (εk−µ) (1−2|vk|2) + 2∆k|vk||uk|

= (εk−µ) (− cos 2Θk) +∆k sin 2Θk =
√

(εk−µ)2 +∆2.

For ∆k ≡ 0 we recover Koopmans’ Hartree-Fock result, while for ∆k > 0 a gap opens around
the Fermi level. Fig. 5 compares the quasi-electron dispersion and the corresponding density of
states for the two cases, assuming, for simplicity, a k-independent gap ∆k ≡ ∆.

4 Conclusion

We have seen that second quantization is a remarkably useful formalism. With just a few sim-
ple rules for the field operators and the corresponding vacuum, it converts dealing with many-
electron states to straightforward algebraic manipulations. Moreover it is naturally suited for
performing calculations in variational spaces spanned by a finite basis of orbitals. But its ad-
vantages go beyond a mere simplification. By abstracting from the coordinate representation, it
allows us to express many-body operators in a way that is independent of the number of elec-
trons. Because of this it becomes possible to consider Fock-space wavefunctions which do not
have a definite number of electrons. This allows us to consider unrestricted mean-field states
that not only break spatial or spin symmetries but also particle conservation. This additional
freedom allows us to extend the concept of a Slater determinant to product states in Fock space,
an example of which is the BCS wavefunction.
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A Appendix

A.1 Non-orthonormal basis

A general one-electron basis of functions |χn〉 will have an overlap matrix Snm = 〈χn|χm〉 that
is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑

k,l|χk〉(S
−1)kl〈χl| . (105)

With it we can easily write the Schrödinger equation Ĥ|v〉 = ε|v〉 in matrix form∑
k

〈χi|H|χk〉︸ ︷︷ ︸
=:Hik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=:vk

〈χi|Ĥ|v〉 = ε〈χi|v〉 = ε
∑
k

〈χi|χk〉︸ ︷︷ ︸
=Sik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=vk

.

(106)
Collecting all components, this becomes the generalized eigenvalue problemHv = εSv. From
the solution v we can easily construct |v〉 =

∑
vk|χk〉. It is, however, often more convenient

to have an orthonormal basis, so that we do not have to deal with the overlap matrices in the
definition of the second quantized operators or the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑

m|χm〉Tmn with 〈ϕn|ϕm〉 = δmn . (107)

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∥∥|ϕn〉 − |χn〉∥∥2
=
∑
n

∥∥∥∑
m

|χm〉(Tmn−δmn)
∥∥∥2

= Tr (T †−1)S (T−1) = Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) . (108)

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM ) withM a Hermitian matrix,
we obtain the variational condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M , (109)

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0 (110)

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [15]

TLöwdin = S−1/2 (111)

minimizes the modification of the basis vectors due to orthogonalization.
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A.2 Pauli matrices

The spin matrices were defined by Pauli [16] as

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
They are hermitian and unitary, so that σ2

j = σjσ
†
j = 1. Moreover, detσj = −1 and Tr σj = 0.

By explicit multiplication we find σxσy = iσz, from which we get the more symmetric equation
σxσyσz = i. These relations are cyclic, which is easily seen by repeatedly using σ2

j = 1

σxσy = iσz
·σz
; σxσyσz = i

σx·
; σyσz = iσx

·σx
; σyσzσx = i

σy ·
; σzσx = iσy

·σy
; σzσxσy = i .

Exchanging two adjacent indices changes the sign, e.g., multiplying σxσyσz = i from the left
with σyσx gives σyσx=−iσz, which is again cyclic in the indices. We note that the multiplication
table of the matrices −iσj is the same as the that of the basic quaternions. We can summarize
the products of the Pauli matrices in the form(

~a · ~σ
)(
~b · ~σ

)
=
∑

ajbk σjσk =
(
~a ·~b

)
1+ i

(
~a×~b

)
· ~σ . (112)

From the products follow the familiar commutation relations [σx, σy] = 2iσz (cyclic), while the
anticommutators are {σj, σk} = 2δj,k 1.

Together with the unit matrix, the Pauli matrices form a basis of the four-dimensional algebra
of complex 2×2 matrices and we can write(

m11 m12

m21 m22

)
= M = m01+ ~m · ~σ =

(
m0+mz mx−imy

mx+imy m0−mz

)
(113)

with 2m0 = m11+m22, 2mz = m11−m22, 2mx = m12+m21, and 2mx = i(m12−m21), which
can be written as 2mj = TrMσj , with σ0 := 1. When the m0 and ~m are real, M is hermitian.
Matrix products are easily evaluated using (112). As a simple example we find

(m01+ ~m · ~σ)(m01− ~m · ~σ) = m2
0 −m2

x −m2
y −m2

z = detM

(remember detα1N = αN ). Thus, when detM 6= 0, the inverse of M is

M = m01+ ~m · ~σ ; M−1=(m01− ~m · ~σ)/ detM. (114)

For a unitary matrix U=u0 +~u·~σ with detU = 1 we then see from U † = u∗0 +~u ∗ ·~σ !
= u0−~u·~σ

that u0 must be real and ~u = i~n imaginary, so that 1 = detU = u2
0 + ‖~n‖2, which allows us

to write u0 = cosα and ~n = sinα n̂ with unit vector n̂ := ~n/‖~n‖ and α ∈ [0, 2π). Thus any
special unitary 2×2 matrix U∈ SU(2) can be written, using (n̂ ·~σ)2=1 from (112) in the power
series,

Un̂,α = cosα1+ i sinα (n̂ · ~σ) = exp
(
iα n̂ · ~σ

)
. (115)

General unitary matrices with detU = eiα0 have the form U = eiα0/2Un̂,α.
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TheU are related to rotations of vectors~a ∈ R3 viaU(~a·~σ)U †. To see this we remember that~a·~σ
is a hermitian 2×2 matrix with zero trace. By the cyclic property of the trace TrU(~a · ~σ)U † =

Tr~a · ~σ, so that there exists a unique ~aU with U(~a · ~σ)U † = ~aU · ~σ. This mapping ~a → ~aU is
linear, U

(
(c~a+~b) · ~σ

)
U † = cU(~a · ~σ)U † + U(~b · ~σ)U †, and preserves the inner product

~a ·~b = 1
2

Tr(~a · ~σ)(~b · ~σ) = 1
2

TrU(~a · ~σ)U † U(~b · ~σ)U † = 1
2

Tr(~aU · ~σ)(~bU · ~σ) = ~aU ·~bU
so that it must be a proper rotation, ~aU = RU ~a with RU ∈ SO(3). To identify which rotation,
we consider the special case ~a‖ = can̂ for which, by (112), ~a‖ · ~σ commutes with n̂ · ~σ so that
U(~a‖ · ~σ)U † = ~a‖ · ~σ, i.e., n̂ is the axis of rotation. To find the rotation angle ϑ, we consider a
unit vector â⊥ perpendicular to n̂, for which, using (â⊥·~σ)(n̂ ·~σ) = i(â⊥× n̂) ·~σ and Tr~v ·~σ = 0,

cosϑ = â⊥ ·RU â⊥ = 1
2

Tr(â⊥ · ~σ)U(â⊥ · ~σ)U †

= 1
2

Tr(â⊥ · ~σ)(cosα + i sinα (n̂ · ~σ)) (â⊥ · ~σ)(cosα− i sinα (n̂ · ~σ))

= 1
2

Tr
(
cosα â⊥− sinα (â⊥×n̂)

)
· ~σ

(
cosα â⊥+ sinα (â⊥×n̂)

)
· ~σ

=
(
cosα â⊥−sinα (â⊥×n̂)

)
·
(
cosα â⊥+sinα (â⊥×n̂)

)
= (cosα)2− (sinα)2 = cos 2α

Hence, Un̂,α∈ SU(2) induces a rotation RU∈ SO(3) about the axis n̂ through the angle ϑ = 2α.
Therefore, matrices in SU(2) are commonly written using the angle of rotation ϑ ∈ [0, 4π)

instead of α ∈ [0, 2π) as U(n̂, ϑ) = exp(iϑ
2
n̂ · ~σ). We see, in particular, that the two matrices

U(n̂, ϑ) and U(n̂, ϑ+2π) = −U(n̂, ϑ) in SU(2) induce the same rotation R−U = RU ∈ SO(3).

Diagonalizing a hermitian 2×2 matrix M = m01+ ~m · ~σ is now simple: just rotate m̂→ ẑ

U
(
m01+ ‖~m‖ (m̂ · ~σ)

)
U † = m01+ ‖~m‖σz

from which we easily read off the eigenvalues

ε± = m0 ± ‖~m‖ =
m11+m22

2
±
√

(m11−m22)2

4
+|m12|2 = 1

2
TrM ±

√(
1
2

TrM
)2− detM,

while the eigenvalues are the columns vectors of U † =
(
v+, v−

)
m01+ ~m · ~σ = U †

(
m01+ ‖~m‖σz

)
U = m01+ ‖~m‖

(
v+,v−

)
σz

(
v†+
v†−

)
We still need to determine a U that rotates m̂ → ẑ. The rotation axis should be orthogonal
to both vectors, i.e., n̂ = ẑ×m̂/‖ẑ×m̂‖ = (mxŷ−myx̂)/

√
m2
x+m

2
y, so that the rotation angle

ϑ ∈ [0, π] is determined by cosϑ = m̂·ẑ = mz/‖~m‖. Using also the other spherical coordinates
mx = ‖~m‖ sinϑ cosϕ and my = ‖~m‖ sinϑ sinϕ, we get n̂ = cosϕ ŷ − sinϕ x̂ so that

U(n̂, ϑ) =

(
cos ϑ

2
+ inz sin ϑ

2
(ny+inx) sin ϑ

2

−(ny−inx) sin ϑ
2

cos ϑ
2
− inz sin ϑ

2

)
=

(
cos ϑ

2
+e−iϕ sin ϑ

2

−e+iϕ sin ϑ
2

cos ϑ
2

)
from which we read off the eigenvectors as the columns of U † (which you may want to check
for simple cases like M =σz, σx or σy)

v+ =

(
cos ϑ

2

+e+iϕ sin ϑ
2

)
and v− =

(
−e−iϕ sin ϑ

2

cos ϑ
2

)
with

ϕ = arg(m21)=− arg(m12)

ϑ = arccos
m11−m22

ε+−ε−

.

(116)
A more symmetric form of the eigenvectors may be obtained by writing e∓iϕ/2v±.
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A.3 Some useful commutation relations

Commuting an operator through a product of operators is straightforward

AB1 · · ·BN = [A, B1]B2 · · ·BN +B1AB2 · · ·BN

= [A, B1]B2 · · ·BN +B1[A, B2] · · ·BN +B1B2A · · ·BN

...

=
N∑
n=1

n−1∏
i=1

Bi [A, Bn]
N∏

i=n+1

Bi +B1 · · ·BNA

while, working analogously, anticommuting introduces alternating signs

AB1 · · ·BN = {A, B1}B2 · · ·BN −B1AB2 · · ·BN

= {A, B1}B2 · · ·BN −B1{A, B2} · · ·BN −B1B2A · · ·BN

...

=
N∑
n=1

(−1)n−1

n−1∏
i=1

Bi {A, Bn}
N∏

i=n+1

Bi + (−1)NB1 · · ·BNA

The following special cases are particularly useful

[A, BC] = [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are
[
c†icj, c

†
γ

]
= 〈j|γ〉 c†i and

[
c†icj, cγ

]
= −〈i |γ〉 cj .

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ
]

=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ
]

= 〈l|α〉 c†ic
†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl .
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[7] R. Peierls: Surprises in Theoretical Physics (Princeton University Press, 1979)

[8] P. Jorgensen and J. Simons: Second Quantization-Based Methods in Quantum Chemistry
(Academic Press, New York, 1981)

[9] D.J. Thouless: Stability conditions and nuclear rotations in the Hartree-Fock theory,
Nucl. Phys. 21, 225 (1960)

[10] Le Thi Hoai: Product wave-functions in Fock-space
(MSc Thesis, German Research School for Simulation Sciences, 2015)

[11] E. Koch: Many-Electron States in [17]

[12] S. Zhang and D.M. Ceperley: Hartree-Fock Ground State of the Three-Dimensional
Electron Gas, Phys. Rev. Lett. 100, 236404 (2008)

[13] E. Koch: Exchange Mechanisms in [18]

[14] A. Szabo and N.S. Ostlund: Modern Quantum Chemistry (McGraw Hill, New York, 1989)

[15] P.-O. Löwdin: On the Non-Orthogonality Problem Connected with the Use of Atomic
Wave Functions in the Theory of Molecules and Crystals, J. Chem. Phys. 18, 365 (1950)

[16] W. Pauli jr.: Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601 (1927)

[17] E. Pavarini, E. Koch, and U. Schollwöck (Eds.):
Emergent Phenomena in Correlated Matter,
Reihe Modeling and Simulation, Vol. 3 (Forschungszentrum Jülich, 2013)
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http://www.cond-mat.de/events/correl12

http://plato.stanford.edu/entries/identity-indiscernible/
https://doi.org/10.1063/1.1747632
https://doi.org/10.1007/BF01397326
http://www.cond-mat.de/events/correl13
http://www.cond-mat.de/events/correl12


3 Understanding the Hubbard Model
with Simple Calculations

Richard T. Scalettar
University of California Davis
Department of Physics and Astronomy
One Shields Ave., Davis, CA 95616

Contents

1 Introduction 2

2 A classical mechanics prelude 3

3 The Hubbard model at U=0 5
3.1 The 1D case (linear chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 The 2D square lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 The Lieb lattice and “flat bands” . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Localization by disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 The Hatano-Nelson model 11

5 Perfect quantum state transfer 13

6 The strong coupling limit 15

7 Particle-hole transformations 17

8 Concluding remarks 19

E. Pavarini and E. Koch (eds.)
Correlations and Phase Transitions
Modeling and Simulation Vol. 14
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1 Introduction

The Hubbard Hamiltonian,

Ĥ = −t
∑
〈jl〉σ

(
ĉ†lσ ĉjσ + ĉ†jσ ĉlσ

)
+ U

∑
l

(
n̂l↑ −

1

2

)(
n̂l↓ −

1

2

)
− µ

∑
l

n̂lσ (1)

describes the ‘hopping’ of two species of fermions, spin σ =↑, ↓, between neighboring sites 〈jl〉
of a lattice, and interacting, when on the same site l, with an energy U. Here n̂lσ = ĉ†lσ ĉlσ is
the fermion number operator and µ is the chemical potential. I am going to assume familiarity
with the basic properties of fermion creation and destruction operators ĉ†lσ and ĉlσ, including, for
example, their anticommutation relations,

{
ĉ†lσ, ĉjσ′

}
= δjlδσσ′ and

{
ĉ†lσ, ĉ

†
jσ′

}
= 0. We have

written the interaction in ‘particle-hole symmetric form’. This corresponds, up to an irrelevant
constant term in the energy, to a simple shift in the chemical potential µ from the alternate
expression U

∑
l n̂l↑n̂l↓. We will see why this is more symmetric in section 6, and the deep

implications of such symmetries in section 7.
A discussion of the Hubbard Hamiltonian is a truly immense undertaking. From a temporal
point of view it encompasses a six decade history spanning the work of Hubbard, Anderson and
Mott in the 1960’s through a host of materials to which it has been applied: transition metal
oxides, heavy fermions, cuprate superconductors, etc. [1]. Indeed, in the last 15 years a major
focus of the Atomic and Molecular (AMO) community has been on realizing and characterizing
the Hubbard model in systems of ultracold atoms [2, 3]. Attempts to solve the Hubbard model
computationally have driven a rich set of stories in inhomogeneous Hartree-Fock (magnetism
and stripe formation) [4], quantum Monte Carlo (QMC) [5] (including antiferromagnetic or-
der, d-wave superconductivity, and the ‘sign problem’), density matrix renormalization group
(DMRG) methods (stripes and superconductivity) [6], and machine learning (ML) [7]. A recent
review summarizes the breadth of these developments, applications and connections [8].
From a pedagogical point of view, then, the danger of a lecture (or even several lectures) on the
Hubbard model is the temptation to focus on sophisticated techniques and applications. The
audience can easily be left with a sense of the breadth and excitement of the field, but not with
a concrete ability to ‘do something’.
The objectives of this lecture are to provide some specific calculations which shed light on
the basic physics of the Hubbard model. We will begin with the non-interacting limit, i.e.,
obtaining the ‘band structure’ of the Hubbard model. We will emphasize that this already allows
contact with some fascinating phenomena – localization by disorder, Fermi surface nesting and
a divergence of the density of states linked to magnetism and superconductivity, and flat bands
in which the electron energy is independent of momentum.
We will also describe two very interesting aspects of the non-interacting case. First, we will
consider what happens when the motion of fermions to the left and to the right is unbalanced
(the ‘Hatano-Nelson’ model). In this case the Hamiltonian is non-Hermitian! Second, we will
relate a special choice of hoppings which can realize the surprising phenomenon of ‘perfect
quantum state transfer’.
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After discussing the U = 0 limit, and these two interesting situations, we will examine the
opposite limit when t = 0, or, more generally, the strong coupling case U � t. This will
give us insight into a fundamental feature of the Hubbard model, the ‘Mott plateau’, where the
density gets frozen at half-filling for an extended range of chemical potential, a signature of an
insulating phase arising from interactions.
The final objective is to describe the consequences of a set of canonical transformations which
can be performed on the Hubbard model. We will see these allow us to discern surprising and
not immediately intuitive physics in some parameter regimes from the more evident physics in
others. Our first illustration will be on the by now well-known connections between magnetism
in the repulsive Hubbard models and s-wave superconductivity and charge density wave forma-
tion in the attractive Hubbard model. We will then turn to a recent discovery of a transformation
which leads to a rigorous demonstration of pair density wave formation, a phase of matter which
has proven elusive to achieve both experimentally and theoretically.

2 A classical mechanics prelude

Let’s begin with a familiar, but seemingly completely unrelated problem, which will prove to
have close mathematical analogies with the non-interacting Hubbard model. Consider a one-
dimensional array of N uniform masses m connected to their neighbors by uniform springs γ.
Newton’s equations of motion for this mass-spring system are,

m
d2xl
dt2

= −γ
(
xl−xl+1

)
− γ
(
xl−xl−1

)
, (2)

where xl(t) is the displacement from equilibrium of mass l at time t. We will not boldface the
site indices when we are in one dimension. We solve this problem with the ansatz xl(t) = al e

iωt

which reduces the N coupled differential equations to N coupled algebraic equations for the
amplitudes al. After cancelling the common factor of eiωt from all the terms, we find

mω2 al = γ
(
al−al+1

)
+ γ
(
al−al−1

)
. (3)

These equations are solved by introducing normal mode coordinates labeled by k,

al = e−ikla0, (4)

yielding the normal mode frequencies,

mω2(k) = 2γ
(
1− cos(k)

)
. (5)

Here we have now used notation emphasizing that the frequency depends on the ‘momentum’ k.
(We will come back shortly to why calling k the momentum makes sense.)
Eq. (5) is an embarrassment of riches. From a collection of N linear equations (Eqs. (3)) we
have an infinite set of solutions labeled by the continuous parameter k. Something is wrong,
and it’s because we did not treat the boundary conditions carefully. Equations (3) are only true
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for the masses which have both left and right neighbors, l = 2, 3, · · ·N−1. The two masses at
the end have only a single neighbor if we adopt ‘open boundary conditions’ (obc). Here instead
we use ‘periodic boundary conditions’ (pbc), and link oscillator l = 1 to oscillator l = N with
an extra spring of potential energy 1

2
γ(x1−xN)2. Then Eqs. (3) apply to all xl, but only if we

demand that x0 ≡ xN and x1 ≡ xN+1.
This solves our problem of too many solutions, since it quantizes the previously unrestricted
allowed values of momentum by requiring eikN = 1 or, in other words, k ∈ 2π

N
{1, 2, · · · , N}.

Because cosine is periodic, it is equivalent to set

k ∈ 2π

N

{
−N

2
+1,−N

2
+2 · · · N

2

}
(pbc),

which has the advantage of making k symmetric about k = 0.
It is useful to consider two special cases. When k = 0, all masses have identical displacements
al = a0. The entire chain is shifted rigidly and ω(k) = 0. This is an example of a zero
frequency ‘Goldstone mode’ associated with the translational invariance of our mass-spring
system. Because only inter-mass springs are present, there is no potential tying any mass to
a particular location in space. As a consequence the energy is invariant under a simultaneous
translation of all the masses. Put another way, the choice of origin is irrelevant, the equations
are unchanged by a constant shift of all the coordinates, xl → xl+c. On the other hand, when
k = π the masses alternate al = a0 e

iπl = a0(−1)l. This results in the largest normal mode
frequency (energy), ω2 = 4k/m. There is an interesting analogy with quantum mechanics here.
If you sketch al versus l for this highest energy mode, you see there is a node between every
mass. al wiggles as fast as possible. Similarly, in quantum mechanics we know that wiggly
wave functions are associated with high kinetic energy.
One can also solve the open boundary condition case. The ‘dispersion relation’ giving the
functional form for ω(k) is unchanged, but the N allowed momenta are shifted slightly to

k ∈ 2π

N+1

{
0, 1, 2, · · ·N−1

}
(obc).

The pbc case is a bit more simple, so we use it here. Besides simplicity, it is also the case that
properties measured in finite length N chains with pbc are closer to the thermodynamic limit
N = ∞ than obc. Specifically, finite size corrections often go as 1/N2 with periodic and 1/N

with open boundary conditions.
A closing observation is that this solution of coupled oscillators all goes horribly wrong in the
presence of anharmonicity. Indeed, even a single anharmonic oscillator, the problem of F = ma

with V (x) = 1
2
kx2 + 1

4
ux4 is intractable. As we shall see below, the presence of interactions,

i.e., quartic terms in the fermion creation and annihilation operators, Un̂l↑n̂l↓ = Uĉ†l↑ĉl↑ĉ
†
l↓ĉl↓,

analogous to the fourth power ux4, is precisely what makes the Hubbard model impossible to
solve for U non-zero.
That’s a long time spent on classical mechanics! But we will see now that the exact same
mathematics underlies the solution of the non-interacting Hubbard model.
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3 The Hubbard model at U=0

3.1 The 1D case (linear chain)

Let’s write down the non-interacting (U = 0) Hubbard model for a 1D chain.

Ĥ = −t
∑
l

(
ĉ†l ĉl+1 + ĉ†l+1ĉl

)
− µ

∑
l

ĉ†l ĉl . (6)

Because we will not have any interactions for this section, we have suppressed the spin index σ
on the fermionic operators. That is, since U is the only thing that connects fermions with σ = ↑
to fermions with σ = ↓, when U = 0 we can just solve each spin sector independently.
Now just as we defined normal mode coordinates for the positions of our masses we can also
here define linear combinations

ĉ†k ≡
1√
N

∑
l

eikl ĉ†l (7)

and their inverse,

ĉ†l ≡
1√
N

∑
l

e−ikl ĉ†k. (8)

Note the resemblance between Eqs. (7) and (4). The fermion creation operator transformation
is, however, a little more subtle than the classical mechanics case, because we must be sure that
our new operators ĉk obey the same fermionic anti-commutation relations as the originals. It is
easy to prove this from the identities

1

N

∑
l

ei(k−k
′)l = δkk′ (9)

and

1

N

∑
k

ei(l−l
′)k = δll′ (10)

which hold for the discrete allowed momenta k, k′ ∈ 2π
N

{
−N

2
+1,−N

2
+2, · · · , N

2

}
. Equations

(9) and (10) are the discrete analogs of the familiar orthogonality relations used in Fourier
transforms.
We refer to a change of operators which preserves the commutation relations, such as Eq. (7),
as a canonical transformation. This too is analogous language to classical mechanics, where a
canonical transformation preserves the Poisson brackets. The last section of this chapter will
focus on this topic.
Plugging the transformation Eq. (8) into the Hamiltonian, Eq. (6), and making use of Eqs. (9)
and (10) yields

Ĥ =
∑
k

(
E(k)−µ

)
ĉ†kĉk (11)
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where

E(k) = −2t cos(k) . (12)

The similarity between the right-hand sides of Eqs. (5) and (12) should be evident, from the
appearance of cos(k) and the identification 2γ ↔ −µ. The energy levels of the 1D Hubbard
chain range from −2t ≤ E(k) ≤ +2t. One refers to this range as the (1D chain) ‘bandwidth’
W = 4t.
It is interesting to think about the structure on Eq. (11). The Hamiltonian does not ‘mix’ differ-
ent values of momentum k. When an electron of momentum k is destroyed, all that can happen
is that an electron with the same momentum be created. This is the analog of the classical me-
chanical principal that normal modes do not mix: A system set into oscillation in a particular
normal mode remains in that mode forever, and none of the others ever get excited.
Concerning the left-hand sides, one can wonder why the frequency/energy appears linearly in
Eq. (12) in the quantum problem, whereas it was quadratic in the coupled oscillator calculation
Eq. (5). The answer, of course, lies in the fact that Newton’s equations involve d2

dt2
, whereas the

Schrödinger equation involves only ∂
∂t

.
We have exploited the translation invariance of the oscillator system and the Hubbard Hamilto-
nian to guess (make an ansatz) to extract the normal modes/band structure. In the absence of
such symmetries the problem becomes one of diagonalizing a matrix.
Put another way, we can write the Hubbard Hamiltonian as

Ĥ =
(
ĉ†1 ĉ†2 ĉ†3 ĉ†4 ĉ†5 · · ·

)


−µ −t 0 0 0 · · ·
−t −µ −t 0 0 · · ·
0 −t −µ −t 0 · · ·
0 0 −t −µ −t · · ·
0 0 0 −t −µ · · ·
...

...
...

...
... . . .





ĉ1
ĉ2
ĉ3
ĉ4
ĉ5
...


. (13)

We happen to know (if we have some experience with tri-diagonal matrices) the eigenvalues
and eigenvectors of the matrix in Eq. (13). The eigenvalues are just the E(k) in Eq. (12), and
the matrix of eigenvectors has entries Ψkl = eikl. I have used the notation Ψ deliberately, be-
cause these eigenvectors are quite literally the familiar plane-wave solutions of the free particle
Schrödinger equation (on a discrete lattice). This justifies our referring to k as the momentum.
If we had not known this similarity transformation, we would have proceeded by diagonalizing
the matrix by calling an appropriate BLAS/LAPACK routine. While we should avoid solving
the eigenproblem numerically if an analytic solution is available, it is worth emphasizing it
is not at all a big deal. We shall see the utility of this way of thinking in terms of matrix
diagonalization when we discuss localized modes in the non-interacting Hubbard model.
Equation (12) gives the energy of a single electron, that is, the energy of the state |k〉 = c†k|vac〉.
It remains to discuss the computation of the energy with M electrons. The prescription is sim-
ple: if several electrons are present, the state | k1 k2 · · · kM 〉 = c†k1c

†
k2
· · · c†kM |vac〉 has energy
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E(k1) +E(k2) + · · ·E(kM). Of course the Pauli principle forbids any of the ki from being the
same for a given spin species.
If we are interested in the ground state of M electrons, we fill up (occupy) the states of lowest
energy. The ‘Fermi Energy’ is the highest energy that is occupied for M particles. The seem-
ingly mysterious choice of the minus sign in front of the hopping parameter tmakes momentum
k = 0 have the lowest energy, with a Fermi surface enclosing it.
Once we have the dispersion relation in hand, a very important quantity is the density of states
N(ω). In words, N(ω) dω gives the number of E(k) values which lie between ω and ω+dω.
Formally,

N(ω) ≡ 1

N

∑
k

δ
(
ω−E(k)

)
. (14)

We can easily get N(ω) in the limit N →∞ where the k values become continuous

N(ω) =
1

2π

∫ +π

−π
dk δ

(
ω+2t cos(k)

)
=

1√
4t2 − ω2

. (15)

We have used the prescription 1
N

∑
k →

1
2π

∫
dk in going from a sum over discrete values

separated by 2π/N , to an integral. N(ω) diverges at ω = ±2t where the dispersion relation
E(k) = −2t cos(k) is flat, an observation familiar from textbook discussions of band theory.

3.2 The 2D square lattice

On a 2D square lattice, the noninteracting Hubbard Hamiltonian is

Ĥ = −t
∑
lx,ly

(
ĉ†lx,ly ĉlx+1,ly

+ ĉ†lx+1,ly
ĉlx,ly + ĉ†lx,ly ĉlx,ly+1 + ĉ†lx,ly+1ĉlx,ly

)
− µ

∑
lxly

ĉ†lx,ly ĉlx,ly (16)

Although it is useful to work through the algebra for practice, the result is pretty reasonable, and
we will just quote it. The process is just to redo the steps of the previous section with l→ lx, ly.
The result is

Ĥ =
∑
kx,ky

(
E(kx, ky)−µ

)
ĉ†kx,ky ĉkx,ky (17)

where

E(kx, ky) = −2t cos(kx)− 2t cos(ky) (18)

gives the energy of an electron of momentum kx, ky. The energy levels of the Hubbard model
on a square lattice range from −4 t ≤ E(kx, ky) ≤ +4 t. The bandwidth is W = 8 t.
For many fermions, we again get the energy by just summing up the single particle levels out
to a maximum Fermi Energy. However, in d > 1 one can ask for the shape of the contour of
the boundary between the occupied and unoccupied kx, ky. This is referred to as the ‘Fermi
surface’ (FS). For small kx, ky we can expand the cosines in Eq. (18)

E(kx, ky) ∼ −4t+ t
(
k2x+k

2
y

)
(19)
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Fig. 1: Left: The Fermi surfaces of the Hubbard model an a square lattice with nearest neighbor
hopping for different numbers of particles (filling). They begin as circles at low density but
evolve into a rotated square at half-filling. Right: The density of states N(ω) of the Hubbard
model on a square lattice with nearest neighbor hopping. There is a divergence (‘van Hove
singularity’) of N(ω) at ω = 0 (half filling).

and see that the FS is a circle about (kx, ky) = (0, 0). Thinking in analogy with E(k) =

~2
(
k2x+k

2
y

)
/2m we see that the effective mass of the fermions m = 1/(2t) (setting ~ = 1).

In general E(k) is not quadratic and the FS does not have a circular topology (sphere in three
dimensions). Indeed, the FS’s for different fillings (number of fermions) are shown in the left
panel of Fig. 1. An interesting feature of the dispersion relation of Eq. (18) is ‘perfect nesting’.

As seen in the left panel of Fig. 1, when the interior of the FS encompasses half of the allowed
momenta (and hence the lattice is half-filled), the FS is a ‘rotated square’ and has the feature
that a single wave-vector (kx, ky) = (π, π) connects many points on the FS. The second is a
‘van Hove singularity’ in the density of states. At half-filling, N(ω=0) diverges. See the right
panel of Fig. 1.

It turns out that both of these properties make the square lattice Hubbard model particularly
prone to assuming ordered phases when the interaction U is turned on. The rough reason ap-
peals to your knowledge of second order perturbation theory, where you know the effect of a
perturbation V̂ is to shift the energyEn of eigenstate |n〉 byE(2)

n =
∑

m6=n
|〈n|V̂ |m〉|2
En−Em

. If there are
many states with Em = En the effect of V̂ will be very large. This is precisely what happens
with perfect nesting. The van-Hove singularity in N(ω) has been suggested to be implicated in
high superconducting transition temperatures. That is, thinking of the BCS formula for the crit-
ical temperature in terms of the coupling constant λ and the density of states, Tc ∼ e−1/λN(ω),
we see that a large N(ω) suggests a large Tc.

We conclude by noting that there are materials, like the cuprate superconductors, for which the
square lattice is considered appropriate: the copper atoms in the CuO2 planes reside on a square
lattice.
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4

2

13

Fig. 2: Left: The square lattice can be decomposed into two groups A and B of sites, colored
as red and green, such that the neighbors of a red site are only green and vice-versa. The
geometry is said to be ‘bipartite’. Right: The Lieb lattice is also bipartite, but note there are
twice as many red sites as green sites.

3.3 The Lieb lattice and “flat bands”

An interesting feature of the square lattice is that its sites can be divided into two sublattices
(red and green in the left panel of Fig. 2) such that the nearest neighbors of red sites are always
green and the nearest neighbors of green sites are always red. Such a geometry is said to be
‘bipartite’. This property has deep implications for the physics, most fundamentally its consis-
tency with antiferromagnetic order. In a model where the energy is minimized by neighboring
spins pointing in opposite directions, one can place the electrons so that those with up spins oc-
cupy one sublattice and those with down spins reside on the other sublattice with no frustration
(neighboring sites with high energy because their spins are in the same direction).

The honeycomb lattice describing the positions of the carbon atoms in a sheet of graphene is
also bipartite. In both the square and honeycomb cases, the numbers of red and green sites
are identical. We will next consider the Hubbard model on a Lieb lattice, shown in the right
panel of Fig. 2. Although we blitzed through going from a 1D chain to a 2D square lattice, it is
worth being a bit more careful with this one, because going to momentum space does not quite
complete the process of diagonalization.

Aside: The serious student of the Hubbard model would do well to compute E(kx, ky) for a
honeycomb geometry. This is useful ‘technical’ practice, as dealing with axes which are not
parallel to x̂ and ŷ requires some care. It is also of course important physically towards the
understanding of graphene. Just as the dispersion relation of the square lattice has interesting
properties like Fermi nesting, the honeycomb lattice hosts Dirac fermions, electrons whose
kinetic energy is linear in their momenta.

For the Lieb lattice, the repeating structure contains a three atom basis. In transforming to
momentum space we must include a ‘band’ index for the basis, in addition to momentum. The
resulting Hamiltonian is diagonal in (kx, ky) but the three basis states of given (kx, ky) mix with
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the 3×3 matrix  0 −t
(
1+eikx

)
−t
(
1+eiky

)
−t
(
1+e−ikx

)
0 0

−t
(
1+e−iky

)
0 0

 . (20)

Diagonalizing this matrix completes the process of identifying the single particle states. The
crucial and surprising feature is that one of the energy bands has E(kx, ky) = 0: The (kinetic)
energy is independent of momentum. A plot of energy versus momentum yields a horizontal
line, i.e., a ‘flat band’.
One can actually understand the origin of the zero energy states in real space. Consider the four
sites enumerated as 1, 2, 3, 4 in Fig. 2(right). Imagine a wavefunction with nonzero components
only on these four sites, and make those components all of equal magnitude, but alternating in
sign so that the entries for sites 1, 3 are positive and those for 2, 4 are negative. It is fairly easy to
see that if you apply the real space Hamiltonian matrix of Eq. (13), but generalized to hopping
on the Lieb lattice, the result is the zero vector: Because only sites 1, 2, 3, 4 have nonzero com-
ponents. hopping is possible only to the four green sites which adjoin them. However, because
of the sign alternation of the components in the original vector, there is a perfect cancellation of
the hopping. It is clear that this numbering 1, 2, 3, 4 can be performed around any of the ‘holes’
in the Lieb geometry. There is an eigenvector of zero eigenvalue for each unit cell.
The Lieb lattice is also often considered as a more refined picture of the cuprates, because the
oxygen atoms of a CuO2 sheet lie on the midpoints of the bonds of the square array of copper
atoms, just as the red circles in Fig. 2. The flat band is entirely of ‘oxygen’ origin, as the
construction above demonstrates.

3.4 Localization by disorder

Examining Eqs. (6) and (13), it is clear that disorder in the chemical potentials (making the
energy for a fermion to occupy a particular location site-dependent) can be simply incorporated
by changing the matrix elements µ → µl. The transformation Eq. (7) no longer diagonalizes
the Hamiltonian, as translation invariance is broken. However the diagonalization can still be
accomplished numerically.
A very interesting phenomenon occurs. While the plane wave eigenstates in the absence of
randomness extend throughout the lattice, the eigenstates in the presence of disorder can be
‘localized’, meaning that the components of the eigenstate are significant only on a fraction of
the sites and exponentially small elsewhere.
Figure 3 shows the square of the ground state wavefunction for a 1D chain of N = 1024 sites
for different ranges ∆ of the random chemical potential (site energy) −∆/2 < µl < +∆/2 and
no interactions (U = 0). Wave functions have been shifted so that their maximum amplitude
is at the lattice center x = N/2 = 512. In 1D all wavefunctions fall off exponentially for
an arbitrarily small ∆. The same is true in 2D, though it was a very challenging assertion to
prove [9]. In 3D, the eigenstates near the center of the DOS are delocalized, and those at the
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Fig. 3: Left: Square of amplitude of the ground state wavefunction for a disordered 1D chain. As
the disorder amplitude ∆ decreases, the wavefunction is increasingly spread out, but it remains
localized for any nonzero ∆. Right: Same data but blown up near the lattice center. Note the
logarithmic scale on the vertical axes.

edges (high and low energies) are localized. The energy separating these cases is referred to as
the ‘mobility edge.’ Detailed numerical work is reviewed in [10].
Here one can continue the analogy with classical systems. A beautiful discussion of Maradudin
describes localization about a single defect mass in a 1D mass-spring chain [11].
There is a lot to unpack in the comments above, and indeed there was a long effort to understand
the nature of localization in two dimensions. Indeed, a major theme of condensed matter physics
for nearly three decades concerned whether non-zeroU could result in delocalization in 2D [12].
But the main message for us here is that many aspects of this deep and beautiful chapter of
condensed matter physics conform to the title of this chapter: From a computational perspective
they boil down to the very familiar and simple question of diagonalizing a matrix!

4 The Hatano-Nelson model

A recently emerging area of interest concerns non-Hermitian Hamiltonians [13–15]. The simple
methods we have introduced give us a foothold into this field as well. For concreteness, let’s
consider the ‘Hatano-Nelson Hamiltonian’ in one dimension

Ĥ = −t
L∑
l=1

(
eh ĉ†l+1ĉl + e−h ĉ†l ĉl+1

)
+
∑
l

µl ĉ
†
l ĉl . (21)

which is obtained from the Hubbard model of Eq. (6) by introducing a hopping which is dif-
ferent for fermions moving to the left and to the right. The parameter h controls the degree
of anisotropy in the hopping, and µl are random site energies. Periodic boundary conditions
connect sites 1 and L.
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Fig. 4: Eigenvalues of the Hatano-Nelson Hamiltonian for an N = 1024 site chain. The
random chemical potentials are chosen from a box distribution −∆ < µl < +∆. Four disorder
realizations are shown in each figure. As the disorder ∆ increases at fixed h, the real ‘wings’
become longer. As h increases at fixed ∆, the imaginary part of the eigenvalues grows.

In the case where there is no disorder, µl = 0, we can try the same canonical transformation as
Eq. (7), which leads to eigenvalues then having the form

E(k) = −t
(
e−h−ik + eh+ik

)
= −2t

(
cosh(h) cos(k) + i sinh(h) sin(k)

)
. (22)

As k varies from 0 to 2π (in steps of 1/L) this describes an ellipse centered at the origin of
the complex plane. The length of the ellipse along the real axis is 4t cosh(h) and along the
imaginary axis, 4t sinh(h). The periodic boundary conditions are crucial. Without them one can
do a ‘gauge transformation’, or in more elementary language a redefinition of the eigenvectors,
which makes h disappear from the problem: ṽl = e−hlvl. Then the matrix is Hermitian, with all
real eigenvalues.
As remarked earlier, in the presence of disorder the transformation of Eq. (7) no longer works.
Instead one simply diagonalizes the matrix,

H =


µ1 −t eh 0 0 0 · · · −t e−h

−t e−h µ2 −t eh 0 0 · · · 0

0 −t e−h µ3 −t eh 0 · · · 0
...

...
...

... . . .
−t eh 0 0 0 0 −t e−h µL

 . (23)
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When disorder is present, the original elliptical distribution in the complex plane develops
‘wings’ extending out along the real axis, see Fig. 4. The eigenvectors associated with the
real eigenvalues on the wings are localized, and those on the wings are real. The plausibility
argument for this assertion is that one can accumulate the h factors on any desired link (or set
of links) through the gauge transformation noted above. For a localized eigenvector one can
move all the h factors to a lattice location where the wave function is arbitrarily (exponentially)
small. So those eigenvectors are governed by a piece of H which can be made Hermitian in the
only part of the lattice that matters to them. Thus, they will have real eigenvalues. This doesn’t
work for extended eigenvectors, so they have complex eigenvalues.
The numerical results of Fig. 4 reveal some interesting general features of computational work
on Hubbard models (and even more generally). Except for h = 0.3, ∆ = 4.0,N = 1024 is large
enough that the results are ‘self-averaging’: The eigenspectra for different disorder realizations
largely coincide. However, when h is small and the disorder is large enough, one begins to see
significant variation from realization to realization (lower left panel of Fig. 4. The N = 1024

dimensional matrices can be diagonalized in about half a minute using the LAPACK routine
dgeevx. Diagonalization scales as N3 so N = 4096 would only take about a half-hour.

5 Perfect quantum state transfer

One of the most familiar and prominent aspects of quantum mechanics is the uncertainty princi-
ple. Our knowledge of the position and momentum of a quantum mechanical particle must obey
∆x∆p ≥ ~/2. Moreover, we expect uncertainties in position to grow in time (‘spreading of
the wave packet’). Consider a particle moving in d=1 with no potential V (x)=0. Contrast the
motion of the ‘slowest’ part of the wave-packet at x−∆x moving with momentum p−∆p, and
the ‘fastest’ part of the wave-packet at x+∆x moving with momentum p+∆p. The separation
of the extremes grows as 2(∆x+t∆p). This provides a very crude picture for spreading, but
this linear growth of uncertainty with time is not correct. Instead, ∆x ∼

√
t as can be seen by

explicitly solving the free particle Schrödinger equation, or else simply by noting its similarity
to the classical diffusion equation.
It is therefore remarkable that we can construct Hubbard models which exhibit ‘perfect quantum
state transfer’ (QST). That is, a wavefunction perfectly localized at one end of a d = 1 chain
will, at later times, be perfectly localized at the opposite end! Although spreading does occur at
intermediate times, the wave function somehow re-coalesces to have zero position uncertainty.
How is this (quantum mechanically) counter-intuitive result realized? We know that each eigen-
state |φn〉 of a quantum mechanical system evolves with a frequency ωn=En/~, where En is
its energy. A generic (localized) wave function will be a linear combination of the |φn〉 and it
seems plausible that to get a different localized wavefunction at later time, the frequencies ωn
must somehow be such that the maxima of the different waves can come into alignment. An
obvious way that could happen is if the ωn were equally spaced. We are thus led to think about
whether we can find a tridiagonal matrix whose eigenvalues have constant separation. Uniform
hoppings tl,l+1 = t will not work, since the resulting eigenvalues are E(k)=−2t cos(k).



3.14 Richard T. Scalettar

1 2 3 4 5 6

0

0

0.5

1.0

P
ro

ba
bi

lit
y

  Q1
Q6

/2

1

4

6

Q
 in

de
x

P
ro

ba
bi

lit
y

 sim.
 exp.

Y

Z

X

a

b

c

Fig. 5: (a,b): Perfect quan-
tum state transfer has been
achieved experimentally in a
collection of superconducting
qubits with tunable couplings
adjusted according to the pre-
scription described in the text
for a N=6 site chain. The
system starts with qubit Q=1
excited, and the excitation is
transferred to the other end of
the chain Q=6 at a time t =
π/(2J) later. (c): A picture of
the time evolution from the an-
gular momentum perspective.
Image taken from [16].

A clever thought is this: The components of angular momentum operators have equally spaced
levels. Consider 2 Ŝx = Ŝ++Ŝ− whose action on an eigenstate |jm〉 of Ŝ2 and Ŝz is 2 Ŝx|j,m〉 =√
j(j+1)−m(m+1)|j,m+1〉+

√
j(j+1)−m(m−1)|j,m−1〉. Taking j = 5/2, there are six

states with eigenvalues 2m~ =
{
−5,−3,−1,+1,+3,+5

}
~. Using the expression above, the

state |j,m〉 is connected to its neighbors |j,m+1〉 and |j,m−1〉 with coefficients
√
5,
√
8,
√
9,√

8,
√
5. (We have now set ~ = 1.)

We also know the time evolution. A spin starting with z component of angular momentum
m = +5/2, under the influence of Ĥ = 2J Ŝx will rotate to m = −5/2 in a time t = π/(2J).
A picture of this is provided in panel (c) of Fig. 5.

We now note that this mathematical structure of an operator connecting adjacent states (a tridi-
agonal matrix) is precisely that of the near-neighbor Hubbard kinetic energy operator in 1D.
Translating the angular momentum formalism to this language, we see that if we had a six site
chain with Ĥ = −

∑
l tl,l+1

(
ĉ†l+1ĉl+ĉ

†
l ĉl+1

)
and t1,2 =

√
5J, t2,3 =

√
8J, t3,4 =

√
9J, t4,5 =√

8J, and t5,6 =
√
5J , the eigenenergies would be {−5,−3,−1,+1,+3,+5} J . The time evo-

lution would be such that an electron beginning with
∣∣ψ(t=0)

〉
= ĉ†1 |vac〉 will evolve perfectly

into
∣∣ψ(t=π/(2J))〉 = ĉ†6 |vac〉.

We have thus constructed a hopping Hamiltonian which exhibits perfect Quantum State Trans-
fer. The general rule for a chain of arbitrary length N is tl,l+1 =

√
l(N−l) [17]. This prescrip-

tion was first noted by Christandl [18] and later generalized by Kay [19].
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Fig. 6: Left: The density ρ as a function of chemical potential for a single site with U = 4. As
the temperature T is lowered, a Mott plateau develops. Center: The local moment 〈m̂2〉 as a
function of U at fixed temperature T = 2. Right: The local moment 〈m̂2〉 as a function of T
at fixed temperature U = 4. Local moments develop as either T is reduced or U is increased.
Chemical potential µ = 0 in the middle and right panels, so the site is half-filled.

6 The strong coupling limit

We invested a lot of time on the non-interacting Hubbard model. It was time well-spent, since
we saw there is a lot of very interesting physics, from nesting, to localization, to perfect Quan-
tum State Transfer. But, of course we should not be satisfied with this U = 0 limit. In this
section, we will consider the opposite extreme of strong coupling, t = 0, for which the Hubbard
model becomes a collection of single sites

Ĥ = U
∑
j

(
n̂j↑ −

1

2

)(
n̂j↓ −

1

2

)
− µ

∑
j

(
n̂j↑ + n̂j↓

)
(24)

which can be considered independently.
Each site has four possible configurations: empty, having a single electron (either spin up or spin
down) or doubly occupied. The states |0〉, | ↑ 〉, | ↓ 〉, | ↑↓ 〉 are eigenstates of Ĥ with eigenvalues
+U/4, −µ−U/4, −µ−U/4, +U/4−2µ respectively. At this point we can see the meaning of
the interaction term being ‘particle-hole symmetric’: the contribution of the interaction term in
Eq. (24) to the state |0〉 with two holes is identical to that of the state with two particles | ↑↓ 〉.
An important consequence of this convention is that half-filling conveniently occurs always at
µ = 0 for any value of temperature T and interaction strength U. Indeed, if we are on a bipartite
lattice, this is true even if the hopping t is non-zero, as we shall see in the subsequent section.
The t = 0 partition function then consists of a term

Z =
∑
α

〈
α
∣∣e−βĤ∣∣α〉 = e−βU/4 + 2eβµ+βU/4 + e2βµ−βU/4, (25)

for every site of the lattice. The energy per site is,

E = Z−1
∑
α

〈
α
∣∣Ĥe−βĤ∣∣α〉 = 1

Z

(
U

4
e−βU/4 + 2

(
−U

4
−µ
)
eβµ+βU/4 +

(U
4
−2µ

)
e2βµ−βU/4

)
.

(26)
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Meanwhile, the occupation is

ρ = 〈n̂〉 = Z−1
∑
α

〈
α
∣∣ n̂e−βĤ∣∣α〉 = 1

Z

(
2eβµ+βU/4 + 2e2βµ−βU/4

)
. (27)

A plot of the density ρ versus chemical potential µ, Fig. 6 (left), exhibits one of the most fun-
damental features of the Hubbard model, namely the “Mott insulating gap”. As µ increases the
density increases, but, at sufficiently low temperature, gets stuck at half-filling, ρ=1, for a range
−U/2<µ<+U/2. This jump in µ reflects the fact that once there is one electron on the site, the
cost to add a second electron requires an additional energy cost U. It is important to emphasize
that this is an entirely different type of gap than that which occurs in a band insulator when a
band is completely filled with two electrons per state and there is a range of energy in which
there are no states before the bottom of the next band begins. The Mott gap occurs for an odd
number of electrons per site, a situation which band theory would insist on resulting in a metal.
In addition to the Mott insulating gap, one of the central features of the Hubbard model is the
presence of magnetism. As noted earlier, the energy of the empty and doubly occupied states is
+U/4, while that of the singly occupied states is−U/4. Thus the formation of ‘local moments’
(sites with non-zero spin) is energetically favored. The local moment 〈m̂2〉 =

〈
(n̂↑−n̂↓)2

〉
is a good measure of this tendency: it takes on the value 0 for empty and doubly occupied
sites and is 1 for single occupation. Plots of 〈m̂2〉 versus U at fixed temperature T and versus
temperature T at fixed U are shown in 6 (center) and 6 (right) respectively. Large U and low
T result in perfect moment formation 〈m̂2〉 → 1. A nonzero hopping t introduces additional
quantum fluctuations. For finite U, 〈m̂2〉 will not go to 1 even at T = 0.
Moment formation, such as we are observing in the single site limit, is a pre-requisite for mag-
netism, but one also needs the magnetic moments on different sites to align (ferromagnetism) or
antialign (anti-ferromagnetism) to speak of long range order. The physical picture for antiferro-
magnetism is that electrons on neighboring sites with spins which are antiparallel can hop onto
each other, resulting in a second order lowering of energy proportional to t2/U. This hopping is
forbidden for electrons of parallel spin. Hence antiferromagnetism is favored. Ferromagnetism
can also occur in the Hubbard model, but is much harder to achieve (in the single band case we
are considering here). It is not too difficult to do a mean field calculation, and this will reveal
magnetic behavior. However, we will not describe that here. Instead, we will note that one
can easily compute the Green function in the t=0 limit (and also, actually, in the U=0 limit).
Much of the initial progress in many-body physics rested upon diagrammatic perturbation the-
ory, where the central quantity is the Green function. Understanding that technology is a long
slog, so it is pleasant to be able to do a simple calculation of this somewhat mysterious object.
Consider

G↑(τ) ≡
〈
ĉ↑(τ)ĉ

†
↑(0)
〉

in this single-site limit. Only two of the states, those with the up spin occupied, contribute. For
simplicity we will focus on the case µ = 0. It is straightforward to show that,

G↑(τ) =
e+βU/4e−τU/2 + e−βU/4eτU/2

2 eβU/4 + 2 e−βU/4
.
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The Green’s function is related to the spectral density A(ω) by the relation,

G(τ) =

∫ +∞

−∞
A(ω)

e−ωτ

e−βω + 1
dω .

If you plug in

A(ω) =
1

2

(
δ
(
ω−U

2

)
+ δ
(
ω+

U

2

))
and do the integral you get precisely the G↑(τ) we computed. The spectral function of the t = 0

Hubbard model consists of two delta function peaks separated by U. A(ω) is the many-body
counterpart of the single particle density of states in the non-interacting limit. The separation
of the peaks in A(ω) by U is then akin to a band gap which would occur in N(ω), and is thus
sensibly referred to as the Mott gap.

7 Particle-hole transformations

Our final topic focuses on the implications of certain canonical transformations on the low
temperature properties of the Hubbard model and its generalizations. We will assume here a
familiarity with the ground state phase diagram of the repulsive Hubbard model, especially that
it exhibits long range AF order at half-filling with the long range spin ordering being degenerate
along any of Sx, Sy or Sz directions (Heisenberg universality class).
Let us begin by considering a ‘partial’ particle-hole transformation (PHT),

ĉj↓ → (−1)j ĉ†j↓ (28)

in which only the down spin operators are affected. In writing Eq. (28) we assume we are
on a bipartite lattice (see Sec. 3.3) so that the symbol (−1)j takes on the value +1 for j ∈ A
and −1 of j ∈ B. Under this transformation, the kinetic energy remains unchanged because,
although it interchanges the order of the creation and destruction operators in the hopping, that
reversal can be undone by invoking the anticommutation relations. The resulting minus sign is
precisely canceled by the signs from the (−1)j terms, as long as only near neighbor hopping
occurs (so that one site is in A and the other is in B). What does the PHT do to the potential
energy? The down spin density n̂j↓ ↔ 1−n̂j↓ and, as a consequence the sign of U is reversed,
mapping attraction to repulsion and vice-versa. Notice that writing the interaction in particle-
hole symmetric form makes this observation especially easy to discern.
Finally, consider the chemical potential term. As noted immediately above, the down spin den-
sity (but not the up spin density) picks up a minus sign. The roles of charge and spin operators
are interchanged n̂j↑+n̂j↓ ↔ n̂j↑n̂j↓. Thus the chemical potential term in Ĥ, −µ(n̂j↑+n̂j↓),
becomes −µ(n̂j↑−n̂j↓) which is a Zeeman energy. Thus, µ↔ Bz under this PHT.
To see how useful this mapping is, let’s look at how physical observables are transformed.
We note that because Eq. (28) applies only to the down spin operators, correlations of the Z
component of spin map onto density correlations. On the other hand, the XY spin operators
map onto s-wave pairing ĉ†j↑ ĉj↓ ↔ ĉ†j↑ ĉ

†
j↓.
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With those mappings in place, the connections between the attractive and repulsive Hubbard
models become clear. The fact that the square lattice repulsive Hubbard model has degenerate
Z and XY antiferromagnetic spin order in its ground state at half-filling immediately implies
the degeneracy of charge density wave and superconducting correlations in the attractive case.
This is not at all an obvious thing if we just thought about the attractive model in isolation.
But there is even more to glean here: In a repulsive Hubbard model with antiferromagnetic
order, a Zeeman field Bz causes AF Heisenberg spins to ‘lie down’ and order in the XY plane,
perpendicular to the field. This is so because spins in the XY plane can tilt upwards into the
Z direction and lower their energy linearly in the out of plane angle, whereas the disruption to
the AF results in an energy cost which is quadratic in the angle. If the AF order were in the Z
direction, tilting the spins would pick up only a quadratic field energy. The key observation is
then to note that when we do the PHT such a Zeeman term in the +U model becomes a chemical
potential in the−U model. The doped attractive Hubbard model is thus seen to have a tendency
for s-wave superconducting order. Indeed, because the field in the z direction reduces the
universality class from Heisenberg to XY, the transition to s-wave SC order can occur at finite
temperature. This mapping and its consequences for conventional superconductivity have been
known for nearly four decades. We will now show how an alternate canonical transformation
lends similar insight into exotic superconductivity, something only realized recently [20].
To see this, let’s consider a canonical transformation,

ĉj↓ → (−1)j ĉj↓ (29)

which is similar to that of Eq. (28) in having the staggered phase factor (−1)j, and acting only
on the down spins, but lacks the transformation from particle to holes. Applying this to the
attractive Hubbard model results in

Ĥσz = −t
∑
〈ij〉

∑
αβ

ĉ†iα σ
αβ
z ĉjβ − µ

∑
i,α

n̂iα + U
∑
i

(
n̂i↑−

1

2

)(
n̂i↓−

1

2

)
(30)

The Pauli matrix σz has spin indices α, β and results in hopping amplitudes for the spin-up and
spin-down fermions differing in sign.
We can now infer the properties of this ‘σz Hubbard model’ from those of the attractive Hubbard
model. While the CDW correlations map into themselves, the s-wave SC phase is altered.
Specifically, the on-site pairing transforms as ∆j = cj↓cj↑ → ∆j = (−1)jcj↓cj↑. Therefore, the
pairing remains on-site but with an alternating sign, indicating that the system displays s-wave
pair density wave (PDW) superconductivity: The pairing function can be written as

∆† =
1√
N

∑
j

(−1)j c†j↑c
†
j↓ =

1√
N

∑
k

c†k↑c
†
−k+K0↓

with K0 = (±π,±π). Since we know the attractive Hubbard model has s-wave pairing, the σz
Hubbard model must necessarily have a low temperature s-wave (singlet) PDW phase, in which
an electron at momentum k pairs up with another at momentum −k+K0, resulting in a Cooper
pair carrying non-zero momentum.
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An analogous mapping of the magnetism in the repulsive Hubbard model shows that the repul-
sive σz Hubbard model has a d-wave (triplet) PDW low temperature phase. These observations
are quite remarkable. A PHT transformation, combined with the known phase diagram of the
conventional Hubbard model, has revealed a microscopic model, the σz Hubbard model, which
rigorously possesses pairing with non-zero momentum.

8 Concluding remarks

The Hubbard model was developed to explain some most fundamental many-body phenomena
in condensed matter physics: the mysterious Mott insulating behavior and magnetism in tran-
sition metal oxides. Several decades later, it emerged as one of the leading theories of d-wave
superconductivity in the cuprates, and appears to hold insight into related stripe formation. Af-
ter two further decades the Hubbard model re-invented itself yet again in AMO community.
One might think such a powerful theory would also be inaccessible. We hope these notes have
proven that is not the case. We also hope that they suggest the Hubbard model is not yet fin-
ished having something to say about new condensed matter problems, including non-Hermitian
physics, quantum state transfer, and pair density wave phases.
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1 Introduction

Following the discovery of copper oxide superconductors with their spectacularly high super-
conducting transition temperatures by Bednorz and Müller [1], the problem of the doped Mott
insulator has become a central issue in solid state physics. Still, after more than 30 years of re-
search and thousands of papers devoted to this subject, there is no generally accepted theory for
this problem. So what exactly do we mean by ‘doped Mott insulator’ and why is this problem
so hard to solve?
Let us consider a two-dimensional square lattice with lattice constant a = 1, which consists of
N = L2 sites and impose periodic boundary conditions with period L along both the x- and
y-direction. We denote the number of electrons with spin σ byNσ, the total number of electrons
by Ne = N↑+N↓. Also, we denote densities per site by n, for example ne = Ne/N . To explain
the idea of a Mott-insulator it would be neither necessary that the system is two-dimensional,
nor that we have a square lattice, but this is the suitable geometry to describe the CuO2 planes in
copper oxide superconductors. We assume that there is one s-like atomic orbital |φi〉 centered
at each lattice site i. Orbitals on different sites are assumed to be orthogonal, 〈φi|φj〉 = δi,j ,
but there may be nonvanishing matrix elements of the Hamiltonian – that means the kinetic
and potential energy – between them, 〈φi|H|φj〉 = −ti,j . We assume that the orbital |φ〉 is the
same for each lattice site, whence the matrix element 〈φi|φj〉 depends only on the distance be-
tween i and j, ti,j = tRi−Rj

. We also assume that the atomic orbital |φi〉 decays exponentially,
〈r|φi〉 ∝ e−|r−Ri|/ζ , so we expect tR ∝ e−|R|/ζ and ti,j will differ appreciably from zero only
for close neighbors. Introducing operators c†i,σ which create an electron of z-spin σ in the orbital
|φi〉 the Hamiltonian therefore reads

H0 = −
∑
i,j

ti,j
∑
σ

c†i,σcj,σ =
∑
k

∑
σ

εk c
†
k,σck,σ.

The second expression for H0 is obtained by Fourier transformation

c†k,σ =
1√
N

∑
j

eik·Rj c†j,σ ⇒ εk = − 1

N

∑
i,j

ti,j e
ik·(Ri−Rj) = −

∑
R

tR eik·R. (1)

Here k =
(
2nπ/L, 2mπ/L

)
with integer m and n such that −L/2 < m,n ≤ L/2 is a wave

vector in the first Brillouin zone. Unless otherwise stated we will from now on assume that
ti,j is different from zero only for nearest neighbors i and j and denote its value by t, whence
εk = −2t

(
cos(kx) + cos(ky)

)
. The number of wave vectors k equals N and the ground state

for N electrons is obtained by ‘filling the band from below’, that means occupying those N/2
wave vectors k which minimize the sum

∑
k εk with two electrons of opposite spin. The band

therefore is half-filled, the Fermi surface covers precisely half of the Brillouin zone and we have
a metal.
In the discussion so far we have ignored the Coulomb interaction between the electrons. Recall-
ing that the atomic orbital 〈r|φi〉 ∝ e−|r−Ri|/ζ , we expect that if the orbital is occupied by two
electrons of opposite spin, the electrostatic energy is U ∝ e2/ζ , whereas it is V ∝ e2/a if the
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electrons are in orbitals on different sites. If we take the limit of a ‘small atomic orbital’, ζ → 0,
we find U/t→∞ and V/U → 0 whence we neglect the Coulomb repulsion between electrons
in different orbitals. Taking the extreme limit U →∞ while t being fixed, and returning to the
problem of finding the ground state with N electrons we find that there is precisely one electron
in each of the N orbitals (putting two electrons into the same orbital increases the energy by the
large amount U ). The electrons thus are ‘frozen in’ and cannot react to an applied electric field,
so that the system is an insulator. This is the prototype of a Mott insulator: a system which
would be a metal in the band picture, but is an insulator due to the strong Coulomb repulsion
between electrons in ‘small’ atomic orbitals. It should be noted that for noninteracting electrons
(U = 0) and t = 0 the electrons would be unable to move as well and the system would be an
insulator. However, any arbitrarily small value of twould immediately lead to the formation of a
band and a Fermi surface, whereas in the presence of a large U switching on t� U still would
not change the insulating nature of the ground state. Let us now try to put these qualitative
considerations into a more quantitative form – the famous Hubbard-I approximation.

2 The basic concept: Hubbard-I approximation

This is the ‘defining approximation’ of the Mott-insulator by which Hubbard for the first time
introduced central concepts of strongly correlated electron systems such as the two Hubbard
bands [2]. In the following we give a somewhat sloppy re-derivation of Hubbard’s theory which
is meant to clarify its the physical content.
We consider the of infinite U and N↑ = N↓ = N/2 so that Ne = N . The ground state has one
electron per lattice site and the energy is E = 0. The way in which the spins are distributed over
the sites is not determined, however, rather the number of ways to distribute the ↑-spins (which
automatically fixes the ↓-spins) is

nd =

(
N

N↑

)
≈
√

2

πN
2N , (2)

where the Stirling formula has been used. This shows the enormous degree of degeneracy. We
ignore this degeneracy, however, and assume that there is a unique state |Ψ0〉 which may be
thought of as a suitable superposition of all these nd degenerate states and which we assume to
be ‘disordered’ — it will become clear in a moment what this means.
Next we assume that U is gradually reduced from infinity. Then, a term in the kinetic energy
such as ti,j c

†
i,σcj,σ can transfer an electron of spin σ from site j to another site i resulting in

an empty site at j and a double occupancy at site i, whereby the double occupancy increases
the energy by U. The hopping process is possible only if the electron which was originally at
the site i has the spin −σ and since our initial state |Ψ0〉 is ‘disordered’ the probability for this
to be the case is 1/2 — which is our definition of ‘disordered’. We now interpret the original
state |Ψ0〉 as the vacuum state |0〉 of our theory and the state created by the hopping process as
containing a fermionic hole-like particle at j and a fermionic double-occupancy-like particle at
site i: d†i,σ h

†
j,−σ|0〉. The order of the fermionic operators in this state is due to the fact that in the
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original hopping term the annihilation operator cj,σ which creates the hole stands to the right of
the creation operator c†i,σ which creates the double occupancy. Moreover we assign the negative
spin to the operator which creates the hole because replacement of, e.g., an ↑-electron by a hole
decreases the z-spin by 1/2. We arrive at the following effective Hamiltonian to describe the
holes and double occupancies

Heff,1 =
1

2

∑
i,j

∑
σ

(
ti,j d

†
i,σh

†
j,−σ +H.c.

)
+ U

∑
i,σ

d†i,σdi,σ . (3)

Once a hole and a double occupancy have been created, each of these particles may be trans-
ported further by the hopping term. If we assume that the surplus or missing electron retains its
spin, which means that the double occupancies and holes propagate without ‘leaving a trace’ of
inverted spins, for example a surplus ↑-electron can hop from site i to site j only if the spin at
site j is ↓— again we assume that the probability for this is 1/2. We therefore can write down
the missing terms for the effective Hamiltonian

Heff,2 =
1

2

∑
i,j

∑
σ

ti,j

(
d†i,σdj,σ − h

†
i,−σhj,−σ

)
. (4)

The negative sign of the hopping term for holes is due to the fact that the original hopping term
has to be rewritten as −ti,jcj,σc

†
i,σ to describe the propagation of a hole. Addition of (3) and (4)

and Fourier transformation gives

Heff =
∑
k,σ

((εk
2
+U
)
d†k,σdk,σ −

εk
2
h†k,σhk,σ

)
+
∑
k,σ

εk
2

(
d†k,σh

†
−k,−σ +H.c.

)
, (5)

with εk given in Eq. (1). Note that this now is a quadratic form where the Coulomb interaction
is described by the extra energy of U for the double-occupancy-like fermion. We make the
ansatz

γ†k,+,σ = ukd
†
k,σ + vkh−k,−σ,

γ†k,−,σ = −vkd†k,σ + ukh−k,−σ, (6)

and demand that the Hamiltonian takes the form

Heff =
∑
k,σ

(
Ek,+γ

†
k,+,σγk,+,σ + Ek,−γ

†
k,−,σγk,−,σ

)
. (7)

We find
(
with Wk =

√
ε2
k+U

2
)

Ek,± =
1

2

(
εk + U ±Wk

)
, uk =

√
Wk + U

2Wk

, vk =
εk√

2Wk(Wk + U)
. (8)

In the limit U/t � 1 this simplifies to Ek,− = εk/2, Ek,+ = εk/2 + U so that the original
band with dispersion εk is split into two bands, separated by a gap of U and each having half of
the original width. To find out the occupation of the bands, and hence the nature of the Fermi
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Fig. 1: Band structures Ek for the noninteracting system (dashed line) and from the Hubbard-I
approximation (U/t = 8). The energies are plotted for k = (k, k), i.e., along the (1, 1)-
direction. For ne = 1 the half-filled noninteracting band is replaced by the two Hubbard bands,
the chemical potential µ is in the center of the gap between the two Hubbard bands so that the
lower one is completely filled, the upper empty.
For ne < 1 the noninteracting band becomes less than half-filled, the chemical potential cuts
into the top of the lower Hubbard band, forming a hole pocket around (π, π). Note the strong
discrepancy of the Fermi wave vectors kF .

surface, we need to count electrons. The vacuum state |Ψ0〉 has one electron per site, i.e., a
total of N electrons. Each double occupancy increases the electron number by one, each hole
decreases it by one so that the operator of electron number becomes

Ne = N +
∑
i,σ

(
d†i,σdi,σ − h

†
i,σhi,σ

)
=
∑
k,σ

(
d†k,σdk,σ + h−k,−σh

†
−k,−σ

)
−N.

On going over to the expression on the extreme right we have switched to Fourier transforms
and assumed fermion anticommutation relations to hold for the h†k,σ. We note that in the basis
(d†k,σ, h−k,−σ) the operator matrix for the expression in brackets is the unit matrix which is
invariant under unitary transformations whence Ne also can be written as

Ne =
∑
k,σ

(
γ†k,−,σγk,−,σ + γ†k,+,σγk,+,σ

)
−N. (9)

Demanding 〈Ne〉 = N the lower band Ek,− must be completely filled whereas the upper band
Ek,+ must be completely empty, i.e., the chemical potential must be in the center of the gap
between lower and upper band see Figure 1. Namely in this case the expectation value of the
term in brackets is 2N . Rather than being a metal, as expected for the situation of a half-filled
band, the presence of the Coulomb interaction turns the system into an insulator – and this is
precisely the definition of the Mott-insulator.
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Large U − insulator Smaller U − transition

Fig. 2: As the ratio U/t decreases more and more hole-double occupancy pairs are generated
and the extent of the pairs increases. At a certain ratio of U/t the pairs overlap significantly
and the phase transition to the metal occurs.

It follows that the ground state wave function |Φ0〉must obey γ†k,−,σ|Φ0〉 = γk,+,σ|Φ0〉 = 0. This
can be achieved by choosing

|Φ0〉 =
∏
k,σ

(
uk + vk h

†
−k,−σ d

†
k,σ

)
|Ψ0〉 ∝ e

∑
k,σ

vk
uk

h†−k,−σd
†
k,σ |Ψ0〉.

The similarity with the BCS wave function shows that |Φ0〉 may be viewed as the original
background |Ψ0〉, which has one electron per site and is spin-disordered, populated by electron-
hole pairs. The expression in the exponent is∑
k,σ

vk
uk
h†−k,−σd

†
k,σ =

∑
i,R

f(R)h†Ri,−σ d
†
Ri+R,σ with f(R) =

1

N

∑
k

vk
uk

eikR −→
U→∞

t

U
δ|R|,1.

This shows that for large U the density of pairs is ∝ (t/U)2 and the double-occupancy and the
hole are almost exclusively on nearest neighbors.
If in a gedankenexperiment one would reduce the value of U starting from U = ∞, one would
expect that, as U decreases, both the density of such pairs would increase and the diameter of
a pair would increase, see Figure 2. If U becomes sufficiently low the pairs start to overlap
and at that point the entire picture is likely to break down so we have the insulator-to-metal
transition. Viewed that way one might conjecture that the order parameter for the insulator-
to-metal transition is the double occupancy-hole pairing amplitude

〈
d†k,σ h

†
−k,−σ

〉
. Does the

Hubbard-I approximation describe such a transition to the metallic state? The simplest way to
answer this question is to consider the gap between the upper and lower Hubbard band in the
limit U/t→ 0. One finds

∆ = Ek=(0,0),+ − Ek=(π,π),− ∝
U2

4t
,

where the extreme right-hand-side holds for U → 0. This shows that there is a gap even
for arbitrarily small U, i.e., there is no insulator-to-metal transition with decreasing U in the
Hubbard-I approximation.
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Next, what would happen if we reduce the electron number Ne from N → (1−δ)N , i.e., we
‘dope the Mott insulator’? First, one would assume that all the factors of 1/2 in the above
derivation should be replaced by (1−δ)/2 because this is now the probability that on any given
site there is an electron with a given spin σ. This will lead to only a slight modification of the
quasiparticle dispersion. More importantly, however, the occupation of the lower Hubbard band
will be reduced. Inspection of (9) shows that now〈∑

k,σ

(
γ†k,−,σγk,−,σ + γ†k,+,σγk,+,σ

)〉
= (2−δ)N,

so that the occupied part of the lower Hubbard band must now contain NHubbard = (1−δ/2)N
momenta k. This means that Nδ/2 k-points must be unoccupied so that the Fermi surface is
a small hole-pocket around the top of the lower Hubbard band at k = (π, π), see Figure 1.
Compare this to the noninteracting case, U = 0 where the occupied part of the band contains
Nfree =

(
(1−δ)/2

)
N momenta, whence the difference NHubbard − Nfree = N/2. If we assume

that the Hubbard-I approximation is at least qualitatively correct for the lightly doped Mott-
insulator, i.e., small δ, this immediately leads to an interesting question: namely for low electron
density ne � 1 one recovers the noninteracting Fermi surface even for arbitrarily large U [3].
The reason is that for low electron density the probability for collisions between electrons is
small and the interaction becomes largely irrelevant. Accordingly, if one gradually reduces the
electron number starting from ne = 1 one would expect that one first has the Fermi surface with
a volume ∝ δ/2 as predicted by the Hubbard-I approximation but at a certain critical ne the
Fermi surface volume must change to the free-electron value of (1−δ)/2, i.e., a phase transition
between two phases with different Fermi surface volume with increasing doping. An obvious
candidate for this phase transition would be the enigmatic quantum critical point in cuprate
superconductors which gives rise to the superconducting dome in these compounds.

Finally let us address a subtle problem which actually is related to a very fundamental problem
in strongly correlated electrons. In the above discussion we have assigned a spin to the holes
and double occupancies: d†i,σ and h†j,σ. However, both an empty site and a doubly occupied
site are spinless objects! On the other hand, if the vacuum state |Ψ0〉 has a definite z-spin Sz,
the states ci,↑|Ψ0〉 and ci,↓|Ψ0〉 are orthogonal to each other because they have Sz ∓ 1/2. This
is despite the fact that the empty site at i is a spinless object. The information whether an ↑-
electron or a ↓-electron has been removed from site i therefore must be ‘stored’ somewhere else
in the resulting state. If one now were to remove an electron at site i and subsequently let the
resulting state evolve under the action of the Hamiltonian one can take two different points of
view: when the empty site propagates, the information about the spin of the removed electron
may ‘stay in the neighborhood’ of the spinless vacancy, so that effectively there is a spin-1/2

particle propagating. Obviously, in the Hubbard-I approximation one is implicitly assuming
just this. Alternatively one might assume that the spinless vacancy and the ‘spin information’
acquire an independent existence and separate from each other, a scenario often referred to as
spin-charge separation.
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Fig. 3: An exchange process in a Mott insulator.

3 Antiferromagnets

3.1 Spin exchange

In the introduction we have already mentioned one of the reasons why the problem of the Mott-
insulator is so difficult. Whereas the ground state for Ne = N and U = 0 is unique and easy
to write down – the half-filled Fermi sea – a well-defined ground state for U/t = ∞ does
not even exist. Rather, the ground state is highly degenerate, see equation (2) above. In the
Hubbard-I approximation we have bypassed this problem by assuming that there is a unique
‘disordered’ ground state of N electrons on N sites, and that the only active degrees of freedom
are the double-occupancies and holes. This, however, ignores the possibility of spin exchange.
If we reduce U/t from infinity to a large but finite value, the spins on the individual sites start
to ‘communicate’ with each other via the process shown in Figure 3. An electron from site i
may hop to a neighbor j and form an intermediate state with an empty orbital at i and a doubly
occupied orbital at j, see Figure 3(b). Since the energy of this intermediate state is U, it will
be short lived and one of the two electrons in j will hop to the empty site i, resulting in one
of the two states in Figure 3(c). The upper state is identical to the initial state, Figure 3(a), but
there is a gain in kinetic energy of order t2/U due to the back-and-forth hopping of the electron.
Since this back-and-forth hopping is possible only if the spins at i and j are antiparallel to each
other, it is energetically favorable if spins on nearest neighbors are antiparallel. In the lower
of the two states in Figure 3(c) both spins have flipped their direction as compared to Figure
3(a), so that the spins in the Mott insulator are not static, but have a dynamics of their own. A
more quantitative treatment shows [4] that the ‘virtual’ hopping processes in Figure 3 can be
described by the Heisenberg antiferromagnet

HHAF = J
∑
〈i,j〉

Si · Sj = J
∑
〈i,j〉

(
Szi S

z
j +

1

2

(
S+
i S
−
j + S−i S

+
j

))
. (10)

Here J = 4t2/U while
∑
〈i,j〉 denotes a sum over all 2N nearest neighbor pairs, and Si is the

operator of electron spin at site i and the spin raising and lowering operators S± = Sx±iSy
have been introduced to rewrite the term Si,xSj,x + Si,ySj,y. We see that although the electrons
in a Mott insulator are localized, their spins acquire a ‘life of their own’, resulting in a magnetic
ground state and a spectrum of spin-excitations.
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Fig. 4: The Néel state (a) is not the ground state of the Heisenberg antiferromagnet. By acting,
e.g., with the term J

2
S−i S

+
j in (10) the state (b) is generated, which is orthogonal to the Néel

state. Acting further with J
2
S−k S

+
l produces (c) and then acting with J

2
S−j S

+
k gives (d).

3.2 Magnons in an antiferromagnet

We consider the undoped Mott insulator,Ne = N , and assume that the spins degrees of freedom
of the electrons are described by the Heisenberg antiferromagnet, Eq. (10). If only the terms
∝ Szi S

z
j were present, the ground state of (10) would be the Néel state, shown in Figure 4(a). In

this state, the square lattice is divided into two sublattices whereby all sites of the A-sublattice
are occupied by an ↑-electron, those of the B-sublattice by a ↓-electron (we assume that the
A-sublattice is the one containing the site (0, 0)). The energy of this state is 2N · (−J/4) =

−NJ/2. The Néel state, however, is not an eigenstate of the full Hamiltonian (10): acting, e.g.,
with one of the products J

2
S−i S

+
j contained in the second term in (10), the spins at the sites i

and j are inverted, resulting in the state shown in Figure 4(b) which is orthogonal to the Néel
state. Interestingly, the inverted spins have very much the character of particles in that they can
propagate: first, the term J

2
S−k S

+
l appends two additional inverted spins, see Figure 4(c), and

then the term J
2
S−j S+

k removes two inverted spins, to produce the state in Figure 4(d). The net
result of this two-step process is that one of the inverted spins seems to have moved from site
j to site l. The particle-like nature of the inverted spins has led to the name magnons for them.
One can then envisage how this will go on: magnons are created in pairs at various places in
the system, then separate and propagate independently by the append-and-remove process, but
when two magnons meet they can also ‘pair-annihilate’ each other by the inverse process Figure
4(b)→ (a). There are then two possible outcomes of this scenario: the density of magnons may
reach an equilibrium value, where pair-creation and pair annihilations balance each other, so
that the underlying antiferromagnetic order persists and we have a Néel state hosting a ‘gas of
magnons’, or the process may go on until the ordered state is wiped out and we get an entirely
new state without order. It turns out that in dimensions D ≥ 2 the first scenario is realized,
and the resulting gas of magnons in antiferromagnetic Mott insulators can be described very
well by linear spin wave theory. This is frequently derived by means of the Holstein-Primakoff
transformation [5] but for the extreme quantum limit of spin 1/2, which we are considering here,
a simpler and more transparent derivation is possible.
We interpret the Néel state in Figure 4(a) as the vacuum state |0〉 for magnons and model an
inverted spin at the site i of theA sublattice by the presence of a boson, created by a†i . Similarly,
an inverted spin on the site j of the B sublattice is modeled by the presence of a boson created
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by b†j . The state in Figure 4(b) thus would be represented as a†ib
†
j|0〉. We use bosons to represent

the magnons because spin-flip operators such as S+
i and S−j commute for different sites i and

j and these are the operators which create or annihilate the magnons. Since any given spin can
be inverted only once, a state like (a†i )

2|0〉 is meaningless. Accordingly, we have to impose the
constraint that at most one boson can occupy a given site. This is equivalent to an infinitely
strong on-site repulsion between the magnons and we call this the hard-core constraint. An
inverted spin on either sublattice is parallel to its z = 4 nearest neighbors and the energy
changes from −J/4 to +J/4 for each of these z bonds. Accordingly, we ascribe an energy of
formation of zJ/2 to each boson. The spin-flip part creates or annihilates pairs of magnons on
nearest neighbors, with the matrix element being J/2, so that the Hamiltonian for the magnons
becomes

HSW =
zJ

2

(∑
i∈A

a†iai +
∑
i∈B

b†ibi

)
+
J

2

∑
i∈A

∑
n

(
a†ib
†
i+n + bi+nai

)
. (11)

Here n are the z vectors which connect a given site with its z nearest neighbors. Note that when
two inverted spins reside on nearest neighbors, the number of frustrated bonds is 2(z−1) rather
than 2z. This could be incorporated into HSW as an attractive interaction between magnons on
nearest neighbors, but here we ignore this.
The Hamiltonian (11) is a quadratic form but we recall that the bosons are not free particles,
but have to obey the hard-core constraint. However, for the moment we ignore this and treat the
bosons as if they were noninteracting – we will return to this issue later on. Fourier transforma-
tion of (11) gives

HSW =
zJ

2

∑
k

(
a†kak + b†kbk + γk

(
a†kb
†
−k + b−kak

))
,

a†k =

√
2

N

∑
j∈A

eik·Rja†j,

γk =
1

z

∑
n

eik·n =
1

4

(
2 cos(kx) + 2 cos(ky)

)
, (12)

where k is a wave vector in the antiferromagnetic Brillouin zone (AFBZ), see Figure 5. We can
diagonalize (12) by a bosonic Bogoliubov transformation, i.e., we make the ansatz

α†k = uk a†k + vk b−k,

β†−k = uk b
†
−k + vk ak,

⇒ a†k = uk α
†
k − vk β−k,

b−k = −vk α†k + uk β−k.
(13)

Demanding that
[
αk, α

†
k

]
=
[
βk, β

†
k

]
= 1 gives the condition u2

k−v2
k = 1, which actually has

been used to revert the equations on the left hand side of (13) to obtain the right hand side. Next,
we demand that when expressed in terms of the α†k and β†k the Hamiltonian takes the form

H =
∑
k

ωk

(
α†kαk + β†kβk

)
+ const,

which implies that
[
H, α†k

]
= ωkα

†
k. We now insert the ansatz (13) into this equation, use the

bosonic commutation relations for a† and b†, and equate the coefficients of a†k and b−k on both
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Fig. 5: (a) The ordered moments in the Néel state make the two sublattices inequivalent, so that
the new lattice vectors connect only the sites of one sublattice. The new unit cell is rotated by
45o and has twice the size of the original one. (b) Accordingly, the new Brillouin zone is rotated
by 45o as well and has half the size of the original one.

sides of the resulting equation. This leads to the following non-Hermitean eigenvalue problem:(
zJ/2 −γk
γ∗k −zJ/2

)(
uk
vk

)
= ωk

(
uk
vk

)
. (14)

The eigenvalues and eigenvectors of (14) are easily calculated and one finds

ωk =
zJ

2

√
1−γ2

k, uk =

√
1+νk
2νk

, and vk =

√
1−νk
2νk

, (15)

where νk =
√
1−γ2

k. In particular, for k → 0 we find γk → 1 − (k2
x + k2

y)/4 = 1−k2/4 so
that νk → |k|/

√
2 and ωk → J

√
2|k|. This shows that the spin waves reach zero frequency at

k = (0, 0) and have a cone-shaped dispersion in the neighborhood.
Linear spin wave theory is extremely successful in describing many properties of antiferromag-
netic Mott-insulators. An example for the experimental observation of magnons by inelastic
neutron scattering and the excellent agreement of the experimental results with linear spin wave
theory can be found in Ref. [6].
To conclude this section, we return to the issue of the hard-core constraint which the a† and b†

bosons had to obey and which we had simply ignored. To address this question, we calculate
the density of these bosons, i.e.

na =
2

N

∑
k

〈
a†kak

〉
=

2

N

∑
k

v2
k =

2

N

∑
k

1−νk
2νk

.

Numerical evaluation for a 2D square lattice gives na = 0.19. The probability that two of the
bosons occupy the same site and violate the constraint therefore is ≈ n2

a = 0.04 � 1 and our
assumption of relaxing the constraint is justified a posteriori.
Summarizing the discussion so far we have seen that in a Mott-insulator the sites carry a spin
of ±1/2. These spins can communicate with each other by means of virtual charge fluctuations
and this is described by the Heisenberg antiferromagnet. In dimensions D ≥ 2 this leads to
antiferromagnetic order in the ground state and a new type of excitations, magnons or spin
waves, which correspond to spins standing opposite to the antiferromagnetic order and these
inverted spins propagate through the lattice. In the next section we investigate how the doped
holes interact with these spin excitations.
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3.3 One hole in an antiferromagnet

We have seen that in a Mott insulator ‘virtual’ hopping processes lead to a coupling of spins
which results in antiferromagnetic order and spin excitations. In this section we study the first
step towards the ‘doped’ the Mott insulator and consider a single hole in an antiferromagnet.
A single hole will not destroy the magnetic order due to the Heisenberg exchange between
the remaining N−1 spins so we continue to assume antiferromagnetic order. The appropriate
model to describe such a system is the famous t-J model

Ht-J = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c.

)
+ J

∑
〈i,j〉

Si · Sj, (16)

where the Hubbard operator ĉ†i,σ = c†i,σ(1−ni,σ̄) creates an electron only on an empty site.
The t-J model was originally derived rigorously as the strong coupling version of the Hubbard
model by Chao, Spałek, and Oleś [4]. The model describes the lower Hubbard band — note
that the operator ĉi,σ corresponds precisely to the operator h†i,σ̄ we used in the Hubbard-I ap-
proximation — but augments this by the effect of the Heisenberg exchange. Later it was shown
by Zhang and Rice [7] that the t-J model is also the proper theoretical description of the CuO2

planes in cuprate superconductors. For application to the CuO2 planes, the appropriate parame-
ter values are t ≈ 350 meV and J ≈ 140 meV, so J/t = 0.4. The Hilbert space of the t-J model
consists of states where each site is occupied either by a vacancy or a spin. The first term ∝ −t
exchanges a vacancy and a spin on nearest neighbors, the second term ∝ J is the Heisenberg
exchange between spins. In order to study the motion of a single hole in an antiferromagnet we
decompose the t-J Hamiltonian Eq. (16) as H = Ht +HI +H⊥ whereby

Ht = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c

)
, HI = J

∑
〈i,j〉

Szi S
z
j , H⊥ =

J

2

∑
〈i,j〉

(
S+
i S
−
j +H.c.

)
,

and choose H0 = Ht +HI as our unperturbed Hamiltonian. As already stated, in the absence
of any hole the ground state of H0 is the Néel state with energy EN = −NJ/2. Next assume
that an electron is removed from site i belonging to the ↑-sublattice, see Figure 6(a). This
raises the exchange energy by zJ/4, because z bonds change their energy from −J/4 to 0. We
choose the exchange energy of the resulting state, EN + zJ/4, as the zero of energy. Then, the
hopping term in (16) can become active and the spin from a neighboring site i1 is transferred to
i, resulting in the state in Figure 6(b). Since the shifted spin has ‘switched sublattices’, however,
it now is opposite to the antiferromagnetic order. In fact, this inverted spin at site i is nothing
but a magnon as discussed in the preceding section, so that the hopping vacancy ‘radiates off’
magnons [8, 9]. Since the displaced spin at site i is parallel to z−1 neighbors, the exchange
energy increases by (z−1)J/2. And this continues as the vacancy moves through the Néel
state, see Figure 6(c): in each step another spin is shifted to the opposite sublattice, so that the
vacancy leaves behind a trace of misaligned spins and the exchange energy increases roughly
linearly with the distance travelled by the hole. We call a state which is created by the motion
of a vacancy in the Néel state a ‘string state’ and denote it by |i0, i1, . . . , iν〉. Here i0 is the site
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Fig. 6: A hole hopping in the Néel state creates a ‘string’ of misaligned spins.

where the hole was created, i1, i2, iν−1 are the sites visited by the hole, whereas iν is the site
where the vacancy is located. We call ν the length of the string, for example Figure 6(c) shows
a string of length 4. There are z different string states with ν = 1, whereas in any subsequent
hop starting from a string state of length ν, z−1 new string states of length ν+1 are generated.
The number of different strings of length ν therefore is nν = z(z−1)ν−1 for ν ≥ 1 whereas
n0 = 1. Since each displaced spin is parallel to z−2 neighbors, compare Figure 6, the magnetic
energy increases by J(z−2)/2 per displaced spin, except for the first hop away from i where it
increases by J(z−1)/2. Accordingly, the exchange energy for a string of length ν > 0 his

Iν =
(z−1)J

2
+ (ν−1) (z−2)J

2
=
J

2

(
(z−1) + (ν−1)(z−2)

)
, (17)

and I0 = 0. It may happen that the path which the hole has taken is folded or self-intersecting
in which case (17) clearly is not correct. However it will be correct for ‘most’ possible paths
of the hole, in particular it is correct for ν ≤ 2 so that we will use this expression. Neglecting
the possibility of self-intersection or folding of the string is an approximation known as Bethe-
lattice. Since the magnetic energy increases linearly with the number of hops the hole has taken
we conclude that under the action of H0 the hole is self-trapped. To describe the resulting
localized state we make the ansatz

|Φi〉 =
∞∑
ν=0

αν
∑

i1,i2,...,iν

|i, i1, i2, . . . , iν〉, (18)

where it is understood that the second sum runs only over those ν-tuples of sites which corre-
spond to a true string starting at i. Since we assume that the magnetic energy is the same for
all strings of length ν, the coefficient αν also depends only on the length of the string. The
coefficients αν in (18) are to be determined by minimizing the expectation value of H0. The
norm and magnetic energy are

〈Φi|Φi〉 =
∞∑
ν=0

nνα
2
ν =

∞∑
ν=0

β2
ν , (19)

〈Φi|HI |Φi〉 =
∞∑
ν=0

nνIνα
2
ν =

∞∑
ν=0

Iνβ
2
ν , (20)

where we have introduced βν = αν/
√
nν .
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Fig. 7: By acting with the term J
2
S+
i S
−
j the first two defects created by the hole can be ‘healed’

and the starting point of the string be shifted to a neighbor.

To obtain the expectation value of the kinetic energy we consider a string state of length ν ≥ 1

which has the coefficient αν . By acting with the hopping term we obtain z−1 strings of length
ν+1, with coefficient αν+1, and 1 string of length ν−1, with coefficient αν−1. For ν = 0 we
obtain z strings of length 1. In this way we find

〈Φi|Ht|Φi〉 = t
(
zα0α1+

∞∑
ν=1

nναν
(
αν−1+(z−1)αν+1

))
= 2t

∞∑
ν=0

nν+1αναν+1 = 2
∞∑
ν=0

t̃ν βνβν+1,

(21)
where t̃0 =

√
z t and t̃ν =

√
z−1 t for ν > 0. The prefactor on the right hand side is t instead

of −t as one might have expected from (16) because the hopping term has to be rearranged
as −t ĉ†i,σ ĉj,σ = t ĉj,σ ĉ

†
i,σ to describe the hopping of a hole. As already stated, the βν now

are determined from the requirement that the expectation value Eloc = 〈Φi|H0|Φi〉/〈Φi|Φi〉 be
stationary under variation of each βν

∂Eloc

∂βν
=

1

〈Φi|Φi〉2

[
∂〈Φi|H0|Φi〉

∂βν
〈Φi|Φi〉 − 〈Φi|H0|Φi〉

∂〈Φi|Φi〉
∂βν

]
=

1

〈Φi|Φi〉

[
∂〈Φi|H0|Φi〉

∂βν
− Eloc

∂〈Φi|Φi〉
∂βν

]
= 0.

Setting the square bracket equal to zero and using Eqs. (19), (20) and (21) we obtain [10](
t̃νβν+1 + t̃ν−1βν−1

)
+ Iνβν = Elocβν ,

with the boundary condition β−1 = 0. This results in a tridiagonal Hamilton matrix for the
βν and after cutting off at a sufficiently large ν, Eloc and the βs can be obtained by a simple
numerical matrix diagonalization.
So far it seems that the hole in the Néel state is localized. It is easy to see, however, that the
term H⊥ which we have neglected so far can assist the trapped hole in escaping from the string
potential, see Figure 7. Namely by acting on the first two sites of a string the spins which
were inverted by the hole are inverted a second time and thus fit with the Néel order again:
H⊥|i, i1, i2, i3, . . . , iν〉 = J/2 |i2, i3, . . . , iν〉. The initial site of the string thus is shifted to a
(2, 0)- or (1, 1)-like neighbor while simultaneously the length ν is decreased by two. The term
H⊥ may also append two new defects to a string, H⊥|i2, i3, . . . , iν〉 = J/2 |i, i1, i2, i3, . . . , iν〉
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Fig. 8: Left: Energy of the self-trapped state Eloc versus J/t. Center: Matrix element m due
to string truncation and renormalization factor α2

0 for the t′ and t′′ hopping terms versus J/t.
Right: Band structure Ek for J/t = 0.4.

thus increasing the length by 2 and again shifting the starting point to a (2, 0)- or (1, 1)-like
neighbor. Using again the Bethe lattice approximation we find the matrix element

〈Φi+2x̂|H⊥|Φi〉 = J
∞∑
ν=0

(z−1)ναναν+2 =
J

z

(√
z

z−1
β0β2 +

∞∑
ν=1

βνβν+2

)
= J ·m,

whereas 〈Φi+x̂+ŷ|H⊥|Φi〉 = 2J · m because a string to a (1, 1)-like neighbor can pass either
trough (1, 0) or (0, 1) and the contributions from these two different paths are additive.
When the full Hamiltonian H0 + H⊥ is taken into account the hole therefore can propagate
through the entire lattice and we describe this by the Bloch state

|Φk〉 =
√

2

N

∑
j∈A

e−ik·Rj |Φi〉. (22)

This is reminiscent of an LCAO wave function such as (1), but the role of the atomic orbital
|φi〉 here is played by the self-trapped function |Φi〉. Since the matrix element of H⊥ between
(1, 1)-like neighbors is twice that between (2, 0)-like neighbors we obtain the dispersion

Ek = Eloc + 2Jm · 4 cos(kx) cos(ky) + Jm · 2
(
cos(2kx) + cos(2ky)

)
= Eloc − 4Jm+ 4Jm

(
cos(kx) + cos(ky)

)2 (23)

This expression shows several remarkable features which reflect the unusual nature of hole
motion. First, there is the constant term Eloc ∝ t. As we have seen, in the absence of the spin-
flip termH⊥ the hole is self-trapped in a linearly ascending ‘effective potential’ due to magnetic
frustration. The hole executes a rapid zig-zag motion on a timescale τloc ∝ t−1, and Eloc is the
gain of kinetic energy due to this zig-zag motion. Figure 8 shows that Eloc ≈ −2.4 t at J/t =
0.4, which is an appreciable fraction of −4t, the lowest possible kinetic energy which a freely
propagating electron can have in an empty 2D lattice. On the longer time scale τdeloc ∝ J−1, the
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Fig. 9: Hopping processes involving a term ∝ t′ that connects (1, 1)-like neighbors.

spin-flip term shifts the center of the zig-zag motion to a 2nd or 3rd nearest neighbor, and the zig-
zag motion starts anew. It follows that the bandwidth for coherent motion is not proportional
to the hopping integral t, but to the smaller exchange constant J . The total bandwidth is 16Jm
and since m is around 0.14 for J/t = 0.4, see Figure 8, the bandwidth is roughly 2J . With
J = 140 meV as appropriate for cuprates we expect W ≈ 300 meV, almost a factor of 10

smaller than the width of the free tight-binding dispersion, which is 8t ≈ 2.8 eV. Ek has a
degenerate minimum along (π, 0) → (0, π) and symmetry equivalent lines, its maxima are at
(0, 0) and (π, π). It has ‘antiferromagnetic symmetry’, Ek+Q = Ek, which is to be expected
since we are considering hole motion in an antiferromagnetic background.
In order to compare our theory to experiment we need to take into account that in the actual
CuO2-planes there are appreciable additional hopping integrals t′ between (1, 1)-like and t′′

between (2, 0)-like neighbors. Since these terms connect pairs of neighbors which are on the
same sublattice, they do not create frustration and it might seem that they immediately dominate
the hole motion. However, this is not the case and the reason can be seen in Figure 9. Fig. 9(a)
shows a ‘string of length 0’, that means a hole at site i and the hopping term ∝ t′ can transport
the hole to the (1, 1)-like neighbor i2 without creating a magnon. On the other hand, 9(c) shows
a ‘string of length 1’, that means a hole which has executed one nearest neighbor hopping
process and is now at site i1, with a single magnon at site i. Again, the t′-term can transport
the hole to the (1, 1)-like neighbor i3, but it cannot transport the magnon along with the hole.
Therefore, the hopping terms ∝ t′, t′′ can transport only the ‘bare hole’, and since this has
the coefficient α0 in the self-trapped states |Φi〉, these terms are renormalized by a factor α2

0.
Accordingly, they give the following contribution to the hole dispersion relation

Elr(k) = 4t′α2
0 cos(kx) cos(ky) + 2t′′α2

0

(
cos(2kx) + cos(2ky)

)
which has to be added to (23). Note again the opposite sign of the hopping terms as compared to
the original Hamiltonian (16) because the fermion operators have to be exchanged to transport a
hole. Figure 10 shows a comparison of the modified hole dispersion and the experimental band
structure obtained by Angle Resolved Photoemission Spectroscopy (ARPES) on the insulating
CuO-compound Sr2CuO2Cl2 [11]. The band structure for a hole has to be turned upside down
to compare to ARPES because the minimum of the hole-bandstructure is the maximum of the
electron-band structure. The agreement is reasonable whereby it has to be kept in mind that in a
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Fig. 10: The band structure for the t-J model with additional hopping terms compared to
the experimental valence band structure for the antiferromagnetic insulator Sr2CuO2Cl2 [11].
Parameter values are t = 350 meV, J = 140 meV, t′ = −120 meV, t′′ = 60 meV.

wide area around (π, π) and also close to (0, 0) the band structure cannot be observed because
the band has vanishing spectral weight in ARPES. In any way, the drastic reduction of the
bandwidth can be seen clearly.
Looking back, the above discussion illustrates the general remarks in the introduction. In a
Mott insulator each site carries a spin and spins on neighboring sites i and j are coupled by the
exchange term JSi · Sj . This leads to a tendency for neighboring spins to be antiparallel and
the appearance of spin excitations, which in the antiferromagnetic phase discussed above take
the form of spin waves. Doped holes then have to move through this ‘spin background’ and
by their very motion constantly interact with the spin excitations. As we have seen this leads
to a drastic modification of the hole motion and band structure. And in fact, this also goes the
other way round: since the holes are constantly ‘stirring’ the spins, these react and change their
arrangement so as to make hole motion easier and allow for a gain of kinetic energy. In fact,
in cuprate superconductors the antiferromagnetic order which was the basis of the above theory
breaks down for hole concentrations of only a few per cent. Even in the resulting disordered
state, the spin exchange term in the t-J Hamiltonian still favors antiparallel orientation of spins
on nearest neighbors and in fact neutron scattering experiments show that there is still short
range antiferromagnetic order, i.e., the spin correlation function 〈Si · Si+R〉 ∝ eiQ·R e−|R|/ζ .
This is reminiscent of the density correction function in a molten crystal, where locally the
correlations between atoms resemble that of the original solid but there is no more long range
crystalline order. Accordingly, such a state is called a ‘spin liquid’ and the description of such a
spin liquid is the hardest part of the description of the doped Mott-insulator. The main difficulty
is that so far nobody has been able to give a wave function for a Heisenberg antiferromagnet that
has one electron/site and has no order of any kind. It will become clear in the next paragraph
that this requires very drastic and questionable approximations.



4.18 Robert Eder

4 Spin liquids

4.1 Dimer basis

As a prelude we follow Sachdev and Bhatt [12] as well as Gopalan, Rice, and Sigrist [13] and
consider a dimer of two sites, labeled 1 and 2, and assume that both of them are occupied by
one electron each, with their spins coupled by the exchange term H = J S1 · S2. According
to the rules for addition of angular momenta, the two spins of 1/2 can be coupled to the total
spin S = 1 (spin triplet) or S = 0 (spin singlet). The singlet and the three components of the
triplet are eigenstates of the square of the operator of total spin S = S1 + S2 with eigenvalue
S(S+1): S2 = S2

1 + 2S1 · S2 + S2
2 = S(S+1), and using that S2

1 = S2
2 = 1

2

(
1
2
+ 1
)
= 3

4
we

find S1 · S2 = 1
2

(
S(S+1) − 3

2

)
. Accordingly, S1 · S2 gives −3/4 when acting on the singlet

and 1/4 for a triplet. Due to the limited size of the Hilbert space of the dimer, constructing
states with definite total spin thus is equivalent to diagonalizing the exchange term, and we find
the eigenenergies −3J/4 for the singlet, and J/4 for the three components of the triplet. The
eigenstates themselves are given by [12, 13]

| s 〉 =
1√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉,

|tx〉 =
1√
2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉,

|ty〉 =
i√
2

(
c†1,↑c

†
2,↑ + c†1,↓c

†
2,↓

)
|0〉,

|tz〉 =
1√
2

(
c†1,↑c

†
2,↓ + c†1,↓c

†
2,↑

)
|0〉. (24)

with |s〉 the singlet and |tx〉, |ty〉 and |tz〉 the three components of the triplet. Note that the three
|tα〉 in (24) are not eigenstates of the total z-spin, rather they are linear combinations of the
states with fixed z-spin which obey Sα|tβ〉 = iεαβγ |tγ〉, for example

Sx|ty〉 =
1

2

2∑
i=1

(
S−i +S

+
i

) i√
2

(
c†1,↑c

†
2,↑ + c†1,↓c

†
2,↓

)
=

i

2
√
2

(
c†1,↓c

†
2,↑ + c†1,↑c

†
2,↓ + c†1,↑c

†
2,↓ + c†1,↓c

†
2,↑

)
= i|tz〉.

This means that the three states |tα〉 transform like a vector under spin rotations which will be
convenient later on. We also note that under the exchange of the two sites, 1 ↔ 2, we have
|s〉 → |s〉 but |tα〉 → −|tα〉.
We return to the undoped Heisenberg antiferromagnet on a 2D square lattice with N sites. A
state which on the one hand is disordered and on the other hand is an exact spin singlet can be
obtained in the following way: let the N sites be partitioned into N/2 dimers, whereby each
dimer comprises two nearest neighbor sites, see Figure 11(a), and assume moreover that the
two spins in each dimer are coupled to the singlet state. The resulting state of the plane is the
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(a) (b) (c)

m

l l

m

n

Fig. 11: (a) A dimer covering of the plane: spins on sites covered by an ellipse are coupled
to a singlet. (b) By acting with the exchange along the bond connecting the dimers l and m
both dimers are excited into the triplet state. (c) By acting with the exchange along the bond
connecting the dimers m and n bond m is de-excited to the singlet whereas dimer n is excited
to the triplet — the triplet has propagated.

product

|Ψ0〉 =
∏

(i,j)∈D

1√
2

(
c†i,↑c

†
j,↓ − c

†
i,↓c
†
j,↑

)
|0〉

where D is the set of N/2 pairs (i, j) of nearest neighbor sites corresponding to the given dimer
covering. |Ψ0〉 is an eigenstate of the ‘depleted Hamiltonian’ Hd = J

∑
(i,j)∈D Si · Sj with

eigenvalue Ed,0 = (N/2) · (−3J/4). Since
〈
Si ·Sj

〉
= 0 if i and j belong to different dimers, as

will be shown in a moment, this is also the expectation value of the full Hamiltonian in the state
|Ψ0〉. Next, let us consider what happens if we act onto |Ψ0〉 with the exchange along a bond not
included in the set D, that means a bond which connects spins in different dimers, such as the
bond indicated in Figure 11(b). Due to the product nature of |Ψ0〉 it is sufficient to discuss what
happens when the spin operator acts on a singlet, e.g.

S1,x|s〉 =
1

2

(
S−1 + S+

1

) 1√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉 = 1

2
√
2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉. (25)

Comparing with (24), the expression on the right hand side is seen to be 1
2
|tx〉. Next, we

exchange 1 ↔ 2 on both sides of (25), whence S1,x → S2,x, |s〉 → |s〉, and |tx〉 → −|tx〉,
and obtain S2,x|s〉 = −1

2
|tx〉. Since the triplets where constructed to transform like a vector,

this holds true for the other Cartesian components as well: S1,α|s〉 = 1
2
|tα〉, S2,α|s〉 = 1

2
|tα〉

with α ∈ {x, y, z}. Acting with the term JSi · Sj along a bond which connects sites i and
j in different dimers therefore simultaneously excites both dimers to the triplet state, with a
prefactor of ±J/4 (the prefactor will be discussed more precisely below). The new state again
is an eigenstate of the ‘depleted Hamiltonian’ Hd, with eigenvalue Ed,0+2J and obviously is
orthogonal to |Ψ0〉, which also proves that the expectation value

〈
Si · Sj

〉
vanishes if the sites

i and j belong to different dimers. Next consider what happens when the exchange term acts
along the bond indicated in Figure 11(c). We already know that bond n will be excited to the
triplet state but we need to study what happens when the spin operator acts on the triplet in bond
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m:

S1,x|tx〉 =
1

2

(
S+

1 + S−1
) 1√

2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉 = 1

2
√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉, (26)

which is nothing but 1
2
|s〉. Therefore, acting with the exchange term along the bond indicated

in Figure 11(c), the dimer m is de-excited to the singlet state according to (26), whereas the
dimer n is excited to the triplet state according to (25) or, put another way, the ‘excited dimer’
jumps from dimer m to dimer n. Comparing now with Figure 4 we see a quite analogous
pattern arising: both, the Néel state and the dimer state |Ψ0〉 are the ground state of a part of the
Hamiltonian, namely the longitudinal part J

∑
〈i,j〉 Si,zSj,z in the case of the Néel state and the

depleted Hamiltonian Hd for the dimer state. Switching on the remainder of the Hamiltonian
then creates ‘fluctuations’: these were the inverted spins or magnons in the case of the Néel state,
and the excited dimers in the case of the singlet soup. The fluctuations increase the energy: by
zJ/2 for a magnon, and by J for a triplet. After having been created these fluctuations then
propagate through the lattice. This suggests that we proceed exactly as in the case of spin wave
theory and interpret the triplets as effective bosonic particles (we use bosons because a triplet is
composed of two electrons). To be more quantitative, we need to introduce some conventions:
We assume that the bonds are labeled by a number n ∈ {1, . . . , N/2}. Since the triplet has
negative parity under the exchange of sites, 1↔ 2, we need to specify which of the sites i and j
in a given dimer corresponds to the site 1 in Eq. (24) and which one to the site 2. We adopt the
convention that for a bond in x-direction (y-direction) the left (lower) site always corresponds
to the site 1. We call the site which corresponds to 1 the ‘1-site of the dimer’ and the site which
corresponds to 2 the ‘2-site of the dimer’. For each site i we define λi = 1 if it is the 1-site of its
respective dimer, and−1 if it is the 2-site. Then, if a given dimer m is occupied by a singlet, we
consider it as occupied by a bosonic particle, created by s†m, whereas if the dimer is in one of
the three triplet states we consider it as occupied by a boson, created by t†m,α with α ∈ {x, y, z}.
We have already seen that the three triplet states transform like a vector under spin rotations and
it follows that the corresponding creation operators form a vector operator

[
Sα, t

†
β

]
= iεαβγt

†
γ ,

and Hermitean conjugation shows that the annihilation operator tm is a vector operator as well.
Calculating the action of the spin operator on triplet states gives the representation of the spin
operator

Sj →
λj
2

(
s†t + t†s

)
− i

2
t†×t. (27)

The x-component of the correspondence Sj → λj
2

(
s†t + t†s

)
was demonstrated in (25) and

(26). We recall that we found S1,x|s〉 = 1
2
|tx〉 whereas S2,x|s〉 = −1

2
|tx〉 and the factor of λi

keeps track of this sign. From the discussion after (25) we see that such a sign, and hence a
factor of λi, will occur whenever the Hamiltonian induces a transition between states which
have opposite parity under 1 ↔ 2. Next, The overall form of the terms on the right hand side
follows from the fact that S is a Hermitean vector operator, so the right hand side has to be one
as well. Then, the vector product t†×t is the only way to contract two vector operators into a
single one, but since the vector product is anti-Hermitean it has to be multiplied by the factor of
i to make it Hermitean. Next, by forming the scalar product, we can write down the exchange
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term hm,n = J Si ·Sj along a bond connecting the sites i and j such that site i belongs to dimer
m, site j to dimer n with m 6= n:

hm,n =
Jλiλj
4

(
t†n· tm sns

†
m + t†m· tn sms†n + t†m· t†n snsm + tm· tn s†ms†n

)
−iJ

4

(
λi
(
s†mtm + t†msm

)
·
(
t†n×tn

)
+ λj

(
s†ntn + t†nsn

)
·
(
t†m × tm

))
−J
4

(
t†n×tn

)
·
(
t†m×tm

)
. (28)

As expected the right hand side comprises all possible ways to construct a spin scalar from the
vectors t and t† and only the numerical prefactors needed to be determined.

4.2 Spin excitations

While the representation of the Heisenberg antiferromagnet derived in the preceding section
is exact for any given dimer covering of the plane, we have not gained very much because
even writing down a dimer covering for a macroscopic system is not feasible, let alone solve
the corresponding Hamiltonian. One might consider choosing a particularly ‘simple’ dimer
covering such as columns of dimers in, say, x-direction. However, since one is forced to make
approximations, the special symmetry of the covering will make itself felt in the approximate
solutions as an artificial supercell structure, leading to a reduction of the Brillouin zone and an
unphysical backfolding of bands.
On the other hand, rewriting the Heisenberg Hamiltonian in terms of the singlet and triplet
bosons provides an exact representation of the Heisenberg model for any dimer covering of the
plane. This means that for example the result for the spin correlation function

〈
Sj(t)·Si

〉
cannot

depend on the specific dimer covering in which the calculation is carried out. Put another way,
the way in which a spin excitation propagates through the network of dimers from site i → j

during the time t does not depend at all on the geometry of the particular dimer covering.
This suggests to construct a translationally invariant approximate Hamiltonian by averaging the
dimer Hamiltonian over all possible coverings. We find

Hav = J
∑
m

t†m· tm +
∑
m,n

∑
i∈m
j∈n

ζm,nhm,n . (29)

Here we have chosen the energy of the state where all bonds are occupied by triplets as the zero
of energy, the first term then adds an energy of J for every bond occupied by a triplet. The sum∑

m,n runs over all pairs of bonds connected by an exchange term J Si · Sj with i ∈ m and
j ∈ n and hm,n is given in (28). The renormalization factor ζm,n is defined as

ζm,n =
Nm,n

Nd

, (30)

where Nm,n is the number of dimer coverings which contain the bonds n and m whereas Nd is
the total number of dimer coverings. The resulting Hamiltonian is translationally invariant and
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Fig. 12: Estimation of the renormalization factor ζ .

isotropic. We estimate ζ by a crude approximation: consider two adjacent bonds as in Figure 12.
By symmetry the bond m is covered by a dimer in exactly 1/4 of all dimer coverings and we
restrict ourselves to these. Assuming for simplicity that the number of coverings containing one
of the three possible orientations of the adjacent bond n are equal, we estimate ζ = 1/12.
Using the averaging procedure we have circumvented the problem of having to consider a fixed
dimer covering, but inspection of (28) shows that hm,n still is a sum of quartic terms and thus
impossible to solve. In the next step of approximation therefore assume that the singlet bosons
are condensed and replace the corresponding operators s†n and sn in (28) by the real conden-
sation amplitude s. This is equivalent to assuming that the singlets form an inert background
and the only active degrees of freedom are the triplets. Further inspection of (28) shows that
after singlet condensation it contains terms of second, third and fourth order in the triplet oper-
ators. As the final approximation we discard the terms of third and fourth order, which describe
scattering processes between the triplets, whence the Hamiltonian finally becomes

Hav = J̃
∑
m

t†m· tm +
ζs2

4

∑
m,n

∑
i∈m
j∈n

Ji,jλiλj
(
t†n· tm + t†m· tn + t†m· t†n + tn· tm

)
. (31)

The sums overm, n run over all 2N bonds of the plane, Ji,j = J if i and j are nearest neighbors
and zero otherwise.
From this point on we can proceed exactly in the same way as we did for the antiferromagnetic
magnons. Being a quadratic form (31) is readily diagonalized by Fourier transform, we only
need to specify a convention for the position of a bond: if bond m connects the sites i and j
we define Rm = (Ri+Rj)/2. Moreover we have two species of bonds: bonds in x-directions
and bonds in y-direction. We specify this by an additional subscript for the Fourier transformed
operators, e.g. t†k,µ with µ ∈ {x, y}. The products λiλj are given in Figure 13 from which we
readily can read off

H =
∑
k

∑
µ,µ′∈{x,y}

(
t†k,µ
(
J̃δµµ′ + εµ,µ′(k)

)
tk,µ′ +

1

2

(
t†k,µεµ,µ′(k) t

†
−k,µ′ +H.c.

))

ε x,x(k) = ζs2J
(
cos(ky)−

1

2
cos(2kx)− cos(kx) cos(ky)

)
,

ε x,y(k) = ζs2J
(
sin
(3kx

2

)
sin
(ky
2

)
+ sin

(kx
2

)
sin
(3ky

2

))
,
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Fig. 13: The factors of λiλj for all bonds connected to the bond m by a nearest neighbor
bond. In a) both bonds are along the x-direction so that these pairs contribute to εx,x whereas
in b) one bond is along the y-direction so that these pairs contribute to εx,y. In a) both bonds
connecting parallel bonds have λiλj = 1.

ε y,x = ε x,y, and ε y,y is obtained from ε x,x by kx ↔ ky. To diagonalize H we proceed as for
antiferromagnetic magnons and make the ansatz

(
with ν ∈ {1, 2}

)
τ †ν,k =

∑
µ∈{x,y}

(
uν,k,µ t

†
k,µ + vν,k,µ t−k,µ

)
,

τν,−k =
∑

µ∈{x,y}

(
v∗ν,k,µ t†k,µ + u∗ν,k,µ t−k,µ

)
. (32)

Demanding
[
H, τ †ν,k

]
= ων,kτ

†
ν,k gives the 4×4 eigenvalue problem(

J̃+εk −εk
ε∗−k −J̃−ε∗−k

)(
uν,k
vν,k

)
= ων,k

(
uν,k
vν,k

)
. (33)

For a matrix like the one on the left hand side it is easy to show that if (u, v) is an eigenvector
with eigenvalue ω, then (v∗, u∗) is an eigenvector with eigenvalue −ω so that the eigenvalues
come in pairs of±ω. We multiply (33) by ων,k and replace products such as ων,kuν,k or ων,kvν,k
on the left hand side of the resulting equations by the expressions given by the original version
of (33). Since the commutator

[
J̃+εk, εk

]
= 0 we obtain(

J̃2 + 2J̃εk
)
uν,k = ω2

ν,kuν,k,

and the same equation for vν,k. It follows that ων,k =
√
J̃2 + 2J̃λν,k, where λν,k are the

eigenvalues of the Hermitean 2×2 matrix εk, and both, uν,k and vν,k, must be the corresponding
eigenvector, albeit multiplied by different prefactors. The eigenvalues of εk are easily shown to
be λ1,k = −ζs2J/2 and λ2,k = ζs2J

(
3/2 + 2γk − 4γ2

k

)
, with γk given in (12).

In principle the singlet condensation amplitude s and the renormalized triplet energy J̃ should
now be calculated self-consistently, but for the sake of simplicity we here switch to a more
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Fig. 14: Left: Spin excitation dispersion relation ωk using the parameter values J̃ = 1.7 J
and different s2ζ . Right: ωk calculated for J̃ = 1.7 J , s2ζ = 0.16 and J = 140 meV com-
pared to the hourglass dispersion measured in La1.875Ba0.125CuO4 [14]. The data points labeled
‘Magnon’ correspond to the triplet dispersion, the points labeled ‘p.h.’ correspond to particle-
hole excitations which are absent in our theory.

phenomenological description and consider s2ζ and J̃ as adjustable parameters. Regarding s2ζ

we recall that ζ was determined somewhat vaguely anyway. Regarding J̃ we expect J̃ > J

because J̃ gives the cost in energy needed to create a triplet. This is of course J itself, but
should be augmented by a loss of kinetic energy that is incurred because a triplet on, say,
dimer m blocks pair creation and hopping processes on all dimers that share a site with m. Our
theory thus has two adjustable parameters, which we use to fix two physical quantities, the total
bandwidth of the spin excitations, and the spin gap (to be explained below). Lastly, we recall
that we have two eigenvalues λν,k for each wave vector k, whereby λ1,k has the peculiar feature
of being independent of k. A more detailed analysis shows [15], that the band derived from the
dispersionless eigenvalue also has zero spectral weight in the spin correlation function. This
suggests, that this band is an artifact of the enlargement of the basis by doubling the number of
bonds. We therefore drop this dispersionless band and retain only the band of spin excitations
resulting from λ2,k. Figure 14 shows the resulting triplet dispersion ωk. The parameter J̃ has
been adjusted to set the total bandwidth to 2J , the bandwidth for antiferromagnetic spin waves.
ωk has a minimum at (π, π) and the energy at this wave vector is frequently called the spin gap,
∆S . With increasing value of s2ζ , ∆S closes rapidly and one can envisage how for ∆S → 0 the
cone-shaped dispersion of antiferromagnetic spin waves at (π, π) is recovered. Experimentally,
inelastic neutron scattering on many cuprate compounds shows an ‘hourglass’ dispersion around
(π, π), an example is also shown in Figure 14. This is frequently interpreted [16] as a magnon-
like collective mode above the neck of the hour-glass co-existing with particle-hole excitations
of the Fermi gas of free carriers below the neck. The part above the neck of the hourglass thus
should correspond to our triplet band and the comparison in Figure 14 shows indeed reasonable
agreement.
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4.3 Doped holes

Next, we extend the theory for the spin liquid to include doped holes. As the first step we
introduce dimers which contain a single electron or no electron at all. We again consider a dimer
with sites 1 and 2, but now assume that the dimer contains one electron with spin σ. Instead of
the exchange term, it is now the hopping term which is active: Ht = −t

∑
σ

(
ĉ†1,σ ĉ2,σ + H.c.

)
and there are two eigenstates of Ht

|f±,σ〉 =
1√
2

(
ĉ†1,σ ± ĉ

†
2,σ

)
|0〉. (34)

These obey Ht|f±,σ〉 = ∓t|f±,σ〉. We introduce a new type of effective particle to represent
dimers occupied by one electron. If the dimer m is in one of the states |f±,σ〉 we consider
it as occupied by a fermion, created by f †m,±,σ. We choose a fermion, because the number
of electrons in such a dimer is one. We also introduce an additional boson, created by e†, to
represent an empty dimer. In order to include these particles we need to transcribe the electron
creation and annihilation operators ĉ†i,σ and ĉi,σ. The two spin components of a fermion creation
operator can be combined to a two-component vector, a covariant spinor [17], c† = (c†↑, c

†
↓)
T.

Similarly the spin components of the annihilation operator for a so-called contravariant spinor
c = (c↑, c↓)

T. Proceeding in an analogous way as in the derivation of (27) for the spin operator
we find

(
with j ∈ {1, 2}

)
cj → :

1

2

(
s iτy + λjt · τ iτy

)(
f †+−λjf

†
−
)
+

1√
2
e†
(
f++λjf−

)
: (35)

where : · · · : denotes normal ordering. The first term on the right hand side describes a singlet
or triplet state on a given bond being converted into a single-electron state, the second term
describes a single-hole state being converted into the empty bond. As was the case for the
triplets, the overall form of the terms on the right hand side can be guessed by making use of
the transformation properties under spin rotations. The so-called metric spinor iτy converts the
covariant spinors f †± into contravariant ones [17] and the ‘spinor product’ t · τc is the only way
to construct a contravariant spinor from the vector operator t and another contravariant spinor c.
The factors of λj again are associated with states of opposite parity under 1↔ 2. Using (35) we
can rewrite the hopping term, along a bond connecting the sites i and j such that site i belongs
to dimer m, site j to dimer n

−t
∑
σ

ĉ†i,σ ĉj,σ →
t

4

((
s†msn + λiλjt

†
m · tn

)(∑
σ

f †n,j,σfm,i,σ
)

(36)

−
(
λit
†
msn+λjs

†
mtn
)
·v(n,j),(m,i) − iλiλj

(
t†m×tn

)
·v(n,j),(m,i)

)
,

where the combination fm,i,σ = fm,+,σ − λi fm,−,σ and the vector

v(n,j),(m,i) =
∑
σ,σ′

f †n,j,σ τσ,σ′ fm,i,σ′

obeys
[
Sα, vβ

]
= iεαβγvγ . Again, the right hand side in (36) is a linear combination of all

possible ways to construct a spin scalar from two spinors and zero, one, or two vector operators.
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Next, we proceed as in the case of the triplet Hamiltonian. We again average the Hamiltonian
over dimer coverings, again introducing the factors of ζ , and replace the singlet operators s†m,
sm by the real singlet condensation amplitude s. Lastly we discard all terms which describe the
emission/absorption of a triplet by a fermion or the scattering of a fermion from a triplet. With
these simplifications we obtain the fermionic Hamiltonian

HF = −t
∑
m,σ

(
f †m,+,σfm,+,σ − f

†
m,−,σfm,−,σ

)
+
s2ζ

4

∑
m,n

∑
i∈m
j∈n

ti,j
∑
σ

f †n,j,σfm,i,σ, (37)

where the sum over m, n run over all 2N bonds in the system and ti,j = t if i and j are nearest
neighbors and zero otherwise.
Next, we switch to the question about how to count electrons. Obviously, each f †m,±,σ-fermion
contains one hole and has a z-spin of σ. Accordingly, in a given dimer covering the number of
fermions must be equal to the number of doped holes, which is N−Ne

N−Ne =
∑
m,σ

(
f †m,+,σfm,+,σ + f †m,−,σfm,−,σ

)
, (38)

where the sum over m runs over the N/2 dimers. We have obtained an approximate theory
by averaging over dimer coverings, so that each of the 2N bonds in the plane can be occupied
by a boson or fermion. The physically relevant quantity, however, is the density of holes per
site, whereas the number of dimers loses its significance due to the averaging approximation.
Accordingly, we retain the condition (38), but the sum over m now runes over all 2N bonds in
the system. This condition implies, that the bands obtained by diagonalizing (37) have to be
filled from below with N−Ne = Nδ holes, and since the f †m,±,σ-fermions have a spin of 1/2 the
Fermi surface covers a fraction of δ/2 of the Brillouin zone. We recall that this is precisely what
we found in the framework of the Hubbard-I approximation. This is no surprise if we recall our
discussion of spin-charge-separation in the context of the Hubbard-I approximation. There we
noted that while a vacancy is a spinless object, the Hubbard-I approximation implicitly assumes
that the information about the spin of the missing electron is ‘stored’ in the neighborhood of
the vacancy and moves along with the vacancy. This is precisely the case in the dimer theory,
where remaining electron in the dimer has opposite spin to the missing electron whence the
dimers containing holes in fact are spin-1/2 particles.
We continue with the discussion of the band structure. We are interested mainly in the lower-
most bands, these are the ones which will accommodate the doped holes, so for simplicity we
drop the f †m,−,σ-fermions, because their energy is 2t above that of the f †m,+,σ-fermions, whereas
the dispersive terms are ∝ s2ζt ≈ 0.2 t. With this last approximation Fourier transformation
gives HF =

∑
k,σ v

†
k,σH̃kvk,σ with the vector vk,σ = (fk,x,+,σ, fk,y,+,σ)

T . The k-dependence of
the 2×2 matrix H̃k can again be read off from Figure 13, but with all λ = 1. We obtain

H̃x,x = −t+ s2ζt
(
cos(ky) + cos(kx) cos(ky) +

1

2
cos(2kx)

)
H̃x,y = s2ζt

(
cos
(3kx

2

)
cos
(ky
2

)
+ cos

(kx
2

)
cos
(3ky

2

))
.
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Fig. 15: Left: Dispersion dispersion relation −ε2,k for s2ζ = 0.16. Holes would occupy the
maxima of this band as indicated in the Figure, so that the zero of energy corresponds roughly
to the Fermi energy for small doping. Right: Adding additional hopping terms between (1, 1)
and (2, 0)-like neighbors lifts the degeneracy of the band maximum (indicated in blue) and the
Fermi surface takes the form of a hole pocket (indicated in red) [15]. The values t′ = −0.2t,
t′′ = 0.1t and the hole concentration δ = 1−ne = 0.1.

H̃y,x = H̃x,y and H̃y,y is obtained from H̃x,x by kx ↔ ky. The eigenvalues of H̃k are ε1,k =

−t+ s2ζt/2 and ε2,k = −t+ s2ζt
(
−3/2+2γk+4γ2

k

)
. More detailed investigation again shows

[15] that the dispersionless band ε1,k has zero weight in the electron spectral function, so again
we interpret this as an artifact of the enlargement of the basis states and discard it. As we have
seen above the band structure resulting from (37) has to be filled with holes from below, that
means at T = 0 the condition for the Fermi energy EF is

δ =
2

N

∑
k

Θ(ε2,k−EF ).

Figure 15 shows −ε2,k, that means the band is again turned upside down as it would be seen
in ARPES. The maxima therefore correspond to the minima of ε2,k, and this is the location
in k-space where the doped holes would accumulate. ε2,k depends on k only via γk, so that
lines of constant γk automatically are lines of constant ε2,k, in particular the maximum of the
inverted dispersion is a roughly circular contour around (π, π). The Fermi surface therefore
would be a ring with a width ∝ δ, which does not agree with ARPES results. However, we
recall that in the actual CuO2 planes there are the additional hopping terms ∝ t′, t′′ discussed
above and inclusion of the terms indeed lifts the degeneracy and leads to a Fermi surface which
takes the form of a hole pocket centered along the (1, 1) direction, see Figure 15. Compared to
experiment, the pocket is shifted towards (π, π), but it should be noted that we have made many
simplifications and a qualitative agreement with experiment is already a reasonable result.
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5 Summary and Outlook

As explained in the introduction, the hallmark of a Mott insulator is the breakdown of the Fermi
surface due to the effectively enhanced Coulomb repulsion in ‘small’ atomic orbitals: if the
number of electrons is equal to the number of sites, N, the electrons are caught in a ‘traffic jam’
and form a spin system instead of a half-filled band with a Fermi surface. The spins interact via
virtual hopping processes of electrons as described by the Heisenberg exchange, which leads to
antiferromagnetic correlations and spin excitations.
In the description of the doped Mott insulator given in the preceding sections, the electrons
continue to form a mere spin system: the majority of electrons are coupled to inert (‘condensed’)
singlets, a few singlets are excited to the triplet state, so that most electrons still contribute only
their spin degrees of freedom. This is not surprising, because for a low density of vacancies,
most electrons still are completely surrounded by other electrons and thus ‘stuck’. Instead, the
true mobile fermions in the system are the f †-particles, which may be viewed as tightly bound
states of a spinless hole and one spin, and their number equals the doped holes. Since the
f †-particles have a spin of 1/2, their Fermi surface covers a fraction δ/2 of the Brillouin zone,
where δ = 1−ne is the concentration of holes. We recall that for free electrons the fraction of
the Brillouin zone covered by the Fermi surface is ne/2, which differs drastically from δ/2.
On the other hand, we expect that the state where the electrons are ‘jammed’ and form an inert
background can persist only over a limited range of the hole concentration δ. A crude estimate
for the range of stability of this phase can be obtained by noting that once δ reaches 1/z = 0.25,
on average each electron will find an empty site on one of its z neighbors to which it can hop
without creating a double occupancy. With increasing δ it therefore will become energetically
favorable for the electrons to form the all-electron Fermi surface of the free electron gas, al-
though the strong scattering will lead to correlation narrowing of the quasiparticle band and
strong incoherent weight in the single-particle spectral function. In fact, in the limit ne → 0 it
is known [3] that one recovers a Fermi surface with volume ne/2 but enhanced effective mass.
Accordingly, at some critical δc we expect a phase transition from the doped Mott-insulator
with a hole-like Fermi surface of fractional volume δ/2 described by the above theory, to a
renormalized all-electron Fermi liquid with an electron-like Fermi surface of fractional volume
ne/2. And in fact the experimental situation has pretty much converged to this scenario: a tran-
sition between two nonmagnetic Fermi liquids of spin-1/2 particles without any obvious order
but different Fermi surface volume, which occurs at a hole concentration nh,c ≈ 0.22. This is
discussed in detail in Ref. [15]. Assuming that this T = 0 phase transition ‘shrouds itself in
superconductivity’ as quantum phase transitions often do, one arrives at the well-known phase
diagram of cuprate superconductors. In fact, unlike many other quantum phase transitions, the
transition in the cuprates appears to be between two phases which are homogeneous, isotropic
and nonmagnetic and differ only in the Fermi surface volume, so that there is no obvious order
parameter. This would be consistent with the above scenario. The detailed description of this
transition and how it can give rise to the spectacularly high superconducting transition temper-
atures is probably the key problem in understanding cuprate superconductors.
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5.2 Eva Pavarini

1 Introduction

The term orbital ordering (OO) indicates the emergence of a broken symmetry state in which
localized occupied orbitals form a regular pattern, in a similar way as spins do in magnetically
ordered structures. Orbital ordering phenomena typically occur in Mott insulators with orbital
degrees of freedom; for transition-metal compounds, the main focus of this lecture, the latter
stem from the partially filled d shells of the transition metal. The perhaps most representative
case is the perovskites KCuF3, shown in Fig. 1. In first approximation KCuF3 is cubic (Oh point
group) with Cu2+ at the center of a regular octahedron of F− ions (anions), enclosed in a cage
of K+ (cations). Due to Oh symmetry at the Cu site, the d manifold, 5-fold degenerate for free
Cu2+, splits into a t2g triplet (xz, yz, xy), lower in energy, and a eg doublet (x2−y2 and 3z2−r2);
the electronic configuration of the Cu2+ ion is thus t62ge

3
g (one 3d hole). The t2g states are

completely filled and do not play any active role in OO; instead, electrons in the e3g configuration
have orbital degeneracy d=2. Making an analogy with spin degrees of freedom, they behave as
an effective τ=1/2 pseudospin; in this view, one of the two eg states, say |x2−y2〉, plays the role
of the pseudospin up, | ↗ 〉, and the other one, |3z2−r2〉, of the pseudospin down, | ↘ 〉. The
two pseudospin states are degenerate and, by symmetry, one could expect them to be equally
occupied. In reality the symmetry is broken and KCuF3 is orbitally ordered with the orbital
structure shown in Fig. 1; depicted are the empty (hole) eg states at each Cu site. Furthermore,
the system exhibits a co-operative Jahn-Teller (JT) distortion, also shown in Fig. 1, with long
and short Cu-F bonds alternating in the ab plane. Indeed, the two phenomena – electronic
OO and structural JT distortion – are concurrent; it is therefore difficult to say which one is
the cause and which one is, instead, the effect. This is a classical case of a chicken-and-egg
problem. The second paradigmatic system showing OO is LaMnO3

(
ion Mn3+, configuration

3d4
)
, the mother compound of colossal magnetoresistance manganites, also a perovskite. Due

to the Hund’s rule coupling J, the actual electronic configuration of Mn3+ is t32ge
1
g. The half-

filled t32g state has no orbital degeneracy; the only orbital degrees of freedom are, as for KCuF3,
those associated with eg electrons. Again, the system is orbitally ordered and OO goes hand
in hand with the co-operative JT distortion. Among t2g systems, i.e., materials with partially
filled t2g shells, classical examples of orbitally-ordered crystals are the perovskites LaTiO3 and
YTiO3

(
configuration t12g

)
, LaVO3 and YVO3

(
t22g
)
, and Ca2RuO4

(
t42g
)
; in these cases the t2g

electrons behave as an orbital pseudospin τ=1. Although this is not a prerequisite for orbital
ordering, as we have seen, many orbitally-ordered materials are perovskites; for this reason in
the present lecture we will use the perovskite structure as representative.

The origin of orbital ordering has been investigated for decades. One of the problems in clari-
fying its nature is that, while magnetic order can be directly probed, e.g., via neutron scattering
experiments, orbital ordering is typically only indirectly observed. Indeed, its principal hall-
mark is the presence of the co-operative Jahn-Teller distortion itself. Identifying the origin of
orbital ordering is thus intimately related to finding the cause of the co-operative Jahn-Teller dis-
tortion. In this lecture I will first illustrate the two main mechanisms [1,2] which have been pro-
posed as possible explanation for OO phenomena, the classical Jahn-Teller effect [1], perhaps
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Fig. 1: Crystal structure, distortions, and orbital ordering in KCuF3. Cu is at the center of
F octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The
pseudocubic axes x, y, z pointing towards neighboring Cu, are shown in the corner. Short (s)
and long (l) CuF bonds alternate between x and y along all pseudocubic axes (co-operative
Jahn-Teller distortion). The distortions are measured by δ=(l−s)/(l+s)/2 and γ=c/a

√
2. R is

the experimental structure (γ=0.95, δ=4.4%), Rδ (γ=0.95) and Iδ (γ=1) two ideal structures
with reduced distortions. In the I0 structure the cubic crystal-field at the Cu site splits the 3d
manifold into a t2g triplet and a eg doublet. In the R structure, site symmetry is lowered further
by the tetragonal compression (γ<1) and the Jahn-Teller distortion (δ 6= 0). The figure shows
the highest-energy 3d orbital. From Ref. [3].

enhanced by Coulomb repulsion [4], and Kugel-Khomskii (KK) superexchange [2]. Kanamori
well illustrated the first mechanism in an influential work [1] in 1960; the main idea is that
electron-phonon coupling yields a static Jahn-Teller distortion, which lowers the symmetry of
the system and produces a crystal-field splitting. As a consequence, electrons preferably occupy
the lower energy states, giving rise to a periodic pattern of occupied orbitals. This is self-evident
in the limit in which the crystal-field splitting is very large, let us say, larger than the bandwidth;
the lower-energy states at each site will be clearly the first ones to be occupied. If, however,
the bandwidth is large in comparison with the crystal-field splitting, the hopping integrals can
strongly reduce such a tendency to orbital ordering. A natural question thus arises at this point.
How large should the crystal-field splitting be to give rise to an orbitally-ordered state? To an-
swer this question we have to remind ourselves that transition-metal systems with partially filled
d shells are also typical examples of strongly-correlated materials. Their low-energy properties
are believed to be well described by a generalized multi-band Hubbard model,

Ĥ = Ĥ0 + ĤU ,

the sum of a one-electron term, Ĥ0, describing the transition-metal d bands and a Coulomb
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electron-electron repulsion term, ĤU . The first is given by

Ĥ0 = −
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ ,

where c†imσ creates an electron at site i with spin σ and orbital quantum number m, and the pa-
rameter ti,i

′

mm′ are the hopping integrals (i6=i′) or the crystal-field splittings (i=i′). The Coulomb
repulsion can be written as

ĤU =
1

2

∑
i

∑
σσ′

∑
mαm

′
α

∑
mβm

′
β

Umαmβm′
αm

′
β
c†imασc

†
imβσ

′cim′
βσ

′cim′
ασ
.

The elements the Coulomb interaction tensor, Umαmβm′
αm

′
β
, can be expressed in terms of the

Slater integrals.1 Here we will restrict the discussion to the eg or t2g manifolds only. In this
case, in the basis of real harmonics, the Hubbard model takes the form

Ĥ=−
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ + U

∑
i

∑
m

n̂im↑n̂im↓

+
1

2

∑
i

∑
σσ′

∑
m6=m′

(U−2J−Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓+c

†
im↑cim↓c

†
im′↓cim′↑

)
, (1)

wherem,m′ are here either t2g or eg states, Umm′mm′=Um,m′=U−2J(1−δm,m′) and, form6=m′,
Umm′m′m=Jm,m′=J . The last two terms describe the pair-hopping and spin-flip processes
(Ummm′m′=Jm,m′ if we use a basis of real harmonics, while for spherical harmonicsUmmm′m′=0).
Finally, U=U0 and J=J1 (t2g electrons) or J=J2 (eg electrons), with

U0 =F0 +
8

5
Javg, Javg=

5

7

1

14
(F2 + F4)

J1 =
3

49
F2 +

20

9

1

49
F4, J2 =− 2Javg + 3J1 .

In strongly correlated systems described by a Hamiltonian of type (1), it turns out that a small
crystal-field splitting, a fraction of the bandwidth, is sufficient to produce orbital order even at
high temperature. This happens because the Coulomb repulsion effectively enhances it, while
suppressing orbital fluctuations [4]. Hence, the mechanism illustrated by Kanamori becomes
very efficient in the presence of strong correlations (small t/U limit, the typical limit for Mott
insulators; here t is an average hopping integral). This is, however, not the end of the story:
Coulomb electron-electron interaction provides, in addition, an alternative explanation of the
origin of orbital ordering. In a seminal work, Kugel and Khomskii [2] have shown in 1973
that, in the presence of orbital degeneracy, many-body effects can produce orbital ordering
even in the absence of a static distortion, i.e., of a crystal-field splitting. This happens via

1For a pedagogical introduction see, e.g, Ref. [5].
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3C4

2C2

4C3

C2C4 C3

Fig. 2: The unit cell of a cubic perovskite ABC3 and its symmetry axes; the lattice con-
stant is a. The transition metal B (red) is at (0, 0, 0); the ligands C (green) are located
at (±a/2, 0, 0), (0,±a/2, 0),(0, 0,±a/2) and form an octahedron; the cations A are located
at (±a/2,±a/2,±a/2), (±a/2,∓a/2,±a/2), (∓a/2,±a/2,±a/2), (±a/2,±a/2,∓a/2) and
form a cube. The bottom figures illustrate the rotational symmetries of the cell.

electronic spin-orbital superexchange, the effective low-energy interaction which emerges, in
the small t/U limit, from the orbitally-degenerate Hubbard model. In this picture, the co-
operative Jahn-Teller distortion is rather the consequence than the cause of orbital order. As I
already mentioned, the predictions of the two theories for the final broken-symmetry structure
are basically identical for most systems; thus it is very hard to determine which of the two
mechanisms, Jahn-Teller effect or Kugel-Khomskii superexchange, dominates. In the last part
of the lecture we will see how the problem was recently solved in representative cases [3, 6] by
using a new theoretical approach based on the local-density-approximation + dynamical mean-
field theory (LDA+DMFT) [7–10] method. For the paradigmatic systems KCuF3 and LaMnO3,
it was shown that Kugel-Khomskii superexchange alone, although strong, cannot explain the
presence of the Jahn-Teller distortion above 350 K (KCuF3) [3] and 650 K (LaMnO3) [6];
experimentally, however, the distortion persists in both systems basically up to the melting
temperature. This leads to the conclusion that a mechanism directly generating a static crystal-
field splitting, such as the standard Jahn-Teller effect, is necessary to explain the experimental
findings. In fact, for KCuF3 and other ionic systems, it turns out that even the classical JT
picture fails. A new mechanism, based on Born-Mayer repulsion, has to be invoked to describe
the actual experimental structure and the associated ordering at high temperature [11]. A true
Kugel-Khomskii system was instead recently identified in the t22g system LaVO3 [12].
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2 Cubic crystal-field splitting

Let us consider a system with the ideal cubic perovskite structure ABC3, shown in Fig. 2. In
this structure, B is the transition metal with partially filled d shell. The site symmetry at site B is
cubic; thus, as we mentioned before, d states split into eg and t2g. Let us understand how exactly
this happens. For a free ion, the potential vR(r) which determines the single-electron energies
is rotationally invariant, i.e., it has symmetry O(3). This means that all single-electron states
within a given l shell are degenerate, as it happens in the case of hydrogen-like atoms. When the
same ion is inside a molecule or a solid, vR(r) has in general lower symmetry, corresponding
to a finite point group.2 Thus one-electron states within a given shell l, degenerate for the
free atom, can split. The symmetry reduction arises from the crystal field; the latter has two
components, the Coulomb potential generated by the surrounding charged ions, dominant in
ionic crystals, and the ligand field due to the bonding neighbors. In this section we will analyze
the first contribution; the covalent contribution to the crystal-field splitting is discussed in the
next section. Both effects give rise to a similar splitting of levels; which contribution dominates
depends on the system.
Let us thus assume that the crystal is perfectly ionic and that the ions can be treated as point
charges qα (point-charge model). Then, the one-electron potential can be written as

vR(r) =
∑
α

qα
|Rα − r|

= v0(r) +
∑
α6=0

qα
|Rα − r|

= v0(r) + vc(r), (2)

where Rα are the positions of the ions and qα their charges. The term v0(r) is the ionic central
potential at siteR0, with spherical symmetry. The term vc(r) is the electric field generated at a
given siteR0 by all the surrounding ions in the crystal and it is called crystal-field potential.
For the perovskite structure ABC3 we are interested in the crystal-field potential at the site
of the transition metal, B. Let us first assume that only the contribution of nearest neighbors
(the negative C ions, typically oxygens or fluorines) is relevant. The six C ions are located at
positions (±dC , 0, 0), (0,±dC , 0), (0, 0,±dC) and have all the same charge qC , while the B ion
is at (0, 0, 0); in terms of a, the cubic lattice constant, dC=a/2. Then we can write the potential
around ion B as

vR(r) =
qB
r

+
qC
dC

[
∆v

(
x

dC
;
r

dC

)
+∆v

(
y

dC
;
r

dC

)
+∆v

(
z

dC
;
r

dC

)]
where

∆v(ξ; ρ) =
1√

1 + ρ2

 1√
1 + 2ξ

1+ρ2

+
1√

1− 2ξ
1+ρ2

 .

Via the Taylor expansion

1√
1 + η

∼ 1− 1

2
η +

3

8
η2 − 5

16
η3 +

35

128
η4 + . . .

2For a concise introduction to group theory see, e.g., Ref. [13], chapter 6.
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we can find an approximate expression of ∆v(ξ; ρ) for small ξ, i.e., close to ion B; the first
contribution with less than spherical symmetry is

voct(r) =
35

4

qC
d5C

(
x4 + y4 + z4 − 3

5
r4
)

= D

(
x4 + y4 + z4 − 3

5
r4
)
.

We can rewrite this potential as

voct(r) =
7
√
π

3

qC
d5C
r4

[
Y 4
0 (ϑ, ϕ) +

√
5

14

(
Y 4
4 (ϑ, ϕ) + Y 4

−4(ϑ, ϕ)
)]
, (3)

where

Y 4
0 (ϑ, ϕ) =

3

16

1√
π

(
35 cos4 ϑ− 30 cos2 ϑ+ 3

)
=

3

16

1√
π

35z4 − 30z2r2 + 3r4

r4
,

Y 4
±4(ϑ, ϕ) =

3

16

√
35

2π
sin4 ϑe±4iϕ =

3

16

√
35

2π

(x± iy)4

r4
.

To obtain the crystal field due to the cubic cage of cations A (with charge qA), shown in Fig. 2
we repeat the same calculation; the main difference is that there are eight A ions, located at
positions (±dC ,±dC ,±dC),(∓dC ,±dC ,±dC), (±dC ,∓dC ,±dC), (±dC ,±dC ,∓dC), with the
distance from the origin being dA=

√
3a/2. By following the same procedure that we used for

B octahedron, one can show that

vcube(r) = −8

9

qA
qC

(
dC
dA

)5

voct(r),

i.e., vcube(r) has the same form as voct(r); this happens because a cube and an octahedron are
dual polyhedra3 and have therefore the same symmetry properties. If qA/qC > 0, vcube(r) has
opposite sign than voct(r); in the case of a perovskite, however, A positions are occupied by
cations, i.e., positive ions; thus the crystal field due to the A cage has the same sign of the
crystal field generated by the B octahedron.
The crystal-field potential vc(r) lowers the site symmetry and can therefore split the (2l+1)-fold
degeneracy of the atomic levels. To calculate how the l manifold splits, we use two approaches.
The first is exact and based on group theory. We assume for simplicity that the symmetry is only
O (group of the proper rotations which leave a cube invariant); using the full symmetry group
of the cube, Oh = O ⊗ Ci (where Ci is the group made by the identity and the inversion) does
not change the result, because the spherical harmonics are all either even or odd. The character
table of group O is given by

partner functions O E 8C3 3C2 6C ′2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1

A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(Rx, Ry, Rz) (x, y, z) T1 3 0 −1 −1 1

(xy, xz, yz) T2 3 0 −1 1 −1

(4)

3Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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Let us explain this table. The first line yields the group, here O, and the symmetry operations
of the group, collected in classes Ck, here {E}, {C3}, {C2}, {C ′2}, {C4}. For each class only a
representative element is given and the number Nk in front of this element yields the number
of operations in the class; for example 8C3 indicates 8 symmetry operations in class {C3}. The
symmetry operation Cn is an anticlockwise rotation of an angle α = 2π/n. For a finite group
with h elements, the h group operations

{
O(g)

}
can be expressed as h matrices

{
Γ (g)

}
acting

on an invariant linear space; the basis of this space, {|m〉}, can be, for example, a finite set
of linearly independent functions, such as the spherical harmonics with angular quantum num-
ber l. The collection of matrices

{
Γ (g)

}
is a representation of the group; the dimension of the

invariant linear space yields also the dimension of the matrices, i.e., the dimensionality of the
representation. Each group has infinitely many possible representations, but some sets are spe-
cial and play the role of an orthonormal basis in a space of vectors; they are called irreducible.
If G is the group of operations which leave the Hamiltonian invariant, the irreducible represen-
tations of G can be used to classify all eigenstates of the Hamiltonian; eigenstates which build a
basis for different irreducible representations are mutually orthogonal and have typically (leav-
ing the cases of accidental degeneracy and hidden symmetry aside) different energies. The
(non-equivalent) irreducible representations Γi of group O are listed in the first column of Ta-
ble 4, below the group name; they are A1 (trivial representation, made of 1-dimensional identity
matrices), A2, also 1-dimensional, E, two-dimensional, and T1 and T2, both three-dimensional.
The numbers appearing in Table 4 are the characters χi(g), defined as

χi(g) = Tr Γi(g) =
∑
m

〈
m
∣∣Γi(g)

∣∣m〉 =
∑
m

Γmm
i (g) .

For a given representation (corresponding to a line of Table 4) the character for a specific ele-
ment can be found below the corresponding class label (columns of Table 4); all elements in the
same class have the same character. Thus the second column of the character table, showing the
character of the identity, yields also the dimensionality di of the representation itself. Next we
calculate the characters of the matrix representation Γ l constructed using spherical harmonics
with angular quantum number l as a basis. An easy way to do this is to assume that the rotation
axis is also the quantization axis, i.e., ẑ; in fact, the characters do not depend on the direction of
the quantization axis, but only on the angle α of rotation. Thus for O(g)=Cα we have

Cα Y
l
m(ϑ, ϕ) = Y l

m(ϑ, ϕ−α) = e−imα Y l
m(ϑ, ϕ)

Γ l
mm′(Cα) = δmm′e−imα.

This yields the following expression for the character

χl(Cα) =
l∑

m=−l

e−imα =
sin
(
l+1

2

)
α

sin α
2

.
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The characters for representations Γ l are therefore

O E 8C3 3C2 6C2 6C4

Γ 0 = Γ s 1 1 1 1 1

Γ 1 = Γ p 3 0 −1 −1 1

Γ 2 = Γ d 5 −1 1 1 −1

Γ 3 = Γ f 7 1 −1 −1 −1

In spherical symmetry
(
group O(3)

)
representations Γ l are irreducible. In cubic symmetry

(group O), instead, the Γ l can be reducible, i.e., they can be written as the tensorial sum ⊕
of irreducible representations of the group O. The various components can be found by using
the orthogonality properties of irreducible representations, which lead to the decomposition
formula

Γ l =
⊕
i

aiΓi with ai = 〈Γi|Γ l〉 =
1

h

∑
g

[
χi(g)

]∗
χl(g) , (5)

where h, the number of elements in the group, is 24 for group O. Hereafter the symmetry
representations of electronic states are written in lower case to distinguish them from capital
letters which we will use later for labeling vibrational modes. We find

Γ s = a1

Γ p = t1

Γ d = e⊕ t2
Γ f = a2 ⊕ t1 ⊕ t2 .

Thus, in cubic symmetry, the s- and the p-functions do not split, because the a1 irreducible rep-
resentation is one-dimensional and the t1 irreducible representation is 3-dimensional. Instead,
d-functions split into a doublet and a triplet, and f -functions into a singlet and two triplets.
To determine which functions

{
|m〉i

}
form a basis (a so-called set of partner functions) for a

specific irreducible representation Γi we can, e.g., use the projector for that representation

P̂i =
di
h

∑
g

[
χi(g)

]∗
O(g). (6)

In our case, we can read directly the partner functions
{
|m〉i

}
for a given irreducible repre-

sentation of the group O in the first column of Table 4, on the left. In short, for representa-
tion e possible partner functions are

(
x2−y2, 3z2−r2

)
and for representation t2 we can instead

use
(
xy, xz, yz

)
. A small step is still missing: As we already mentioned, the full symme-

try of the B site is Oh, and the group Oh can be obtained as direct product, Oh = O ⊗ Ci;
with respect to O, group Oh has twice the number of elements and classes, and thus twice the
number of irreducible representations. The latter split into even

(
a1g, a2g, eg, t1g, t2g

)
and odd(

a1u, a2u, eu, t1u, t2u
)
. All d-functions are even, and therefore x2−y2 and 3z2−r2 are partners

functions for the eg irreducible representation, while xy, xz, yz are partner functions for the
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t2g irreducible representation. Summarizing, t2g states (xy, xz, and yz) and eg states (x2−y2

and 3z2−r2) have in general (again excluding the cases of accidental degeneracy and hidden
symmetry) different energy.
Group theory tells us if the degenerate 2l+1 levels split at a given site in a lattice, but not by
how much they do split, and which orbitals are higher in energy. We can, however, calculate
the crystal-field splitting approximately using the potential (3) as a perturbation. This is the
second approach previously mentioned; differently from group theory, it is not exact, but it
gives us an estimate of the size of the effect and the sign of the splitting. For d states we
can calculate the elements of the octahedral potential voct(r) in the basis of atomic functions
ψnlm(ρ, ϑ, ϕ)=Rnl(ρ)Y l

m(ϑ, ϕ),whereRnl(ρ) is the radial part, ρ=Zr, Z is the atomic number,
Y m
l (ϑ, ϕ) a spherical harmonic, and n the principal quantum number (Appendix B). We obtain

〈ψn20 |v̂oct |ψn20 〉 = +6Dq 〈ψn2±1|v̂oct |ψn2±1〉 = −4Dq

〈ψn2±2|v̂oct |ψn2±2〉 = + Dq 〈ψn2±2|v̂oct |ψn2∓2〉 = +5Dq

where Dq=qC〈r4〉/6d5C and 〈rk〉=
∫
r2dr rk R2

n2(Zr). The crystal-field splitting between eg
and t2g-states can be then obtained by diagonalizing the crystal-field matrix

HCF =


Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq

 .

We find two degenerate eg eigenvectors with energy 6Dq

|ψn20〉 = |3z2−r2〉,
1√
2

(
|ψn2−2〉+|ψn22〉

)
= |x2−y2〉,

and three degenerate t2g eigenvectors with energy −4Dq

i√
2

(
|ψn2−2〉−|ψn22〉

)
= |xy〉,

1√
2

(
|ψn2−1〉−|ψn21〉

)
= |xz〉,

i√
2

(
|ψn2−1〉+|ψn21〉

)
= |yz〉.

The total splitting is
∆CF = Eeg−Et2g = 10Dq.

Thus the eg-states are actually higher in energy than the t2g-states. This happens because eg
electrons point towards the negative C ions (see Fig. 3), and will therefore feel a larger Coulomb
repulsion than t2g electrons, which have the lobes directed between two negative C ions.
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xyxz yz

x2-y2 3z2-r2

Fig. 3: The Cu eg and t2g Wannier orbitals for the cubic perovskite KCuF3, obtained from first
principles calculations, using a Wannier basis that spans all bands.

How general is, however, this result? We obtained it via a truncated Taylor expansion of the
potential close to the nucleus. Does this mean that we have perhaps neglected important higher-
order terms? For a generic lattice, we can expand the crystal-field potential (2) in spherical
harmonics using the exact formula

1

|r1 − r2|
=
∞∑
k=0

rk<
rk+1
>

4π

2k + 1

k∑
q=−k

Y k
q (ϑ2, ϕ2)Y

k

q (ϑ1, ϕ1),

where r< ( r>) is the smaller (larger) of r1 and r2. The crystal-field potential takes the form

vc(r) =
∞∑
k=0

k∑
q=−k

Bk
q Y

k
q , (7)

where Bk
q = (−1)qB̄k

−q. Although the series in (7) is in principle infinite, one can terminate it
by specifying the wavefunctions, since

〈Y l
m|Y k

q |Y l
m′〉 = 0 if k > 2l.

For example, for p electrons k ≤ 2, for d-electrons, k ≤ 4, and f electrons k ≤ 6. Thus, for
d-electrons andOh symmetry, the terms that appear in the potential (3) are actually also the only
ones to be taken into account, because all other terms yield an expectation value equal to zero.
Finally, the derivation of both equations (3) and (7) presented here might let us think that the
first-nearest neighbors are those that determine the crystal field. This is, however, not always
the case, because Coulomb repulsion is a long-range interaction; for example, in some systems
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!

"

#
Vspσ Vppσ Vppπ

!

"

#
Vsdσ Vpdσ VddδVddσ VddπVpdπ

!

"

#

!

"

#

Vssσ

Fig. 4: Independent Slater-Koster two-center integrals for s, p, and d atomic orbitals (Appendix
B). The label σ indicates that the bonding state is symmetrical with respect to rotations about
the bond axis; the label π that the bond axis lies in a nodal plane; the label δ that the bond axis
lies in two nodal planes.

the first-nearest neighbors yield cubic symmetry at a given site but further neighbors lower the
symmetry.4 Furthermore, the point-charge model discussed in this section is useful to explain
the relation between crystal field and site symmetry, however yields unsatisfactory results for
the crystal-field splitting in real materials. Corrections beyond the point-charge approximation
turn out to be important. In addition, as we will see in the next section, in many systems
the crystal field has a large, sometimes dominant, covalent contribution, the ligand field. The
modern approach to calculate crystal-field splittings including the ligand-field contribution is
based on material-specific potentials obtained ab-initio via density-functional-theory (DFT) and
the associated DFT localized Wannier functions. Nevertheless, it is worth to point out the
remarkable success of the point-charge model in giving qualitatively correct d crystal-field states
in cubic perovskites; such a success relies on the fact that this approach, even if approximate,
yields the exact symmetry of final states, i.e., the same obtained via group theory, and does not
neglect any relevant (e.g., high-order) term.

4This means that, of course, Oh is not the actual symmetry of the site.
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= cos θ + sin θ
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´

Fig. 5: Illustration of the decomposition of a general s-p two-center integral in terms of Vspσ.

3 Tight-binding eg and t2g bands of cubic perovskites

In this section we will construct the bands of KCuF3 in the cubic limit using tight-binding
theory. Let us first remind ourselves of the crucial steps of this approach. The one-electron
Hamiltonian can be written as

ĥe(r) = −1

2
∇2 +

∑
iα

v(r−Ti−Rα) = −1

2
∇2+vR(r),

where Rα is the positions of basis atom α in the unit cell and Ti the lattice vectors. We take as
a basis atomic orbitals with quantum numbers lm (we drop here the principal quantum number
for convenience). For each atomic orbital we construct a Bloch state

ψαlm(k, r) =
1√
N

∑
i

eiTi·k ψlm(r−Ti−Rα), (8)

where N is the number of lattice sites. In the Bloch basis (8), the Hamiltonian and the overlap
matrix are given by

Hα,α′

lm,l′m′(k) =
〈
ψαlm(k)

∣∣ĥe∣∣ψα′

l′m′(k)
〉
,

Oα,α′

lm,l′m′(k) =
〈
ψαlm(k)

∣∣ψα′

l′m′(k)
〉
.

These matrices define a generalized eigenvalue problem, the solution of which yields the band
structure. The Hamiltonian matrix is given by

Hα,α′

lm,l′m′(k) = ε0l′α′ O
α,α′

lm,l′m′(k) +∆εαlm,l′m′ δα,α′ − 1

N

∑
iα6=i′α′

ei(Ti′−Ti)·k tiα,i
′α′

lm,l′m′ .

Here ε0lα are the atomic levels, and ∆εαlm,l′m′ the crystal-field matrix elements

∆εαlm,l′m′ =

∫
dr ψlm(r−Rα)

(
vR(r)−v(r−Rα)

)
ψl′m′(r−Rα) , (9)
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Fig. 6: Unit cell of idealized cubic KCuF3 with cubic axes in the left corner.

which are two-center integrals. Finally,

tiα,i
′α′

lm,l′m′ = −
∫
dr ψlm(r−Rα−Ti)

(
vR(r)−v(r−Rα′−Ti′)

)
ψl′m′(r−Rα′−Ti′). (10)

The hopping integrals (10) contain two- and three-center terms; if the basis is sufficiently local-
ized we can, however, neglect the three-center contributions and assume tiα,i

′α′

lm,l′m′ ∼ −V iα,i′α′

lm,l′m′ ,

where

V iα,i′α′

lm,l′m′ =

∫
dr ψlm(r−Rα−Ti) v(r−Rα−Ti)ψl′m′(r−Rα′−Ti′)

is a Slater-Koster two-center integral (Appendix B). A generic Slater-Koster two-center integral
can be expressed as a function of a few independent two-center integrals, shown in Fig. 4 for
s, p, and d-functions. Apart from the σ bond, which is the strongest, other bonds are possible;
the π bonds are made of orbitals which share a nodal plane to which the bond axis belongs,
and the δ bond, for which two nodal planes intersect in the bond axis connecting the two ions.
Fig. 5 shows how to obtain a generic two-center integral involving p and s orbitals.5 Let us
now consider the case of the eg and t2g bands of KCuF3; here we assume for simplicity that the
system is an ideal cubic perovskite, shown in Fig. 6. The primitive cell contains one formula
unit (a single K cube in Fig. 1). The cubic axes are x, y, z, and the lattice constant is a. A Cu
atom at siteRi is surrounded by two apical F atoms, F3 atRi +

1
2
z and F6 atRi− 1

2
z, and four

planar F atoms, F1 and F4 atRi± 1
2
x and F2 and F5 atRi± 1

2
y. In Fig. 7 one can see the effects

of the cubic approximation on the eg bands: the crystal-field splitting of the eg states is zero, the
band width slightly reduced, gaps disappear, and the dispersion relations is sizably modified.
The cubic band structure in Fig. 7 was obtained with a unit cell containing two formula units, in
order to compare it with the band structure of the experimental (Jahn-Teller distorted) structure

5More details on the tight-binding approach can be found in Ref. [13].
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Fig. 7: LDA eg (blue) and t2g(red) band structure of KCuF3 for the experimental structure (R)
and ideal structures with progressively reduced distortions (see Fig. 1). I0: simple cubic. The
unit cell used in this calculation contains two formula units. The figure is from Ref. [3].

of KCuF3; hence we see four (instead of two) eg bands. The band-structure of cubic KCuF3 for
a cell with one formula unit is shown in Fig. 8; in the following we will refer for comparison to
that figure only. Let us take as tight-binding basis the atomic 3d eg orbitals for Cu and the 2p

orbitals for F; we neglect for convenience the overlap integrals (i.e., we assume that our atomic
functions are, approximately, localized Wannier functions). For such a tight-binding basis the
only relevant Slater-Koster parameter is Vpdσ. The |3z2−r2〉i and |x2−y2〉i states of the Cu at
Ri can couple via Vpdσ to |zc〉i, the pz orbitals of F3 and F6, to |xa〉i, the px orbitals of F1 and F4

and to |yb〉i, the py orbitals of F2 and F5. From the basis |α〉i of localized atomic functions we
construct the Bloch states |kα〉 = 1√

N

∑
i e
ik·Ri|α〉i, and obtain the tight-binding Hamiltonian

HTB
eg |k zc〉 |k xa〉 |k yb〉 |k 3z2 − r2〉 |k x2 − y2〉

|k zc〉 εp 0 0 −2Vpdσsz 0

|k xa〉 0 εp 0 Vpdσsx −
√

3Vpdσsx
|k yb〉 0 0 εp Vpdσsy

√
3Vpdσsy

|k 3z2−r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0

|k x2−y2〉 0 −
√

3Vpdσsx
√

3Vpdσsy 0 εd

(11)

where sα = ie−ikαa/2 sin kαa/2, α = x, y, z, εp < εd = εp+∆pd, and Vpdσ < 0. If |Vpdσ|/∆pd

is small, the occupied bands are F p-like, while the partially filled bands Cu eg-like. We now
calculate the bands along high-symmetry lines.6 Along Γ-Z, the eigenvalues εi (εi ≤ εi+1) of

6Special points: Γ = (0, 0, 0), Z= (0, 0, π/a), X= (π/a, 0, 0), M= (π/a, π/a, 0), R= (π/a, π/a, π/a).
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Fig. 8: LDA band structure of cubic KCuF3. The t2g bands are in red and the eg bands in blue.

HTB
eg are

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sz|2

where ε1 (sign −) is bonding and F z-like, while ε5 (sign +) anti-bonding and Cu 3z2−r2-like.
Along Γ-X, we have instead the dispersion relations

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sx|2

where ε1 is bonding and F x-like, while ε5 anti-bonding and Cu x2−y2-like. To obtain the
eg-like bands, instead of diagonalizing HTB

eg as we have done above, we can also use the down-
folding procedure, which, for non-interacting electrons, can be carried out exactly. This method
works as follows. We divide the orbitals in passive (F p) and active (Cu d), and write the
eigenvalues equation as(

Hpp Hpd

Hdp Hdd

)(
|k p〉
|k d〉

)
= ε

(
Ipp 0

0 Idd

)(
|k p〉
|k d〉

)
,

where Hpp (Ipp) is the Hamiltonian (identity matrix) in the p-electron space (3×3), and Hdd

(Idd) the Hamiltonian (identity matrix) in the d-electron space (2×2). By downfolding to the d
sector we obtain the energy-dependent operator Hε

dd, which acts in the d space only

Hε
dd = Hdd −Hdp(Hpp−εIpp)−1Hpd,
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and a correspondingly transformed and energy-dependent basis set for the active space, |k d〉ε.
The operator Hε

dd has the same eigenvalues and eigenvectors as the original Hamiltonian. In the
case of the eg bands (Hε

dd = Hε
eg) of KCuF3

Hε
eg |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tσε [1
4
(cos kxa+cos kya)+cos kza] 2tσε [

√
3
4

(cos kxa−cos kya)]

|k x2−y2〉ε 2tσε [
√
3
4

(cos kxa−cos kya)] ε′d−2tσε [3
4
(cos kxa+cos kya)]

(12)

where the effective parameters are

tσε =
V 2
pdσ

ε− εp
, ε′d = εd + 3tσε .

The downfolding procedure has renormalized the parameters εd of the original model (11),
but also introduced a new interaction: inter-orbital coupling. Furthermore, Hε

dd and the Bloch
basis are now energy dependent. Along Γ-Z, the eigenvalues of (12) are given implicitly by the
equations ε=εd+2tσε−2tε cos kza (band ε5) and ε=εd (band ε4); in second-order perturbation
theory we find

tσε ∼ tσεd =
V 2
pdσ

∆pd

,

ε5 ∼ εd + 2tσεd − 2tσεd cos kza .

From Hamiltonian (12) it is relatively easy to see that the eg bands are 2-fold degenerate along
direction Γ-R, to find the dispersion along Γ-M and R-M, and to obtain the eg-like bands in
Fig. 8. By Fourier transforming the Bloch states |k 3z2−r2〉ε and |k x2−y2〉ε we can build
a set of Wannier functions. They have 3z2−r2 or x2−y2 symmetry as the atomic orbitals,
and, additionally, they span, to arbitrary accuracy, the eg bands. These Wannier functions are
by construction longer range than atomic orbitals, since they have p tails on the downfolded
neighboring F sites.
We can now repeat the same calculation for the t2g bands. The minimal tight-binding basis is
of course different with respect to the case of eg bands. The states |xy〉i of the Cu ion located at
Ri are coupled via Vpdπ to the |ya〉i, the py orbitals of F1 and F4 and to |xb〉i, the px orbitals of
F2 and F5; in a similar way, |xz〉i is coupled via Vpdπ to the |za〉i, the pz orbitals of F1 and F4,
and to the |xc〉i, the px orbitals of F3 and F6; finally |yz〉i is coupled via Vpdπ to the |zb〉i, the pz
orbitals of F2 and F5, and to the |yc〉i, the py orbitals of F3 and F6. After constructing for each
|α〉i the corresponding Bloch state, we obtain the tight-binding Hamiltonian. The latter splits
into three decoupled blocks,

HTB
t2g

|k ya〉 |k xb〉 |k xy〉
|k ya〉 εp 0 2Vpdπsx
|k xb〉 0 εp 2Vpdπsy
|k xy〉 2Vpdπsx 2Vpdπsy εd
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and cyclic permutations of x, y, and z (and, correspondingly, of a, b, and c). In the Γ-X direction
we thus find

ε2′(k) =εd

ε5(k) =εp +
∆pd

2
+

√
∆2
pd + 16V 2

pdπ|sx|2

2

∼εd + 2tπεd − 2tπεd cos kxa

where tπεd = V 2
pdπ/∆pd. By downfolding the oxygen states we obtain

Hε
t2g |k yz〉ε |k xz〉ε |k xy〉ε

|k yz〉ε ε′′d − 2tπε (cos kxa+ cos kya) 0 0

|k xz〉ε 0 ε′′d − 2tπε (cos kxa+ cos kza) 0

|k yz〉ε 0 0 ε′′d − 2tπε (cos kya+ cos kza)

where the parameters in the matrix are

ε′′d =εd + 4tπε ,

tπε =
|Vpdπ|2

ε− εp
.

As in the case of the eg bands, we find renormalized energy levels and effective band disper-
sions; since different Cu t2g states couple to different F p states, and we neglected hopping
integrals between the ligands, the xy, xz, and yz bands are totally decoupled in our model. We
are now in the position of calculating the (approximate) expression of the covalent contribution
to the eg-t2g crystal-field splitting, i.e., the energy difference

∆CF ∼ ε′d − ε′′d = 3
|Vpdσ|2

∆pd

− 4
|Vpdπ|2

∆pd

> 0. (13)

As we can see, the sign of the covalent crystal-field splitting is the same as that of the ionic
contribution. This happens for two reasons. First, the so-called d bands are the anti-bonding
states of the p-d Hamiltonian, hence both the energy of the eg and t2g states moves upwards due
to the interaction with the p orbitals. Second, σ bonds are stronger than π bonds, hence eg states
shift to sizably higher energy than t2g states.
The tight-binding model we have used so far is oversimplified, but it already qualitatively well
describes the eg and t2g bands in Fig. 8. A more accurate description can be obtained including
other Slater-Koster integrals, such as the hopping to apical F s states, or between neighboring
F p states. With increasing number of parameters, it becomes progressively harder to estimate
them, e.g., from comparison with experiments; furthermore a large number of fitting parameters
makes it impossible to put a theory to a test. Modern techniques allow us, however, to calculate
hopping integrals and crystal-field splittings ab-initio, using localized Wannier functions as
the basis and the Kohn-Sham potential vR(r) as the one-electron potential; because Wannier
functions are orthogonal, the corresponding overlap matrix is by construction diagonal.
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4 Jahn-Teller effect

In order to introduce the Jahn-Teller effect we have to take a step back and start from the
central equation of solid-state physics, the eigenvalue problem ĤΨ = EΨ , defined (in the
non-relativistic limit) by the many-body Hamiltonian

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

T̂e

+
1

2

∑
i6=i′

1

|ri − ri′|︸ ︷︷ ︸
V̂ee

−
∑
iα

Zα
|ri −Rα|︸ ︷︷ ︸
V̂en

−
∑
α

1

2Mα

∇2
α︸ ︷︷ ︸

T̂n

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′|︸ ︷︷ ︸
V̂nn

.

Here {ri} are the coordinates of the Ne electrons, {Rα} those of the Nn nuclei, Zα the atomic
numbers, and Mα the nuclear masses. The Born-Oppenheimer Ansatz

Ψ({ri}, {Rα}) = ψ
(
{ri}; {Rα}

)
Φ
(
{Rα}

)
, (14)

splits the Schrödinger equation ĤΨ = EΨ into the system{
Ĥeψ

(
{ri}; {Rα}

)
= ε({Rα})ψ

(
{ri}; {Rα}

)
,

ĤnΦ
(
{Rα}

)
= EΦ

(
{Rα}

)
,

(15)

where the Hamilton operators for the electrons (Ĥe) and that for the lattice (Ĥn) are

Ĥe = T̂e + V̂ee + V̂en + V̂nn, (16)

Ĥn = T̂n + ε
(
{Rα}

)
= T̂n + Ûn, (17)

and where in (17) we neglect non-adiabatic corrections.7 In the electronic Hamiltonian (16)
the atomic positions {Rα} are simple parameters. The electronic eigenvalue ε

(
{Rα}

)
acts

as potential for the nuclei and defines a Born-Oppenheimer (BO) energy surface. While (16)
describes the electronic structure, (17) yields the equilibrium crystal structure and the vibra-
tional modes. These equations are impossible to solve in the general case. The first difficulty is
that Hamiltonian (16) describes the electronic quantum many-body problem. The latter can
be solved only approximately, for example the energy of the ground state can be obtained
via density-functional theory using one of the known approximations to the universal func-
tional. For strongly-correlated systems, advanced methods combine density-functional theory
with many-body approaches such as the dynamical mean-field theory [7, 8]. The second issue
is the very high number of atoms, and therefore of {Rα} parameters to explore; finally, even
if we solve the electronic many-body problem exactly, we still have to deal with the nuclear
many-body problem, Hamiltonian (17). Despite all these obstacles, let us assume for a moment
that, for a given system, we did solve the electronic problem for general values of {Rα}. Let us
also assume that the set of positions {Rα} = {R0

α} defines a specific crystal structure, whose
electronic ground state (i.e., the lower energy BO surface) has degeneracy d > 1. We can at this
point ask ourself the question: Is structure {R0

α} actually stable?

7We neglect the operator Λ̂n, with elements 〈m|Λ̂n|m′〉 = −
∑
α

1
Mα

[
1
2 〈ψm|∇

2
αψm′〉+ 〈ψm|∇αψm′〉 · ∇α

]
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The Jahn-Teller theorem states that any electronically degenerate system can lower its energy
by undergoing some structural distortions, and therefore is unstable.8 This is due to the cou-
pling between electrons and lattice. In order to better understand the microscopic origin of this
phenomenon, let us consider a system in a high-symmetry structure,

{
R0
α

}
, for which the elec-

tronic ground state has energy ε
(
{R0

α}
)

with degeneracy d > 1. This means that there are d
Born-Oppenheimer surfaces degenerate for

{
Rα

}
=
{
R0
α

}
,

εm
(
{R0

α}
)

= ε
(
{R0

α}
)
.

In the rest of the chapter we will take ε
(
{R0

α}
)

as the energy zero. The corresponding degener-
ate electronic wavefunctions are ψm

(
{ri}; {R0

α}
)
. Let us expand the nuclear potential Ûn for

one of these surfaces around the symmetric structure {R0
α}. This leads to the Taylor series

Ĥn = T̂n +
∑
αµ

[
∂Ûn
∂uαµ

]
{R0

α}

uαµ +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµ uα′µ′ + . . . ,

where uα = Rα −R0
α are displacement vectors with respect to the equilibrium position, and

µ = x, y, z. If {R0
α} is an equilibrium structure, the gradient is zero and

Ĥn ∼ T̂n +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµuα′µ′ + . . . = T̂n + ÛPH
n ({R0

α}) + . . . , (18)

The standard procedure to diagonalize (18) consists of two steps. First we change coordinates

ũαµ = uαµ
√
Mα.

Second we introduce the dynamical matrix

Dαµ,αµ′ =
1√
Mα

1√
Mα′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

,

and diagonalize it. Its Nm eigenvectors are the normal modesQη,

DQη = ω2
ηQη,

Qην =
Nn∑
α=1

∑
µ=x,y,z

aην,αµuαµ,

with η = 1, . . . Nm, and ν = x, y, z. The normal coordinates {Qnν}, together with the associ-
ated canonically-conjugated momenta {Pnν}, bring (18) in the form

Ĥn ∼
1

2

∑
ην

(
P 2
ην + ω2

ηQ
2
ην

)
. (19)

8The only exceptions are linear molecules and Kramers degeneracy.
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In a crystal, this Hamiltonian yields the phononic energy levels. Let us now determine the
possibleNm normal modes for a cubic perovskite. For simplicity we consider here only a single
octahedron and the modes associated with the vibrations of its atoms. Given that each atom can
move in three directions, and there are 6 atoms of type C and 1 atom of type B, in principle such
a system has 21 degrees of freedom; eliminating global translations (3 degrees of freedom) and
global rotations (3 degrees of freedom), i.e., displacements which are not vibrations, 15 degrees
of freedom are left, hence the system has 15 possible normal modes. In group theory language,
assuming again for simplicity that the group is O instead of Oh, one can show that these modes
can be labeled as belonging to irreducible representations A1, E, T1 or T2. To obtain this
result we first build a matrix representation of the group in the linear space of all possible
displacements; this space is 21-dimensional, and so is the associated matrix representation Γtot.
The latter can be expressed as the direct product Γtot = Γa.s. ⊗ Γvector, where Γa.s. is the so-
called atomic-site representation. Γa.s. has as a basis the original atomic positions (without
displacements); in our case it is has therefore dimensionality 7. The character of Γa.s. for a
given operation is simply the number of sites left invariant by that operation. Finally, in group
O the irreducible representation for a vector is Γvector = T1; this can be seen from the partner
functions (x, y, z) in Table 4. Summarizing all this in a character table, we have

O E 8C3 3C2 6C2 6C4

Γ a.s. 7 1 3 1 3

Γ tot = Γ a.s. ⊗ Γvector 21 0 −3 −1 3

Once we know the characters for representation Γtot, we can split the latter into irreducible
representations of group O via the decomposition formula Eq. (5). After subtracting (ten-
sor subtraction 	) the representations for mere translations (T1) and mere rotations (T1) of
the octahedron,9 we arrive at the final decomposition of the vibrational-modes representation
Γvibrations = Γtot	Γvector	Γrotation = A1 ⊕ E ⊕ 2T1 ⊕ 2T2. Normal modes which are a basis for
different irreducible representations have in general different energies. Let us focus on modes
A1 and E. We can obtain mode A1 by using the projector, Eq. (6), for irreducible representation
A1. As a matter of fact, if we assume that atom F1 (Fig. 9) is displaced by u1, by applying the
projector P̂A1 to u1 we generate automatically the linear combination of atomic displacements
(all having the same length) forming the mode of symmetry A1. This leads to

Q0 = u1(q0) + u2(q0) + u3(q0) + u4(q0) + u5(q0) + u6(q0).

9The representation for an improper vector (rotation) is Γrotation = T1, as can be seen from the corresponding
partner functions (Rx, Ry, Rz) in Table 4.
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Fig. 9: Unit cell (top) and vibrational modes Q0, Q1, and Q2 of cubic KCuF3.

Here ui are the (normalized) displacements for the Ci atom (see Fig. 9) which we rewrite as

u1(q0) = 1√
6
q0(1, 0, 0)

u2(q0) = 1√
6
q0(0, 1, 0)

u3(q0) = 1√
6
q0(0, 0, 1)

u4(q0) = − 1√
6
q0(1, 0, 0)

u5(q0) = − 1√
6
q0(0, 1, 0)

u6(q0) = − 1√
6
q0(0, 0, 1)

The potential energy of such a breathing mode is

UPH
n =

1

2
CA1q

2
0 .

The Q0 mode expands or compresses the unit cell, but does not change its symmetry which
remains cubic. Hence, this mode has no influence on the stability of the structure, at most it can
affect the actual value of the lattice constant. More interesting are the two degenerate modes
of type E. These modes can be obtained in a similar way as we have done for Q0, this time
using the projector for irreducible representation E; within the resulting 2-dimensional space,
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we choose as basis the mutually orthogonal modes that transform as the l = 2 partner functions
of E, x2−y2 and 3z2−r2. These areQ1 andQ2, shown in Fig. 9. They are defined as

Q1 = u1(q1) + u2(q1) + u4(q1) + u5(q1),

Q2 = u1(q2) + u2(q2) + u3(q2) + u4(q2) + u5(q2) + u6(q2),

where the displacements are

u1(q1) = 1√
4
q1(1, 0, 0) u1(q2) =− 1√

12
q2(1, 0, 0)

u2(q1) = − 1√
4
q1(0, 1, 0) u2(q2) =− 1√

12
q2(0, 1, 0)

u3(q1) = (0, 0, 0) u3(q2) = 2√
12
q2(0, 0, 1)

u4(q1) = − 1√
4
q1(1, 0, 0) u4(q2) = 1√

12
q2(1, 0, 0)

u5(q1) = 1√
4
q1(0, 1, 0) u5(q2) = 1√

12
q2(0, 1, 0)

u6(q1) = (0, 0, 0) u6(q2) =− 2√
12
q2(0, 0, 1)

The corresponding quadratic potential has the form

ÛPH
n =

1

2
CE
(
q21 + q22

)
.

The normal modes T1 and T2 can be obtained in a similar way; since they are not relevant for
structure stability in the example considered here we do not provide their form explicitly.
Up to now we have assumed that the hypothetical high-symmetry structure {R0

α} is a stationary
point. In general, however, this might or might not be true. The behavior of the BO energy
surfaces close to the point in which they are degenerate allows us to separate them into two
classes, the first one in which

{
R0
α

}
is a stationary point for all degenerate electronic states m

(Renner-Teller intersection), and the second in which the surface is not a stationary point at
least for some of the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are
those for which ∇Ûn

(
{R0

α}
)
6= 0 at least in some direction (see, e.g., Fig. 10). Let us now

calculate the first-order correction to the m degenerate eigenvalues due to a small distortion
around {R0

α}. The electronic Hamiltonian (16) has matrix elements

〈
ψm
∣∣Ĥe({Rα})

∣∣ψm′
〉

=
∑
αµ

〈ψm|

[
∂Ĥe

∂uαµ

]
{R0

α}

|ψm′〉uαµ︸ ︷︷ ︸
Û JT
m,m′

+ . . . = Û JT
m,m′ + . . . .

The perturbation Û JT, the Jahn-Teller potential, couples the degenerate BO energy surfaces; it
also couples electrons and lattice vibrations, as we can see from the coordinates uαµ appear-
ing in the expression above. Thus, if there are modes for which Û JT 6= C Î where Î is the
identity matrix and C a constant, the system gains energy at linear order via a distortion which
lowers the symmetry; the Jahn-Teller theorem states that such modes always exist for electron-
ically degenerate systems (with the exceptions of Kramers degeneracy and linear molecules).
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q
1

E

q
2

Fig. 10: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The
slope of the curve at small distortions q1, q2 yields the Jahn-Teller coupling constant λ.

In order to better understand the effect of the electron-lattice coupling, we generalize the Born-
Oppenheimer Ansatz as follows

Ψ
(
{ri}, {Rα}

)
=
∑
m

ψm
(
{ri}; {Rα}

)
Φm
(
{Rα}

)
.

To find the equations for the functions {Φm}, we write the Schrödinger equation HΨ = EΨ ,
multiply on the left by ψm, and integrate over the coordinates of the electrons. We obtain

ĤnΦm
(
{Rα}

)
=
[
T̂n + ÛPH

n

]
Φm
(
{Rα}

)
+
∑
m′

Û JT
m,m′Φm′

(
{Rα}

)
= EΦm

(
{Rα}

)
. (20)

The dynamics of the system close to the degeneracy point is determined by all degenerate
sheets. The minimization of the new potential energy yields a new structure {R̃0

α} in which the
electronic states are not any more degenerate. The modes that can produce such an instability
should satisfy the condition

A1 ∈
{

[Γm ⊗ Γm]⊗ (Γvibrations 6= A1)
}
,

where Γm is the irreducible representation to which the electronic degenerate states belong,
and [Γm ⊗ Γm] is the symmetric direct product; for eg states, [eg ⊗ eg]=a1 ⊕ eg. The trivial
representation A1 has to be excluded from Γvibrations because, as already discussed, it does not
lower the symmetry. In the case cubic KCuF3, the relevant normal modes coupling to the
degenerate eg electronic states are thus the E modes; as for the electronic states, if the group
O → Oh, then E → Eg. Thus we can say that KCuF3 is an example of a eg ⊗ Eg Jahn-Teller
system, a system in which an electronic doublet (eg) is coupled to a doublet of normal modes
(Eg). The form of the Jahn-Teller potential Û JT can be obtained from the effect of perturbations
of typeQ1 andQ2 on the crystal-field matrix. As for the crystal field, there are both a ionic and
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a covalent contribution. For the ionic contribution, we can use once more perturbation theory.
In this case, we have to take into account that the Cu-F distance dC depends on the direction,
i.e,

dC → dC + δdµC ,

where µ = x, y, z; the specific δdµC values for each atom are given by the specific vibrational
mode. After summing up all contribution, the first non-cubic correction due to Eg modes is

∆vJT = λ

(
q2 q1
q1 −q2

)
.

It is, at this point, useful to introduce pseudo-spin operators acting on the eg states, i.e., operators
τ̂µ with µ = x, y, z and

τ̂z| ↘〉 = −| ↘〉, τ̂x| ↘〉 = +| ↗〉, τ̂y| ↘〉 = −i| ↗〉

τ̂z| ↗〉 = +| ↗〉, τ̂x| ↗〉 = +| ↘〉, τ̂y| ↗〉 = +i| ↘〉

where | ↗〉 = |x2−y2〉 and | ↘〉 = |3z2−r2〉. In matrix form these operators can be written as
pseudo-Pauli matrices

τ̂z =

(
1 0

0 −1

)
τ̂x =

(
0 1

1 0

)
τ̂y =

(
0 −i
i 0

)
. (21)

We can then rewrite the Jahn-Teller potential as

∆vJT = λ
(
q1τ̂x + q2τ̂z

)
,

where λ ∼ (qC/d
4
C) (36/7

√
3) > 0. This potential expresses both the essence of the Jahn-Teller

theorem and its relation with orbital order; the systems gains energy at linear order by making a
distortion; the latter produces a crystal-field splitting, which leads to preferential occupation of
the lower energy level. For example, if q1 = 0 and q2 < 0 (tetragonal compression) the 3z2−r2

state is higher in energy. Let us now calculate the covalent contribution to the Jahn-Teller
potential. In this case the linear-order correction is

∆εlm,l′m′(0,Rα+u)−∆εlm,l′m′(0,Rα) ∼ ∇∆εlm,l′m′(0,Rα) · u

For eg-states we use for simplicity the following approximations10

∆ε3z2−r2,3z2−r2 ∼
[
n2 − 1

2

(
l2+m2

)]2
Ṽddσ,

∆ε3z2−r2,x2−y2 ∼
√

3

2

(
l2−m2

) [
n2 − 1

2

(
l2+m2

)]
Ṽddσ,

∆εx2−y2,x2−y2 ∼ 3

4

(
l2−m2

)2
Ṽddσ.

10The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is
thus still valid, provided that Vll′α are replaced by the corresponding crystal-field terms, which we indicate as Ṽll′α.
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Fig. 11: Linear combinations of eg-states, |ϑ〉 = − sin ϑ
2
|x2−y2〉+ cos ϑ

2
|3z2−r2〉. The ϑ = 0◦

orbital is the excited state in the presence of a tetragonal compression along the z axis, while
ϑ = ±2π/3 are excited states for a tetragonal compression along x or y. This three-fold
degeneracy (rotation by ±2π/3) is due to cubic symmetry.

By summing up the contributions from all C ions for each mode, we obtain

∆εJT(q1, q2) = λ

(
q2 q1
q1 −q2

)
= λ

(
q1τ̂x + q2τ̂z

)
,

where λ ∼ −
√
3
2
Ṽ ′ddσ > 0. This is the same form of potential that we have obtained for the ionic

contribution. Again, if q1 = 0 and q2 < 0 (tetragonal compression) 3z2−r2 is higher in energy.
In conclusion, if we neglect the kinetic energy of the nuclei (limit Mα/me → ∞), the ground
state of the system can be calculated by minimizing a potential energy of the form

Û(q1, q2) = Û JT + ÛPH
n = λ

(
q2 q1
q1 −q2

)
+

1

2
CE
(
q21 + q22

)
Î , (22)

where Î is the 2×2 identity matrix. To find the minimum of (22), it is convenient to introduce
polar coordinates, which we define as q2 = −q cosϑ, q1 = −q sinϑ, so that for 0 < ϑ < π/2

we have q1 ≤ 0 (compression of x̂ axis) and q2 ≤ 0 (compression of ẑ axis); this corresponds
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to the distortion of the octahedron labeled with number 1 in Fig. 1. In these coordinates

Û JT = −λq

(
cosϑ sinϑ

sinϑ − cosϑ

)
.

The diagonalization of matrix (22) yields two eigenvalues; the lower energy branch

E−(q) = −λq +
CE
2
q2

takes the form of a mexican hat, shown in Fig. 10. The minimum of E−(q) is obtained for
q = q0 = λ/C and has value

EJT = −λ2/2CE;

the quantity EJT is defined as the Jahn-Teller energy of the system. The electronic ground state
can be written as

|ϑ〉G = − sin
ϑ−π

2
|x2−y2〉+ cos

ϑ−π
2
|3z2−r2〉.

The excited state (hole orbital), with energy

E+(q) = λq +
CE
2
q2,

is then given by

|ϑ〉E = − sin
ϑ

2
|x2−y2〉+ cos

ϑ

2
|3z2−r2〉.

The states |ϑ〉E with different ϑ are shown in Fig. 11. In the simple model discussed so far, all
states |ϑ〉G have the same Jahn-Teller energy. Cubic symmetry, however, only requires states

|ϑ〉, |ϑ+2π/3〉, |ϑ−2π/3〉

to be degenerate. The additional (accidental) degeneracy is removed when we take into account
anharmonic terms, the lowest order of which has the form

U anh(q1, q2) = A
(
q32 − 3q2q

2
1

)
= Aq3

(
cos3 ϑ− 3 cosϑ sin2 ϑ

)
= −Aq3 cos 3ϑ

and yields the tetragonal distortion as a ground state, with ϑ = 0, ±2π/3 for positive A and
with ϑ = π, π±2π/3 for negativeA. Higher-order terms can make theQ1 Jahn-Teller distortion
(ϑ = π/2, π/2± 2π/3) more stable [1]. For a periodic lattice, modeQ1 leads to a co-operative
distortion where long and short bonds alternate in the x and y direction; in such a case, the hole
orbital rotates by π/2 if we move from a Cu site to its Cu first-nearest neighbors in the ab plane.
Let us now analyze the different electronic configurations that can occur in perovskites. For
the electronic configuration 3d1=3t12g, the procedure is as the one illustrated above, except that
t2g states are 3-fold degenerate and form π bonds, which are weaker, therefore the splitting
introduced by the Jahn-Teller effect is smaller than for eg states. In the case of electronic
configurations 3dn with n > 1, to determine if the ion is Jahn-Teller active, one has to consider
the degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states
are 3d1 (Ti3+ in LaTiO3) and 3d2 (V3+ in LaVO3), as also 3t42g, 3t52g, 3t42ge

2
g, 3t52ge

2
g; strong

Jahn-Teller configurations are, e.g., 3d9 (Cu2+ in KCuF3) and 3t32ge
1
g (Mn3+ in LaMnO3); the

configurations 3t32g and 3t32ge
2
g are not degenerate and therefore usually not Jahn-Teller active.
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5 Kugel-Khomskii superexchange

Let us now start from a totally different perspective, from the Hubbard model for a cubic per-
ovskite with partially filled eg or t2g shell. The Hamiltonian takes the form Ĥ = Ĥ0 + ĤT + ĤU

where

Ĥ0 = εd
∑
i

∑
σ

∑
m

n̂imσ

ĤT = −
∑
i6=i′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ

ĤU = U
∑
i

∑
m

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m6=m′

(
U−2J−Jδσ,σ′

)
n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
,

and where m labels either the eg or the t2g orbitals. Kugel and Khomskii have shown that,
in the large t/U limit, this Hamiltonian can be mapped onto an effective generalized superex-
change Hamiltonian with an orbitally-ordered ground state. The actual general super-exchange
Hamiltonian can be found in Ref. [14], for all possible eng and tn2g configurations.
Here, to understand the origin of the orbital super-exchange interaction, let us simplify the
problem and consider first a system with only two atoms (i = A,B) and two orbitals (εd = εeg ),
and for which the hopping matrix is diagonal in the orbitals

ĤT = −t
∑
σ

∑
m

(
c†AmcBm + c†BmcAm

)
.

Furthermore, let us simplify the Coulomb interaction and neglect the spin-flip and pair-hopping
terms, so that

ĤU −→ Ĥ ′U = U
∑
i=AB

∑
m

n̂im↑n̂im↓ +
1

2

∑
i=AB

∑
σσ′

∑
m6=m′

(
U−2J−Jδσ,σ′

)
n̂imσn̂im′σ′ .

Finally, we assume that the systems has one electron per atom (quarter filling, e1g configuration).
In the t = 0 or atomic limit there are two types of possible states for this system, those in
which each atom is occupied by one electron, |1, 1〉α, and those in which one atom has two
electrons and the other zero, |2, 0〉α′ . The 16 states of type |1, 1〉α, all degenerate with energy
Eα(1, 1) = 2εeg , can be written as c†AmAσAc

†
BmBσB

|0〉 with α = (mAσA,mBσB); here miσi are
the quantum numbers for the electron at site i = A,B. There are 12 states |2, 0〉α with one atom
occupied by two electrons; they are listed below together with their energies

|2, 0〉α′ Eα′(2, 0)

|2, 0〉i1m = c†im↑c
†
im ↓|0〉 2εeg + U

|2, 0〉i2m = c†im↑c
†
im′↓|0〉 2εeg + U − 2J m′ 6= m

|2, 0〉i3σ = c†imσc
†
im′σ|0〉 2εeg + U − 3J m′ 6= m
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∆E=0

∆E=-2t2/(U-3J)AFO

 FO

∆E=-2t2/(U-2J)AFO

 FO ∆E=-2t2/U

U-3J

U-2J

U

FM

FM

AFM

AFM

Fig. 12: Superexchange energy gain for possible quarter-filling ground states of a two-site
2-fold degenerate Hubbard model with orbital- and spin-diagonal hopping matrices.

The Coulomb repulsion U is positive and J is small with respect to U ; therefore the |1, 1〉α
states define the ground-state manifold. If t is finite but small (t/U � 1), we can treat ĤT as
a perturbation, and calculate the second-order correction to the energy of states |1, 1〉α. This
correction is always negative (energy gain) and it is given by the matrix

∆Eα1,α2(1, 1) = −
∑
α′

α1〈1, 1|ĤT |2, 0〉α′
1

Eα′(2, 0)− Eα(1, 1)
α′〈2, 0|ĤT |1, 1〉α2

There are four interesting cases, depicted in Fig. 12. The first is the ferro-magnetic (same spin)
and antiferro-orbital (different orbitals) state, first line of the figure. The corresponding second
order energy gain (α1 = α2 = mσ,m′σ) is

∆Eα1,α1(1, 1) = − 2t2

U − 3J
.

For the ferro-magnetic (same spin) and ferro-orbital (same orbital) state (second line in the
figure, α1 = α2 = mσ,mσ) the energy gain is, instead, zero

∆Eα1,α1(1, 1) = 0.

The reason is that no hopping is possible due to the Pauli principle. For the antiferro-magnetic
antiferro-orbital state (third line, α1 = α2 = mσ,m′ − σ), we have

∆Eα1,α1(1, 1) = − 2t2

U − 2J
,
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and finally for the antiferro-magnetic ferro-orbital state (α1 = α2 = mσ,m− σ) we find

∆Eα1,α1(1, 1) = −2t2

U
.

Among these four states, the ferro-magnetic antiferro-orbital state is thus the lowest in energy.
The main message is that the system gains superexchange energy by occupying preferentially
different orbitals with the same spin, although the orbitals are by themselves degenerate. The
16×16 matrix of the second-order energy corrections ∆Eα1,α2(1, 1) can be rewritten as the
effective superexchange Hamiltonian

ĤSE =2Γ−+

[
SA·SB − 1

4

] [
OA
z O

B
z +

1

4

]
+ 2Γ+−

[
1

4
+ SAz S

B
z

] [
OA·OB − 1

4

]
+2Γ−−

[(
SA·SB − SAz SBz

)(
OA·OB −OA

z O
B
z

)
−
(
SAz S

B
z −

1

4

)(
OA
z O

B
z −

1

4

)]
where Oi = τi/2 are operators acting only on orbital degrees of freedom, τ are the pseudo-spin
operators introduced in the previous section, Eq. (21), and

Γ−+ =
4t2

U
Γ+− =

4t2

U − 3J
Γ−− = − 4t2

U − 2J
.

When the second-order Hamiltonian is written in this form it is immediately clear that, among
the four states we considered, the ferro-magnetic antiferro-orbital state is the lowest in energy.
This happens because the superexchange coupling Γ+− is the largest. If the orbital degeneracy
is one, we can replace the terms OA · OB and OA

z OB
z with the ferro-orbital value 1/4; then,

the terms proportional to Γ+− and Γ−− drop out and we recover the Heisenberg superexchange
Hamiltonian, as expected for the one-band Hubbard model.
What about KCuF3 and LaMnO3? If we consider only hopping integrals between neighboring
B sites in the cubic perovskite structure, the hopping integral matrices take the simple form

ti,i±ẑmm′ = tε

(
0 0

0 1

)
ti,i±x̂mm′ =

tε
4

(
3
√

3
√

3 1

)
ti,i±ŷmm′ =

tε
4

(
3 −
√

3

−
√

3 1

)
. (23)

The structure of these matrices can be obtained by using Slater-Koster two-center integrals.
The only non-zero hopping integral in the ẑ direction is the one between |3z2−r2〉 states. As
we have previously seen by using the downfolding approach, it is given by tε = V 2

pdσ/(ε−εp).
As in the case of the two-site molecule, for integer filling (n electrons per atom) and in the
large tε/U limit the lattice Hubbard model can be mapped onto an effective superexchange
Hamiltonian by downfolding high-energy states in which some of the atoms have an electron
number larger than n. Only two electronic configurations are relevant for orbital ordering, e1g
(LaMnO3) and e3g (KCuF3). The remaining partially filled state, e2g, is magnetic with S = 1 but,
due to Hund’s rule coupling J , it exhibits no orbital degeneracy (L = 0). After excluding e2g we
can, for simplicity, set J = 0. Let us now construct all atomic states |Ne〉α with Ne electrons.
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For a single atom they are

|Ne〉α Eα′(Ne) d(Ne)

|0〉 E(0) = 0 d(0) = 1

|1〉 = c†mσ|0〉 E(1) = εeg d(0) = 4

|2〉 = c†mσc
†
m′σ′|0〉 E(2) = 2εeg + U d(0) = 6

|3〉 = c†mσc
†
m′↑c

†
m′↓|0〉 E(3) = 3εeg + 3U d(0) = 4

|4〉 = c†m↑c
†
m↓c

†
m′↑c

†
m′↓|0〉 E(4) = 4εeg + 6U d(0) = 1

The total (spin and orbital) degeneracy of the n-electron sector, d(Ne), is given in the third
column. Let us consider two neighboring sites i and i′ and their states |Ne〉iα and |N ′e〉i

′

α′ , where
α and α′ run over all degenerate states in the Ne-electron sector. We define the collective
state of such a two-site system as |Ne〉iα|N ′e〉i

′

α′ . Let us start from an e1g configuration. In the
large-U limit, at quarter filling (n=1) the ground state will be within the Ne=N

′
e=1 mani-

fold, |G〉=
{
|1〉iα|1〉i

′

α′

}
. The latter has a degeneracy 4N , where N is the number of sites, here

N=2; this degeneracy can be partially lifted via virtual excitations to the doubly occupied states
|E〉=

{
|2〉iα|0〉i

′}
,
{
|0〉i|2〉i′α′

}
, which in turn generate an effective low-energy Hamiltonian ĤSE.

We can again calculate ĤSE by treating ĤT as a perturbation.
Let us consider at first only pairs of sites along the ẑ axis. In second-order perturbation theory
in ĤT , we obtain for the lattice the following effective Hamiltonian

Ĥ ẑ
SE ∼ −

1

U

∑
E

ĤT |E〉〈E|Ĥ†T

= − t
2

U

1

2

∑
ii′

∑
σσ′

∑
α

{
c†iτσ|0〉i i〈0|ciτσ′

(
ci′τσ|2〉i

′

α
i′

α〈2|c
†
i′τσ′

)
+ (i←→ i′)

}
δτ,↘

= −2t2

U

1

2

∑
ii′

∑
σσ′

{
(−1)−σ

′−σP i
τσ−σ′P i′

τσ′−σ +
1

2

(
P i
τσσP

i′

−τσ′σ′ + P i
−τσσP

i′

τσ′σ′

)}
δτ,↘,

where we already replaced in the denominator ∆E = E(2) + E(0) − 2E(1) with its value, U,
and where, once more, | ↘ 〉 = |3z2−r2〉, | ↗ 〉 = |x2−y2〉. In Hamiltonian Ĥ ẑ

SE we introduced
the operators P i

τσσ′ , which are given by

P i
τσσ′ = c†iτσ|0〉〈0|ciτσ′ = ôzττ

(
ŝzσσ′ + ŝ+σσ′ + ŝ−σσ′

)
.

In this expression on the right-hand side we rewrote P i
τσσ′ as product of an orbital and a spin

term, defined as follows:

ôzττ ′ =
(ni

2
Î + (−1)τOi

z

)
δττ ′ ŝzσσ =

(ni
2
Î + (−1)σSiz

)
δσσ′

ô+ττ ′ =Oi
+(1− δττ ′) ŝ+σσ′ =Si+(1− δσσ′)

ô−ττ ′ =Oi
−(1− δττ ′) ŝ−σσ′ =Si−(1− δσσ′) ,



5.32 Eva Pavarini

where (−1)σ = +1 for spin (pseudospin) up and −1 otherwise; the operator Î is the identity
matrix. Hence, we can express the effective Hamiltonian as

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si·Si′ − nini′

4

] [
Oi
z −

ni
2

] [
Oi′

z −
ni′

2

]
+

1

2

[
Oi
zO

i′

z −
nini′

4

]
,

where Γ = 4t2/U > 0. If we drop all processes involving orbital | ↗〉 we recover the usual
superexchange Heisenberg Hamiltonian for the one-band Hubbard model

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si·Si′ − nini′

4

]
.

Let us now consider two neighboring sites and the energy of some possible states |G〉 ={
|1〉iα|1〉i

′

α′

}
. A ferro-magnetic spin configuration has energy

∆Eτ↑,τ ′↑ = −Γ
4

(
1− δτ,τ ′

)
,

hence, there is an energy gain if the electrons occupy different orbitals, i.e., if the systems has
antiferro-orbital arrangement. Let us consider now a antiferro-magnetic spin arrangement. The
corresponding energy is

∆Eτ↑,τ ′↓ = −Γ
2
δτ,τ ′δτ,↘ −

Γ

4
(1− δτ,τ ′).

The expression above shows that in the antiferro-magnetic case the system gains more energy if
the occupied state is | ↘〉 at both sites. Up to now we considered magnetically ordered states.
In LaMnO3 and KCuF3, however, orbital order takes place well above the magnetic transition.
Let us then assume that the system is orbitally ordered but paramagnetic, with occupied state

|ϑ〉i =− sin
ϑ−π

2
|x2−y2〉+ cos

ϑ−π
2
|3z2−r2〉

at site i and |ϑ〉i±ẑ = |ϑ〉i at the neighboring site i′ = i ± ẑ. This choice corresponds to
ferro-orbital order along ẑ, the type of stacking realized in LaMnO3 (see Fig. 13). What is the
value of ϑ than minimizes the energy? We can calculate it using the variational method. The
superexchange energy gain with respect to a paramagnetic paraorbital state is given by

∆E(ϑ) =
Γ

16

(
cos2(ϑ−π) + 2 cos(ϑ−π)

)
.

This function is minimized for ϑ = 0, an angle corresponding to a tetragonal compression. To
determine the optimal angle for the three-dimensional system we have in addition to take into
account the effective Hamiltonian stemming from virtual hoppings in the remaining directions.
Due to cubic symmetry, if we rotate the quantization axis, the superexchange Hamiltonian has
the same form in all cubic directions; to sum up all terms we have merely to rotate back the
quantization axis to ẑ. Hence, we have to make the replacements

Oi
z →︸︷︷︸
ẑ→x̂

− 1

2
Oi
z −
√

3

2
Oi
x

Oi
z →︸︷︷︸
ẑ→ŷ

− 1

2
Oi
z +

√
3

2
Oi
x
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x y

z

Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with
the GdFeO3-type structure. From Ref. [6]. This system has the same structure of LaMnO3.

Let us assume antiferro-orbital order in the plane, again as in the case of LaMnO3, shown in
Fig. 13. This means that, for i′ = i± x̂ or i′ = i± ŷ, the occupied state is

|ϑ〉i′ = + sin
ϑ−π

2
|x2−y2〉+ cos

ϑ−π
2
|3z2−r2〉.

We can easily verify that |ϑ〉i′=|−ϑ+ 2π〉i. This is state |ϑ〉i rotated by π/2 (x→ y, y → −x).
The total superexchange energy gain with respect to a paramagnetic paraorbital state is then
given by11

∆E(ϑ) =
Γ

16

(
3 cos2(ϑ−π)−3

2

)
.

This expression has a minimum for ϑ = π/2 (Jahn-Teller-likeQ1 distortion). For the e3g config-
uration (KCuF3), due to particle-hole symmetry, we obtain the same result. This can be verified
by observing, first of all, that the eg bands obtained from the hopping-integrals matrices (23), the
bands which we have discussed in detail in Sec. 3, are symmetric with respect to the Fermi level
for half filling. In addition, the energy difference entering in the denominator of the superex-
change Hamiltonian for an e3g ground state, ∆E = E(4) + E(2) − 2E(3), has the same value
(∆E = U ) as in the case of an e1g ground state. The main difference between LaMnO3 (e1g) and
KCuF3 (e3g), for what concerns the results presented in this section, is that the stacking along ẑ,
ferro-orbital for LaMnO3, can be either antiferro- or ferro-orbital for KCuF3; Fig. 1 shows the
case of antiferro-orbital arrangement. Remarkably, the variational energy gain ∆E(ϑ) is the
same for both types of stacking along ẑ, i.e., for |ϑ〉i±ẑ = |ϑ〉i and for |ϑ〉i±ẑ = |−ϑ+2π〉i. The
conclusions of this section are thus identical for LaMnO3 and KCuF3.

11For the application of this approach to the general super-exchange Hamiltonian see Ref. [14].
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Fig. 14: Orbital order transition in KCuF3. Orbital polarization p as a function of temperature
calculated in LDA+DMFT. R: experimental structure. Circles: idealized structures Rδ and Iδ
with decreasing crystal-field and U=7 eV. Green/Triangles: U= 9 eV, I0 only. Red/Squares:
two-sites CDMFT. From Ref. [3].

6 The origin of orbital ordering in materials

As we discussed in the introduction, the hallmark of orbital order is the co-operative Jahn-Teller
distortion. This static distortion gives rise to a crystal field, which splits the otherwise degen-
erate eg doublet or t2g triplet. Due to Coulomb repulsion, it turns out that even a crystal-field
splitting much smaller than the band width can lead to orbital ordering. The importance of this
effect for real materials has been realized first for LaTiO3 and YTiO3 [4]. This reduction of
orbital fluctuation is dynamical, but it can be already understood from the static Hartree-Fock
contribution to the self-energy; the latter yields an effective enhancement of the crystal-field
proportional to orbital polarization p. For an eg system p is defined as the difference in occupa-
tion between the most and the least occupied orbital, |1〉 and |2〉, the so-called natural orbitals.
Thus p=n1−n2, and the Hartree-Fock self-energy correction to the crystal-field splitting is

∆εCF = Σ2(ωn→∞)−Σ1(ωn→∞) ∼ 1

2

(
U−5J

)
p .

If p > 0, as it happens in the presence of a crystal-field εCF=ε2−ε1>0, this term effectively
increases the crystal-field splitting. This effect is at work not only in LaTiO3 and YTiO3, but
also in several other systems with different electronic structure and even smaller crystal-field
splittings. The case of 3d 9 KCuF3 and 3d4 LaMnO3 is extreme: the eg crystal-field splitting is
∼ 0.5−1 eV; with such a large splitting, orbital fluctuations are suppressed up to the melting
temperature. Thus, Coulomb repulsion makes the Jahn-Teller mechanism discussed in the arti-
cle of Kanamori very efficient. This result, however, does not clarify which of the two mech-
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Fig. 15: Orbital-ordering transition in LaMnO3. Orbital polarization p (left) and (right) occu-
pied state |ϑ〉= cos ϑ

2
|3z2−r2〉+ sin ϑ

2
|x2−y2〉 as a function of temperature. Solid lines: 300 K

experimental structure (R11) and 800 K experimental structure. Dots: orthorhombic struc-
tures with half (R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty) site
CDMFT. Dashes: ideal cubic structure (I0). Circles: U = 5 eV. Diamonds: U=5.5 eV. Tri-
angles: U = 6 eV. Squares: U=7 eV. Crystal field splittings (meV): 840 (R11), 495 (R6), 168
(R800 K

2.4 ), and 0 (I0). From Ref. [6].

anisms, Kugel-Khomskii superexchange or conventional electron-phonon coupling, plays the
major role in causing orbital order and stabilizing the distortion. Remarkably, in fact, Coulomb
repulsion has also an important effect on structure stabilization. LDA+U total energy calcula-
tions have early on shown that the co-operative Jahn-Teller distortion is stabilized by U [15,16],
a result confirmed recently by LDA+DMFT [17]. This could be—and initially was—taken as
an indication that superexchange is the driving mechanism. If this is the case, it is, however,
hard to explain why the magnetic transition temperature (TN∼40 K for KCuF3 and TN∼140 K
for LaMnO3), also determined by superexchange, is relatively low while the co-operative Jahn-
Teller distortion persists up to the melting temperature. On the other hand, if Kugel-Khomskii
superexchange is not the driving mechanism, the associated energy gain should be small with
respect to the total energy gain due to the Jahn-Teller distortion.
To clarify the nature of the dominant mechanism, we disentangled electron-phonon and su-
perexchange effects. To this end we performed LDA+DMFT (single-site and cluster) calcula-
tions for a series of hypothetical structures, in which the distortions (and thus the crystal-field
splitting) are progressively reduced. In the case of KCuF3, these hypothetical structures are
shown in Fig. 1, and the corresponding eg bands are shown in Fig. 7. For each structure we
calculate the order parameter, the orbital polarization p. In Fig. 14 we show p as a function
of temperature. For the experimental structure (R in the figure), we find that p∼1 up to the
melting temperature. The empty orbitals on different sites make the pattern shown in Fig. 1.
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Fig. 16: Superexchange energy gain for LaMnO3, ∆E ∼ −TKK/2. From Ref. [6].

For the ideal cubic structure I0, we find that p=0 at high temperature, but a transition occurs at
TKK ∼ 350 K. This TKK is the critical temperature in the absence of electron-phonon coupling,
i.e., the superexchange critical temperature. Our results show that around 350 K superexchange
alone could indeed drive the co-operative Jahn-Teller distortion; it cannot, however, explain the
presence of a co-operative Jahn-Teller distortion above 350 K. We performed a similar study
for LaMnO3. For this t32ge

1
g system we have to take into account the Hund’s rule coupling be-

tween eg electrons and t2g spins, St2g . Thus the minimal model to understand orbital order is
the modified Hubbard model [18]

H =−
∑
ii′

∑
σσ′

∑
mm′

ti,i
′

m,m′ u
i,i′

σ,σ′ c
†
imσci′m′σ′ − h

∑
im

(n̂im↑ − n̂im↓)

+U
∑
im

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m(6=m′)

(
U−2J−Jδσ,σ′

)
n̂imσn̂im′σ′ ,

−J
∑
i

∑
m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
.

Here the local magnetic field h=JSt2g describes the Hund’s rule coupling to t2g electrons, and
uiσ,i′σ′=2/3(1−δi,i′) accounts for the disorder in orientation of the t2g spins. By performing the
same type of analysis as for KCuF3, we find the impressively large TKK∼700 K (Fig. 15). There
is a small point neglected so far; besides the co-operative Jahn-Teller distortion and tetragonal
compression, LaMnO3 exhibits a GdFeO3-type distortion (Fig. 13), which tends to reduce the
eg band width [4]. To account for this we studied the orbital-order transition for the ideal struc-
ture R0, which retains all distortions except for the Jahn-Teller one. For structure R0 we cannot
obtain TKK from p(T ), because, due to the∼200 meV crystal-field splitting, Coulomb repulsion
strongly suppress orbital fluctuations even at 1500 K. We can, however, study the evolution with
temperature of the occupied orbital, here defined as |ϑ〉= cos ϑ

2
|3z2−r2〉 + sin ϑ

2
|x2−y2〉. For

the experimental structure (R11) we find ϑ ∼ 108◦, in agreement with experiments, while for
the I0 structure we obtain ϑ = 90◦. For the R0 structure we find two regimes: At high temper-
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Fig. 17: Orbital ordering in the t22g system LaVO3. Filled circles: ideal case without crystal-
field splitting. Empty circles: experimental structure. For each temperature, the associated hole
orbital is shown on the Bloch sphere. At high temperature it coincides with the predictions of
crystal-field theory (triangle). At the Kugel-Khomskii transition temperature, TKK, it starts to
move towards the ideal Kugel-Khomskii result (filled blue circle). From Ref. [12].

ature the occupied orbital is the lower-energy crystal-field orbital (ϑ=180◦). At TKK ∼ 550 K
superexchange rotates this ϑ towards 90◦, reaching 130◦ in the zero-temperature limit; this is
the actual superexchange transition temperature for LaMnO3. Such TKK is still remarkably
large, however not sufficient to explain the persistence of the Jahn-Teller distortion in nanoclus-
ters up to basically melting temperature [19]. Furthermore, the superexchange energy gain
associated with orbital order (Fig. 16) is small compared to the total energy gain due to the
Jahn-Teller distortion, calculated via LDA+U [15, 16] or LDA+DMFT [17]. Thus, as in the
case of KCuF3, the conclusion is that a static crystal-field splitting, as the one generated by
the electron-lattice coupling, is essential to explain orbital ordering at high temperature. We
obtained a similar conclusion for various families of compounds, including t2g systems, an in-
dication that pure Kugel-Khomskii materials are actually rare. The first clear-cut case in which
the super-exchange interaction controls orbital ordering, turning the hole orbital away from the
state expected from crystal-field theory, was recently identified in the t22g system LaVO3 [12].
This is shown in Fig. 17, where the changes in the hole orbital on lowering the temperature
can be followed on the Bloch sphere (empty circles). Decreasing the temperature the color of
the empty circles changes from red to blue, while the associated polarization increases towards
its maximum vale. One may see that at high temperature they overlap with the pink triangle,
representing the state expected from crystal-field theory. Decreasing the temperature they move
towards the filled blue circle, representing the Kugel-Khomskii ideal value.
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Let us now return to KCuF3, the case we have examined in greatest detail. The main conclusion
we had reached is that a static distortion is necessary to explain the presence of orbital ordering
at high temperature. Based on the discussion so far, one could at this point conclude that the
latter is determined by the Jahn-Teller effect. However, it turns out that the reality is even more
complex. Indeed, in a second-order transition one would expect that the order parameter goes to
zero at the transition temperature, TOO. In the case of electron-phonon-coupling driven orbital
ordering, the order parameter is the Jahn-Teller distortion. If TOO is not yet reached at the
melting temperature, the order parameter should at least decrease with temperature. In KCuF3,
however, it has been found that this simple picture fails to describe experiments. This is shown
in Fig. 18. Increasing the temperature the lattice constant increases by thermal expansion. At the
same time the (dimensionless) Jahn-Teller distortion parameter δ also increases. This surprising
behavior is due to the fact that the short Cu-F bond remains almost constant while the long Cu-
F bond becomes longer [11], instead of the two changing coherently together as expected via
the Jahn-Teller Q1 mode. Going to the microscopical origin of this behavior, it turns out that
the Jahn-Teller mode is so soft that the distortion is actually determined by the Born-Mayer
repulsion of the ions. Thus the distortion increases with the lattice constant, and, via thermal
expansion, the order parameter increases with temperature. This new ordering mechanism was
identified in Ref. [11] for the first time. It can operate even in closed-shell systems and would
result in an inverted Landau transition, with symmetry breaking above a critical temperature.
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7 Conclusion

In this lecture we have studied two mechanisms that can lead to orbital ordering phenomena
in Mott insulators. The first is well illustrated in the influential paper of Kanamori, Ref. [1].
In this picture, a co-operative Jahn-Teller distortion generates a static crystal-field, which in
turn splits orbitals otherwise degenerate. This mechanism is made more efficient by Coulomb
repulsion; the latter enhances the orbital polarization, leading to an orbitally-ordered state even
if the crystal-field splitting is a mere fraction of the bandwidth [4]. The second mechanism,
proposed by Kugel and Khomskii [2] in 1973, predicts orbital ordering even in the absence of
a static crystal field; in this picture, orbital ordering is due to the superexchange interaction, the
effective interaction emerging from the orbitally-degenerate Hubbard model in the largeU limit.
The general super-exchange Hamiltonians for eg and t2g systems can be found in Ref. [14],
where the interaction is decomposed in its irreducible tensor components. In paradigmatic
materials, both the Jahn-Teller and super-exchange coupling predict a similar type of order.
Thus identifying which interaction dominates is very difficult. For this reason, the riddle of the
origin of orbital ordering in materials can be viewed an example of a chicken-and-egg problem
– and has been accordingly a matter of debate for decades.
In the last section we saw how this problem was solved in representative cases. This was done
by disentangling the superexchange Kugel-Khomskii interaction from the rest. For the two
classical text-book examples of orbitally-ordered systems, KCuF3 and LaMnO3, it was shown
via this approach that, although Kugel-Khomskii superexchange is very efficient, it cannot alone
explain the presence of a co-operative Jahn-Teller distortion up to the melting temperature.
The conclusion is that an interaction giving directly rise to a static crystal-field splitting, e.g.,
electron-phonon coupling, is necessary to explain experimental findings [3, 6]. The same result
was obtained for many other materials, with either eg or t2g partially filled shells. This shows
that purely super-exchange driven ordering is rare in nature. A clear cut case of Kugel-Khomskii
material was nevertheless recently identified, LaVO3 [12]. Finally, to complicate the matter, for
KCuF3 it was shown that not even the Jahn-Teller effect alone does explain the evolution of
distortions with temperature. A new ordering mechanism in which the Born-Mayer repulsion
of the ions plays a key role had to be identified [11]. Only then it could be understood why the
order parameter experimentally increases (instead of decreasing) with temperature.
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Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m0 is the electron mass
(m0 = me), the unit of charge e0 is the electron charge (e0 = e), the unit of length a0 is the
Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time is t0 = 4πε0~a0/e2. In these units,
me, aB, e and 1/4πε0 have the numerical value 1, the speed of light is c = 1/α ∼ 137, and the
unit of energy is 1Ha = e2/4πε0a0 ∼ 27.211 eV.

B Atomic orbitals

B.1 Radial functions

The nlm hydrogen-like atomic orbital is given by

ψnlm(ρ, ϑ, ϕ) = Rnl(ρ)Y l
m(ϑ, ϕ),

where Rnl(ρ) is the radial function and Y l
m(ϑ, ϕ) a spherical harmonic, ρ = Zr and Z the

atomic number. In atomic units, the radial functions are

Rnl(ρ) =

√(
2Z

n

)3
(n−l−1)!

2n[(n+l)!]3
e−ρ/n

(
2ρ

n

)l
L2l+1
n−l−1

(
2ρ

n

)
,

where L2l+1
n−l−1 are generalized Laguerre polynomials of degree n−l−1.

The radial function for n = 1, 2, 3 are

R1s(ρ) = 2 Z3/2 e−ρ

R2s(ρ) = 1
2
√
2
Z3/2 (2− ρ) e−ρ/2

R2p(ρ) = 1
2
√
6
Z3/2 ρ e−ρ/2

R3s(ρ) = 2
3
√
3
Z3/2 (1− 2ρ/3 + 2ρ2/27) e−ρ/3

R3p(ρ) = 4
√
2

9
√
3
Z3/2 ρ(1− ρ/6) e−ρ/3

R3d(ρ) = 2
√
2

81
√
15
Z3/2 ρ2 e−ρ/3

where we used the standard notation s for l=0, p for l=1 and d for l=2. The spherical Harmon-
ics, using the Condon-Shortley convention, are given by

Y `
m(ϑ, ϕ) = (−1)m

√
(2`+1)

4π

(`−m)!

(`+m)!
P `
m(cosϑ) eimϕ (24)

where P `
m(cosϑ) in an associated Legendre polynomial.
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Fig. 19: The s (first row), py, pz, px (second row), and dxy, dyz, d3z2−r2 , dxz, dx2−y2 (last row)
real harmonics.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are
defined in terms of the spherical harmonics as follows:

yl0 = Y l
0 , ylm =

1√
2

(
Y l
−m + (−1)mY l

m

)
, yl−m =

i√
2

(
Y l
−m − (−1)mY l

m

)
, m > 0.

Using the definitions x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ, so that

cosϑ =
z

r
, e±iϕ sinϑ =

(x±iy)

r
, (25)

we can express the l = 0, 1, 2 real harmonics (Fig. 19) as

s = y00 = Y 0
0 =

√
1
4π

py = y1−1 = i√
2

(
Y 1
−1+Y

1
1

)
=
√

3
4π

y/r

pz = y10 = Y 0
2 =

√
3
4π

z/r

px = y11 = 1√
2

(
Y 1
−1−Y 1

1

)
=
√

3
4π

x/r

dxy = y2−2 = i√
2

(
Y 2
−2−Y 2

2

)
=
√

15
4π

xy/r2

dyz = y2−1 = i√
2

(
Y 2
−1+Y

2
1

)
=
√

15
4π

yz/r2

d3z2−r2 = y20 = Y 0
2 =

√
15
4π

1
2
√
3

(3z2−r2)/r2

dxz = y21 = 1√
2

(
Y 2
−1−Y 2

1

)
=
√

15
4π

xz/r2

dx2−y2 = y22 = 1√
2

(
Y 2
−2+Y

2
2

)
=
√

15
4π

1
2

(x2−y2)/r2
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l′m′ =

∫
dr ψlm(r−d)V (r−d)ψl′m′(r).

They can be expressed as a function of radial integrals Vll′α, which scale with the distance d
roughly as d−(l+l′+1) [24], and direction cosines, defined as

l=d · x̂/d, m=d · ŷ/d, n=d · ẑ/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [24] are listed below.

Es,s = Vssσ

Es,x = lVspσ

Ex,x = l2Vppσ +(1−l2)Vppπ
Ex,y = lmVppσ −lmVppπ
Ex,z = lnVppσ −lnVppπ
Es,xy =

√
3lmVsdσ

Es,x2−y2 = 1
2

√
3(l2−m2)Vsdσ

Es,3z2−r2 = [n2−1
2(l2+m2)]Vsdσ

Ex,xy =
√

3l2mVpdσ +m(1−2l2)Vpdπ

Ex,yz =
√

3lmnVpdσ −2lmnVpdπ

Ex,zx =
√

3l2nVpdσ +n(1−2l2)Vpdπ

Ex,x2−y2 =
√
3
2 l[(l

2−m2)]Vpdσ +l(1−l2+m2)Vpdπ

Ey,x2−y2 =
√
3
2 m[(l2−m2)]Vpdσ −m(1+l2−m2)Vpdπ

Ez,x2−y2 =
√
3
2 n[(l2−m2)]Vpdσ −n(l2−m2)Vpdπ

Ex,3z2−r2 = l[n2−1
2(l2+m2)]Vpdσ −

√
3ln2Vpdπ

Ey,3z2−r2 = m[n2−1
2(l2+m2)]Vpdσ −

√
3mn2Vpdπ

Ez,3z2−r2 = n[n2−1
2(l2+m2)]Vpdσ +

√
3n(l2+m2)Vpdπ

Exy,xy = 3l2m2Vddσ +(l2+m2−4l2m2)Vddπ +(n2+l2m2)Vddδ

Exy,yz = 3lm2nVddσ +ln(1−4m2)Vddπ +ln(m2−1)Vddδ

Exy,zx = 3l2mnVddσ +mn(1−4l2)Vddπ +mn(l2−1)Vddδ

Exy,x2−y2 = 3
2 lm(l2−m2)Vddσ 2lm(m2−l2)Vddπ 1

2 lm(l2−m2)Vddδ

Eyz,x2−y2 = 3
2mn(l2−m2)Vddσ −mn[1+2(l2−m2)]Vddπ +mn[1+1

2(l2−m2)]Vddδ

Ezx,x2−y2 = 3
2nl(l

2−m2)Vddσ +nl[1−2(l2−m2)]Vddπ −nl[1−1
2(l2−m2)]Vddδ

Exy,3z2−r2 =
√

3lm[n2−1
2(l2+m2)]Vddσ −2

√
3lmn2Vddπ

√
3
2 lm(1+n2)Vddδ

Eyz,3z2−r2 =
√

3mn[n2−1
2(l2+m2)]Vddσ +

√
3mn(l2+m2−n2)Vddπ −

√
3
2 mn(l2+m2)Vddδ

Ezx,3z2−r2 =
√

3ln[n2−1
2(l2+m2)]Vddσ +

√
3ln(l2+m2−n2)Vddπ −

√
3
2 ln(l2+m2)Vddδ

Ex2−y2,x2−y2 = 3
4(l2−m2)2Vddσ +[l2+m2−(l2−m2)2]Vddπ +[n2+1

4(l2−m2)2]Vddδ

Ex2−y2,3z2−r2 =
√
3
2 (l2−m2)[n2−1

2(l2+m2)]Vddσ +
√

3n2(m2−l2)Vddπ +
√
3
4 (1+n2)(l2−m2)Vddδ

E3z2−r2,3z2−r2= [n2−1
2(l2+m2)]2Vddσ +3n2(l2+m2)Vddπ

3
4(l2+m2)2Vddδ
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http://www.cond-mat.de/events/correl12

[14] X.-J. Zhang, E. Koch and E. Pavarini, Phys. Rev. B 105, 115104 (2022)

http://www.cond-mat.de/events/correl11
http://www.cond-mat.de/events/correl14
http://www.cond-mat.de/events/correl18
http://www.cond-mat.de/events/correl22
http://www.cond-mat.de/events/correl12


5.44 Eva Pavarini

[15] V.I. Anisimov, F. Aryasetiawan and A.I. Lichtenstein,
J. Phys. Condens. Matter 9, 767 (1997)

[16] W.G. Yin, D. Volja, and W. Ku, Phys. Rev. Lett. 96, 116405 (2006)

[17] I. Leonov, N. Binggeli, Dm. Korotin, V.I. Anisimov, and D. Vollhardt,
Phys. Rev. Lett. 101, 096405 (2008)
I. Leonov, Dm. Korotin, N. Binggeli, V.I. Anisimov, and D. Vollhardt,
Phys. Rev. B 81, 075109 (2010)

[18] K.H. Ahn, and A.J. Millis, Phys. Rev. B 61, 13545 (2000)

[19] M.C. Sánchez, G. Subı́as, J. Garcı́a, and J. Blasco, Phys. Rev. Lett. 90, 045503 (2003)

[20] L.G. Marshall, J. Zhou, J. Zhang, J. Han, S.C. Vogel, X.Yu, Y. Zhao, M. Fernández-Dı́az,
J. Cheng, and J.B. Goodenough, Phys. Rev. B 87, 014109 (2013)

[21] J.-S. Zhou, J.A. Alonso, J.T. Han, M.T. Fernández-Dı́az, J.-G. Cheng, and
J.B. Goodenough, J. Fluorine Chem. 132, 1117 (2011)

[22] V. Kaiser, M. Otto, F. Binder, and D. Babel, Z. Anorg. Allg. Chem. 585, 93 (1990)

[23] S.I. Troyanov, I.V. Morozov, and Y.M. Korenev,
Zhurnal Neorganicheskoi Khimii 38, 984 (1993) [Russian J. Inorg. Chem. 38, 909 (1993)]

[24] W.A. Harrison: Electronic Structure and The Properties of Solids (Dover, 1989)



6 Electron-Phonon Coupling

Rolf Heid
Institute for Quantum Materials and Technologies
Karlsruhe Institute of Technology

Contents

1 Introduction 2

2 Electron-phonon Hamiltonian 2
2.1 Electron-phonon vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Fröhlich Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Normal-state effects 5
3.1 Green functions and perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Electron self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Migdal’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Phonon self-energy and linewidth . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Phonon-mediated superconductivity 12
4.1 Effective electron-electron interaction . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Strong-coupling theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Density functional theory approach 21
5.1 Density functional perturbation theory . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Electron-phonon vertex from DFPT . . . . . . . . . . . . . . . . . . . . . . . 24

6 Summary 27

A Phonon quantization 28

E. Pavarini and E. Koch (eds.)
Correlations and Phase Transitions
Modeling and Simulation Vol. 14
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1 Introduction

The electron-phonon interaction is, besides the Coulomb interaction, one of the fundamental
interactions of quasiparticles in solids. It plays an important role for a variety of physical
phenomena. In particular, in metals, low-energy electronic excitations are strongly modified
by the coupling to lattice vibrations, which influences, e.g., transport and thermodynamical
properties. Electron-phonon coupling (EPC) also provides in a fundamental way an attractive
electron-electron interaction, which is always present and, in many metals, is the origin of
electron pairing underlying the macroscopic quantum phenomenon of superconductivity.
This lecture addresses the consequences of electron-phonon coupling in both the normal and
superconducting state of metals. In Section 2, the basic Hamiltonian describing the coupled
electron-phonon system is introduced. In Section 3, a closer look onto normal state effects
in a metal is taken, focusing on the renormalization of quasiparticles, which allows to exper-
imentally quantify the strength of the interaction. Section 4 is devoted to phonon-mediated
superconductivity. First a derivation of the effective attractive interaction among electrons me-
diated by phonon exchange is given. Then we analyze the role of electron-phonon coupling
for superconductivity in the context of the strong-coupling Migdal-Eliashberg theory in some
detail. In Section 5, we introduce an approach based on density-functional theory to calcu-
late electron-phonon coupling quantities and present two examples to illustrate its predictive
power. Throughout this Chapter, only nonmagnetic states are considered and atomic units
~ = 2me = e2/2 = 1 as well as kB = 1 are used.

2 Electron-phonon Hamiltonian

2.1 Electron-phonon vertex

The lowest-order process involving the electron-phonon interaction is the scattering of a single
electron by a simultaneous creation or annihilation of a single phonon, as diagrammatically
shown in Fig. 1. The probability for the scattering process is called the electron-phonon vertex g.
We will briefly sketch its derivation starting from rather general grounds. For more details one
can refer to the book of Grimvall [1].
Due to the large ratio of the ionic and electronic mass, the dynamics of the ions and the electrons
can be systematically expanded in terms of the small parameter κ = (m/M)1/4, which results
in a partial decoupling [2, 3]. To lowest order in κ, called the adiabatic or Born-Oppenheimer
approximation, the total wavefunction of the coupled electron-ion system can be written as a
product Ψ(r,R) = χ(R)ψ(r;R), where r and R denote the sets of electron and ion coordinates,
respectively. The electronic wavefunction obeys the equation(

Te + Vee +He-i(R)
)
ψn(r;R) = En(R)ψn(r;R) , (1)

where Te and Vee denote the kinetic energy and Coulomb interaction of the electron system,
respectively. Eq. (1) depends parametrically on the ionic positions R via the electron-ion inter-
action He-i.
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Fig. 1: Diagrammatic representation of the basic electron-phonon scattering process. Black
lines represent electrons, the blue zigzag line a phonon, and the red circle the screened vertex.

The electron-phonon vertex appears in first order beyond the adiabatic approximation. One can
show that it induces off-diagonal matrix elements among the electronic eigenstates ψn and has
the form

〈n| δRV |n′〉. (2)

The operator δRV stands for the linear change of the potential felt by the electrons under a
displacement of an atom from its rest position: R = R0+u. If the potential V is the bare
electron-ion potential V 0, then δRV = u ·∇V 0

∣∣
R0

. Eq. (2) represents the bare vertex. However,
in solids, and in particular in metals, the bare electron-ion potential is screened by the other
electrons. Screening also alters the vertex significantly. Within linear response theory this
operator takes the form

δRV = u · ε−1∇V 0
∣∣
R0
, (3)

where ε−1 is the inverse dielectric matrix [4], which is a measure of the screening. Note that in
Eq. (3), the screening operator does not commute with the gradient operation, and thus can not
be written in terms of the gradient of a screened potential.

2.2 Fröhlich Hamiltonian

We now aim to develop a systematic perturbative treatment of the mutual influence of the elec-
tronic and phononic subsystems in a solid. Thereby the question arises, what are the proper
noninteracting quasiparticles to start with. The correct answer requires to know the solution to
some extent. As we will see, electronic states are significantly influenced by lattice vibrations
mostly in close vicinity of the Fermi energy. It is therefore appropriate to start with electrons
moving in a static potential of a rigid ion lattice, without any renormalization by the lattice vi-
brations. In contrast, the bare vibrations of the ion lattice would be a bad starting point, because
they are strongly altered by the screening of the electrons. This screening must be built into the
description of the harmonic lattice vibrations which defines the noninteracting phonons.
For the discussion of electron-phonon coupling effects in periodic solids, a good starting point
is the Fröhlich Hamiltonian, which reads in second quantization

H = He +Hph +He-ph (4)

Here the electron system is described by noninteracting quasi-particles with dispersion εk.
These quasiparticles are considered to be the stationary solutions of band electrons in a per-
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fect periodic lattice, and include already the renormalization from Coulomb interaction

He =
∑
kνσ

εkν c
†
kνσckνσ . (5)

Here ckνσ
(
c†kνσ

)
are the annihilation (creation) operators for an electronic state with momen-

tum k, band index ν, spin σ, and band energy εkν .
The lattice Hamiltonian is expressed in terms of quantized harmonic vibrations, and represents
noninteracting phonons

Hph =
∑
qj

ωqj

(
b†qjbqj +

1

2

)
, (6)

where bqj
(
b†qj
)

are the annihilation (creation) operators for a phonon with momentum q, branch
index j, and energy ωqj . Phonons are the quanta of the normal mode vibrations (for more details
see Appendix A). The operator of atom displacements is expressed in terms of the phonon
operators by

ulsα =
1√
Nq

∑
qj

eiqR
0
lsAqj

sα

(
bqj + b†−qj

)
with Aqj

sα =
ηsα(qj)√
2Msωqj

. (7)

Atoms are characterized by two indices denoting the unit cell (l) and the atoms inside a unit
cell (s), respectively, with Ms the corresponding atom mass. α denotes Cartesian indices,
and ηsα(qj) is the eigenvector of the normal mode qj. The number of points in the summation
over q is Nq.
The third term describes the lowest-order coupling between electrons and phonons derived from
Eq. (3). Using the relationship Eq. (7) it has the form

He-ph =
∑
kνν′σ

∑
qj

gqjk+qν′,kν c
†
k+qν′σckνσ

(
bqj + b†−qj

)
. (8)

gqjk+qν′,kν is the electron-phonon matrix element and describes the probability amplitude for
scattering an electron with momentum k from band ν to a state with momentum k+q in band ν ′

under the simultaneous absorption (emission) of a phonon with momentum q (−q) and branch
index j

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+qν ′σ

∣∣ δqsαV ∣∣kνσ〉. (9)

Here again the screened first-order change of the potential enters the matrix elements. They are
independent of spin for nonmagnetic ground states.
This general form of the Fröhlich Hamiltonian will be the starting point for the many-body
perturbation outlined in the next sections. To simplify the treatment, we will use a compact
notation combining momentum and band/branch index into a single symbol: k = (kν), k′ =
(k′ν ′), and q = (qj). The EPC matrix elements are then denoted as

gqk′,k = gqjk′ν′,kν δk′,k+q , (10)

which implicitly takes into account momentum conservation.
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3 Normal-state effects

3.1 Green functions and perturbation

In this section we will discuss the effects of electron-phonon interaction in the normal state
of a metal. This will be done using many-body perturbation techniques [5–7]. The focus will
be on the renormalization of electronic and phononic quasiparticles, which provides ways to
experimentally gain information about the coupling strength. This will set the stage for the
discussion of phonon-mediated superconductivity in the next section.
The following treatment is based on the Fröhlich Hamiltonian Eq. (4), where H0 = He + Hph

denotes the Hamiltonian of the unperturbed quasiparticles, and He-ph is a perturbation linear in
the electron-phonon coupling. We will work with the imaginary-time Green functions

G(k, τ) = −
〈
Tτckσ(τ)c

†
kσ(0)

〉
(11)

for the fermionic quasiparticles, where the field operators are given in a Heisenberg picture
using an imaginary time −iτ , ckσ(τ) = eHτckσe

−Hτ with −β < τ < β, β = 1/T. The Wick
operator Tτ reorders operators to increasing τ from right to left.
For the bosonic quasiparticles, the Green function of the displacement operators is defined as

Usα,s′α′(q, τ) = −
〈
Tτuqsα(τ)u−qs′α′(0)

〉
=
∑
j

Aqj
sαA

−qj
s′α′D(qj, τ) , (12)

where D denotes the phonon Green function
(
q = (qj)

)
D(q, τ) = −

〈
Tτ
(
bq(τ) + b†−q(τ)

)(
b−q(0) + b†q(0)

)〉
(13)

G(k, τ) and D(q, τ) can be defined as periodic functions in τ with the symmetry properties
G(k, τ+β) = −G(k, τ) and D(k, τ+β) = D(k, τ), respectively. Their Fourier transforms are
given by

G(k, iωn) =
1

2

∫ β

−β
dτeiωnτG(k, τ) (14)

D(q, iνm) =
1

2

∫ β

−β
dτeiνmτD(q, τ) , (15)

where ωn = (2n+1)πT and νm = 2mπT, with integer values n, m, denote fermionic and
bosonic Matsubara frequencies, respectively.
Two further simplifications have been assumed: (i) because we are dealing with nonmagnetic
states only, the spin index in the electronic Green function can be suppressed; (ii) the perturba-
tion He-ph does not mix different electronic bands or phononic modes, such that the interacting
Green functions can still be represented by a single band/mode index.
The bare Green functions of the unperturbed Hamiltonian H0 = He +Hph are

G0(k, iωn) =
1

iωn − εk
(16)

D0(q, iνm) =
1

iνm − ωq
− 1

iνm + ωq
. (17)
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Fig. 2: Diagrammatic representation of the lowest-order contribution to the electron self-energy
from the electron-phonon coupling. Blue zigzag and black lines represent phonon and electron
propagators, respectively.

Electronic energies are measured with respect to the chemical potential. By applying many-
body perturbation theory to the Fröhlich Hamiltonian, the interacting Green functions are ex-
pressed by an infinite series of Feynman diagrams containing the bare Green functions and an
increasing number of electron-phonon vertices.
Partial resummation leads to the Dyson equations

G(k, iωn)
−1 = G0(k, iωn)

−1 −Σ(k, iωn) (18)

D(q, iνm)
−1 = G0(q, iνm)

−1 −Π(q, iνm) , (19)

which connects bare and renormalized Green functions via the electron and phonon self-energy,
Σ and Π , respectively. The self-energies are defined as the sum of all one-particle irreducible
Feynman diagrams, i.e., as the sum of all Feynman diagrams, which cannot be separated into
two distinct graphs by cutting a single electron or phonon line.
In the following we will discuss the most important contributions to the self-energies in more
detail.

3.2 Electron self-energy

The lowest-order diagram of the electron self-energy represents a virtual exchange of a phonon
as shown in Fig. 2

Σep(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

gqk′,kG0(k
′, iωn′)(g

q
k′,k)

∗D0(q, iωn′−iωn) . (20)

With Eqs. (16) and (17), and after performing the Matsubara sum over ωn′ one obtains

Σep(k, iωn) =
1

Nq

∑
k′,q

|gqk′,k|
2

(
b(ωq) + f(εk′)

iωn + ωq − εk′
+
b(ωq) + 1−f(εk′)
iωn − ωq − εk′

)
. (21)

Σep depends on temperature T via the Fermi and Bose distribution functions, f(ε) =
(
eε/T+1

)−1

and b(ω) =
(
eω/T−1

)−1, respectively.
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To discuss the quasiparticle renormalization, we consider the retarded Green function, which
is obtained by analytic continuation to the real axis via iωn → ε+iδ with an infinitesimal
positive δ. It is connected to the analytic continuation of the self-energy via the Dyson equation

G(k, ε) =
(
ε− εk −Σ(k, ε)

)−1
. (22)

If the self-energy is small enough, the spectral function Ak(ε) = − ImG(k, ε+iδ) consists of a
well defined peak at a shifted quasiparticle energy determined by the real part of Σ

εk = εk +ReΣ(k, εk) . (23)

The quasiparticle acquires a finite lifetime leading to a linewidth (full width at half maximum)

Γk = −2 ImΣ(k, εk), (24)

which is determined by the imaginary part.
It is straightforward to perform the analytic continuation of Σep(k, iωn → ε+iδ) in the form
given in Eq. (21) and to derive the expression for the imaginary part

ImΣep(k, ε)=−
π

Nq

∑
k′,q

∣∣gqk′,k∣∣2[δ(ε−εk′+ωq)(b(ωqj)+f(εk′)
)
+δ(ε−εk′−ωq)

(
b(ωq)+1−f(εk′)

)]
.

(25)
This can be rewritten by introducing two spectral functions

α2F±k (ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2 δ(ε−εk′±ω) . (26)

They depend on the electronic state k via the EPC vertex. The imaginary part can then be cast
in the form

ImΣep(k, ε) = −π
∫ ∞

0

dω
(
α2F+

k (ε, ω)
[
b(ω)+f(ω+ε)

]
+α2F−k (ε, ω)

[
b(ω)+f(ω−ε)

])
. (27)

The physical interpretation of this expression is as follows. When a quasiparticle hole is created
at a state k (ε< εF ), electrons can scatter from states with higher or lower energies, respectively
(see Fig. 3). By conservation of energy, the first process involves a simultaneous emission of a
phonon, while the second one is related to the absorption of a phonon. The probability is de-
scribed by α2F−k and α2F+

k , respectively, weighted with the appropriate bosonic and fermionic
distribution functions. Both processes provide decay channels contributing additively to the
linewidth (inverse lifetime) of the quasiparticle. A similar description holds when a quasiparti-
cle (electron) is created at energies above the Fermi level.
Very often, a simplification is made which is called quasielastic approximation. Because the
electronic energy scale is typically much larger than the phonon energies, differences between
emission and absorption spectra are rather small, and it is well justified to ignore the phonon
energy ωq in the δ-function of (26), such that α2F±k ≈ α2Fk with

α2Fk(ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2 δ(ε−εk′) . (28)
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k

ν’ν

k+q

εF

Fig. 3: Illustration of the scattering processes contributing to the self-energy of a hole quasi-
particle with momentum k and band index ν. Electrons (red lines) can scatter virtually from
states with higher or lower energies under simultaneous emission or absorption of a phonon
(blue lines), respectively.

The self-energy then simplifies to

ImΣep(k, ε) = −π
∫ ∞

0

dω
(
α2Fk(ε, ω)

[
2b(ω) + f(ω+ε) + f(ω−ε)

])
. (29)

It is instructive to evaluate this expression for the simple Einstein model, where only a single
dispersionless phonon mode with energy Ω couples to the electrons. In the limit T → 0 one
finds

ImΣep(k, ε)→ −πA(ε)
(
2−Θ(Ω−ε)−Θ(Ω+ε)

)
, (30)

where Θ(x) denotes the Heaviside step function, and A(ε) = 1/Nk

∑
k′,q |g

q
k′,k|2 δ(ε−εk′) rep-

resents the density of states at energy ε weighted by scattering matrix elements. Typically A(ε)
is slowly varying on the scale of phonon energies. In contrast, Σep(ε) vanishes for energies
|ε| < Ω and shows a step at Ω, because of the presence of the step functions. This reflects the
fact that no phonon modes are available for decay when |ε| < Ω. ReΣep can be obtained via
the Kramers-Kronig relation

ReΣep(k, ε) =
1

π

∫
dε′

ImΣep(k, ε
′)

ε− ε′
. (31)

As shown in Fig. 4(a) it contains a maximum at ε = Ω and has a finite slope at ε → 0.
The resulting dispersion for the renormalized quasiparticle is sketched in Fig. 4(b). It shows
two characteristics: (i) the dispersion is strongly modified in the vicinity of εF in the range of
phonon energies, altering the Fermi velocity related to the slope of ReΣep(ε→ 0). (ii) A cusp
appears at ε = ±Ω.
For a more realistic phonon spectrum which covers continuously an energy range 0 ≤ ω ≤
ωmax, the step-like feature in ImΣep(ε) is washed out, but Σep(ε) still varies rapidly in the
energy range of the phonons. The cut in the renormalized dispersion is then replaced by a kink.
An example of an experimentally determined self-energy is given in Fig. 4(c) and (d).
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Fig. 4: Illustration of the renormalization of an electronic band coupling to an Einstein-type
phonon branch with energy Ω. (a) Real and imaginary part of the electron self-energy. (b)
Renormalized quasiparticle dispersion, showing a kink at the phonon frequency. (c) Real
and (d) imaginary part of the electron self-energy extracted from angle-resolved photoemis-
sion spectroscopy measurements taken for an electronic surface band of the Cu(110) surface.
After Jiang et al. [8]

The spectral function α2Fk contains the essential information related to the electron-phonon
coupling of the specific electronic state k = (kν). A convenient measure for the strength of the
EPC is the dimensionless coupling parameter

λk = 2

∫
dω

α2Fk(εk, ω)

ω
. (32)

It characterizes the strength of the coupling of a specific electronic state to the whole phonon
spectrum, and depends both on the momentum and band character of the electronic state.
There are two relations which connect this parameter to experimentally accessible quantities.
The first is related to the real part of the self-energy for an electronic band crossing the Fermi
level:

λk =
∂ ReΣep(k, ε)

∂ε

∣∣∣∣
ε=0,T=0

. (33)

Thus the coupling constant is given by the slope of ReΣep right at the Fermi energy in the
limit T → 0. λk is also called the mass-enhancement parameter, because the quasiparticle
velocity is changed to v∗F = vF/(1+λk) and can be interpreted as an enhanced effective mass
m∗k = mk(1+λk), where mk denotes the unrenormalized mass. Eq. (33) is often utilized in
ARPES measurements of bands crossing the Fermi level, which attempt to extract the energy
dependence of the real part of the self-energy.
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Fig. 5: (a) and (b) Diagrammatic representation of the two second-order contributions to the
electron self-energy. Blue zigzag lines represent phonons and black lines electron propagators.
(c) and (d) Schematic drawing of Fermi surface and states contributing to the graphs (a) and
(b), respectively.

A second route to determine the coupling constant of an electronic state is via the temperature
dependence of the linewidth

Γk(T ) = π

∫ ∞
0

dω
(
α2Fk(εk, ω)

(
2b(ω) + f(ω+εk) + f(ω−εk)

))
. (34)

In Eq. (34), the T -dependence it contained solely in the Bose and Fermi distribution functions.
For T → 0, it approaches a finite value given by

Γk(T )→ 2π

∫ ωmax

0

dω α2Fk(εk, ω) . (35)

With increasing T, the linewidth increases monotonously. For temperatures larger than the
maximum phonon frequencies, this T -dependence becomes almost linear, and its slope is de-
termined by the average coupling parameter defined above

Γk(T ) ≈ 2πλkT . (36)

This relationship has been widely used to extract λk from measurements of Γk(T ), in particular
for surface electronic states.

3.3 Migdal’s theorem

So far we have discussed the influence of phonons on the electronic properties in lowest order
of the electron-phonon coupling. What about higher-order corrections? A very important an-
swer is given by the Migdal’s theorem, which is relevant for both the normal-state properties
discussed here and the Eliashberg theory of superconductivity presented in the next section. We
give only a very brief qualitative discussion here, more details can be found in literature [9,10,7].
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Π(ω)Im = Im ω

Fig. 6: (a) Diagrammatic representation of the imaginary part of the phonon self-energy up to
second order in the electron-phonon vertex. Blue zigzag lines represent phonons, black lines
electron propagators.

Fig. 5 (a) and (b) show two next-order corrections to Σep. The first is a self-energy contribution
to an inner line and can be taken into account by using the full Green function G for the inter-
mediate state instead of G0. In contrast, the graph in Fig. 5(b) is a vertex correction. Migdal’s
theorem now states that vertex corrections are small and can be neglected. More precisely, this
is true for those parts of the renormalized Green function which are sensitive to the phonons.
Such contributions involve intermediate states whose energies are close to each other.
Fig. 5(c) and (d) show schematically the Fermi surfaces and states which make a contribution
to the graphs in Fig. 5 (a) and (b), respectively. The first case contains only small energy
differences ε12 = ε1−ε2 and ε13. In the second case, momentum conservation leads to a large
difference ε14. This unfavorable situation can only be avoided when one of the intermediate
phonon momenta becomes small. Migdal showed, that for normal metals the phase space for
such processes is very small, and the contribution from graph Fig. 5(d) is by a factor ωD/εF
smaller than that from graph (a), where ωD denotes the Debye frequency and εF the Fermi
energy. ωD/εF is of the order of 0.1 for typical phononic and electronic energy scales.
The phase space argument of Migdal’s theorem breaks down in two circumstances: (i) For a
significant part of processes both phonons have small q (both k2−k1 and k3−k2 are small). This
can happen in metals with very small Fermi surfaces, for example in low-doped semiconductors.
(ii) Metals with a one-dimensional Fermi surface topology (quasi-1D). In addition, Migdal’s
theorem becomes questionable in the case of metals with very small band widths, where the
ratio ωD/εF is not small any more.
According to Migdal’s theorem, Σep is well represented by the single graph shown in Fig. 2,
except that G0 is replaced by G, and other contributions can be neglected. According to ar-
guments given by Migdal and Holstein, this replacement again gives small corrections of the
order of ωD/εF . [9, 11]. Thus to a good approximation it is justified to use G0, so the previous
formulas still hold. This approximation does not work anymore for the superconducting state,
as discussed in the next section.
However, the analysis given above rests on a simplified solution of the Dyson equation which
can break down for larger coupling. Then the renormalization becomes much more involved
and requires the solution of the Dyson equation in the complex plane [12]. The spectral function
develops a complex structure, which indicates the break-down of the quasiparticle picture.

3.4 Phonon self-energy and linewidth

The EPC also renormalizes the phononic quasiparticles. The measurement of the phonon
linewidth actually provides another way to gain experimental information about the coupling
strength. We will briefly sketch this approach here.
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The finite linewidth or inverse lifetime of a phonon mode is connected to the imaginary part of
the phonon self-energy by γq = −2 ImΠq(ω). The lowest-order contribution to ImΠq(ω) is
derived from the diagram shown in Fig. 6

Πq(iνm) =
1

β

∑
n

1

Nk

∑
k,k′

∣∣gqk′,k∣∣2G0(k, iωn)G0(k
′ν ′, iωn+iνm) =

1

Nk

∑
k′,k

∣∣gqk′,k∣∣2f(εk)−f(εk′)iνm+εk−εk′
,

(37)
leading after analytic continuation to the following expression for the linewidth (half-width at
half maximum)

γq = −2 ImΠq(ωq) = 2π
1

Nk

∑
k′,k

∣∣gqk′,k∣∣2(f(εk)− f(εk′)) δ(ωq + (εk−εk′)
)
. (38)

This expression contains the T -dependence via the Fermi distribution function f . Because
phonon energies are typically small compared to electronic energies, the energy difference
εk−εk′ is also small, and one can approximate

f(εk)− f(εk′) ≈ f ′(εk)(εk−εk′)→ −f ′(εk)ωq (39)

with f ′ = df/dε. For T → 0, f ′(εk)→ −δ(εk), and by neglecting ωq inside the δ-function, the
expression further simplifies to

γq = 2πωq
1

Nk

∑
k′,k

∣∣gqk′,k∣∣2 δ(εk) δ(εk′) . (40)

This approximate expression for the linewidth, first derived by Allen [13], is widely used in
numerical calculations. As will be discussed in the next section, γq in the form of Eq. (40)
enters directly the expression for the coupling strength of a phonon mode relevant for super-
conductivity. Thus measurements of the phonon linewidths, for example by inelastic neutron
or X-ray scattering experiments, provide information about the importance of a phonon mode
for the pairing. One has to keep in mind, however, that γq only represents the contribution from
EPC, while the experimental linewidth also contains other contributions like those from anhar-
monic decay processes. Furthermore, approximation (40) does not hold in the limit q → 0 for
metals, because the phonon frequency in Eq. (38) cannot be neglected anymore for intraband
contributions, which involve arbitrarily small energy differences εk−εk′ .

4 Phonon-mediated superconductivity

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin lies
in an instability of the Fermi liquid state that leads to a new ground state of correlated paired
electrons (Cooper pairs). In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [14]
have shown that this state is stabilized, whenever there exists an attractive interaction among two
electrons. Such an attractive interaction is always provided by the electron-phonon coupling,
which thus represents a natural source for pairing in any metal. EPC is known to be the pairing
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mechanism in most superconductors, which are commonly termed classical superconductors
to distinguish them from more exotic materials where other types of pairing mechanism are
suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. A more complete theory has been soon after worked out applying many-body techniques
(for reviews see, e.g., Refs. [15–17, 10]). The resulting Eliashberg theory [18] extends the
framework of BCS into the strong coupling regime and allows a quantitative prediction of many
properties of the superconducting state. An important property of the superconducting state is
that the quasiparticle spectrum is gaped. The size of the gap plays the role of an order parameter.
In the following, we discuss the essential ingredients of the theory of strong-coupling phonon-
mediated superconductivity, also known as the Migdal-Eliashberg theory. First, we give a sim-
ple derivation of an effective electron-electron interaction mediated by phonons. Using many-
body techniques we then derive the superconducting gap equations and identify the important
quantities related to the electron-phonon coupling, which determine the superconducting prop-
erties.

4.1 Effective electron-electron interaction

The coupling of the electrons to the phonon system does introduce an effective electron-electron
interaction, which can act as a pairing interaction evoking the superconducting state. The gen-
eral approach using many-body techniques will be discussed below. Here a simple but instruc-
tive derivation of the effective interaction is given with the help of a properly chosen canonical
transformation. To simplify the discussion, we will consider the case of a single, spinless quasi-
particle band coupled to a single phonon (boson) mode. The Fröhlich Hamiltonian then reads
(gk,q ≡ gqk+q,k)

H =
∑
k

εk c
†
kck +

∑
q

ωq

(
b†qbq +

1

2

)
+
∑
kq

gk,q c
†
k+qck

(
bq + b†−q

)
. (41)

Let us consider the Hamiltonian
H = H0 + ηH1 , (42)

where H0 is the unperturbed Hamiltonian, H1 the perturbation, and η represents an expansion
coefficient, which is considered to be small. The idea is to perform a canonical transformation

H ′ = e−ηSHeηS (43)

and eliminate the first-order term in η by choosing the operator S appropriately. Expanding
Eq. (43) in a power series in η gives

H ′ = H + η[H, S] +
η2

2

[
[H, S], S

]
+O(η3) (44)

= H0 + η
(
H1 + [H0, S]

)
+ η2[H1, S] +

η2

2

[
[H0, S], S

]
+O(η3) . (45)
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To eliminate the term linear in η one has to find an S which fulfills the condition

H1 + [H0, S] = 0 . (46)

Then the transformed Hamiltonian can be written as

H ′ = H0 +Heff +O(η3) with Heff =
η2

2
[H1, S] . (47)

This general approach is now applied to the Fröhlich Hamiltonian (41) with H0 = He + Hph

and ηH1 = He-ph. For the canonical operator we make the ansatz

S =
∑
kq

gk,q c
†
k+qck

(
xk,qbq + yk,qb

†
−q

)
. (48)

The parameters xk,q and yk,q will be determined in order to fulfill Eq. (46). Evaluating the
commutators gives

[He, S] =
∑
kq

gk,q
(
εk+q−εk

)
c†k+qck

(
xk,qbq + yk,qb

†
−q

)
(49)

[Hph, S] =
∑
kq

gk,qc
†
k+qck

(
−xk,qωqbq + yk,qω−qb

†
−q

)
. (50)

Using the relation ωq = ω−q this combines to

H1 + [H0, S] =
∑
kq

gk,q c
†
k+qck

((
1+ (εk+q−εk−ωq)xk,q

)
bq+

(
1+ (εk+q−εk+ωq)yk,q

)
b†−q

)
.

(51)
This expression vanishes when

xk,q = (εk − εk+q + ωq)
−1 and yk,q = (εk − εk+q − ωq)

−1 . (52)

The last step is to evaluate the effective interaction Eq. (47). The commutator [H1, S] has the
form [Aa, Bb] with A,B ∝ c†c containing products of fermion operators, and a, b ∝ xb+yb†

containing sums of boson operators. From the general relationship [Aa, Bb] = AB[a, b] +

[A, B]ab − [A, B][a, b] it is easy to see that there are three types of contributions. Keeping in
mind that [A, B] is again a product of the form c†c and [a, b] a c-number, the last term represents
a one-body electron operator, which actually can be shown to vanish. The second term describes
an effective coupling of an electron to two phonons, also called a non-linear coupling term.
We are interested in the first term, which is proportional to the product of two fermionic cre-
ation and two annihilation operators, c†cc†c, and thus represents an effective electron-electron
interaction. Explicitly it has the form

Heff =
η2

2

∑
kk′q

gk,q gk′,−q
(
yk′,−q−xk′,−q

)
c†k+qckc

†
k′−qck′ (53)

= η2
∑
kk′q

Veff(k,k
′,q) c†k+qckc

†
k′−qck′ (54)
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kk’

q
k’−q k+q

Fig. 7: Diagrammatic representation of the effective electron-electron interaction mediated by
the exchange of a phonon (blue zigzag line). Black lines indicate electronic states.

with

Veff(k,k
′,q) = gk,qgk′,−q

ωq

(εk′−εk′−q)2 − ω2
q

. (55)

Heff describes the scattering of two electrons with momenta k and k′ into states with momenta
k+q and k′−q by the exchange of a virtual boson with momentum q. This process is sketched
in Fig. 7.
In the context of pairing in superconductors, the effective interaction between electrons with
momenta k and −k is of special importance. Using ε−k = εk and g−k,−q = g∗k,q one obtains

Veff(k,−k,q) = |gk,q|2
ωq

(εk−εk+q)2 − ω2
q

. (56)

This effective interaction is attractive (negative) for |εk−εk+q| < ωq and repulsive (positive)
for |εk−εk+q| > ωq. Eq. (56) shows that the electron-phonon coupling always introduces an
attractive interaction for electronic scattering processes involving small energies of the order of
phonon energies.

4.2 Strong-coupling theory

4.2.1 Nambu formalism

The superconducting state is a macroscopic quantum state, which is characterized by a coherent
occupation of Cooper pairs, i.e., states with (k ↑,−k ↓). In a many-body description, it is related
to the appearance of anomalous Green functions

F (k, τ) = −
〈
Tτck↑(τ)c−k↓(0)

〉
and F ∗(k, τ) = −

〈
Tτc

†
−k↓(τ)c

†
k↑(0)

〉
(57)

originally introduced by Gor’kov [19]. In the normal state these anomalous Green functions
vanish. Starting from the Fröhlich Hamiltonian, one can set up a systematic perturbation ex-
pansion of the normal and anomalous Green functions, with the goal to obtain a set of self-
consistent equations. A necessary step is a partial resummation of an infinite number of dia-
grams, because the superconducting state can not be reached in any finite order of the perturba-
tion.
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A very convenient way to organize this algebra of diagrams has been introduced by Nambu [20].
One starts by defining the two-component operators

Ψk =

(
ck↑
c†−k↓

)
Ψ †k =

(
c†k↑ , c−k↓

)
(58)

and a 2×2 Green function

G(k, τ) = −
〈
TτΨk(τ)Ψ

†
k(0)

〉
= −

( 〈
Tτck↑(τ)c

†
k↑(0)

〉 〈
Tτck↑(τ)c−k↓(0)

〉〈
Tτc

†
−k↓(τ)c

†
k↑(0)

〉 〈
Tτc

†
−k↓(τ)c−k↓(0)

〉 )

=

(
G(k, τ) F (k, τ)

F ∗(k, τ)−G(−k,−τ)

)
. (59)

In the following, underlined symbols indicate 2×2 matrices in spin space. Switching to the
Fourier transform gives

G(k, iωn) =
1

2

∫ β

−β
dτ eiωnτG(k, τ) =

(
G(k, iωn) F (k, iωn)

F ∗(k,−iωn)−G(−k,−iωn)

)
. (60)

The next step is to rewrite the Fröhlich Hamiltonian in terms of Ψ, Ψ †. This is most easily done
by using the Pauli matrices

τ 0 =

(
1 0

0 1

)
, τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
. (61)

The non-interacting electronic part is rewritten as

He =
∑
kσ

εk c
†
kσckσ →

∑
k

εk Ψ
†
kτ 3Ψk (62)

and the interaction part as

He-ph =
∑
kσ

∑
qj

gqk′k c
†
k′σckσ

(
bq + b†−q

)
→
∑
k

gqk′k Ψ
†
k′τ 3Ψk

(
bq + b†−q

)
. (63)

The bare Green function (related to He) takes the form

G0(k, iωn) =

(
G0(k, iωn) 0

0 −G0(−k,−iωn)

)
=

(
(iωn−εk)−1 0

0 (iωn+εk)
−1

)
=
(
iωnτ 0 − εkτ 3

)−1
.

(64)
One can show that the Dyson equation retains its usual form

G−1(k, iωn) = G−1
0 (k, iωn)−Σ(k, iωn) (65)

with the inversion performed in the 2-dimensional spin space, where the self-energy Σ is now
a 2×2 matrix.
The diagrammatic expansion of the self-energy contains the same diagrams as in the normal
state, with the difference that Green functions and vertices are now represented by 2×2 matrices.
In particular gqk′k is replaced by gqk′k τ 3.
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4.2.2 Eliashberg theory

The Eliashberg theory is in essence the extension of the normal-state Migdal theory to the
superconducting state. Using Migdal’s theorem, the only important self-energy diagram is again
given by Fig. 2. Within the Nambu formulation this gives

Σ(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

gqk′k τ 3G(k
′, iωn′) τ 3 g

−q
kk′ D(q, iωn′−iωn) . (66)

Using the Pauli matrices, Σ can be written in the general form

Σ(k, iωn) = iωn
(
1−Z(k, iωn)

)
τ 0 + χ(k, iωn)τ 3 + Φ(k, iωn)τ 1 + Φ(k, iωn)τ 2 (67)

with as yet unknown and independent real functions Z,χ,Φ, and Φ. From the Dyson equation
one finds

G−1(k, iωn) = iωnZ(k, iωn)τ 0 −
(
εk+χ(k, iωn)

)
τ 3 − Φ(k, iωn)τ 1 − Φ(k, iωn)τ 2 . (68)

The inverted Green function is then, using
(
a0τ 0 + ~a · ~τ

)(
a0τ 0 − ~a · ~τ

)
= (a2

0−~a2)τ 0

G(k, iωn) =
(
iωnZ(k, iωn)τ 0 +

(
εk+χ(k, iωn)

)
τ 3 + Φ(k, iωn)τ 1 + Φ(k, iωn)τ 2

)
/D (69)

with D := detG−1 = (iωnZ)
2 − (εk+χ)

2 − Φ2 − Φ2
. If one uses this expression for Eq. (66)

and separates it into the τ -components, one arrives at four self-consistent equations for the four
unknown functions Z, χ, Φ, and Φ

iωn
(
1−Z(k, iωn)

)
= − 1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
iωn′Z(k

′, iωn′)

D(k′, iωn′)

χ(k, iωn) = − 1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
εk′ + χ(k′, iωn′)

D(k′, iωn′)

Φ(k, iωn) =
1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
Φ(k′, iωn′)

D(k′, iωn′)

Φ(k, iωn) =
1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
Φ(k′, iωn′)

D(k′, iωn′)
. (70)

We note that because momentum conservation determines the phonon momentum, q = k′−k,
the sum over q is actually only a sum over different phonon branches (j).
Quasiparticle properties are determined by the poles of the Green function after analytic con-
tinuation, i.e., from D(k, iωn → ε+iδ) = 0. This gives

Ek =

√
(εk + χ)2

Z2
+
Φ2 + Φ

2

Z2
. (71)

The normal state corresponds to a solution Φ = Φ = 0. Z is the quasiparticle renormalization
factor, and χ describes shifts in the electron energies. The superconducting state is characterized
by a non-zero Φ or Φ. From Eq. (71) one can see that the gap function is given by
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∆(k, iωn) =
Φ(k, iωn)− iΦ(k, iωn)

Z(k, iωn)
(72)

and describes the energy gap in the quasiparticle spectrum. Φ and Φ obey the same equations
and are expected to have the same functional form up to a common phase factor. This phase
factor becomes important in the description of Josephson junctions, but is irrelevant for the
thermodynamic properties of a homogeneous superconductor. In the following, we choose the
simple gauge Φ = 0.

4.2.3 Isotropic gap equations

The Eliashberg equations (70) represent a complicated non-linear set of equations which couple
all momenta k with each other. We will now simplify them and derive the so-called isotropic
equations where only the frequency dependence remains. A very detailed derivation was given
by Allen and Mitrović [10]. Here we only briefly sketch the main steps. (i) We ignore changes
of the phonon quasiparticles and replace D by the unrenormalized Green function

D(q, iνm)→ D0(q, iνm) =

∫
dω δ(ω−ωq)

2ω

(iνm)2 − ω2
. (73)

(ii) Similar to the normal state, the electron-phonon self-energy evokes a significant renormal-
ization of quasiparticles only in an energy range ±ωD around the Fermi energy. It is therefore
appropriate to consider the quantities Z and φ only at the Fermi energy. (iii) We consider only
Fermi-surface averages of these quantities. The justification comes from the observation that the
superconducting gaps are often very isotropic. Moreover, in real materials, defects are always
present which tend to average anisotropic gaps [21].
Under these conditions we can replace the quantities Z and φ by their Fermi surface averages,
e.g.,

Z(iωn) =
1

Nk

∑
k

wkZ(k, iωn) (74)

with weights wk = δ(εk)/N(0), where N(0) = 1
Nk

∑
k δ(εk) denotes the electronic density

of states per spin at the Fermi energy. To simplify the following discussion, we will drop the
equation for χ thus ignoring the related, often small, shift in the electronic energies. Indeed
χ = 0 holds exactly in the limit of infinite band width [17].
Finally, after performing the internal momentum summation in Eqs. (70) one obtains the isotropic
gap equations

ωn
(
1−Z(iωn)

)
= −π 1

β

∑
n′

Λ(ωn−ωn′)
ωn′√

ω2
n′ +∆(iωn′)2

∆(ωn)Z(iωn) = π
1

β

∑
n′

Λ(ωn−ωn′)
∆(iωn′)√

ω2
n′ +∆(iωn′)2

, (75)

where ∆(iωn) = Φ(iωn)/Z(iωn). The interaction kernel

Λ(νm) =

∫
dω

2ωα2F (ω)

(νm)2 + ω2
(76)
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contains the electron-phonon coupling via the isotropic Eliashberg function

α2F (ω) =
1

N(0)

1

N2
k

∑
kk′

|gqk′k|
2δ(εk) δ(εk′) δ(ω−ωq). (77)

The set of non-linear equations (75) must be solved self-consistently for a given temperature T
and pairing function α2F. The kernel entering both equations is an even function of νm. It takes
its largest value at νm = 0

λ = Λ(0) = 2

∫
dω

α2F (ω)

ω
. (78)

λ is called the (isotropic) coupling constant and is a dimensionless measure of the average
strength of the electron-phonon coupling. Depending on its value, materials are characterized
as strong (λ > 1) or weak coupling (λ < 1) . Due to the factor 1/ω in the integral, low-energy
modes contribute more to the coupling strength than high-energy modes.
The superconducting state is characterized by a solution with ∆(iωn) 6= 0. The largest T which
still allows such a solution defines the critical temperature Tc. Because α2F (ω) as defined in
Eq. (77) is a positive function, (75) always possess such a superconducting solution for low
enough temperatures, i.e., a finite Tc.
An important feature of the Eliashberg gap equations is that they only depend on normal-state
properties, which specify a particular material. These comprise the electronic band structure,
phonons, and the EPC vertex, quantities which are accessible to first principles techniques as
discussed in the next section.
At this stage it is useful to make the connection to some normal-state quantities introduced in
the previous section. The isotropic Eliashberg function is related to the state-dependent spectral
function (28) via appropriate momentum averages at the Fermi energy

α2F (ω) =
∑
k

wkα
2Fk(ε=0, ω) , (79)

while the isotropic coupling constant is given by

λ =
∑
k

wkλk . (80)

Similarly, α2F can be expressed in terms of the phonon linewidths derived in the limit T → 0,
Eq. (40), as

α2F (ω) =
1

2πN(0)

1

Nq

∑
q

γq
ωq
δ(ω−ωq) , (81)

which leads to the formula for the isotropic coupling constant

λ =
1

πN(0)

1

Nq

∑
q

γq
ω2
q

. (82)

The dimensionless prefactor γq/ωq in (81) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momentum.
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4.2.4 Coulomb effects

Our derivation up to now was based on the Fröhlich Hamiltonian, where the electronic sub-
system is approximated by bands of noninteracting quasiparticles ignoring any Coulomb inter-
action. The largest consequences of the Coulomb interaction are supposed to be build into the
quantities εk (and similarly into ωq). The residual Coulomb interaction among the quasiparticles
can, however, not be completely neglected in the discussion of phonon-mediated superconduc-
tivity. It has a repulsive character and tends to reduce or completely suppress the pairing. The
quantity analogous to the electron-phonon coupling constant λ is the Coulomb parameter

µ = N(0)
〈〈
VC(k, k

′)
〉〉
FS
, (83)

which is a Fermi surface average of the effective screened Coulomb interaction VC(k, k′). µ is
of the order of 1 and thus not a small parameter. But because the electronic timescale is usually
much smaller than the vibrational one, or equivalently electronic energies are much larger than
phononic ones, only a significantly reduced Coulomb parameter enters the Eliashberg equations.
It was shown by Morel and Anderson [22], that the Coulomb repulsion can be taken into account
by replacing the kernel in the equation for the gap function by

Λ(iωn−iωn′)→
(
Λ(iωn−iωn′)− µ∗(ωc)

)
Θ(ωc−|ωn′|) . (84)

A cutoff ωc is introduced which must be chosen to be much larger than phononic energies.
The effective Coulomb parameter or Morel-Anderson Coulomb pseudopotential obeys a scaling
relation

µ∗(ωc) =
µ

1 + µ ln(ε0/ωc)
. (85)

ε0 denotes a characteristic energy scale of the electronic system, where the average matrix el-
ements of the Coulomb interaction become small (ε0 ≈ few εF ). In practice, µ∗ is commonly
treated as a phenomenological parameter of the order of ≈ 0.1 for normal metals. A more sat-
isfactory approach, which actually allows to incorporate Coulomb effects from first principles,
is the density-functional theory of superconductors [23].

4.2.5 Transition temperature Tc

The transition temperature Tc is solely determined by the material-dependent quantities α2F (ω)

and µ∗. A thorough numerical analysis of the isotropic gap equations was carried out by Allen
and Dynes [24], who used a standard spectrum for α2F but varied λ and µ∗ over a large pa-
rameter range. Their study revealed two important aspects. Firstly, they found that in a reduced
parameter space (λ < 2 and µ∗ < 0.15) Tc can be well approximated by a Tc formula proposed
originally by McMillan [25], but with a modified prefactor

Tc =
ωlog

1.2
exp

[
− 1.04(1+λ)

λ− µ∗(1+0.62λ)

]
. (86)
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The prefactor contains a properly defined average frequency of the phonon spectrum weighted
with the coupling strength

ωlog = exp

[∫
dω log(ω)W (ω)

]
, (87)

with the normalized weight function

W (ω) =
2

λ

α2F (ω)

ω
. (88)

This Tc formula is a significant refinement of the BCS formula Tc = 1.13ωD exp(−1/λ) derived
for the weak-coupling limit. Secondly, while the Tc formula suggests that Tc approaches a finite
value in the limit λ → ∞, the isotropic gap equations do not possess an intrinsic upper bound
for Tc. Instead the asymptotic relationship

Tc ∝
√
λ〈ω2〉 (89)

holds, where 〈ω2〉 is the second moment of W (ω).

5 Density functional theory approach

In the previous sections we have outlined the basic theory for the effects of EPC in the normal
and superconducting state. Central quantities are the screened EPC matrix elements, which are
not directly accessible from experiment. Thus it is desirable to have a computational scheme
which allows materials-dependent predictions. The most common approach is based on density
functional theory, which is briefly described in the following.

5.1 Density functional perturbation theory

5.1.1 Basics of density functional theory

The foundations of density functional theory (DFT) have been laid down in the seminal works
by Hohenberg, Kohn, and Sham [26, 27] in the mid 60’s, and are outlined in numerous re-
views [28–30]. It provides a framework to map the complex many-body problem of interacting
electrons moving in an external potential vext(r) onto a fictitious system of noninteracting elec-
trons. Their wavefunctions obey a single-particle equation (Kohn-Sham equation) [27](

−∇2 + veff(r)
)
ψi(r) = εiψi(r) . (90)

Here, εi denotes the energy of the single-particle state ψi. The effective potential veff(r) is a
functional of the density given as the sum of the external potential and a screening potential

veff[n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (91)
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The Hartree and exchange-correlation potentials vH and vXC are functionals of the density
defined as the functional derivative of the Hartree and exchange-correlation energies, EH [n] =∫
d3r
∫
d3r′ n(r)n(r′)/|r−r′| and EXC . The density is determined by the wavefunctions via

n(r) =
∑
i

fi|ψi(r)|2 (92)

with fi the occupation number of the single-particle state ψi. Eqs. (90) and (92) have to be
solved self-consistently.

5.1.2 Linear response within the Kohn-Sham scheme

In the following we will sketch how one can calculate the linear response to an external pertur-
bation within the Kohn-Sham scheme. As the Kohn-Sham equations describe non-interacting
electrons, standard perturbation techniques can be applied. Let us now consider a small per-
turbation of the effective potential, δveff. This gives rise to a first-order variation of the single-
particle wave functions

δψi(r) =
∑
j(6=i)

〈j| δveff|i〉
εi − εj

ψj(r) . (93)

Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i

fi
(
ψ∗i (r)δψi(r) + δψ∗i (r)ψi(r)

)
=
∑
i6=j

fi − fj
εi − εj

〈j| δveff|i〉ψ∗i (r)ψj(r) . (94)

Keeping in mind, that the effective potential depends on the density, on obtains

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r−r′|
+

δ2EXC
δn(r) δn(r′)

. (95)

Eqs. (94) and (95) must be solved self-consistently to obtain the first-order variation of the
density. Direct evaluation of Eq. (94) is, however, numerically inefficient, because the sum i, j

runs over all occupied and unoccupied states and converges very slowly with the number of
unoccupied states included.

5.1.3 Modern formulation: Density functional perturbation theory

An important progress has been achieved by a new formulation of the linear-response approach,
which avoids some of the aforementioned problems. It is called density functional perturbation
theory (DFPT). We will give a brief outline for the case of a non-metallic system, while a
concise description can be found in [31].
In the expression (94) for the first-order density variation, the prefactor (fi−fj)/(εi−εj) re-
stricts the sum to combinations where one state comes from the valence space and the other
from the conduction space. Using time-reversal symmetry, this can be rewritten as

δn(r) = 2
∑
vc

1

εv − εc
〈c| δveff|v〉ψ∗v(r)ψc(r) . (96)
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Now one defines the quantity

|∆v〉 =
∑
c

1

εv − εc
|c〉〈c| δveff|v〉 , (97)

which collects the summation over the conduction bands. The linear response of the density is
rewritten as

δn(r) = 2
∑
v

ψ∗v(r)∆v(r) . (98)

To avoid an explicit evaluation of the sum in the definition of∆v, one makes use of the following
property

(HKS − εv)|∆v〉 = −
∑
c

|c〉〈c| δveff|v〉 = −Pc δveff|v〉 = (Pv−1) δveff|v〉 . (99)

Here, HKS = −∇2 + veff is the Kohn-Sham Hamiltonian. Pc =
∑

c |c〉〈c| denotes the projector
onto the conduction space, and Pv = 1−Pc the projector onto the valence space. Eq. (99)
represents a linear equation for ∆v, where only valence-state quantities enter. Solution of this
linear equation turns out to be numerically much more efficient than the expensive summation
over conduction states. In practice, Eqs. (98), (99) together with (95) define a set of self-
consistent equations which is typically solved in an iterative manner.
We now apply this scheme to the case of a solid, where ions in their rest positions are sitting on
a periodic lattice. Kohn-Sham eigenstates are Bloch states |kν〉 characterized by momentum k

and band index ν, respectively, and are solutions of HKS|kν〉 = εkν |kν〉. In a periodic crystal,
ions are characterized by two indices l and s, which denote the unit cell and the ions inside a
unit cell, respectively. We consider periodic displacements of the ions from their equilibrium
positions, Rls = R0

ls + uls, of the form

ulsα = dsαe
iqR0

ls + d∗sαe
−iqR0

ls , (100)

where α indicates Cartesian coordinates. The complex amplitudes dsα allow to vary the relative
phase of the displacement. It is convenient to denote the corresponding derivatives by δqsα ≡
∂

∂dsα
and δ−qsα ≡ ∂

∂d∗sα
.

It is instructive to look at the effect of such a perturbation on the external potential, which is
commonly expressed as a superposition of atomic potentials vs centered at the instantaneous
positions of the ions

vext(r) =
∑
ls

vs(r−Rls) . (101)

Then its first-order variation, evaluated at the equilibrium positions, is given by

δqsαvext(r) = −
∑
l

∇r
αvs(r−R0

ls)e
iqR0

ls = −eiqr
∑
l

eiq(R0
ls−r)∇r

αvs(r−R0
ls) . (102)

The quantity defined by the lattice sum has the periodicity of the original lattice. Thus the
derivative δqsα can be considered to carry a momentum q.
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When using a Bloch representation for the electronic eigenstates, the variation of the effective
potential, δqsαveff, connects states of momentum k with those of momentum k+q. The Fourier
transform of the first order density variation takes the form (see Eq. (98))

δqsαn(q+G) = − 4

V

∑
kv

〈
kv
∣∣e−i(q+G)r

∣∣∆q
sα(kv)

〉
, (103)

where V denotes the crystal volume. The quantity appearing on the right hand side is closely
related to the first-order variation of the valence state |kv〉 and is defined by (see Eq. (97))

|∆q
sα(kv)〉 =

∑
c

|k+qc〉〈k+qc| δqsαveff|kv〉
εk+qc − εkv

. (104)

It is obtained by solving the inhomogeneous linear equations (see Eq. (99))(
HKS − εkv

)
|∆q

sα(kv)〉 =
(
P k+q
v −1

)
δqsαveff|kv〉 . (105)

Eqs. (103) and (105) together with (95) constitute a set of equations, which is solved self-
consistently for a fixed q to obtain δqsαn. As a by-product, also δqsαveff is calculated.
An important application of the linear response scheme is the calculation of lattice dynamical
properties. The electronic contribution to the dynamical matrix (see Appendix A), which deter-
mines the normal modes or phonons, is proportional to a mixed second derivative of the total
energy

Dsαs′β(q) =
1√

MsMs′
δqsαδ

−q
s′βE

∣∣∣
u=0

, (106)

which can be expressed as

δqsαδ
−q
s′βE =

∑
G

(
δqsαn(G+q)δ−qs′βvext(G+q) + δqsαδ

−q
s′βvext(G)

)
. (107)

The fact that this second derivative of the energy only requires the knowledge of the first-order
derivative of the density is a specific case of the so-called (2n+1) theorem, which states that all
derivatives of the total energy up to (2n+1)-th order with respect to an adiabatic perturbation can
be calculated from the knowledge of all derivatives of the Kohn-Sham eigenstates and density
up to n-th order. The proof given by Gonze et al. [32, 33] essentially rests on the variational
property of the energy functional.

5.2 Electron-phonon vertex from DFPT

We have seen that the lowest-order electron-ion interaction describes scattering of electronic
states via the operator δRV which denotes the change of the potential felt by the electrons
due to an ionic displacement. If the potential V is the bare electron-ion potential V 0, then
δRV = ∇V 0

∣∣
R0
u. In the context of DFPT, Eq. (2) would then be identified with

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+qν ′

∣∣ δqsαvext
∣∣kν〉 with Aqj

sα =
ηsα(qj)√
2Msωqj

, (108)
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Fig. 8: Diagrammatic representation of the screened electron-phonon vertex within the DFT
framework. Blue zigzag lines represent phonons, black lines electron propagators, and the
dashed lines the effective electron-electron interaction.

where a transformation to the normal-mode coordinates is performed. Physically, g represents
the probability amplitude of scattering a single electron by a simultaneous creation or annihila-
tion of a single phonon. In the form given above is called the bare vertex.
However, in solids, and in particular in metals, the bare electron-ion potential is screened by
the other electrons. Screening also alters the vertex significantly. It is instructive to look at it
from a many-body perturbation perspective. Fig. 8 shows a diagrammatic representation of the
screened vertex. The bare vertex is given by the first graph on the right hand side, and is screened
by virtual electron-hole excitations coupled via an effective interaction. In the context of DFT,
the electron-hole bubble represents the charge susceptibility of the non-interaction Kohn-Sham
system. The effective interaction is given by the kernel I defined in Eq. (95) and incorporates
besides the Coulomb interaction also contributions from exchange and correlation.
In essence this leads to a replacement of the external potential by the screened or effective one

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+qν ′

∣∣ δqsαveff
∣∣kν〉. (109)

DFPT allows direct access to this screened electron-phonon vertex, because the effective poten-
tial δqsαveff is calculated within the self-consistent procedure outlined above, which automatically
takes into account the important screening effects. Evaluation of Eq. (109), which is a numer-
ically rather inexpensive task, provides the screened EPC matrix elements on a microscopic
level, including their full momentum dependence and resolving the contributions from different
electronic bands and phononic modes.
DFPT has been widely used to predict lattice dynamical and EPC properties from first principles
for a large variety of materials, and has proven to be quite accurate in predicting the pairing
strength in phonon-mediated superconductors. This is briefly demonstrated by two examples.
The first one is a combined study of EPC by DFPT and neutron-scattering experiments shown in
Fig. 9 for YNi2B2C [34,35]. This member of the nickelborocarbide family is a strong coupling
superconductor (TC = 15.2 K), and exhibits pronounced phonon anomalies related to large and
momentum dependent EPC. Good agreement for both renormalized phonon frequencies and
linewidths as a function of momentum indicates a good predictive power of DFPT for this
compound.
The second example, shown in Fig. 10, addresses the non-centrosymmetric, strong-coupling
superconductor SrPt3P (TC = 8.4 K). DFPT predicts that the pairing is driven mainly by a low-
frequency mode, which carries more than 80% of the coupling. The existence of the low-
frequency mode was subsequently confirmed by high-resolution inelastic X-ray experiments
[36].
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Fig. 9: Lattice dynamics of YNi2B2C. Left panel: theoretical phonon dispersion and linewidths
(vertical bars) from DFPT. Right panel: time-of-flight neutron scattering results for the disper-
sion (a) and linewidth (c) of a prominent phonon branch compared with predictions from DPFT
in (b) and (d), respectively. After [34, 35].

Fig. 10: DFPT results for the superconductor SrPt3P. Left: phonon dispersion and relative
linewidths (vertical red bars); middle: phonon density of states; right: calculated isotropic
α2F . DFPT predicts a soft, but strong-coupling phonon branch, which is the origin of the large
peak in α2F at low energies, and of a large coupling constant of λ ≈ 2. After [36].
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6 Summary

In this tutorial, an introduction to the theory of the electron-phonon interaction in metals was
given. Focus was put on the renormalization properties of electronic and vibronic quasiparticles
in the normal state, and on its role for the pairing interaction relevant for the superconducting
state. This strong-coupling or Eliashberg theory has been tremendously successful in predicting
material-dependent properties of various superconductors in great detail. Density functional
theory provides a rather accurate first principles computational scheme to calculate the relevant
electron-phonon vertex, which is one of the central quantities determining physical observables
like electron renormalization, phonon linewidth, or phonon-mediated pairing interaction. Yet
one has to keep in mind that the Eliashberg theory incorporates a variety of approximations. The
current theoretical challenge is to extend its framework to include usually neglected aspects of
anharmonicity [37], and to quantify electron-phonon coupling effects in materials which are
characterized by small electronic energy scales [38] and/or strong electron correlations [39].
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Appendix

A Phonon quantization

Within the adiabatic approximation, statics and dynamics of the ions are governed by an effec-
tive potential

Ω(R) = Vii(R) + E0(R) , (110)

where E0(R) denotes the electronic ground-state energy for a given ion configuration R. The
effective potential Ω builds the starting point of the microscopic theory of lattice dynamics,
which has been outlined in a number of review articles [40–42].
Dynamical properties are derived by a systematic expansion of Ω for atom displacements u

around a chosen reference configuration, Ri = R0
i+ui, leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + · · · (111)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term
of first order is the negative of the force acting on an atom in the reference configuration

Fiα = − ∂Ω

∂Riα

∣∣∣∣
0

= −Φα(i) . (112)

It vanishes if one chooses as reference the equilibrium configuration, which minimizes Ω. The
second-order coefficients are given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

. (113)

In periodic crystals, the atoms are characterized by two indices i = (ls), which denote the unit
cell (l) and the atoms inside a unit cell (s), respectively. For periodic boundary conditions, the
Fourier transform of the force constant matrix is related to the dynamical matrix

Dsαs′β(q) =
1√

MsMs′

∑
l

Φαβ(ls, 0s
′)e−iq(R0

ls−R
0
0s′ ) , (114)

which determines the equation for the normal modes or phonons,∑
s′β

Dsαs′β(q) ηs′β(qj) = ω2
qjηsα(qj) . (115)

ωqj and ηsα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and branch index j.
These quantities enter into the relationship between the atom displacements and the usual
phonon annihilation and creation operators, bqj and b†qj , describing quantized normal modes,
as given in Eq. (7).
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1 Introduction: Overview of superconductivity

That some metals, called “supraconductors” in the old days [1], make a transition to a state
with zero electrical resistance below a critical temperature Tc was discovered experimentally by
Kamerlingh Onnes in 1911 [2]. That if a magnetic field is present in the interior of a supercon-
ductor for T > Tc, it gets expelled when the temperature is lowered to T < Tc was discovered
experimentally by Meissner and Ochsenfeld in 1933 [3] and is called the Meissner effect. The
Meissner effect was a great surprise: before 1933 it was expected that superconductors would
exclude magnetic fields but not that they would expel magnetic fields. This follows from Fara-
day’s law, and was known as “Lippmann’s theorem” [4] back in the days [5]: if a magnetic field
is applied to a zero resistance material, the material will react by generating a surface current
that does not let the field penetrate, thus excluding the magnetic field from its interior. How-
ever, Faraday’s law / Lippmann’s theorem would predict that if a material with finite resistance
has a magnetic field in its interior, when it is cooled into the superconducting state with zero
resistance no current would flow and the magnetic field would remain in the interior, even if the
external source of magnetic field is removed. That is not what superconductors do: metals go-
ing superconducting spontaneously generate a surface current that expels magnetic fields from
their interior [3]. This appears to violate Faraday’s law.
The London equation proposed in 1935 by the London brothers [1, 6] provided a phenomeno-
logical description of the magnetic behavior of superconductors, but did not explain how su-
perconductors manage to violate Faraday’s law. Neither did the BCS theory, proposed in 1957
by Bardeen, Cooper and Schrieffer [7], based on the electron-phonon interaction. BCS theory
provided a microscopic description of superconductors that describes many of their properties
accurately, it is generally believed to apply to materials called “conventional superconductors”,
that include all superconducting elements and many compounds. There are around 30 different
classes of superconducting materials [8], only about a third of them are generally agreed to be
“conventional superconductors”. For the remaining two thirds, there is no generally accepted
theory. The field is wide open for further progress.

1.1 The known knowns: London equation, Cooper pairs, BCS theory

The known knowns are what we know we know about superconductivity.
It took 22 years, from the discovery of zero resistance by Kamerlingh Onnes in 1911, to experi-
mentally discover the Meissner effect in 1933. The London brothers embodied this experimen-
tal fact in the London equation [1, 6]

~∇× ~J = − ne
2

mec
~B (1)

where ~J is the current density, e and me are the electron’s charge and mass, n is the carrier
density and ~B is an applied magnetic field. Eq. (1), together with Ampere’s law

~∇× ~B =
4π

c
~J (2)
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lead to

∇2 ~B =
4πne2

mec2
~B ≡ 1

λ2L
~B (3)

which says that an external magnetic field decays exponentially to zero in going from the surface
to the interior of the superconductor, over a length given by the London penetration depth λL.
The London Eq. (1) was derived by the Londons for the situation where a magnetic field is
applied to a material that is already superconducting, i.e., describing exclusion of an applied
magnetic field. They postulated without derivation that it also applies to situations where a
normal metal with a magnetic field in its interior is cooled into the superconducting state. If
that postulate is valid, the material will expel the magnetic field to reach the state described by
Eq. (3), which is what is observed experimentally [3]. But no theoretical proof that this should
happen was provided by the London brothers nor anybody else.
In 1956, Leon Cooper pointed out [9] that if electrons in a Fermi gas interact through a small
net attractive interaction resulting from the electron-phonon interaction, they would form a
bound pair with binding energy ∆, and suggested that a system of such bound pairs may Bose-
condense into a superconducting state. In 1957 Bardeen, Cooper and Schrieffer formulated a
theory of superconductivity [7] describing the many-body state of such Cooper pairs. They
showed that the ground state wavefunction of the “reduced Hamiltonian”

Hred =
∑
kσ

(εk−µ) c†kσckσ +
∑
kk′

Vkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (4)

with µ the chemical potential (that determines the band filling) is of the form∣∣ΨBCS〉 =
∏
k

(
u2k + v2k c

†
k↑c
†
−k↓
)∣∣ 0〉. (5)

where c†kσ creates an electron of spin σ in the single particle state of crystal momentum k, and
uk and vk are complex amplitudes determined by minimization of the energy. BCS showed that
if the net interaction between electrons is attractive, the state Eq. (5) has a lower energy than
the normal metal Fermi sea. At finite temperatures, the system has quasiparticle excitations
with minimum energy ∆(T ), the superconducting energy gap, which is a decreasing function
of temperature. At a critical temperature Tc, ∆(T ) reaches zero and the system transitions into
the normal state. They furthermore showed that below Tc the system has many properties that
resemble what is experimentally found for superconductors.
BCS formulated their theory under the assumption that the attractive interaction between elec-
trons resulted from the electron-phonon interaction. Under that assumption, a simplified ex-
pression for the critical temperature is

Tc = ~ωDe−1/λ (6)

where λ is the dimensionless electron-phonon coupling and ωD is the Debye temperature, in-
versely proportional to the square root of the ionic mass M . Hence Eq. (6) predicts the isotope
effect, namely that

∂ lnTc
∂ lnM

= −α (7)
with α = 1/2.
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Finally, we should include among the “known knowns” the understanding intuited by London
[10], implicit in BCS theory, anticipated by Ginzburg and Landau [11], and demonstrated by the
physical effects predicted by Brian Josephson [12], that the superconducting condensate can be
represented by a macroscopic quantum wavefunction ψ(~r) =

∣∣ψ(~r)
∣∣eiθ(~r) with a unique phase

θ(~r) common to all electrons in the superfluid, and an amplitude
∣∣ψ(~r)

∣∣ whose square gives the
density of superfluid electrons.
All of the above, we all agree we know. Hence they are known knowns. Good references for
the above are the books by Tinkham [13] and by de Gennes [14].

1.2 The known unknowns:
Mechanisms of unconventional superconductivity

The known unknowns are what we know that we don’t know about superconductivity.

We know (meaning everybody agrees) that for materials that conduct electricity at ambient pres-
sure, hence can potentially be superconductors, the electron-phonon interaction is not strong
enough to overcome the Coulomb repulsion between electrons and give rise to superconductiv-
ity at temperatures above liquid nitrogen temperature, 77 K [15]. Some cuprate superconduc-
tors [16], a class of materials discovered in 1986, superconduct up to much higher temperatures,
up to 140 K. Therefore, we know that there has to be at least one other mechanism that gives
rise to superconductivity that is not the electron-phonon interaction. Superconducting materials
not driven by the electron-phonon interaction are called “unconventional superconductors”.
For a variety of reasons, many classes of materials, even if they have critical temperatures
much lower than 77 K, are believed to be “unconventional superconductors”, as surveyed in
Ref. [8]. There are a large number of unconventional theories of superconductivity proposed to
describe the cuprates and other unconventional superconductors (see introduction in Ref. [17]
for many references), but there is no general agreement on which (if any) of the theories is
correct for any materials. These theories are generally proposed to apply to one or more classes
of unconventional superconductors but not to all.
Since it is known that there are superconducting materials not described by BCS electron-
phonon theory, and there is no general agreement on which mechanisms give rise to super-
conductivity in the so-called unconventional superconductors, the mechanism(s) that give rise
to unconventional superconductivity are known unknowns.

1.3 The unknown unknowns:
Does BCS theory explain the Meissner effect?

The unknown unknowns are what we don’t know that we don’t know about superconductivity.

It is universally believed that BCS theory explains the Meissner effect. I disagree, I believe this
has not been carefully considered. BCS showed that the BCS state with magnetic field excluded
has lower free energy than the normal state with magnetic field in the interior. However, BCS
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theory has not explained the process by which a normal metal becoming superconducting ex-
pels the magnetic field to reach the BCS state. I have argued [18] that BCS superconductors
(meaning superconductors described by BCS theory) do not have the physical elements nec-
essary to give rise to a Meissner effect, and that as a consequence, if cooled from above Tc to
below Tc in the presence of a magnetic field, they would not make a transition to the supercon-
ducting state that excludes the magnetic field but would instead remain in a metastable normal
state with the magnetic field remaining in the interior, contrary to what is seen experimentally.
This implies, since real superconductors do exhibit a Meissner effect, that real superconductors
cannot be described by BCS theory. Since the Meissner effect is not generally considered to be
an unexplained phenomenon, I call this an unknown unknown.
Moreover, I believe there is a single theory to describe all superconductors, i.e., the so-called
conventional and unconventional superconductors, that also explains the Meissner effect. A
survey of the theory in its present state is given in my book [19]. A substantial part of the theory
was developed in collaboration with Frank Marsiglio, papers are listed in Ref. [20].

1.4 The unknown knowns:
Are there any electron-phonon superconductors?

An unknown known is something we think we know but in reality we don’t know.

There is essentially universal agreement that the electron-phonon interaction gives rise to super-
conductivity in conventional materials, including the hydrides under high pressure [21]. Hence,
that electron-phonon superconductors exist in nature. For the hydrides, transition temperatures
are claimed to approach room temperature, in drastic violation of what was expected [15]. This
is argued to come about due to the light mass of hydrogen and the strong electron-phonon
coupling in such materials [21], as originally predicted by Ashcroft [22].
There is however no rigorous proof that the electron-phonon interaction gives rise to super-
conductivity in any material. The direct Coulomb repulsion between electrons is a first order
effect, generally much stronger than the second-order frequency-dependent electron-electron
interaction mediated by phonons that can be attractive under certain conditions. In calculations
that claim to predict superconductivity driven by the electron-phonon interaction, the effect of
the Coulomb repulsion is generally lumped into a phenomenological parameter µ∗ [23], the
“Coulomb pseudopotential”, assumed to be of order 0.1, which allows for superconductivity
driven by the attractive electron-phonon interaction. However there is no reliable way to calcu-
late µ∗ [24]. At the time when no other mechanisms for attractive interactions were known, i.e.,
in the 1960’s, this might have been a tenable scenario, it was adopted then and is firmly believed
to be valid to this date. I believe this is wrong, that in fact the electron-phonon interaction is ir-
relevant to superconductivity in all materials. Since everybody believes the opposite, that there
are electron-phonon superconductors in nature, I say that this is an unknown known.
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2 Correlated electron models for superconductivity

So-called Hubbard models are widely used to describe correlated electrons in solids. Various
incarnations of these models have been used to describe essential aspects of superconductivity
within a variety of different theories.

2.1 Attractive and repulsive Hubbard models

The simplest Hubbard model is given by the tight binding Hamiltonian

H = −
∑
i,j,σ

tij
(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (8)

describing electrons in a single orbital at each site in a lattice ofN sites, with on-site interactions
only. In momentum space the Hamiltonian is

H =
∑
kσ

εk c
†
kσckσ +

U

N

∑
kk′q

c†k+q↑c
†
k′−q↓ck′↓ck↑ (9)

For an attractive interaction U < 0, the ground state of its “reduced Hamiltonian”, of the form
Eq. (4), is of the form Eq. (5). This follows from the fact that the BCS gap equation [13]

∆k = − 1

N

∑
k′

Vkk′∆k′
1− 2f(Ek′)

2Ek′
(10)

with f the Fermi distribution function, Vkk′ = U, ∆k = ∆, and

Ek =
√

(εk−µ)2 +∆2 (11)

has a solution ∆ 6= 0 at sufficiently low temperatures for any U < 0.
For a repulsive interaction U > 0, the gap equation (10) has no solution. However, it has been
argued [25] that more elaborate treatments of the repulsive Hubbard model Eq. (8) do give rise
to a superconducting state induced by spin fluctuations in that model as well as the related t-J
model [26], with the gap function having d-wave symmetry

∆k = ∆0

(
cos(kxa)− cos(kya)

)
. (12)

There is however no rigorous proof that I know of that the repulsive Hubbard model has a
superconducting ground state. The t-J model does have a superconducting ground state, and
it is argued that the model results from the repulsive Hubbard model in the limit of strong
coupling, U � t [26]. However I have shown [27] that to the same order in t/U the Hamiltonian
resulting from the Hubbard model has, in addition to the t-J terms, three-site terms that exactly
cancel the attractive interaction resulting from the two-site terms.
There are no good reasons why the attractive Hubbard model should describe the essential
physics of interacting electrons in real materials. And whether the repulsive Hubbard model
exhibits superconductivity for any value of U > 0 is certainly not established [28, 29]. Thus,
the question whether the Hubbard model Eq. (8) has any relevance to the superconductivity of
real materials is not a settled question, despite the enormous amounts of research efforts that
has been devoted to that hypothesis [30, 31] during the last 40 years [32].
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2.2 Electron-phonon attraction versus electron-electron attraction

The interaction between electrons and phonons (lattice vibrations) is typically described by the
Hamiltonian

He-ph =
1√
N

∑
k,q,σ

gkq
(
bq + b†−q

)
c†k+qσckσ (13)

where the operators bq and b†−q destroy and create phonons with wavevector q and −q respec-
tively, and frequency ωq = ω−q. Eliminating the phonons in second order perturbation theory
leads to the effective electron-electron interaction [33]

Hph
e-e =

1

N

∑
k,q,σσ′

|gkq|2
2~ωq

(εk+q−εk)2 − (~ωq)2
c†k+qσc

†
k′−qσ′ck′σ′ckσ (14)

which is attractive for |εk+q−εk| < ~ωq. It is argued that this frequency-dependent (“retarded”)
attractive interaction between electrons near the Fermi surface can overcome the much larger
instantaneous repulsive interaction between electrons, given in its simplest form by the Hubbard
repulsion Eq. (9), through what is called the “Coulomb pseudopotential” effect [23,24] that we
will not go into here.
The electron-electron attraction mediated by phonons Eq. (14), identified in the 1950’s [33],
arises from second-order processes. In the 1960’s, it was pointed out that another source of
electron-electron attraction could be second order ‘excitonic’ processes, where the excitations
are electronic rather than phononic giving rise to interactions of the form Eq. (14) where the
phonon energy ~ωq is replaced by an electronic excitation. However those proposals did not
gain much traction.
It turns out, however, that a first order attractive interaction between electrons exists, originat-
ing in the Coulomb interaction between electrons in the presence of the periodic ionic lattice
potential [34]. In a tight binding formulation, the Hamiltonian containing diagonal as well as
off-diagonal matrix elements resulting from the Coulomb interaction is a ‘generalized Hubbard
model’ [35, 36] given in real space by

Hgen = −
∑
i,j,σ

tij
(
c†iσcjσ + h.c.) +

∑
ijkl

(ij/kl)c†iσc
†
jσ′clσ′ckσ (15)

with

(ij/kl) =

∫
d3rd3r′ ϕ∗i (r)ϕ

∗
j(r
′)

e2

|r − r′|
ϕl(r

′)ϕk(r) (16)

where ϕi is the atomic orbital associated with site i, U = (ii/ii) > 0 is the on-site repulsion,
and the repulsion between electrons on different sites i and j is Vij = (ij/ij) > 0. Here we
want to focus on the two-center off-diagonal matrix element of the Coulomb interaction (ii/ij)

given by

(ii/ij) ≡ ∆tij =

∫
d3rd3r′ϕ∗i (r)ϕj(r)

e2

|r − r′|
|ϕ∗i (r′)|2. (17)

The sign of the interaction Eq. (17) depends on the orbitals involved, in particular it is positive
for s-orbitals and negative for p-orbitals oriented along the i-j direction. The important point
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however is that Eq. (17) is of the same sign as the single electron hopping matrix element tij
arising from the electron-ion interaction, given approximately by [37]

tij = −
∫
d3rϕ∗i (r)

(
− Ze2

|r −Ri|

)
ϕj(r) (18)

where Z|e| is the ionic charge, that we can rewrite as

tij = −
∫
d3rd3r′ ϕ∗i (r)ϕj(r)

(
− Ze2

|r − r′|

)∣∣χi(r′)∣∣2 (19)

with χi(r′) the ‘ionic wave function’ such that |χi(r′)|2 = δ(r′−Ri), to make its close relation-
ship with Eq. (17) apparent [34]. Thus, it is reasonable to assume that ∆tij = αtij with α a
positive constant. The Hamiltonian that results then including this interaction and the Hubbard
on-site repulsion U is

H = −
∑
i,j,σ

(
tij −∆tij(ni,−σ+nj,−σ)

)(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (20)

The interaction ∆tij is called “correlated hopping”. In momentum space the Hamiltonian is

H =
∑
kσ

εk c
†
kσckσ +

1

N

∑
kk′q

(
U − α(εk+εk+q+εk′+εk′−q)

)
c†k+q↑c

†
k′−q↓ck′↓ck↑ (21)

with εk =
∑

j t0je
ikRj , where

∑
k εk = 0 since we are defining tii = 0. It can be seen from

Eq. (21) that this interaction increases the Hubbard repulsion near the bottom of the band, where
εk < 0, and decreases it near the top of the band where εk > 0. It is the only interaction of the
form Eq. (16) involving two centers that breaks electron-hole symmetry.
The reduced Hamiltonian for Eq. (21) is

Hred =
∑
kσ

(εk−µ)c†kσckσ +
1

N

∑
kk′

Vkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (22a)

Vkk′ = U − 2α(εk+εk′) (22b)

with −D/2 ≤ εk ≤ D/2, where D is the bandwidth. For a system with only nearest neighbor
hopping with tij = t, ∆tij = ∆t, and z nearest neighbors to each atom, the bandwidth is
D = 2zt and

U−4z∆t < Vkk′ < U+4z∆t (23)

so the reduction of the on-site repulsion U increases with the coordination number of the lattice.
Even for parameter values such that Vkk′ is always repulsive, i.e., U > 4z∆t, the BCS gap
equation Eq. (10) will have solutions [38]. This happens because ∆k changes sign and becomes
negative far from the Fermi energy when the interaction is most repulsive. We have called this
a “spatial pseudopotential effect” [38], since it is analogous to what occurs for the electron-
phonon interaction due to its frequency dependence [23].
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We can also write the Hamiltonian Eq. (20), assuming we are dealing with a bipartite lattice, in
terms of hole operators, by performing the transformation

c†iσ → (−1)iciσ (24)

and it becomes

H = −
∑
i,j,σ

(
t̄ij +∆tij(ni,−σ+nj,−σ)

)(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (25)

with t̄ij = tij−2∆tij . It will be more useful in this form for further developments.
There is a caveat, however, associated with the derivation given here. In the computation of the
Coulomb matrix elements Eq. (16) we have assumed that the orbitals are atomic orbitals, which
are not orthogonal at neighboring sites. Instead, the Hamiltonian Eq. (15) implicitly assumes
that the fermion operators create electrons in orthogonal orbitals. If we use orthogonal orbitals
instead to compute the matrix elements of the Coulomb interaction, it is found that the off-
diagonal element given by Eq. (17) is nearly zero [39, 40]. However, we will show in the next
section that there are other physical reasons for why the Hamiltonian Eq. (20) with appreciable
values of ∆tij is relevant.
Thus, both the electron-phonon Hamiltonian Eq. (13) and the purely electronic Hamiltonian
without electron-phonon interaction Eq. (21) can give rise to superconductivity in model sys-
tems. Whether or not both or one of them or neither of them gives rise to superconductivity in
real materials is a question for which there is no universally agreed answer.

2.3 Electron-hole asymmetry, correlated hopping
and dynamic Hubbard models

After having been a devoted fan of the Hubbard model in the early stages of my physics career
[41], I came to the conclusion 35 years ago that the Hubbard model Eq. (8) has a fundamental
flaw: it is electron-hole symmetric. By that I mean, the properties of a system with n electrons
per site are identical to those of a system with n holes per site, or equivalently 2−n electrons
per site. Around the same time, I came to the conclusion that electron-hole asymmetry is the
key to superconductivity [42]. That moment marked my definitive divorce from the Hubbard
model Eq. (8). Years later I attempted reconciliation with electron-hole asymmetric versions of
the Hubbard model, namely dynamic Hubbard models [43], discussed later in this paper.
The fundamental electron-hole asymmetry of condensed matter systems follows from the basic
fact that the mass of the electron is 2000 smaller than the mass of the proton. It manifests itself
for example in the fact that the mean inner potential of solids is necessarily positive [44, 45]. It
renders the repulsive Hubbard model Eq. (8) irrelevant for the description of real systems [46].
Let us see why: Eq. (8) contains two energy scales, the hopping parameter t and the on-site
repulsion U. But it excludes a third energy scale ε that is always in-between t and U, namely
the spacing between atomic energy levels. When a second electron comes to occupy the orbital
already occupied by the first electron, the first electron does not sit idle to pay the very large
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Fig. 1: The top panel shows the atomic physics assumed in most models of interacting electrons
such as the Hubbard model: the atomic orbital does not change with electron occupancy. The
bottom panel shows the real physics: the atomic orbital expands when it is doubly occupied.

Coulomb repulsion that would result from the second electron invading its turf. Instead, it (as
well as the second electron) will expand their wavefunction, partially occupying higher energy
single-particle states, thus reducing their Coulomb repulsion. This is shown schematically in
Fig. 1. For electrons in the ground state of hydrogen-like ions of charge Z, the radius of the
expanded orbital, or equivalently the value of Z̄ is, within the Hartree approximation,

Z̄ = Z − 5/16. (26)

This reduces the Coulomb repulsion between electrons, from U = 17 eV × Z = (5/4)ε0Z,
with ε0 = 13.6 eV, to

Ū =
5

4
Z̄ = U − 25

64
ε0 = U − 5.31 eV (27)

and reduces the kinetic energy of each electron, because of the orbital expansion, from K =

ε0Z
2 to K = ε0Z̄

2, while it increases the potential energy of each electron, because they are
further away from the nucleus, from −2ε0Z

2 to −2ε0ZZ̄, for a net energy reduction of

E(Z̄)− E(Z) = − 25

128
ε0 = −2.66 eV (28)

so that the effective repulsion between electrons, defined as Ueff = E(2) + E(0)− 2E(1), with
E(n) the energy of the ion with n electrons, is [43]

Ueff = U − 25

128
ε0 = U − 2.66 eV. (29)

From experimental values of ionization energies of hydrogen-like ions we find that

Ueff ∼ U − 4.1 eV, (30)

the reduction is greater than Eq. (29) because of radial and angular correlations for electrons in
the doubly occupied orbital that we did not take into account.
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The Hubbard model ignores the fundamental fact that the orbitals are modified upon double
occupancy. In the Hubbard model, both the singly and the doubly occupied atomic orbitals are
assumed to be single Slater determinants with the same single particle wavefunctions

|↑〉 = c†↑|0〉 (31a)

|↑↓〉 = c†↑c
†
↓|0〉 (31b)

so that

〈0|c↑|↑〉 = 〈↓ |c↑|↑↓〉 = 1 (31c)

which embodies the fundamental electron-hole symmetry of the Hubbard Hamiltonian. How-
ever, this is qualitatively incorrect because the doubly occupied state is never a single Slater
determinant but rather a linear combination of Slater determinants involving higher single elec-
tron states

|↑↓〉 =
∑
m,n

Amn c
†
m↑c

†
n↓|0〉 (32a)

∑
m,n

|Amn|2 = 1 (32b)

where the sum runs over a complete set of atomic orbitals with the lowest single particle orbital
denoted by m = 0, i.e. c0σ = cσ, as well as over continuum states [47]. Eq. (32b) implies of
course that Amn < 1 for any m, n. Hence we have

c↑|↑↓〉 =
∑
n

A0n c
†
n↓|0〉 = A00|↓〉+

∑
n6=0

A0n c
†
n↓|0〉 (33)

and

1 = 〈0|c↑|↑〉 6= 〈↓ |c↑|↑↓〉 = A00 < 1. (34)

In other words, creating an electron into an empty orbital (or destroying an electron in the singly
occupied orbital) is qualitatively different from creating a hole in the doubly occupied orbital
(or creating an electron in the single occupied orbital).
For an electronic energy band that is close to empty, when electrons hop between sites tran-
sitions occur mostly between empty and singly occupied orbitals, so no other states are in-
volved and the spectral function A(k, ω) will be a δ-function with quasiparticle weight z = 1,
A(k, w) = δ(ω−εk). Instead, for a band that is close to full, when a hole hops from a site to
a neighboring site with no hole (i.e. doubly occupied), the final state can involve any of the
atomic excited states at the two sites. The spectral function will have a quasiparticle part with
quasiparticle weight z < 1, representing ground state to ground state transitions, and a broad
incoherent part, as shown schematically in Fig. 2. We can describe this physics by writing the
electron creation operator at site i as [48, 49]

c†iσ =
(
1 + (S−1)ñi,−σ

)
c̃†iσ (35)
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Electron-hole asymmetry in electronic energy bands

holes

electrons

z<1

A(k,ω)

A(k,ω)

z=
2

z=1

Fig. 2: Electronic energy band εk versus k. Near the top of the band, most orbitals are doubly
occupied and hence expanded. As the Fermi level moves up in the band, quasiparticles at
the Fermi energy become increasingly dressed by the atomic electron-electron interaction, and
increasingly heavier, and turn from electrons to holes. On the right we show schematically
the spectral function evolving from a δ-function near the bottom of the band with quasiparticle
weight z=1 to one with small quasiparticle weight z < 1 near the top of the band, with the rest
of the spectral weight spread out in incoherent processes. The thickness of the curve giving the
εk versus k relation indicates schematically the magnitude of the quasiparticle weight, which
can be vanishingly small near the top of the band when the effective ionic charge is small.

where c̃†iσ creates a quasielectron at site i, and S = 〈ϕ̄(r)|ϕ(r)〉 is the overlap matrix element
between expanded and unexpanded orbitals shown in Fig. 1. The quasiparticle spectral weight
as a function of band filling 0 < ne < 2 is

z(ne) =
(

1 + (S−1)
ne
2

)2
(36)

and goes from z = 1 for an almost empty band to z = S2 for an almost full band. Alternatively,
in terms of hole operators (denoted by the same symbols to avoid proliferation of symbols)

c†iσ =
(
S + (1−S)ñi,−σ

)
c̃†iσ (37)

and the quasiparticle weight as function of hole concentration nh = 2−ne is

z(nh) =
(
S + (1−S)

nh
2

)2
. (38)

The kinetic energy part of the Hamiltonian is

Hkin = −
∑
ij,σ

tσij
(
c†iσcjσ + h.c.

)
(39)

and replacing the electron operators by their expression in terms of quasiparticle operators
Eq. (35) we obtain

Hkin = −
∑
ij,σ

tσij
(
c̃†iσ c̃jσ + h.c.

)
(40)

with correlated hopping

tσij = tij
(
1 + (S−1)(ñi,−σ+ñj,−σ) + (S−1)2ñi,−σñj,−σ

)
. (41)
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εk 

holes	

electrons	

Fig. 3: Hopping amplitudes for electrons at the Fermi energy as function of band occupation.
As the number of electrons increases, hopping amplitudes are suppressed due to the modulation
of the hopping by the overlap matrix element S of expanded and unexpanded orbitals.

Alternatively, in terms of hole operators, we have the same Eq. (40), with the hopping ampli-
tudes given by

tσij = tijS
2
(

1 +
( 1

S
−1
)(
ñi,−σ+ñj,−σ

)
+
( 1

S
−1
)2
ñi,−σñj,−σ

)
. (42)

Fig. 3 shows the hopping amplitudes resulting from these equations.
The hopping amplitudes Eqs. (41) or (42) give rise to four-fermion and six-fermion terms in the
Hamiltonian. In the presence of on-site repulsion, the six-fermion term will be irrelevant for the
form Eq. (41) (Eq. (42)) when the Fermi level is close to the bottom (top) of the band. For the
latter case, the Hamiltonian for hole operators is then

H = −
∑
〈ij〉,σ

(
t̄ij +∆tij(ni,−σ+nj,−σ)

)(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (43)

of the same form as Eq. (25), with t̄ij = tijS
2 and ∆tij = tijS(1−S).

For small S, t̄ij will be very small, giving rise to a narrow energy band, of width D that grows
as the number of holes in the band increases. For a hypercubic lattice with nearest neighbor
hopping only t̄ij = t̄ the bandwidth is

D(nh) = 2zt̄
(
1 + nh∆t

)
(44)

with z the number of nearest neighbors to a site.
The physics discussed above is not present in the conventional Hubbard model. For those that
cannot renounce the credo that the Hubbard model describes the essential physics of electron
correlation in solids I offer “dynamic Hubbard models” [43] that embody the essential ubiq-
uitous presence of electron-hole asymmetry. The physics is schematically shown in Fig. 4.
We introduce a fictitious local boson displacement coordinate qi for atom i that modulates the
Hubbard U

U(qi) = U + αqi (45)

that will relax when double occupancy occurs. As the simplest model we describe the boson
dynamics by a harmonic oscillator of frequency ω0 =

√
K/M

Hi =
p2i

2M
+

1

2
Kq2i +

(
U+αqi

)
ni↑ni↓ . (46)



7.14 Jorge E. Hirsch

States	of:	
electrons	

holes	

boson	degree	
of	freedom	

another	boson		
degree	of	freedom	

Fig. 4: Dynamic Hubbard models, or electron-hole asymmetric polarons: a boson degree of
freedom is associated with each site. The first electron at the site causes no change or a small
change in the ground state of this degree of freedom, and the second electron causes a large
change. For holes, the situation is reversed. Two examples of the boson degree of freedom are
shown, an oscillator and a spin 1/2.

The equilibrium position of the boson is qi = 0 for the site empty or singly occupied and
qi = −α/K for the site doubly occupied. This embodies the physics of orbital expansion of
the doubly occupied sites discussed above, and increasingly “dresses” the quasiparticles as the
Fermi level goes up in the band. In terms of boson creation and annihilation operators a†i , ai the
site Hamiltonian and the effective Coulomb repulsion between electrons are

Hi = ω0 a
†
iai +

(
U + gω0(a

†
i+ai)

)
ni↑ni↓ (47a)

Ueff = U − α2

2K
= U − ω0g

2 (47b)

with g = α/(2Kω0)
1/2. The boson degree of freedom describes the electronic excitation of an

electron when a second electron is added to the orbital. Hence the frequency ω0 is related to the
excitation energies of the atom, and we expect

ω0 = cZ2 (48)

where c is a constant of order eV, since the excitation energies in an atom scale with the square
of the nuclear charge. From Eqs. (29), (47b) and (48) we conclude that

g2 =
c′

Z2
. (49)

For a lattice system with hopping amplitude tij the Hamiltonian is then

H = −
∑
ij,σ

tij
(
c†iσcjσ + h.c.

)
+
∑
i

(
U + gω0(a

†
i+ai)

)
ni↑ni↓ +

∑
i

ω0a
†
iai (50)

Treating the four-fermion term in mean field, the electron-boson part of the Hamiltonian Eq. (50)
is

Hel-b = g(n)ω0

(
a†i+ai

)(
ni↑+ni↓

)
(51a)
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with
g(n) =

n

2
g (51b)

that is, an ordinary electron-boson coupling with a coupling constant that increases with band
filling. Hence as in the usual electron-phonon interaction it will give rise to an effective mass
enhancement and a quasiparticle weight reduction which increases as the band filling increases.
Performing a generalized Lang-Firsov transformation on the fermion and boson operators [48]
we obtain

ciσ = eg(a
†
i−ai)ñi,−σ c̃iσ ≡ Xiσ c̃iσ (52a)

ai = ãi − gñi↑ñi↓ (52b)

and the Hamiltonian Eq. (50) becomes

H = −
∑
ij,σ

tij
(
X†iσXjσ c̃

†
iσ c̃jσ + h.c.

)
+
∑
i

Ueff ñi↑ñi↓ +
∑
i

ω0ã
†
i ãi (53)

with Ueff given by Eq. (47b). The ground state expectation value of the Xiσ operator is

〈Xiσ〉0 = e−(g
2/2)ñi,−σ = 1 + (S−1)ñi,−σ (54a)

S = e−g
2/2 (54b)

The part of the fermion operator Eq. (52a) associated with ground state to ground state transi-
tions of the boson field is the coherent part of the operator, the quasiparticle. We have then

ciσ = |0〉〈0|
(
1 + (S−1)ñi,−σ

)
c̃iσ + cincoh

iσ (55)

where the coherent part was given in Eq. (35). |0〉 denotes the ground state of the auxiliary
boson. The incoherent part of the operator

cincoh
iσ =

(
ñi,−σ

∑
(l,l′)6=(0,0)

|l〉〈l|eg(a
†
i−ai)|l′〉〈l′|+

∑
l 6=0

|l〉〈l|
)
c̃iσ (56)

describes processes where the boson field makes transitions to and from excited states |l〉, l 6= 0,
which only take place if ñi,−σ = 1, that is if the orbital is occupied by another electron of
opposite spin.
Replacing the ground state expectation values of the Xiσ operators in the Hamiltonian Eq. (53),
gives rise to the hopping amplitudes discussed earlier, Eq. (41). This will be accurate for ω �
tij . The quasiparticle weight in this model is, from Eq. (55)

z(n) =
(

1 +
n

2
(S−1)

)2
(57)

as was already given in Eq. (36), it decreases monotonically with electronic band filling ne,
0 ≤ ne ≤ 2, so that quasiparticles become increasingly dressed as the band filling increases.
The factor S is the overlap matrix element of the oscillator ground states with and without site
double occupancy [48], and S2 gives the quasiparticle weight for a hole in the filled band (n=2
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(a)	Electronic	DHM	

(b)	Spin	DHM	(b)	Spin	DHM	

Fig. 5: (a) Site states of an electronic dynamic Hubbard model (DHM) with two orbitals per
site. (b) Site states of a dynamic Hubbard model with an auxiliary spin degree of freedom
denoted by states |+〉, |−〉. For both cases, as indicated in the center panel, the left three states
are lowest in energy and are the quasiparticle states in the low energy effective Hamiltonian
with the correlated hopping term Eq. (43).

in Eq. (57)). According to Eqs. (49) and (54b), as the ionic charge Z decreases S decreases
rapidly, implying that hole quasiparticles become increasingly incoherent.
We can estimate S from first principles for a hydrogen-like ion. In the Hartree approximation,
S will be given by the overlap matrix element of the electron wave function in the presence and
in the absence of another electron in the orbital

S = |〈ϕ1s|ϕ̄1s〉| =
(1− 5

16Z
)3/2

(1− 5
32Z

)3
(58)

with ϕ̄1s the 1s orbital with Z replaced by Z̄ = Z − 5/16, as appropriate for the Hartree
wavefunction [43]. Better estimates can be obtained with other more accurate approximations
to the two-electron wavefunction [50].
Other forms of dynamic Hubbard models have also been proposed and studied, where the aux-
iliary boson degree of freedom is a spin 1/2 instead of an oscillator, as well as one with purely
electronic degrees of freedom involving two orbitals per site [50, 51]. The low and high en-
ergy states in these models are shown in Fig. 5. The essential physics is always the same and
leads to the correlated hopping Hamiltonian Eq. (43) in the limit where the boson excitation
energies are large. Dynamic Hubbard models have been studied numerically using exact diag-
onalization [51–53], quantum Monte Carlo [52, 54] and dynamical mean-field theory [55]. The
effect of finite boson frequency was studied analytically in Ref. [56] using Eliashberg theory.
Both from exact diagonalization for small clusters [52] and analytically [56] it was found that
finite frequencies enlarge the parameter regime that gives rise to pairing and superconductivity
relative to that in the antiadiabatic limit.
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2.4 Superconductivity in dynamic Hubbard models

The dynamic Hubbard models discussed in the previous section describe increased dressing of
the quasiparticles when the Fermi level goes up in the band. When the Fermi level is close to the
top of the band, and carriers pair, it means that locally the band filling decreases, hence carriers
partially undress. This provides a mechanism for superconductivity [57,58], driven by lowering
of kinetic energy [59]. The undressing gives rise to experimental signatures, in particular trans-
fer of spectral weight from high to low frequencies in both the single and two-particle spectral
function [49,53,60], that can be detected experimentally in photoemission [61] and optical [62]
experiments respectively. This physics leads to an apparent violation of the conductivity sum
rule, that was predicted theoretically in 1992 [63,60] and first observed experimentally 10 years
later [62]. The fact that the superconductivity mechanism is tied to electron-hole asymmetry
also gives rise to experimental signatures, in particular a tunneling asymmetry of universal sign,
predicted theoretically in 1989 [64] and first observed experimentally around 1995 and there-
after [65].
We focus on the low energy physics that results from the correlated hopping Hamiltonian
Eq. (21), with the addition of off-site Coulomb repulsion Vijninj . In momentum space the
Hamiltonian is, in hole representation

H =
∑
kσ

(
εk−µ

)
c†kσckσ +

1

N

∑
kk′q

(
V (q) + α(εk+εk+q+εk′+εk′−q)

)
c†k+q↑c

†
k′−q↓ck′↓ck↑ (59a)

V (q) =
∑
j

eiqRjV0j (59b)

with V00 = U, and α = ∆tij/t̄ij . Assuming only nearest neighbor hopping and only on-site
and nearest-neighbor repulsion, we write the pair interaction in the BCS reduced Hamiltonian
Eq. (4) as

Vkk′ = V (εk, εk′) = U +
K

D/2
(εk+εk′) +

W

D/2
εkεk′ (59c)

with the bandwidth D = 2zt̄, z the number of nearest neighbors to a site, K = 2z∆t and
W = zV. We have left out some terms in V (k−k′) that are odd under k → −k or k′ → −k′ that
drop out in the subsequent development. Note that everything depends on kinetic energy rather
than momentum, hence the resulting gap function will obey ∆k = ∆(εk), and in particular will
be constant over the Fermi surface. The usual BCS gap equation is

∆k = − 1

N

∑
k′

V (εk, εk′)∆k′
tanh(βEk′/2)

2Ek′
. (60)

with
Ek =

√
(εk−µ)2 +∆2

k. (61)

From the form of V (εk, εk′) it follows that ∆k = ∆(εk) is a linear function of εk, which we
parametrize as

∆(εk) = ∆m

(
− εk
D/2

+ c
)

(62)
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)	
Fig. 6: The left panel shows the typical behavior of critical temperature versus hole concen-
tration in this model for one set of parameters appropriate for high Tc cuprates; the behavior
of the coherence length versus hole concentration in units of lattice spacing and of the ratio of
effective mass to band mass is shown on the right-hand scale

(
m∗/m = (t̄+2∆t)/(t̄+nh∆t)

)
.

The right panel shows the behavior of the parameter ∆t as function of interatomic distance and
various values of the effective ionic charge Z (Z = 0.75, 1, 1.25, 1.5, 2).

and replacement of Eq. (62) in Eq. (60) yields the following two equations [57, 58]

1 = K(I1+cI0)−W (I2+cI1) (63a)

c = K(I2+cI1)− U(I1+cI0) (63b)

with

I` =
1

N

∑
k

(
− εk
D/2

)` tanh(βEk′/2)

2Ek′
. (64)

These equations are solved numerically for ∆m and c as function of temperature and band
filling determined by µ. To obtain the critical temperature, a single equation needs to be solved,
obtained by combining Eqs. (63a) and (63b)

1 = 2KI1 −WI2 − UI0 +
(
K2−WU

)(
I0I2−I21

)
(65)

with Ek = |εk−µ| in the formulas for I`. Eq. (65) will have a solution, i.e. give rise to super-
conductivity, when the parameters in the Hamiltonian Eq. (59) satisfy the condition [36]

k >
√

(1+u)(1+w)− 1 (66)

with u = gU,w = gW, k = gK, and g the density of states at the Fermi energy.
Fig. 6(a) shows the typical behavior for critical temperature versus hole concentration resulting
from this model for a set of parameters appropriate to describe cuprate superconductors. In
Fig. 6(b) we show the results for the parameter∆t versus interatomic distance for various values
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(a)	
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)	

ν	
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)	

(b)	

Fig. 7: (a) shows the gap function and the quasiparticle energy as function of kinetic energy in
a hole representation. Note that the gap function changes sign as εk increases. The minimum in
the quasiparticle energy is shifted from the chemical potential µ by the asymmetry parameter ν.
(b) shows the temperature dependence of ν for two sets of parameter values. Lower curve:
U = 5 eV, K = 3.61 eV, W = 2.24 eV, Dh = 0.24 eV. Upper curve: U = 5 eV, K = 3.78 eV,
W = 2.60 eV, Dh=0. K=2z∆t, W=zV , and z=4, z the number of nearest neighbors to a site.

of the effective ionic charge Z, obtained from an approximate first-principles calculation for a
diatomic molecule [66]. It can be seen that ∆t is larger for negatively charged ions (Z < 2) in
close proximity.
The parameters for Fig. 6(a) are U = 5 eV, t̄ = 0.03 eV, ∆t = 0.1875 eV. The bare bandwidth
is 3.24 eV when the Fermi level is near the bottom of the band, but when it is near the top it is
narrowed to 0.24 eV since t̄ = t−2∆t. Superconductivity only occurs near the top of the band,
with the characteristic dome-type structure seen in the cuprates as well as in other materials like
in the transition metal series [67]. The figure also shows that the effective mass decreases as
the Fermi level moves down in the band, and the superconducting coherence length increases.
There is a cross-over between strong and weak coupling regimes as the hole concentration
increases, as seen in the cuprate superconductors.
From Eqs. (62) and (63), we find that the quasiparticle excitation energy in the superconducting
state is given by

Ek =
√
a2(εk−µ−ν)2 +∆2

0 (67a)

with

a =

√
1 +

( ∆m

D/2

)2
, ∆0 =

∆(µ)

a
and ν =

1

a

∆m

D/2
∆0 . (67b)

This is shown in Fig. 7(a). It can be seen that the minimum in the Ek versus εk relation is not at
the chemical potential, as in usual BCS, because of the energy dependence of the gap. Instead,
it is shifted to µ+ν. Thus, the quasiparticle excitations are not charge-neutral as in usual BCS,
they are positively charged. The behavior of the asymmetry parameter ν versus temperature is
shown in Fig. 7(b). Both the gap slope ∆m/(D/2) and the gap ∆0 vanish at Tc as the square
root of Tc−T , hence ν goes linearly to zero at Tc.
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The parameter ν gives rise to the asymmetry of universal sign in S-I-N tunneling mentioned
earlier. It also gives rise to positive thermoelectric power of tunnel junctions: under open-circuit
conditions, the thermoelectric voltage is predicted to be [68]

Vt =
ν

e

Ts − Tn
Tn

(68)

with Ts and Tn the temperatures in the normal and superconducting sides of the junction re-
spectively. Thus, this effect provides a direct measure of the fundamental asymmetry parameter
ν, or equivalently of the gap function slope ∆m/(D/2), given an independent estimate of the
gap ∆0. The parameter ν is expected to be of order meV for cuprate superconductors and µeV
for conventional superconductors. For quasiparticle tunneling between two superconductors A
and B the thermoelectric voltage under open-circuit conditions is

VAB =
νA + νB

e

TB − TA
(TA + TB)/2

(69)

neglecting a small correction of order νAνB/∆0A∆0B. These predictions have not been experi-
mentally tested.

3 Charge expulsion and alternative London electrodynamics

In the models discussed in the previous section, charge asymmetry plays an essential role. Su-
perconductivity only occurs when the band is almost full, i.e., a lot of negative electrons are
present. The essential physics at the atomic level is that the doubly occupied orbital expands,
hence negative charge moves outward, driven by both lowering of Coulomb repulsion and low-
ering of quantum kinetic energy. The pairing interaction ∆t is larger when the atoms involved
are negatively charged anions, i.e., the effective nuclear charge Z is small (Fig. 6b), in which
case the atomic orbital expansion is larger. Having fewer electrons in the vicinity of a given
electron allows it to hop with larger hopping amplitude, hence its kinetic energy decreases. All
of this suggests that systems governed by this physics will have a tendency to expel electrons
from their interior [69]. That is indeed what they do, and it has fundamental consequences.

3.1 Charge expulsion in dynamic Hubbard models

As was shown in Fig. 7(a), the quasiparticle excitation energy Ek is not symmetric around the
chemical potential due to the energy dependence of the gap. The BCS coherence factors are
given by the usual form

u2k =
1

2

(
1 +

εk−µ
Ek

)
=

1

2

(
1 +

εk−µ−ν
Ek

)
+

ν

2Ek
(70a)

v2k =
1

2

(
1− εk−µ

Ek

)
=

1

2

(
1− εk−µ−ν

Ek

)
− ν

2Ek
(70b)
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and as a consequence quasiparticles are positively charged on average. The net quasiparticle
charge per site is given by

Q∗ =
2

N

∑
k

(
u2k−v2k

)
f(Ek) = 2ν

1

N

∑
k

1

Ek
. (71)

As a consequence of quasiparticles being positively charged, the condensate will acquire an
extra negative charge.
Hence the superconductor is characterized by having two different ‘chemical potentials’. The
chemical potential µ corresponds to the condensate, and µ′ = µ+ν to the quasiparticle excita-
tions. In a hole representation, µ′ > µ, in an electron representation µ′ < µ. The negatively
charged condensate, by virtue of being a superfluid as well as because of the effective mass
reduction that occurs due to pairing and undressing, is highly mobile, in contrast to the quasi-
particles which experience normal scattering and have the higher effective mass characteristic
of the normal-state dressed carriers. As a consequence, one expects that the negative conden-
sate will have a tendency to move out of the bulk of the superconductor, so as to tend to equate
the chemical potentials µ and µ′ in the bulk. Because of overall charge neutrality, the negative
charge will accumulate near the surface of the superconductor.
An estimate of the maximum amount of charge that will be expelled from the bulk of the super-
conductor is given by the ratio of the difference in chemical potentials to the bandwidth D:

nmax =
2(µ′−µ)

D
=

2ν

D
(72)

carriers per site, so it is very small. However, the tendency to charge expulsion will be counter-
acted by Coulomb charging energy.
That this physics takes place is confirmed by numerical analysis of the underlying Hamiltonian
[70]. We consider the Hamiltonian in the hole representation

H = −
∑
ijσ

tσij
(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (73a)

tσij = th +∆t
(
ni,−σ+nj,−σ

)
+∆t2ni,−σnj,−σ (73b)

with th = tS2 ∆t = tS(1−S), ∆t2 = t(1−S)2 = (∆t)2/th. The fact that the hopping ampli-
tudes Eq. (73b) increase with hole occupation suggests that the system will have a tendency to
expel electrons from its interior to the surface, because the coordination of sites in the interior
is larger than of sites at the surface. This is indeed what we find numerically. We assume a
cylindrical geometry of radius R and infinite length in the z-direction, and decouple the inter-
action terms within a simple mean field approximation assuming 〈niσ〉 = ni/2 with ni the hole
occupation at site i, yielding the mean field Hamiltonian

Hmf = −
∑
〈ij〉,σ

(
th+∆tni+∆t2

n2
i

4

)(
c†iσcjσ +h.c.

)
+
U

4

∑
i

n2
i −
∑
〈ij〉

ni

(
∆t+

nj
2
∆t2

)∑
σ

〈c†iσcjσ〉

(74)
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Fig. 8: Left panel: hole site occupation per spin nσ for a cylinder of radius R=11 as a function
of r/R, with r the distance to the center, for a cubic lattice of side length 1. There are 377 sites
in a cross-sectional area (πR2 = 380.1). The average occupation for both spins is n = 0.126
holes per site. Parameters in the Hamiltonian are shown on the left panel. ∆t2 = 0. On the right
panel we show the results for two cases from the left panel, representing the hole occupation at
the site with circles of diameter proportional to it. Note that for finite ∆t the hole occupation
increases in the interior and is depleted near the surface, leading to charge inhomogeneity with
excess negative charge near the surface and excess positive charge in the interior, relative to a
neutralizing background of charge density n.

Note that the local average bond occupation modifies the local chemical potential. Assuming a
band filling of n holes per site, we diagonalize the Hamiltonian Eq. (74) on a finite lattice with
initial values ni = n and fill the lowest energy levels until the occupation n is achieved. From
the Slater determinant of that state we obtain new values of ni for each site and for the local bond
occupation, and iterate this procedure until self-consistently is achieved. We then examine the
resulting occupation of the sites as function of the distance r to the center of the cylinder. Fig. 8
shows a typical example of the behavior found. Here we assumed ∆t2 = 0, corresponding to
the simpler Hubbard model with correlated hopping and no six-fermion operator term. Even
for ∆t = 0 the hole occupation is somewhat larger in the interior than near the surface. When
the interaction ∆t is turned on, the hole occupation increases in the interior and decreases near
the surface. This indicates that the system expels electrons from the interior to the surface.
The effect becomes more pronounced when ∆t is increased or th is decreased. Finite ∆t2
enhances the effect. For larger values of the parameters the system develops a tendency to
phase separation, where holes condense in the interior and the outer region of the cylinder has
no holes. The instability condition for phase separation can be found analytically.

Of course in a real material this tendency to charge segregation will be countered by longer
range Coulomb repulsion. But it is clear that this physics will cause a tendency to develop local
charge inhomogeneity: because kinetic energy dominates the physics of the dynamic Hubbard
model, the system will develop charge inhomogeneity at a cost in potential energy if it can
thereby lower its kinetic energy more, unlike systems where the dominant physics is potential-
energy driven like the conventional Hubbard model. High Tc cuprates, for which ∆t should be
large, show a strong tendency to charge inhomogeneity.
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ground	state	
of	superconductor	

Fig. 9: The dynamic Hubbard model describes negative charge expulsion and kinetic energy
lowering at the atomic level, due to orbital expansion (left panel). In a lattice system it leads
to expulsion of negative charge from the interior to the surface. In the superconducting state, a
macroscopic charge inhomogeneity develops as shown on the right panel, with an electric field
~E(~r ) in the interior that points towards the surface.

3.2 Electric fields in superconductors and
alternative London charge electrodynamics

The physics discussed in the previous sections leads to the prediction that when a system goes
superconducting it will expel electrons from the interior to the surface, resulting in macroscopic
charge inhomogeneity, as shown on the right panel of Fig. 9. In the normal state this cannot
occur, the tendency to charge expulsion is countered by the Coulomb repulsion and no electric
field can exist in the interior of a normal metal. That minimizes the potential energy. How-
ever the superconducting state is a macroscopic quantum state, where the sum of potential and
quantum kinetic energy need to be minimized. Just like in the microscopic atom the charge
distribution is inhomogeneous, with the negative charge more “spread out” than the positive
charge to lower its quantum kinetic energy, the same will be true in the superconductor, which
is in some sense a “giant atom”. This is also suggested by the fact that the superfluid conden-
sate is described by a macroscopic quantum wavefunction ψ(~r)=|ψ(~r)|eiθ(~r) [11, 12], just like
the single electron in the hydrogen atom. This results in the existence of an electric field in the
interior of superconductors, just like in the hydrogen atom, as shown on the right panel of Fig. 9.

The conventional London equations do not allow for electric fields inside superconductors.
However a simple modification of them does [1, 71, 72]. The London equation is derived as:

∂ ~J

∂t
=
nse

2

me

~E → ~∇× ~J = −nse
2

mec
~B = − c

4πλ2L
~B,

1

λ2L
=

4πnse
2

mec2
→ ∇2 ~B =

1

λ2L
~B (75)

The equation on the left describes the collisionless response of a conducting fluid of density ns
to an applied electric field ~E, i.e., free acceleration of superfluid carriers of charge e and mass
me, giving rise to the supercurrent ~J = nse~v, with ~v the carrier velocity. Upon application of
the curl on both sides, using Faraday’s law and integrating over the time derivatives, the second
equation results, called the London equation. From applying the curl to both sides of Ampere’s
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law ~∇× ~B = (4π/c) ~J and replacing ~∇× ~J in Eq. (75), the right-hand side expression results,
that predicts that the magnetic field decays exponentially over a distance λL in going from the
surface towards the interior of the superconductor.
We note however that the London equation can be written as

~∇× ~J = − c

4πλ2L
~B → ~J = − c

4πλ2L
~A (76)

with ~A the magnetic vector potential, ~∇× ~A = ~B. Faraday’s law, upon integration, leads to

~∇× ~E = −1

c

∂ ~B

∂t
→ ~E = −~∇φ− 1

c

∂ ~A

∂t
(77)

where φ is the electric potential. Taking the time derivative of the right hand side of Eq. (76)
and using Eq. (77) leads to

∂ ~J

∂t
=
nse

2

me

(
~E+ ~∇φ

)
(78)

which, unlike the left-hand-side of Eq. (75), allows for the presence of an electric field that
derives from a potential that will not give rise to an infinite current. Note that the left-hand-
side of Eq. (75) is derived from Newton’s equation by replacing the total time derivative by the
partial time derivative, which is not correct.
Note that the right-hand-side of Eq. (76) relates the electric current density, a physical quantity,
to the magnetic vector potential, that is gauge-dependent. Assuming different gauges for ~A in
Eq. (76) leads to different physics. The London brothers assumed that ~∇· ~A = 0, the “London
gauge”, which has as a consequence that no electric fields can exist in the interior of supercon-
ductors. But that was just an unproven assumption. Instead, we will assume that ~A obeys the
Lorentz gauge, as was also done in the first London paper [1]

~∇· ~A = −1

c

∂φ

∂t
. (79)

Upon taking the divergence of both sides of the right-hand-side of Eq. (76), and using the
continuity equation ~∇· ~J = −∂ρ/∂t with ρ the charge density and the gauge condition Eq. (79)
we obtain

~J = − c

4πλ2L
~A→ ∂ρ

∂t
= − 1

4πλ2L

∂φ

∂t
(80)

and integrating with respect to time to

φ(~r, t)−φ0(~r) = −4πλ2L
(
ρ(~r, t)−ρ0(~r)

)
(81)

where φ0(~r) and ρ0(~r) are constants of integration. A possible choice would be φ0 = ρ0 = 0 [1].
Instead, motivated by the physics discussed in the previous sections, we choose ρ(~r) = ρ0 > 0,
that is, a uniform positive charge density in the interior of the superconductor. This then implies
that the electrostatic potential φ(~r, t) equals φ0(~r) when the charge density in the interior of the
superconductor is constant, uniform, and equal to ρ0. From Maxwell’s equations we deduce
that φ0(~r) is given by

φ0(~r) =

∫
V

d3r′
ρ0

|~r − ~r′|
(82)
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Fig. 10: Results from numerical solution of the electrostatic equations. Left panel: electric field
lines in the exterior of a sample of ellipsoidal shape, of dimensions a = 1, b = 1.5. London
penetration depth is λL = 0.5 and ρ0 = 0.1. Middle panel top: Charge density in the interior of
the superconductor along the horizontal axis plotted versus ρ/a (curve labeled ρ/a and along
the vertical axis plotted versus z/b (curve labeled z/b) and on the boundary plotted versus
θ/(π/2), with θ = tan−1(z/b)/(ρ/a); note that the negative charge density near the surface is
larger in magnitude along the z-direction. Middle panel bottom: Electric fields in the interior
along the ρ/a and z/b (dot-dashed) directions. Note that the electric field along the z-direction
changes sign near the surface, and that the electric fields are finite at the surface. Right panel:
Electric field lines in the exterior of a sample of egg-like shape

where the integral is over the volume of the superconducting body. ρ0 is a function of the
material, the temperature, and the volume and shape of the superconducting body. Before
discussing its value, we discuss some consequences of these equations.
In the absence of time dependence, the electrostatic equations can be solved analytically for
simple geometries (sphere, cylinder, plane) and numerically for other geometries. For example,
for a sphere of radius R we obtain for the charge density and electric field

ρ(r) = ρ0

(
1− 1

3

R3

λ2Lr

sinh(r/λL
f(R/λL)

)
; ~E(r) =

4

3
πρ0~r

(
1− R3

r3
f(r/λL)

f(R/λL)

)
(83)

with f(x) = x coshx− sinhx. Within a layer of thickness λL from the surface there is excess
negative charge density ρ− = −R/(3λL)ρ0. The electric field grows linearly with distance from
the center of the sphere, peaks at distance λL from the surface, with peak valueEm = −4πλLρ−,
decays to zero at r = R, and is of course zero for r > R. For a long cylinder of radius R,
the peak value of the electric field Em at distance λL from the surface is given by the same
expression in terms of ρ−, and ρ− = −R/(2λL)ρ0. The expressions for the charge density and
electric field as function of r involve Bessel functions of imaginary argument.
For more general geometries, the electric field will “leak out” from the interior and be non-zero
outside the superconducting sample. In particular, ellipsoidal samples give rise to quadrupolar
electric fields in the exterior [73, 74]. Figure 10 shows examples of field lines and position
dependence of charge density and electric field in the interior of an ellipsoidal sample. Note
that the electric field lines outside the samples go out from regions of lower surface curvature
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and go into regions of higher surface curvature. This is easy to understand qualitatively. As we
will discuss later, there are spin currents flowing near the surface of the superconducting body.
In the regions of high curvature (low curvature) electrons slow down (speed up), just like racing
cars would, so their kinetic energy decreases (increases) and consequently their potential energy
increases (decreases), to keep the total energy constant. Higher (lower) potential energy for the
electron means lower (higher) electric potential, and electric field lines go from high potential
to low potential.
From Eq. (81) and Maxwell’s equations, we deduce that electric and magnetic fields, charges
and currents in superconductors, obey the following equations:

∇2 ~B =
1

λ2L
~B +

1

c2
∂2 ~B

∂t2
(84a)

∇2
(
~E− ~E0

)
=

1

λ2L
( ~E− ~E0) +

1

c2
∂2( ~E− ~E0)

∂t2
(84b)

∇2 ~J =
1

λ2L
~J +

1

c2
∂2 ~J

∂t2
(84c)

∇2
(
ρ−ρ0

)
=

1

λ2L
(ρ−ρ0) +

1

c2
∂2(ρ−ρ0)

∂t2
(84d)

so that all quantities obey exactly the same equation.
The simplicity of eqs. (84) derives from the fact that the theory is relativistically covariant. We
define the current four-vector and the four-vector potential in the usual way

J =
(
~J(~r, t), icρ(~r, t)

)
and A =

(
~A(~r, t), iφ(~r, t)

)
. (85)

The continuity equation sets the four-dimensional divergence of the four-vector J equal to zero,
where the fourth derivative is ∂/∂(ict), and the Lorenz gauge condition sets the divergence of
the four-vector A to zero

Div J = 0 and DivA = 0. (86)

Furthermore we define the four-vectors associated with the positive uniform charge density ρ0
and its associated current ~J0, denoted by J0 , and the associated four-vector potential A0 . In
the frame of reference where the superconducting body is at rest the spatial part of these four-
vectors is zero, hence

J0 =
(
0, icρ0

)
and A0 =

(
0, iφ0(~r)

)
(87)

in that reference frame. In any inertial reference frame, A0 and J0 , as well the four-vectors J
and A obey

22A0 = −4π

c
J0 and 22A = −4π

c
J (88)

with the d’Alembertian operator

22 = ∇2 − 1

c2
∂2

∂t2
. (89)
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Our fundamental equation is then either of the following relations between four-vectors

22(A−A0 ) =
1

λ2L
(A−A0 ) and J−J0 = − c

4πλ2L
(A−A0 ) (90)

valid in any inertial reference frame. In the frame of reference at rest with respect to the super-
conducting body, J0 and A0 have only time-like components, in another reference frame they
will also have space-like components. Eq. (84) for the fields, current and charge density can be
written in covariant form as

22(J−J0 ) =
1

λ2L
(J−J0 ) and 22(F−F0 ) =

1

λ2L
(F−F0 ) (91)

where F is the usual electromagnetic field tensor and F0 is the field tensor with entries ~E0 and 0

for ~E and ~B respectively when expressed in the reference frame at rest with respect to the ions.
An important consequence of these equations is that they predict that externally applied elec-
trostatic fields should be screened over a distance λL, the London penetration depth [75, 76],
rather than over the much shorter Thomas-Fermi screening length, as the conventional theory
predicts. This should be so at zero temperature. At finite temperatures, the effective screen-
ing length decreases since excited quasiparticles screen with the much shorter Thomas Fermi
screening length.

3.3 Spin electrodynamics and the Spin-Meissner effect

The canonical momentum of an electron with superfluid velocity ~vs is ~p = me~vs + e
c
~A, with ~A

the magnetic vector potential. In the BCS ground state the expectation value
〈
~p
〉

= 0, hence
the superfluid velocity is given by ~vs = − e

mec
~A = − eλL

mec
~B×n̂. The second equality applies

to a cylindrical geometry, where n̂ is the outward pointing normal of the lateral surface of the
cylinder and ~B is the magnetic field along the axis of the cylinder.
Consider an electron that moves radially outward from the axis of a cylinder in the presence of
a magnetic field ~B parallel to the cylinder. The equation of motion is

me
d~v

dt
=
e

c
~v× ~B + ~Fr (92)

where the first term is the magnetic Lorentz force and the second term is a radial force arising
from “quantum pressure” that drives the electron outward. From it we infer

~r×d~v
dt

=
e

mec
~r×(~v× ~B) (93)

where ~r is in the plane perpendicular to the axis of the cylinder. Hence ~r· ~B = 0 and ~r×(~v× ~B) =

−(~r ·~v ) ~B, and
d

dt

(
~r×~v

)
= − e

mec

(
~r · ~v

)
~B = − e

2mec

(
d

dt
r2
)
~B (94)

so that ~r×~v=− e
2mec

r2 ~B, and the acquired azimuthal velocity in moving out a distance r is

vφ = − e

2mec
rB (95)
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Fig. 11: Left panel: when electrons forming a Cooper pair enlarge their orbits from a mi-
croscopic radius to radius 2λL, they acquire the azimuthal velocity required for the Meiss-
ner current. The interior currents cancel out, and a charge current circulating in the surface
layer of thickness λL results, the Meissner current. Right panel: electrons in expanding orbits
acquire also azimuthal velocity through the spin-orbit interaction of their magnetic moment
µz = −2µBSz, with µB the Bohr magneton, leading to a spin current circulating in the surface
layer of thickness λL, that adds to the charge current (if any), or is a pure spin current in the
absence of applied magnetic field.

Thus, to acquire the azimuthal speed needed for the Meissner current, vs = −eλL/(mec)B,
requires the action of the Lorentz force over a radially outgoing motion to radius r = 2λL.
This is shown schematically in Fig. 11 left panel.
Consider next a magnetic moment ~µ along the z direction that moves radially outward with
velocity ~v. It is equivalent to an electric dipole moment ~p = ~v

c
×~µ. The radial electric field

of the cylinder that results from the positive charge that compensates the superfluid negative
charge density ens is ~E = 2πρ~r = 2π|e|ns~r. The electric dipole experiences a torque

~τ = ~p× ~E =
(~v
c
×~µ
)
× ~E = −2π |e ns~r×

(~v
c
×~µ
)

(96)

which causes a change in its angular momentum

d~L

dt
= me

d

dt

(
~r×~v

)
= ~τ (97)

hence
~r×d~v

dt
=

2πens
me

~r×
(~v
c
× ~µ
)
. (98)

Eq. (98) is identical to Eq. (93) if we define the ’effective’ magnetic field

~Bσ = 2πns~µ (99)

and hence leads to the azimuthal velocity as derived earlier, vs = −eλL/(mec)B, with Bσ

replacing B and |~µ| = µB the intrinsic magnetic moment of the electron

vφ = −πens
mec

rµB and vφ =
πnse

2~r
2m2

ec
2

=
~r

8meλ2L
(100)
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Fig. 12: Illustration of the three key aspects of the physics of superconductors discussed here.
(a) : Superconductors expel negative charge from their interior to the region near the surface.
(b) : Carriers reside in mesoscopic overlapping orbits of radius 2λL. (c) : A spin current flows
near the surface of superconductors (the arrow perpendicular to the orbit denotes the direction
of the electron magnetic moment).

with µB = |e|~/2mec the Bohr magneton. The two electrons in a Cooper pair have opposite
spin and orbit in opposite directions. The orbital angular momentum of each electron is l =

mervφ = ~r2/(8λ2L).

Remarkably, for r = 2λL, the size of the orbit required to explain the Meissner effect, the
orbital angular momentum is l = ~/2 .

The azimuthal velocity has magnitude vφ ≡ v0σ = ~/(4meλL). In the interior, the azimuthal
velocities cancel out. Within a layer of thickness λL from the surface, they give rise to a spin
current, where electrons of opposite spin flow in opposite directions, as shown schematically in
Fig. 11 right panel [77, 78].
Figure 12 shows the three key aspects of the physics of superconductors within the theory
discussed here. (a) The charge distribution in the superconductor is macroscopically inhomo-
geneous, with excess negative charge near the surface and excess positive charge in the interior.
(b) Superfluid carriers reside in overlapping mesoscopic orbits of radius 2λL. (c) A macroscopic
spin current flows near the surface of superconductors in the absence of applied external fields.
Macroscopic phase coherence results from the fact that the 2λL orbits are strongly overlapping.

The fact that superfluid electrons reside in mesoscopic orbits of radius 2λL can be seen from
the equivalence of the following two expressions for the total angular momentum L of ns
electrons per unit volume flowing with velocity v along the lateral surface of a cylinder of
radius R and height h carrying the Meissner current within a distance λL from the surface:

L =
(
2πRλLhns

)(
mevR

)
=
(
πR2hns

)(
mev(2λL)

)
. (101)

When spin is taken into account, the four-vector current is J = J↑ + J↓ and the electrodynamic
equation (88) becomes [78]

Jσ−Jσ0 = − c

8πλ2L

(
Aσ−Aσ0

)
and Jσ =

(
~Jσ, icρσ

)
, Aσ =

(
~Aσ, iφσ

)
. (102)
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~Jσ = e(ns/2)~vσ is the component of the current of spin σ and ρσ is the charge density with
spin σ. The spin potentials are given by [78]

~Aσ = λL~σ× ~E(~r, t) + ~A(~r, t) and φσ(~r, t) = −λL~σ· ~B(~r, t) + φ(~r, t) (103)

Finally, the quantities with subindex 0 are

Jσ0 =
(
~Jσ0(~r), icρσ0

)
, ~Jσ0(~r) = −cρ0

2
~σ×r̂ , ρσ0 =

ρ0
2

(104)

and

Aσ0 =
(
~Aσ0(~r), iφσ0(~r)

)
, ~Aσ0(~r) = λL~σ× ~E0(~r) , φσ0(~r) = φ0(~r) . (105)

These equations predict the existence of a spontaneous spin current flowing within a London
penetration depth of the surface of the superconductor in the absence of applied fields, with
carrier densities (ns/2) and opposite spin electrons flowing in opposite direction with speed
v0σ = ~/(4meλL), and a spontaneous electric field throughout the interior of the superconductor.
Remarkably, the formalism uniquely determines the value of the expelled charge and maximum
electric field in the interior [78], as

Em = − ~c
4eλ2L

, ρ− = − Em
4πλL

, ρ− = ens
vσ0
c
, v0σ =

~
4meλL

. (106)

Note that Em is the same as the lower critical magnetic field of a BCS superconductor Hc1. In
the absence of an applied magnetic field, electrons near the surface move in opposite direction
with speed v0σ, as shown in Fig. 12. When a magnetic field is applied, electrons of one spin
speed up and those of opposite spin slow down, according to vσ = vs+σv

0
σ. The total excess

negative charge density ρ− = ρ↑+ρ↓ does not change, but it has different magnitudes for spin
up and down, according to

ρσ =
nse

2

(v0σ+σvs
c

)
, vs = − eλL

mec
B ;

1

λ2L
=

4πnse
2

mec2
. (107)

These equations imply that for applied magnetic field Hc1 = Em one of the components of the
spin current stops, at which point the magnetic field penetrates the sample [78].
The value of the interior positive charge density ρ0 is determined by charge neutrality. For a
cylinder and a sphere, it is ρ0 = −2λL/Rρ− and ρ0 = −3λL/Rρ− respectively.

4 How the Meissner effect works

We next will show that the physics discussed in the previous sections leads to a dynamical
explanation of the Meissner effect. Contrary to what is generally believed, BCS theory has not
provided a dynamical explanation of the Meissner effect. Why is it that it is generally believed
that BCS theory explains the Meissner effect?
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Fig. 13: The BCS explanation of the Meissner effect. The system (cylinder, top view) is initially
in the BCS state (left panel) with no magnetic field. Its linear response to the magnetic field
shown in the middle panel (dots) is computed to first order in the magnetic field. The result is
the state shown in the right panel, with a surface current J circulating.

4.1 BCS theory does not explain the Meissner effect

Within BCS theory, the Meissner effect is explained as follows [7]. One considers the linear
response of a system in the BCS state Eq. (5) to the perturbation created by a magnetic field,
as shown in Fig. 13. The perturbing Hamiltonian H1 is the linear term in the magnetic vector
potential ~A that results from the kinetic energy

(
~p − (e/c) ~A

)2
/2m, and it causes a change in

the BCS ground state |ΨBCS〉 to first order in ~A

H1 =
ie~
2mc

∑
i

(
~∇i·A+ ~A·~∇

)
, |Ψ〉 = |ΨBCS〉 −

∑
n

〈Ψn|H1|ΨBCS〉
En

|Ψn〉 (108)

where |Ψn〉 are states obtained from the BCS state |ΨBCS〉 by exciting 2 quasiparticles, and En is
the excitation energy. The expectation value of the current operator ~Jop with this wave function
gives the electric current ~J , and hence the “London Kernel” K [13]. In the long wavelength
limit this calculation yields

~J = 〈Ψ | ~Jop|Ψ〉 = − c

4π
K~A with K =

1

λ2L
(109)

where λL is the London penetration depth. Eq. (109) is the (second) London equation Eq. (76).
In combination with Ampere’s law, Eq. (109) predicts that the magnetic field does not penetrate
the superconductor beyond a distance λL from the surface, where the current ~J circulates, as
shown schematically in Fig. 13 right panel.
However, note that this calculation uses only the BCS wavefunction in and around the BCS
state, namely the ground state wavefunction |ΨBCS〉 and the wavefunctions |Ψn〉 that result from
breaking one Cooper pair at a time. The wavefunction of the normal metal never appears. This is
not explaining the Meissner effect. The Meissner effect is what is shown in Fig. 14: the process
by which a system starting in the normal metallic state expels a magnetic field in the process
of becoming a superconductor. It cannot be explained by starting from the assumption that the
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Fig. 14: What the Meissner effect really is: the process by which a normal metal becomes
superconducting in the presence of a magnetic field throughout its interior initially. The simplest
route in this process (not the only one) is depicted in the figure. The superconducting region
(white region) expands gradually from the center to fill the entire volume, expelling the magnetic
field in the process.

system is in the final BCS state and gets perturbed by H1. Explaining this process requires
explaining how the interface between normal and superconducting regions moves (center panel
in Fig. 14). Because calculations of the sort described in Eqs. (108) and (109) contain no
information about what is the nature of the initial state when the Meissner effect starts, namely
the normal metal, they cannot be a microscopic derivation of the Meissner effect.
During the process of field expulsion, as well as its reverse, the process where a superconductor
with a magnetic field excluded turns normal and the field penetrates, a Faraday electric field
is generated that opposes the process. This electric field drives current in direction opposite
to the current that develops. So it is necessary to explain: (i) How can a Meissner current
start to flow in direction opposite to the Faraday electric force resisting magnetic flux change
(Lenz’s law)? (ii) How is the angular momentum of the developing supercurrent compensated
so that momentum conservation is not violated? (iii) When a supercurrent stops, what happens
to the angular momentum that the supercurrent had? (iv) How can a supercurrent stop without
generation of Joule heat and associated with it an irreversible increase in the entropy of the
universe that is known not to occur? None of these questions are addressed in the BCS literature.

4.2 The Meissner effect necessitates charge expulsion

That the London derivation of the London equation does not account for the Meissner effect is
clear. To get from the first to the second equality in Eq. (75), a time integration was performed
after taking the curl and using Faraday’s law. More explicitly,

∂ ~J

∂t
=
nse

2

me

~E → ∂

∂t

(
~∇× ~J

)
= −nse

2

mec

∂ ~B

∂t
→ ~∇×

(
~J(~r, t)− ~J(~r, 0)

)
= −nse

2

mec

(
~B(~r, t)− ~B(~r, 0)

)
.

(110)
The last equality in Eq. (110) leads to the London equation Eq. (75) if ~B(~r, 0) = ~J(~r, 0) = 0.
However, under the initial conditions appropriate to the Meissner effect, namely ~B(~r, 0) = ~B0,
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Fig. 15: Schematic depiction of a perfectly conducting fluid (σ=∞) that flows radially outward
with radial velocity vr in a uniform magnetic field perpendicular to the plane of the paper. The
carriers at the boundary experience a Lorentz force FL. Assuming the sign of the charge q is
positive for definiteness the Lorentz force FL = (q/c)vrB points in the clockwise direction. The
resulting electric current I at the boundary flows clockwise (for negative charge carriers the
Lorentz force would be in the opposite direction, the current in the same direction), generating
a magnetic field opposite to the external field so that no magnetic field lines can penetrate the
fluid. During this process, a Faraday electric field E is generated that opposes the current flow.

~J(~r, 0) = 0 it leads instead to the solution ~B(~r, t) = ~B0, ~J(~r, t) = 0. No current is generated,
and the magnetic field is not expelled, contrary to what experiment tells us.
To understand what is needed to expel the magnetic field, let us consider more carefully the
equation of motion for an electron of charge e and mass me in the presence of electric and
magnetic fields

dv

dt
=

e

me

E +
e

mec
v×B . (111)

The left-hand side of Eq. (111) is the total (convective) time derivative, which is related to the
local (partial) time derivative by

dv

dt
=
∂v

∂t
+
(
v·∇

)
v =

∂v

∂t
+∇

(v2

2

)
− v×

(
∇×v

)
. (112)

Defining the ‘generalized vorticity’

w = ∇×v +
e

mec
B, (113)

taking the curl of Eq. (111) and using Eq. (112) and Faraday’s law∇×E = −(1/c)∂B/∂t leads
to the following equation of motion for w

∂w

∂t
= ∇×

(
v×w

)
. (114)

Note that w is essentially the curl of the canonical momentum p = mev + (e/c)A, with
A the magnetic vector potential. In the Meissner process we have at time t = 0: w(r, t=0) =
e

mec
B(t=0) ≡ w0 independent of position r. We set∇×v = 0 because in the normal state there

is no net macroscopic charge flow. Hence the canonical momentum p is nonzero throughout the
interior of the superconductor in the initial state. In the superconducting state, the superfluid ve-
locity v obeys the London equation ∇× v = − e

mec
B. Therefore, w(r, t=∞) = 0 everywhere
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(a)	back- 
flow 

(b)	

Fig. 16: Left panel: electrons becoming superconducting move out, and are deflected by the
Lorentz force in counterclockwise direction, generating the clockwise Meissner current IMeissner.
A backflow of normal electrons gets deflected clockwise and transmit their azimuthal momentum
to the ions, hence to the body as a whole. Right panel: explains how the backflowing electrons
transmit their azimuthal momentum to the ions without scattering processes, that would gener-
ate Joule heat in contradiction with the observation that the transition is reversible (see text).

in the superconducting body. Equivalently, the canonical momentum p = 0 throughout the in-
terior of the (simply connected) superconductor. In a cylindrical geometry, assuming azimuthal
symmetry as well as translational symmetry along the cylinder axis (z-direction, infinitely long
cylinder) w(r, t) = w(r, t)ẑ and Eq. (114) takes the form

∂w

∂t
= −1

r

∂

∂r

(
rwvr

)
(115)

with r the radius in cylindrical coordinates. Eq. (115) implies that w can only change if there a
is radial flow of charge (vr 6= 0). Moreover, for w to evolve towards its final value 0 requires
vr > 0, i.e., a radial outflow of electrons. This is a particular case of what is called Alfven’s
theorem [79], that says that in a perfectly conducting fluid magnetic field lines are frozen into
the fluid and move with the fluid. It predicts what is shown in Fig. 15: if a perfectly conducting
fluid expands from the center in the presence of magnetic field, it will push the magnetic field
lines out as it expands, since otherwise Alfven’s theorem would be violated.

4.3 Why holes are indispensable to understand the Meissner effect

The left panel of Fig. 16 shows qualitatively how the Meissner effect works [18]. Electrons
condensing into the superconducting state move radially outward, and in the presence of a mag-
netic field B acquire counterclockwise azimuthal velocity, giving rise to the Meissner current
IMeissner flowing near the surface that generates a magnetic field in opposite direction to the ap-
plied field and cancels it in the interior. There is also a backflow of normal electrons to preserve
near charge neutrality, that acquire through the Lorentz force an azimuthal velocity in opposite
direction. The backflowing electrons do not cancel the Meissner current because they transmit
their azimuthal momentum to the ions, i.e., to the body as a whole. The body rotates very slowly
in clockwise direction, compensating the counterclockwise motion of superfluid electrons in the
Meissner current, so that momentum conservation is maintained.
However, the question arises: how do the backflowing electrons transmit their azimuthal mo-
mentum to the body? It cannot happen through collisions with impurities or phonons, because
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Fig. 17: Transition from the normal into the superconducting state (left panel) and from the
superconducting into the normal state (right panel) in the presence of a magnetic field. The
processes are discussed in the text.

such collisions would generate Joule heat. However it is known that the transition is thermody-
namically reversible, this has been carefully tested experimentally [80] and is also implicit in
BCS theory, allowing the understanding of the transition as a thermodynamic phase transition,
of second order without a magnetic field and first order in the presence of a magnetic field.
The answer to this question requires holes, or equivalently antibonding electrons. The back-
flowing electrons need to have negative effective mass. If so, their motion is purely radial, as
Fig. 16(b) shows: they experience magnetic and electric forces in the same direction, clockwise,
and the lattice exerts a counterclockwise force Flatt that exactly cancels the electromagnetic
forces. By Newton’s third law, a force on the ions Fon-latt = −Flatt is exerted by the electrons,
transferring their azimuthal momentum to the body without any dissipation. If we prefer to
describe the backflowing normal electrons equivalently as outflowing normal holes we can also
do that. In that case, electric and magnetic forces are exactly cancelled, as Fig. 16(b) shows.
The electric force discussed above arises from the Faraday electric field that exists during the
process of flux expulsion. If the phase boundary is moving at speed vr, the Faraday electric field
at the boundary is EF = (vr/c)B, and the magnetic force on normal carriers moving radially
with the boundary, FB = e(vr/c)B, is of the same magnitude as the electric force exerted by the
Faraday field FE = eEF , in opposite direction for holes and in the same direction for electrons,
as shown in Fig. 16(b).
Fig. 17 illustrates the processes in more detail. Starting with the left panel, that describes the
Meissner effect, the phase boundary is moving outward with speed ṙ0. Normal electrons at
the boundary expand their orbits to radius 2λL, as discussed earlier, and this expansion imparts
them the azimuthal speed of carriers in the Meissner current, as was shown in Eqs. (92)–(93).
The resulting outward motion of negative charge gives rise to an inflow of normal electrons just
outside the boundary, moving inward with speed ṙ0. They experience a Lorentz force pointing
clockwise, and are also subject to the clockwise electric force resulting from Faraday’s electric
field pointing counterclockwise that originates in the outward motion of magnetic flux. The
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Fig. 18: Illustration of momentum transfer without energy dissipation in a Hall bar. The Ampere
force points to the right independently of whether the material has negative or positive Hall
coefficient. For the material with negative Hall coefficient (left panel) the Ampere force results
from the electric force resulting from the electric field created by the charge imbalance on the
positive ions (in red). For the material with positive Hall coefficient (middle and right panels)
the force from the electric field acting on positive ions is opposite to the Ampere force.

forces are balanced by a force exerted by the lattice on the backflowing electron that has neg-
ative effective mass, Flatt, as discussed earlier, pointing in counterclockwise direction, so that
the backflow is radial. In turn the backflowing electron exerts an equal and opposite force on
the lattice, Fon-latt, thus transmitting azimuthal momentum to the body without dissipation, com-
pensating for the counterclockwise momentum acquired by electrons expanding their orbits and
joining the Meissner current. Instead of backflowing electrons we can understand the process
with outward moving normal holes, as shown on the lower part of the left panel. As the phase
boundary moves further out, the superelectrons at its boundary that acquired azimuthal velocity
through orbit expansion get slowed down by the Faraday electric field and stop contributing to
the supercurrent when the phase boundary has moved beyond them a distance λL. All this is
discussed quantitatively in Refs. [81, 82]. The same momentum transfer without energy dissi-
pation explains the origin of the Ampere force on conductors with positive Hall coefficient, as
illustrated in Fig. 18.

Switching the sign of all the processes we can understand the right panel of Fig. 17, namely the
process by which a superconductor in a magnetic field carrying a Meissner current near its sur-
face, turns normal and the supercurrent stops [83]. As the phase boundary moves in, electrons
that are in the superconducting region at distance λL from it get accelerated by the Faraday
electric field in counterclockwise direction, reaching maximum velocity when the phase bound-
ary reaches them, at which point their orbits shrink and they are stopped by the action of the
Lorentz force on the shrinking orbit pushing in clockwise direction. This explains how the
supercurrent stops when the system becomes normal, without collisions and hence no dissipa-
tion. Momentum conservation results from the compensating backflow of normal electrons of
negative effective mass as discussed earlier.
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Finally, the same physics that explain how the Meissner effect works explains how magnetic
fields are generated in rotating superconductors [84], and how charge flows in a superconducting
wire connected to normal metal leads [85]. BCS theory does not have the physical elements
necessary to describe any of these processes.

5 Theory of hole superconductivity
versus the conventional theory

In the conventional understanding of superconductivity, there is a large set of materials con-
sidered to be “conventional superconductors”, for which the pairing mechanism is believed to
be the electron-phonon interaction. There is another large set of materials considered to be
“unconventional superconductors”, for which the pairing interaction is believed not to be the
electron-phonon interaction. There is no general agreement on how many other pairing mecha-
nisms exist, nor what is their nature, although most physicists believe that magnetic interactions
of some kind are responsible for pairing in various unconventional superconductors such as the
cuprates. A survey of 32 classes of superconducting materials is given in Ref. [8].
Instead, within the theory of hole superconductivity discussed here, there is a single mechanism
of superconductivity for all materials, that originates in the fundamental charge asymmetry
of matter, namely the fact that the proton is 2000 times heavier than the electron, leading to
electron-hole asymmetry in condensed matter, essential to understand both the pairing mecha-
nism of charge carriers near the top of electronic energy bands, as well as their ability to inter-
change momentum with the body as a whole without dissipation due to their negative effective
mass, which is necessary to understand how electric currents start and stop in superconductors
without dissipating Joule heat. Both points of view could be wrong, but not both can be right.
What do we learn from superconducting materials? We discuss this in the next section.

5.1 Superconducting materials:
judge and jury of theories of superconductivity

It is difficult to prove theories wrong in condensed matter physics, because they are based
on model Hamiltonians whose connection with real materials is difficult to ascertain. It is
especially difficult for the case of BCS theory, because it is generally assumed that if a material
does not conform to it this does not indicate that the theory is wrong but rather that the material
is “wrong”, i.e. non-conventional.
Here we have argued that Hamiltonians such as dynamic Hubbard models contain the essen-
tial physics necessary to describe superconductivity, and Hamiltonians describing the electron-
phonon interaction do not. How do we decide which is right and which is wrong? One way is
to consider what real material tell us [17].
The highest Tc unconventional superconductors are cuprates. The highest Tc proven conven-
tional superconductor is magnesium diboride (we exclude the hydrides for reasons discussed
later). What do MgB2 and cuprates have in common?
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According to the conventional view, nothing. MgB2 becomes superconducting because of
a strong electron-phonon interaction, and cuprates become superconducting because of mag-
netic fluctuations. MgB2 does not have magnetic fluctuations, and cuprates do not have strong
electron-phonon interaction.
Instead, according to the theory of hole superconductivity, what they have in common is that in
both materials holes conduct through negatively charged anions in close proximity: B− ions in
MgB2, O2− ions in cuprates. That is what makes them high temperature superconductors.
The conventional theory predicts that light atoms should give rise to high critical temperatures,
because the lattice vibration frequencies are high. But there is no evidence from materials for
that, as illustrated in Fig. 19. For example, Pb, a very heavy element, has the third highest Tc
among the elements. Li, a very light element, has the lowest Tc among the elements. On the
other hand, there is a very strong correlation between positive sign of the Hall coefficient and the
element being a superconductor, as the right panel of Fig. 19 shows, and as the theory of hole
superconductivity predicts. Correlations between superconductivity and a variety of normal
state properties of elements are analyzed in Ref. [86]. The same non-correlation with ionic
mass and strong correlation with sign of the Hall coefficient is seen in compounds [17, 67, 87].

5.2 Experimental tests and open questions

Of course the ultimate test of theories is experiments. It is generally believed that BCS the-
ory has been proven right by experiments. However, many of the predictions of BCS theory
are common to other theories including the theory of hole superconductivity. The role of the
electron-phonon interaction in causing superconductivity has not been proven experimentally.
The isotope effect is not a proof, since many materials considered to be conventional do not
obey the BCS prediction, including several elements and the compound PdH, where the mass
of H can be increased by a factor of 2 by substitution with the isotope deuterium, and Tc goes
up rather than down [88]. Small wiggles in tunneling characteristics [89], attributed to electron-
phonon coupling and generally believed to prove that superconductivity is caused by it [90],
may also result from modulation of the pairing interaction ∆t discussed here by phonons [91],
implying that pairing would persist even if the ionic mass is infinite, i.e., if the lattice does not
vibrate. It has been claimed that hydrogen-rich materials at high pressures superconduct at tem-
peratures close to room temperature, proving the importance of the electron phonon interaction,
that is predicted to give highest Tc for light ions such as hydrogen [92]. We have analyzed
multiple experiments reporting such claims and in every case concluded that the experimental
observations are incompatible with superconductivity [93].
There are several predictions of the theory of hole superconductivity that are specific to it, but
most have not been tested experimentally to date. Some of the predictions are: (i) tunneling
asymmetry of universal sign [64], (ii) positive thermoelectric power of superconductive tunnel
junctions [68], (iii) apparent violation of the conductivity sum rule [63], (iv) electric screen-
ing length in the superconducting state much larger than in the normal metallic state [75, 76],
(v) electric fields in the interior and in the vicinity of superconducting samples [73], (vi) in-
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Fig. 19: Two images of superconductors in the periodic table. The left image highlights the
superconducting elements with highest Tc in green and those with lowest Tc in brown. The ionic
mass increases as we move down and to the right in the table, and Tc should decrease as the ionic
mass increases according to the conventional theory. It does not. The right image shows which
elements among superconducting and non-superconducting ones have positive and negative
Hall coefficients. It is clear that positive Hall coefficients are predominant in superconducting
elements, and negative Hall coefficients are predominant in non-superconducting elements.

crease in the mean inner potential in the superconducting state [45], (vii) charge imbalance in
the absence of applied fields [94], (viii) radial electric fields during the normal-superconductor
transition [95], (ix) Alfven-like waves along superconductor-normal phase boundaries [96],
(x) absence of superconductivity in any material that does not have hole carriers [67].
Why is it important and urgent to decide which theory of superconductivity describes real mate-
rials? One important reason is that it would allow to make real progress in the theoretical search
for new materials, to guide experimental search and discovery of superconductors that work at
room temperature. Room temperature superconductors will change the world. Imagine how
different our lives would be today if semiconductors only worked at temperatures below 150K.
The current theoretical guidance based on BCS theory, that focuses on light elements [97], has
not led to progress.
In conclusion, I would like to stress that the understanding of superconductivity based on the
principles discussed in this paper is far from complete. There are many opportunities for further
advances through theoretical and experimental research. Furthermore, a full understanding of
how quantum mechanics operates on a macroscopic scale in superconductors may well lead to
new insights on how it operates on the microscopic scale [98].

Acknowledgments

The author is grateful to Frank Marsiglio for collaboration in substantial parts of this work.



7.40 Jorge E. Hirsch

References

[1] F. London and H. London, Proc.Roy.Soc. A 149, 71 (1935)

[2] H. Kamerlingh Onnes, Comm. Leiden 1911, Nr I22b, I24C; 1913, Nr 133a, I33C.

[3] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933)

[4] G. Lippmann, Comptes Rendus de l’ Academie des Sciences, 168, 73 (1919)

[5] T. Sauer, Arch. Hist. Exact Sci. 61, 159 (2007)

[6] F. London and H. London, Physica 2, 341 (1935)

[7] J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

[8] Physica C 514, 1–444 (2015), Special Issue: Superconducting Materials: Conventional,
Unconventional and Undetermined. Dedicated to Theodore H. Geballe on the year of his
95th birthday, ed. by J.E. Hirsch, M.B. Maple, and F. Marsiglio,

[9] L.N. Cooper, Phys. Rev. 104, 1189 (1956)

[10] F. London: Superfluids, Vol. I (Dover, New York, 1961)

[11] V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)

[12] B.D. Josephson, Phys. Lett. 1, 251 (1962)

[13] M. Tinkham: Introduction to superconductivity, 2nd Ed. (McGraw Hill, New York, 1996)

[14] P.G. de Gennes: Superconductivity of Metals and Alloys (Benjamin, New York, 1966)

[15] M.L. Cohen and P.W. Anderson, AIP Conf. Proc. 4, 17 (1972)

[16] C.W. Chu, L.Z. Deng and B. Lv, Physica C 514, 290 (2015)

[17] J.E. Hirsch, Appl. Phys. Lett. 121, 080501 (2022)

[18] J.E. Hirsch, Phys. Scr. 91, 035801 (2016)

[19] J.E. Hirsch: Superconductivity begins with H (World Scientific, Singapore, 2020)

[20] See https://jorge.physics.ucsd.edu/hole.html for a list of references.

[21] W.E. Pickett, Rev. Mod. Phys. 95, 021001 (2023)

[22] N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)

[23] P. Morel and P.W. Anderson, Phys. Rev. 125, 1263 (1962)

[24] J.S. Bauer, J.E. Han and O. Gunnarsson, J. Phys.: Condens. Matter 24, 492202 (2012)

https://royalsocietypublishing.org/doi/10.1098/rspa.1935.0048
http://link.springer.com/article/10.1007%2FBF01504252
https://www.jstor.org/stable/41134244
https://www.sciencedirect.com/science/article/pii/S0031891435900970
https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.1175
https://www.sciencedirect.com/journal/physica-c-superconductivity-and-its-applications/vol/514/suppl/C
https://journals.aps.org/pr/abstract/10.1103/PhysRev.104.1189
https://www.sciencedirect.com/science/article/pii/0031916362913690
https://pubs.aip.org/aip/acp/article/4/1/17/682452/Comments-on-the-Maximum-Superconducting-Transition
https://www.sciencedirect.com/science/article/pii/S0921453415000878
https://aip.scitation.org/doi/10.1063/5.0104968
http://iopscience.iop.org/article/10.1088/0031-8949/91/3/035801
https://www.worldscientific.com/worldscibooks/10.1142/11734
https://jorge.physics.ucsd.edu/hole.html
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.95.021001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.187002
https://journals.aps.org/pr/abstract/10.1103/PhysRev.125.1263
https://iopscience.iop.org/article/10.1088/0953-8984/24/49/492202/meta


Hole Superconductivity 7.41

[25] D.J. Scalapino, J. Low Temp. Phys. 117, 179 (1999) and references therein.

[26] E. Dagotto and J. Riera, Phys. Rev. B 46, 12084(R) (1992)

[27] J.E. Hirsch, Phys. Lett. A 136, 163 (1989)

[28] J.E. Hirsch, E. Loh, D.J. Scalapino and S. Tang, Physica C 153–155, 549 (1988)

[29] M. Qin, Chia-Min Chung, H. Shi, E. Vitali, C. Hubig, U. Schollwöck, S.R. White, and
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1 Overview

Unconventional superconductors differ from conventional superconductors in that they typically
exhibit a ubiquitous phase diagram with intriguing, correlated electron phases that break the
symmetry of the underlying lattice at temperatures well above Tc. These non-Fermi liquid
phases remain some of the greatest unsolved problems in physics. After this overview, I will
present some of our recent work on planar tunneling into Kondo insulators, and a possible new
paring mechanism in the heavy-fermion superconductor CeCoIn5.

2 Introduction

The past several years, I have been giving colloquia and public lectures with the title “The Dark
Energy of Quantum Materials.” Why this title? One reason is that we all were enthralled with
the LIGO successful of detection of gravity waves – measuring a motion of less than the width
of a proton, and astoundingly, for a power of 3.6·1049 Watts, which is more than the combined
power of all light radiated by all the stars in the observable universe. That LIGO detected gravity
waves signified that for the first time, we could look at the universe in a new way, without using
light or matter.
The LIGO observatory was invented to find gravity waves, as it did, but the larger question
is: Will this new observatory help us to understand dark matter or other phenomena we have
not previously been able to explain. In quantum materials, there is not a single phenomenon
to explain but a host of correlated electron states. We in condensed matter have developed a
wide host of observatories, i.e., measurement techniques (e.g., ARPES, STM, EXAFS, . . . );
have significantly improved our crystal growth techniques; and have developed a host of com-
putational techniques. All of these new and improved observatories: measurement, growth,
and computational techniques are addressing correlated electrons with more and more success.
The larger question here is: Will these hosts of quantum matter observatories help us to under-
stand the many non-Fermi liquid phases. In the longer term, can we learn to predictively design
correlated functional materials such as superconductors and thermoelectrics?
My many years in studying superconductivity have led me to adopt a general overview that
understanding unconventional superconductivity is no less fundamental than cosmology, and no
less fascinating, with one important complication: There are many families of unconventional
superconductors, and thus, many fundamental questions to be addressed, making this a multi-
modal complex problem. Here, I give my personal overview of the fundamental questions, with
the apology that I will not have all the scholarship in time for this publication.
The BCS electron-phonon coupled theory of conventional superconductivity is considered by
most to be one of the few solved problems in quantum materials. Conventional superconduc-
tivity is typically characterized by materials that exhibit Fermi liquid behavior above Tc, while
below Tc, the superconducting order parameter is of the same symmetry as the underlying lat-
tice. This contrasts with unconventional superconductivity, which often reveals non-Fermi liq-
uid (NFL) behavior above Tc, and where the Tc as a function of some variable such as pressure
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or doping, varies as a dome across that phase diagram. Unconventional superconductivity was
discovered in 1979 by Steglich and co-workers in heavy Fermions [1], and in 2001, Lonzarich
and co-workers discovered the first domed phase diagram in a heavy fermion superconductor
as a function of applied pressure in CePd2Si2 [2]. At the time, it was surprising that super-
conductivity could appear associated with a magnetic state, and the electron-phonon theory of
Cooper pairing was questioned. Since then, many families of unconventional superconductors
have been discovered that exhibit a domed phase diagram, typically with NFL at temperatures
above the dome.
We can describe the electronic properties of Fermi liquids with general electronic structure cal-
culations: Simply put, the electronic, thermodynamic, and optical properties are explained by
the lattice structure and the atoms that make up the lattice. We are also able to describe the
electronic, thermodynamic, and optical properties of the superconducting state, both conven-
tional and unconventional, because, as to date, all superconductors we know of are composed
of Cooper pairs, so can be described with the Bogoliubov-de Gennes equations. Conventional
metallic superconductors are easy to model, and there is more of a challenge in unconventional
superconductors where you need to take the symmetry of the superconducting order parame-
ter and the possibility of more than one band in to account. So even if you do not know the
microscopic mechanism of the Cooper pairing, the superconducting state can be modeled.
The larger question is that the NFL states above the dome typically cannot be described by
simple Fermi liquid theory due to electron-electron correlations. And these correlations are
quite varied: In the heavy fermions the electronic mass measured thermodynamically is larger
than can be described by Fermi liquid theory; in the cuprates there is the enigmatic pseudogap
where electronic stripes can be found; in the di-chalcogenides the T -dependent charge-density
wave behavior cannot be accounted for [3]; there are quantum-critical fluctuations above quan-
tum critical points; and in the Fe-based superconductors there exists electronic nematic phases
where the electrons can form elongated clusters even at temperatures in the tetragonal phase.
Before the discovery of the Fe-based superconductors, unconventional superconductivity was
defined as having a superconducting order parameter of a lower symmetry than the underlying
lattice. Since the proposed symmetry of their superconducting state, s±, is of the same sym-
metry as the underlying lattice, a more general and accurate definition is that the symmetry of
the electron fluid above the dome breaks the symmetry of the underlying lattice – most clearly
demonstrated in the nematic phase of the Fe-based superconductors.

3 Planar Tunneling

The work in my laboratory primarily involves electron transport, with a focus on planar tunnel-
ing spectroscopy (PTS). In this technique, electrons are injected from one electrode to another
across a thin, insulating barrier. It was PTS that showed phonons were responsible for the
Cooper pairing: that the Pb phonons that were observed by neutron scattering, were observed
in the Pb tunneling density of states [4].
In normal-insulating-normal (NIN) junctions, single-step elastic tunneling will reveal Ohm’s
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law because in the tunneling equation, the conductance is calculated from the energy integral
over the Fermi velocity times the density of states, which divide out for Fermi liquids, as dic-
tated by Harrison’s theorem [5]. This theorem was derived for one-dimensional elastic tunneling
between simple metals. If one of the electrodes is replaced with a superconductor (S), the SIS
tunneling conductance reveals the quasiparticle superconducting density of states, including the
energy gap and the coherence peaks at the gap edge, precisely because a superconductor is not a
Fermi liquid. In fact, planar tunneling, with the proper diagnostics, is a direct probe of NFL be-
havior. The same arguments can be made for point contact spectroscopy. Some of our examples
include mapping out the nematic phases in several families of Fe-based superconductors [6] and
detecting the hybridization gap as a Fano line shape in background conductance of the heavy
fermion CeCoIn5 [7].
In planar tunneling spectroscopy, diagnostics are required to determine the quality of the junc-
tions, in particular, to see if the predominant transport across the junction is single-step elastic
tunneling. In studying new materials, it is important to start with a well-known superconductor
as the counter-electrode, such a Pb (which is also easy to grow) to determine the quality of the
junction from the quality of the measured Pb tunneling density of states. Then you can eas-
ily drive the Pb normal (Hc ∼ 0.1 T; Tc ∼ 7.2 K) so the Pb becomes a Fermi liquid and the
resulting non-ohmic conductance arises from any NFL behavior of the new material. Another
important diagnostic is reproducibility: Once the growth of the planar junction is worked out
(includes growing or polishing one electrode, growing or forming a thin insulating tunnel bar-
rier, then depositing the counter-electrode) the PTS conductance must be of good quality and
reproducible. After experience with the new material is acquired, non-superconducting counter-
electrodes can be used because the quality of the now-known, reproducible, tunneling density
of states of the new material becomes an important diagnostic.

4 Planar Tunneling into the Heavy Fermion CeCoIn5

In the case of PTS into CeCoIn5, we created reproducible, high-quality planar tunnel junc-
tions on three major crystallographic orientations: [001], [100], and [110] [8]. As described
in general, above, using Pb counter electrodes, we establish the quality of the junctions from
the measured Pb tunneling density of states at low temperature and zero applied magnetic field,
where the expected Pb superconducting gap and coherence peaks are clearly observed. Once the
junction quality is established, the Pb is driven normal with the applied field of 0.2 T, and since
the Hc2 of CeCoIn5 is 4.95 T for [001] and 11.8 T for [100] and [110] that applied field is a tiny
perturbation. Our earlier work on CeCoIn5 showed that the superconducting order parameter
symmetry was dx2−y2 [7], which has been verified since. Our PTS verified that symmetry, and
that there were preformed pairs above Tc [9, 10].
The compelling findings are these. First, at temperatures below Tc (2.3 K), with applied mag-
netic field, the CeCoIn5 tunneling density of state for [001] and [100] shows a suppression of
the d-wave gap with increasing field, as expected, and surprisingly, this gap evolves slowly into
a splitting, or field-induced gap, that grows linearly with applied field up to the highest fields
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Fig. 1: Magnetic evolution of the planar tunneling conductance for CeCoIn5 in the [001] (top),
[100] (middle), and [110] (bottom) orientations for T < Tc. The first column shows the con-
ductance for T < Tc = 1.3 K and the center column in the temperature range of the preformed
pairs (T = 3–5 K), where curves are shifted vertically for the [001] and [100] orientations.
The right column plots the magnetic evolution of the superconducting gap and the field split-
ting at low temperature. Note the superconducting gap evolves into a splitting well above Hc2 .
Not shown here, at higher temperatures (> 10 K), there is no observable superconducting gap
feature, as expected, and no subsequent field dependence (after [8]).

measured (18 T). The same behavior occurs in the temperature regime between Tc and that of
the preformed pairs (∼5 K), a gap is seen that evolves into a high-field splitting. At temperatures
above that of the pre-formed pairs, there is almost no field dependence.
We find that the high field splitting only appears when there are Cooper pairs, or preformed
pairs. We note that the 40 meV spin-correlation resonance observed by inelastic neutron scat-
tering (INS) is seen in the tunneling in the cuprate and Fe-based superconductors but is not seen
in CeCoIn5 tunneling. In INS, there is a 0.6 meV resonance, but it is robust to doping [11]
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and this feature is not seen in tunneling spectroscopy. We conclude then that the spin-spin cor-
relations that play a role in the pairing of the high-Tc superconductors do not play a role in
CeCoIn5. Instead, this heavy-Fermion material has f -level magnetic scattering. Therefore, in
comparison with the planar tunneling models of Anderson and Applebaum, where the tunneling
conductance exhibits a linear splitting with applied magnetic field due to Kondo scattering by
magnetic impurities in the tunneling barrier [12], we surmise that the pairing in CeCoIn5 may
arise, at least in part, from f -level scattering.

5 Conclusion

In conclusion, unconventional superconductivity is a complex subject with many important
problems to be solved. It is clear to me that there is not only one solution for the pairing
mechanism in all superconductors [13], which makes these problems daunting. Just as the new
LIGO observatories have promise for understanding fundamental questions of our cosmologi-
cal makeup, I believe that our myriad or new and novel measurement, growth, and computation
techniques will help us understand the many questions of non-Fermi liquid behavior and un-
conventional superconductivity.
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1 Introduction

The superconducting state for conventional and unconventional superconductivity exhibits four
unusual behaviors which are (i) zero resistance below a characteristic critical temperature Tc
of the material (ii) persistent currents in superconductors of ring shape where currents have
been observed to flow for time scales of several years, (iii) perfect diamagnetism as expulsion
of a weak magnetic field from the interior of the superconductor and (iv) an energy gap |∆|
that opens up in the superconducting state. The last phenomenon is used to characterize the
superconducting state in spectroscopic experiments, but has many imprints on thermodynamic
and transport properties as at finite temperatures thermal excitations are present. For a full
energy gap |∆|, these are an exponentially small number while for superconductors with nodal
gaps, the number of excitations exhibit a power law which is inherited to the low temperature
specific heat and thermal conductivity as these are governed by the low energy density of states.
For conventional superconductors where the superconducting pairing is mediated by electron-
phonon interaction, the energy gap turns out to be constant for all momentum states on the
Fermi surface of the normal state metal, |∆k| = ∆0. The research field of unconventional su-
perconductivity started with the discovery of superconductivity in the heavy-fermion material
CeCu2Si2 in 1979 [1]. Until then, superconductivity was thought to be restricted to metallic
elements and simple compounds and characterized by a superconducting gap ∆0 that does not
show momentum dependence. Since then many unconventional superconductors were iden-
tified experimentally (some example materials are shown in Fig. 1), prominent classes listed
according to the time of discovery are (i) heavy-fermion materials where electrons with f -
orbital character are at the Fermi level [1] (ii) 1D organic Bechgaard salts [2], (iii) copper-oxide
materials (cuprates) where record high critical temperatures were observed [3] (iv) Fullerenes
based on C60 molecules [4] (v) Sr2RuO4 as material similar to the cuprates [5] and (vi) iron-
based superconductors [6]. Other interesting superconductors where pairing was or is still de-
bated are (a) MgB2 with a relatively high Tc and multiband character [7] (b) H3S as possible
high-temperature superconductor [8] (whereas only under extreme pressure conditions) and (c)
Kagome superconductors for example the materials AV3Sb5 A=K, Rb, Cs [9].

2 Superconducting pairing

The starting point of the theoretical analysis of superconducting pairing in BCS theory is usually
the presence of a metallic normal state described by a Fermi sea and the assumption of an
attractive interaction of strength g0 in a shell around the Fermi level of ωD. From this, one
can show that there exists a bound state irrespective of the value of g0 (Cooper problem) or
the Fermi sea has an instability towards a superconducting state (BCS theory). The assumption
however does not consider the Coulomb interaction between the electrons which is repulsive in
nature. Here, we will sketch two mechanisms to still overcome the Coulomb interaction and
discuss consequences of this for the order parameter characterizing the superconducting phase.
The two possible mechanisms can be summarized by the picture that the electrons avoid each
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Fig. 1: Examples of (potentially) unconventional superconductors: Crystal structure and sketch
of models of the electronic structure. (a) Cuprates are often discussed by using a single band
Hubbard model on a square lattice [10]. (b) The nickelates might need a multiple orbitals
(red/green dot) and three dimensional electronic structure [11]. (c) Fe-based superconduc-
tors where all 5 d-orbitals are close to the Fermi level (colored dots) and dispersion in the
third direction might play a role (especially for the 122 systems) [10, 12]. Interactions can be
parametrized by the parameters U, U ′ and J . (d) Kagome superconductors require at least a
three band model due to the three different sublattices (red/green/blue) in the unit cell [9].

other in (i) time (retardation) for a conventional pairing mechanism and (ii) in space (momentum-
dependent pairing) for unconventional pairing. The first case is realized from the conventional
electron-phonon interaction where in a simple picture, one (negatively charged) electron mov-
ing through the lattice of atomic cores deforms the lattice. Since the atomic cores are much
heavier than the electron, this deformation happens retarded such that a second electron will
effectively feel a positive charge that is left “behind” by the first moving electron and therefore
yields an effective attractive interaction, see Fig. 2. A detailed analysis of the (dynamic) order
parameter ∆(ω) yields that it acquires a sign change in energy in this case. We are not further
discussing this mechanism in this lecture and refer to textbooks on this topic [13, 12].

2.1 Momentum-dependent paring and anisotropic superconducting
order parameter

The electrons can also overcome the Coulomb interaction by another mechanism which we
now illustrate by starting from a Hamiltonian of an electron gas together with a momentum-
dependent interaction described by V (k,k′); its origin will be discussed later. The Hamiltonian
is given by

H =
∑
k,σ

εk c
†
k′↑ck↓ +

1

2N

∑
k,k′

(
V (k,k′) c†k′↑c

†
−k′↓c−k↓ck↑ + H.c.

)
, (1)

where εk is the energy dispersion and c†kσ, ckσ are fermionic creation/annihilation operators of
electrons at momentum k and spin σ.
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1

2

Conven�onal

Unconven�onal

Fig. 2: Conventional pairing: Two electrons (red dots) attract each other when the first deforms
the lattice of positively charged atomic cores (light red region) the second is attracted to that
region. The order parameter ∆r is just onsite r = 0 (a). For the retarded interaction, it
changes sign in frequency at the characteristic frequency of the attractive interaction ωD(b) [10,
13]. Unconventional pairing: Electrons interact effectively with each other by polarizing the
other conduction electrons by the Coulomb interaction. For the antiferromagnetic polarization
(“neighbored“ electrons tend to have the opposite spin direction), the second electron can lower
its energy in the polarized region of the first electron, leading to an effective interaction (wiggly
line) [12, 10] which is momentum dependent. Multiple order parameters can be realized; here
two examples are shown: The s± state has the full symmetry of the lattice (c), but exhibits
pairing to the next nearest neighbors. A sign change of the order parameter ∆k on the Fermi
surface occurs (d). The dx2−y2 order parameter has lower symmetry than the lattice since the
horizontal bond orders have opposite sign from the vertical ones (e). Similar reduced symmetry
of the order parameter in momentum space is given, where the order parameter has symmetry
enforced nodes on the Fermi surface and very small gap on the Γ and M pockets (f) [14].

Single band model on the square lattice In view of an example, we are later considering the
single band model with nearest neighbor hopping t and next nearest neighbor hopping t′,

εk = −2t
(
cos kx + cos ky

)
− 4t′ cos kx cos ky − µ, (2)

where we set the lattice constant a = 1 in the following and use t = 1 as energy unit. This
simple model is flexible enough to discuss a number of Fermi surface topologies and stabilize
a number different symmetries of the superconducting order parameter. In Fig. 3, we show the
band structure and the density of states for variations of t′ < 0. It turns out that one can tune
several Lifshitz transitions which are marked as red, blue and green line in the phase diagram
in Fig. 4 (left panel) to yield four representative Fermi surface topologies: (1) at large |t′| the
model exhibits electronlike pockets at the X and Y point. Crossing the blue line, these pockets
touch and eventually lead to (2) a Fermi surface with electronlike and holelike Fermi pockets.
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Fig. 3: Single band model (a) dispersion along high symmetry path for different choices of
t′< 0, but the chemical potential tuned to stay at half filling 〈n〉=1. (b) Corresponding density
of states ρ(ω) exhibiting van Hove singularities from band maxima/minima and saddle points.

Reducing |t′|, the Γ pocket disappears and a Fermi surface reminiscent for cuprate materials is
realized. Crossing the red line of a van Hove singularity with diverging density of states, one
reaches (4) a single electronlike pocket around the Γ point, see Fig. 4.

Mean-field theory To map the Hamiltonian in Eq. (1) onto a formally non-interacting prob-
lem, we use the mean-field approximation. Starting from an interacting Hamiltonian H = AB

containing the product of two operators A and B we rewrite the operators as their mean value
and a deviation from it,A = 〈A〉+δA,B = 〈B〉+δB and ignore the term δAδB of second order
in the deviations from the mean such that we can replaceH → HMF = 〈A〉B+A〈B〉−〈A〉〈B〉.
This amounts to rewriting the Hamiltonian in a simpler form that can be solved exactly, but
depends on the mean values of the two operators as parameters. Next, we need to find a self-
consistent solution in which the mean values 〈A〉 and 〈B〉 are calculated using the eigenvalues
and eigenstates of HMF.

Fig. 4: Single band model and Lifshitz transitions: Lines indicate where a point with vanishing
Fermi velocity crosses the Fermi level. green: a local band maximum crosses at the Γ point,
removing a hole pocket. red: A saddle point crosses and turns electronlike sheets into holelike
sheets. blue: Touching of pockets at the zone diagonals. In total four different Fermi surface
topologies are possible (1)–(4).



9.6 Andreas Kreisel

BCS theory With the choice of A = c†k′↑c
†
−k′↓ and B = c−k↓ck↑, we obtain the mean-field

Hamiltonian

HMF =
∑
k,σ

εk c
†
kσckσ+ (3)

1

N

∑
k,k′

V (k,k′)
(〈
c†k′↑c

†
−k′↓

〉
c−k↓ck↑ + c†k′↑c

†
−k′↓

〈
c−k↓ck↑

〉
−
〈
c†k′↑c

†
−k′↓

〉〈
c−k↓ck↑

〉
+ H.c.

)
.

Note that the expectation values 〈A〉 =
〈
c†k′↑c

†
−k′↓

〉
and 〈B〉 =

〈
c−k↓ck↑

〉
are neither singlet nor

triplet order parameters at this point. Defining the mean-fields in the singlet (s) and triplet (t)
channel,

∆
s/t
k = − 1

N

∑
k′

V s/t(k,k′)
〈
c†k′↑c

†
−k′↓

〉
, (4)

where we also have projected to the symmetric (singlet) and antisymmetric (triplet) interactions

V s/t(k,k′) =
1

2

(
V (k,k′)± V (−k,k′)

)
, (5)

we can rewrite the Hamiltonian as

HMF =
∑
k,σ

εk c
†
kσckσ −

∑
k

∆
s/t∗
k c−k↓ck↑ ∓

∑
k

∆
s/t
k c†k↑c

†
−k↓ + const. (6)

For the mean-field Hamiltonian to obey the Pauli principle, the order parameter has to be even
parity in the momentum k for the upper sign of∓, i.e., the singlet order parameter (∆s

k = ∆s
−k)

and odd parity in the momentum k for the lower sign for the triplet order parameter (∆t
k =

−∆t
−k). Note that one can also assign two spin indices to the order parameter (and consider

other quantum numbers such as orbitals or sublattice degrees of freedom). In this case, the order
parameter has to be overall odd if all quantum numbers are exchanged. Since our interaction
was spin-independent, we can use another spin-quantization axis in the original Hamiltonian
and transform the triplet order parameter ∆t

k = ∆k↑↓ + ∆k↓↑ into triplet order parameters that
formally are in the ↑↑ and ↓↓ channel while the singlet order parameter remains invariant under
such a basis transformation. More generally, the superconducting order parameter matrix can
be described by a singlet term and a ~d vector to parametrize the three components of the triplet
order parameter [15].
The mean-field Hamiltonian (with either∆s

k or∆t
k) is now quadratic in the fermionic operators,

i.e., describes a non-interacting system and can be diagonalized by a Bogoliubov transformation(
γk↑
γ†−k↓

)
=

(
u∗k −vk
v∗k uk

)(
ck↑
c†−k↓

)
(7)

which defines new quasiparticle operators γk↑ that are linear combinations of electron creation
and annihilation operators. For this transformation to preserve the anticommutation relations{
γkσ, γ

†
k′σ′

}
= δk,k′δσ,σ′ , we require |uk|2+|vk|2 = 1 and can finally fix the value of the

coefficients by first inverting the transformation and inserting it into the mean-field Hamiltonian
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and then requiring that the terms containing only quasiparticle annihilation operator to vanish.
Dropping again constant terms, we can rewrite the Hamiltonian as

HBCS =
∑
kσ

Ek γ
†
kσγkσ (8)

with the quasiparticle dispersion

Ek =

√
ε2
k +

∣∣∆s/t
k

∣∣2. (9)

Having the quasiparticle dispersion and the transformation at hand, we can evaluate the expec-
tation value in Eq. (4) to obtain the self-consistency condition

∆
s/t
k = − 1

N

∑
k′

V s/t(k,k′)
∆
s/t
k′

2Ek′
tanh

(βEk′

2

)
, (10)

evaluated at finite temperature. As a side remark, we note that this value of the order parameter
indeed minimizes the free energy F, i.e., the equation above can also be derived from finding
a stationary point via δF

δ∆k
= 0 [13]. In this case, also the constant terms need to be kept in

the Hamiltonian and one sees that the superconducting state indeed has a lower energy than
the state of a normal metal once the temperature is low enough that Eq. (10) has a nontrivial
solution.

Linearized gap equation For a practical discussion of superconducting instabilities given a
pairing interaction V s/t(k,k′), it is convenient to linearize this equation by setting Ek′ = εk
on the r.h.s. Observing that the energy gain in the limit of ∆k → 0, i.e., at T → Tc has only
contributions from states at the Fermi level, the integral over the Brillouin zone becomes a
Fermi surface average in the linearized gap equation

− 1

VG

∫
FS

dS ′ V s/t(k,k′)
gi(k

′)

|vF (k′)|
= λigi(k

′) . (11)

Here VG is the volume of the Brillouin zone, the integral
∫
FS
dS ′ is over the Fermi surface

evaluated at the points k′, gi(k) is the gap symmetry function which contains the momentum
dependence of the superconducting instability with eigenvalue λi where the instability with
largest eigenvalue is realized at Tc. Formally, one can calculate the critical temperature from
the eigenvalue by Tc = ω0e

−1/λi , but the energy scale ω0 from the effective pairing interaction
is usually not known. In practice the linearized gap equation is solved by discretizing the Fermi
surface into a set of Fermi points k′ with associated area lk′ and finding the eigenvalues and
eigenvectors of the matrix

M
s/t
k,k′ = − 1

VG

lk′

|vF (k′)|
V s/t(k,k′). (12)

We note that this matrix is not symmetric since on the r.h.s. the weight lk′/|vF (k′)| appears only
in k′ and not in k, but the problem can be cast into the problem of diagonalizing a symmetric
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real-valued matrix that guarantees real eigenvalues and eigenvectors as follows: We define a
matrix with diagonal elements of the weights Λk = diag(lk′/|vF (k′)|)/VG such that one can
trivially obtain

√
Λ and

√
Λ
−1

as diagonal matrices as well. Dropping the s/t label and the
labels k and k′, one can write Eq. (12) as matrix multiplication, M = V Λk′ . We multiply this
equation with

√
Λk and

√
Λk′
−1 from left and right to obtain

√
ΛkM

√
Λk′
−1

=
√
ΛkV
√
Λk′ ≡

M̃ , i.e., a symmetric (real-valued) matrix M̃ . This matrix now has real eigenvalues λi and
eigenvectors g̃i obeying M̃g̃i = λig̃i. Substituting back the definition of M̃ and multiplication
with

√
Λk
−1 yields M

√
Λk′
−1
g̃i = λi

√
Λk′
−1
g̃i, in other words gi ≡

√
Λk′
−1
g̃i is eigenvector

to the original matrix in Eq. (12) to the eigenvalue λi.
To evaluate whether the self-consistency equation and/or the linearized gap equation has a non-
trivial solution and understand the momentum-dependence of the solution, we now discuss a
number of special cases. First, we note that for an attractive interaction (within some energy
range ωD) as obtained from the electron-phonon interaction, it is clear that the minus sign is
cancelled by V (k,k′) = g0 with g0 < 0 and we can infer that there exists a solution of the type
∆s

k = ∆0 because the order parameter can be factored out of the momentum sum and divided
out. Transforming now the integral into an energy integral by introduction of the density of
states ρ(ω) = 1

N

∑
k δ(εk−ω), we find the self-consistency equation

1 = g0

∫ ωD

−ωD
dω ρ(ω)

tanh
(
β
2

√
ω2 + |∆0|2

)
2
√
ω2 + |∆0|2

(13)

leading to the known mean-field temperature dependence of the order parameter that can simply
be calculated by a root-finding if the density of states is assumed to be constant close to the
Fermi level ρ(ω) ≈ ρ(0), see Fig. 5(a).
A calculation of the order parameter at zero temperature in the weak coupling limit yields
∆0(T=0) = 2ωD exp

(
−1/(g0ρ(0))

)
and the critical temperature can be obtained from solving

the linearized gap equation by an energy integral. The result kBTc = 2eγ

π
ω0 exp

(
−1/(g0ρ(0))

)
is expressed with the Euler constant γ. The universal ratio between critical temperature and
order parameter is given by 2∆0(T = 0)/kBTc = 2π/eγ ≈ 3.53. Experimental deviations from
this ratio are sometimes associated with the superconductor being in the strong coupling regime
although unconventional pairing, i.e., sign-changing order parameter or anisotropic order pa-
rameter can give rise to modifications even in weak coupling BCS theory [16].

Momentum dependent pairing For momentum-dependent interactions, we want to give two
perspectives. In the first perspective, we expand the interaction V s/t(k,k′) close to the Fermi
surface in lattice harmonics which are a set of orthogonal functions in the Brillouin zone (similar
to the spherical harmonics to expand a function on a sphere). Because of orthogonality and the
parity constraints of the order parameter, the dependence on k and k′ can be expanded separately
and factorized. For illustration, let us take the pairing interaction

V (k,k′) = U − 3J

2

(
cos(kx−k′x) + cos(ky−k′y)

)
(14)
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Fig. 5: (a) Temperature dependence of the order parameter from self-consistency equation
Eq. (13). (b)–(g) Examples of order parameters on a Fermi surface with only electron pocket(
t′= 0, n=0.25 (b), (c), (e), (f)

)
and

(
t′=−0.35, n=0.85 (d)

)
,
(
t′=−1.2, n=0.75 (g)

)
. Symme-

try enforced nodal lines are marked by green dashed lines, accidental nodal lines in panel (g)
are marked with dotted lines and can move according to the arrows. Red/blue: sign of order
parameter see colorbar.

as it can be derived from rewriting the Hubbard model with nearest neighbor Heisenberg Hamil-
tonian Hint = J

∑
〈i,j〉

~Si · ~Sj in the form of Eq. (1) [13]. The singlet interaction is then obtained
from the symmetrization, Eq. (5), V s(k,k′) = U − (3J/2)

(
cos kx cos k′x+cos ky cos k′y

)
which

we can rewrite as V s(k,k′) = Vs+Vd with the s-wave term consisting in a repulsive part and
the extended s-wave interaction Vs = U − (3J/4)(cos kx+ cos ky)(cos k′x+ cos k′y) and the d-
wave interaction Vd = −(3J/4)(cos kx− cos ky)(cos k′x− cos k′y). These interactions are now
written as products of the lowest harmonics for the respective order parameters, i.e., a con-
stant for a s-wave order parameter, the function fs(k) = cos kx+ cos ky that is invariant under
C4 rotations of the momentum and the function fd(k) = cos kx− cos ky that changes sign un-
der a C4 rotation. When doing a mean-field decoupling in the two channels, i.e., by choosing
A = fs/d(k

′) c†k′↑c
†
−k′↓ and B = fs/d(k) c−k↓ck↑, we obtain mean-field equations where the

form factor from right and left side drops out. In summary, we obtain for the d-wave channel
the same gap equation as Eq. (13), but with g0 = 3Jρ(0)/8, i.e., there is an effective attraction
in the d-wave channel and the on-site Hubbard repulsion is orthogonal (i.e., the product of U
and the function fd(k) exactly averages to zero under a BZ integral). The the sign-changing
d-wave pair condensate realizes an order parameter of the form ∆k = ∆0(cos kx− cos ky). This
order parameter ∆k exhibits sign changes (by symmetry) and has nodal lines along the diago-
nals of the Brillouin zone. If these hit the Fermi surface, it has implications for the low-energy
properties of the superconductor, see Fig. 5(d).

The second perspective is guided by knowledge of how typical spin-fluctuation pairing interac-
tions behave: Usually, the interaction is repulsive everywhere, i.e., V (k,k′) > 0 for all combi-
nations of k and k′. This property is also inherited to the singlet interaction, V s(k,k′) > 0, see
Eq. (5). Looking now at the mean-field self-consistency equation, Eq. (10), one sees that for an
order parameter ∆k that has the same sign everywhere, let us choose it positive ∆k > 0, there
is mathematically no solution possible because the l.h.s. is positive for all k and the r.h.s. is a
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sum of negative terms since tanh(x) > 0 for x > 0 and Ek′ > 0. Allowing for a sign changing
order parameter, there is however the possibility of finding a self-consistent solution if the order
parameter ∆s

k′ has a different sign than the order parameter ∆s
k for pairs of k and k′ where

the pairing interaction V s(k,k′) is largest. Indeed, the order parameter needs to be a smooth
function of k and satisfy the condition ∆s

k = ∆s
−k (even parity) such that the momentum sum∑

k′ sums up positive and negative contributions but still can compensate for the overall minus
sign on the r.h.s.
Finally, a remark for the case of triplet superconductivity: Even with a repulsive bare interaction
V (k,k′) > 0, one sees that the anti-symmetrization in Eq. (5) yields a pairing interaction
V s/t(k,k′) that is positive for some k and k′ and negative for others (simply from the fact that
there is a momentum dependence). However, the order parameter needs to be of odd parity
∆t

k = −∆t
−k so that the order parameter must exhibit a sign change if becoming nonzero.

3 Spin fluctuation pairing

3.1 Spin susceptibility

Many unconventional superconducting materials have similar phenomenology in the overall
phase diagram, namely that there is a magnetic state close to the superconducting phase, thus
suggesting that fluctuations in the vicinity of the magnetic phase can provide the necessary ef-
fective pairing interaction because near the magnetic phase boundary the magnetic susceptibility
χ(q, ω) is enhanced [10]. The magnetic susceptibility as quantum mechanical response func-
tion is given by the spin-spin correlator

〈
Tτ ~S(r, τ)· ~S(0, 0)

〉
with the spin-operator ~S(r, τ) =

1
2
c†r,α(τ)~σαβcr,β(τ) and the time ordering operator Tτ [13]. Parametrizing the components of the

spin operator in terms of the raising and lowering operators S± = Sx±iSy, one can discuss the
spin-spin correlator (and therefore the spin susceptibility) in terms of transverse 〈S+S−〉 and
longitudinal 〈SzSz〉 parts. Starting from the paramagnetic phase (without spin-orbit coupling),
these are identical such that we focus on the transverse part only.
Fourier transformation to momentum space yields

χ+−
0 (q, τ) =

1

N

∑
k,k′

〈
TτS

+(q, τ)S−(−q, 0)
〉

=
1

N

∑
k,k′

〈
Tτc

†
k+q,↑(τ)ck,↓(τ)c†k′−q,↓(0)ck′,↑(0)

〉
. (15)

The correlator can be calculated using Wick’s theorem (note the Fermionic statistics) and ex-
pressed in terms of the free Green function Gσ

0 (k, τ) =
〈
Tτck,σ(τ)c†k,σ(0)

〉
(for an introduction

to the Green function formalism, see for example Ref. [17]). with the result

χ+−
0 (q, τ) = − 1

N

∑
k,k′

〈
Tτck′,↑(0)c†k+q,↑(τ)

〉〈
Tτck,↓(τ)c†k′−q,↓(0)

〉
= − 1

N

∑
k

G↑0(k+q,−τ)G↓0(k, τ). (16)
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Fig. 6: Second order screening (bubble) and exchange (ladder) diagrams. Note that each
interaction line U depicted by a wiggly line connects opposite spins only.

To evaluate the susceptibility, we transform from imaginary time τ to Matsubara frequency and
introduce the Green functions Gσ

0 (k, τ) = 1
β

∑
iωn

e−iωnGσ
0 (k, iωn) to obtain

χ+−
0 (q, iνn) =

∫ β

0

dτ eiνnτχ+−
0 (q, τ) = − 1

βN

∑
k,iωm

G↑0(k+q, iωm+iνn)G↓0(k, iωm) (17)

The Matsubara Green functions of a free electron gas with energy dispersion εk are given by
Gσ

0 (k, iωm) = 1/(iωn−εk), i.e., have poles at iωn = εk and are independent of spin for the
paramagnetic case. Finally, we can evaluate the Matsubara sum over the fermionic frequency
iωm to yield the susceptibility at the bosonic frequency iνn,

χ+−
0 (q, iνn) = − 1

N

∑
k

nF (εk+q)− nF (εk)

iνn + εk+q − εk
, (18)

that for a paramagnetic metal is identical to the longitudinal one χ+−
0 (q, iνn) = χzz0 (q, iνn).

At zero frequency iνn = 0, one can analyze the conditions for sizeable contributions in the
momentum sum: The numerator generates a singularity for the same values of the energy dis-
persion εk+q = εk, but the difference of the Fermi functions nF for these arguments are only
sizeable if the eigenenergies are close to zero energy (within a window of several kBT ), thus
there are only contributions from k and k+q close to the Fermi surface. Phase space is large if
additionally, the respective Fermi velocities vF (k) and vF (k+q) are (small and opposite to each
other) yielding the argument about Fermi surface nesting for large contributions to the (static)
susceptibility/Lindhard function.

3.2 Pairing interaction

The interaction from a Hubbard model

Hint = U
∑
r

c†r,↑cr,↑c
†
r,↓cr,↓ = U

∑
r

nr,↑nr,↓ , (19)

can be taken into account in perturbation theory [18] (see Fig. 6) by considering the screening
effect due to all other electrons (bubble diagrams, longitudinal) and the exchange of electrons
(ladder diagrams, transverse). The effective interaction as already postulated in Eq. (1) is given
by

V (k,k′) = U + V RPA
lo (k−k′) + V RPA

tr (k+k′). (20)
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Fig. 7: Single band model: susceptibility (red: bare, blue: RPA) at a choice of Hubbard in-
teractions yielding a fixed eigenvalue λ1 = 0.1 for the pairing. (1)–(4) The four representative
single band models have quite different structure of the susceptibility with peak structures that
are localized (2), (3) or ridges of large susceptibility (1), (4). The maximum of the susceptibility
a momentum transfer qmax is given by a combination of Fermi surface nesting, density of states
properties and available phase space for scattering processes indicated by the black arrow in
the inset with the Fermi surface.

The longitudinal contribution is restricted to an even number of bubbles, thus the series only
has even powers of U and can be rewritten in terms of the spin (s) and charge (c) susceptibility,

V RPA
lo (k− k′) =

U3χzz0 (k−k′)2

1− U2χzz0 (k−k′)2
=
U2

2

(
χzz0 (k−k′)

1− Uχzz0 (k−k′)
− χzz0 (k−k′)

1 + Uχzz0 (k− k′)

)
=
U2

2

(
χs(k−k′)− χc(k−k′)

)
. (21)

The transverse part is formally given by a geometric series with the transverse susceptibility,

V RPA
tr (k+k′) =

U2χ+−
0 (k+k′)

1− Uχ+−
0 (k+k′)

. (22)

Since we are only discussing the paramagnetic case, from now on the difference between trans-
verse and longitudinal susceptibility is dropped. First, we observe that the spin susceptibility
exhibits a singularity if 1−Uχzz0 (q) = 0, which signals an instability towards a spin-density
wave state if it occurs at finite q. It is the usual Stoner instability for an itinerant ferromag-
net if it occurs at q = 0 since the (bare) susceptibility at T= 0 and q= 0 is just the density
of states at the Fermi level χzz0 (0) = ρ(0). Second, close to such a magnetic phase, the spin
fluctuations are strong and the effective pairing interaction becomes large as well. Ignoring
the charge fluctuations (which in this approximation do not become dominant because of the
1+Uχzz0 (q) denominator), one sees that the spin susceptibility (and consequently the pairing
interaction) is a monotonous function of U, i.e., large values of χzz0 (q) lead to large values of
χs(q). Consequently, to identify dominant contributions for pairing and qualitatively under-
stand the solutions ∆k of the self-consistence equation Eq. (10), it is sufficient to look for peaks
in the bare susceptibility (Lindhard function).
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Fig. 8: Single band model: superconducting order parameter calculated using Eq. (11) from
the spin-fluctuation paring interaction in Eq. (20). Solutions of the linearized gap equation for
the four representative models (1)–(4), compare Fig. 4 with bare interaction U tuned such that
the leading instability has λ = 0.1. Arrows indicate dominant peaks in the bare susceptibility as
shown in Fig. 7. For singlet states, these connect order parameters of different sign while for the
triplet states, the dominant pair scattering connects between parts where the order parameter
has the same sign.

3.3 Single band model

In the following, we discuss a couple of examples of simple band structures, the properties of
the susceptibility and expected superconducting pairing states. The starting point is a single-
band model with one dx2−y2 orbital as discussed in view of the cuprate superconductors. The
model is given already in Eq. (2) and is parametrized by the nearest neighbor hopping t, the
next-nearest-neighbor hopping t′ and the chemical potential µ. In the following we assume the
chemical potential to be tuned such that a given (spin-summed) density 〈n〉 is achieved. This
model allows four different Fermi surface topologies, see Fig. 4 and therefore also different
nesting conditions with differences in the Lindhard function (susceptibility), see Fig. 7. The
dominant peaks in the susceptibility are then responsible for the momentum structure of the
superconducting order parameter. For singlet pairing qmax connects Fermi surface points where
the order parameter is maximum and has opposite sign, while for solutions in the triplet channel,
the pairing interaction is negative and largest for this momentum transfer and consequently qmax

connects order parameter of the same sign as illustrated in Fig. 8.

Given the three Lifshitz transition lines for the single band model, the Fermi surface topology
is already very different in each regime and allows for pairing states of all possible symmetries,
see Fig. 9. Indeed, there are also triplet instabilities either close to the van Hove filling where
the density of states is large or in the regime of small Fermi energy where the band structure
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Fig. 9: (a) Superconducting phase diagram from spin-fluctuations showing the superconducting
instabilities of the one band model in the limit of small interactions U = 0.08. Lines indicate
eigenvalue λ of the leading instability. (b) At small filling (Fermi surface indicated by black
circle), spin-fluctuation theory predicts a time-reversal symmetry breaking dx2−y2+idxy super-
conducting instability as worked out by a self-consistent Bogoliubov-de-Gennes calculation
based on Eq. (10) [21].

Fig. 10: Triplet pairing from spin fluctuations at finite momentum in the single band Hubbard
model: (a) The spin susceptibility

(
U= 0.05, t= 1, t′= 0, n= 0.54, T= 0.0001

)
exhibits two

dominant peaks at q1 and q2. (b) Linear plot along a high symmetry path. Gap symmetry
function g(k) of the leading triplet instability (c) and leading singlet instability (d) showing
that the dominant scattering vectors connect parts where the order parameter is large [19].

resembles a parabolic band which has been discussed to exhibit an instability in the triplet chan-
nel (at weak coupling). In this case, the pairing state is a px,y state with momentum dependence
∝ sin kx or ∝ sin ky. If the susceptibility is peaked at a finite qmax, the pairing instabilities tend
to be dominated by singlet states, but there is the possibility to take advantage of the spin fluc-
tuations even in the triplet channel if qmax spans multiple nodes and the Fermi surface topology
is susceptible for those pairing states with higher order harmonics, see Fig. 10 [19].

To conclude this section on spin-fluctuations in a single band Hubbard model, we want to stress
that the approach presented here is based on a perturbative expansion of the pairing interaction
in powers of U. It is strictly correct only in the weak coupling regime and to order U3 since in
the RPA approach, only certain types of diagrams are summed over. Still it seems to connect
smoothly to numerically exact and unbiased calculations in the strong coupling regime for the
mentioned single band model [20].
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3.4 Multiband generalization

A number of unconventional superconductors cannot be described by a single band model be-
cause of multiple atoms in the elementary cell and/or a crystal field splitting such that multiple
orbital degrees of freedom have to be considered for the relevant low-energy electronic struc-
ture. Prominent material examples are the Fe-based superconductors where all five Fe-d states
contribute to the electronic structure [22, 12], in Sr2RuO4 three orbital degrees of freedom are
important [23], the nickelate systems (with one or more layers) [11,24] and the kagome systems
where three sublattice degrees of freedom are in the elementary cell [9].
In the case of multiorbital systems, the normal state Hamiltonian can be written in a tight-
binding model as

H0 =
∑
kσ``′

t``
′

k c†`σ(k)c`′σ(k), (23)

where t``′k =
∑

δ t
``′

δ exp(ik · δ) is the Fourier transform of the hopping elements connecting
orbital ` with orbital `′ at distance δ.
A unitary transformation with the matrix elements a`µ(k) diagonalizes the Bloch Hamiltonian
such that it becomes

H0 =
∑
kσµ

εµ,k c
†
µσ(k)cµσ(k) (24)

with eigenenergies εµ,k and c†µσ(k) is the operator creating an electron in Bloch state of band µ at
momentum k. In Fig. 11(e,f) the electronic structure of such a five band model is illustrated for
the example of LiFeAs. This model has been derived from an ab-initio calculation in Ref. [26]
by restricting to the kz = 0 plane. The model of KxFe2Se2 (g,h) only has electronlike pockets.
For completeness and later reference, we also cite the generalization of the Hubbard interaction
Eq. (19) to multiple orbitals as usually discussed in terms of a Hubbard-Kanamori form,

Hint = U
∑
i,`

ni`↑ni`↓+U
′
∑
i,`′<`

ni`ni`′+J
∑
i,`′<`

∑
σ,σ′

c†i`σc
†
i`′σ′ci`σ′ci`′σ+J ′

∑
i,`′ 6=`

c†i`↑c
†
i`↓ci`′↓ci`′↑, (25)

where the parameters U, U ′, J, J ′ are related by U ′ = U−2J , and J = J ′ in the spin-rotational
invariant case, i.e., two parameters U and J/U parametrize the interactions [28, 29].
If the additional degree of freedom is a sublattice, the interaction might need to be comple-
mented by nearest neighbor Coulomb interactions (for a single orbital model)

HV = V
∑
ij

µσσ′

nα,i,σnα,j,σ′ , (26)

where α denotes a sublattice and α is a sublattice distinct from α. We are not elaborating on
this further here, more details can be found for example in Ref. [30].
For a multiband model, the analog of the paramagnetic susceptibility, Eq. (17) is given by

χ0
`1`2`3`4

(q, iνn) = −
∑
k,iωn

G`1`3(k+q, iωn+iνn)G`2`4(k, iωn) (27)
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Fig. 11: Examples of electronic structure of multiband superconductors (a) Sketch of crystal
field splitting for cuprate and nickelate systems (b) Band structure of a bilayer nickelate [25]
(c) corresponding Fermi surface with dz2 and dx2−y2 orbital character. (d) Fe-based systems
exhibiting the three t2g orbitals at the Fermi level. (e) Band structure of a model for LiFeAs [26]
and (f) corresponding Fermi surface with electron pockets at X and Y point and holelike pockets
at the Γ point and M point. (g) Electronic structure of a 122 system with sizeable dispersion
along kz exhibiting only electronlike pockets at the X and Y point for KxFe2Se2 [27]. (i) Three
relevant orbital states in Sr2RuO4 yield three bands (j) and three Fermi sheets (k).

where the Green functions can be expressed in spectral representation

G`1`2(k, iωn) =
∑
µ

a`1ν (k)a`2,∗ν

iωn − εµ,k
. (28)

Again, we can perform the frequency sum analytically and obtain the generalized Lindhard
function

χ0
`1`2`3`4

(q, iνn) = −
∑

k,µ,ν,iωn

a`4ν (k)a`2,∗ν (k)a`1µ (k+q)a`3,∗µ (k+q)
(
nF (εµ,k+q)− nF (εν,k)

)
iνn + εµ,k+q − εν,k

. (29)

To calculate the effective pairing interaction from a spin-fluctuation mechanism, the RPA ap-
proach needs to be generalized to a matrix expression [22, 29]

χRPA
s/c `1`2`3`4

(q, ω) =
(
χ0(q, ω)

(
1∓ Ū s/cχ0(q, ω)

)−1
)
`1`2`3`4

, (30)

where the interaction matrices Ū s,c contain the bare interactions parametrized byU, U ′, J and J ′

and become momentum dependent in the presence of nearest-neighbor Coulomb interactions,
Eq. (26).
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Fig. 12: Examples of superconducting pairing in multiband systems. (a) Susceptibility and (b)
pairing state of a bilayer nickelate exhibiting a d-wave state. (c) Susceptibility for LiFeAs and
(d) corresponding leading s± pairing state with full gap. (e) Susceptibility as calculated from
a model of KxFe2Se2 that only exhibits electronlike pockets and has a d-wave instability (f).
The susceptibility of Sr2RuO4 using a band structure from a plain DFT calculation sustains a
d-wave instability (h).

The generalization of the pairing interaction (in orbital representation) is then given by

Γ`1`2`3`4(k,k
′)=

1

2

(
3Ū sχRPA

s (k−k′)Ū s + Ū s − Ū cχRPA
c (k−k′)Ū c + Ū c

)
`1`2`3`4

(31)

and enters the self-consistent equation (analogous to Eq. (10)) with a symmetrized and antisym-
metrized pairing interaction.
Taking the limit T → Tc, only the states on the Fermi surface become relevant. In that process,
the pairing interaction is projected to band space such that the pairing vertex in band space

Γνµ(k,k′) = Re
∑

`1`2`3`4

a`1,∗ν (k) a`4,∗ν (−k)Γ`1`2`3`4(k,k
′) a`2µ (k′) a`3µ (−k′) (32)

enters the linearized gap equation, Eq. (11). Note that the band index on the r.h.s. is formally a
dummy index since the knowledge of k and k′ on the Fermi surface automatically fixes the band
indices µ and ν. We note that the pairing interaction in Eq. (31) is dominated by momentum
transfer k±k′ where the susceptibility is peaked and is dominated by inter-orbital contributions
since for those the susceptibility tends to be large and the bare interaction Ū s,c is larger for these
processes as well. Still, we note that dominant Hund’s pairing [31, 32], i.e., when U ′ = U−2J

becomes negative can induce large inter-orbital pairing and some combinations of the pairing
interaction can become negative as discussed in Ref. [29] to drive inter-orbital pairing together
with intra-orbital pairing. In Fig. 12 some examples of pairing in multiband models are shown
where the dominant mechanism can be understood from the structure of the spin susceptibility

χphys(q) =
1

2

∑
``′

χ``′`′`(q). (33)
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Interplay of Fermi surface geometry and nesting We now discuss some representative ex-
ample materials; the choice is done for illustration purposes only and does not claim to be
complete in any way. The nickelate superconductors have been proposed as a sister compound
to the cuprates [24], but only recently, it was possible to actually obtain superconducting in-
finite layer nickelates in thin films or bilayer nickelates that are found to be superconduct-
ing under moderate pressure [33]. The common theme for the superconducting mechanism
is thought to be similar to the cuprates. However, there are several differences such as the
different crystal field splitting (see Fig. 11(a)), i.e., multiple orbitals are relevant for the low
energy electronic structure or the question of dispersion in the third direction as evidenced from
a smaller anisotropy in transport. For the superconducting instability, some investigations point
towards a d-wave state in analogy to single band cuprates. Taking into account correlations,
there might be a competing s-wave instability; the same trend is also found in models for bi-
layer nickelates; depending on the details either a sign-changing s-wave or d-wave instability
seems favorable (see Fig. 11(b)) [25, 34]. For the Fe-based superconductors, calculations us-
ing the spin-fluctuation pairing mechanism find competing s± states for the prototype Fermi
surface (see Fig. 11(d)) [26], but different Fermi surface topologies as found in strongly doped
KxFe2Se2 [27] of the monolayer FeSe with large Tc would favor a d-wave instability with sign
change between the electronlike Fermi surfaces. The case of Sr2RuO4 has been under intense
investigation in the last two decades. Early evidence for spin triplet superconductivity from
NMR Knight shifts sparked large interest in the compound and led to theoretical investigations
of how to stabilize such an instability. More experimental efforts using NMR revealed that there
was a technical challenge that was overcome in a later experiment finding a suppression of the
spin susceptibility in the superconducting state, a clear evidence for spin singlet superconduc-
tivity; the same conclusions were also drawn from data for the specific heat in a magnetic field.
The exact nature of the superconducting order parameter is still under debate, both experimen-
tally and theoretically [23]. Reconciling all experimental data with one single proposal for the
superconducting state seems not possible, but a plain calculation for spin-fluctuation driven
superconductivity starting from an ab-initio band structure points to a d-wave instability, see
Fig. 12(h).

3.5 Sublattice degree of freedom and kagome systems

The calculation of the susceptibility and consequently also the pairing interaction for systems
with multiple lattice points per elementary cell needs some additional care. Relevant examples
in view of unconventional superconductors are Fe-based systems of the 122 structure, where
no exact downfolding to a five band model with only one Fe per elementary cell exists (more
reading on this in Chapter 6 in Ref. [35]) or the kagome systems where three sublattices are
needed, see Fig. 1.
The underlying concept can be understood by examining electrons on a one dimensional chain.
For calculating the (bare) susceptibility in this system, we start with the dispersion

εk = −2t cos ka , (34)
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Fig. 13: Susceptibility and sublattice degree of freedom: (a) Bandstructure of a 1d nearest
neighbor tight-binding model (b) same model, but described with two identical sublattices. (c)
Description of the same physical system with one lattice point per elementary cell (blue) and two
lattice points per elementary cell (red) where intra-unit cell hoppings (straight lines) and inter-
unit cell hoppings (curved lines) are present. (d) Paramagnetic susceptibility at µ = −0.5t.
(e) Paramagnetic susceptibility from Eq. (27) calculated in the basis where the Hamiltonian is
periodic in the BZ, (f) same, but including the effect of the unitary transformation, Eq. (35).

and use Eq. (18). Indeed, the Bloch Hamiltonian is just εk and periodic in the Brillouin zone
εk = εk+2π/a and it becomes obvious that the susceptibility χ+−

0 (q, iνn) is also periodic with
the reciprocal lattice vector χ+−

0 (q, iνn) = χ+−
0 (q+2π/a, iνn). To illustrate the effect of a

sublattice, we now use a different elementary cell (that is not a primitive elementary cell) to
perform the same calculation. Defining a two sublattice system, the Bloch Hamiltonian becomes
a 2×2 matrix as

H̃(k) = −t

(
0 1 + exp(ik/a′)

1 + exp(−ik/a′) 0

)
. (35)

Now, the lattice constant is a′ = 2a and there are intra unit cell hopping processes that do not
acquire a momentum dependence, see Fig. 13(c). We note that the Brillouin zone is now smaller
(−π/a′ ·π/a′], still the Hamiltonian is periodic with a reciprocal vector H̃k = H̃k+π/a′ and so is
the susceptibility χ+−

`1`2`3`4
(q, iνn) = χ+−

`1`2`3`4
(q+2π/a, iνn). However, this result does not agree

with the susceptibility as calculated using the primitive elementary cell, see Fig. 13(e). The
reason is because the Bloch Hamiltonian does not “know” anything about the internal position
of the two sublattice states. A way out is to work in a different basis that is connected to the
current one by the unitary transformation

U =

(
1 0

0 exp(ika′/2)

)
(36)

such that the Bloch Hamiltonian is now

H(k) = −t

(
0 2 cos(ka′/2)

2 cos(ka′/2) 0

)
, (37)
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which has the same eigenvalues as H̃k, but the eigenvectors are different and are not periodic
with a reciprocal lattice vector since also the Hamiltonian is not Hk 6= Hk+2π/a′ . The sus-
ceptibility calculated following Eq. (27) using this Hamiltonian is periodic with two reciprocal
lattice vectors, χ+−

`1`2`3`4
(q, iνn) = χ+−

`1`2`3`4
(q+4π/a′, iνn) = χ+−

`1`2`3`4
(q+2π/a, iνn) which is

the reciprocal lattice vector of the original (primitive) setting. Thus, calculating the physical
susceptibility using Eq. (33) one indeed obtains the same result as in the primitive setting. Note
that the susceptibilities in the two basis settings of the Hamiltonian are related by just the mul-
tiplication of a phase factor exp(±iq/2) for the off-diagonal elements that connect the two
sublattices as one can easily show from the relation of the eigenvectors in the two settings and
the possibility to factor these from the momentum sum in Eq. (27).

Kagome lattice For a concrete example where the sublattice degree qualitatively enters the
susceptibility calculation and therefore is important for calculations of superconducting paring,
we consider a model on the kagome lattice. This is motivated by the recent discovery of super-
conductivity in kagome materials [9] where the nature of the superconducting order parameter
is currently under debate.
We start from a minimal tight-binding model with only nearest neighbor hoppings such that the
Hamiltonian is given by

H0 =
∑
k,σ

ψ†kσH0(k)ψkσ, (38)

where ψkσ =
(
ckσA, ckσB, ckσC

)T is a vector containing fermionic operators for the three
sublattices and the Bloch Hamiltonian

H0(k) = −

 µ t cos k3 t cos k1

t cos k3 µ t cos k2

t cos k1 t cos k2 µ

 . (39)

The momenta kn = k · an are parametrized with help of the vectors a1 =
(
1, 0

)
/2, a2 =(

1,
√

3
)
/4 and a3 =

(
−1,
√

3
)
/4 connecting to the nearest neighbors. µ is the chemical poten-

tial and t the NN hopping integral. The Hamiltonian is diagonalized by a unitary transformation,
u∗nα(k)H0,αβ(k)uβm(k) = εn,kδnm yielding the band energies εn,k and the eigenstates unα(k)

of band n. The unitary transformation

T (k) =

e−ik1 0 0

0 e−ik2 0

0 0 1

 (40)

transforms the Hamiltonian into a basis which is periodic in the first BZ,

H̃0(k) = −

 µ t
(
1+e2ik3

)
t
(
1+e−2ik1

)
t
(
1+e−2ik3

)
µ t

(
1+e−2ik2

)
t
(
1+e2ik1

)
t
(
1+e2ik2

)
µ

 (41)
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Fig. 14: Superconducting instabilities in a kagome system from spin fluctuations including NN
Coulomb interactions. Leading superconducting instability driven by spin (a) and charge (b)
fluctuations (plotted along high symmetry path). (c) Phase diagram exhibiting many competing
superconducting instabilities as revealed from the calculation of the eigenvalue of the linearized
gap equation Eq. (11). (e) Labeling for the phase diagram and momentum structure of the SC
instabilities [30].

to be used to evaluate the momentum integral in Eq. (29) and the elements of the unitary trans-
formation T (k) to be used for calculating the susceptibility in the other basis setting,

χ+−
0,αβ(q, ω) =

 χ̃+−
0,AA ei(q2−q1)χ̃+−

0,AB e−iq1 χ̃+−
0,AC

ei(q1−q2)χ̃+−
0,BA χ̃+−

0,BB e−iq2 χ̃+−
0,BC

eiq1 χ̃+−
0,CA eiq2 χ̃+−

0,CB χ̃+−
0,CC

, (42)

where χ̃+−
0,αβ(q, ω) is the spin susceptibility evaluated using H̃0(k), and qn = q · an.

Superconductivity from spin fluctuations on the kagome lattice Fig. 14(a,b) show the
(eigenvalues of the) susceptibility for the kagome lattice at µ = 0.08. Nearest neighbor in-
teractions according to Eq. (26) are taken into account making the charge fluctuations sizeable.
Consequently, superconducting instabilities of many symmetries are expected as shown in the
phase diagram (c). Looking at the phase diagram, one finds a significant parameter space at
sizeable U, but moderate V where the E2, i.e., a d-wave type solution is favorable. Generically,
the two orthogonal solutions exhibit the same Tc and therefore condense at the same temperature
with two possible settings: Either a real combination of the order parameter is stable, i.e., d+d

where an additional crystal symmetry is broken when entering the superconducting state, or the
order parameters form a complex linear combination d+id. For an extended discussion on time
reversal symmetry breaking in superconductors, see the reviews in Refs. [36, 37]. In the latter
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case, the time reversal symmetry is broken in the superconducting state and for the given Fermi
surface, the quasiparticle spectrum becomes fully gapped since the nodes of the two states do
not coincide. The second case usually lowers the condensation energy and is generically fa-
vored see appendix in Ref. [38]. This state would also be consistent with some observations in
the kagome materials, namely the full gap as seen in tunneling spectra [39] and evidence for
time reversal symmetry breaking in the superconducting state [40]. The latter could also arise
from other mechanisms such as loop currents in a complex charge density wave, indicated by
the presence of other instabilities in these materials occurring at higher transition temperatures.

4 Spectroscopic probes

In this section, we will theoretically analyze properties of unconventional superconductors and
point out qualitative differences in a set of spectroscopic probes that can be used to exper-
imentally distinguish between conventional and unconventional superconductors and deduce
possible gap symmetries.

To accomplish this task, we first formulate BCS theory in terms of Green functions and then
derive physical observables. For a mean-field Hamiltonian of the form of Eq. (6), we can rewrite
it in the form

HMF =
∑
k

Ψ †kĤBdG(k)Ψk , (43)

where we introduced the matrix of the Bogoliubov de Gennes Hamiltonian (BdG)

ĤBdG(k) =

(
h(k) ∆s/t(k)

∆(k)s/t
† −h(−k)T

)
, (44)

and Ψ †k =
(
c†k↑, c−k↓

)
. For a single band model, we have h(k) = εk and ∆s/t(k) = ∆

s/t
k ,

while for the multiband case, the operator runs over all auxiliary quantum numbers that can be
orbital or sublattice c†k,σ =

(
c†kσ1, c

†
kσ2, . . .

)
. The retarded Green function that formally solves

the Schrödinger equation is given by

Ĝ(0)(k, ω) =
(

(ω+iη)1− ĤBdG(k)
)−1

=

(
G

(0)
11 (k, ω) G

(0)

11̄
(k, ω)

G
(0)

1̄1
(k, ω) G

(0)

1̄1̄
(k, ω)

)
, (45)

where we introduced the normal or anomalous parts of the Green function with the notation of
11 and 11̄. For the single band case, the matrix inversion can be done analytically giving the
2×2 matrix

Ĝ(0)(k, ω) =
(ω+iη)τ0 + εkτ3 +∆

s/t
k τ1

(ω+iη)2 − ε2
k −

(
∆
s/t
k

)2 (46)

with the usual Pauli matrices τi and the unit matrix τ0.
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4.1 Density of states

The quasiparticle density of states is then given by

ρs(ω) = − 1

π
Tr Im Ĝ(0)(k, ω) , (47)

and the electronic density of states relevant for tunneling is given by

ρ(ω) = − 1

π
Tr ImG

(0)
11 (k, ω) = − 1

2π
Tr Im

(
G

(0)
11 (k, ω) +G

(0)

1̄1̄
(k,−ω)

)
, (48)

where the trace is over the auxiliary degrees of freedom (orbital, sublattice) and a sum over
momentum k. With the help of the unitary transformation in Eq. (7), one can obtain the spec-
tral representation of the Green function that contains products of the matrix elements of the
Bogoliubov transformation and finally yields for the density of states (in the one band case) the
expression

ρ(ω) =
∑
k

(
|uk|2 δ(ω−Ek) + |vk|2 δ(ω+Ek)

)
, (49)

which weights the positive and negative eigenvalues according to the composition of the quasi-
particle states in terms of the original electrons and holes. For a superconductor with a constant
order parameter∆0, there are no states at ω < ∆0, and a singularity∝ |ω|/

√
ω2−∆2

0 above that
energy. For momentum-dependent order parameters, there are no states below the minimum of
the order parameter ∆− = minkF ∆kF (at the Fermi surface). Because of the form of the quasi-

particle energies Ek =
√
ε2
k +

∣∣∆s/t
k

∣∣2, there appear van Hove singularities in the density of
states whenever the order parameter has a minimum or maximum. We note that these singu-
larities arise from minima

(
∆−
)

or saddle points
(
at ∆+ = maxkF ∆kF

)
of the quasiparticle

dispersion Ek. In two dimensions, these lead to steps at ω = ∆− or logarithmically diverging
density of states at the respective energies ω = ∆+ (where also local maxima contribute).
For nodal superconductors, the low-energy density of states is given by the low energy ex-
pansion of Ek. If the order parameter exhibits a (simple) sign-change this leads to a linear
quasiparticle dispersion (Dirac-cone) close the node and therefore in the simplest case to a lin-
ear density of states close to ω = 0. This behavior is identical for nodes dictated by symmetry
(for example d-wave order parameter) as well as accidental nodes (for example s± order pa-
rameter). Low temperature expansions of thermodynamic properties such as specific heat, pen-
etration depth (superfluid density) and thermal transport can be calculated from the low energy
expansion of the density of states. Thus, these quantities have imprints of the order parameter,
and corresponding power law dependencies in the experimental data are used to examine the
superconducting order parameter.
The electronic density of states itself can be measured in (scanning) tunneling experiments
where the differential conductance is to a good approximation given by dI/dV ∝ ρ(ω) [41],
while there might be corrections from tunneling processes through the surface layers [42, 43].
Some examples of densities of states for unconventional superconducting states in single and
multiband systems are shown in Fig. 15 where it becomes obvious that the symmetry of the
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Fig. 15: Examples of densities of states for unconventional superconductors: (a) single band
model with d-wave order parameter (see Fig. 8, panel (3) left) exhibiting logarithmically diver-
gent coherence peaks and a linear DOS as low energies from the Dirac-like dispersion close to
the nodal points (in two dimensions). (b) Multiband result for bilayer nickelate system where
the leading d-wave instability (see Fig. 12(a)) shows the characteristic behavior known from
the single band case, but also a sub-leading s± state has almost identical spectral signatures.
(c) DOS for sign changing s± state without nodes. Multiple coherence peaks for gap maxima on
the pockets (see Fig. 12(b)) appear. (d) The nodeless d-wave solution for the system with only
electronlike pockets shows coherence peaks and a step at the minimum of the order parameter
on the Fermi surface, compare Fig. 12(c).

order parameter cannot always be deduced from the spectrum. There are cases where sign-
changing s-wave and d-wave states are almost identical (panel b) for the nodal case. Also the
fully gapped situation can occur from different symmetries of the order parameter (panels c,d).

4.2 Bound states from impurities

The effect of disorder can be used to distinguish conventional from unconventional supercon-
ductors and eventually also differentiate between different symmetries of unconventional su-
perconductivity. Here, we will concentrate on the effect of a single impurity in a superconduc-
tor [44].
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In order to investigate the response of the Cooper pair wavefunction of different pairing can-
didates to single impurities, we introduce a nonmagnetic impurity or a (classical) magnetic
impurity as a variation of the onsite potential via the matrix

Ĥimp = V τ z ⊗M (50)

for a potential scatterer, and

Ĥimp = Szτ
0 ⊗M (51)

for a magnetic impurity, where the matrix M contains the structure of the impurity in the auxil-
iary quantum numbers, i.e., M = 1 for a single band model. The basis is again as for Eq. (44).
The effect of disorder on the superconducting order parameter itself will be neglected in this
section; on the mean-field level one can however treat it self-consistently by solving the BCS
equation, Eq. (4), in real space. For some physical observables (especially if states from mul-
tiple impurities overlap), this might be important. However for the presence and properties of
bound states on single impurities as discussed here, there is no qualitative difference.
Assuming no effect on the order parameter itself as mentioned above, the full Green function in
real space can be calculated within the T -matrix approximation as

Ĝ(r, r′, ω) = Ĝ(0)(r−r′, ω) + Ĝ(0)(r, ω) T̂ (ω) Ĝ(0)(−r′, ω), (52)

with the T -matrix given by

T̂ (ω) ≡
(
1− ĤimpĜ

(0)(0, ω)
)−1

Ĥimp . (53)

Here, the free real-space Green function is calculated by the Fourier transform from Eq. (45),

Ĝ(0)(r, ω) =
1

N

∑
k

Ĝ(0)(k, ω) eik·r. (54)

Having the real space Green function at hand, we can calculate the spin-summed electronic
local density of states (LDOS) at auxiliary quantum number α

ρα(r, ω) = − 1

π
Im
(
Gαα(r, r, ω) +Gᾱᾱ(r, r,−ω)

)
. (55)

Conventional and unconventional single band superconductors For the single band case in
a conventional superconductor (∆k = ∆), the calculation of the effect of a single (non)magnetic
impurity can be done analytically. Using Eq. (46), we can calculate the local Green functions
with the result for the diagonal part

G
(0)
11 (ω) = − πρ(0)ω√

|∆|2 − ω2
(56)

and the off-diagonal part

G
(0)

11̄
(ω) =

πρ(0) ∆√
|∆|2 − ω2

. (57)
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Fig. 16: Impurity bound states in unconventional superconductors (a) In a d-wave supercon-
ductor, the real part of the local green function matches the inverse of the impurity potential
(black dot), 1/V = ReG11̄(ωb). At the bound state energy, the density of states is nonzero,
but small. The different weights of the peaks are due to the properties of the free Green func-
tion in Eq. (52). (b) Corresponding LDOS exhibiting two impurity peaks from ±ωb with small
broadening. (c) For a multiband system, the analysis is a bit more complicated, but matching
1/V = ReGµ

11̄
(ωbi) for each orbital component yields the correct number of impurity reso-

nances that occur in the LDOS (d). Note that the weight in the individual orbitals is again due
to the free Green function Ĝ(0)(r−r′, ω), here with r = [1, 0], i.e., spectra next to the impurity.

Finding solutions for ω where the T -matrix diverges is only possible for a magnetic impurity,
but not for a non-magnetic impurity in this case. This is just the finding that there are bound
states within the gap [45–47] for magnetic impurities, while non-magnetic potentials do not lead
to those (Anderson’s theorem) [48]. For a d-wave superconductor (and other order parameters
that average to zero over the Brillouin zone)

∑
k∆k = 0, also the anomalous Green function

vanishes, G(0)

11̄
(ω) = 0, such that bound state solutions exist for magnetic and nonmagnetic

impurities. Since the density of states for nodal superconductors is finite, these bound states
have a finite lifetime [44]. Examples of impurity bound states are shown in Fig. 16 for a single
band d-wave superconductor and the multiband system LiFeAs which exhibits multiple bound
states for each orbital channel that can become sharp because of the vanishing DOS at low
energies of this fully gapped superconductor (compare Fig. 15(c)).
Introducing non-magnetic disorder into superconductors and the measurements of the LDOS
close to these impurities can be used to identify unconventional superconductors: If there is a
bound state, the superconductor has to be unconventional. The opposite conclusion is however
not true in general as it is discussed in the following for the kagome lattice.
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Fig. 17: Absence of pair breaking in unconventional superconductors on the kagome lattice:
(a) d+id order parameter in real space ∆r with onsite pairing on the three sublattices and
in momentum space (∆k) with characteristic sign-changing structure. (b) Density of states
yielding a fully gapped system. (c) The Green function in band space G22̄ averages to zero
as in usual d-wave superconductors, but the sublattice interference makes the Green function
in sublattice space GAĀ not to vanish and protects superconductivity from pairbreaking. (d)
No resonances in the T -matrix within the fully gapped energy such that (e) no impurity bound
states from potential scatterers exist. (f) Also Tc is protected from a fast suppression in d wave
superconductors on the kagome lattice (triangles) [49].

The case of the kagome lattice As discussed above, the kagome lattice exhibits three sublat-
tices and generically, single pointlike impurities are located either on the A, B, or C sublattice.
To be concrete, we assume a single nonmagnetic impurity on the A sublattice. Following the
outline above, the T -matrix calculation can be used with the choice Mij = δ1iδ1j in Eq. (50).
Choosing an order parameter of the type d+id which might be a candidate order parameter
because of (i) indications of time reversal symmetry breaking in the superconducting state [40]
and (ii) suggestions of this order parameter from spin-fluctuation pairing calculations [30], the
T -matrix calculation is done. The BdG Hamiltonian is set up from the normal state Hamilto-
nian, Eq. (41), and the order parameter that is onsite in the elementary cell

(
but exhibits sign

change between the sublattices, see Fig. 17(a)
)

[49]

∆d+id = ∆0

(
fS

OS,E
(1)
2

+ ifS
OS,E

(2)
2

)
, (58)

with the matrices

fS
OS,E

(1)
2

=
1√
6

 +1 0 0
0 −2 0
0 0 +1

 and fS
OS,E

(2)
2

=
1√
2

 +1 0 0
0 0 0
0 0 −1

. (59)

While the individual order parameters (in band space) have symmetry-imposed nodes (see
Fig. 17(a)), we obtain a fully gapped density of states of the homogeneous system because of
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the complex linear combination of the two order parameters. There are steps from the minima
of |∆k| at ∆− in band space and coherence peaks at the maximum gap ∆+ (Fig. 17(b)).
Considering single impurity disorder on the sublattice positions, it turns out that the impor-
tant quantity entering the T -matrix calculation is the Green function in sublattice space where
the momentum dependence is basically a product of the order parameter in band space with
the matrix elements

(
as also evident when looking at the spectral representation of the Green

function, Eq. (28)
)
. Unlike the Green function in band space G22̄(k, ω), the one in sublattice

space GAĀ(k, ω) does not average to zero when calculating the local Green function according
to Eq. (54), see (Fig. 17(c)). This means that there is no root of the denominator in Eq. (53)
(panel (d)) and no in-gap bound state exists as shown in panel (e) where LDOS spectra at the
impurity (black) and along a path to and away from the impurity are shown. From the same
physical mechanism d-wave superconductivity remains robust under presence of pointlike dis-
order. The suppression of the critical temperature Tc follows rather the trend for a conventional
superconductor than the Abrikosov-Gorkov (AG) [50] law, see Fig. 17 (f)) [49].

4.3 Dynamical susceptibility and neutron resonance

In section 3, we have discussed the behavior of the (static, ω = 0) susceptibility from a per-
spective of Fermi surface nesting and deduced the expected superconducting pair states in a
spin-fluctuation pairing mechanism. The spin susceptibility can be accessed experimentally in
inelastic neutron scattering experiments. This information can be used to either verify whether
the theoretical framework for obtaining the spin susceptibility works for the material under
consideration, or in a more bottom up approach, one can directly use the measured spin suscep-
tibility as input for calculations of the superconducting pairing.
Once it is established that there are strong spin fluctuations in a superconductive material, more
can be learned from the change of the spin fluctuations in the superconducting state. The first
observation is a reduction of the spin-response at energies ω ≤ 2∆−

(
ω ≤ 2∆0

)
because

for gapped superconductors, there are no quasiparticles (less quasiparticles) within this energy
range. Second, for unconventional superconductors (with sign change), an enhancement of
the spin-fluctuations for momenta q connecting parts of the Fermi surface with opposite sign,
∆k = −∆k+q, is achieved; the so-called neutron resonance as observed in cuprate materials
and Fe-based systems. From the energy of the resonance obtained by subtracting intensities
above Tc from the intensities measured below Tc, one can draw conclusions about the ∆/Tc
ratio and connect the superconducting material to the weak or strong coupling regime.
The starting point of the calculation of the susceptibility in the superconducting state is Eq. (15),
but now, we need to take into account the anomalous Green functions as well, i.e., obtain

χ+−
0 (q, τ) =− 1

N

∑
k,k′

(〈
Tτck′,↑(0)c†k+q,↑(τ)

〉〈
Tτck,↓(τ)c†k′−q,↓(0)

〉
+
〈
Tτc

†
k′−q,↓(0)c†k+q,↑(τ)

〉〈
Tτck,↓(τ)ck′,↑(0)

〉)
=− 1

N

∑
k

(
G0

11(k+q,−τ)G0
1̄1̄(k, τ) +G0

1̄1(k+q,−τ)G0
11̄(k, τ)

)
, (60)
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where we used a similar notation as in Eq. (45) for the anomalous Green function. Again, for
the single band case, we can use the analytical result for the Green function in frequency space,
Eq. (46) to obtain a closed expression of the susceptibility

χ+−
0 (q, ω) =

1

N
∑
k,E>0

[(
1−

εkεk+q +∆∗k+q∆k

EkEk+q

)
1− f(Ek)− f(Ek+q)

ω + Ek+q + Ek + iη

+

(
1−

εkεk+q +∆∗k+q∆k

EkEk+q

)
f(Ek) + f(Ek+q)− 1

ω − Ek+q − Ek + iη

+

(
1 +

εkεk+q +∆∗k+q∆k

EkEk+q

)
f(Ek)− f(Ek+q)

ω + Ek+q − Ek + iη

+

(
1 +

εkεk+q +∆∗k+q∆k

EkEk+q

)
f(Ek+q)− f(Ek)

ω + Ek − Ek+q + iη

]
, (61)

where we have performed the Matsubara summation analytically, done the analytical contin-
uation iνn → ω+iη and used the particle-hole symmetry of the BdG Hamiltonian to rewrite
the summation in terms of positive energies only. The Hubbard interactions can be taken into
account in an RPA approach similar to Eq. (30). Resonances are now divergences in the imagi-
nary part of the susceptibility at the respective frequency ω0. Splitting the susceptibility in real
and imaginary part, χ+−(q, ω) = χ+−′

+ iχ+−′′ , we can calculate the imaginary part of the
susceptibility as follows (dropping the arguments and the transverse label +−),

χ+−′′
= Im

χ+−′
+ iχ+−′′

1− U(χ+−′ + iχ+−′′)
= Im

χ0

1− Uχ0

=
χ′′0

(1−Uχ′0)2 + (Uχ′′0)2
. (62)

This diverges if the numerator vanishes which requires 1−Uχ′0 = 0 (similar as the criterion for
the magnetic instability) and χ′′0 → 0 (gapped spectrum). The second is exactly fulfilled for a
full gap superconductor because of missing excitations at this energy, the first can be fulfilled
in the superconducting state if there is a sign-change in the order parameter as we discuss in the
following. The first observation is that the first two terms in Eq. (61) vanish in the normal state
when εk = Ek and ∆k = 0. For states close to the Fermi level, where there is an effect from
the superconducting state, we can set εk ≈ 0 and obtain Ek = |∆k| because of the sqrt in the
quasiparticle dispersion, Eq. (9). Looking at the coherence factor,(

1− ∆k+q∆k

|∆k||∆k+q|

)
≈
{

0

2
(63)

it exhibits two values depending on the order parameter: For momenta k and k+q with the same
sign of the order parameter it vanishes, and for momenta with sign∆∗k+q = − sign∆k it reaches
the value 2. Sign-changing order parameters therefore increase the real susceptibility and lead to
the mentioned spin-resonance (when taking into account interactions at least within RPA), while
conventional superconductivity (without sign-change) yields just a suppressed susceptibility.
Some examples of theoretical investigations in multiband settings on this topic can be found in
Refs. [51, 27].
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4.4 Spin relaxation rate and Hebel-Slichter peak

As a second example of a spectroscopic probe related to the spin susceptibility, we want to
discuss the spin relaxation rate in nuclear magnetoresonance (NMR) experiments. In a typical
NMR experiment, the nuclear spins are polarized by an external field and then tilted from the
equilibrium position by a radio frequency pulse. Left in this state, the spins precess around the
external field and eventually relax to the polarized state because of scattering events from the
(conduction) electrons in the system with a relaxation time T1. Solving the Bloch equations
for the dynamics of the magnetization in presence of electron spins and the hyperfine coupling,
leads to the following relation for the longitudinal relaxation due to spin fluctuations [13]

α ≡ 1

T1T
∝ lim

ω→0

1

N
∑
q

Im
χ+−

0 (q, ω)

ω
. (64)

The relevant energy scale is the Larmor frequency ωL that is practically very small, ~ωL ≈
10−7 eV, so it is considered as the smallest energy scale in the problem, which is the meaning
of the limit ω → 0 in the equation above.
The spin susceptibility can now be calculated using Eq. (61) where it turns out that now, the first
two terms do not contribute because the energy of the quasiparticles are (almost) always much
larger than the very small ω in the denominator, so these terms do not contribute to the imaginary
part of the susceptibility at low frequencies. Different for the last two terms with the opposite
sign of Ek and Ek+q which gives a contribution even in the limit ω → 0. Close to Tc where the
order parameter is very small, there is an enhancement of the density of states (coherence peak)
close to zero energy. This leads to an increase of the integrated spin susceptibility (compared
to the normal state) just below Tc. For a superconductor with a constant gap, the density of
states diverges as 1/

√
ω2 −∆0(T )2 while for an anisotropic superconductor with a maximum

gap ∆+, there is only a weaker divergence such that there is still a weak enhancement. In this
case, the relevant prefactor behaves as(

1 +
∆k+q∆k

|∆k||∆k+q|

)
≈
{

2 same sign
0 different sign

(65)

at low ω. To understand this in more detail, it is instructive to examine the factor

B(q,kn) =
∆∗kn+q∆kn

EknEkn+q

, (66)

which for a conventional superconductor (without sign-change) remains finite while for a d-
wave oder parameter it averages to zero when integrated over k for a fixed q as illustrated in
Fig. 18(a). This leads to an additional enhancement of the spin relaxation rate α below Tc for an
s-wave order parameter while for a sign-changing order parameter only the enhancement from
the (weak) peak in the density of states contributes. Experimentally, the absence of a (visible)
Hebel-Slichter peak is interpreted as an indication of unconventional superconductivity, while
its presence is an indication for a non-sign changing order parameter. See however Ref. [52] for
more subtle behavior in unconventional superconductors close to Tc.
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Fig. 18: Hebel-Slichter peak for different lattices (a) In the square lattice, the constant order
parameter yields a (positive) value of B(q,kn) everywhere in the Brillouin zone (and indepen-
dent of the choice of kn). Yielding a positive integral (0.261 in this case), enhances the spin
relaxation rate compared to its normal state value (b). For the d-wave order parameter (lower
panels in (a)), the factorB(q,kn) is always equally positive and negative, such that the integral
over it vanishes and no Hebel-Slichter peak is visible. (c) For the kagome lattice, there are pos-
itive and negative regions of Bd(q,kn), however the negative regions are suppressed because
of the different sublattice weight for k points far away from kn. In summary, the integral does
not average to zero and a Hebel-Slichter peak is expected for unconventional (sign-changing)
order parameters as well (d) [53].

We will now discuss that this conclusion does not generally apply for kagome systems, again
the peculiar property of the subblattice weight, Fig. 19 plays an important role. Indeed, one
can evaluate the multiband generalization of the susceptibility numerically by employing the
d+id superconducting order parameter as already discussed in the previous section, the result
is shown in Fig. 18. To gain further insights, we here map the problem to an effective single
band Hamiltonian. As seen, in Fig. 19(c), only band number 2 crosses the Fermi level. In the
weak coupling regime where the order parameter is much smaller than any band energy scale,
only the eigenenergies of this band significantly contribute to Eq. (61) for ω → 0. To under-
stand the effect on the spin relaxation rate in more detail, we start from the BdG Hamiltonian,
Eq. (44) which we transform to the band basis by application of the unitary transformation that
diagonalizes H0. Then the order parameter from sublattice space to band space transforms as

∆nm(k) = u∗nα(k)∆αβu
∗
mβ(−k), (67)

where unα(k) is the eigenstate of H0(k) in band n. For band 2, the effective Hamiltonian now
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Fig. 19: Band structure of simple kagome lattice (a) lattice structure with the three sublattices,
the lattice vectors ti and the nearest neighbor vectors ai. (b) Band structure exhibiting van
Hove points and a Dirac point. (c) Orbital weight distribution for the n = 2 band that is
crossing the Fermi level close to the upper van Hove point.

reads

Heff(k) =

(
ε2,k −∆22(k)

−∆∗22(k) −ε2,k

)
. (68)

Evaluating the susceptibility from this effective Hamiltonian, we see that it acquires an addi-
tional factor arising from the transformation from sublattice to band space

gαβ(k,q) = u2α(k+q)u2β(k+q)u2α(k)u2β(k). (69)

and the dynamical susceptibility in the superconducting state reads

χ+−
0 (q, ω) =

1

N
∑
k,E>0

[(
1−

εkεk+q +∆∗k+q∆k

EkEk+q

)
1− f(Ek)− f(Ek+q)

ω + Ek+q + Ek + iη
(70)

+

(
1−

εkεk+q +∆∗k+q∆k

EkEk+q

)
f(Ek) + f(Ek+q)− 1

ω − Ek+q − Ek + iη

+

(
1 +

εkεk+q +∆∗k+q∆k

EkEk+q

)
f(Ek)− f(Ek+q)

ω + Ek+q − Ek + iη

+

(
1 +

εkεk+q +∆∗k+q∆k

EkEk+q

)
f(Ek+q)− f(Ek)

ω + Ek − Ek+q + iη

]∑
αβ

gαβ(k,q).

In this equation, we have dropped the subscript for the band, i.e., ε2,k → εk, ∆22(k)→ ∆k.
Similarly to the previous discussion, we can define a (dressed) spin-susceptibility coherence
factor given by

Bd(q,kn) =

∑
αβ gαβ(kn,q)

Z

∆∗kn+q∆kn

EknEkn+q

, (71)

where Z is a normalization factor defined by Z = 1
N 2

∑
k,q

∑
αβ gαβ(k,q). The crucial prop-

erty of Eq. (71) is now that it contains a product of the order parameter (in band space) which
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has sign changing and compensation properties for a d-wave order parameter, but is addition-
ally multiplied by the sublattice weights that vanish in parts of the Brillouin zone, especially
where the order parameter has opposite sign. Consequently, the averaging is only partial and
an unconventional d (or d+id) order parameter acquires a finite enhancement factor leading to
a sizeable Hebel-Slichter peak just below Tc. In other words for the kagome lattice, one ex-
pects Hebel-Slichter peaks for conventional and unconventional order parameters (Fig. 18(d))
and its presence should not be interpreted as evidence against unconventional pairing in these
systems [53].
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1 Introduction

Almost 50 years after the seminal work by Berezinskii [1] and Kosterlitz and Thouless [2] the
Berezinskii-Kosterlitz-Thouless (BKT) transition remains one of the most fascinating examples
of topological phase transitions in condensed-matter system, and as such it has been acknowl-
edged by the 2016 Nobel Prize in Physics. Its universality class describes several phenom-
ena ranging from the quantum metal-insulator transition in one dimension to the Coulomb-gas
screening transition in 2D, and of course the metal-to-superfluid transition in 2D [3]. As such it
has been investigated in neutral superfluids, as, e.g., thin He films [4,5] and cold-atoms systems
made of bosons [6] or neutral fermions [7]. Nonetheless, despite the fact that in the original
paper by Kosterlitz and Thouless [2] the authors argued that the BKT transition should not be
observed in (quasi) two-dimensional (2D) superconductors, this is certainly the field where it
has been most widely discussed. As we will see in this Chapter, the conditions under which
BKT physics can be seen in quasi-2D superconductors are not always met. Nonetheless, in
the past and recent literature the BKT physics has been invoked to explain observations in a
wide class of systems: thin films of conventional [8–10] and unconventional [11–13] super-
conductors, but also to the 2D electron gas confined at the interface between two insulators in
artificial heterostructures [14–16], or in the top-most layer of ion-gated superconducting (SC)
systems [17]. Due to the breadth of literature on the subject, the references provided in the
present lecture cannot be at any extent exhaustive: the reader must be conscious that they just
reflect the personal choice of the author in providing few (over many) examples for each cate-
gory of problems that will be discussed.

The aim of this lecture is twofold. From one side, I will provide a general introduction to the
basic theoretical concepts behind the understanding of the BKT transition, and from the other
side I will summarize the efforts done over the years to understand how one can measure and
interpret experimental signatures of BKT physics in real materials, especially superconductors.

For the first part, I will start from the description of the BKT transition within the classical XY-
model, which describes Heisenberg interactions between two-component classical spins in a 2D
lattice. The physical transition behind this model is then the paramagnetic-ferromagnetic transi-
tion in 2D, and it allows one to understand easily the basic difference between “order” and “spin
rigidity” that is at the heart of the BKT physics. In addition, it allows one to easily visualize the
topological excitations as spin vortices that appear in 2D in addition to the more conventional
spin waves. As a second step, I will show the formal mapping between this problem and the
screening transition for the Coulomb gas, always in 2D. This analogy allows one to grasp an
intuition on the role of vortices to break the “quasi-long-range” order of the low-temperature
phase as an effect analogous to the screening of Coulomb interaction by charges that are free
to move. Finally, I will also mention the mapping into the sine-Gordon model, that describes
again a completely different physical problem, i.e., a quantum field in one dimension. Such a
mapping turns out to provide an alternative, elegant way to derive the renormalization-group
equations of the BKT transition via quantum-field theory techniques, as beautifully described
in the book by T. Giamarchi [18], that is also rather powerful to describe the role played by
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screening currents in a charged superfluid [19, 20].
For the second part, I will discuss to what extent the BKT transition can be observed in su-
perconductors, and what we can define as “2D superconductors” within the context of BKT
physics. I will then discuss in detail the benchmark experimental determination of the BKT
transition, i.e., the well-known BKT universal jump of the superfluid density [21], that has been
beautifully confirmed few years after the theoretical prediction by Nelson and Kosterlitz by ex-
periments in He films [5]. After a critical discussion of what exactly “universal jump” means
within the context of experiments in superconductors, as compared to the case of neutral su-
perfluids, I will review the results of the last ten years or so to identify this signature in real
systems. As we shall see, in most of the hypothetical quasi-2D superconductors where a BKT
jump could be expected it appears somehow hidden by inhomogeneity effects, that systemati-
cally smear it out, hindering its observation. Nonetheless, I will present few paradigmatic cases
where BKT physics seems to be supported by the experiments, once the “textbook” results
are properly analyzed by taking into account the role of inhomogeneity. In the last Section I
will also discuss two other celebrated examples of experimental observations of BKT physics
connected to vortex transport, i.e., the non-linear I-V characteristics below TBKT and the expo-
nential temperature dependence of the paraconductivity above TBKT [22]. Also in these cases
I will point out physical effects present in real materials that can overscreen a pure BKT phe-
nomenon, requiring a careful analysis of the experimental conditions under which BKT physics
can be disentangled from other phenomena.

2 The XY-model

The pioneering works of Berezinkii [1] and Kosterlitz and Thouless [2] in the late 70’s were
originally motivated by the ongoing discussion at the time on the possibility to observe some
sort of transition in 2D, that could be still consistent with the expectation of the Mermin-Wagner
theorem [23]. The Mermin-Wagner theorem states that a 2D system cannot break spontaneously
a continuous symmetry at finite temperature. The reason, as we shall see below via an explicit
computation, is that the thermal fluctuations of the Goldstone (massless) mode which emerges
when a continuous symmetry is broken completely spoil the order parameter of the transition
itself. At that time, the contribution of Berezinkii from one side, and Kosterlitz and Thouless
from the other, was to shown that a phase transition can still take place, but it must be identified
by starting from a more general definition of “quasi-ordered” state, that is no more characterized
by a finite order parameter, but rather by a finite “rigidity” of the state itself. Once established
that a phase transition can be identified on the basis of the presence (below TBKT) or the absence
(above TBKT) of rigidity, they showed that topological vortex-like excitations play a central role
in driving the transition. It must be noted that the concept of rigidity as manifestation of a
phase transition is not limited to the BKT case. Just to mention the most intuitive case, when
translational symmetry is broken to form a solid the system becomes indeed “rigid” (we can
walk on it!). The Goldstone modes of the transition in this case are the acoustic phonons,
whose energy scales with the gradient of the lattice deformation. As such, as the wavelength of



10.4 Lara Benfatto

the deformation goes to infinity, i.e., the momentum goes to zero, it cost nothing to create
the phononic distortion, i.e., the mode appears “massless”. This analogy will be useful to
understand the results we will derive in this Section.
To start the discussion on the basic concepts behind the BKT transition let us introduce theXY -
model, where these effects were originally discussed. The model describes the ferromagnetic
interactions between planar spins with fixed modulus (|Si| = 1), placed on a square lattice. Its
Hamiltonian reads

HXY = −J
∑
〈i,j〉

Si · Sj = −J
∑
〈ij〉

cos
(
θi−θj

)
, (1)

where the sum
∑
〈i,j〉 is restricted to nearest neighbors spins, J is a positive coupling constant

and θ represents the angle that each spin form with the x direction. For convenience of language,
and for the sake of the analogy with the role played by θ within the context of the superfluid
transition, we will refer to it as to a “phase” variable. From (1), it is straightforward to recognize
that the system shows two different symmetries

• q continuous and global symmetry U(1): ∀i : θi → θi+c

• q discrete and local symmetry Zm: θi → θi+2πm

In the following, we will see that these two symmetries are connected to two different phase
excitations below TBKT. Let us start to analyze the Hamiltonian (1) trying to guess the low-
temperature ground state. It can be easily understood that the minimum value of the energy
corresponds to a situation in which all the spins are aligned in one particular direction, say θi=0

for all spins, breaking in this way the U(1) symmetry of the Hamiltonian itself. Whenever this
happens, the system has a finite macroscopic magnetization in the x direction, i.e. 〈S〉 = x̂. Let
us see why this is not possible, as expected on the basis of the Mermin-Wagner theorem.
At finite temperature, the phase θi of each site can fluctuate with respect to the ground-state
value. We are interested in computing the contribution of such phase fluctuations to 〈S〉 in a
low-temperature phase, where the difference in phase between neighboring spins is very small,
so that we can rewrite the Hamiltonian (1) by expanding the cosine up to the second order in
its argument. Furthermore, by taking the continuum limit on the lattice we can approximate
θi−θi+δ̂ ≈ a ∂θ(r)/∂δ̂, where θ(r) is a smooth function and δ̂ = x, y. Finally, we get

HXY '
J

2

∫
dr
(
∇θ(r)

)2
=
J

2

∫
dq

(2π)2
q2 |θq|2. (2)

Thanks to the Gaussian approximation (2) to the XY-Hamiltonian we can easily compute the
effect of phase fluctuations as

〈Si〉 =
〈
eiθi
〉

= e−〈θ
2
i 〉/2 , (3)

where in the last passage we have used a well known property of the average over a Gaus-
sian distribution (see Appendix A), while the average 〈· · · 〉 is defined as the average over the
canonical ensemble of the system

〈A〉 =
1

Z

∫ 2π

0

dθ1· · ·
∫ 2π

0

dθN Ae
−βHXY , (4)
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where as usual β = 1/T . By using the approximation (2) the calculation (3) is straightforward

〈
θ2i
〉

=

∫
dq

(2π)2
〈
|θq|2

〉
=

∫ 1/a

1/L

dq

(2π)2
T

Jq2
=

T

2πJ
ln
L

a
, (5)

where we used the fact that from Hamiltonian (2)〈
θq1θq2

〉
=

T

Jq2
1

δq1,−q2 , (6)

and we denoted with L the linear size of the system and with a the lattice spacing between two
neighboring spins. Substituting the result (5) into Eq. (3) we get

〈Si〉 = e−
T

4πJ
ln(L/a) =

( a
L

) T
4πJ −−−→

L→∞
0 . (7)

Hence, at any nonzero temperature the system cannot sustain a spontaneous magnetization in
the thermodynamic limit, since the spin wave excitations suppress the long-range order. As one
can immediately see from Eq. (2), spin waves appear as smooth variations of the phase, that cost
no energy in the long-wavelength (q → 0) limit. Thus, in the 2D XY-model they are indeed
“massless” at long-wavelength, and as such they can be recognized as the Goldstone modes of
the system. We then proved explicitly the Mermin-Wagner theorem.
However, it is worth to mention that very often real systems are quite far from the thermo-
dynamic limit so that they could exhibit a finite magnetization in the low-temperature regime.
Indeed, if we estimate the exponent of (7), using the universal relation between the renormalized
stiffness J and the temperature at the critical point (we will come back on this point in the next
pages), we obtain that it is ≤ 1/8. It means that for a microscopic scale a ∼ 10 nm one would
need a system with a linear size L ∼ 100000 km to have 〈Si〉 = 0.01. In short, if a real finite
system exhibits a spontaneous symmetry breaking, it does not mean that the Mermin Wagner
theorem is violated, but that the system studied is far away from its thermodynamic limit.
Anyway, at the time of its formulation, the generally accepted conclusion was that in the XY-
model1 there is no transition to an ordered state at any nonzero temperature. The merit of
Berezinskii, Kosterlitz and Thouless was first of all to overcome this idea, by realizing that a
different kind of transition was possible.

2.1 Correlation functions and rigidity

Even though we have explicitly seen that a conventional order-parameter description of the
phase transition is not possible, since 〈Si〉 = 0 at any temperature, the close investigation of the
behavior of the spin correlation functions suggests that a change of behavior should still happen
between the low and high-temperature phase. The correlation function between two sites i and
j is defined as

C(ri−rj) =
〈
Si · Sj

〉
=
〈
cos(θi−θj)

〉
. (8)

1More generally in a two-dimensional system with a continuous symmetry and short-range interactions.
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Let us try to estimate its behavior in the low-temperature βJ � 1 and high temperature limit
βJ � 1, respectively. At low temperature we can rely on the same approximated Gaussian
Hamiltonian (2) used above for the calculation of the average order parameter. Using again the
properties of Gaussian averages we get

C(r) =
〈
ei(θ(r)−θ(0))

〉
= e−

1
2〈θ(r)−θ(0)2〉, (9)

where the quantity in the exponent is computed in Fourier space as〈
(θ(r)−θ(0))2

〉
=
〈∫ dq1

2π
θq1

(
eiq1r−1

)∫ dq2

2π
θq2

(
eiq2r−1

)〉
=

∫
dq

(2π)2
(
2−2 cos(q·r)

)〈
|θ(q)|2

〉
=

T

πJ

(∫ 1/a

1/L

dq

q

(
1− cos(q · r)

))
∼ T

πJ

∫ 1/a

1/r

dq
1

q
=

T

πJ
ln
r

a
, (10)

where the result (6) for the phase correlation function of the Gaussian model has been used.
Finally, by substituting this result in Eq. (9) we obtain

C(r) = e−
T

2πJ
ln(r/a) =

(a
r

) T
2πJ

. (11)

In the high-temperature regime one can attempt an estimate of the correlation function in power
law of the small parameter βJ � 1. In this regime one is not authorized to assume small
fluctuations of θi−θj , and in general the full cosine structure of Eq. (1) should be retained, along
with its periodicity modulo 2π. The details of this calculation can be found in Ref. [24]. The
final result is that the correlation function decays in this regime exponentially, with a correlation
length ξ depending on the temperature

C(ri−rj) ' e−|r1−r2|/ξ, ξ = ln
2T

J
. (12)

Let us compare the results (11) and (12) with the standard expectations for a second-order phase
transition according to Landau theory. Denoting with m = 〈S〉 the average order parameter
below Tc, one usually finds

C(r) ' Ae−rξ+ , T > Tc (13)

C(r) ' m2 + Be−rξ− , T < Tc (14)

where A,A′ are constants, and the correlation length above ξ+ and below ξ− both diverge as Tc
is approached as

ξ±(T ) ∼ 1

|T − Tc|ν
, T → Tc, (15)

with ν = 1/2 in the mean-field case. In other words, the correlation function for the observable
that represents the order parameter decays exponentially to zero in the disordered state, while
it tends exponentially to the square of the order parameter in the ordered state. The results
found above for the XY-model are radically different: at high temperature we recover indeed
an exponential decay to zero, Eq. (12), but the correlation length does not diverge at any finite
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temperature. On the other hand, in the low-temperature expansion (11) the correlation length
tends to zero with a power-law instead of an exponential behavior. Strictly speaking, such a
scaling implies that ξ→∞ in the ordered state. Observe also that both results are consistent
with the Mermin-Wagner theorem: the system does not display a non-zero order parameter at
any finite temperature. On the other hand, such a drastic change of behavior of the correlation
functions cannot occur without the emergence of a phase transition in between: the transition in
this case cannot be characterized by a vanishing of the order parameter (that is always zero at
finite temperature in the thermodynamic limit), but by the change of scaling of the system corre-
lation functions. At low temperature, the long-wavelength spin fluctuations, or spin waves, have
a finite spin (or phase) stiffness, encoded in the finite coefficient of the

(
∇θ
)2 term of Eq. (2).

The direct consequence of this rigidity against phase fluctuations is the (weak) power-law decay
of correlation functions at large distances, encoded into Eq. (11). On the other hand, at high
temperature, a full cosine-like interaction term should be considered in the Hamiltonian, and
the system recovers a standard exponential decay (12) of the correlation function, and the phase
rigidity, that controls the power-law decay of the low-temperature expansion (11), is lost. To
understand how this transition occurs, we must take into account vortices, not considered so far.

2.2 The role of vortices

Let us tackle the problem starting from the low-temperature expansion (2). It is clear that this
approximation cannot be the end of the story: the model (2) is purely Gaussian, and as such
it cannot induce any transition. On the other hand, as emphasized above, the pure exponential
decay (12) of the correlation functions can only be recovered by retaining the full cosine struc-
ture of the Hamiltonian. As a consequence, one recognizes that while going from the original
model (1) to the approximated one (2) we have lost one important discrete symmetry of the
original XY-model, mentioned at the beginning: the invariance under a local transformation

θi → θi ± 2πm , (16)

with m ∈ Z, for each site i of the lattice. The presence of this discrete symmetry leads to
the existence of a new kind of phase excitations that are topological in character and cannot
be smoothly connected to the unperturbed ground state. These are vortices, characterized by a
winding of the phase by ±2π by going around their center∮

∇θ · ~d` = 2πn . (17)

It is clear that if a vortex excitation is present in the system, one cannot make the assumption of
smoothness of the phase variations in neighboring sites, that led us to the approximate form (2).
Thus, vortices are good candidates to be responsible for the phase transition we are looking
for. The question to be answered is then: how much energy does it cost to introduce a vortex
in the system? Indeed, the answer to this question can also help us understanding what is the
temperature scale where the vortex proliferation occurs.



10.8 Lara Benfatto

To make this estimate we would like to keep the continuum notation for θ(r) but allowing also
for configurations that are singular in a position r0. The easiest way to introduce vortices into
the low-temperature model (2) is to assume that the Gaussian Hamiltonian admits both smooth
solutions θSW , that represent the longitudinal spin waves, and singular solutions θV , which
represent vortices. These two solutions are obtained by a variational principle applied to the
Hamiltonian (2): the variational equation δH = 0 reads in general

∇2θ(r) = 0. (18)

We will then describe spin-waves as solutions of Eq. (18) in all space, and vortices as solutions
that satisfy Eq. (18) everywhere except than in isolated points, that represent the vortex center

∇2θSW (r) = 0 , (19)

∇2 θV (r) = 2πq δ(r−r0), (20)

where q is an integer (positive or negative) number representing the vorticity of the topological
excitation at r0. The solution of Eq. (20) for q = 1 in 2D is exactly

θV = arctan
y−y0
x−x0

, (21)

that is the configuration of a vortex. Indeed, since∇θV =
(
−(y−y0), x−x0

)
/R2, withR=|r−r0|,

one immediately sees that by computing, e.g., Eq. (17) along a circle of radius R around r0 that
∇θV ‖ ~d`, so that from Eq. (17) we get∮

∇θV · ~d` =
1

R

∮
d` =

1

R
2πR = 2π . (22)

By inserting the solution (21) into the Hamiltonian (2) we can then calculate the energy of the
vortex configuration as

E =
J

2

∫
dr
(
∇θV (r)

)2
=
J

2

∫ L

a

dr 2πr
1

r2
= πJ ln

L

a
, (23)

where we used the fact that the distance R from the vortex center is limited below by the lattice
spacing and above by the system size L. This energy is diverging logarithmically with the
system size L, disfavoring the generation of vortices in the thermodynamic limit. However, at
finite temperature we must consider also the gain in entropy in forming the vortex configuration.
Since the number of independent places where a vortex can be located is ∼ L2/a2, we obtain
that also the entropy has a logarithmic dependence on the system size

S = ln
L2

a2
= 2 ln

L

a
. (24)

In conclusion we have that the free energy of a vortex configuration is

F = E − TS =
(
πJ−2T

)
ln
L

a
, (25)
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so that as soon as

T > TBKT =
πJ

2
, (26)

the emergence of an isolated vortex is entropically convenient. Even though we did not prove
it yet, it is physically plausible that when vortices proliferate they destroy the quasi-long-range
order encoded in the power-law correlation functions (11). More precisely, we will demonstrate,
by means of the renormalization-group equations, that the phase rigidity goes to zero. It is worth
stressing where the dimensionality entered crucially in the above argument. The entropic cost to
obtain a vortex is always logarithmically increasing with the system size, as in Eq. (24) above.
However, in dimensions larger than two the energetic cost of vortex configuration would scale
faster than log(L), making the energy term always predominant over the entropic one. Thus,
unless additional effects enter to cut-off at large distance the energetic cost of a vortex (as it
happens, e.g., in charged superconductors [25]) the free energy of a vortex configuration cannot
spontaneously change sign as temperature increase.
The above argument is the one provided in the original paper by Kosterlitz and Thouless [2].
Even though it is qualitatively correct, it neglects two effects. (i) While going from the lattice to
the continuum model one misses the energetic costs to form the vortex at the length-scale of the
lattice spacing. This energy, that is usually referred as vortex-core energy µ, is a constant that
must be added in Eq. (23). Even though it does not change considerably the estimate (26), where
only the terms growing with the system size are relevant, it can be nonetheless relevant if one
wants to make a direct comparison with experimental data in real superconducting systems, as
we will discuss extensively below. (ii) We estimated the transition temperature by considering
a single vortex with infinite size, while the reality could be more complicated, with several
vortex excitations occurring on shorter scales. For example, if one puts a vortex at r+ and an
antivortex (with same vorticity) at r−, at scales larger than ∼ |r+−r−| the phase configuration
remains unperturbed. In the spirit of Eq. (23), the log divergence of the integral is cut-off at
a scale or order |r+−r−|. This implies that such vortex “pairs” are energetically possible also
below Tc, and can change the “effective” large-distance J that enters Eq. (26). These additional
effects are beautifully explained, as we shall see in the next sections, by the renormalization
group (RG) analysis of the BKT transition, that was developed by Kosterlitz [26] right after the
publication of the original paper with Thouless. The starting point to carry on this analysis was
the explicit construction of the mapping into the Coulomb-gas problem, that we will discuss in
the next section.

3 Mapping to the Coulomb-gas and sine-Gordon model

As we discussed in the previous Section, vortex-like fluctuations can be introduced into the
Gaussian model (2) by allowing for singular solutions (20) of the δH = 0 variational equation.
We can try to pursue this analogy further by writing down a model that also includes interactions
between vortices, mediated by spin-wave excitations. This is the idea that was followed by
Kosterlitz [26] to write down a partition function for multiple vortices, to be further studied by
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means of the RG approach. It turns out that the Hamiltonian describing interactions between
vortices is formally equivalent to the Hamiltonian of the Coulomb gas in two dimensions. I will
review here in detail the derivation of the mapping, as it is discussed in [24], since it allows
one to grasp several aspects of the vortex physics, besides providing an additional example
of a completely different problem (the screening transition for the 2D Coulomb gas) that still
belongs to the BKT universality class.
Let us start again from the low-temperature model (2) and let us promote the phase gradient to
a generic current density j

∇θ ⇒ j , (27)

so that the Hamiltonian (2) becomes more generally

H =
J

2

∫
dr j2(r). (28)

Such a terminology is further motivated by the application to the case of superconductors, where
∇θ is directly connected to the physical electronic current density in the SC state (see Eq. (64)
below). In full generality, we can always decompose j in its longitudinal j‖ and transverse j⊥
components, defined as usual as

j = j‖ + j⊥ with ∇× j‖ = 0 and ∇ · j⊥ = 0 . (29)

By close inspection of the spin-wave (19) and vortex-like (20) phase excitations we also real-
ize that the former are connected to the longitudinal component, while the latter represent the
transverse components. Indeed we see that only j⊥ contributes to vortices, since∮

j · d~̀=

∫
S

(
∇× j

)
· ds =

∫
S

(
∇× j⊥

)
· ds = 2π

∑
i

qi , (30)

where qi is an integer (positive or negative number) defining the vorticity of the i-th vortex.
Eq. (30) is a generalization of Eq. (22) in the case where several vortices with different vorticity
are present. The longitudinal and transverse components can be defined in terms of scalar
functions as

j‖ = ∇θSW and j⊥ = ∇×(ẑW ) =
(
∂yW, −∂xW, 0

)
. (31)

In this way we also have that ∇× j⊥ =
(
0, 0, −∇2W

)
. Inserting this relation into Eq. (30) we

then conclude that W must satisfy the equation

∇2W (r) = −2πρ(r), (32)

ρ(r) =
∑
i

qi δ(r−ri). (33)

Eq. (32) is exactly the Poisson equation in 2D for the potential W generated by a distribution
of point-like charges qi at the positions ri. Its solution is in general

W (r) = 2π

∫
dr′ V (r−r′)ρ(r′), (34)
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where V (r) is the Green’s function of the Poisson equation, i.e., the solution of the homoge-
neous equation (corresponding to the Coulomb potential in 2D) that reads

∇2V (r) = −δ(r) ⇒ V (r) =

∫
dk

(2π)2
· e

ik·r

k2
. (35)

Notice that here we denote as Coulomb potential in 2D the Fourier transform of 1/k2 in two
spatial dimensions, so that we obtain V (r) ' − ln r at large distances, instead of the usual
1/r of the 3D case. If we use the decomposition (29) in Eq. (28) we immediately see that the
mixed terms vanishes since

∫
dr j‖ · j⊥ =

∫
dr∇θL ·

(
∇×(ẑW )

)
= θL

(
∇×(ẑW )

)
· n̂S
∣∣
∂S

= 0,
since the integration surface S can be taken larger than the sample area, leading to a vanishing
current at the border ∂S. As a consequence, we obtain that longitudinal and transverse degrees
of freedom decouple H = H‖ + H⊥, and we can focus on the term H⊥ = (J/2)

∫
dr j2⊥ that

describes the interaction between vortices. Thanks to the result (34) it can be written as

H⊥ =
J

2

∫
dr j2⊥ =

J

2

∫
dr
(
∇×(ẑW )

)2
=
J

2

∫
dr
(
∇W

)2
= −J

2

∫
drW∇2W

= πJ

∫
drW (r)ρ(r) = 2π2J

∫
drdr′ρ(r)V (r−r′)ρ(r′) = 2π2J

∑
ij

qiqjV (ri−rj). (36)

Eq. (36) expresses the interaction energy between vortices in the same form of the electrostatic
energy of point-like charges qi, leading to a global charge density ρ(r), interacting via a 2D
Coulomb potential V (r). An interesting outcome of the derivation (36) is that, due to the
divergence of the potential V (r) as r → 0, only neutral configurations contribute to the partition
function. If we compute V (r) from Eq. (35) we see that at the shortest scale of the system, i.e.,
when we put two vortices on the same site, it has a contribution diverging with the system size

V (r=0) =

∫ 1/a

1/L

dk
1

2πk
=

1

2π
ln
L

a
→∞ for L→∞. (37)

It we separate this divergent term by defining

V (r) = V (0) +G(r), (38)

where now G(r=0) = 0, in Eq. (36) we obtain

2π2J
∑
ij

qiqj
(
V (0)+G(ri−rj)

)
= 2π2JV (0)

(∑
i

qi

)2
+ 2π2J

∑
ij

qiqjG(ri−rj). (39)

Since the Boltzmann weight of each configuration is e−βH⊥ the divergence of V (0) in the ther-
modynamic limit leads to a vanishing contribution to the partition function, unless∑

i

qi = 0. (40)

Using the neutrality condition (40) and the fact that G(0) = 0, the last term of Eq. (39) can be
written as

2π2J
∑
ij

qiqjG(ri−rj)=2π2J
∑
i

q2iG(r=0)+2π2J
∑
i 6=j

qiqjG(ri−rj)=2π2J
∑
i 6=j

qiqjG(ri−rj),

(41)
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such that ri−rj in the last term is at least of order of the lattice spacing. The precise form of
the function G(r) follows from the evaluation of the integral (35) on the lattice, that allows one
to define the energetic cost to create the vortex on the shortest scale r = a. More specifically,
one can promote the continuum gradient into a discrete one, and define the Fourier transform of
the potential as V (k) = a2/

(
4−2 cos kxa−2 cos kya

)
, that reduces to V (k) ∼ 1/k2 as ka� 1.

From such a discretization the G(|r|=a) potential reads

G(r=ax̂) = V (r=ax̂)−V (0) =

∫
d2k

(2π)2
(
eik·r−1

)
V (k) =

∫
d2k

(2π)2
a2
(

cos kxa− 1
)

4−2 cos kxa−2 cos kya

=
1

2

∫
d2k

(2π)2
a2
(

cos kxa+ cos kya−2
)

4−2 cos kxa−2 cos kya
= −1

4
. (42)

This result allows us to rewrite the G(r) potential at the scale relevant for Eq. (41) as

G
(
r&a

)
' −1

4
− 1

2π
ln
(r
a

)
, (43)

so that Eq. (36) can be written as

H⊥ = 2π2J
∑
i 6=j

qiqjG(ri−rj) = −2π2J
∑
i 6=j

(
1

4
+

1

2π
ln
rij
a

)
qiqj

= −π
2J

2

∑
i 6=j

qiqj − πJ
∑
i 6=j

qiqj ln
rij
a

= µ
∑
i

q2i − πJ
∑
i 6=j

qiqj ln
rij
a
, (44)

where we used
∑

i 6=j qiqj=−
∑

i q
2
i from Eq. (40) and identified the vortex-core energy µ with

µ ≡ µXY =
π2J

2
. (45)

Finally, we can use the neutrality condition (40) by imposing that vortices should appear in n
pairs of opposite vorticity. Moreover, we shall consider in what follows only vortices of the
lowest vorticity qi=±1, so that H⊥ reads

H⊥ = 2nµ− πJ
2n∑
i 6=j

εiεj ln
rij
a
, εi = ±1 . (46)

The above equation (46) shows the complete analogy between the vortex problem in the XY-
model and the problem of the Coulomb gas in two dimensions, where the electrostatic interac-
tion between charges is written as

U(r) = −q20
2n∑
i<j

εiεj ln
rij
a
, (47)

where the logarithmic Coulomb interaction arises from solving the Poisson equation (35) in
strictly 2D, as we mentioned before. This also means that to preserve the correct dimension of
U(r) one should assume that the fictitious charge q0 in Eq. (47) has dimensions of (Energy)1/2.
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This is also consistent with the comparison between Eq. (46) and (47), that allows one to identify
the effective charge of the XY-model as

q20 = 2πJ, (48)

an equivalence that will be useful below. It is worth discussing what is the physical effect behind
the BKT transition within the context of the mapping into the Coulomb-gas problem. As we
explained before, we expect that in the low-temperature phase vortices can only exist in pairs,
and the correlation function display the quasi-long-range order (11) characterized by a power-
law decay. The interaction between charges is provided by Eq. (47) and it is unscreened (in the
usual language of charged objects). In contrast, in the high-temperature phase the charges are
free to move, leading to the usual metallic screening of the potential. As a consequence, within
the context of the Coulomb gas the transition occurs between an unscreened (low-temperature)
phase and a screened (high-temperature) phase, where long-range 2D Coulomb interactions are
suppressed by the existence of free charges, able to move. Such an analogy is sometimes used
to discuss the effect of vortices in terms of an effective dielectric function that screens the bare
Coulomb interaction, especially within the context of finite-frequency effects [27, 22].
Eq. (46) describes the interaction between vortices in a given configuration with n vortex pairs.
In the partition function of the system we must consider all the possible values of n, taking into
account that interchanging the n vortices with same vorticity gives the same configuration (so
one should divide by a factor 1/(n!)2). In conclusion Z reads (up to an irrelevant multiplicative
factor ZSW accounting for the partition function of spin-wave excitations connected to the term
H‖ in the Hamiltonian)

Z =
∞∑
n=1

1

(n!)2

∫
dr1 · · · dr2ne−β2nµe

πβJ
2n∑
i 6=j

εiεj ln
rij
a

=
∞∑
n=1

y2n

(n!)2

∫
dr1 · · · dr2ne2πβJ

∑2n
i<j εiεj ln

rij
a

(49)
where we introduced the vortex fugacity

y = e−βµ. (50)

The explicit derivation of the partition function (49) has the great advantage to introduce one
further formal mapping between the original XY-model and a completely different physical
problem, that still belongs to the BKT universality class: the quantum sine-Gordon model,
defined by the Hamiltonian:

Hsg =
vs
2π

∫ L

0

dx
(
K
(
∂xθ
)2

+
1

K

(
∂xφ
)2 − 2g

a2
cos(2φ)

)
, (51)

where θ and ∂xφ represent two canonically conjugated variables for a 1D chain of length L,
with

[
θ(x′), ∂xφ(x)

]
= iπδ(x′−x), K is the Luttinger-liquid (LL) parameter, vs the velocity of

1D fermions, and g is the strength of the sine-Gordon potential [18]. In this formulation, the
role of the spin angle or phase is played by the field θ. Indeed, when the coupling gu = 0 one
can integrate out the dual field φ to get the action

S0 =
K

2π

∫
dx dτ

((
∂xθ
)2

+
(
∂τθ
)2)

, (52)
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equivalent to the gradient expansion (2) of the model (1), once considered that the rescaled
time τ → vsτ plays the role of the second (classical) dimension. The dual field φ describes
instead the transverse vortex-like excitations. This can be easily understood by considering the
quantum nature of the operators within the usual language of the sine-Gordon model. Indeed,
a vortex configuration requires that

∮
∇θ · ~d` = ±2π over a closed loop, see Eq. (22) above.

Since φ is the dual field of the phase θ, a 2π kink in the field θ is generated by the operator
ei2φ, [18] i.e., by the sine-Gordon potential in the Hamiltonian (51). More formally, one can
show that the partition function of the φ field in the sine-Gordon model corresponds to the (49)
derived above. To see this, let us first of all integrate out the θ field in Eq. (51), to obtain

SSG =
1

2πK

∫
dr
(
∇φ
)2 − g

π

∫
dr cos(2φ). (53)

The overall factor Z‖ = Πq>0

(
1/βJq2

)
due to the integration of the θ field (corresponding

to the longitudinal excitations Z‖ =
∫
Dθ‖e−βH‖ in Eq. (28) above) will be omitted in what

follows. We can treat the first term of the above action as the free part

S0 =
1

2πK

∫
dr
(
∇φ
)2
, (54)

and expand the exponential of the interacting part in series of powers, so that

Z =

∫
Dφ e−S0

∞∑
p=0

1

p!
dr1 · · · drp

( g
π

)p
cos
(
2φ(r1)

)
· · · cos

(
2φ(rp)

)
. (55)

Here
∫
Dφ is the functional integral over the φ field. When we decompose each cosine term as

cos
(
2φ(ri)

)
=
eiφ(ri) + e−iφ(ri)

2
=
∑
ε=±1

eiεφ(ri)

2
, (56)

we recognize that in Eq. (55) we are left with the calculation of average value of exponential
functions over the Gaussian weight S0, i.e of factors〈

e2i
∑
i εiφ(ri)

〉
= e2K

∑
i<j εiεj ln

rij
a . (57)

Here we followed the analogous steps leading to Eq. (11) above, by recognizing that the above
expectation value computed over the Gaussian model (54) is non zero only for neutral config-
urations

∑p
i=1 εi = 0, in full analogy with the result found above for the vortices. We then put

again p = 2n. Taking for instance ε1, . . . εn = +1 while εn+1, . . . ε2n = −1 the combinatorial
prefactor 1/p! ≡ 1/(2n)! in Eq. (55) should be multiplied times the number

(
2n
n

)
= (2n)!/(n!)2

of possibilities to choose the n positive εi values over the 2n ones. Thus, Eq. (55) reduces to

Z =
∞∑
n=1

1

(n!)2

( g
2π

)2n∫
dr1 · · · dr2n e2K

∑2n
i<j εiεj ln

rij
a . (58)

By comparing Eq. (49) and Eq. (58) we see that the vortex problem (as well as the Coulomb-gas
problem) is fully mapped into the sine-Gordon model, provided that we identify

K =
πJ

T
and g = 2πe−βµ . (59)
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Once more, we have shown that the partition function (58) bears the same structure of the par-
tition function of the interacting system of vortices, or the interacting 2D Coulomb gas. The
same equation corresponds however to different physical problems: within the 1D case, we are
dealing with a quantum phase transition in 1+1 dimension, that describes how the properties of
the one-dimensional Luttinger liquid get modified by the interaction term controlled by g. In
general, when g increases the φ field tends to get trapped in one of the minima of the cos(φ)

term, and the field becomes “massive”. As a consequence, the correlation function of the Lut-
tinger liquid lose the power-law decay characteristic of the “massless” phase, and the system
typically describes a (spin or charge) ordered state. Further details on the physical aspects of
the 1D analogy are discussed in Ref. [18].
As it is clear from the above derivation, within theXY-model there exists a precise relation (45)
between the value of the vortex-core energy µ and the value of the superfluid coupling J. This
is somehow a natural consequence of the fact that the XY-model (1) has only one coupling
constant, J. Thus, when deriving the mapping on the continuum Coulomb-gas problem (46), µ
is fixed by the short length-scale interaction, that determines the behavior of G(r) in Eq. (43)
and consequently the vortex-core energy (45). In contrast, within the sine-Gordon language
µ is determined by the value of the interaction g for the model (53), that can attain in princi-
ple arbitrary values. This aspect will be relevant later-on when we discuss the non-universal
properties of the BKT transition observed in real systems, that do not necessarily follow the
same expectations of the XY-model, which is only one of the possible models admitting a BKT
transition.

4 BKT physics in superfluids and superconductors

Before discussing the renormalization-group (RG) equations for the BKT model, I will first
clarify why BKT physics should be relevant for the superfluid to metal transition in 2D. To
understand it, one can start from the very basic consideration [24, 25] that a superconductor
develops below Tc a complex order parameter ψ = ∆0e

iθ0 , whose amplitude ∆0 is connected to
the SC gap appearing in the quasiparticle spectrum Ek =

√
ξ2k +∆2

0, where ξk is the excitation
energy above the Fermi level. Below Tc then two possible collective fluctuations [28] of the
order parameter are possible, related either to its amplitude ∆ or to its phase θ

ψ(r) =
(
∆0 +∆(r)

)
ei(θ0+θ(r)). (60)

In analogy with the assumption made before for the XY-model that the modulus of the spins is
fixed, under certain circumstances we can assume that the amplitude fluctuations are frozen, and
only the phase of the order parameter fluctuates. In this view (that intrinsically assume some
form of “preformed” pairing above TBKT, as we shall discuss below) the phase fluctuations are
described at Gaussian level by a kinetic-energy term completely analogous to Eq. (2) above.
The simplest way to understand this is to start from the order parameter (60) and interpret it
as a collective electronic wave function. Within the standard Ginzburg-Landau description of
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the SC transition [28] one directly expresses the current density in the form analogous to the
particle current in first quantization

j =
~q

2m∗

(
−iψ∗∇ψ + iψ∇ψ∗

)
− q2|ψ|2

m∗c
A =

q|ψ|2

m∗

(
~∇θ − q

c
A
)

(61)

where A is the gauge potential. As usual, in the absence of phase fluctuations (∇θ = 0)
one recovers the standard diamagnetic response of the superconductor, as given by the London
equation [25]

j = −e
2ns
mc

A = − c

4πλ2
A, (62)

where ns is the superfluid density, m the electronic mass and λ the penetration depth. As it is
well known [25,28], the value of the charge q = −2e in Eq. (61) is fixed by the flux quantization,
and it physically represents the fact that the SC order parameter is formed by a Cooper pair. The
ratio |ψ|2/m∗ is then equivalent to the combination ns/4m in the London equation (62). One
usually defines m∗ = 2m and |ψ|2| ≡ ns/2 so that Eq. (61) reads

j = − ens
2mc

(
~∇θ +

2e

c
A

)
≡ −ensvs, (63)

with vs superfluid velocity. Once established, the relation (63) between the superfluid current
and the phase gradient, one can write down the kinetic energy of superfluid electrons in 2D at
A = 0 as

Hs =
1

2
mn2d

s

∫
dr v2s(r) =

~2n2d
s

8m

∫
dr
(
∇θ
)2
, (64)

where we made explicit the emergence of a 2D superfluid electron density n2d
s such that the

quantity ~2n2d
s /m has the dimension of an energy. By direct comparison between Eq. (64) and

Eq. (2) we understand that Gaussian fluctuations of the SC phase of the order parameter are
described by the same model obtained by a low-energy approximation to the XY-model. In this
case, the role of the coupling J of the XY-model is played by the energy scale connected to the
superfluid density in 2D. To make a further connection to the physically-measured penetration
depth λ, appearing in the London equation (62), we must convert the 3D superfluid density ns
given in Eq. (62) to an effective 2D one, by using a transverse dimension d. This can represent
the film thickness in a thin film, or the distance between planes in weakly coupled layered
superconductors (as it is the case for cuprate superconductors). We can then identify the so-
called superfluid rigidity or stiffness as the energy scale set by the superfluid density in 2D

J =
~2n2d

s

4m
=

~2c2d
16πe2λ2

. (65)

To get an idea of the energy scales, it can be useful to express J in Kelvin: since usually the
penetration depth is given in microns, one obtains

J = 0.62× d[Å]

λ2[µm2]
[K] (66)
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Typical values [25] of the penetration depth at T=0 can range from around λ(T=0) ∼ 0.045 µm
in conventional BCS superconductors, like Al, to λ(T=0) ∼ 0.16 µm in cuprate superconduc-
tors. As a consequence, if one computes the stiffness per plane in a typical cuprate system,
putting the inter-plane distance at d ∼ 5 Å in Eq. (65), one gets a stiffness of the order of
Js ∼ 120 K, i.e., not far from the critical temperature of these materials, and much smaller than
the pseudogap scale measured above Tc (that can be as large as 20–30 meV). Such an observa-
tion motivated, in a milestone paper in the middle 90ties, the proposal that phase fluctuations
(and eventually BKT physics) could be relevant for this class of materials [29]. However, as we
shall discuss below, the expectation that a layered superconductor with weakly-coupled planes
should behave as a quasi-2D system is not always obviously realized, and nowadays convincing
evidence of the occurrence of a BKT transition in bulk layered cuprates is still lacking.
It is worth stressing that the Gaussian phase-only model (64), that we discussed within a clas-
sical Ginzburg-Landau picture, can be derived by starting from a microscopic BCS model by
integrating our the fermionic degrees of freedom, as discussed, e.g., in Ref. [24, 30] and ref-
erences therein. More specifically, one can show in full generality that in the SC state the
coefficient of the

(
∇θ
)2 term in the effective phase-only action is given by the physical super-

fluid density, defined as the static transverse limit of the current-current correlation function, as
it is implicit in the London equation (62). This has also the relevant consequence that J from
Eq. (65) should already include the temperature depletion due to quasiparticle excitations, not
captured by the BKT physics, that only deals with the temperature effects due to proliferation of
vortexes. This point will be relevant below while discussing the physical conditions for the ob-
servation of BKT physics in effectively 2D superconductors. Indeed, while in 3D the superfluid
density is expected to go to zero continuously at the BCS transition Tc, that we will denote in
what follows as the mean-field one, within the BKT theory the hallmark of vortex proliferation
will be the emergence of a discontinuous jump of the superfluid density at TBKT, as we shall see
in the next Section.
Finally, it is crucial to realize that the BKT physics only deals with classical transverse phase
fluctuations, as it is evident from the phase-only model (64), where no dynamics of the phase
degrees of freedom is included. We then expect that such a description can only be valid near
Tc, where quantum effects are suppressed and phase fluctuations can be treated as classical. In
contrast, as T → 0 one should promote the classical model (64) to a quantum one, adding to
Eq. (64) the energetic cost to perform a phase gradient in time , that is controlled by the charge
compressibility κ0 [24, 31], so that Eq. (64) is replaced at T = 0 by the quantum action

S =
~2

8

∫
dt dx

(
κ0
(
∂tθ
)2 − ns

m

(
∇θ
)2)

. (67)

For weakly-interacting neutral systems κ0 in the static long-wavelength limit can be approxi-
mated with the density of states at the Fermi level, and by Fourier transforming Eq. (67) one
recognizes the so-called [31] Anderson-Bogoliubov sound mode

ω2 = v2s |k|2, (68)
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where v2s = ns/mκ0 is the sound velocity. The appearance of the charge compressibility as
a coefficient of the time gradient in Eq. (67) is a direct consequence of the fact that density
and phase are quantum-mechanically conjugate variables [28]. However, in the case of charged
superconductors this also implies that the charge compressibility at long wavelength is modified,
as compared to the neutral case, by he presence of long-range Coulomb interactions, so the
term κ0 in Eq. (67) is replaced in Fourier space by κ(k) = κ0/

(
1+V (k)κ0

)
, where V (k)

is the Coulomb potential in generic D dimensions. Since for k → 0 one has κ → 1/V (k)

the spectrum of the phase mode, that reflects the one of density fluctuations, identifies now
a plasma mode, whose energy vs. momentum dispersion depends on the dimensions. In the
standard isotropic three-dimensional (3D) case one recovers [30,31] the well-known dispersion

ω2 = ω2
p + v2s |k|2, (69)

where ω2
p = 4πe2ns/m is the isotropic plasma frequency. The main consequence of the emer-

gence of a gapped plasmon in the phase spectrum is that the longitudinal phase fluctuations,
that are the main source of the low-T suppression of the stiffness within the classical XY-
model [24, 32] (see also next Section), are converted from the sound-like mode of Eq. (68) to a
gapped plasma mode, leading to a thermal suppression of any contribution to the stiffness due
to anharmonic phase fluctuations beyond Gaussian level [30], due to the fact that the plasma
frequency at zero temperature can be as large as the normal-state one, that is of the order of eV.
This is the main reason why the BCS theory, that only accounts for the effects of quasiparti-
cle excitations on the temperature depletion of the superfluid stiffness, successfully describes
the temperature dependence of Js(T ) in all 3D superconductors: quantum phase fluctuations
beyond Gaussian level barely contribute to deplete the superfluid density, due to the large ener-
getic cost of their thermal excitation. On the other hand, as T approaches Tc the energy scale of
Eq. (65) is progressively suppressed by thermal quasiparticle excitations, the phase fluctuations
recover a classical behavior, and transverse vortex-like excitations can become relevant in 2D
systems. Their effect will then add to the one of quasiparticle excitations, as we will discuss in
the next Section.

5 Renormalization-group equations for the BKT transition

I will not derive here the renormalization-group (RG) equations of the BKT model, but I will
rather discuss their consequences. Their derivation can be found in the original paper [26] and
in various book, like, e.g., in Ref. [18]. On very general grounds, the RG equations represent
the result of a coarse-graining procedure: the physical goal is to integrate out the interaction
effects at the short scale, in order to capture the long-scale behavior of the system, that is the
relevant one in the thermodynamic limit. To fix also the language once and for all, I will discuss
the RG results within the context of 2D superconductors, referring then to a transition from a
superfluid state, where the superfluid stiffness (65) is finite, to a metallic one, where n2d

s = 0

and the system is no more superfluid.
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The derivation of the partition function for the Coulomb-gas model (49) and for the sine-Gordon
model (58) has shown that in both cases it can be expressed in terms of the two quantities K
and g defined in Eq. (59). Within the context of the SC transition, the large-distance behavior of
K defines the large-distance behavior of the phase rigidity J , that tells us if the system remains
superfluid in the thermodynamic limit [21]: in other words, the physical value of the superfluid
density Js, that is the quantity experimentally accessible, is obtained under RG flow from the
limiting value of K as `→∞

Js ≡
TK(`→∞)

π
. (70)

On the other hand, the behavior of the vortex-fugacity g at large distances will tell us if vortices
proliferate, leading to a growing of g, or remain bound in pairs, that slightly renormalize Js with
respect to the short-scale value J , without suppressing the superfluid behavior. We will use here
the two variables from (59), that naturally occur as coupling constant in the sine-Gordon model.
We will assume at each temperature as starting values

K(`=0) =
πJ(T )

T
and g(`=0) = 2πe−βµ(T ) , (71)

where J(T ) is given by the value of the stiffness including all other thermal effect besides vortex
excitations. For example, within the context of superconductors it will be the stiffness (65) at a
given temperature, including the thermal suppression due to quasiparticles. For what concerns
the vortex-core energy µ(T ) we will always assume a constant ratio µ(T )/J(T ) = const, so
that µ(T ) also includes thermal effects due to other excitations of the system. Eqs. (71) identify
a line in the (K, g) plane where the RG flow starts, as shown in Fig. 1. Using these two variables
the RG equations read

dK

d`
= −K2g2 and

dg

d`
=
(
2−K

)
g . (72)

By direct inspection of Eqs. (72) one sees that there are two main regimes, represented in Fig. 1:
forK & 2 the r.h.s. of Eq. (72) is negative, so that g → 0 andK tends to a finite valueK → K∗

that determines the physical stiffness Js, according to Eq. (70). Instead for K . 2 the vortex
fugacity grows under RG flow, K in Eq. (72) scales to zero, and Js = 0. The BKT transition
temperature is defined as the highest value of T such that K flows to a finite value. This occurs
at the fixed point K = 2, g = 0, so that at the transition one always has

K(`→∞, TBKT) = 2 ⇒ πJs(TBKT)

TBKT
= 2. (73)

As soon as the temperature grows above TBKT, K → 0, so also Js → 0. As a result, one
finds J(T+

BKT ) = 0, i.e., the superfluid density jumps discontinuously to zero right above the
transition. The equation (73) describes the so-called universal relation between the transition
temperature TBKT and the value of the superfluid stiffness Js at the transition, and represents
a more refined version of the relation (26) based on the balance between the energy and the
entropy of a single-vortex configuration.
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Fig. 1: RG flow for the BKT problem. The solid black line identifies, for each temperature, the
starting values of K(`=0) and g(`=0) (denoted with circles) given by Eq. (71). Under the RG
flow K(`), g(`) evolve along the lines shown in blue (for T<TBKT) and green (for T>TBKT). For
T<TBKT the flow at `→∞ reaches the point (K∗, 0) =

(
K(`→∞), 0

)
, denoted with squares,

where vortices disappear and the system has a finite stiffness. At T=TBKT the RG equations flow
to the fixed pointK=2, g=0, that allows one to establish the universal relation (73). Above TBKT

the flow tends to (0,∞), so free vortices proliferate and the stiffness goes to zero.

To better visualize the role of vortex-antivortex pairs it is instructive to derive the temperature
dependence of Js(T ) as obtained by numerical solutions of the RG equations. As an example
we show in Fig. 2 the expected temperature dependence in the XY-model. As explained above,
the BKT RG equations account only for the effect of vortex excitations, so that any other exci-
tation that contributes to the depletion of the superfluid stiffness must be introduced by hand in
the initial values of the running couplings. For example, in real superconductors there are also
quasiparticle excitations, as we explained above, while in the XY-model there are also longi-
tudinal phase fluctuations, that give rise to a linear depletion to the superfluid stiffness at low
temperature J(T ) = J0

(
1−T/4J

)
(see e.g. Ref. [32] and references therein). One could then

be tempted to use the relation (73) to estimate the TBKT value by looking for the intersection be-
tween the universal line 2T/π and the J(T ) expected from the remaining excitations except the
vortices. However, such a procedure can only be approximate, since in relation (73) the temper-
ature dependence of Js(T ) is determined also by the presence of bound vortex-antivortex pairs,
which can renormalize Js already below TBKT. This effect is connected to the difference between
the initial value of K(0) at each temperature, and its asymptotic value K∗ = K(`→∞), that
determines Js according to Eq. (70). The crucial observation at this point is that the difference
between K and K∗ quantitatively depends on the value of µ: as µ decreases the renormaliza-
tion of Js due to bound vortex pairs below TBKT increases, the Js(T ) curve starts to deviate
from the bare dependence of J(T ) (due to other excitations besides vortices) and consequently
TBKT is further reduced with respect to the mean-field critical temperature Tc (i.e. the one where
J(Tc)=0). As an example we show in Fig. 2 the behavior of Js(T ) using a bare temperature
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Fig. 2: Solution of the RG equations by using a linear temperature dependence for J(T ) =
J0(1−T/4), with J0 = 1, to mimic the behavior of the bare stiffness within the XY-model. Dif-
ferent curves correspond to different values of the ratio µ/J , measured in units of the value (45)
it has within the XY-model. Notice that for small µ values the deviation of Js(T ) from J(T )
starts much before than the temperature where the universal jump occurs: this is due to the
larger density of vortex-antivortex pair present below TBKT, due to smaller the energetic cost to
create them on the shortest length scale.

dependence as in the XY-model and switching the vortex-core energy from the value (45) to
values smaller or larger. As one can see, for decreasing µ the effect of bound vortex-antivortex
pairs below TBKT is significantly larger, moving back the transition temperature to smaller val-
ues. In the light of this observation, one must be very careful in defining what is universal: TBKT

is not universal, what is universal in the relation between the renormalized superfluid density
and the transition temperature, as encoded in Eq. (73).
Finally, it is worth spending still some time on the RG equations (72) to derive the expression
of the correlation length ξ close to the BKT critical point. Let us start with a convenient change
of variables

x = K−2 and y = 2g , (74)

so that the RG equations with this choice read

dx

d`
= −(x+2)2

y2

4
' −y2, (75)

dy

d`
= −xy, (76)

where we approximated the first RG equation around the fixed point x = 0, y = 0. We can
easily solve these differential equations by noticing that they can be rewritten as

x
dx

d`
− ydy

d`
= 0, (77)

whence
x2 − y2 = A2. (78)
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Eq. (78) is nothing but the RG flow, close to the fixed point (x, y)=(0, 0), in the new x-y plane.
The resulting flow lines are hyperbolas, whose symmetry axis can be: y = 0 if A2 > 0 (equiva-
lent to the green lines in the region (B) of Fig. 1) or x = 0 if A2 < 0 (region (A) of Fig. 1). The
critical line corresponds obviously to A2 = 0.
Approaching the critical point A→ 0+, Eq. (75), can be rewriten as

dx

d`
= −x2, (79)

whose solution is
x =

1

`+ c
, (80)

where c is a constant connected with the initial value of the RG flow ` = 0 and x(0). Along
the critical line x will finally flow to zero but in an extremely slow fashion, i.e., with the log
of the rescaled lattice spacing ` = ln(a′/a). Analogously we find in the regime A2 > 0 that x
(and then K) flows to a finite value: it then corresponds the low-temperature region, having a
finite superfluid stiffness and vanishing g. Indeed, by substituting x2 = y2+A2 in (76), we get
a first-order differential equation for y

dy

d`
= −y

√
y2 + A2, (81)

whose solution is
y(`) =

A

sinh
(
A`+ arcsinh(A/y0)

) −−−→
`→∞

0. (82)

On the other hand, following the same procedure, the solution for x will be

x(`) =
A

tanh
(
A`+ arcsinh(A/y0)

) −−−→
`→∞

A. (83)

Hence, as expected the superfluid stiffness tends to a finite value, while the coupling accounting
for the vortices vanishes under coarse graining.
The opposite regime, the one where A2 < 0, corresponds to the region T > TBKT. Here the
superfluid stiffness goes to zero, and we can definite the correlation length as the scale where
this happens. In other words, the correlation length can then be estimated as the scale `∗ at
which x(`∗) = 0. For simplicity let us introduce another constant C, such that: −A2 = C2 > 0.
After having expressed y2 = x2 + C2, we can solve the differential equation (75):

dx

d`
= −

(
x2+C2

)
=⇒ x

C
= tan

(
−C`+ arctan(x0/C)

)
. (84)

From (84), we then have that x vanishes at the scale

arctan
x

C
= c`∗. (85)

Near the transition, we also know that x0 ∼ y0, hence: C2 = y20−x20 = (y0−x0)(y0+x0) '
2y0(y0−x0). Since at the transition is x=y, the difference between the initial values y0−x0 is
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at leading order proportional to the distance from the transition temperature, i.e. (y0−x0) ∝
(T−TBKT)/TBKT. Thus we obtain

C = α
√
t, (86)

where α is a constant of order one and t is the reduced critical temperature

t =
T − TBKT

TBKT
. (87)

Finally, since we are working in the limit t � 1 → arctan(x0/C) ' π/2, from Eq. (84) we
derive that

C`∗ ∼ O(1) =⇒ `∗ =
b√
t
. (88)

Since `∗ = ln(ξ/a), we have that
ξ/a = eb/

√
t . (89)

The parameter b in Eq. (89) depends on the specific model studied. Eq. (89) shows one of
the most prominent hallmarks of the BKT transition: by approaching the critical temperature
from above the correlation length displays an exponential divergence in the reduced critical
temperature t, instead of the usual power-law divergence observed in ordinary Ginzburg-Landau
transition, see Eq. (15) above.

6 Superfluid density in thin films of superconductors

In the previous Section we identified at least two typical signatures of BKT physics that are sig-
nificantly different from the analogous expectations for 3D superconductors: the discontinuous
and universal jump (73) of the superfluid stiffness Js at TBKT, to be contrasted with the contin-
uous suppression of Js at the critical temperature Tc in 3D, and the exponential activation (89)
of the correlation length as TBKT is approached from above. Let us first discuss under which
conditions the universal jump of Js has been measured in real systems, where additional effects
not discussed so far very often make such a jump rather elusive.
The first experimental observation of the universal jump (73) has been actually done in thin
films of superfluid helium [4, 5]. An example is shown in Fig. 3. Here the experimentally
accessible quantity is the shift of the rotation period ∆P (T ) of a torsion pendulum immersed
in liquid helium. The rotation period depends on the inertia momentum of the pendulum, that
changes below TBKT due to the fact that it cannot drag anymore with it the superfluid fraction
of the liquid. As a consequence ∆P (T ) ∝ Js(T ), so that the ∆P jump corresponds to the
jump (73) of the superfluid stiffness due to the free-vortices proliferation. As one can see,
regardless of the T = 0 value of Js the jump always occurs when Js(T ) intersects the BKT line
2T/π: thus, as evidenced above, TBKT is not by itself universal, but the universal relation (73) is
always satisfied.
As mentioned at the beginning, in the original paper by Kosterlitz and Thouless [2] it was ques-
tioned the possibility to realize a BKT transition in SC films. The objection arises from the fact
that in a charged superfluid, as is the case for superconductors, a vortex carries a supercurrent,
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Fig. 3: Superfluid-density measurements via the oscillator period shift ∆P (T ) of a torsion
pendulum for different films of pure 4He. Each curve corresponds to a different value of the
thickness d, such that ∆P (T=0) decreases with decreasing d. The intersection with the solid
line 2T/π represent the TBKT temperature as defined by the universal-jump relation (73). The
experimental data have been taken from Ref. [5].

that contributes itself to the interaction between vortices. In the usual 3D case this mechanism
cut-offs the interaction between vortices at a scale λ fixed by the penetration depth [25], leading
to a failure of the long-distance log interaction between vortices that is at the heart of the in-
teracting Hamiltonian (46). However, a crucial observation [33, 22] in this respect is that when
the SC system becomes a thin film, the interaction between vortices is screened by the super-
currents at a much larger distance Λ = λ2/d, set by the film thickness d itself, the so-called
Pearl length from the name of the scientist who discussed this issue for the first time [34]. An
additional effect is that when the film thickness decreases also the relative effects of disorder
increase, contributing to a significant increase of λ due to the paramagnetic suppression of the
superfluid density [25]. This implies that in practice, for sufficiently thin films with large dis-
order, where λ is very large, and for temperatures near the mean-field critical temperature Tc,
where J is further suppressed by thermal quasiparticle excitations, the electromagnetic screen-
ing effects come in at a scale Λ even larger than the system size, making the occurrence of a
BKT transition possible. It is worth noting that, on very general grounds, this discussion implies
that the BKT transition in charged superconductors is possible whenever d is very small or λ is
very large. From the relation (65) it follows that whatever mechanism suppresses n2d

s /m it also
leads to a large λ, allowing one for a description of the vortex interaction as the one expected
in a neutral superfluid. While in thin films of conventional superconductors [10] this usually
happens as an effect of disorder on n2d

s , in unconventional superconductors like the cuprates
this suppression is observed by proximity to a Mott phase, loosely speaking as an effect of
mass-renormalization enhancement [29]. In other words, systems with low intrinsic superfluid
rigidity are better candidates for the observation of BKT physics, since screening effects are
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Fig. 4: Measured temperature dependence of the superfluid density in thin NbN films with
different thickness. Data are taken from Ref. [10], along with the BCS fit and the theoretical
BKT fit, obtained by using µ/J = 1.19 for d = 3 nm and µ/J = 0.61 for d = 6.5 nm. Notice
that the jump here is further smeared out by the inhomogeneity.

relevant only above a very large Pearl length Λ. In addition, as we commented already before in
relation to Eq. (66), a low stiffness implies an energy scale for Js comparable to the mean-field
Tc, making in practice the intervale Tc−TBKT larger. To understand this, we should consider that
within BCS theory [25] the temperature-dependent bare stiffness J(T ) which enters the BKT
RG equations vanishes near Tc in a Ginzburg-Landau fashion [28] as

J(T ) ' J0

(
1− T

Tc

)
, (90)

where
J0 ∼ γJ(T=0), (91)

and γ is a constant of order 1. As a consequence, an order-of-magnitude estimate of the TBKT

temperature obtained by the universal relation (73) is

J0

(
1− T

Tc

)
=

2

π
TBKT ⇒ Tc − TBKT

Tc
=

1

1 + π
2
J0
Tc

. (92)

One then understands that as J0/Tc decreases, as it happens when the film thickness decreases
or the superfluid fraction is suppressed by disorder and/or correlations, the distance between Tc
and TBKT increases, making it easier to discriminate the two in experiments. In this view, the
mean-field temperature Tc can be interpreted as the temperature where pairing forms, so that the
amplitude fluctuations can be neglected at T < Tc and one goes back to an effective phase-only
model as the one assumed within the BKT approach. In this sense the BKT physics implies a
“preformed pairing” in a rather small temperature range, i.e., between Tc and TBKT.
The first observations of BKT physics in thin films of SC date back to the late 80’s. However,
they were not based on the direct measurement of Js, but rather to its indirect estimate via
I-V characteristics [8, 9], that we will discuss below. This is due to the fact that only in the
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late nineties emerged an experimental technique able to measure the penetration depth of thin
films via the so-called two-coil mutual inductance technique [35] (an experimental technique
triggered, as many others, mostly by the investigation of high-temperature cuprate superconduc-
tors). Fig. 4 shows one example of λ−2 measured in thin films of NbN, a conventional s-wave
superconductors, taken from Ref. [10]. As established in Eq. (65) above, this is directly pro-
portional to the superfluid stiffness Js(T ) of the system. Here one can recognize two different
theoretical curves: the fit of the low-temperature part JBCS(T ), which is based on a standard
BCS-like suppression of Js(T ), present also in 3D samples, and the BKT fit, that reproduces
the experimental observations, along with the universal 2T/π line, rescaled to get an inverse
length squared. As one can see, Js(T ) displays a rapid downturn around the intersection with
the 2T/π line, but this is not the sharp jump predicted by Eq. (73). This experimental finding
has been interpreted [10] as an effect of sample inhomogeneity, that one can phenomenolog-
ically model as a finite probability Pi of having a range of possible J is(0) values, leading to
different T iBKT temperatures. The measured Js(T ) appears then as an average of the different
J is(T ) realizations: since, according to Eq. (92), smaller J is(0) lead to smaller T iBKT, the averaged
Js(T ) will display a smeared jump, as observed experimentally. Even though the concept of
inhomogeneity has been introduced at the beginning as phenomenological, more recently [36]
we worked on a theoretical validation of it based on Monte Carlo simulations on a disordered
version of the XY-model (1)

HXY = −
∑
〈ij〉

Jij cos
(
θi−θj

)
, (93)

where the local couplings Jij have a finite randomness around an average value J̄ij that sets the
scale of the transition. The main point is that in principle one would expect that the universal
jump (73) is insensitive to the presence of randomness on the Jij coupling. The reason relies on
the so-called Harris criterium [37], which establishes under which condition finite-size effects
due to disorder are more relevant that the finite size L of the system itself. This estimate can
be done by considering that Tc can still be well identified if the temperature indetermination
|T − Tc| itself is larger that the Tc indetermination ∆Tc due to disorder, i.e. |T − Tc| � ∆Tc
as T → Tc. In D dimensions one can estimate ∆Tc by the following argument: let us assume
that the system is ordered on a typical scale of size ξ, the correlation length of the pure system,
and let us estimate the variance of the local values of Tc in the disorder system via the central
theorem, stating that it scales with the square root of the N possible values of the variable itself,
that in turn scales with the volume ξD. Thus we could say that

∆Tc ∼
1√
ξD(T )

=
1

ξD/2(T )
. (94)

If we plug into Eq. (94) the usual power-law scaling of ξ(T ) from Eq. (15) we obtain that
disorder-induced uncertainty in the transition is irrelevant when

|t| � 1/|t|νD/2 ⇒ ν > 2/D , (95)
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Fig. 5: Monte Carlo simulations on the disordered XY-model (93) for different types of disor-
der, implemented via the space structure of the local couplings Jij . (a) Diluted XY-model. In
this case P (Jij) = 1 with probability p. As one can see, as disorder increases the Js(T=0) is
suppressed, along with TBKT, but the universal relation (73) is always observed. Figure adapted
from Ref. [32]. (b) Correlated disorder, as generated via a quantum XY-model in random
transverse field. A typical map of the local coupling at the disorder level W/J = 10 is shown
in panel (c). More details on the generation of the maps of local couplings can be found in
Ref. [36]. In this case as the disorder strength W/J increases not only the overall scale of
the stiffness is suppressed (see inset), but the universal jump is progressively smeared out by
disorder. Figures adapted from Ref. [36]

with t = (T−Tc)/Tc. The reasoning is that under the condition (95) weak disorder decreases
under coarse graining and becomes unimportant on large length scales, making the clean critical
point stable against weak disorder. As we have seen before, in the BKT transition the corre-
lation length ξ(T ) diverges exponentially as T → TBKT, which means that ν = ∞ within the
context of the Harris criterium (the exponential is faster than any power law). One would then
conclude that the Harris criterium (95) is always satisfied for BKT physics, disorder is always
irrelevant, and the BKT jump (73) should be robust against disorder. Such a result holds in-
deed for uncorrelated short-range disorder, as it is shown in Fig. (5)a, where we show results
for a disordered XY-mode with link dilution [36]. However, when disorder is correlated, as
it happens, e.g., when the local coupling constants Jij have a “granular” structure, see Fig. 5c,
the Harris criterium does not hold and one could expect modifications of the BKT jump. Such
an effect has been proved by means of Monte Carlo simulations in Ref. [36]: here it has been
shown that when the Jij couplings realize a fragmented SC state the BKT jump is symmetri-
cally smeared out with respect to the expected transition, see Fig. 5b, in strong analogy with the
experimental observations in thin SC films as the one reported in Fig. 4. This result has been
explained in terms of an unconventional vortex-pairs nucleation in the granular SC state. In-
deed, the presence of large regions with low couplings Jij allows the system to nucleate several
vortex-antivortex pairs already well below TBKT, leading to a continuous downturn of the Js(T )

instead of the expected jump.

A second aspect relevant for the understanding of the BKT transition in real materials is the role
played by the vortex-core energy. Indeed, apart from the smearing of the jump, the measured
Js(T ) appears to deviate from the BCS behavior significantly before the intersection with the
BKT line 2T/π. As we discussed within the context of Fig. 2, this is an effect of the vortex-
antivortex pair renormalization of the stiffness that occurs already below TBKT, and it depends
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on the value of the vortex-core energy. Within the XY-model (1) there exists a single energy
scale, J , so that, when we mapped it into the continuum Coulomb-gas problem, the ratio µ/J
simply followed from the regularization of the functionG(r) at the length scale a of the original
lattice model, see Eqs. (42), (43) and (45). However, in a BCS superconductor one would rather
fix the value of the vortex-core energy by computing exactly the energy per unit-length of a
vortex line [25]

I =

(
Φ0

4πλ

)2(
log

λ

ξ0
+ ε

)
≡ πJ

(
log

λ

ξ0
+ ε

)
so that according to our definition µ = πεJ . A precise estimate of ε ' 0.497 for the vortex core
in three-dimensional geometry is given in Refs. [38, 39], so that within BCS theory one could
eventually expect values of µ significantly smaller than within the XY-model,

µBCS ' πJ/2 ' µXY /π. (96)

A similar result can be obtained by using a different argument, i.e., by estimating µ from the
condensation energy lost in creating the vortex core [10]. In this case one would put

µBCS = πξ20εcond, (97)

where εcond is the condensation-energy density. In the clean case Eq. (97) can be expressed in
terms of Js by means of the BCS relations for εcond and ξ0. Indeed, since εcond = dN(0)∆2/2,
whereN(0) is the density of states at the Fermi level,∆ is the BCS gap, and ξ0=ξBCS=~vF/π∆,
where vF is the Fermi velocity, assuming that ns=n at T=0, where n=2N(0)v2Fm/3, one has

µBCS =
π~2nsd

4m

3

π2
= πJs

3

π2
' 0.95Js , (98)

that is again of the same order of magnitude of Eq. (96) above. Interestingly, in Ref. [10]
it was observed that as the film thickness decreases, the ratio µ/Js extracted from the fitting
of the Js(T ) curve increases. This effect can be understood within a model for disordered
superconductors, resulting from an increasing separation between the energy scales associated
with the gap and the stiffness, that emerged as a signature of the superconductor-to-insulator
transition induced by disorder [40].
The possibility of observing BKT jumps has been discussed in a wide variety of thin films of
superconductors: besides the conventional NbN mentioned above, one could list InOx films,
cuprate superconductors, but also the 2D electron gas formed at the interface between artificial
heterostructures made of insulating oxides as LaAlO3/SrTiO3, LaTiO3/SrTiO3 [14,15] and more
recently even Al/KTiO3 interfaces [16]. A review of these systems and some relevant references
can be found in [20]. A related but slightly different issue is instead the observation of BKT
physics in bulk cuprate superconductors. In this case, one is dealing with a full 3D system, but
with weakly coupled SC layers. As we mentioned before, one could argue [29] that each unit
behaves as a 2D superconductor, with a characteristic effective thickness d corresponding to the
interlayer distance, with the interlayer coupling leading simply to a rounding of the BKT jump.
However, as we discussed in Ref. [19], this expectation is only partly realized, and actually the
effective BKT temperature of a layered 3D system can move considerably away from the BKT
temperature of each isolated unit as the vortex-core energy increases.
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7 Signature of BKT physics in other experimental quantities

7.1 I-V characteristics

As mentioned in the previous Section, direct measurements of the universal jump (73) of the su-
perfluid density were possible only from the middle nineties. Nonetheless, Halperin and Nelson
in their milestone paper on the applicability of BKT physics to superconductors [22] proposed
to access indirectly the Js jump via a measurement of the I-V characteristics below TBKT. The
basic idea is that below TBKT the vortices are bound in pairs: however, a large enough applied
current can unbind a certain fraction of vortices, leading to a power-law dependence of V on I
that is controlled by the superfluid stiffness. To understand how these two quantities are related,
let us consider a film of length L along x and width W along y, and let us consider a finite
current I along x, corresponding to a current density j = I/(Wd)x̂. This current produces
a force (Magnus force or Lorentz force) per unit length of the vortex line that moves vortices
perpendicularly with respect to j, with a direction determined by the sign of the vorticity εi=±1

f = εi js × ẑ
Φ0

c
. (99)

There are several way to derive Eq. (99): the easiest is to think that this is just a consequence of
the Lorentz force between the current and the magnetic field carried by the vortex [25], or that
f is analogous to the usual Magnus effect, where a lift force acts on a spinning object moving
through a fluid. The movement of vortices along y causes in turn an electric field Ex along x
that contrasts the applied current, giving rise to power dissipation to maintain a steady state. In
particular, Ex can be estimated as follows: each time a vortex drifts across the sample width W,
a phase slip of 2π occurs through the sample. The number of vortices that escape the sample
in the interval ∆t is nvvL∆t, where vL is the drift velocity of vortices along y and nv is the
(two-dimensional) density of free vortices. Thus the rate of phase slip is

d∆θ

dt
= 2πnvLvL . (100)

Thanks to the Josephson relation∆V = (~/2e) d∆θ/dt, this corresponds to a fieldEx = ∆V/L

equal to

Ex =
Φ0

c
nvvL . (101)

Notice that Eq. (101) can also be seen as a consequence of Faraday law: as soon as a vortex
escapes the sample there is a flux variation of Φ0, so that the induced electric field is E =

B×vL/c, that corresponds to Eq. (101), with B = nvΦ0. In the steady state the drift velocity vL
will be simply proportional to the applied Magnus force (99), so that

vL = µV f = −εiµV
jΦ0

c
ŷ , (102)

where µV = D/kBT is the vortex mobility and D is the diffusion constant of vortices. In
summary, we obtain that free-vortex motion gives a contribution to the resistivity of the material



10.30 Lara Benfatto

as

ρ =
Ex
j

=

(
h

2e

)2

nvµV . (103)

It is worth noting that Eq. (103) is a typical example of duality relation: indeed, the resistiv-
ity of the real (electronic) charges is expressed as a “conductivity” of the dual vortex charges
h/2e, given as usual by the charge squared times the density of charges and their mobility.
Eq. (103) can be further simplified by using the Bardeen-Stephen [25] expression for the vortex
mobility µV , derived by an estimate of the dissipation due to the (normal) vortex core

µV = 2πξ20c
2ρnΦ

2
0, (104)

where ρn is the normal-state resistivity and ξ0 is the correlation length, which sets the size of
the vortex core. By inserting Eq. (104) into Eq. (103) one obtains

ρ = ρn2πξ20nv. (105)

All the above discussion assumes that one has a finite density nv of free vortices. However,
below TBKT vortices are bound in pairs, and one would then expect to have zero resistance.
Nonetheless, when the applied current is large enough a finite free vortex density nv can be
induced even below TBKT. To understand it, we should consider how the magnus force (99)
modifies the interaction energy between vortices that we derived in Eq. (46): in particular, the
energy per unit length in a film of thickness d of a vortex-antivortex pair at distance r will now
read

E

d
=

2πJs
d

ln
r

ξ0
− f · r =

2πJs
d

ln
r

ξ0
− I

Wd

Φ0

c
y. (106)

As one can see, the log potential tends to confine (i.e. bind) the vortexes, while the current tends
to unbind them. The energy has a maximum at the scale where its derivative vanishes, i.e., when
∂E(y∗)/∂y = 0, where

y∗ =
2πJscW

IΦ0

. (107)

This means that for separations y > y∗ it becomes energetically favorable for a vortex pair
to unbind. Since the maximum separation between vortices is cut-off by the sample width W,
whenever y∗ > W the vortex pair cannot be dissociated within the sample. In contrast, when
the current is large enough to get y∗ ≤ W free vortexes are generated. The minimum current
required to unbind the vortices is then such that y∗ = W , so that

I∗ = 2πJs
c

Φ0

, (108)

and for I > I∗ a free vortex density nv(I) will be present. To estimate it one can use a kinetic-
like equation for nv such that

dnv
dt

= Γ (T, I)− n2
v (109)

where Γ is the rate at which vortices are unbound, and can be taken as e−E(y∗)/T, where E(y∗)

is the energy of a vortex pair at the threshold instability determined above. The second term in
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Eq. (109) accounts for the vortices recombining to form pairs again. In the steady state then one
has

nV = Γ 1/2 = e−E(y∗)/2T . (110)

From Eq. (105) we already established that ρ ∼ nv, where ρ = Ex/j ∝ V/I . We conclude that

V ∼ nvI. (111)

Let us then estimate nv by means of Eq. (110). By using the y∗ value (107) in Eq. (106) we get

E(y∗) = 2πJs ln
2πJscW

ξ0Φ0I
− 2πJsc

d
= 2πJs ln

I∗W

Iξ0
− 2πJsc

d
. (112)

Since only the first term depends on the applied current, we obtain from Eq. (110) that the
vortex density scales with the current I as

nv = e−E(y∗)/2T ∼ e−πJs ln(I
∗/I)/T =

(
I

I∗

)πJs/T
. (113)

When replaced into Eq. (111) this implies that above I∗ one should observe a non-linear I-V
characteristic controlled by the exponent

V ∝ Ia(T ), a(T ) =
πJs(T )

T
+ 1 . (114)

From Eq. (73), it follows then that a should jump discontinuously from a = 3 at T = T−BKT

to a = 1 at T = T+
BKT. Below TBKT, the exponent a is expected to increase with decreasing T

since the superfluid density increases. The extraction of the superfluid-density jump from the
exponent of I-V characteristics has been one of the very first demonstration of BKT physics
in thin films of superconductors [8, 9]. Later on, it has been used to characterize the BKT
transition in several systems, even when its application can be questioned (see Ref. [41] and
discussion therein). The main problem is the identification of the correct range of temperatures
and currents where Eq. (114) should be applied. As explained above, non-linearity is expected
only below TBKT and above I∗. In real samples even below TBKT finite-size effects always
lead to a finite nv even for I → 0, that is orders of magnitude smaller than the normal-state
one [42]. So the effect of vortex unbinding will manifest in the experiments as a deviation from
a linear characteristic to a non-linear one as I overcomes the threshold value I∗ for vortex-pair
proliferation [13, 41, 42]. To get an idea of its value, one can use the universal relation (73) to
replace 2πJs with 4kBTBKT in the previous equation. Then using c/Φ0 = 0.5·1015 A / J one has

I∗[A] =
c

Φ0

4kBTBKT ' 2.67 · 10−8 TBKT[K] (115)

In conventional superconductors where TBKT ∼ 10 K this corresponds to a current of order of
10−7 A. In experiments the crossover is observed for larger currents (usually around 10−5 A),
an effect that has been ascribed to sample inhomogeneity [42]. However, this also implies that
one should avoid to confuse the threshold current for vortex-pair unbinding with the real critical
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current of the superconductor, where Cooper pairs break down. In Ref. [41] it has been shown
how taking into account the effect of inhomogeneity on the smearing of the superfluid-density
jump, that we described before, one can get an excellent agreement between the Js(T ) depen-
dence extracted from direct measurements of the inverse penetration depth via two-coils mutual
inductance in NbN (see Fig. 4) and the one extracted from the I-V exponent (114). On the
other hand, as discussed in Ref. [41], there have been several examples in the literature where
the existence of BKT physics has been claimed based on the analysis of I-V non-linearity in
a wrong temperature/current regime. One paradigmatic example is provided by SrTiO3-based
oxide interfaces, where the SC transition has a considerable broadening, that seems to indicate
a percolative transition in a network of SC islands of micrometer size, rather that the inhomo-
geneity on nanometer scales observed in thin films of conventional superconductors, as NbN.
In this case non-linear I-V characteristics have been actually measured, but at temperatures
larger than the real Tc. In Ref. [41] we then argued that in these systems the non-linearity of
the I-V characteristics cannot be simply ascribed to vortex-antivortex unbinding triggered by
a large current, as it happens within the BKT scheme, since this would lead to dramatically
overestimate the BKT transition temperature. In contrast, the observed I-V characteristics can
be well reproduced theoretically by modeling the effect of mesoscopic inhomogeneity of the
superconducting state, as a consequence of pair-breaking effects in the weaker SC regions, that
leads to a progressive non-linear increase of the voltage as the driving current increases, see
Fig. 6. In general, one should be very careful in drawing any conclusion about BKT physics
for non-linear characteristics measured above the real transition temperature, i.e., the one where
resistivity drops to zero (within the available experimental resolution).

7.2 Vortex contribution to transport: paraconductivity

A second possible identification of a BKT transition, still related to vortex transport, is con-
nected to the temperature dependence of the resistivity as one approaches TBKT from above, that
can be used to experimentally determine the characteristic exponential divergence of ξ(T ) that
we derived in Eq. (89) above. As we mentioned, this temperature variation is radically different
from the usual power-law divergence (15) observed for ordinary Ginzburg-Landau (GL) fluctu-
ations, where ξ2GL ∼ Tc/(T−Tc) as one approaches Tc from above. The difference between the
two regimes can be eventually tested experimentally by extracting the temperature dependence
of the so-called paraconductivity, i.e., the contribution of SC (amplitude and phase) fluctuations
to the conductivity. Indeed, both within GL and BKT theory [22] the contribution σs of SC fluc-
tuations to the normal-state conductivity σN diverges as T approaches the transition temperature
as ξ2

σs
σN

=

(
ξ(T )

ξ0

)2

. (116)

Within GL theory the above result is the consequence of SC fluctuations of the order parame-
ter, that can be technically understood as the so-called Aslamazov-Larkin correction to the bare
current-current correlation function with Cooper-pair fluctuations above the critical temperature
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Fig. 6: Adapted from Ref. [41]. Sketch of the difference between I-V non-linearity arising
from BKT physics and from inhomogeneity. In the BKT case, the vortices, which are bound
below TBKT in pairs with opposite vorticity (a), get unbound by a sufficiently large current I (b).
This generates an extra voltage drop proportional to the average density of unbound vortices,
leading to nonlinear characteristics, as given by Eq. (114). In the case of inhomogeneous
superconductors, instead, the system segregates into puddles with different strength of the local
SC condensate (c). As a consequence, a finite applied current I can turn weak SC puddles into
normal ones (d), nonlinearly increasing the global resistivity.

Tc [43]. The main theoretical paradigm behind this result is the idea that one can describe SC
fluctuations above Tc via a Gaussian GL functional, where the fluctuations of the complex order
parameter are described by a diffusive mode, that dresses the metallic fermionic response. In
this view such Gaussian fluctuations do not distinguish the amplitude from the phase (a distinc-
tion that is only possible below Tc), and essentially describe the incipient formation of Cooper
pairs with size ξ(T ) above Tc. The progressive divergence of σ as ξ(T ) increases by approach-
ing Tc, encoded in Eq. (116), is an indication of the formation of fluctuating Cooper pairs with
increasing size. As a consequence the resistivity, given by ρ = 1/(σN+σs), decreases contin-
uously to zero in the range of temperatures where ξ(T ) increases. This effect is then expected
to be present regardless of the dimensionality of the system: all non-universal effects, that ac-
count for example for the range of temperatures where the paraconductivity can be appreciated
experimentally, depend on the specific parameters of the GL functional, that are not universal.
A detailed description of GL fluctuations can be found in Ref. [43].
Within the BKT theory one should then expect, as suggested by Halperin and Nelson in [22],
that as T decreases one first observes a regime of GL fluctuations, and then a BKT fluctuation
regime between the mean-field temperature Tc (that one would observe in the 3D case) and
the 2D BKT temperature TBKT. This corresponds to the same range of temperatures where
the stiffness is suddenly suppressed by vortex proliferation, as discussed above. To make a
correspondence between the GL and the BKT result for the paraconductivity let us go back to
Eq. (105) above, where we established a general relation between the dissipative motion of free
vortices and the vortex density nv. While in the previous Section we derived the vortex density
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induced below TBKT by a large current nv(I), above TBKT we already have a finite nv(T ) due to
the thermal dissociation of vortex-antivortex pairs. In particular, since ξ is the scale where the
superfluid density vanishes above TBKT, we can identify

nv ≡
1

2πξ2(T )
(117)

so that from Eq. (105) we obtain exactly the form (116), provided that ξ(T ) is given by eq. (89).
In principle, the experimental determination of such exponential behavior via paraconductivity
measurements could represent a clear signature of BKT physics. However, as the above discus-
sion demonstrates, the validity of Eq. (89) is limited to a narrow range of temperatures between
Tc and TBKT. In addition, the value of the parameters appearing in the BKT correlation length
ξ ∼ ae−b/

√
t are not arbitrary, since they depend on the distance (92) between Tc and TBKT, as

originally discussed in Ref. [22], and on the value µ of the vortex-core energy, as more recently
discussed in Ref. [42], where it has been shown that

b = 2
µ

µXY

√
Tc − TBKT

TBKT
. (118)

For conventional superconductors, such as NbN, usually
√

Tc−TBKT
TBKT

∼ 0.1, while µ/µXY ∼ 0.5,
as estimated by the fit of Js(T ) in [10]. In general, all these parameters are constrained one to
the other. However, it is not uncommon in the literature that a fit to the resistivity ρ(T ) above Tc
is attempted with a BKT formula like Eq. (116), without a check a-posteriori that the obtained
b value is consistent with its expression via Eq. (118). Some examples of potential problems of
this kind are discussed in Ref. [42, 41].

8 Conclusions

In this lecture I gave an introductory overview on the properties of the BKT transition, as it was
originally formulated within the classical XY-model, the Coulomb-gas model and the sine-
Gordon model. The mapping among these physically different problems turned out to be useful
for the analytical derivation of various properties, including the celebrated RG equations. The
two most spectacular effects obtained by the RG equations are the universal and discontinuous
jump of the superfluid stiffness as the transition is approached from below, and the exponential
divergence of the correlation length as the transition is approached from above. I then discussed
how these rather specific signatures can be observed in real materials, focusing in particular
on the case of superconducting systems. My personal view after several years of intense work
in close connection with experiments is that BKT physics has been clearly observed in some
cases, but often in the literature the observation of BKT signatures has been based on a naive
application of the celebrated BKT formulas. This caveat should be taken by the readers to
develop a critical attitude towards the identification of BKT signatures in experiments.
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Appendix

A Averages over Gaussian variables

To understand Eq. (11) let us consider a generic Gaussian model with real variables u(r) ≡
(1/Ω)

∑
q e

iq·ruq (where Ω is the volume) whose Hamiltonian in momentum space reads

H =
1

2

∑
q

G(q) |uq|2. (119)

To compute the partition function let us define the integrals over the complex variables uq in
the usual way ∫

duqdu
∗
q

2πi
e−auqu

∗
q ≡

∫
dReuq d Imuq

π
e−auqu

∗
q =

1

a
, (120)∫

duqdu
∗
q

2πi
uqu

∗
qe
−auqu∗q =

1

a2
. (121)

Since we have only N independent u(r) variables we use the relation u∗q = u−q to halve the
number of allowed q values in Eq. (119), so that

H =
1

Ω

∑
q>0

G(q)
(
(Reuq)2 + (Imuq)2

)
, (122)

where we used the symbolic short-hand notation ”q > 0”. We can then easily compute the
partition function as

Z =

∫
Du e−βH[u] =

∏
q>0

(
Ω

βG(q)

)
, (123)

while the average values read

〈uquq′〉 = δq+q′
Ω

βG(q)
. (124)

Finally, one can easily get the average values of exponential of linear functions in the u vari-
ables. Indeed, if we define in general

R(r) =
1

Ω

∑
q

uqC−q(r), (125)

we see that〈
eiR(r)

〉
=

1

Z

∫
Du e−

1
Ω

∑
q>0G(q)uqu−q+

i
2Ω

∑
q>0 uqC−q(r)+

i
2Ω

∑
q>0 u−qCq(r)

=
1

Z

∫
Du e−

1
Ω

∑
q>0G(q)[uq−iCq/2G(q)][u−q−iC−q/2G(q)]e−

1
2Ω

∑
q

CqC−q
G(q) = e−

1
2
〈[R(r)]2〉

(126)
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11.2 Premala Chandra

1 Quantum criticality and polar materials?

Intuitively the link between polar materials and quantum criticality is not at all obvious.
Polar materials are mostly insulators with discontinuous classical transitions, whereas quantum
criticality is often studied in itinerant magnetic systems towards the characterization of novel
metallic behaviors. Nonetheless I hope to convince you that there is much to be gained at the
confluence of these two research areas. After unpacking the title, I will present a theoretical ba-
sis for how the interplay of classical first-order transitions with quantum fluctuations can restore
quantum criticality in compressible insulators. Next we will turn to strongly correlated phases
in quantum critical polar metals, including non-Ferm liquids. The miracle and the mystery of
unconventional superconductivity in the nearly quantum critical system n-doped SrTiO3 will be
our last topic. We will end with a summary and outlook for future work.
In the course of our discussion, I will make an effort to present a more expansive treatment
of topics that may not be in the mainstream lexicon; these include simple ways to determine
the temperature-dependence of observables near quantum critical points, crossover scaling for
when both quantum and classical critical fluctuations are present, and subtleties involving q = 0

and q 6= 0 elastic degrees of freedom. Naturally I will be sharing with you a very personal
perspective, and I will do my best to provide references whenever appropriate to provide more
details and to broaden the viewpoints expressed here for the curious reader.

1.1 Quantum criticality primer

At classical phase transitions, thermal fluctuations melt the long-range order. By contrast quan-
tum criticality, associated with continuous quantum phase transitions, occurs at zero tempera-
ture where thermal fluctuations are absent; here the phase change is driven by zero-point fluc-
tuations whose magnitude can be tuned by pressure or field. My aim here is to present the key
ideas of quantum criticality with minimal formalism, using familiar concepts whenever possi-
ble; there are several excellent resources for readers eager for more specifics [1–5]. My empha-
sis will be on determining the temperature-dependence of observable quantities near quantum
critical points, and our discussion here will follow closely an approach that three experimental
colleagues (G.G. Lonzarich, S.E. Rowley and J.F. Scott) and I have developed together [6].

Aren’t quantum fluctuations only present at zero temperature? According to the Heisen-
berg uncertainty principle, temporal uncertainty is inversely proportional to that in the energy

∆t ∝ ~/∆E ⇒ τP ∝ ~/kBT (1)

so that the decoherence timescale, the Planck time τP , of the quantum fluctuations, is inversely
proportional to the temperature. Fluctuations are purely quantum up to τP , and are classical be-
yond it. At a T = 0 quantum critical point, τP is infinite so the fluctuations are purely quantum.
The Planck time-scale decreases with increasing temperatures and quantum fluctuations remain
important roughly up to the Debye temperature, determined by phonon frequencies, that can
be several hundred Kelvin. Thus, unlike its classical counterpart, the quantum critical region
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can have significant presence in a temperature-pressure phase diagram indicating the important
influence of the zero-temperature critical point. From another perspective, quantum fluctuations
are important for temperatures bounded by the condition

~ω ∼ kBT (ω ∝ qz) ⇒ ξQ ∝ (τP )1/z and qT ∝ T
1
z (2)

which, combined with the dispersion (ω ∝ qz), leads to a corresponding quantum correla-
tion length ξQ where z is the dynamical exponent; fluctuations are classical on length-scales
greater than ξQ with a corresponding thermal momentum cutoff qT for thermally activated
modes. Therefore, for temperatures where ξQ is greater than the lattice spacing, the thermal
correlation volume contains a quantum mechanical core on length-scales and time-scales deter-
mined by ξQ and τP ; in momentum space the thermal wavevector qT is a cutoff for classical
fluctuations when their quantum counterparts are present [6], as we shall discuss shortly.
What defines the quantum critical region? It is crucial to note that temperature is not a
simple tuning parameter at a quantum phase transition. Indeed T provides the low-energy
cutoff for quantum fluctuations through the Planck time-scale τP so that temperature plays the
role of a finite-size effect in time at a quantum critical point [4, 7]. The quantum critical region
is defined by the interplay between the scale-invariant order parameter fluctuations and the
temporal boundary conditions imposed by finite temperature; here a system’s thermodynamic
behavior depends on both space and time, observable experimentally with signatures distinct
from its classical counterpart.
Can one see the coexistence of quantum and classical fluctuations in a simple example?
Let us illustrate these concepts by considering the amplitude fluctuations of a one-dimensional
harmonic oscillator (1d SHO) as a function of temperature whose variance is

〈x2〉 =
Ω

K

(
nΩ +

1

2

)
(3)

where nΩ = 1/
(

exp(Ω/T ) − 1
)

is the Bose factor and we have set the constants ~ = kB = 1

(see Fig. 1). Here the important energy scales are the temperature T and the oscillator frequency
Ω. If T � Ω, then nΩ ∼ T/Ω and the variance 〈x2〉 scales with T and Ω drops out completely.
In this instance, the total variance results from purely classical (thermal) fluctuations. However
for lower temperatures, specifically in the interval 0 ≤ T ≤ Ω, there is another contribution to
〈x2〉 due to quantum fluctuations. The total variance then becomes the sum of the quantum and
classical components, where at T = 0 only the quantum component survives.
What does the behavior of a 1d SHO have to do with quantum phase transitions?
Let me explain the conceptual connection. Order parameter fluctuations play an important role
at phase transitions, and we can consider the variance of each of their Fourier components
one at a time. Let us call each of these Fourier components a mode of wavevector q whose
behavior can be mapped onto that of a simple harmonic oscillator of amplitude x with oscillator
frequency Ω. At a continuous transition, the mode stiffness K vanishes for modes close to the
ordering wavevector and the amplitude fluctuations diverge. If this occurs at T � Ω, then the
transition may be driven by essentially classical fluctuations. However at lower temperatures
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Fig. 1: Amplitude of a simple harmonic oscillator with frequencyΩ and stiffnessK as a function
of temperature.

where 0 ≤ T ≤ Ω, both classical and quantum fluctuations are present and these “hybrid”
fluctuations lead to behaviors and orderings distinct from those driven solely by their classical
counterparts. Again K is zero at the ordering wavevector but now there are both quantum and
classical contributions to 〈x2〉. Of course at strictly T = 0 the fluctuations are purely quantum.
Why is “d+z” the effective dimension of a quantum critical system? Since for purely
classical fluctuations, the amplitude of each mode of wavevector q depends only on the tem-
perature, its statistical mechanical description involves d spatial dimensions. However when
quantum fluctuations are present, both the mode frequency and T are important. More gen-
erally each mode has a power spectrum of frequencies that results in a statistical mechanical
description involving the summation over both the wavevectors and the frequency. The number
of dimensions associated with the dynamics is associated with the frequency-wavevector dis-
persion relation; then the overall effective dimensionality will be D = d+z, referring to d space
and z time dimensions, where z is the dynamical exponent associated with the dispersion of the
mode frequency.
Our focus here is on the temperature-behavior of observable quantities near a quantum critical
point. Towards this goal, let us resume our discussion of order parameter fluctuations where we
treated each Fourier mode as a simple harmonic oscillator of amplitude x with frequency Ω.
The total variance in the mode amplitude is then

〈x2〉 =
(
nΩ +

1

2

)
Ω χ (4)

where nω refers to the Bose function and χ = 1
K = Reχω=0 where K is the stiffness. We recall

that for a simple harmonic oscillator

Imχω =
π

2
ω χ δ(ω−Ω) (ω > 0) (5)
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so that we can rewrite (4) as

〈x2〉 =
2

π

∫ ∞
0

dω
(
nω +

1

2

)
Imχω . (6)

We note that this link between the variance of amplitude fluctuations and the imaginary part
of the response, here derived for a simple harmonic oscillator, is actually a much more general
result associated with the fluctuation dissipation (Nyquist) theorem [8].
We can generalize (6) to a sum of all wavevector q modes, for example, over the entire Brillouin
zone. In anticipation of our discussion of polar quantum criticality, let us now transition to the
amplitude of the scalar order parameter φ that is an electric dipole moment density. Then, fol-
lowing our previous line of reasoning, the variance of the amplitude fluctuations of the moment
is 〈

δφ2
〉

=
2

π

∑
q

∫ ∞
0

dω
(
nω +

1

2

)
Imχω =

〈
δφ2

T

〉
+
〈
δφ2

ZP

〉
(7)

where φ = φ̄+ δφ, φ̄ is the average,
〈
δφ
〉

= 0 and

Imχqω =
π

2
ωq χ δ(ω−ωq) (ω > 0) (8)

in the propagating limit where ωq is the oscillator frequency of the mode of wavevector q, though
of course more general power spectra are also possible.
We note that in (7) there are two contributions: (1)

〈
δφ2

T

〉
that involves the Bose factor and is

strongly temperature-dependent and (2)
〈
δφ2

ZP

〉
due to zero-point fluctuations. Here we focus

on
〈
δφ2

T

〉
since it will be crucial in determining the temperature-dependence of any measured

quantity. At high temperatures (T � ω), nω ≡ T/ω we obtain, by invoking causality in the
form of the Kramers-Kronig relations, a generalized equipartition theorem〈

δφ2
T

〉
≈ T

∑
q<qBZ

χq (T � ωq for q < qBZ) (9)

where all the modes up to the Brillouin wavevector qBZ are excited; here the dynamics drop out
completely of the classical equilibrium description. We note that in (9) we have a d-dimensional
wavevector summation over the Brillouin zone that implies a d-dimensional theory in real space.
Once quantum fluctuations are important (T � ω), nω ≈ e−ω/T and the dynamics remain. Now
the modes will be classical up to a thermal wavevector cutoff (qT ) determined by quantum me-
chanics and the dispersion (see Fig. 2). More specifically the relevant wavevectors are the Bril-
louin zone (qBZ) and the thermal (qT ) wavevectors, where the latter’s temperature-dependence,
determined by the condition ω ∼ T and the dispersion ω ∝ qz, is qT ∝ T

1
z ; we note that 1/qT is

a generalized deBroglie wavelength that corresponds to the usual free-particle case when z = 2.
We emphasize that the smaller of the two wavevector scales, qT and qBZ, serves as a cutoff for
the classical fluctuations. If qT < qBZ then not all the modes in the Brillouin zone are thermally
excited; in this case the dynamical exponent enters via qT and thus quantum fluctuations con-
tribute to the variance of the order parameter fluctuations. Applying these ideas to (6) and again
invoking Kramers-Kronig relations, we obtain

〈δφ2
T 〉 ≈ T

∑
q<qT

χq (T � ωq for q < qBZ). (10)
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Fig. 2: Schematic of the dispersion and the important wavevectors associated with the presence
of classical and quantum fluctuations.

Can we please use this approach to calculate a measurable quantity? Using a Landau-
Ginzburg approach to phase transitions combined with (9) and (10), we can related the variance〈
δφ2

T

〉
to the susceptibility χ, an observable quantity [6]; though this is currently a general

discussion, we note that this treatment is appropriate for polar materials [9]. Since

χ−1q ∝ q2ξ+q
2 ⇒ lim

q→0
χ−1 ∝ q2ξ (11)

where qξ is the inverse (classical) correlation length; we note that the latter is often denoted as
κ in the literature, but we will not use this notation here since κ will be used later for other
purposes. We recall that Landau theory is a symmetry-based description of macroscopic prop-
erties near a phase transition. This coarse-graining procedure ensures that the main effects of
zero-point fluctuations are absorbed in the Landau coefficients, and that thermal effects appear
through fluctuations of the order parameter field coarse-grained over 1/qT . We will assume that
this scale is large enough so that a Taylor expansion of the free energy is still reasonable for our
applications.
The Landau free energy density for a system with moment density φ and conjugate field E is

f =
1

2
αφ2 + β

1

4
φ4 +

1

2
γ
∣∣∇φ∣∣2 − Eφ (12)

where α → 0 at the transition and β and γ are constants. Minimizing this free energy with
respect to the order parameter φ, we obtain

E = αφ+ βφ3 − γ∇2φ. (13)

In order to obtain
〈
δφ2
〉
, we follow the standard prescription of adding a random (Langevin)

field to E ; next we average over the random fluctuations in (13) using φ → φ̄+δφ where φ̄ is
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the average and 〈φ〉 = 0 to obtain to lowest order

E =
(
α + 3β〈δφ2〉

)
φ̄− γ∇2φ̄ (14)

where we note that the variance emerges from the anharmonic cubic contribution in (13). In the
limit of small φ̄ and E , we can Fourier transform this expression to obtain

χ−1q =
(
α + 3β〈δφ2〉

)
+ q2. (15)

If we consider the q → 0 limits of both (11) and (15), retaining the most temperature-dependent
terms, we obtain

lim
T→0

q2ξ ∝
〈
δφ2

T

〉
(16)

where we have assumed a quantum critical point (QCP) so that α → 0 as T → 0. We note
that (16) is only valid near a Tc = 0 phase transition since for a nonzero Tc there are additional
terms proportional to Tc 6= 0 so that this expression of proportionality is no longer valid [6].
We can now combine (10), (11) and (16) to determine the temperature-dependence of the sus-
ceptibility near a quantum critical point, obtaining the expression

q2ξ ∝
∑
q<qT

T

q2ξ + q2
≈ T

∫ qT

qξ

qd−1 dq

q2
≈ T qd−2T

(
1−

( qξ
qT

)d−2)
(17)

where, using qT ∝ T 1/z, we would like to disregard the qξ/qT term on the right-hand side of
(17) so that we can write

χ−1 ∝ q2ξ ∝ T
(d+z−2)

z ⇒ χ−1 ∝ T 2 (d = 3, z = 1). (18)

where we anticipate the situation for d = 3 quantum paraelectrics with z = 1 (ω ∝ q). We note
that this situation (d+z = 4) is marginal, so technically there will be logarithmic corrections
though they are not observed experimentally [6, 10]. We take a moment to note that (18) is
distinct from the Curie behavior (χ−1 ∝ T ) observed in the approach to the classical transition.
When is this assumption valid ? We can address this question by rearranging (17) to yield(

qξ
qT

)2

∝ T
(d+z−4)

z

(
1−

( qξ
qT

)d−2)
(19)

From (19) we see that

lim
T→0

(
qξ
qT

)
= 0 if deff = d+z > 4; (20)

in this case (18) is true, and no further fluctuation effects need to be considered; there will
be weak logarithmic corrections for d+z = 4. The upper critical dimension of this quantum
theory is thus Du = 4−z. In other words the inclusion of dynamics in quantum critical phe-
nomena reduces the upper critical dimension from du = 4 in the purely classical limit; from
this standpoint in experiment we are often above the upper critical dimension near a quantum
phase transition in real materials.
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1.2 Polar quantum criticality?

Polar materials undergo inversion symmetry-breaking transitions to phases characterized by
polar space groups. Insulating ferroelectrics are among the simplest polar materials; they host
spontaneous polarizations that can be switched by electric fields of practical magnitude. Fur-
thermore ferroelectrics are in a class of polar materials whose electromechanical properties are
important for transducers, passive memory components and infrared sensors. As a result of
their many practical applications, they are predominantly studied at room temperature [11–15].
Can these functional materials “teach” us about some fundamental physics? Indeed histor-
ically ferroelectrics played an important role in our collective understanding of classical critical
phenomena in the pioneering work of A.I. Larkin and D.E. Khmelnitskii (LK) [16, 17]. In the
sixties it was known that Landau theory breaks down for the Ising model in four or fewer di-
mensions, and that this model’s universal behavior was equivalent to that of a φ4 field theory.
Exploiting this link, LK applied the renormalization methods of quantum electrodynamics to
the φ4 model in d = 4, finding clear singularities in the exponents of the specific heat and
other quantities. Finally they noted that the four-dimensional Ising model is realized in a three-
dimensional uniaxial ferroelectric, and indeed their results were confirmed experimentally, first
in a dipolar Ising ferromagnet [18] and then later in a uniaxial ferroelectric [19].
Let us take a moment to get a flavor for the LK argument about the effective dimensionality
of a uniaxial ferroelectric. Ferroelectrics are well-described by O(n) (spherical) models where
du = 4 is the upper critical dimension; this of course means that interactions are relevant for
d < du, whereas mean-field (Landau) theory is fine for d > du and du = 4 is marginal. Let us
assume that all dipoles are in the z direction with a dipole potential W (q) ∝ q2z/q

2 so that the
resulting action is

S =

∫
d3q

(2π)d
∣∣φq∣∣2(q2 +

q2z
q2

+∆2

)
(21)

where ∆ refers to its gap. If we assume

q2 ≈ q2x + q2y = q2⊥ (22)

and apply the simple scaling expressions

x→ bx, q⊥ →
q⊥
b
, qz →

qz
bk

(b, k>1) (23)

then we obtain

S ≈
∫
d2q⊥dqz
b2+k

∣∣φq∣∣2(q2
b2

+
q2z
q2
b2

b2k
+∆2

)
. (24)

We see that, in order for (24) to have the same form as (21), we require

2−2k = −2 → k = 2 (25)

so that qz “counts” for effective two dimensions. In this sense the effective dimension of the
uniaxial ferroelectric is deff = d+1 so that a three-dimensional uniaxial ferroelectric has an ef-
fective dimension of four and is thus a setting to test predictions for the upper critical dimension
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of the Ising model. More specifically, in Landau theory the specific heat has only a discontinu-
ity (α = 0) and LK were able to calculate the critical logarithmic corrections for the marginal
case du = 4. The LK results were the first exact calculations of non-mean field exponents in an
experimentally realizable systems, that subsequent measurements confirmed [18, 19].
Fine, but what can polar materials bring to the field of quantum criticality? The emergence
of complex states of quantum matter in the neighborhood of zero-temperature phase transitions
suggests that such quantum phenomena should be explored in a variety of settings [6]. Para-
electric (disordered) materials in close proximity to polar quantum critical points can be viewed
as “economy” quantum critical systems whose propagating dynamics and few degrees of free-
dom allow for detailed interplay between analytic approaches, first-principles approaches and
laboratory measurements. From an experimental standpoint, the pressure-sensitivity of polar
transition temperatures is very appealing. For example, in order to cover a 300 K range in mag-
netic Tc’s, hundreds of kilobars must be applied, whereas in ferroelectrics the same temperature
range can be covered with an order of magnitude less pressure. Furthermore the electric field as
another “tuning knob” is significantly easier to apply than is its magnetic counterpart. Finally
the dispersion ω ∝ q in most ferroelectrics so that z = 1 which means that these materials can
be studied and probed below, at and above their upper critical dimension in contrast to magnetic
materials where z is typically of higher values. Additional degrees of spin and charge can be
added to these polar materials, leading to rich phase behavior mostly as yet to be explored.
How old is the study of polar quantum criticality? There has been tremendous “historical
entanglement” between the fields of ferroelectrics and criticality, beginning with the calculation
of non-mean field exponents at marginal dimensionality that we have just discussed. Similarly
the transverse-field Ising model, one of the simplest settings for a quantum critical point, was
first developed to describe an order-disorder transition in the ferroelectric KH2PO4 [20]. Indeed
there have been several “waves” of interest in low-temperature polar materials and here, for the
sake of completeness and compactness, I refer interested readers elsewhere to read about these
developments [6, 21].
For our purposes, let us consider a paper in 1971 by A.B. Rechester where he calculates the
temperature-dependence of the dielectric susceptibility (χ) near a continuous polar phase tran-
sition [22]; to do this, he employs a parquet approximation, valid because he is working in a
marginal dimension, to obtain χ−1 ∝ T 2. The key question here is whether there is a simpler
way to get this result. First, we note that in our previous treatment relating

〈
δφ2

T

〉
to χ(T ), we

obtained this same result in (18), setting d = 3 and z = 1. Strictly speaking this approach is
only valid for d+z > 4, but since we are in the marginal dimension (d+z = 4) we are using
it assuming, it turns out correctly, that the logarithmic corrections will not be important experi-
mentally. We should add that long-range dipolar interactions have been neglected as their main
effect near a QCP is to produce a gap in the longitudinal fluctuations; the transverse fluctuations
however remain critical [16, 23].
We have already discussed the fact that temperature is not a tuning parameter in the vicinity of
a quantum phase transition, but rather plays the role of a finite-size boundary effect on time. In-
deed we can adapt finite-size scaling (FSS) approaches near classical phase transitions to study
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Fig. 3: Schematic of finite-size scaling at classical and at quantum critical points.

the influence of temperature near a QCP. This scaling approach is strictly valid in dimensions
for d+z < 4, so again we will argue that because d = 3 quantum critical paraelectrics are
marginal (d+z = 4), the scaling results are valid up to logarithmic corrections. Following the
standard FSS procedure [24], we impose boundaries on the system near its critical point. For
a classical system with tuning parameter t = T/(T−Tc) and correlation length ξ ∼ t−ν , we
confine it in a box of size L and then write the standard FSS scaling form

χ ∼ t−γΦ

(
L

ξ

)
∼ t−γΦ

(
L

t−ν

)
. (26)

For L� ξ, we must have χ = χ(L) and assuming that Φ(x) ∼ xp, we obtain

χ ∼ t−γ
(
L

ξ

)p
∼ t−γ

(
L

t−ν

) γ
ν

∼ L
γ
ν . (27)

Now let us apply the analogous finite-size scaling to time near a quantum critical point. We
note that

ξ ∼ g−ν̃ → ξτ ∼ g−zν̃
(
ω ∝ qz → [ξτ ] = [ξz]

)
(28)

where g is the tuning parameter of the quantum phase transition, ξτ is the correlation time, and
we write the exponents for the quantum transition with a tilde (e.g. ν̃) to distinguish them from
their classical counterparts (ν); we now have the boundary cutoff in time Lτ=τP=~/(kBT ) that
is inversely proportional to temperature. Then the scaling expression for the susceptibility is

χ ∼ g−γ̃Φ

(
Lτ
ξτ

)
∼ g−γ̃Φ

(
Lτ
g−zν̃

)
. (29)
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Then for Lτ � ξτ we must have χ = χ(Lτ ) so that we obtain

χ ∼ g−γ̃
(
Lτ
ξτ

)p
∼ g−γ̃

(
Lτ
g−zν

) γ̃
zν̃

∼ L
γ̃
zν̃ ∼ T−

γ̃
zν̃ (30)

at finite temperature near a polar QCP; here z = 1, ν̃ = 1
2

and γ̃ = 1 so that γ̃/(zν̃) = 2 and
χ−1 ∝ T 2.
In summary, exploiting the fact that the d = 3 quantum critical paraelectrics reside in its
marginal dimension, we have used both mean-field and scaling arguments to recover the 1/T 2

behavior of the dielectric susceptibility near a polar quantum critical point that was previously
derived using more technical diagrammatic, large N and renormalization group methods [6]; it
has also been observed experimentally, validating our neglect of logarithmic corrections [6,10].
The Rundown. So why should we explore polar quantum criticality? Of course in our collec-
tive quest for universality, it is important to study quantum phase transitions in many different
settings. Furthermore polar quantum critical materials offer the following opportunities:

• Simple “economy” examples with few degrees of freedom and non-dissipative dynamics.

• Their linear dispersion (z = 1) means that they can be studied at, below and above their
upper critical dimension allowing for a detailed interplay between theory and experiment.

• Additional degrees of freedom like spin and charge can be added systematically.

However there are also outstanding conceptual questions that include

• How can systems that display classical first-order phase transitions display quantum crit-
icality?

• Can metals near polar quantum criticality host novel strongly correlated phases?

These issues motivate our discussion in the subsequent sections of this chapter.

2 Quantum annealed criticality

2.1 The challenge: classical first-order transitions!

Let us start simply with polar insulators. At finite temperatures and ambient pressure these ma-
terials typically display first-order transitions due to strong electromechanical coupling [11–13];
yet in many cases their dielectric susceptibilities indicate the presence of pressure-induced quan-
tum criticality associated with zero-temperature quantum phase transitions [6,10]. The interplay
of first-order phase transitions with quantum fluctuations is known to lead to exotic quantum
states near quantum critical points In many metallic quantum ferromagnets, coupling of the
local magnetization to the low-energy particle-hole excitations transforms a high-temperature
continuous transition into a low-temperature discontinuous one, and the resulting classical tri-
critical points have been observed in many systems [25].
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Fig. 4: Temperature (T )-Field (h)-Tuning Parameter (g) Phase Diagram with a sheet of first-
order transitions bounded by critical end-points (CEP) terminating at a zero temperature quan-
tum critical point (QCP); here g tunes the quantum fluctuations and h is the field conjugate to
the order parameter. Inset: Temperature-Tuning Parameter “slice” indicating a line of classi-
cal phase transitions ending in a “quantum annealed critical point” where the underlying order
parameter criticality is restored by zero-point fluctuations.

In this section, we will discuss a theoretical basis for the observation that many polar insulators
display quantum critical behavior despite hosting classical first-order transitions. Experimen-
tally it is known that classical ferroelectric transitions, for example in BaTiO3, are continuous
when clamped and become first-order when unclamped [12]. In magnetic systems there is
a mechanism, studied by A.I. Larkin and S.A. Pikin (LP), where strain-energy density cou-
pling is known to drive discontinuous transitions in compressible systems that are critical when
clamped [26]. We will adapt this Larkin-Pikin approach to (compressible) polar systems and ask
what happens in the approach to zero temperature. In a nutshell, we will show that as the tem-
perature is lowered, quantum fluctuations reduce the amplitudes of their thermal counterparts,
weakening the first-order transition and “annealing” the system’s elastic response, ultimately
resulting in a T = 0 “quantum annealed” critical point. As we will see, this is because fluc-
tuations at finite temperature are more singular than at T = 0 where the effective dimension
is higher than in the classical case. The general temperature (T )-tuning parameter (g)-field (h)
phase diagram that emerges is presented in Fig. 4 where the field (h) is conjugate to the order
parameter. A flavor of this theoretical underpinning to the observed behavior will be given here
where details are available elsewhere for the interested reader [27].

2.2 Adaptation of the Larkin-Pikin approach

Before we adapt it, what is the classical Larkin-Pikin approach? At a first-order transition
the quartic mode-mode coupling of the effective action becomes negative. One mechanism for
this phenomenon, studied by Larkin and Pikin [26] (LP), involves the interaction of strain with
the fluctuating energy density of a critical order parameter. LP found that a diverging specific
heat in the “clamped” (fixed volume) system leads to a first-order transition in the unclamped
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system at constant pressure. The Larkin-Pikin criterion [26] for a first order phase transition is

κ .
∆CV
Tc

(
dTc
d lnV

)2

(31)

where V is the volume, ∆CV is the singular part of the specific heat capacity in the clamped
critical system, Tc is the transition temperature and dTc/d lnV is its volume strain derivative.
The effective bulk modulus κ is defined by κ−1 = K−1 −

(
K+4µ/3

)−1 where K and µ are
the bare bulk and the shear moduli in the absence of coupling between the order parameter and
strain; physically κ ∼ K c2L/c

2
T where cL and cT are the longitudinal and the transverse sound

velocities. More specifically, LP considered the coupling

LI = λell(~x )ψ2(~x ) (32)

between the volumetric strain field ell and the squared amplitude ψ2 of the critical order param-
eter. In a critical system, the singular fluctuations of the energy density are directly proportional
to ψ2; thus (32) corresponds to a strain-energy coupling. Naively (32) is expected to induce a
short-range attractive order parameter interaction. LP showed that (32) also leads to an anoma-
lous long-range interaction between order parameter fluctuations; careful integration, as we
shall discuss, over the elastic degrees of freedom results in a qualitative transformation of the
action

S −→ S − λ2

2Tκ

[
1

V

∫
d3x

∫
d3x′ ψ2(~x )ψ2(~x′)

]
with

1

κ
=

(
1

K
− 1

K + 4µ/3

)
(33)

where µ is the shear modulus [26, 27]. This long-range interaction is finite if µ > 0, i.e., if the
medium is a solid. LP showed that this induced long-range interaction in (33) generates positive
feedback to the tuning parameter, leading to a multi-valued free energy surface and a resulting
first order phase transition.
To summarize the situation more conceptually, we note that in the LP scenario the strain-energy
density coupling results in a renormalized effective bulk modulus

κ̃ ≡ κ−∆κ (34)

in the unclamped system where the shift in the effective bulk modulus is related to the singular
part of the (clamped) specific heat

∆κ =
∆CV
Tc

(
dTc
d lnV

)2

. (35)

The condition for a macroscopic instability, and hence a first-order transition, is when the renor-
malized bulk modulus is negative

κ−∆κ = 0 ⇒ κ .
∆CV
Tc

(
dTc
d lnV

)2

(36)

and we see that we have recovered the LP criterion (31). Here we note that it is the divergence
of ∆κ that is crucial to this result.
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The LP criterion in its current form is not appropriate for T=0! When we generalize the
Larkin-Pikin approach to include quantum zero-point fluctuations of the energy density, we
show that it is the divergence of the energy fluctuations, both quantum and classical, that is
crucial for the LP mechanism [27]. When we sum over all possible spacetime configurations in
the action, we obtain a generalized LP criterion

κ .

(
dgc
d lnV

)2

χψ2 (37)

where

χψ2 =

∫ β

0

dτ

∫
d3x

〈
δψ2(~x, τ) δψ2(0)

〉
(38)

is the space-time average of the quantum and thermal “energy” fluctuations, β = 1
kBT

and g is
the tuning parameter for the quantum phase transition, with the convention that gc(T = 0) = 0.
At zero temperature, this expression extends the original LP criterion (36) to quantum phase
transitions. As we will discuss further shortly, at finite temperatures, the critical quantum and
classical tuning parameters are related by gc(Tc) = uT

1/Ψ̃
c , where ν̃ and z are the exponents

associated with the quantum correlation length and the dynamics respectively and Ψ̃ = ν̃ is
called the shift exponent [4]; therefore d ln gc = 1

Ψ̃
d lnTc and the LP criterion becomes

κ−∆κ = 0 ⇒ κ .

(
dTc
d lnV

)2

∆CV /Tc︷ ︸︸ ︷(
g

2Tc

)2

χψ2 , (39)

where we have identified ∆Cv/Tc = (g/2Tc)
2χψ2 with the specific heat capacity. In this way,

we see that the generalized Larkin Pikin equation encompasses the original criterion (31) in
addition to being applicable at low temperatures [27]. Due to their additional time dimension,
quantum fluctuations are typically less singular than are their classical counterparts. As the
temperature is lowered, the correlation volume of the zero-point fluctuations grows, reducing
the amplitudes of the singular thermal fluctuations in the clamped system. The induced first
order transition thus becomes progressively weaker with decreasing temperature, leading to a
continuous “quantum annealed” transition at T = 0.
Is there a simple way to get a sense of the quantum Larkin-Pikin result? We have seen that
the LP criterion can be reexpressed as

κ−∆κ = 0 (40)

We can use a scaling argument to get a flavor for the key quantum LP result. Let us rewrite (39)
as

κ̃ = κ−∆κ = κ− γ2χψ2 (41)

with

χψ2 =

∫ β

0

dτ

∫
ddx

〈
δψ2(~x, τ) δψ2(0)

〉
, (42)
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where we have generalized the expression (38) to d spatial dimensions. If we make the Gaussian
approximation

〈
δψ2(~x ) δψ2(0)

〉
≈
(
〈δψ(~x ) δψ(0)〉

)2, then the zero-temperature limit of χψ2 is

lim
T→0

χψ2 ≈
∫
dτddx

(
〈δψ(~x ) δψ(0)〉

)2
=

∫
dν

2π

ddq

(2π)d
(
χψ(~q, ν)

)2 (43)

where we have Fourier transformed into momentum space, and χψ(~q, ν) =
〈
δψ(−q) δψ(q)

〉
, the

order parameter susceptibility, is the space-time Fourier transform of the correlator 〈ψ(~x )ψ(0)〉.
It then follows that

lim
T→0

∆κ ∝
∫
dq dν qd−1

(
χψ(~q, iν)

)2
. (44)

To examine how this quantity behaves in the approach to the quantum critical point of the
clamped system, we can use dimensional power-counting. Since [χ] =

[
1
q2

]
and [ν] = [qz],

lim
T→0

[∆κ] =
[qd+z]

[q4]
∼ ξ

4−(d+z)
Q

where we have replaced [q−1] = [ξQ], the quantum correlation length. As the quantum critical
point of the clamped system is approached, ξQ → ∞, so that the quantum corrections to κ
are non-singular for d+z > 4; in this case ∆κ does not diverge so a continuous transition is
possible. Of course for three-dimensional polar insulators with a linear dispersion d+z = 4 is
marginal, so there will be logarithmic corrections; this suggests that the quantum phase transi-
tion will be very weakly first-order which may be indistinguishable from continuous in experi-
ment. Basically here we are arguing that if the T = 0 compressible system lies above its upper
critical dimension, the line of first-order transitions can end in a “quantum annealed critical
point” where zero-point fluctuations restore the underlying criticality of the order parameter.
How can this scaling argument be substantiated? This scaling logic can be supported by
a more technical argument which we will now outline; here we consider the simplest case:
isotropic elasticity and a scalar order parameter ψ. The action, S[ψ, u] is then a function of ψ
and u, the lattice displacement; it has three distinct components corresponding to the physics of
ψ, a description of the elastic degrees of freedom and finally the strain-energy density coupling
with strength λ [26, 27]. The generalized LP argument is subtle and proceeds in three steps:

• Careful integration of the q = 0 and q 6= 0 Gaussian strain contributions distinctly.

• Identification of an expression relating the unclamped and the clamped free energies.

• Use of crossover scaling [4] to determine T → 0 phase behavior when both classical and
quantum critical fluctuations are present.

Here the key first step is to integrate out the Gaussian elastic degrees of freedom from the action

Z =

∫
D[ψ]

∫
D[u] e−S[ψ,u] → Z =

∫
D[ψ] e−S[ψ] (45)

where the actions involve integrals over spacetime. This procedure must be performed with
some care because of the special role of boundary normal modes. In a solid of volume L3, the
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normal modes can be separated into two components according to their wavelength λ: sound
waves with λ � L and boundary waves with λ ∼ L. From another perspective, we can
understand this distinction by noting that the strain only couples to the longitudinal modes;
however at q = 0 there is no distinction between transverse and longitudinal modes so this case
must be treated separately from the finite-q situation.
The generalized Larkin-Pikin action, following careful integration of the Gaussian strain to
include both thermal and quantum fluctuations, is

S[ψ] = SL[ψ, g̃, b∗]− λ2

2

(
1

K
− 1

K + 4µ/3

)
1

βV

∫
d4x

∫
d4x′ ψ2(~x )ψ2(~x′). (46)

with the local contribution

SL[ψ, g̃, b∗] =

∫
d4xLL[ψ, g̃, b∗] =

∫
d4x

(
1

2
(∂µψ)2 +

g̃

2
ψ2 +

b∗

4!
ψ4

)
(47)

where

b∗ = b− 12λ2

K + 4µ/3
. (48)

(46) is a d+z-dimensional generalizations of the classical LP action where all spacetime con-
figurations are summed. The essence of the Larkin-Pikin effect is the appearance of a distance-
independent interaction between the energy densities of the order parameter field that appears
in (46). Since the Larkin-Pikin argument is valid for arbitrarily small coupling λ, the perturba-
tive O(λ2) renormalization of the short-range interaction in (48) becomes negligibly small in
this limit and can be safely neglected.
The Larkin-Pikin term in (46) is a kind of “elastic anomaly”, whereby the integration over
boundary modes generates nonlocal interactions between energy densities of the order parame-
ter similar in form to (42). Indeed this distance-independent term in (46) can be written as the
spacetime volume average of the energy density

Ψ 2 ≡ 1

βV

∫
d4xψ2(x) (49)

that is an intensive variable with small fluctuations about its thermal average 〈Ψ 2〉. We perform
a Hubbard-Stratonovich transformation of the spacetime-independent interaction in (46)

− λ2

2

1

κ

1

βV

∫
d4x

∫
d4x′ ψ2(~x )ψ2(~x′) →

∫
d4x

(
(λφ)ψ2(~x ) +

κ

2
φ2
)

(50)

where we have introduced an auxiliary “strain” field

φ = −λ〈Ψ
2〉

κ
(51)

that is independent of space and time. Then we may write

Z = e−βF̃ = e−S̃(φ) =

∫
Dψ e−S[ψ,φ] , (52)
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where F̃ is the free energy of the unclamped system; here

S[ψ, φ] =

∫
d4x

(
LL(ψ, g̃) + λφψ2 +

κ

2
φ2
)

(53)

that can be reexpressed as

S[ψ, φ] =

∫
d4xLL(ψ, g̃+2λφ) +

κV β

2
φ2 . (54)

In their original classical treatment, Larkin and Pikin observed that the main effect of elasticity
in the unclamped system is to make a parametrized shift of the original tuning parameter to a
parametrized variable X; we can see this in our generalized LP equations. From (52) and (54),
we can write the free energy for our unclamped system as

F̃ [φ, g̃] = F [X] +
κV

2
φ2 (55)

where F is the free energy of the clamped system and

X = g̃ + 2λφ (56)

indicates the shift of the tuning parameter g̃ due to the presence of energy fluctuations. Now

1

V

∂F
∂X

=

〈
Ψ 2
〉

2
(57)

so that

φ = −
λ
〈
Ψ 2
〉

κ
= − 2λ

V κ

(
∂F
∂X

)
≡ − 2λ

V κ
F ′[X] (58)

where we have defined F ′[X] ≡
(
∂F
∂X

)
for simplicity. Therefore

F̃ = F [X] +
2λ2

V κ

(
F ′[X]

)2 (59)

and

X = g̃ − 4λ2

V κ
F ′[X]. (60)

Let us define
f̃ ≡ 2λ

V κ
F̃ and f ≡ 2λ

V κ
F . (61)

Here we recall that the integrals in the action involve an integral over time,
∫
d4x =

∫ β
0
dτ
∫
d3x

where β = 1/T is a boundary term, so that these free energies are determined at fixed tempera-
ture. Therefore the two equations describing the unclamped system are

f̃ = f [X,T ] + λ
(
f ′[X,T ]

)2 (62)

and
g̃ = X + 2λf ′[X,T ] (63)

which have to be solved self-consistently.
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Although the phase transition of the unclamped system is continuous in X , the physical tuning
parameter, g̃[X], can become a non-monotonic function of X , leading to a first-order transition.
Thus the Larkin-Pikin criterion is

dg̃

dX
= 1− λ2V

κ
χψ2 (64)

where

χψ2 =

∫ β

0

dτ

∫
d3x
〈
δψ2(~x ) δψ2(0)

〉
(65)

is the space-time average of the quantum and thermal “energy” fluctuations that is familiar from
our previous discussion. The condition dg̃

dX
≤ 0 corresponds to the development of a first-order

transition; we already know that for d+z > 4 the term χψ2 does not diverge so there is the
possibility of a continuous transition. We note that in the physically important case of d+z = 4

there will be weak logarithmic effects that are probably not observable experimentally. Again
here a flavor for the technical argument has been presented as a sketch, and more details are
available for the curious reader [27].

2.3 Quantum annealing of the first-order transition

A crucial feature of the LP approach is that the feedback of the energy fluctuations can be
understood purely by studying the critical behavior of the clamped system. In order to illustrate
this, let us return to the original LP classical version of the two equations, (62) and (63)

f̃ = f [x] + λ
(
f ′[x]

)2 (66)

and
t = x+ 2λf ′[x] t ≡ T − Tc

Tc
(67)

describing the unclamped system that must be solved self-consistently. In the classical clamped
system, we assume a continuous transition so we can write

f ∝ −|t|2−α (α > 0). (68)

Combining (67) and (68), we obtain

t = x+ 2λf ′[x] = x− 2λ(2−α) |x|1−α sign(x) (69)

that is non-monotonic leading to a first-order transition for the unclamped system (see Fig. 5).
Therefore, in order to generalize the Larkin-Pikin argument to T → 0, we need to introduce
a crossover scaling form for the clamped free energy f in (62) and (63) that is applicable near
both the classical and the quantum critical points. The approach we outline here that describes
both the quantum and classical cases was adapted from an earlier study used to describe Ising
anisotropy at a Heisenberg critical point [4]. From our previous discussion, we recall that at
a finite temperature T, the criticality of quantum fluctuations is cut off by the Planck time
τP = ~/(kBT ) with a corresponding quantum correlation length ξQ ∼ τ

1/z
P Near the quantum
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Fig. 5: Schematic of the (left) nonmonotonic relationship between the reduced temperature (t)
and the parametrized variable (X) shifted by energy fluctuations for the unclamped LP problem
and (right) the free energy of the unclamped compressible system for α = 1/2 as in the original
LP paper [26].

critical point at T = 0, the zero-point fluctuations are governed by a finite correlation length
ξQ ∼

(
g−gc(0)

)−ν̃ , where g is the parameter that tunes the quantum transition and g = gc(0)

is the location of the quantum critical point. If we combine our expressions for the quantum
correlation length in the ordered phase close to the line of phase transitions, we find

(
g−gc

)−ν̃ ∼ ( ~
kBTc

)1/z

(70)

which leads to
Tc ∼ (g−gc)ν̃z ≡ (g−gc)Ψ̃ (71)

where Ψ̃ is called the shift exponent that we have discussed earlier. Therefore at finite tempera-
ture, the location of the phase transition is shifted by the thermal fluctuations, so that

gc(T ) = gc(0)− uT 1/Ψ̃ . (72)

For convenience, we will shift the definition of g to absorb the zero temperature QCP critical
coupling constant, gc(0), i.e. g−gc(0) → g, so that gc(T ) = −uT 1/Ψ̃ . Now temperature is
a finite size correction to the quantum critical point, and the free energy is determined by a
crossover function

f(g, T ) = g2−α̃ Φ

(
T 1/Ψ̃

g

)
. (73)

which describes both the quantum critical point, and the finite temperature classical critical
point of the clamped system (see Figure 6); here we will use the convention that an exponent
with a tilde refers to the quantum case so that α and α̃ are classical and quantum exponents,
respectively. A key point is that at finite temperature, critical behavior now occurs at the shifted
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Fig. 6: Schematic showing the dependence of the free energy of the clamped system in the
vicinity of the quantum critical point. The scaling function about the QCP determines the
amplitude factors for the finite temperature classical critical point (CCP), given by AI(T ) for
a constant temperature sweep and AII(g) for a sweep at constant tuning parameter. Here the
location of the quantum critical point at gc(0) is labelled as simply gc.

value of gc(T ), and the scaling behavior is governed by the finite temperature critical exponents.
Therefore for a fixed temperature scan (Fig. 6) for small g−gc(T ),

f(g, T ) =
(
g−gc(T )

)2−α
AI(T ). (74)

where AI(T ) is the amplitude factor for the classical critical point occurring at g = gc(T ).
Similarly if we perform a sweep through the phase transition at constant coupling constant g
(Fig. 6), then we can write

f [g, T ] ∼
(
T−Tc[g]

)2−α
AII(g), (75)

where AII(g) is amplitude factor for the quantum transition at Tc[g] = (−g/u)Ψ̃ . The scaling
form (73) allows us to determine the form of these amplitude factors.
Using this crossover approach, we can study how the discontinuities in the entropy and the
volume, ∆S(Tc) and ∆V (Tc), evolve along the first order phase boundary as the transition Tc
is lowered towards zero. In this discussion, we shall identify the tuning parameter g with the
pressure P, g ≡ P−Pc. Using Maxwell’s relations we have

dTc
dPc
≡ dTc
dgc

= − ∆V

∆S

∣∣∣∣
T=Tc

−→ dTc
dgc
∝ −T 1−1/Ψ

c . (76)

where we have used (72) to obtain the right-hand expression in (76). For the case of polar
insulators, Ψ̃ = ν̃z = 1/2, and we see that this dTc/dPc ∝ T−1c ; naively this implied divergence
of ∆V/∆S as Tc → 0 might be taken as evidence that the tendency towards a first order
transition increases as the temperature goes to zero. However the paradox is resolved by noting
that ∆S and ∆V simply vanish at different rates, still signifying an approach to a continuous
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Fig. 7: Schematic figure showing the evolution of the first order phase transition in the approach
to the quantum annealed critical point for the case Ψ̃ = ν̃z= 1/2, α= 1/2, α̃= 0. (a) Evolution
of jump in volume (b) dependence of ∆V and ∆S on Tc and (c) Tc dependence of ∆V/∆S.

quantum phase transition. In particular using this crossover scaling we can show [27]

∆V (Tc) ∝ −T
α−α̃
αΨ̃
c , (77)

so that as long as α > α̃,
lim
Tc→0

∆V → 0 (78)

and there is no latent work as Tc goes to zero, indicating that quantum fluctuations “anneal” the
zero-temperature quantum phase transition to become continuous (Fig. 7).
The Rundown. In summary, we have developed a theoretical framework to describe compress-
ible insulating systems that have classical first-order transitions and display pressure-induced
quantum criticality. We have generalized the Larkin-Pikin approach [26] to the quantum case
using crossover scaling forms that can describe both its classical and its quantum critical behav-
ior. In particular when the system is above its upper critical dimension, there is no latent work
at the quantum transition indicating that it is continuous. The key point is that a compressible
material can host a quantum critical phase even if it displays a first-order transition at ambient
pressure. More generally the order of a lattice-sensitive system’s classical phase transition can
be different from its quantum counterpart. As always there are always outstanding questions
that emerge; they include:

• Lines of discontinuous classical transitions ending in quantum critical points have now
also been observed in several metallic systems; can this quantum annealed criticality
approach be generalized to include electronic degrees of freedom?

• Can this LP mechanism be understood in a broader field-theoretic context? It has a topo-
logical flavor since a q = 0 “boundary component of the strain drives the long-range
interaction; when integrated around a closed loop on a torus, it is a topological invariant
that counts the number of enclosed defect [27]. This appears to be a sort of bulk-boundary
correpondance thus suggesting a phenomenon that is topological in character and should
be explored.



11.22 Premala Chandra

3 Novel metallicity

So far, we have only discussed polar insulators. However now let us turn to the other concep-
tual question we posed earlier: Can metals near polar quantum criticality host novel strongly
correlated phases?

What exactly is a polar metal and do they exist? A polar metal undergoes a continuous
transition from a non-polar to a polar crystal structure; there is no macroscopic polarization
due to screening by the conduction electrons [30–32]. Though predicted some time ago [30], it
is only relatively recently that such polar metals have been identified experimentally and there
exist both intrinsic and engineered varieties with many more predicted [31,32]. In the extrinsic
case, charge can be added to a polar insulator by either chemical and/or gate doping. The Mott
criterion for the critical dopant concentration (nc) for a metal-insulator transition in doped (3d)
semiconductors occurs when the average dopant-dopant distance

(
d = n−1/3

)
is a significant

fraction of the effective Bohr radius
(
a∗B = ε~2/(m∗e2)

)
where ε is the dielectric constant; more

concretely the critical concentration nc is defined as a∗Bn
1/3
c ≈ 0.26, consistent with experiment

in many semiconductors [28]. Since the effective Bohr radius is proportional to the dielectric
constant (ε), it is much larger in materials near polar transitions like n-doped STO than in doped
semiconductors based on silicon or germanium (see Figure 8); therefore a lower nc is expected,
consistent with observation [29,28]. Polar metals can thus have very low carrier concentrations.

Is polar quantum criticality experimentally accessible? Polar transition temperatures of
metallic systems have been controllably suppressed, driving them into observed quantum criti-
cal regimes [33,34]. Metals close to quantum critical points are known to be strongly correlated
systems that host exotic phases including non-Fermi liquids and unconventional superconduc-
tivity where specifics depend on the nature of the quantum criticality involved [25, 35]. The
vicinities of polar quantum critical points thus present new settings to explore such novel metal-
licities [36].

3.1 The challenge: how to couple electrons to a soft polar mode?

In quantum critical polar metals, the q = 0 soft mode is an inversion symmetry-breaking trans-
verse optical phonon that has no direct coupling to the charge density. Furthermore the usual
Fröhlich electron-phonon coupling vanishes for q → 0. Quantum critical polar metals thus offer
opportunities to study novel electron-phonon interactions and their resulting collective behav-
iors. A key challenge in studying novel metallicity near polar quantum critical points is how to
promote strong electronic coupling to the critical polar mode. Conversely, the region around a
polar quantum critical point presents an opportunity to explore nontraditional electron-phonon
interactions; proposed couplings that include order parameter gradients and/or nonlinearities
are usually irrelevant in the scaling sense at a QCP, leading to Fermi liquid behavior. Addition-
ally, Coulomb interactions play a special role here, gapping the longitudinal mode when the
screening is weak [16, 23].
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Fig. 8: A plot of the effective Bohr radius (aB) vs. carrier density (n) indicating good compari-
son between the Mott criterion

(
n
1/3
c aB = 0.26

)
for the metal-insulator transition in a number

of experimental systems. Here aB = ε~2/(m∗e2) is determined experimentally whenever possi-
ble using spectra, otherwise computationally, and the critical carrier density (nc) for metallicity
is measured [28]. Because the effective Bohr radius is proportional to the dielectric constant,
it is large for a doped nearly polar material like n-SrTiO3; this results in a low critical car-
rier concentration for the metal-insulator transition consistent with observation [29]. (Adapted
from [28] with permission from the American Physical Society.)

3.2 Spin-orbit assisted electron-phonon interactions

Many anomalous properties of quantum critical polar metals, particularly in the superconduct-
ing state, have been predicted [37–42] by invoking a spin-orbit interaction mediated coupling
between polar fluctuations and electrons in the vicinity of a polar quantum critical point (PQCP)
with the appropriate interaction Hamiltonian

Ĥint = λ
∑
k,q

∑
s,s′

c†k+q/2,s

(
(k×σ̂ss′) ·Pq

)
ck−q/2,s′ , (79)

where λ is the electron-phonon coupling constant, c†k,s(ck,s) is the electron creation (annihila-
tion) operator with momentum k, spin s =↑, ↓, σ̂ is the Pauli matrix for spin and Pq describes
the polar order fluctuation field at a finite momentum q. Here we note that the fluctuating
phonon couples to the electronic spin current; since this coupling remains finite in the limit of
q → 0, it allows direct coupling to the critical mode, leading to a range of interesting phe-
nomena emerging close to quantum criticality [37–42]. To date there is no consensus about
the magnitude of this coupling in specific polar materials. Interestingly, very recent ab initio
studies suggest a reasonable coupling of this type in doped strontium titanate [43], where it
was previously not expected to be large [44]; this nearly polar metal has several unconventional
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Fig. 9: Schematics of (a) the virtual spin-orbit assisted electron-phonon interaction, where the
green (squiggly) line is the soft TO phonon, (b) the virtual spin-orbit mediated electron-TO
phonon interaction in the presence of a magnetic field near the chemical potential µ0, (c) the
avoided crossing of the soft polar and the electronic collective modes where Ω is frequency, B
is magnetic field and ∆ is a function of the Rashba-type electron-phonon coupling strength λ
that can be extracted experimentally.

properties [34], possibly related to quantum critical polar fluctuations [45–47].
Is there any way to determine the strength of this type of coupling from experiment? The
spin-assisted electron-phonon interaction influences the collective modes of a nearly polar metal
in an applied magnetic field [48]. Here the soft polar phonon hybridizes with spin-flip electronic
excitations of the Zeeman-split bands leading to an anticrossing in the spectra (see Figure 9).
The associated splitting energies at the anticrossings can be used to determine the strength of
the spin-orbit coupling mediated interactions between electrons and phonons in spectroscopic
experiments, such as inelastic neutron scattering or IR spectroscopy, where estimates on known
polar materials suggest that such measurements are currently experimentally accessible [48];
such measurements are in progress and will provide important constraints on theoretical de-
scriptions of polar metals, particularly in their superconducting states where there are many
mysteries [34, 40].

3.3 Multiband strongly correlated electronic phases

The Yukawa coupling of the order parameter (ϕ) to carriers

HY = λ

∫
dr ϕ(r) c†(r)c(r) (80)

is known to induce strong correlations for other types of quantum critical points, and so naturally
we can ask whether it can also do so near a PQCP [25, 35]. As we will discuss in this section,
a robust Yukawa coupling (80) to a soft polar mode can be generically realized in multiband
systems even without spin-orbit coupling (SOC) leading to pronounced interaction effects at
band crossings.
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Fig. 10: Schematic of the coupling to the polar order parameter for two orbitals having (a,c)
opposite and (b,d) same parity under inversion. (a) and (b) show the symmetric phase ϕi = 0,
while (c) and (d) show the state for ϕi 6= 0. In both cases the interorbital hoppings change.

So how do the electrons here couple to an inversion symmetry-breaking field? What is
wanted is a fermionic bilinear Ôi(k) that breaks inversion symmetry (P) leading to the coupling

Hcoupling = λ

∫
dkϕ(k) Ôi(k), (81)

first assuming time-reversal symmetry (T ). For a single conduction band without SOC, the
only possible form of

Ô(k) = ĉ†k f0(k) ĉ†k P , T → f0 . (82)

Since both P and T require f0 to be even, it is not possible for Ô(k) to break only inversion-
symmetry. Yukawa polar coupling in a single-band model thus requires SOC.
By contrast, in a multiband system a Yukawa coupling can exist without SOC. In a two-band
model T is complex conjugation and P acts in band space: P ∼ σ0 for bands with the same
parity or P ∼ σ3 (up to a unitary transformation) in the opposite case. Writing a generic
fermionic bilinear as ĉ†k

(
f0(k)+

∑3
i=1 fi(k)σi

)
ĉ†k, we find that the terms breaking inversion,

but not time-reversal, symmetries are even in k: f1(k) for P ∼ σ3 or odd in k: f2(k) for
P ∼ σ0. We can thus have the following Yukawa couplings to the polar mode at q ≈ 0

H
(a)
coupl =

∑
i,q,k f

i
a(k)ϕiq c

†
k+q/2 σ1 ck−q/2, P ∼ σ3

H
(b)
coupl =

∑
i,q,k f

i
b(k)ϕiq c

†
k+q/2 σ2 ck−q/2, P ∼ σ0,

(83)

where f ia(b)(k) is even(odd) in k, and the order parameter couples to an interband bilinear
(Fig.11(a), inset). If we assume the bands to originate from two distinct orbitals, the physical
mechanism of this Yukawa polar coupling can be illustrated (Fig. 10). If the orbitals have
different parity (e.g. s and p) (Fig.10 (a)), they are mixed linearly by an inversion-breaking
perturbation. This mixing is reflected in a nonzero hybridization between the resulting bands,
forbidden in the symmetric phase (Fig.10 (a)). Due to the necessity of k-dependence, the similar
parity case (Fig.10 (b)) cannot be viewed as local. We illustrate it by a nearest-neighbor hopping
between the orbitals (Fig.10 (b)); absence of inversion symmetry yields distinct left and right
interorbital hoppings from a given site.
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Fig. 11: (a) Schematic phase diagram of a polar metal with a critical region around the QCP.
Inset illustrates that the critical fluctuations couple to an interband excitation. (b) Summary of
the QCP behaviors near typical band crossing: (i) a 3D nodal line, (ii) a 2D nodal point,
and (iii) 3D Weyl points. (N)FL is (non-)Fermi liquid, and in all cases the polar mode is
strongly renormalized. Coulomb interactions introduce anisotropy for (i) and (ii), and gaps
the longitudinal mode for (iii).

Can metals near polar quantum points host novel correlated phases? In order to drive un-
conventional metallic behavior already at weak coupling, the interband particle-hole excitations
coupled to the critical mode with (83) need to be gapless. The best case scenario occurs when
the two bands cross close to the Fermi energy, a situation that can be realized by carrier doping,
where a low energy theory can be constructed. The critical behavior for three distinct cases (2D
Dirac and 3D Weyl points, and 3D nodal lines) with and without interactions has been studied
with and without Coulomb interactions. For all band crossing types, the critical polar mode
is strongly renormalized and there is the emergence of non-Fermi liquid behavior for the two
nodal point cases (Fig. 11). Details for the curious reader are available elsewhere along with
experimental signatures for thermodynamic and transport properties [36].
The Rundown. In a nutshell, quantum critical polar metals provide settings to study exotic
electron-phonon couplings due to the symmetry of the critical mode. Even in the absence of
spin-orbit assisted interactions, nodal multiband metals provide promising platforms for novel
metallic behaviors near polar quantum points. More specifically here we have discussed a
generic mechanism for Yukawa-type coupling of the electronic density to the critical polar mode
accessible even at weak coupling. We have identified novel interacting phases, including non-
Fermi liquids, when band crossing are close to the Fermi level, with experimental signatures
for generic types of band crossings [36]. As always these results prompt more questions; they
include

• A number of polar materials with multiband electronic structures, including LiOsO3 [49],
MoTe2 [50] and WTE2 [51], have been recently discovered with many more predicted
[32]. Can application of realistic pressures, external or chemical, drive these polar system
to quantum criticality? How do spin-orbit effects, not considered here but present in
several of these materials, compete with the Yukawa phases we have discussed here?

• Can new “flavors” of superconductivity emerge from the exotic metallic states we have
discussed and, if so, what would be their key distinctive experimental signatures?
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Fig. 12: The first study of the transition temperature as a function of carrier concentration for
n-doped SrTiO3 with good fit between the Cohen theory and experiment. Reprinted from [54]
with permission from the American Physical Society.

4 Unconventional superconductivity (with only phonons!)

4.1 The challenge: anti-adiabatic and isotropic!

We have just seen that novel metallic states can occur near polar QCPs and we have even
wondered whether such phases can lead to novel types of superconductivity. A simpler ques-
tion: can polar quantum criticality drive dilute (unconventional) superconductivity from
a parent Fermi liquid state? In conventional superconductors, electrons exploit the electron-
phonon attraction to overcome the Coulomb repulsion by producing a highly retarded attraction
that pairs electrons [52], a process that requires a large ratio between the Fermi and Debye
energies EF/ωD � 1. A challenge to this mechanism is posed by superconductivity in low
carrier density metals near polar quantum critical points (PQCPs). Such materials, typified by
n-doped SrTiO3 (nSTO) [34], exhibit bulk superconductivity down to carrier densities of order
1019 cm−3, where the relevant phonon frequency significantly exceeds the Fermi energy [34].
Proximity to the polar quantum critical point has been observed to enhance superconductivity in
nSTO [53], suggesting that the underlying polar quantum criticality is a key driver to the pairing
despite the decoupling of the critical polar modes from the electrons at low momenta [40,45,47].
Finally, despite this inversion of energy scales, experiments on nSTO indicate a conventional
s-wave condensate, with a ratio of gap to transition temperature 2∆/Tc ≈ 3.5 in agreement
with BCS theory and the normal state is a good Fermi liquid [34].

4.2 Historical context

Historically superconductivity in dilute nSTO was predicted based on an extension of conven-
tional BCS theory to include multivalley phonons as a way to overcome Coulomb repulsion.
The predicted transition temperature Tc versus doping, shown in Fig. 12, fit very well with ex-
periment [54]. There was just one rub: band-structure calculations, performed after the original
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prediction, indicated that nSTO has just one valley, so the theoretical premise of the predic-
tion/confirmation by experiment needed reassessment and the mystery continues [34]. We note
that in nSTO the enigmatic superconductivity emerges from a well-behaved Fermi liquid [34].
Over the years many theories have been developed to explain superconductivity in nSTO and
other quantum critical polar metals using novel electron-phonon interactions with generaliza-
tions to include plasmons. More recently the importance of quantum criticality has been in-
corporated into theories with multiband effects and spin-orbit coupling; the curious reader is
referred to an excellent recent review that surveys these different approaches [40].

4.3 Superconductivity with transverse phonons

Here we revisit superconductivity in quantum critical polar metals, particularly nSTO, guided
by two key observations: first, that the strong ionic screening associated with the enhanced
dielectric constant severely weakens the electronic Coulomb interaction (Fig. 13(a)); second,
that in the absence of strong spin-orbit coupling the transverse optical phonon modes, decoupled
from the electron charge, can be likened to dark matter, for like baryons in the cosmos, the
electrons do not directly interact with the intense background of zero-point dipole fluctuations.
Furthermore like dark matter, the presence of the TO modes is only revealed to the electrons via
their stress-energy tensor. In particular, the electrons interact with the energy density of the TO
phonons. We model this coupling by the Hamiltonian

HEn = g

∫
d3x ρe(x)(~P (x))2 (84)

where ρe(x) = ψ†(x)ψ(x) is the electron density,
(
~P (x)

)2 is proportional to the energy density
of the local polarization ~P and g is a coupling constant with the dimensions of volume. Micro-
scopically, this interaction can arise from the short-range effects of the Coulomb force within
a unit cell of the material.The presence of an additional charge at the conduction electron site
modifies the potential profile for the ions. A local increase in the electron density attracts the
surrounding positively charged ions, reducing the distance between them. This causes the local
“effective spring constant” of the phonons to rise in regions of high electron density. The natu-
ral units for this interaction are therefore atomic ones, i.e., unit cell volume, and should not be
extremely different between different materials.
This coupling suppresses the zero-point fluctuations of the polarization in the vicinity of elec-
trons, which in turn lowers the chemical potential of nearby electrons (Fig. 13(b)), creating an
attractive potential well. To leading order, the resulting attractive potential is described by the
virtual exchange of pairs of transverse optical phonons [47]: this approach is supported by other
results:

• According to Equation (84), the presence of a finite electron density ne = 〈ρe(x)〉 leads
to a shift in the phonon frequency

ω2
T (ne) = ω2

T0 + 2gneε0Ω
2
0 , (85)
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Fig. 13: Interactions between electrons in a quantum critical polar metal: (a) the electric lines
of force around an electron are ionically screened, (b) the fluctuations of the phonon energy
density around electrons (see Eq.(84)) create an attractive potential well.

which naturally explains the observed suppression of the polar state by charge doping in
polar metals; neutron scattering measurements that probe the hardening of the polar mode
with doping indicate that the charge density couples to the phonon energy rather than to
its displacement [33, 55].

• Many quantum critical polar metals display “high-temperature” T 2 resistivity well above
their Fermi temperatures [34], and a two-phonon exchange mechanism has been proposed
to describe this anomalous transport [46].

Reviving an old idea [56, 57] and generalizing it to include polar quantum criticality, we now
explore whether two-phonon processes can drive superconductivity in a quantum critical polar
metal from a Fermi liquid state. [47, 58].
In this scenario, what is the interaction relevant for electron pairing?? Typically dilute
systems require strong coupling approaches since the ratio of the Coulomb to the kinetic energy
rs = 1/(kFaB) � 1 since kF ∝ n1/3. However in dilute quantum critical polar metals aB ∝
ε and thus is very large leading to rs � 1; quantum critical polar metals then are weakly
interacting and thus can be treated by considering perturbative effects. To lowest order, the
virtual exchange of critical phonon pairs is the electron-electron interaction from two-phonon
exchange. Close to the PQCP, the interaction relevant for electron pairing, averaged over the
Fermi surface, is

〈
V (k−k′)

〉
=
〈
V (kF , θ)

〉
θ
∼ −g

2

c3S
log

ΩT

max(ωT , cskF , Ef )
(86)

where ΩT = max~q ωT (~q) cutoff and we see that large momenta contribute; ωT is the soft
(transverse) polar phonon. This interaction is dependent on carrier density since kF ∝ n1/3 and
EF ∝ n2/3. At low densities close to the PQCP we have EF < ckF , so the interaction can be
considered as instantaneous.
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Can this interaction overcome Coulomb repulsion to lead to superconductivity? For carrier
densities where cskF is the dominant energy scale, this attractive electron-electron interaction
will indeed overcome the Coulomb repulsion leading to superconductivity. The attractive part
of the effective electron coupling is

λatt ∼ kF

[
log

(
ΩT

2cskF

)
+ 1

]
(87)

that has the form λ(x) = −x log x+ x. Inclusion of Coulomb repulsion results in

λ ∼ kF

([
log

(
ΩT

2cskF

)
+ 1

]
− C

ε0

)
. (88)

that leads to
Tc ∝ EF e

−1/λ 2∆

Tc
= 3.5 (89)

using a previously known approach [59]. The key take-home message here is that Tc has dome-
like behavior as a function of the carrier density ne and details of this approach are available
elsewhere for a curious reader [47].

4.4 Comparison with experiment . . . and homework!

Because filamentary superconductivity is suspected for very low carrier density superconduct-
ing n-doped SrTiO3 (nSTO), detailed comparison here will be made to experiment for densities
greater than 5 · 10−18 cm−3, corresponding to where cskF is the dominant energy scale and
where bulk effects are observed [34]. As shown in Figure 14, the agreement between theory
(solid line) and experiment (crosses) is reasonably good for a decade up to densities of roughly
5 · 10−19 cm−3, corresponding to its region of validity (2cskF > EF ). It is to be noted that a
better fit to the experimental data (crosses) for a larger density range is achieved by neglecting
Coulomb interactions (dashed gray lines in Figure 14) but this is completely unjustified [47].
For densities higher than 5·10−19 cm−3, EF is the dominant energy scale and dynamical aspects
of the interaction cannot be ignored. At these densities, electronic as well as ionic contributions
to the screening of the Coulomb interaction must be included, and we expect the Coulomb
repulsion to increase as a function of frequency whereas the electron-electron attraction will
behave in the opposite manner. We thus expect the overall interaction to change sign as a func-
tion of frequency, allowing for the enhancement of pairing by retardation effects [60]. However
such a dynamical approach by itself does not lead to an attractive interaction in the dilute case;
thus both energy fluctuations and dynamical screening, must be included to describe the full
range of carrier concentrations where bulk superconductivity in n-doped SrTiO3 is observed.
The Rundown. Typified by anti-adiabatic behavior and a “domed” Tc as function of carrier
density, unconventional superconductivity (with only phonons!) has been observed in several
low-density polar metals near polar quantum critical points, though there is still no consensus on
the underlying mechanisms involved. Motivated by an approach that unifies different properties,
here we have explored electron pairing mediated by energy fluctuations; it is already known to
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Fig. 14: The superconducting Tc for n-doped SrTiO3 as a function of carrier concentration
where the crosses and lines refer to experiment and theory respectively; the instantaneous ap-
proach taken (cSkF is dominant energy-scale) is only valid up to n ∼ 5 · 10−19 cm−3, so for
higher densities dynamical effects must be included.

describe the shift of the quantum critical point with doping [55] and anomalous normal state
transport at high temperatures [46]. We find that this approach leads to a superconducting dome,
Tc(ne), that is in good agreement with experiment at low doping. However for higher carrier
densities EF is the dominant energy scale in (86) and dynamical effects should be included.
Yet signatures of the two-phonon mechanism including the soft phonon hardening and ρ ∝ T 2

persist [33,34,55], suggesting that both energy fluctuations and dynamical screening contribute
to the superconductivity in nSTO and in other quantum critical polar metals for a broad range
of carrier concentrations.

Let us now step back and think more generally. Transverse modes are traditionally absent in
theories of phonon-based superconductivity, as they do not couple to the charge density. How-
ever our discussion of doped quantum paraelectrics has revealed that superconductivity can be
driven by multiple critical transverse phonons, a new channel for superconductivity in materials
with large anharmonicity. The 3d electron pairing mediated by quantum energy fluctuations, an
exchange of two critical transverse phonons at leading order, describes the dome-line structure
of the superconducting phase diagram at low doping. In order to describe the observed super-
conducting behavior of the full range of carrier concentrations, this energy fluctuation pairing
mechanism must be generalized dynamically, requiring the inclusion of longitudinal fluctua-
tions. The resulting theory that includes both transverse and longitudinal phonons should be
applicable well beyond the realm of quantum critical polar superconductors; it may be help-
ful to describe quantum materials with light electrons including magnesium diboride and the
superconducting hydrides where significant nonlinear elasticity is present.
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5 Summary and outlook

In these Lecture Notes, I have tried to convey my excitement and enthusiasm for the area of
polar quantum criticality, emphasizing aspects that may not be part of the mainstream litera-
ture. We began by unpacking the title, discussing key concepts in quantum criticality, particu-
larly phenomenological approaches towards determining measured low-temperature quantities.
Next we presented polar materials, and we floated concerns about introducing these systems
as research settings for quantum criticality which we subsequently addressed. Experimentally
many compressible polar materials are found to have discontinuous finite-temperature transi-
tions coexisting with quantum critical behavior, and we discussed a theoretical basis for this
phenomenon. Because the approach here is subtle and not that well known, we have spent some
effort outlining the arguments carefully. The quest for novel metallicity and unconventional
superconductivity is a key motivation for research activity on quantum criticality, so next we
show that both occur near polar quantum critical points. Furthermore symmetry demands that
nontraditional electron-phonon interactions can be explored in this setting with implications
beyond the original realm.
More generally we recall that polar phenomena are classical examples of emergent behavior in
solids that have been important for many technological applications. Recently polar phenomena
have been observed in several correlated materials where quantum effects dominate, including
frustrated magnets, Mott insulators, non-Fermi liquid and Moire superlattices and there is much
to be done towards understanding and harnessing the rich polar properties of quantum mate-
rials. The presence of polar behavior in these strongly correlated quantum materials provides
opportunities to

• Identify and characterize new electrically active states of quantum matter including elec-
tron dipole liquids and quantum critical multiferroics

• Probe quantum matter using electric field-based tools

• Develop quantum states of matter that can be tuned and controlled by electric fields to-
wards practical quantum device applications

and the study of these fascinating materials at cryogenic temperatures near quantum criticality
is a way to focus on their predominantly quantum behaviors. In addition, the neighborhood of a
polar quantum critical point is a good setting for these explorations since it is a scale-free zone
where the Coulomb repulsion is significantly weakened. Possible research directions for the
future include:

• Mixed parity states in polar superconductors. Polar superconductors are by definition
non-centrosymmetric and thus defy standard classification schemes; exotic properties like
unusual surface states and magnetoelectric effects could occur.

• The relation between polarization and band topology. Because the Coulomb interaction
is weak near a polar quantum critical point, this could be an excellent setting to study
polarization textures.
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• Dynamical quantum criticality has been studied in synthetic quantum systems. Since po-
lar materials have soft optical modes, they are good settings for photoinduced classical
transitions [61]. What experimental signatures would be expected at a dynamical quan-
tum critical point?

• Interfacial and stacked ferroelectricity has been recently demonstrated in layered van der
Waals structures that depend sensitively on the stacking configurations of the layers in-
volved [62], and I would be remiss if I did not mention this fascinating development.
Because the nature of these polar system is so different than that which we have dis-
cussed so far, there are bound to be fascinating new phenomena here to study, particularly
related to the electrooptical properties of these heterostructures.

The list can of course go on and on. I hope that I have given you a flavor for polar quantum
criticality with its many challenges and its many opportunities. Please come and join the fun!
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1 Introduction

Localized magnetic moments in metals, for example formed by Fe-atoms in gold, interact with
the spins of itinerant electrons in the Fermi sea via exchange couplings J. This results in spin
dependent electron scattering, in addition to potential scattering from the impurity potential.
Depending on magnetic moment density nM, magnetic impurity spin S, magnitude and sign of
exchange couplings J and temperature T, the metal settles for one of a diverse set of quantum
phases, each with very different degrees of spin and charge correlations. If the exchange cou-
pling J with impurity spin S = 1/2 is antiferromagnetic, all conduction electrons compete to
form a singlet with this localized spin, if J is not sufficiently strong to bind and localize one
of the electrons completely into a singlet. This competition leads to strongly enhanced mag-
netic and normal scattering, measurable as enhanced electrical resistivity, as the temperature is
lowered towards and below a temperature TK. This effect was explained by Kondo [1] and is
now known as the Kondo effect. The resistance minimum as function of temperature close to
the Kondo temperature TK [2] occurs since above TK the resistance decays with temperature,
as typical for a metal, while it increases at and below TK due to Kondo enhanced scattering
rate. While such magnetic moments are paramagnetic, contributing a Curie magnetic suscep-
tibility χ ∼ 1/T at higher temperature T > TK, at lower temperature their contribution to the
magnetic susceptibility saturates to χ ∼ 1/TK. More recently, it was found that mesoscopic
metal wires with dilute magnetic impurities show a pronounced peak at TK in the temperature
dependent dephasing rate, which governs quantum corrections to the conductance, the so called
weak localization corrections [3–5], allowing high precision studies of the Kondo screening.
The Kondo temperature TK is a functional of the local exchange coupling J and the local den-
sity of states ρ, at and in the vicinity of the Fermi energy εF . Remarkably, as the temperature
is lowered further, a portion of the conduction electrons settle for a joint screening of the mag-
netic impurity spin and form the so called Kondo singlet, a highly correlated many body state.
For the remaining conduction electrons the magnetic impurity spin seemingly disappears. The
electrons settle then again to form a Fermi liquid, albeit with enhanced density of states at the
Fermi energy, forming a narrow resonance peak of width kBTK, as sketched in Fig. 1 (upper
Right). As a consequence, the spin scattering from the magnetic impurity decays to zero, as the
temperature is lowered further. The remaining enhanced potential scattering from the Kondo
impurities then contributes to the enhanced low temperature resistance.

When the concentration of magnetic moments in a metallic host is high, and they form a regular
lattice, all Kondo impurities can conspire to form a narrow band at the Fermi energy, as sketched
in Fig. 1 (lower Right), at sufficiently low temperature, below a critical temperature Tc < TK.
Then, the itinerant electrons at the Fermi energy are no longer scattered from the potential of
the Kondo impurities but move through the lattice formed by the Kondo impurities as dressed
quasiparticles with strongly enhanced mass, accordingly called heavy fermions. This transition
to a new state of heavy but itinerant fermions is experimentally seen, when the Fermi energy is
in that narrow band, in a sudden drop of the resistivity below a critical temperature Tc, where the
low temperature coherence sets in, while at higher temperatures still the typical Kondo enhanced
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Fig. 1: Left: Sketch of typical density of states ρ(E) of a metal as function of energy E, with
states filled up to the Fermi energy εF, as colored in blue. Upper Right: For dilute magnetic
impurities with spin S = 1/2, coupled by an antiferromagnetic exchange coupling to the con-
duction electron spins, a Kondo resonance of width kBTK forms. Lower Right: At sufficiently
large impurity density a Kondo lattice forms with a narrow band at the Fermi energy.

resistivity from individual Kondo impurities is observable. This is observed for example in
the intermetallic crystal CeCu6, where the Ce3+-ions form at high temperature a dense lattice
of magnetic moments in the metallic copper host, while at low temperatures a transition to a
coherent state of heavy electrons occurs with a sharp drop of resistivity [6–9].
However, localized magnetic moments in metals interact with each other. Their magnetic dipole
interaction is finite, but is typically exceeded by far by indirect exchange couplings between
them, the so called RKKY couplings, mediated by conduction electrons [10–12]. In metals,
RKKY coupling decays slowly, with a power law of distance R between two magnetic mo-
ments. The RKKY coupling is a functional of exchange couplings J, local density of states
at the Fermi energy at the locations of the magnetic impurities ρ(r, EF ), and their distance R.
Since these couplings tend to quench their spins, it may prevent the Kondo screening by the con-
duction electrons partially, or even completely, depending on the amplitude of local exchange
coupling J, the distance R between them and temperature T.
Thus, there is a competition between Kondo screening and RKKY coupling. Depending on
which one wins, the system will find itself in very different quantum states. This competition
can be studied systematically by increasing the density of magnetic impurities. Increasing their
concentration, decreases their average distance R and thereby the typical RKKY coupling be-
tween them increases. In the very dilute limit RKKY couplings can be neglected, and magnetic
impurities can be treated as a dilute set of single Kondo spins, as shown in Fig. 2a). Increasing
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Fig. 2: Kondo impurity spins (red) in a metal host (blue): a) Single Kondo impurity, b) Pair of
Kondo impurities, c) Dilute Kondo system, d) Kondo lattice.

their concentration further, randomly placed magnetic impurities may be modeled by a set of
pairs of magnetic impurities, formed by those spins which are closest to each other, as shown
in Fig. 2b). At higher concentrations larger clusters of spins, shown in Fig. 2c) have to be
considered to model their quantum state, and at still higher concentrations a connected random
network of them. When the density of magnetic moments is so high that they form a regular
lattice, as it occurs in f -band materials, a coherent Kondo lattice can form. The competition
between the Kondo effect in this Kondo lattice and the RKKY coupling gives rise to a quantum
phase transition between a heavy fermion state and an ordered state, which, when mapped as
function of exchange coupling J, is called the Doniach diagram [13, 14].
In these lecture notes we give an introduction to the theory of this rich competition between
Kondo screening and RKKY coupling. In section 2 we review the formation of magnetic mo-
ments as modeled by the Anderson model. In section 3 we review the theory of the Kondo
effect for a single magnetic impurity in a metal host. In section 4 we derive the RKKY coupling
between magnetic impurities in a metal host. In section 5 we review the Doniach diagram, and
give an introduction to a self consistent renormalization group theory which takes into account
both Kondo effect and RKKY coupling between magnetic impurities, and explain the results ob-
tained thereby. In section 6 we review the effect of gaps and pseudo-gaps on both Kondo effect
and RKKY couplings, and accordingly on their competition. Especially for dilute concentration
of magnetic moments, the disorder effects from randomly distributed impurities result in a dis-
tribution of both Kondo temperatures and RKKY couplings. Then, their competition becomes
an even more complex problem, as reviewed in section 7. Moreover, disorder induced Ander-
son localization transitions may occur, which effect both Kondo effect and RKKY coupling
severely, and changes their competition, as we review in that section, as well. We conclude with
an outlook and list the, in our view, most pressing and interesting open problems.

2 Formation of magnetic moments

The first microscopic model for the formation of magnetic moments in metals was formulated
by P.W. Anderson [15]. He showed that local moments can form from localized d- or f -levels
which are weakly coupled by hybridization to the conduction electrons, when the repulsive
Coulomb interaction U > 0 between two electrons on these localized levels is sufficiently
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large. He found furthermore, quite surprisingly, that the resulting local moments develop an
antiferromagnetic coupling with the spins of the surrounding electron liquid. The formation of
magnetic moments is described by the Anderson model, where a d- or f -level is weakly coupled
to conduction band electrons, as modelled by the Hamiltonian [15]

H =
∑
n,σ

Enσ n̂nσ +
∑
σ

εdσ n̂dσ + U n̂d+n̂d− +
∑
n,σ

(
tnd c

†
nσdσ + tdn d

†
σcnσ

)
, (1)

where electrons in a conduction band state |n〉with eigenenergyEnσ are annihilated and created
by fermion operators cnσ, c†nσ with spin index σ = ±. The corresponding density operator is
n̂nσ = c†nσcnσ. In the following, we assume spin degeneracy of the conduction band states
Enσ = En. The annihilation and creation operators of electrons in the d-level are dσ, d†σ with
density operator n̂dσ = d†σdσ. The d-level can either be in a magnetic state, when it is occupied
by a single electron with energy εdσ, which can be in one of two spin states σ = ±. We
assume that these two states form a Kramers doublet, with energy εd, degenerate in the spin
σ. Furthermore, it can be in a nonmagnetic state when unoccupied or when doubly occupied,
with vanishing total spin and total energy 2εd+U. In order that the ground state is magnetic,
the energy of the singly occupied states must be lower than the energy of the unoccupied state,
as well as the one of the doubly occupied state, requiring εd < 0 and εd+U > 0. Thus, the
repulsion must be stronger than the bound state energy of a single electron, U > −εd. At finite
temperature T, the d-level remains magnetic as long as T is lower than the energy cost for such
valence fluctuations, T < min(εd+U, −εd). However, the hybridization between the d-level
and the conduction band state |n〉, as given by the matrix elements tdn = t∗nd, may change this
ground state. To study its effect on the magnetic states, one can project nonmagnetic higher
energy states, where the d-level is doubly occupied or unoccupied, out of the Hilbert space of
the d-level. This was done by Schrieffer and Wolff [16], who thereby showed that the spin
on the d-level is coupled by an antiferromagnetic exchange interaction J with the spins of the
conduction electrons. Performing this, so called Schrieffer-Wolff transformation one obtains
the Kondo Hamiltonian in its most general form

HK =
∑
n,σ

Enn̂nσ +
∑
n,n′

Jnn′
(
S+c†n+cn′− + S−c†n−cn′+ + Sz

(
c†n+cn′+ − c

†
n−cn′−

))
, (2)

where S is the spin vector operator of the localized moment, written here in terms of the ladder
operators S± = Sx±iSy and its z-component Sz. The matrix elements of the exchange coupling
in the basis of the conduction electron eigenstates |n〉 are found to be given by

Jnn′ = tnd tdn′

(
1

U + εd − En′
+

1

−εd + En

)
. (3)

The hopping matrix element connecting the localized d-state φd(r) to the conduction band state
ψn(r) is related to the atomic potential V̂ by the hybridization integral

tdn = 〈d|V̂ |n〉 =
∫
ddr φ∗d(r)V (r)ψn(r). (4)
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For an impurity state strongly localized on a length scale a0 at position r in a d-dimensional
sample, one can simplify that expression with the hybridization parameter t to

tdn ≈ tad0φ
∗
d(r)ψn(r). (5)

Assuming that both nonmagnetic states have the same energy U/2, one arrives at the symmetric
Kondo model. In this approximation, the Kondo Hamiltonian can be written with the superex-
change term in the form of a Heisenberg Hamiltonian [1, 8],

H0
K =

∑
n,σ

Enn̂nσ + J ~S~s(r), (6)

where J = 4t2/U > 0. Thus, the superexchange interaction is indeed antiferromagnetic. The
matrix elements of the conduction band spin density vector operator ~s(r) at the site of the d-
level, r are given by

~sαβ(r) =
∑
n,n′

ψ∗n′(r)ψn(r) c
†
nα~σαβcn′β, (7)

where ~σ is the vector of Pauli matrices ~σ = (σx, σy, σz). Here, we used ad0
∣∣φd(r)∣∣2 = 1, since

the intensity |φd(r)|2 in the d-level is localized in the volume ad0.

3 Kondo effect: screening of magnetic moments

When the bare antiferromagnetic exchange interaction J is too weak to bind a single conduction
electron into a singlet state, all conduction electrons in the vicinity of the Fermi energy become
excited by scattering from the magnetic impurity spin. Integrating out all these excitations,
of conduction electrons to energy levels Em above the Fermi energy and of hole excitations
below the Fermi energy, one finds that the exchange interaction J becomes thereby enhanced.
Performing perturbation theory to second order in J, there are two processes to be considered:
(i) The scattering due to the exchange coupling J of an electron from initial state |n〉 to a
state |l〉 at the Fermi energy via an intermediate state |m〉, which can be of either spin. This
process is proportional to the probability that state |m〉 is not occupied, 1−f(Em), where f(E)
is the Fermi distribution function. (ii) The reverse process, in which a hole is scattered from
the state |l〉 to the state |n〉 via the occupied state |m〉 which is accordingly proportional to the
occupation factor f(Em). Thereby, one finds that the Kondo exchange Hamiltonian acquires an
additional term so that the total exchange coupling becomes

J̃nl = Jnl

[
1 +

J

2N

∑
m,σ

Ld
∣∣ψm(r)∣∣2

Em − EF
tanh

(
Em−EF

2T

)]
. (8)

For positive exchange coupling, J > 0, the correction term is positive as well. Moreover, this
perturbation theory diverges as the temperature is lowered. Defining the Kondo temperature as
the temperature where perturbation theory breaks down since the second-order correction to the
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exchange coupling becomes equal to the bare coupling, we find in this 1-loop approximation,
that the Kondo temperature at site r of a spin-1/2-impurity is determined by the equation [17,18]

1 =
J

2N

∑
m,σ

Ld
∣∣ψm(r)∣∣2

Em − EF
tanh

(
Em−EF
2TK(r)

)
, (9)

with N the total number of energy levels, including spin degeneracy, in a finite sample of linear
size L and dimension d. |ψm(r)|2 is the probability density of the eigenstate at site r.
An equivalent expression can be derived from a renormalization group analysis. Integrating
successively high energy excited states at energy scale Λ above and below the Fermi energy
yields the renormalized coupling J̃(Λ), governed by the RG flow equation [19, 20]. For a
magnetic moment at site r with exchange coupling J and local density of states at energy ε,
ρ(r, ε), the renormalization of the effective coupling J̃(Λ) at energy scale Λ, above and below
the Fermi energy, is found in 1-loop approximation to be given by

dJ̃

d lnΛ
= −J̃2 Va

2

(
ρ(r, εF+Λ) + ρ(r, εF−Λ)

)
, (10)

whereVa = Ld/N is the atomic volume, which is often set equal to one, we will keep it for
clarity. The solution of Eq. (10) diverges for small energy scales Λ → 0. Defining the Kondo
temperature by the scale ΛK = kBTK at which the correction to the renormalized coupling is
equal to the bare coupling, we recover Eq. (9), when approximating tanh(x) ≈ sign(x) for
|x| > 1, and 0 otherwise, noting that the local density of states, the number of states per energy
and volume, can be written in terms of the eigenstates of the conduction electrons as

ρ(r, ε) =
∑
n,σ

∣∣ψn(r)∣∣2 δ(ε−En). (11)

In terms of the local density of states, we can thus rewrite Eq. (9) as

1 =
Va
2
J

∫ D

0

dE
ρ(E, r)

E − EF
tanh

(
E−EF
2TK(r)

)
. (12)

Since perturbation theory breaks down at temperatures of the order of TK , a nonperturbative
treatment is needed to be able to derive lower temperature properties. This is possible with
the Wilson numerical renormalization group method [21, 22] and analytically with the exact
Bethe-Ansatz method [23, 24]. Both methods show that the temperature T - and magnetic field
H-dependence of the free energy, and thus all thermodynamic observables, as well as transport
properties like the resistivity, scale with the Kondo temperature, depending only on the ratios
T/TK and H/TK . Thus, thermodynamic observables like the magnetic susceptibility are for
single Kondo impurities proportional to known universal scaling functions of T/TK and H/TK ,
and it only remains to find the Kondo temperature for specific magnetic impurities in a metal.
The low temperature phase can thus be described by a state where the magnetic impurity spins
are screened by Kondo clouds formed by the conduction electrons whose effective mass is
thereby enhanced, but still forming a Fermi liquid [25].
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Therefore, let us first proceed to review the calculation of the Kondo temperature TK . For a
clean metal the eigenstates are plane waves with uniform density |ψn(r)|2 = 1/Ld, independent
of position r. For a smooth density of states ρ(εF ) = ρ0, we denote the number of states per
energy and spin as N0 = Vaρ0/2, with Va = Ld/N . Then, Eq. (12) simplifies to

1 = J

∫ D

0

dE
N0

E − EF
tanh

(
E−EF
2TK

)
. (13)

Noting that tanh(x) → sign(x) for |x| � 1, and assuming that the Fermi energy is in the
middle of the band EF = D/2, we find 1 ≈ J 2N0 ln(D/TK), yielding the Kondo temperature

T 0
K = cDe−1/2N0J , (14)

where c = 0.57 is found by a more accurate integration of the tanh-function. Higher order
corrections in J lead only to pre-exponential corrections which depend weakly on J . Thus, the
1-loop result T 0

K yields already the dominant dependence on the exchange coupling J .
The Kondo effect can also occur in semimetals, semiconductors and even insulators, where the
density of states at the Fermi energy is vanishing, when the exchange coupling exceeds a critical
value Jc. At first sight, Eq. (14) seems to imply, that the Kondo temperature is vanishing when
ρ(εF ) = 0. However, then the assumption of smooth density of states is no longer valid and
we need to start rather from the general self consistency equation, Eq. (9). In section 6 we will
therefore consider and review the derivation of the Kondo temperature and Jc for two generic
cases: a) when the Fermi level is in a pseudo-gap and b) when it is in a hard gap.
In a real material there are spatial variations of local density of states ρ(r) and exchange cou-
pling J due to inhomogeneities and disorder, both from nonmagnetic and magnetic impurities.
According to Eq. (9) this results in Kondo temperatures which vary with spatial position, TK(r),
since the intensity |ψn(r)|2 may vary spatially. Moreover the intensity of each state |n〉 at differ-
ent energy En at the site of a magnetic moment may be different, making it a complex problem
to evaluate the sum over all eigenstates. In fact, already in a weakly disordered metal one finds
that the Kondo temperature is distributed with a finite width [26–28]. In section 7 we will
therefore consider and review the Kondo effect in disordered systems in more detail.

4 RKKY coupling between magnetic moments

A magnetic impurity never comes alone. Thus, we need to consider what happens when more
than one magnetic impurity is in the metal. Naturally, the Anderson impurity model Eq. (1) can
be extended to any number M of localized level sites, summing over their M positions rj ,

H =
∑
n,σ

Enσn̂nσ +
∑
j,σ

εdjσn̂djσ +
∑
j

Ujn̂dj+n̂dj− +
∑
n,j,σ

(
tndjc

†
nσdjσ + tdjnd

†
jσcnσ

)
, (15)

where the energy of localized levels εdjσ, onsite interaction Uj , and hopping elements tdjn may
depend on the positions rj , where j = 1, . . . ,M . Nothing prevents us, to perform again a
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Schrieffer-Wolff transformation to the Kondo Hamiltonian in the basis of the singly occupied
states of the M magnetic moments, which yields

HK =
∑
n,σ

Enn̂nσ +
∑
j,n,n′

Jj,nn′
(
S†j c

†
n+cn′− + S−j c

†
n−cn′+ + Sjz

(
c†n+cn′+ − c

†
n−cn′−

))
, (16)

where Sj is now the spin vector operator of the localized moment at position rj . Accordingly,
the matrix elements of the exchange coupling depend on the positions rj as

Jj;nn′ = tndj tdjn′

(
1

Uj+εdj−En′
+

1

−εdj+En

)
. (17)

For the symmetric Kondo model, we then get,

HK =
∑
n,σ

Enn̂nσ +
∑
j

Jj~Sj~s(rj) = H0 +HJ , (18)

with Jj = 4t2j/Uj > 0. To derive the RKKY-coupling at finite temperature T , let us consider
the thermodynamic potential Ω for the Kondo model Eq. (16). The correction ∆Ω due to the
exchange interaction between magnetic moments and the Fermi sea is given by

∆Ω = −T ln 〈S〉 = −T ln
(
Tr(S · e−H0/T )/Z0

)
, (19)

where Z0 is the grand canonical partition function of the Fermi sea, and S the correction factor
due to the exchange interaction term in the Hamiltonian, HJ , S = exp

(
−
∫ 1/T

0
HJ(τ) dτ

)
.

Performing perturbation theory in J to second order we obtain

∆Ω = −1

2
T
∑

i,j;αβγδ

JiJj

∫ 1/T

0

∫ 1/T

0

dτ1dτ2

〈
~Si~σαβ~Sj~σγδTτ

(
c†iα(τ1)ciβ(τ1)c

†
jγ(τ2)cjδ(τ2)

)〉
.

(20)
where 〈· · · 〉 = Tr

(
· · · exp(−H0/T )

)
/Z0. Here, we assumed that the conduction electron spins

are not polarized,
〈
~s(r)

〉
= 0. Terms proportional to ~S2

i and ~S2
j yield only corrections to the

local energy, not to the nonlocal interaction JRKKY. With Wick’s theorem we can present the
correlator in Eq. (20) in the form −Gβγ(i, j; τ1−τ2)Gδα(j, i; τ2−τ1), where

Gβγ(i, j, τ1−τ2) = −
〈
Tτ
(
ciβ(τ1)c

†
jγ(τ2)

)〉
(21)

is the Matsubara Green function [29]. Since we perform perturbation theory in J to 2nd order
only, and as long as there are no other spin dependent couplings in the Hamiltonian, the propa-
gator Gβγ is proportional to δβγ which allows us to perform the summation over spin indices in
Eq. (20) explicitly to get

∑
αβ Si~σαβSj~σβα = Si·Sj, Thus, we find in second order perturbation

theory in J that there is an indirect exchange coupling term in the Hamiltonian, the RKKY
coupling between the magnetic impurity spin operators ~Si, ~Sj , given by

HRKKY =
∑
i,j

JiJjχij~Si~Sj, (22)
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with the non local, temperature dependent susceptibility matrix

χij = −
1

2

∫ 1/T

0

G(i, j; τ)G(j, i;−τ) dτ . (23)

Writing the Green function in the representation of eigenvectors |n〉,

G(i, j; τ) =
∑
n

ψ∗n(ri)ψn(rj) e
−(En−µ)τ ×

{
−
(
1−f(En)

)
, τ > 0

f(En) , τ < 0
, (24)

we find the RKKY coupling between the magnetic impurity spin operators ~Si, ~Sj ,

JRKKY(rij) = JiJjχij = JiJj
V 2
a

4π
Im

∫
dE f(E)

∑
n,l

ψ∗n(ri)ψn(rj)

E−En+iε

ψl(ri)ψ
∗
l (rj)

E−El+iε
, (25)

where Va = Ld/N . Note that often when discussing the RKKY coupling, the magnetic impurity
spins are treated classical. Then, the coupling has to be multiplied by S(S+1)/S2 to account
for quantum fluctuations of the magnetic impurity spins. Here, we keep the quantum spin
operators, since we want to consider the competition with the Kondo effect, for which quantum
spin fluctuations are essential. We see that the RKKY coupling depends not only on the local
intensities of the conduction electrons |ψn(ri)|2, but also on the phase difference between the
eigenfunctions at the different locations ri, rj . Inserting plane-wave states ψn(ri) ∼ exp(ikri)

into Eq. (25) one finds at large distances kFrij � 1 the RKKY coupling in d dimensions [30],

J0
RKKY(rkl)→ −cdN0JiJj sin

(
2kFrij+dπ/2

)Va
rdij
, (26)

with rij = |ri−rj|, kF the Fermi wave number, Va = V/N , cd=2 = 1/π, cd=3 = 1/(2π), and
N0 = 1/D. Here, N0 = Vaρ0/2 is the number of states per energy and spin with total density
of states (including the factor 2 for spin) ρ0 = m/π in d = 2 dimension and ρ0 = mkF/π

2 in
d = 3, where m is the effective electron mass. In Fig. 3 results for the coupling between two
magnetic adatoms on a metal surface are plotted for various distances r, as extracted from spin
dependent scanning tunnelling microscopy measurements [31].

5 Spin competition: the Doniach diagram

Knowing the Kondo temperature TK and the RKKY coupling we can now study their com-
petition as function of the local exchange coupling J and the concentration of magnetic mo-
ments nm. The amplitude of the oscillatory RKKY coupling Eq. (26) can be rewritten as
J0

RKKY/D = cdJ
2nm. Noting that the coupling is dominated by nearest neighbored magnetic

moments, we wrote it in terms of the density of magnetic moments nM = Va/R
d, where R is

the average distance between next neighbored magnetic moments. In Fig. 4 (left) we plot both
energy scales in d = 3 dimensions. For the RKKY-coupling we plot it both for a dense system
of magnetic impurities nM = 1 (blue), and for a more dilute case, nM = 0.5 (dashed blue).
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Fig. 3: Magnetic exchange interaction between adatoms on a monolayer stripe. Dots show the
measured exchange energy as function of the distance from the monolayer, indicated in the inset.
Lines are fits to the 1D, 2D and 3D RKKY-coupling Eq. (26). Figure taken from Ref. [31].

Fig. 4: Left: Kondo temperature TK with c = 0.57 (red) and RKKY coupling JRKKY with
c3 = 1/(2π) for (dense, dilute) magnetic impurities, nM = (1, 0.5) ≡ (blue, blue dashed)
as function of exchange coupling J . Right: Doniach diagram, qualitative sketch of transition
temperature to a spin coupled state (blue), and to the low temperature Fermi liquid (red), as
function of J . The critical coupling Jc/D, Eq. (27), is plotted in the inset as function of magnetic
moment density nM (blue line), together with the fit Jc/D ≈ 0.041+0.038

√
nM (dashed blue).

Thus, we see that there is a critical coupling Jc below which the RKKY coupling exceeds the
energy scale for Kondo screening TK, so that the magnetic impurity spins can be coupled with
each other. That critical coupling Jc is seen to increase with the concentration of the magnetic
moments. Solving the nonlinear equation analytically, we find

Jc = −
D

4W
(
− 1,−

√
(cd/c)nM/4

) , (27)

where W (k, z) is the k-th branch of the Lambert W -function, also known as ProductLog-
function, plotted for d = 3 in the inset of Fig. 4 (right), blue line. We find for the whole
range of concentrations 0 < nM < 1, Jc/D ≈ 0.041+0.038

√
nM a good fit (dashed blue line).
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Fig. 5: Left: Sketch of typical density of states ρ(E) of a metal as function of energy E. The
band of width D is half filled with N electrons (blue). Each state is doubly spin degenerate as
indicated by 2. Right: Density of states in the presence of a lattice of N magnetic moments,
coupled by strong antiferromagnetic exchange coupling J > D to the conduction electron spins,
forming N non degenerate Kondo singlet states, as indicated by 1, thereby enlarging the Fermi
surface. There is a charge transfer gap 3J , making that system for J > D a Kondo insulator.

Doniach argued in Ref. [13] that the critical coupling Jc marks a quantum phase transition
between a heavy fermion state and an ordered, typically antiferromagnetic, phase in the Kondo
lattice limit nM = 1, where nearest neighbor RKKY coupling is antiferromagnetic. This gives
a good description of quantum phase transitions in heavy fermion materials that contain rare
earth elements like Ce, Sm, and Yb or actinides like U and Np, where local magnetic moments
originate from localized f -orbitals and antiferromagnetic order is observed at sufficiently low
temperature. As pressure or external magnetic field is changed, the Néel temperature TN reaches
a maximum, before it is suppressed at the quantum critical point. This has been measured in
detail for Cerium compounds, such as CeAl2, CeAg or CeRh2Si2, as well as in YbRh2Si2 under
pressure and in a magnetic field [32], for a review see [8].
In order to derive that quantum phase transition at T = 0K one needs to find the ground
state of the Anderson model with a finite number of M Anderson impurity sites, Eq. (15) or,
alternatively, solve the Kondo model ofM impurity spins, Eq. (18) as coupled to the conduction
band by the antiferromagnetic exchange couplings Jj = 4t2j/Uj > 0 at the M impurity sites
j = 1, . . . ,M . In a dense Kondo lattice, where nM = 1, the number of impurity spinsM equals
the number of occupied conduction band states N .
Let us start by looking at a simpler state, a Kondo insulator, which can, for example, form when
the uniform coupling is strong J=Jj � D, exceeding the conduction band width D. Then, the
exchange coupling J is so strong that each impurity spin localizes one of the conduction elec-
trons, so that the ground states is given simply by a product of singlet states, |ψ0〉 =

∑N
j=1 |0i〉,

where |0i〉 =
(
| ↑di〉| ↓ci〉 − | ↓di〉| ↑ci〉

)
/
√
2, is the singlet state formed by the impurity spin

(indexed by d) and a conduction electron spin (indexed by c) at site i. The ground state energy
is then given by E0 = −N(3/2)J . The lowest spin excitation energy gap ∆Es is obtained by
exciting one of the spin pairs to a triplet state of energy J/2, thus ∆Es = 2J . However, there
is also a finite charge transfer gap ∆Eq, which is obtained by transferring one of the conduc-
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Fig. 6: Quasi particle eigenenergies Ẽn as function of bare eigenenergies without Kondo cou-
pling En. µ is the chemical potential, the energy level of the localized level becomes shifted
upward into the gap, ε̃d. The indirect gap ∆ is of the order of TK,

tion electrons from site i to site j. Consequently, at site i the impurity spin is left alone | ↑di〉,
breaking up the singlet state |0i〉, and shifting its energy to Ei = 0, while at site j the singlet
state is also broken up to accommodate the second electron, exciting the state to |↑di〉|↓ci〉|↑ci〉,
with energy Ej = 0, since the spins of the two conduction electrons compensate each other to
stot j = 0, so that the magnetic impurity spin at site j cannot couple to them. As a consequence,
a transfer of a single electron from site i to site j costs in total ∆Eq = 2(3/2)J . Thus, the ex-
change coupling J to localized magnetic moments prevents charge transfer, opening a large gap
∆Eq = 3J . Taking into account the finite band width D due to the dispersion of the conduc-
tion electrons, each of the N Kondo singlets is formed rather by electrons in superpositions of
conduction band states. Thus, these Kondo clouds overlap strongly in space. To accommodate
all N conduction electrons in these N Kondo singlets, the Fermi surface expands to embrace
all states in the conduction band, as compared to the half filled conduction band with doubly
occupied states, which is the ground state without the exchange coupling J , see Fig. 5 and the
discussion in Refs. [7,8]. Above this ground state of Kondo singlets, the gap ∆Eq = 3J opens,
the energy needed to transfer one electron from one Kondo singlet to another, making the sys-
tem an insulator. In fact, this is the mechanism for the formation of a Kondo insulator, which
has been experimentally observed, first in SmB6 [33].
When the exchange coupling is smaller than the band width J < D, the ground state is no
longer a simple product of Kondo singlets. One way to derive the ground states then is by a
mean-field treatment of a generalized Kondo lattice Hamiltonian with degeneracy NK � 1, the
Coqblin-Schrieffer Hamiltonian [34], performing a 1/NK-expansion, as done first in Refs. [35]
and [36]. Thereby one finds the quasi particle eigenenergies Ẽn as function of the eigenenergies
of the conduction band without Kondo coupling, En,

Ẽn =
1

2
(En+ε̃d)±

1

2

√
(En−ε̃d)2 + 4V 2. (28)

as plotted in Fig. 6 as function of En Thus, there opens a gap ∆ = TK, relating the mean-
field order parameter V to the Kondo temperature TK by 4V 2 = DTK, when ε̃d ≈ D/2.
The density of states above and below the gap is seen to be strongly enhanced. The chemical
potential is located in the lower band, so that the exchange coupling transformed the Fermi sea
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of conduction electrons to a Fermi sea of heavy holes. The energy level of the localized level
εd becomes shifted upward into the gap, ε̃d. With the invention of dynamical mean-field theory,
exploiting the fact that mean-field theory becomes exact in infinite dimension d → ∞ [37],
another route to solve the Kondo lattice model and the periodic Anderson model opened, which
allows the calculation of self energies [38, 39] and of the resistivity. Thereby, the decay of the
resistivity was shown as coherent heavy fermions form at low temperature [40], in agreement
with experiments on heavy fermion compounds, as reviewed above.
However, in order to allow the study of the competition between the Kondo screening and the
RKKY-coupling both approaches need to be modified. By adding the RKKY-coupling between
the magnetic moments to the Kondo lattice hamiltonian, the quantum phase diagram can be
studied in mean-field theory, when combined with the 1/NK-expansion [41–44].
A system of two magnetic impurities in a metal has been studied in detail with nonperturba-
tive methods like the numerical renormalization group [45–49]. Such a system has also been
realized experimentally by Co atoms on a gold surface and studied varying their distance with
scanning tunnelling microscopy [50]. One finds a crossover between a state where both mag-
netic moments are Kondo screened by the conduction electrons and a state where the impurity
spins are coupled. Depending on their distance, they form either a singlet, enforced when
RKKY coupling is antiferromagnetic, or a triplet state, when the coupling is ferromagnetic.
Building on these studies, DMFT has been extended to Cluster-DMFT, where the exact results
for a cluster of few spins, in particular two magnetic impurities are used to enhance the DMFT
and to derive the phase diagram of the Kondo lattice model with RKKY coupling [51].
Further insights into this competition comes from exact analytical results for the 1D Kondo lat-
tice and the 1D periodic Anderson model employing the bosonization technique, see Refs. [52]
and [53] and references therein. At half filling a Kondo insulator is found, and both the spin and
charge transfer gaps have been derived [52].
Recently, Nejati et al. extended the renormalization group equations for a Kondo lattice incor-
porating self consistently the RKKY coupling between magnetic moments [54]. Thereby they
could show that the Kondo temperature is decreased as the exchange coupling J is decreased,
as found with diagrammatic methods in Refs. [55–57]. Furthermore, it was found in Ref. [54]
that the Kondo screening is quenched at a critical coupling Jc. Since this approach to the spin
competition problem is very insightful let us review it in the remainder of this section.
The renormalization of the effective coupling J̃(Λ) at energy Λ, above and below the Fermi
energy, Eq. (10), is modified by the RKKY coupling as derived first in Ref. [54] and generalized
in Ref. [58] to account for an energy dependent local density of states ρ(E, ri), yielding

dJ̃i
d lnΛ

= −J̃2
i

Va
2

∑
α=±

ρ(µ+αΛ, ri)

+
4

π
J̃2
i J

0
i

∑
α=±

∑
j 6=i

J0
j Im

(
eikF rijχc(rij, µ+αΛ)G

R
c (rij, µ+αΛ)χf (rj, µ+αΛ)

)
, (29)

where Λ is the effective band cutoff for the renormalization group flow. While the first term
on the right hand side is the well known 1-loop RG for the Kondo problem with energy de-
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pendent density of states, Eq. (10) [18, 20], the second term describes the correction due to
RKKY-coupling. Here, χf (rj, E) is the spin susceptibility of the magnetic moment at site rj .
GR
c (rij, E) is the retarded conduction electron propagator from site ri to rj and we defined the

distance vector rij = ri−rj . χc(rij, E) denotes the conduction electron correlation function
between sites ri and rj . Solving Eq. (29) we can thus derive the position dependent Kondo
temperatures for a given configuration of magnetic moments.
When the magnetic moment density nM is not too large, χf (rj, E) can be approximated by
the Bethe-Ansatz solution for a single Kondo impurity [23, 24]. In Ref. [54] this approxi-
mation has been used. Then, only its real part contributes, as given by Reχf (rj, µ+D) =

W/(πTKj
√

1 +D2/T 2
Kj). Here, W is the Wilson ratio. TKj is the Kondo temperature at site

rj . Since it is well known that the energy dependence of the density of states changes the Kondo
renormalization [59], it is in general important to keep the energy dependence of all functions
and not to replace it with their value at the chemical potential, when the density of states is
strongly varying with energy, as in the presence of a pseudo-gap, or in disordered systems.
But, let us first consider the simpler case of magnetic moments in a clean metal, with slowly
varying density of states. Then, we can furthermore assume that all conduction electron proper-
ties, the local density of states, the propagatorGR

c (rij, E) and the correlation function χc(rij, E)
depend only weakly on energy, and therefore can be replaced by its value at the chemical po-
tential µ, as has been done in Ref. [54]. Then, we can define the effective Kondo coupling
gi = N(µ)Ji of the Kondo impurity at site ri, where N(µ) = Vaρ(µ)/2, and find the renormal-
ization group equation for gi, as modified by the RKKY coupling [54],

dgi
d lnΛ

= −2g2i

(
1− yig20

D

2TK

1√
1 + (Λ/TK)2

)
, (30)

where D is the bare bandwidth and g0 = N(µ)J0 is the bare, unrenormalized Kondo coupling,
yi is the effective dimensionless RKKY interaction strength at site ri, given by [54]

yi = −
8W

π2ρ(µ)2
Im
∑
j 6=i

eikF rijGR
c (rij, µ)Π(rij, µ), (31)

where W is the Wilson ratio as determined by the Bethe Ansatz solution of the Kondo problem
[23, 24]. GR

c (rij) is the single particle propagator in the conduction band from site ri to rj .
The summation is over all other magnetic moments at positions rj . Π(rij, µ) is the RKKY
correlation function of conduction electrons between sites ri and rj . yi is found to be always
positive [54], while the RKKY correlation function can be positive or negative.
It is interesting to observe that the effective Kondo interaction renormalized by the RKKY
interaction is a function of Λ/TK , where Λ is the renormalization group energy scale and TK is
the renormalized Kondo temperature to be determined self-consistently.
For two magnetic moments in a clean system, where the bare couplings g0 are the same at both
sites, and yi = y, one can solve this differential equation to obtain [54]

1

g
− 1

g0
= 2 ln

2Λ

D
− yg20

D

2TK
ln

√
1 + (Λ/TK)2 − 1√
1 + (Λ/TK)2 + 1

. (32)
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When the energy scale Λ coincides with the Kondo temperature, i.e., Λ→ TK , the correction to
the effective Kondo interaction is large. Therefore, setting g(TK) =∞we get the self-consistent
equation for the effective Kondo temperature as a function of the RKKY interaction,

TK(y, g0) = T 0
K(g0) exp

(
−ykg20

D

TK(y)

)
, (33)

where T 0
K(g0) = cD exp

(
− 1/(2g0)

)
is the bare Kondo temperature in the absence of the

RKKY interaction and the numerical constant is k = ln(
√
2+1). Its solution is

TK(y, g0) = −
ykg20

W
(
− ykg20/T 0

K(g0)
) , (34)

for y < yc with the critical coupling [54]

yc = T 0
K/(k eg

2
0D). (35)

Noting that the coupling y is related to the magnetic moment density as y ∼ nM, and that
g0 = N0J , we find that the exchange coupling has to exceed the critical coupling Jc(nM). Thus,
it agrees with the result obtained above, when using the Doniach argument, Eq. (27), up to a
numerical constant of order 1. As the exchange coupling J is diminished towards that critical
value, Jc, the Kondo temperature TK becomes diminished continuously, as plotted in Fig. 7. At
the critical value, however, it is found to take a finite value T ∗K = TKc(Jc) = e−1T 0

K(Jc), about
one third of its value without the RKKY coupling, before it jumps to zero at smaller J .
For two magnetic Co atoms on a gold surface such a suppression of TK was observed experi-
mentally in Ref. [50] at varying distanceR, as measured in the width of the tunnelling peak with
scanning tunnelling microscopy [50]. In that case, one finds a crossover between a state where
both magnetic moments are Kondo screened by the conduction electrons and a state where the
impurity spins form a singlet, enforced when RKKY coupling is antiferromagnetic.
Applying that to a system of dense magnetic moments, like heavy fermion materials, this result
is remarkably different from the Doniach diagram, Fig. 4, where it was assumed that both the
Kondo temperature and the critical temperature Tc on the spin coupled side of the transition
would decay continuously towards the critical point Jc. However, to conclude on the nature
of the quantum phase diagram one would have to include self consistently the change in the
spin polarization function in the derivation due to an ordering transition of the unscreened or
partially screened magnetic moments or by a spin wave instability of the conduction electrons.
The result Eq. (34) also implies that by taking into account the RKKY-coupling, the Kondo
temperature becomes dependent explicitly on the distance R between the magnetic moments,
and thereby on the density of magnetic moments nM.
However, when the magnetic impurity concentration nM is lowered, not only is Jc ∼

√
nM

diminished, and thereby the parameter range of the ordered phase reduced, but the positions
of magnetic moments become distributed randomly. Thus, for nM < 1, the distance between
magnetic moments R is random. Thereby, both the sign and amplitude of the RKKY coupling
is randomly distributed. This may give rise to the appearance of a richer quantum phase dia-
gram with a spin coupled phase without long range order, such as a spin glass state [60], which
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Fig. 7: Kondo temperature as function of J in units ofD, TK(J), Eq. (34), as modified by RKKY
coupling for y = 0.6/k < yc. Note that TK(J) jumps discontinuously from T ∗K to zero at Jc.

competes with an ordered state [41]. In metal wires with dilute magnetic impurities, such as
Ag1−xMnx, a transition from a Kondo phase to a spin glass phase has been detected in trans-
port experiments, as the Mn concentration x is enhanced [61]. Spin glass phases have also
been found in alloys with rare earth elements, such as CeNi1−xCux [62], where the competition
between Kondo and RKKY coupling is studied as function of x: CeCu (x=1) is at low temper-
ature an antiferromagnet and the alloy remains one up to x = 0.7, while CeNi (x=0) is a heavy
fermion material. Thus, lowering x corresponds to an increase of the local Kondo coupling J ,
inducing a Doniach like quantum phase transition. However, at intermediate values of x, disor-
der is relevant, and spin glass behavior is found [62], as reviewed and modelled in [44]. Similar
successions of quantum phase transitions between heavy fermion, spin glass and ordered phases
have been found in CeRhxPd1−x as function of x [63]. We will consider the effect of disorder
on the competition between Kondo screening and RKKY coupling in section 7, where we will
find that new effects introduced by randomness, like Anderson localization and multifractality
have to be taken into account in strongly disordered systems with magnetic moments, which
profoundly change the quantum phase diagram.

In the next section we consider the effect of a strongly varying density of states on both the
Kondo screening and the RKKY-coupling and thereby on the quantum phase diagram.

6 Spin competition in presence of a spectral (pseudo) gap

In semiconductors and insulators the density of states at the Fermi energy is vanishing. At first
sight, Eq. (14) seems to imply, that the Kondo temperature is vanishing in such a situation,
when ρ(εF ) = 0. However, the assumption of a smooth density of states is no longer valid and
we need to start from the general self consistency equation, Eq. (9). We find that the Kondo
effect occurs provided the exchange coupling J exceeds a critical value Jc. Let us review the
derivation of the Kondo temperature and Jc for two generic cases when the Fermi level is in a
pseudogap and when it is in a hard band gap.
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Fig. 8: Left: Schematic density of states with gap ∆, total bandwidth D, Fermi energy EF in
the middle of the gap. Right: Kondo temperature TK(J) as function of J in units of D, Eq. (38).
Note that it decays continuously to zero at the critical coupling Jc(∆). Eq. (37).

6.1 Band insulator, semiconductor

Here, we derive the Kondo temperature in a band insulator with a gap ∆, where the Fermi level
is in the middle of the gap, as sketched in Fig. 8(left), by inserting the gapped density of states
into Eq. (12). For a small gap ∆ < TK, assuming that the density of states is constant and
the same in the upper and lower band, ρ0, the functional dependence of the Kondo temperature
on the exchange coupling J remains the same as in a metal, TK ≈ c(∆) exp

(
− 1/(2N0J)

)
,

where N0 is the number of states per energy and spin, but the pre-factor c(∆) < c is diminished
compared to a metal, c = c(∆=0) ≈ 0.57. When the gap is larger ∆ > TK, the functional
dependence on J changes. Integration of Eq. (12), using that tanh(x) ≈ 1 − 2 exp(−2x) for
x > 1, we find the Kondo temperature as a solution of the equation

∆

4

(
ln
D

∆
− 1

2N0J

)
= TK exp

(
− ∆

TK

)
. (36)

We see that, only when the left side is positive, there can be a real solution for TK. Thus, the
Kondo temperature can only be finite when J > Jc(∆), with critical exchange coupling

J∆c =
1

2N0

1

ln(D/∆)
. (37)

As J → J∆c the Kondo temperature is found to decay continuously to zero as

TK =
∆

2

1

W
(
4N0J/(J/J∆c − 1)

) . (38)

For J & J∆c that decay can be approximated as TK ≈ ∆/2/ ln
(
4N0J/(J/J

∆
c − 1)

)
. Thus, for

J > J∆c magnetic moments are Kondo screened for temperatures below TK(J), in spite of the
large band gap ∆ > TK. For J < J∆c all magnetic moments remain unscreened.
Since RKKY couplings, Eq. (25), are dominated by the density of states at the Fermi energy, in
an insulator they are small and decay exponentially with distance R. However, when an insula-
tor or semiconductor is doped, there exist other forms of magnetic coupling between magnetic
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Fig. 9: Left: Schematic density of states with pseudo-gap at Fermi energy EF , bandwidth D.
Middle: Quasiparticle dispersion of a 2D honeycomb Kondo lattice. Fig. taken from Ref. [72].
Right: Kondo temperature in the presence of a pseudo-gap with power β = 1 with RKKY
coupling y = 1/(32k) Eq. (44) (full line) and without, Eq. (40) (dashed line). The Kondo
temperature in the presence of RKKY coupling y terminates at the critical coupling Eq. (43)
JPGc (β=1, y) > JPGc (β=1), Eq. (39) at the value T ∗K, Eq. (45) and jumps then to zero.

dopants. For spin-1/2 dopants, like P in Si, they are known to be coupled by antiferromagnetic
superexchange interaction, caused by the overlap of dopant eigenfunctions. Then, dopant spins
are in a random singlet state for dilute doping [64], see Ref. [65] for a review. But there can be
other exchange mechanisms in dilute magnetic semiconductors, for example the Zener’s double
exchange coupling and the p-d coupling, which are ferromagnetic. See Ref. [66] for a review.

6.2 Pseudo-gap semimetal

A pseudo-gap opens at the Fermi energy when the density of states vanishes at the Fermi energy
as ρ(E) ∼ |E−EF |β with a power β > 0, as shown schematically in Fig. 9 (left). This occurs
in numerous materials, like at the surface of topological insulators [67] and in graphene [68],
where the electrons are confined to a 2-dimensional honeycomb lattice. The low-energy excita-
tions in graphene are fermionic quasiparticles described by relativistic massless Dirac fermions,
as characterized by a linear dispersion relation, with two Dirac points, where the density of
states vanishes linearly with energy (β=1). Thus, the question arises, what happens when
these massless fermions are coupled to local magnetic moments. The answer depends strongly
on the magnitude of the exchange coupling J. Plugging in the pseudo-gap density of states
ρ(E) = ρ0

∣∣(E−EF )2/D∣∣β in the equation for the Kondo temperature, Eq. (12), forEF = D/2,
we find for J > JPGc (β) with critical exchange coupling

JPGc (β) = β/(2N0) = βD/2, (39)

the Kondo temperature

TK =
D

2

(
1− JPGc (β)

J

)1/β

. (40)

Note that for J � JPGc , Eq. (40) converges to T 0
K ∼ D/2 exp

(
−1/(2N0J)

)
, the Kondo temper-

ature in a metal. There is for J < JPGc (β) no Kondo screening, as has been confirmed with non
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perturbative methods like the numerical renormalization group method in Refs. [59,69,70], and
the concentration of free, unscreened magnetic moments nFM(J) at T = 0K is a step function,
nFM(J) = nM for J < JPGc (β) and zero otherwise.
It has been shown in Ref. [71] with a large NK-expansion that there is a quantum phase tran-
sition in the Kondo lattice on a 2-dimensional honeycomb lattice at critical coupling Jc, even
when neglecting the RKKY coupling. Remarkably, the energy dispersion of quasiparticles in
such a system with a pseudo-gap has a direct gap, see Fig. 9 [72], where it was shown that the
Kondo-insulator gap is observable in the optical conductivity, in stark contrast to the conven-
tional Kondo lattice system where the Kondo-insulator gap is indirect, see Fig. 6. The Dirac
cones become duplicated and shifted up and down in energy, respectively, as seen in Fig. 9.
The RKKY coupling in presence of a pseudo-gap at the Fermi energy is shorter ranged,

JRKKY(R) =
g(R)

Rd+β
, (41)

where g(R) is an oscillatory, non decaying function of R which may be anisotropic, depending
on the specific lattice. Here, R = |R|. As an example, in a 2D honeycomb lattice like graphene,
where there are two sub-latticesA andB, the RKKY coupling is decaying with power d+β = 3.
The oscillatory function is different, when the magnetic moments are placed on the same sub-
lattices, as given by [73] gAA(R) = −J2(1+ cos

(
∆K · R)

)
, while on different sub-lattices,

gAB(R) = J23
(
1− cos(∆K · R−2ϑR)

)
, where ∆K = K†−K−, with K†,K− the reciprocal

lattice vectors of the two Dirac points. ϑR is the angle between the armchair direction and the
position vector of the magnetic moment on the lattice.
Thus, both Kondo temperature and RKKY coupling are diminished in the presence of a pseudo-
gap. This raises the question how the pseudo-gap modifies their competition. As there is no
Kondo screening for J < JPGc (β) = βD/2, while the RKKY-coupling is finite for all J ,
magnetic moments couple in that regime. To find out whether RKKY-coupling is dominating
the Kondo screening even for larger exchange couplings J > JPGc (β), we need to solve the
RG-equation, Eq. (29) with RKKY interaction with a pseudo-gap. Inserting the density of
states ρ(E) = ρ0

∣∣(E−EF )2/D∣∣β into Eq. (29) and integration over Λ up to the breakdown of
perturbation theory at scale TK, yields the equation for the Kondo temperature

Jc(β)

J
− 1 +

(
2TK
D

)β
+ kβyβJ

2N2
0

D

2TK
= 0, (42)

where k = ln(
√
2+1), yβ the RKKY coupling function as modified by a pseudo-gap with

power β, and JPGc (β) the critical coupling in absence of yβ , Eq. (39).
Let us consider as an example a pseudo-gap with power β = 1, as it occurs in graphene and on
the surface of topological insulators. For J > JPGc (β=1, y) with critical exchange coupling

JPGc (β=1, y) = JPGc
1−

√
1−4
√
ky

2
√
ky

, (43)

where JPGc = JPGc (β=1, y=0) = D/2, is the critical coupling when neglecting the RKKY-
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coupling, we find the Kondo temperature

TK =
D

4

(
1− JPGc

J
+

√(
1−J

PG
c

J

)2
− ky

( J

JPGc

)2)
. (44)

Note that at the critical coupling JPGc (β=1, y) it has a finite value,

T ∗K =
D

4

(
1− JPGc

JPGc (β=1, y)

)
, (45)

one half of the value it has at that exchange coupling JPGc (β=1, y) > JPGc , without RKKY-
coupling. Thus, even in the presence of a pseudo-gap, the Kondo temperature jumps discontin-
uously to zero at JPGc (β=1, y) as seen in Fig. 9(right), similar to what was found in a metal,
Fig. 7. The critical coupling JPGc (β=1, y) is an increasing function of the RKKY-coupling y1
for 0 < y < 1/(16k), varying from D/2 to D. For stronger coupling y > 1/(16k) there is no
finite Kondo temperature and thus no Kondo screening for any coupling J .

7 Spin competition in the presence of disorder

Any real material has some degree of disorder. In doped semiconductors it arises from the
random positioning of the dopants themselves, in heavy fermion materials it may in addition
arise from structural defects or impurities caused by atomic defects. Disorder can cause Ander-
son localization, trapping electrons in the disorder potential. Thus, in order to fully understand
the physics of electron systems with magnetic moments, we need to understand how Anderson
localization affects the competition between Kondo screening and RKKY coupling, and how
that in turn affects Anderson localization. Moreover, as noted already early [74], the physics of
random systems is fully described only by probability distribution functions, not just averaged
quantities. Thus, for electron systems with randomly located magnetic moments the derivation
of physical properties requires the knowledge of distribution functions of both the Kondo tem-
perature and the RKKY coupling [75], not just their averages. In fact, anomalous distributions
of the Kondo temperature TK and the RKKY coupling can give rise to non-Fermi-liquid be-
havior, as measured for example in the low-temperature power-law divergence of the magnetic
susceptibility in doped semiconductors close to the metal-insulator transition [65].

7.1 Distribution of Kondo temperature and RKKY couplings

Since the Kondo temperature depends on the product of the local exchange coupling J and the
density of states at the Fermi energy ρ [1, 17, 18], it is natural to expect a distribution of the
Kondo temperature, P (TK), when J and ρ are distributed due to the random placement of the
dopants, as has been pointed out in Refs. [74–79].
Indeed, the disorder potential results in wave function amplitudes which vary randomly, both
spatially and with energy. In a weakly disordered metal different wave functions are corre-
lated with each other in a macroscopic energy interval of the order of the elastic scattering
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rate 1/τ . This results already in weakly disordered metals in a Kondo temperature distribu-
tion of finite width in the thermodynamic limit [27, 28]. To model the disorder one adds a
disorder potential V (r) to the one particle Hamiltonian, which can be assumed to be spatially
uncorrelated and white noise distributed with width given by the elastic scattering rate 1/τ .
Using the 1-loop equation for the Kondo temperature written in terms of the local density
of states ρ(E, r), Eq. (12), let us rewrite it in terms of the disorder induced local deviations
δρ(E, r) = ρ(E, r)−

〈
ρ(E, r)

〉
, where 〈· · · 〉 denotes the average over the disorder potential.

Denoting T
(0)
K as the Kondo temperature obtained with the average local density of states,

ν =
〈
ρ(E, r)

〉
we find the Kondo temperature for a given realization of the disorder poten-

tial [20]

TK = T
(0)
K exp

(∫ D

0

dE
δρ(r, E)

2ν(E−EF )
tanh

(
E−EF
2TK

))
. (46)

Taking the square of the logarithm of Eq. (46) and〈
ln2

(
TK

T
(0)
K

)〉
=

∫ D

0

dE

∫ D

0

dE ′

〈
tanh

(
E−EF
2T

(0)
K

)
tanh

(
E ′−EF
2T

(0)
K

)
δρ(r, E)

2ν(E−EF )
δρ(r, E ′)

2ν(E ′−EF )

〉
.

(47)
The disorder averaged correlation function of local density of states

〈
ρ(r, E) ρ(r, E ′)

〉
is gov-

erned at weak disorder EF τ > 1 by diffusion and Cooperon modes, as obtained by summing up
ladder diagrams, describing multiple elastic scattering of the electrons from the impurity poten-
tial. For a review see [80]. Physically, these diffusion modes account for the fact that electrons
in a disorder potential do not move ballistically along straight paths, but rather diffusively, such
that the average square of the path length r(t) on which an electron moves within a time t is
given by

〈
r(t)2

〉
= Det, where De = v2F τ/d, is the diffusion constant. Thereby one finds for

the standard deviation of the Kondo temperature in the thermodynamic limit [27, 28]

δTK ≈ T
(0)
K



c3
(EF τ)

√
β
ln

(
1

τ T
(0)
K

)
in d = 3,

1√
3πEF τβ

[
ln

(
1

τ T
(0)
K

)]3/2
in d = 2,

2
√

π
√
3

k2FAβ
(τT

(0)
K )−1/4 in quasi 1-d wire of cross section A,

(48)

with c3 a constant. Note that it is larger with time-reversal symmetry β = 1 than when it is
broken by a magnetic field β = 2, which diminishes weak localization corrections. In the weak
disorder limit, the Kondo temperature has a Gaussian distribution with width given by Eq. (48).
However, its distribution becomes strongly bimodal as disorder is increased further with an
increasing weight at small Kondo temperature, see Fig. 10(left), where the distribution of TK
is plotted, obtained numerically for a tight binding model on a square lattice with potential
disorder of box distribution and width W [72]. Furthermore, a finite concentration of free
magnetic moments is found when electrons at the Fermi energy are localized. Since these
effects can be explained by Anderson localization and multifractality, we will return to the
Kondo temperature distribution after introducing these phenomena in the next chapters.
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Fig. 10: Left: Distribution of Kondo temperature for different disorder strengths W. Middle:
distribution of absolute value of the RKKY coupling at fixed distance R = 5a for different
disorder strengths W. Right: at fixed W = 2t for distances R = 5a, 20a. Dashed lines:
lognormal distribution with fitted parameters. All results are obtained a for 2D tight binding
model on a square lattice, with lattice spacing a, with potential disorder, box distribution of
width W in units of hopping amplitude t, Fermi energy EF = t. All Figs. taken from Ref. [72].

As the RKKY coupling is mediated by conduction electrons, it is strongly affected by their
elastic scattering from the disorder, as well. Indeed, the disorder averaged RKKY coupling
decays exponentially for distances larger than the mean free path le = vF τ [81]. This can be
understood from the fact that it depends on the product of the electron wave function amplitudes
at the locations ri and rj , see Eq. (25), and thereby on the electron phase difference between
these two locations, which the elastic scattering from disorder randomizes. However, its geo-
metrical average is hardly changed from its value in the clean limit [82–84], which is valid even
at stronger disorder, as long as the distance between the magnetic moments is not larger than
the localization length. The distribution of the RKKY coupling deviates from a normal distri-
bution already at weak disorder and converges to a log-normal distribution at stronger disorder,
P (x = ln

(
|JRKKY|/D

)
= exp

(
− (x−x0)2/(2σ2)

)
/(
√
2πσ), with x0 and σ disorder dependent

parameters, as was derived with a field-theoretical approach [85]. That was confirmed numeri-
cally for 2D disordered metals in Refs. [86–88], as seen in Fig. 10(middle and right). There, the
distribution of |JRKKY| is plotted as obtained numerically for a tight binding model on square
lattice with potential disorder and box distribution of widthW for various distances between the
magnetic moments R as compared to the lognormal distribution with fitted parameters (dashed
lines) [72]. This is expected, since the amplitude of the RKKY coupling, Eq. (25), is dominated
by the local density of states at the Fermi energy, which has at strong disorder and close to
the Anderson localization transition a lognormal distribution [80]. The width σ of the lognor-
mal distribution has been derived in Ref. [85] to scale with the elastic scattering rate as 1/τ as
σ ∼ τ−1/2, which has been confirmed numerically in 2D disordered systems [88], noting that
1/τ = πW 2/(6D) with D = 8t the band width of the 2D tight binding model.

7.2 Anderson localization – local spectral gaps

Disorder can result in Anderson localization, where states are exponentially localized with lo-
calization length ξ, forming a discrete spectrum with local level spacing ∆ξ as sketched in
Fig. 11(left). Since electrons need then to be thermally activated to contribute to a current, their
resistivity is found at low temperature to increase exponentially. The interplay of Anderson



12.24 Stefan Kettemann

Fig. 11: Left: Spectrum of localized states with local level spacing ∆ξ. Right: Spectrum with
mobility edge EM, where for E < EM all states are localized, while for E > EM there is a
continuum of extended states. At the mobility edge E = EM there is a critical state.

localization with spin correlations like Kondo effect and RKKY interaction, has only recently
received increased attention, even though both spin correlations and disorder effects are rele-
vant for many materials, including doped semiconductors close to the metal-insulator transi-
tion [89, 65], and typical heavy Fermion systems like materials with 4f or 5f atoms [90, 44].
In d = 3 and higher dimensions mobility edges EM appear in the band of eigenstates of a
Hamiltonian of electrons moving in a disorder potential V (r). Then, the eigenstates are found
to be localized with energy dependent localization length ξ(E) at the band edges. There is a
delocalization transition at EM to a continuum of extended states, as sketched in Fig. 11(right).
where the localization length diverges with a power law ξ(E) ∼ |E−EM |−ν with critical ex-
ponent ν. For d < 2 all states are localized for a Hamiltonian of noninteracting disordered
electrons. For d = 2 all states are localized in a disorder potential without magnetic field, or
in weak magnetic field. In the presence of a strong perpendicular magnetic field in two dimen-
sions, critically extended states appear in the middle of Landau bands, which is known as the
integer quantum Hall transition. In presence of spin-orbit interaction in two dimensions there
is a critical delocalization transition. Also, long range interactions may cause a delocalization
transition in two dimensions. For reviews on Anderson localization, see Refs. [91–97].
When eigenstates are localized with localization length ξ(E), the spectrum is discrete with
a local spacing between the energy levels ∆ξ = 1/(ρ(E)ξ(E)d), where ρ(E) is the density
of states at energy E and d is the dimension. Thus, when placing magnetic moments in a
disordered electron system, and the Fermi energy EF is in the band of localized states, the
Kondo renormalization of exchange couplings stops at energy scale ∆ξ(EF ), since there are
no states coupling to the magnetic moment at lower energy. Even though the gap is local, as
the exchange coupling is local as well, this problem is equivalent to the Kondo effect in the
presence of a spectral gap, which we reviewed in section 6. Thus, we can conclude that there is
a critical exchange coupling JAc below which the magnetic moment remains unscreened, where

JAc (∆ξ) =
1

2N0

1

ln(D/∆ξ(EF ))
, (49)

whereN0=N(EF )=Vaρ(EF )/2 is the number of states per energy and spin at the Fermi energy.
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Fig. 12: Left: Critical state intensity at E = 2t on d = 3 Anderson tight binding model (N =
106 sites, disorder amplitude W = 16.5t), obtained by exact diagonalization. Coloring denotes
α = − ln |ψ|2/ lnL with α ∈ [1.2, 1.8] (red), α ∈ [1.8, 2.4] (green), α ∈ [2.4, 3.0](blue). Sites
with higher intensity α<1.2 and lower intensity α>3 are not shown. Thereby, 80 % of total state
intensity is visible. Fig. taken from Ref. [103]. Middle and Right: Local spin susceptibility as
function of temperature T for spin S = 1/2 coupled by exchange coupling J = 0.35D, disorder
amplitudeW = 2t in 2D lattice (L=70), obtained with numerical renormalization group (lines)
and continuous time quantum Monte Carlo (dots) method, at sites where Kondo temperature
TK is maximal (middle) and where the magnetic moment remains free (right). Arrows indicate
T

(0)
K (J). Insets: Intensity as function of E (EF=0). Fig. taken from Ref. [102].

The RKKY coupling, on the other hand, is cut off for length scales exceeding the localiza-
tion length at the Fermi energy R > ξ(EF ), but remains finite between magnetic moments
whose distance is smaller, R < ξ(EF ). At and in the vicinity of the mobility edge EM , an-
other phenomenon has to be taken into account, to understand the competition between Kondo
effect and RKKY-coupling: there the eigenfunction intensities have multifractal distributions
and the intensities at different energy are power law correlated. We give a brief introduction to
multifractality in the next chapter, before reviewing its effects on spin correlations.

7.3 Multifractality – local pseudo-gaps

Multifractality has been observed experimentally in disordered thin film systems measuring
the local density of states by scanning tunnelling microscopy [98, 99]. In the vicinity of the
Anderson delocalization transition wave functions have been shown to be strongly inhomoge-
neous, multifractal [96] and power law correlated in energy [100,101]. Since the delocalization
transition is a 2nd order quantum phase transition, the localization length ξ on the localized
side of the transition, and the correlation length ξc on the metallic side, diverge at EM as
ξ(E) ∼ |E−EM |−ν and ξc(E) ∼ |E−EM |−νc , where universality implies ν = νc. Thus, at
the mobility edge there is a critical state, which is very sparse, but spread over the whole sam-
ple, see Fig. 12(left), where the intensity

∣∣ψn(r)∣∣2 is plotted for all sites of a finite sample of
the 3-dimensional tight binding model with onsite disorder potential. The critical eigenfunction
intensities

∣∣ψl(r)∣∣2 are found to scale linearly with size L as,

Pq = Ld
〈
|ψl(r)|2q

〉
∼ L−dq(q−1). (50)
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Critical states are characterized by multifractal dimensions dq < d, smaller than spatial dimen-
sion d and changing with power q. The local intensity distribution of s a critical state is close to
a log-normal distribution function, as given by [96]

P
(
|ψl(r)|2

)
∼ Lαψ−(αψ−α0)2/(2η), (51)

where αψ = − ln
∣∣ψl(r)∣∣2/ lnL and η = 2(α0−d) with α0 > d. Then, dq = d − q(α0−d)

for q < qc. For q > qc = α0/η it terminates at τqc [96]. Away from criticality wave func-
tions show multifractality at length scales smaller than the localization length ξ(E) and the
correlation length ξc(E), respectively, where moments scale with ξ(E), ξc(E) in multifractal
dimensions dq.
Another consequence of multifractality is that intensities are power law correlated in energy
[100, 101] within correlation energy Ec ∼ 1/τ . Given that the intensity at the critical energy
Ek = EM is

∣∣ψM(r)
∣∣2 = L−αψ the conditional intensity of a state at energy El, is relative to the

intensity of an extended state L−d given by [103]

Iα = Ld
〈
|ψl(r)|2

〉
|ψM (r)|2=L−αψ ∼

∣∣∣∣El − EMEc

∣∣∣∣βα , (52)

for |El−EM | < Ec ∼ 1/τ . Thus the intensity varies with a power law with power βα =

(αψ−α0)/d for |El−EM | > ∆ (when El is closer to EM than the level spacing ∆, the condi-
tional intensity reduces to the intensity itself, L−αψ ). At positions where the intensity is small,
α > α0, it remains suppressed within an energy range of order 1/τ around EM forming a local
pseudo-gap with power βα > 0. Indeed, such local pseudo-gaps are found numerically with
only small fluctuations, see the inset of Fig. 12(right) for a 2D disordered system with linear size
L < ξ at EF = 0. When the intensity is larger than its typical value L−α0, α < α0, it remains
enhanced within an energy range of order 1/τ around EM , increasing as a power law when El
approaches the mobility edge. An example of such strong enhancement at EF = 0, as obtained
numerically for a 2D system with linear size L < ξ, is shown in the inset of Fig. 12(middle).
Implementing multifractality and power law correlation of intensities, the Kondo temperature
TK is found by inserting the conditional intensity of state l, Eq. (52) into Eq. (9),

1 =
J∆

2DEc

∑
|εl|<Ec

∣∣∣∣ εlEc
∣∣∣∣βα−1 tanh( εl

2TK

)
, (53)

where the summation over l is restricted to energies within the energy interval of the correlation
energy Ec ∼ 1/τ around the mobility edge. The power is given by βα = (αψ−α0)/d for ∆ <

|El−EM | < Ec. Thus, Eq. (53) defines the Kondo temperature in a system with pseudo-gaps
of power βα, in the local density of states when it is positive [59] and the Kondo temperature is
reduced at such sites. On the other hand, at sites where βα is negative TK is enhanced. Eq. (53)
can be solved analytically yielding [103]

TK
Ec

=

[(
1− JPGc (βα)

J

)
cα

] 1
βα

, (54)
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Fig. 13: Left: Kondo temperature TK-distribution in units of T (0)
K as function of distance to the

mobility edgeEF−EM in units ofEc for exchange coupling J = D/5, derived analytically. Fig.
taken from Ref. [103]. Right: Schematic phase diagram as function of doping concentration
ND, near critical doping Nc. Non-Fermi liquid behavior at temperatures exceeding the scale
∆ξc(ND) on the metallic side and ∆ξ(ND) below which there is a Fermi liquid (FL) due to
Kondo screening, and a random singlet state (RS), respectively.

where βα = (αψ−α0)/d, and the critical exchange coupling is JPGc (βα) = βαD/2 and cα =

(2αψ−η)/(αψ−η/2+d). Thus, the Kondo temperature has the form we found in the presence
of a pseudo-gap Eq. (40), with power βα. For J < JPGc (βα) the magnetic moment remains
unscreened. Since αψ ∈ [0,∞] is distributed, we find that JPGc (βα) and thereby TK(α) are
distributed, accordingly. For the typical value αψ = α0 we recover TK of a clean system
TK(αψ=α0) ∼ Ec exp

(
−1D/(2J)

)
∼ T

(0)
K . The derivation can be extended into the vicin-

ity of the mobility edge, where the (localization, correlation) lengths (ξ, ξc) are finite, respec-
tively by substituting in αψ the system size L by (ξ, ξc). Thereby, using a normal distribu-
tion of αψ, the distribution of the Kondo temperature can be derived analytically, as plotted in
Fig. 13(left) [103] as function of energy distance to the mobility edge EM . It evolves from
a Gaussian distribution with finite width in the weakly disordered metal regime to a bimodal
distribution with a divergent power law tail at the mobility edge. The enhanced weight at low
Kondo temperatures was shown in Ref. [103] to origin from the opening of the local pseudo-
gaps and is given by

P
(
0<TK�T 0

K

)
∼ T−αKK , (55)

with universal power αK = 1 − η/(2d), with multifractal correlation exponent η = 2(α0−d).
The magnetic susceptibility χ(T ) ∼ nFM(T )/T with density of free moments nFM(T ) =

nM
∫ T
0
dTKP (TK), at temperature T is found at the mobility edge as [103],

χ(T ) ∼
(
T

Ec

)−αK
, (56)

diverging with a universal power law, in good agreement with experimentally observed Non-
Fermi liquid behavior in the magnetic susceptibility and specific heat [89] to which the magnetic
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moments contribute C(T ) ∼ TdnFM(T )/dT as C(T ) ∼ T η/(2d). This result is also valid on
the insulating side for T > ∆ξ and on the metallic side for T > ∆ξc , yielding the phase
diagram shown in Fig. 13(right) with a Non-Fermi liquid fan, caused by the distribution of
Kondo temperatures due to the multifractality in the vicinity of the mobility edge.
Numerical calculations of the TK-distribution confirm the anomalous power [79, 104] with a
power which is very close to the analytical result Eq. (55). In Ref. [102] the magnetic sus-
ceptibility was obtained by a full Wilson renormalization group (RG) calculation [21] for a 2D
disordered system finding the anomalous power law divergence, shown in Fig. 12 at sites where
the intensity is suppressed as in a local pseudo-gap. Recently, it was pointed out that a more
realistic model of the Kondo impurity which takes into account anisotropies yields a modified
distribution of Kondo temperatures [105]. It remains to be explored whether this will affect the
low TK tail at the AMIT and thereby the anomalous power of the magnetic susceptibility αK .
On the insulating side of the transition there remains a finite density of magnetic moments in
the low temperature limit, since the Kondo screening becomes quenched by Anderson localiza-
tion, where renormalization of the Kondo coupling becomes cutoff by the local level spacing
∆ξ = 1/(ρξ3) [106]. Since these free moments are still weakly coupled to the electron system,
they interact with each other in the vicinity of the mobility edge by RKKY- like exchange inter-
actions, extending up to distances of the order of the localization length ξ. In the dilute doping
limit the indirect exchange interaction becomes the superexchange interaction due to the over-
lap of hydrogen like impurity states, which is known to be antiferromagnetic. These randomly
positioned magnetic moments have been modelled by a Heisenberg spin model with random
antiferromagnetic short range, exponentially decaying exchange interaction [64]. In agreement
with experiments, numerical simulations and the implementation of a cluster renormalization
group, no evidence for a spin glass transition, at which the magnetic susceptibility would peak
and then decay to lower temperatures is found [64]. Rather, the magnetic susceptibility diverges
at low temperature with a power law χ(T ) ∼ T−αJ , with αJ ≤ 1 [64]. In one dimension, the
random antiferromagnetic short range Heisenberg model is known to flow at low temperature
to the infinite randomness fixed point, where the ground state is formed of randomly placed
spin singlets [107]. When the localization length ξ exceeds the Fermi wave length, however,
the indirect exchange interaction oscillates in sign with distance, as the RKKY interaction in
the metallic regime, but decays exponentially beyond ξ. In the next section we will address
the question, whether the RKKY interaction or the Kondo effect wins the spin competition in
disordered electron systems in the vicinity of the delocalization transition.

7.4 Doniach diagram of disordered systems

Extending the argument of Doniach [13] to disordered systems where both Kondo temperature
TK and RKKY couplings are distributed, it is natural to study next the distribution of the ra-
tio of both energy scales, JRKKY(rij) and TKi. This has been done in Ref. [88], as shown in
Fig. 14(left) for four distances R between two magnetic moments, placed randomly in a 2D
disordered tight binding model. While it is found to have a wide distribution for all R, there
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Fig. 14: Left: Distribution of ratio |JRKKY(R)|/TK for two magnetic moments at distance R,
placed randomly in a 2D disordered lattice. Black arrows: sharp cutoff. Right: Magnetic
quantum phase diagram, critical density of magnetic moments nc as function of J for various
disorder strengths W, as derived numerically from that cutoff, separating a coupled moment
(CM) from a Kondo screened phase. Horizontal dashed line separates the free moment phase
(PM) for J < Jc(W ), and nM < nξ, where nξ is the concentration, when there is no more than
one magnetic moment within a localization length ξ. Linear system size L = 100a, number of
disorder configurations M = 30000. Figs. taken from Ref. [88].

is a sharp cutoff, indicated by the black arrows. From the condition that |JRKKY(R)/TK | < 1

for all concentrations nM = 1/Rd below a critical value nc = 1/Rd
c , we can derive nc ac-

curately as function of exchange coupling J . The resulting quantum phase diagram is shown
in Fig. 14(right) for three disorder strengths W. The Kondo dominated regime is pushed to
larger J as the disorder strength W is increased. At strong disorder a phase of uncoupled,
paramagnetic local moments (PM) appears at small nM < nξ, where nξ is the concentration,
when there is no more than one magnetic moment within the range of a localization length ξ, as
shown in Fig. 14(right) (horizontal red dashed line) [88].
In Fig. 15 we show the critical coupling J (1)

c as function of disorder amplitude W, as defined
to be the coupling above which there remain no unscreened magnetic moments in the sample.
It is derived for a 2D disordered tight binding model as function of disorder amplitude W with
(left figure) numerical exact diagonalization for several lengths L. The full line is a plot of
JAc (W ), Eq. (49), with 2D localization length ξ = le exp(πEF τ), where 1/τ = πW 2/(6D).
The dashed line is a guide to the eye. In Fig. 15(right) we show results obtained by employing
the Kernel polynomial method for Eq. (9) for system size L = 100 [88]. The dashed line is the
analytical function J (1)

c (W ), obtained from deriving the density of free moments due to local
pseudo-gaps, yielding J (1)

c =
√
ηD/2, with η = 2(α0−d)/d. In d = 2, expansion in 1/g, with

g = EF τ , yields η = 2/(πg) and thus

J (1)
c (W ) =

√
D

3EF
W. (57)

The good agreement with numerical results supports the result that the formation of free mo-
ments is due to local pseudo-gaps formed by multifractal intensity distribution and correlations.
To go beyond the Doniach argument for disordered systems let us next apply and extend the self
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Fig. 15: Left: Critical coupling J (1)
c as function of disorder amplitude W, derived for a 2D dis-

ordered tight binding model as function of disorder amplitude W with numerical exact diago-
nalization for sizesL, defined such that for J > J

(1)
c , there is no unscreened magnetic moment in

the sample. Full line: JAc (W ), Eq. (49), with 2D localization length ξ = le exp(πEF τ), where
1/τ = πW 2/(6D). Dashed line: guide to the eye. Fig. taken from Ref. [102]. Right: Same
as left figure, but derived by employing Kernel polynomial method to Eq. (9) for L = 100 [88].
Dashed line: analytical function J (1)

c (W ), Eq. (57). Fig. taken from Ref. [88].

consistent approach of Ref. [54], reviewed in section 5. Placing two magnetic moments at sites
of a disordered electron system with different local density of states yields different bare Kondo
temperatures T 0

Ki = D0 exp
(
−1/(2g0i )

)
, i = 1, 2 [58]. By solving the coupled RG-Eqs. (29)

for two magnetic moments numerically, we find that both Kondo temperatures are reduced in
the presence of RKKY-coupling, see Fig. 16. The initially smaller Kondo temperature TK2 is
suppressed more than the larger one TK1 . Thereby, their ratio x = TK2/TK1 decreases. Thus,
we find that the inequality between Kondo temperatures becomes enhanced by RKKY coupling.
Moreover, the quenching of the Kondo screening by the RKKY coupling occurs already for
smaller RKKY coupling, as seen in Fig. 16(left), the stronger the inhomogeneity and the smaller
the ratio of the bare Kondo temperature x0. For the smallest value, x0 = 0.1, the breakdown
occurs at a critical value yc(x0 � 1) = 0.88yc, where yc is the one in the homogeneous system,
Eq. (35). The discontinuous jump of both Kondo temperatures TK1 and TK2 at yc(x0) are seen in
Fig. 16(right), plotted relative to their bare values as function of bare Kondo temperature ratio
x0 and dimensionless RKKY coupling parameter ỹ. Thus, we conclude that disorder makes
Kondo screening more easily quenchable by RKKY coupling.
For a finite density of randomly distributed magnetic moments nM , coupled by random local
exchange couplings J0

i to conduction electrons with random local density of states ρ(E, ri),
one can extend this approach, solving the coupled RG-Eqs. (29). Every magnetic moment
has then, in general, a different Kondo temperature, as they are placed at different positions
with different local couplings g0(ri) = J0

i ρ(E, ri). As the RKKY coupling is itself distributed
widely in disordered systems [85, 88] the long range function y(r−r′) is distributed as well.
We can thus derive the distribution function of Kondo temperatures TK from Eqs. (29). We
note that the random distribution of RKKY-couplings is mainly due to the distribution of local
couplings g0(r) [88], while the function y(r−r′) is only weakly affected by the disorder.
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Fig. 16: Left: The ratio of Kondo temperatures of two magnetic moments x = TK2/TK1 as
function of dimensionless RKKY coupling parameter ỹ, relative to its critical value yc for the
homogenous system, for different bare Kondo temperature ratios x0 = T 0

K2
/T 0

K1
. It stops at a

critical value ỹc(x0), relative to yc for the homogenous system. Right: Kondo temperatures TK1

and TK2 relative to their bare values as function of bare Kondo temperature ratios x0 and the
dimensionless RKKY coupling parameters ỹ. Figs. are taken from Ref. [58].

Without the RKKY-coupling we found at the mobility edge a bimodal distribution of TK with
one peak close to the Kondo temperature of the clean system and a power law divergent tail at
low TK [88, 103, 104], see Fig. 13. Since the RKKY-interaction enhances inequalities between
Kondo temperatures, we expect that it shifts more weight to the low Kondo temperature tail.
This could be checked quantitatively by the solution of Eqs. (29), but still needs to be done.
Anderson localization is weakened when time reversal and spin symmetry are broken by mag-
netic scattering from magnetic moments [108, 109]. A finite magnetic scattering rate τ−1s en-
hances the localization length through the parameter Xs = ξ2/L2

s, where Ls =
√
Deτs is the

spin relaxation length [110] and De = v2F τ/3 the electron diffusion coefficient. When Xs ≥ 1

the electron spin relaxes before it covers the area limited by ξ, and Anderson localization is
weakened. In 3D the mobility edge is thereby shifted towards stronger disorder by magnetic
scattering. As Kondo screening of magnetic moments diminishes magnetic scattering, while
RKKY coupling tries to quench their spins, resulting in magnetic scattering, the competition
between these effects governs Anderson localization and the position of the delocalization tran-
sition. Treating the interplay between Anderson localization and Kondo screening, novel effects
like a giant magneto resistance [106, 103], finite temperature delocalization transitions and the
emergence of a critical band [103] have been derived. Experimentally, the interplay of Kondo
effect, indirect exchange interaction and Anderson localization has recently been studied in a 2D
experimental setup in a controlled way [111]. Thus, it remains an important and experimentally
relevant problem, to develop a self consistent treatment of Anderson localization, Kondo screen-
ing and RKKY-coupling. This problem has been studied with the disordered Kondo lattice and
the Anderson-Hubbard model with a variety of numerical methods. Each method comes with
different approximations, providing different insights. These include mean-field theories of the
Kondo lattice with an added RKKY coupling term [44,112–117], where fluctuations around the
mean-field theory have been studied with Ginzburg-Landau and nonlinear sigma model type
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Fig. 17: Schematic quantum phase diagram of Kondo lattice systems as function of magnetic
moment density nM and exchange coupling J for fixed disorder W . The critical coupling
Jc(nM,W ) separates spin coupled from Kondo screened phases. Dark blue indicates higher
transition temperatures to the long range ordered state (LR). Dark red indicates higher concen-
trations of free magnetic moments (PM), when electrons are localized and there is not more than
one magnetic moment within the localization length ξ, nM < nξ = ξ−d. Dark petrol indicates
higher Kondo and coherence temperatures in the dilute Kondo phase and heavy fermion phase.

actions. Statistical dynamical mean-field theory based approaches [118–125], Hartree-Fock
based methods [126–128], quantum Monte Carlo method [129–132], typical medium dynam-
ics cluster approximations [133, 134] and cluster extensions of the numerical renormalization
group method [135] have been applied. While we cannot review all results, some of them have
been reviewed in Ref. [90], we would like to mention that in Refs. [133, 134] the quasiparti-
cle self energy of the Anderson-Hubbard model was derived as function of excitation energy
ImΣ(ω) ∼ ωαΣ . It was found to behave as a non-Fermi liquid with power αΣ(W ) < 2,
which becomes smaller with stronger disorder amplitude W . The non-Fermi liquid phase ex-
tends down to lowest energies at the mobility edge. Away from it, it is cutoff by ∆ξ=1/(ρξd),
and ∆ξc=1/(ρξdc ), respectively. This is in agreement with the phase diagram derived from
the magnetic properties, reviewed above, Fig. 13(right). The typical medium dynamics cluster
approximation employed in Ref. [133] does not include long range indirect exchange interac-
tions. Thus, the study of the competition between Anderson localization, Kondo screening and
RKKY-coupling, remains a challenging problem.

8 Conclusions and open problems

To conclude, when magnetic moments are immersed into the Fermi sea of itinerant electrons,
rich quantum physics emerges, which is relevant for a wide range of materials including heavy
Fermion systems, materials with 4f or 5f atoms, notably Ce, Yb, or U, high temperature super-
conductors like the cuprates, but also good metals with magnetic impurities, doped semiconduc-
tors like Si:P close to the metal-insulator transition, 2D materials like graphene and topological
insulators. While each material has its specific properties, requiring detailed modelling, their
electronic properties are to some degree governed by the competition between Kondo screening
and indirect exchange couplings, which can be modelled by (disordered) Kondo lattices. We
summarize the main results in the schematic quantum phase diagram Fig. 17.
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While the Doniach argument gives a good idea of the competition between Kondo screening
and RKKY coupling, a self consistent renormalization theory which implements the RKKY
coupling into the Kondo renormalization yields a remarkably different result: the Kondo tem-
perature jumps discontinuously to zero at a critical exchange coupling which is larger than
expected with the Doniach argument. We reviewed the extension of that framework to a finite
density of magnetic moments nM to systems with a spectral (pseudo) gap and to disordered
systems, where the Kondo temperature is different for every magnetic moment. We have seen
that disorder leads to a wide distribution of both Kondo temperature and RKKY couplings and
tends to diminish the Kondo dominated phase, enhancing the critical coupling Jc(nM,W ). In
the dilute limit we identified a paramagnetic phase, even at zero temperature, where the Kondo
screening is prevented by local pseudo-gaps, and the RKKY coupling between the dilute mag-
netic moments is cutoff by Anderson localization. In that regime, the density of free magnetic
moments is found to decrease continuously with increasing J . There, an analytical formula for
the increase of the critical coupling J (1)

c (nM,W ) with disorder W is available, Eq. (57), which
was found in 2D to be in good agreement with numerical results, see Fig. 15.
As the density of magnetic moments is increased, there is a succession of quantum phase transi-
tions between quantum spin glass and ordered phases for couplings J < Jc(nM,W ), as shown
schematically in Fig. 17. Since we cannot review here the rich physics and variety of these spin
coupled phases, let us refer to the literature cited above and recent reviews [8, 90, 44, 65]. For
J > Jc(n,W ), a transition between a phase of dilute Kondo singlets and a heavy fermion state
is expected as nM is increased. Experimentally, even for dilute densities of about nM = 0.05,
indications of a coherent Kondo lattice were found in Si:P deep in the metallic phase [136] and
in the dilute Kondo lattice CeIn3 [137]. The theory of the transition from dilute Kondo singlets
to heavy Fermions is still a challenging problem, as it requires to solve the dilute Kondo lattice
model, as studied for example in [132]. Taking fully into account the disorder introduced by
the random placements of magnetic moments is still a challenge. Last but not least, even in the
dense magnetic moment limit nM → 1, the mechanism for the emergence of long range order
at the Kondo breakdown is under debate. Is it due to the ordering of emerging local moments,
or a spin-density wave transition [8] or a more complex mechanism, where ordered magnetic
moments and Kondo screening coexist in a spatially modulated state [138]?
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13.2 Salvatore R. Manmana

1 Quantum magnetism and strongly correlated systems

An exceptional and widely known quantum state of matter is superconductivity. It is realized
by the spontaneous breaking of a (gauge) symmetry, in which (in the simplest theory) the inter-
action between the electrons and lattice degrees of freedom leads to this peculiar ‘macroscopic’
behavior of certain materials. Other systems, in which the interaction between the constituent
particles leads to a variety of interesting phenomena, are quantum magnets: these are quantum
many-body systems, in which the interplay between immobile spin degrees of freedom (typi-
cally the spins of the electrons in a material, or pseudo-spin degrees of freedom, e.g., in cold
gases experiments) leads to unconventional quantum phases. In this chapter, I will present var-
ious aspects of the phenomenology of quantum magnetism, the unconventional states of matter
that can be realized, and how to characterize them. The topic is too vast to cover all essential
aspects in a single book chapter. Therefore, most of the sections are summaries of (review)
articles, text books, or from the introduction of PhD theses on related topics, and are intended
as a starting point for further reading.
To start with, I will first put quantum magnetism in the context of strongly correlated quantum
many-body systems and discuss typical models and examples. In order to understand what kind
of states of matter can be obtained in such correlated systems, the basic notions of spontaneous
symmetry breaking, order parameters, long-range order and topological order are discussed.
Important experimental tools are spectroscopic measurements (e.g. inelastic neutron scattering),
which will lead us to the notion of dynamical structure factors. At the end, I will give a glimpse
onto recent developments, where the dynamical properties are further studied by going out
of equilibrium and directly measuring the time evolution of the observables – typically, the
demagnetization dynamics on very short time scales, or the time evolution of order parameters,
which show that one can realize (transient) magnetically ordered states when exciting certain
materials with a laser pulse.

1.1 Quantum many-body systems

Quantum many-body effects come into play in certain materials and in systems of ultracold
atomic and molecular gases on optical lattices [1]. Prominent examples for strongly correlated
materials are high-temperature superconductors [2, 3] and Mott insulators [4]. Using ultracold
atoms, a breakthrough experiment was the realization of a Mott-insulating state of ultracold
bosons in 2002 [5]. These systems are described by microscopic quantum mechanical models
of interacting particles on various lattice geometries. Interesting effects arise due to competing
interactions or geometrical frustration, which typically does not allow for the realization of a
simple ground state that satisfies all bonds equally well. Examples for such frustrated geome-
tries are shown in Fig. 1.
An interesting class of strongly correlated materials, in which such competing interactions lead
to novel and interesting states of matter, are (frustrated) quantum magnets [11–14]. These
systems can be described as networks of interacting quantum mechanical spins on a lattice, and



Quantum Magnetism 13.3

(c)(b)

J'

J

(a)

J

J
J

||

X

Fig. 1: Examples of frustrated lattice geometries realized in quantum magnetic materials.
(a) Frustrated ladder, realized in various materials, e.g., TlCuCl3 [6,7]. (b) Shastry-Sutherland
lattice, a network of orthogonal dimers. This geometry is realized, e.g., in SrCu2(BO3)2 [8, 9].
(c) Kagome lattice of corner-sharing triangles. This system is realized, e.g., in Herbertsmithite(
ZnCu3(OH)6Cl2

)
[10].

the underlying microscopic model typically is a variant of the Heisenberg Hamiltonian,

HHeisenberg =
∑
〈i,j〉

Ji,j ~Si · ~Sj, (1)

where the operator ~Si ≡

SxiSyi
Szi

 describes a localized spin on the lattice site i, and Sx,y,zi are

the usual spin operators. In principle, any magnitude of S ≡
∣∣~S∣∣ can be considered, but the

most appealing effects due to the quantum nature of the spins are expected for small values
of S, e.g., S = 1/2 or S = 1. Many quantum magnetic materials can be described using the
Heisenberg model or one of its variants and a rich bouquet of interesting phenomena is found,
which are often revealed in the presence of an external magnetic field. For example, an a
priori not necessarily expected realization of an unconventional phase of matter in a magnetic
material is the Bose-Einstein-condensation (BEC) of triplet excitations (see, e.g. [7, 15–17]).
Since these excitations are of bosonic nature, at temperatures low enough, they can form a
BEC, so that quantum magnets can host this peculiar state of matter, which was first realized in
the lab in experiments with ultracold gases [1]. Other quantum states of matter realized in these
materials are Mott-insulators on magnetization plateaux [8, 9, 18, 19], and the proposed spin-
equivalent [20–25] of a supersolid phase [26, 27], which is characterized by the simultaneous
spontaneous breaking of the translational symmetry of the underlying lattice and of a U(1)
symmetry associated to the formation of a superfluid. These effects most prominently appear
at low temperatures, at which quantum fluctuations dominate over thermodynamic fluctuations,
and which drive quantum phase transitions [28, 29].
Quantum states of matter are either described by local order parameters, which are due to the
spontaneous breaking of a symmetry of the Hamiltonian, or by topological properties. The
Heisenberg model (1) contains a scalar product of two vectors ~S and is, hence, invariant against
rotation in spin-space, i.e., it possesses a SU(2) symmetry. An important question for quantum
magnets is, therefore, if and how this symmetry (and possibly other symmetries) of the system
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is broken spontaneously. The most prominent way of breaking the SU(2) symmetry is by real-
izing a finite magnetization, i.e., the expectation value of the spin in (at least) one direction in
space gets finite, e.g. 〈Szi 〉 6= 0. Since the magnetization is a vector and points in a specific di-
rection, a finite magnetization implies a broken time-reversal symmetry. The question arises, if
other (for quantum magnets less obvious) types of order can be realized. A prominent example
is realized for S > 1/2: In this case, the SU(2) symmetry of the Heisenberg Hamiltonian can
spontaneously be broken without resulting finite local magnetizations. This leads to a rather un-
conventional ordered phase which in an experimental investigation would appear disordered, if
only (local or total) magnetizations are measured. Indeed, the resulting type of order is reminis-
cent of liquid crystals, which realize nematic states with a broken spin-rotational symmetry but
unbroken time reversal symmetry [30,13]. Correspondingly, such states are called spin-nematic
states and have been explored in a large number of theoretical approaches (a nice summary is
sketched in the introduction of [31] and references therein). Recently, the observation of such a
spin-nematic state in an iridate material was reported [32].
One particular playground for quantum magnetic systems are phases in which, despite the pres-
ence of strong correlations in the system, no long-range order is induced at zero temperature.
These phases are called spin liquids and can be pictured as a superposition of many spins which
simultaneously point in different directions. They show exotic behavior and possess a number
of interesting properties such as excitations with fractional quantum numbers [33]. There exists
a vast literature on this topic, for an introduction see [34]. The search for realizations of this
type of unconventional states is motivating a lot of ongoing research. For example, numerical
methods based on tensor network states (TNS), in particular matrix product state (MPS) ap-
proaches, have provided evidence for the existence of such a spin liquid phase in the kagome
lattice [35–37]. This highly frustrated geometry is depicted in Fig. 1(c) and has been identified,
e.g., in the natural mineral Herbertsmithite [10, 38].
While the interacting spins in the Heisenberg model remain localized, in many materials the
electrons are itinerant. This is addressed, e.g., by the Hubbard model [39–42], which is one of
the simplest models taking into account the effects of spin and of electron motion. Both, the
fermionic version1

HFermions
Hubbard = −t

∑
〈i,j〉, σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓ (2)

as well as the bosonic variant [28, 43]

HBosons
Hubbard = −J

∑
〈i,j〉

(
b†ibj + h.c.

)
+
U

2

∑
i

ni (ni−1) (3)

are relevant for the description of strongly correlated materials or for systems of ultracold atoms
on optical lattices, respectively. Using degenerate perturbation theory, the Hamiltonian (2) in

1Standard notation for the operators is used, i.e., c(†)i,σ represents a fermionic annihilation (creation) operator,

b
(†)
i the corresponding bosonic one, and ni,σ = c†i,σci,σ or ni = b†i bi the densities in the fermionic or bosonic case,

respectively. In the case of the t-J-model, the operators f (†)i,σ are fermionic ones, but act on a restricted Hilbert
space in which double occupancies are forbidden.
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the strong coupling limit U/t� 1 can be mapped to the Heisenberg model (1) [44] with antifer-
romagnetic (AFM) interactions (J > 0 in the convention used in Eq. (1)). In this way, studying
Hubbard systems allows one to study quantum magnetism. Due to the difficulties to treat in
particular the fermionic variant of the Hubbard model beyond 1D using analytical or numerical
approaches, experiments on optical lattices have got the particular motivation to emulate the
behavior of this microscopic model [45], so that its phase diagram can be investigated in such
experiments. This is in the spirit of Feynman’s proposal from the early 1980s2 to use some well
controlled quantum systems to simulate other ones, eventually leading to the development of a
quantum computer [47–49]. In this way, for U/t � 1 quantum magnetism can be studied, and
the realization of a controlled quantum simulator for quantum magnetism in cold gases experi-
ments is a central topic of ongoing research. Interestingly, there are further proposals for how to
realize Heisenberg-type models in cold gases experiments based on ultracold polar molecules,
e.g., where internal degrees of freedom of the molecules can be used as pseudo-spin degrees of
freedom (see, e.g., [50, 51]).
One interesting hybrid of itinerant electrons and Heisenberg exchange is the so-called t-J model

HtJ = −t
∑
〈i,j〉, σ

(
f †i,σfj,σ + h.c.

)
+ J

∑
〈i,j〉

(
~Si · ~Sj −

1

4
ninj

)
, (4)

which, similarly to the Heisenberg model, can be obtained from the fermionic Hubbard model in
degenerate perturbation theory in the limit U/t→∞ [44] and by excluding double occupancies
on the lattice sites. One possible way to look at the t-J model is to imagine a lattice with
initially one spin per site, in which the spins interact via Heisenberg exchange, but then dope it
(i.e. remove more and more of the electrons). In this way, empty lattice sites are formed, and
the spins can ‘hop around’ in addition to experiencing the spin exchange interaction. Since in
cuprates high-temperature superconductivity is obtained by doping an AFM, there are proposals
to understand high-temperature superconductors based on spin fluctuations, and the t-J model
(which describes such a doped quantum magnet) is considered a minimal model [3, 52].
The fermionic and spin systems considered so far have a SU(2) symmetry and are invariant
under the corresponding transformations. From the theoretical side, it is tempting to enhance
this symmetry from SU(2) to SU(N ). This has attracted considerable theoretical attention.
There is a long history of studies of SU(N ) spin systems (see, e.g., [53–55]) since they become
analytically tractable in the large-N limit, and rich phase diagrams have been identified. In 1D,
the aforementioned spin-nematic phases have been predicted as well as generalizations of the
so-called AKLT state, which is an archetypical example for topological phases which are briefly
revisited in Sec. 2.2.
Since no exact SU(N ) models have been identified in nature, these efforts were broadly con-
sidered a theoretical playground. However, it has been proposed that systems with such a high
symmetry (up to N = 10) can be realized in quantum simulators with ultracold alkaline earth

2The possibility to exploit quantum speed up was actually first envisaged by Y.I. Manin [46] in a radio interview
with Radio Moscow in 1980; it is unclear to me whether Feynman was aware of this. In any case, he seems to be
the first one to promote these ideas in the public in the western hemisphere and pursue them.
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atoms [56]. More specifically, these experiments can realize SU(N ) symmetric generalizations
of fermionic Hubbard models

HSU(N )
Hubbard = −t

∑
〈i,j〉

N∑
α=1

(
f †α,ifα,j + h.c.

)
+
U

2

∑
i,α 6=α′

f †α,if
†
α′,ifα′,ifα,i . (5)

Here, f (†)
α,i is a fermionic annihilation (creation) operator for a particle with flavor α on lattice

site i. Similarly to the SU(2) case, in the limit U/t → ∞ an effective SU(N ) symmetric
Heisenberg model can be derived

HSU(N )
Heisenberg =

2t2

U

∑
〈i,j〉

∑
α,β

Sβα(i)Sαβ (j) , (6)

with the spin operators Sβα(i) = f †α,ifβ,i. This opens the door to studying SU(N ) quantum
magnetism. Having this and the specific experimental implementation in mind, exotic new
phases have been predicted. An example, which has intrigued researchers, is the possibility
to realize chiral spin liquids [57, 58] in such systems [59]. These are spin liquids with certain
topological properties, which can be of relevance for the realization of topological quantum
computers [60, 33].

These findings underline the recent focus of research on the uncovering of new and unconven-
tional behavior in microscopic models and their possible experimental detection. Since most of
the models are non integrable,3 numerical methods play an important role in the investigation of
quantum magnetism. A very powerful approach is using quantum Monte Carlo techniques [61],
which, in principle, can be applied to arbitrary situations. However, fermionic and AFM frus-
trated spin systems are affected by what is known as ‘the sign problem’, which leads to neg-
ative probabilities in the course of the Monte Carlo sampling, and which makes it essentially
impossible to control the calculations for many interesting situations. Therefore, other, wave-
function based approaches have been developed. For quasi-1D systems (i.e., chains and ladder
geometries), efficient approaches are tensor network methods, in particular matrix product state
methods (MPS) and one of the realizations in terms of the density matrix renormalization group
method (DMRG) [62], which are explained in detail in various review articles (e.g. [63]). This
method has been applied very successfully for the investigation of phase diagrams and of quan-
tum critical behavior of a multitude of (quasi-)1D systems (see the website [64] for a collection
of the publications relying on this method). However, for 2D systems, the area law of entangle-
ment growth [65,66] is a major obstacle for an efficient treatment of the microscopic models of
interest. Since also other numerical methods are limited, it is an ongoing challenge to develop
numerical and analytical approaches for 2D quantum magnetic systems.

3An important exception is the Heisenberg model and its generalization to the XXZ-model by allowing the
spin-exchange in the z-direction to have a different strength than in the x-y-plane in 1D, which is integrable using
the Bethe ansatz [42].



Quantum Magnetism 13.7

1.2 Basic properties of S = 1/2 quantum magnets, magnetization curves

In order to get a better intuition for the behavior of quantum magnets, it is useful to start with
a small number of quantum spins, which can serve as building blocks to understand the large
interacting networks of spins realized in quantum magnets. To do so, let us consider a S = 1/2

Heisenberg model with interactions between nearest neighboring spins in a magnetic field ~B,

H = J
∑
〈i,j〉

~Si · ~Sj − ~B
∑
j

~Sj . (7)

To simplify the discussion, we assume the magnetic field ~B to point in z-direction.
1. One single spin-1/2:

The Hamiltonian is simply H=−BSzi , i.e., in its ground state the spin can take one of
the two possible configurations |↑〉, |↓〉, depending on the direction the magnetic field is
pointing at.
Note: for B = 0, any superposition of both states is a possible ground state, |ψ〉 =

α |↑〉 + β |↓〉 with α2 + β2 = 1, and for α = β a so-called “cat state” is realized.4 This
can be relevant for quantum computation, where you can associate the two spin states to
the two possible internal states of a qubit (e.g., |↑〉 ≡ |1〉 , |↓〉 ≡ |0〉).

2. Two spin-1/2 objects interacting via Heisenberg exchange (spin-1/2 dimer):
The Hamiltonian now is

H = J ~S1 · ~S2 −B (Sz1+Sz2) = J
( 1

2

(
S+
1 S
−
2 +S−1 S

+
2

)
+ Sz1S

z
2

)
−B

(
Sz1+Sz2

)
, (8)

with ladder operators S± = Sx±iSy.
Let us first consider the case B = 0. In this case, the Hamiltonian has the full SU(2)
symmetry, and we can rewrite

~Stotal = ~S1+~S2 ⇒ ~S1 · ~S2 =
1

2

((
~Stotal

)2 − (~S1

)2 − (~S2

)2)
.

Realizing that ~S2 = S(S+1), we obtain for the Hamiltonian (8) for S = 1/2 at B = 0

H =
J

2

((
~Stotal

)2 − 3

2

)
.

Since for S = 1/2 the only possible values for ~Stotal are 0 or 1, respectively, we see
immediately that the Hamiltonian has only two eigenvalues

EStotal=0 = −3J/4 and EStotal=1 = J/4 .

Depending on the sign of J, either of the two values is the ground state. Due to the
degeneracy (see below) the state with Stotal=0 is called singlet state (it is not degenerate),
and the other one is threefold degenerate and accordingly the eigenstates are called triplet
states.

4Named after the famous gedankenexperiment with “Schrödinger’s cat”.
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We now turn to the Hamiltonian matrix, i.e., we need to introduce a suitable many-body
basis, which can be obtained by the tensor product of single-spin basis states, leading to
the basis states

{
|↓↓〉 , |↓↑〉 , |↑↓〉 , |↑↑〉

}
. Note that the number of basis states compared

to one spin-1/2 particle has doubled. This is at the heart of why it is so complicated to
numerically treat large quantum many-body systems: here, the dimension d of the basis
grows exponentially with the numberN of spins in the system, d = 2N , so that only small
systems can be treated exactly [61].
For the dimer, the Hamiltonian in this basis is represented by the matrix

H =


J
4
+B 0 0 0

0 −J
4

J
2

0

0 J
2
−J

4
0

0 0 0 J
4
−B

 . (9)

Note the block structure on the diagonal of the matrix. This is due to symmetries and con-
served quantities (here: conservation of the z-component of the total spin of the system)
and follows from Schur’s Lemma [67]. It can be exploited to speed up the diagonalization
of the matrix, since one needs to explicitly diagonalize only the smaller ‘blocks’ of the
matrix, i.e., for Hamiltonian (9) we need to diagonalize only a 2×2 matrix. This leads to
the following eigenstates and eigenvalues:

• Singlet-state |s〉 =
(
|↑↓〉− |↓↑〉

)
/
√

2, with energy Es = −3J/4. This is the state
with Stotal = 0, which we encountered above, and also the z-component Sztotal ≡〈
Sz1+Sz2

〉
= 0, so that the magnetic field B does not contribute to the energy.

Note: This state is a maximally entangled state and is antisymmetric when swapping
the position of the two spins. Indeed, it is one of the Bell states and can be useful
for quantum information aspects.

• Triplet-states:

|t1〉 = |↑↑〉 |t0〉 =
(
|↑↓〉+ |↓↑〉

)
/
√

2 |t−1〉 = |↓↓〉
Et1 = J/4−B Et0 = J/4 Et−1 = J/4+B

For all three states we have Stotal = 1, but Sztotal = +1, 0, or −1, respectively. We
see that at B = 0 the three states are degenerate, but that turning on a magnetic
field removes this degeneracy: depending on the sign of B, the energy of one of
the triplet states |t1〉 or |t−1〉 will grow linearly with B, the other one decreases
linearly with B; the energy of |t0〉 remains unchanged. Using this, we obtain our
first magnetization curve: for J > 0 (AFM) the singlet state is the lowest energy
state for |B| < J , but then one of the triplet states takes over, so that we have a jump
in the total magnetization from M = 0 to M = 1 at this ‘critical field strength’.

Note: The states |t1〉 and |t−1〉 are product states with zero entanglement, but |t0〉 is
maximally entangled, as is also the singlet state (it is another Bell state); however,
all three triplet states are symmetric when swapping the positions of the spins.
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The physics of such spin-1/2 dimers is the building block for various quantum magnets.
A prominent example is the Shastry-Sutherland lattice depicted in Fig. 1(b), and which
can be seen as a system of orthogonal dimers, where the coupling between the dimers
can vary. Other systems are, e.g., spin ladders (see Fig. 1(a)), in which the interaction on
the rungs is stronger than on the legs. For weak inter-dimer coupling, the physics of such
quantum magnetic systems is determined by the properties of the singlet and triplet states
discussed here. The inter-dimer coupling will lead to a ‘dressing’ of the triplet states
(resulting in so-called ‘triplons’), which then form the building block for the system’s
behavior. When such a system with AFM interactions on the dimers is put in a magnetic
field, the ground state at B = 0 is determined by the singlets, but the magnetization curve
will mainly be determined by the magnetization of the individual dimers: the dimers,
which at B = 0 are in a singlet state, are ‘populated’ by the triplets (or triplons) upon
increasing B, leading to particular behavior of the magnetization curve. For example,
one can derive effective models

(
e.g. using perturbative unitary transformations, PCUTs;

see, e.g., [68]
)
, in which the triplons interact via long-range interactions, and which can

form Wigner-type crystals. If this happens, a gap opens, and a magnetization plateau is
stabilized, which hosts a Mott insulator, which is formed by the crystal of triplons. Other
examples are the aforementioned possible Bose-Einstein condensation of these triplet or
triplon excitations at finite B.

3. Three spin-1/2 objects interacting via Heisenberg exchange:
As before, at B = 0, we can rewrite using ~Stotal and obtain

H =
J

2

((
~Stotal

)2 − 9

4

)
for S = 1/2 .

We realize that, as in the system with 2 spins, the ground state for the ferromagnetic (FM)
case J < 0 is obtained by maximizing ~Stotal, while for the AFM case J > 0, ~Stotal needs
to be minimized. For S = 1/2, the maximal value of |~Stotal| = 3/2, and all spins point in
the same direction. All the interactions on the bonds are satisfied. However, in the AFM
case, the ground state energy is minimal for the smallest possible value |~Stotal| = 1/2. We
realize the following two aspects:

i) There are in total 6 configurations, which all result in |~Stotal| = 1/2, i.e., the ground
state of the AFM case will be a superposition of the corresponding 6 states: it is
highly degenerate, since in total we have only 23 = 8 basis states, and hence the
largest part of the Hilbert space contributes to the ground state manifold!

ii) There is no way to simultaneously satisfy all the three interaction terms (i.e., mini-
mize the energy of each of the three bonds): the system is the simplest example for
a geometrically frustrated quantum magnet. One effect of such geometrical frustra-
tion is that the spins try to find a new configuration, in which none of the bonds is
fully satisfied, but which minimizes the total energy. As such, qualitatively new be-
havior can be realized when comparing to non-frustrated geometries. One example
is the classical Heisenberg model on a triangle, where the three spins align in the
plane and point outwards, forming a 120◦ angle between each other.
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There are many quantum magnetic materials with such AFM triangles as building blocks,
see Fig. 1 for example geometries. Particularly interesting situations are obtained when a
lattice consists of corner-sharing triangles, such as the kagome lattice depicted in Fig. 1(c).
Here, the degree of frustration in the extended lattice is very high and determines the
ground state physics. As we have seen for a single triangle, ground states of frustrated
AFM are typically very highly degenerate. Due to this degeneracy, the spins fluctuate
strongly, so that under circumstances they cannot realize long-range order. This leads
to a peculiar situation: the ground state and the excited states are governed by the in-
teractions between the spins, but, due to the strong fluctuations, any attempt to stabilize
long-range order is suppressed. Such a state is called a spin liquid. Such spin liquid states
can also host topological phases of matter (which do not rely on the existence of a finite
local order parameter, but are described by global quantities), and due to their rich and
unconventional behavior have been a focus of intense studies.

We could, of course, go on, and discuss larger and larger building blocks. Noteworthy are
lattices, in which the building blocks are tetrahedrons; for ferromagnetic Ising-type interactions
HIsing = J

∑
〈i,j〉 S

z
i S

z
j , again a highly frustrated geometry can be realized, e.g., on so-called

pyrochlore lattices. The spins align according to so-called ‘spin-ice rules’ (two spins point
into the tetraeder, two point outwards), and due to the high frustration, unconventional states
can be realized. Indeed, such systems can even host excitations, which can be described as
magnetic monopoles, which in vacuum cannot exist, but are realized and measured in these
systems [69, 70].
The generic question is how to deal with a large number of spins on an arbitrary graph. Since
in most cases there is no analytical solution, but we are dealing with finite-dimensional Hilbert
spaces, we can use the matrix representation of the Hamiltonian in an appropriately chosen
basis and diagonalize this on a computer. We refer the reader to, e.g., Refs. [61, 71].

1.2.1 Magnetization curves

An important quantity to study in quantum magnets is the dependence of the magnetization
on the applied magnetic field ~B, which typically is included in the Hamiltonian as a Zeeman-
type term (see Eq. (7)) and which, for the sake of simplicity, we will assume is pointing in
z-direction. In this case, the original SU(2) symmetry of the Heisenberg model is broken down
to U(1), which can be exploited for investigating the system. Note that, however, the most
general form of the Zeeman term is ∼ ~Bg~S, with the so-called ‘g-tensor’ g, which captures a
possibly anisotropic response of the material to the applied magnetic field. If a material has a
non-trivial g-tensor, also the remaining U(1) symmetry is broken, and the magnetization will not
point in parallel direction to ~B. This can lead to further interesting behavior as, e.g., a torque on
the sample. Here, however, for the sake of simplicity we assume a simple g-tensor and hence a
response only in parallel direction to ~B, so that the U(1) symmetry prevails. Then, it suffices to
treat the magnetizationM=

〈
Sztotal

〉
, which can have nontrivial behavior. For example, if there is

an excitation gap, then increasing the magnetic field will not change the value of M , leading to
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Fig. 2: (a) The natural mineral Herbertsmithite is a realization of a Heisenberg spin-1/2 system
on the kagome lattice [10]. However, the material contains ∼ 5% nonmagnetic impurities and
anisotropic DM interactions due to spin-orbit coupling. (b) The lattice with one impurity and
the orientation of the DM-vectors used in [74].

a magnetization plateau, as already illustrated further above in the context of the spin-1/2 dimer.
These plateaux can host interesting Mott phases (e.g., crystals of triplets). In the vicinity of
these magnetization plateaux, it is interesting to study how the plateau ‘melts’, and the resulting
phase can host unconventional states, like the BEC of triplets, or even supersolid phases.
For systems with U(1) symmetry in a magnetic field, the total value of Sztotal is conserved, so
that one does not need to compute explicitly M(B) via expectation values. Instead, at zero
temperature,5 one computes the ground state energies E0(S

z
total) in all possible sectors of Sztotal

and obtains the Magnetization via a Legendre-transform:

M(B) =
〈
Sztotal

〉∣∣∣
[E0(Sztotal,B=0)−B·Sztotal]=min

.

Therefore, it is important to have methods to efficiently compute the ground state energy for
systems as large as possible in order to be as close as possible to the thermodynamic limit. Two
such approaches are the aforementioned exact diagonalizations (ED) and tensor network states,
such as the MPS or the Projected Entangled Pair States (PEPS) [72]. Both methods also exist in
a version, which works directly in the thermodynamic limit as iMPS and iPEPS, respectively.
In particular the iPEPS has been successful in investigating magnetic properties of dimer-based
quantum magnets such as the Shastry-Sutherland lattice, see, e.g. [73].

1.3 Effect of spin-orbit coupling at high magnetic fields

The models mentioned so far are often minimal models. However, in real materials additional
effects like the anisotropic g-tensor mentioned above, or other anisotropies due to spin-orbit
coupling (SOC) are present. In a magnetic field, SOC can alter the physics of the system
significantly [75], but is often neglected, since its magnitude typically is only a few percent
of the magnitude of the Heisenberg exchange in the system. However, since its effect can be

5Remember that we are interested in low temperature properties, since here quantum fluctuations will have a
stronger effect than thermal ones.
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important, in order to obtain a more realistic description, it is necessary to consider SOC by
treating additional anisotropic interactions, e.g., of Dzyaloshinskii-Moriya (DM) type [76, 77],

HDM =
∑
〈i,j〉

~Di,j ·
(
~Si×~Sj

)
. (10)

This term arises in the strong coupling limit of the fermionic Hubbard model (2) when taking
into account spin orbit coupling ∼ ~L · ~S. Note that, in contrast to the Heisenberg term (1), the
DM interaction is antisymmetric upon exchange of the spins and breaks the SU(2) symmetry.
On dimers, this leads to a mixing of the singlet and the triplet sectors and can so lead to new
interesting effects. An example for DM interactions in a kagome system is depicted in Fig. 2.

2 Unconventional phases and quantum critical behavior

In the previous section, we have seen the most important microscopic models for quantum
magnetism (in particular the Heisenberg model (1)), and related models of itinerant fermions or
bosons. Most of these models are inspired by quantum magnetic materials. One such material,
which hosts unconventional behavior in magnetic fields, is SrCu2(BO3)2, which is a very good
realization of the AFM Heisenberg Hamiltonian on the Shastry-Sutherland lattice [78] depicted
in Fig. 1(b) [8, 9], with additional DM interactions. Using a combination of various numerical
methods, the magnetization curve up to 118 T has been compared to experimental data [79],
and interesting Mott insulators on magnetization plateaux have been found (see Fig. 3), e.g.,
one which is formed by bound states of triplons [73]. Another example for a quantum magnetic
material, which hosts an unconventional phase, is the ground state of the kagome lattice in
Hebertsmithite, which realizes the Heisenberg Hamiltonian with additional DM interactions on
this lattice. However, a large number of non-magnetic impurities is present in this material, so
that additional effects close to the impurity sites come into play (see Fig. 2).
Many studies are performed on a large variety of further quantum magnetic materials. However,
also beyond their possible realization in a material it is interesting per se to formulate models
with competing interactions based on mathematical insights and to investigate their properties.
An example we already encountered in Sec. 1.1 is to enhance the SU(2) symmetry to SU(N ).
Another model that can be introduced in this line of thinking is the S = 1 Heisenberg chain
with additional biquadratic interactions in a magnetic field,

H =
∑
i

(
cos(θ) ~Si · ~Si+1 + sin(θ)

(
~Si · ~Si+1

)2)−B∑
i

Szi , (11)

the so called bilinear biquadratic Hamiltonian (BLBQ). Here, at B = 0, the simple Heisenberg
model of Eq. (1) has been extended by a term in such a way that the resulting Hamiltonian
still possesses the SU(2) symmetry of the Heisenberg model,6 but the Hamiltonian now has
two competing interaction terms. That the two terms compete with each other can be seen by
considering a spin-1 dimer: while for the bilinear term (the Heisenberg term) the ground state

6The biquadratic term itself has, actually, SU(3) symmetry.
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(ii) the 2=5 plateau does not extend beyond J0=J ’ 0:625.
Since the present experimental data do not reveal any
evidence of a 2=5 plateau but show a rather broad 1=2
plateau, J0=J can neither be too large nor too small, and a
comparison of the critical fields of the 1=2 and 1=3 plateaus
with the experimental ones point to a ratio J0=J ’ 0:63.

A detailed comparison of the experimental magnetization
curve with the theoretical predictions of the various methods
at J0=J ’ 0:63 above the 1=4 plateau is shown in Fig. 4. First
of all, the critical fields Hc3 to Hc6 are accurately repro-
duced by iPEPS. The predictions of the other methods are
scattered around the iPEPS values, but altogether they
support the main features of the iPEPS results (for a detailed
comparison as a function of J0=J, see the Supplemental

Material [30]). Second, the magnetization jumps at Hc3

and Hc6, which point to first-order transitions, are well
accounted for by the theoretical results: at Hc3, there is a
first-order transition between the 1=4 and 1=3 plateau, while
at Hc6, there is one between the 1=2 plateau and the 1=3
supersolid. The smoother transitions at Hc4 and Hc5 also
correspond to much weaker anomalies in the theoretical
results. For the upper boundary of the 1=3 plateau, series
expansions point to a gap closing when increasing H and
hence to a second-order phase transition, around 65 T, sig-
nificantly below Hc4. This is not incompatible with the
broad onset of magnetization around Hc4, with a slope
that takes off around 65 T in shot A and 70 T in shot B.
Below the lower boundary of the 1=2 plateau atHc5, iPEPS
predicts a series of first-order phase transitions from a 1=3
supersolid to a 2=5 supersolid, then to a phase with domain
walls, and then finally to the 1=2 plateau. In the magneti-
zation curve, these transitions translate into small jumps.
This is presumably related to the peak observed in both shots
around 80 T, i.e., between the 1=3 and 1=2 plateaus, con-
sistent with the prediction that the intermediate-field range
between these plateaus is not a single phase.
Finally, let us comment on the experimental slope of the

1=2 plateau between Hc5 and Hc6, which is anomalously
large as compared, e.g., to that of the 1=3 plateau. This
slope is definitely too large to be due to Dzyaloshinskii-
Moriya interactions, but it might be simply explained as a
temperature effect. Indeed, the difference in energy per
spin between the 1=2 plateau and the competing 1=3 super-
solid state obtained with iPEPS is very small (< 0:004J),
whereas the competing phases are definitely higher in the
middle of the 1=3 plateau.
Conclusion.—To summarize, we have performed

ultrahigh-field measurements of the magnetization of
SrCu2ðBO3Þ2, revealing for the first time the extent of the
1=2 plateau. The length of the 1=2 plateau has been found
to be around 70% of that of the 1=3 plateau. We have not
found any indication of the 2=5 plateau that was previously
suggested on the basis of magnetostriction measurements.
As revealed by large-scale numerical simulations, these
results are consistent with the Shastry-Sutherland model,
provided the ratio of inter- to intradimer coupling is neither
too small, in agreement with recent NMR results on Zn
doped samples [31], nor too large, the best agreement
being reached for a ratio of about 0.63. These numerical
simulations further predict that the magnetization between
the 1=3 and 1=2 plateaus and above the 1=2 plateau is not
uniform but that the system is always in a phase that breaks
the translational symmetry, either to form a supersolid or
because of the spontaneous appearance of domain walls in
the 1=2 plateau phase. It would be very interesting to test
this prediction with measurements that can detect a change
of lattice symmetry such as x rays or neutrons or with a
local probe such as NMR. Given the field range of interest,
this is, however, a huge experimental challenge.
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FIG. 3 (color online). Phase diagram of the Shastry-Sutherland
model in a magnetic field obtained with iPEPS.
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Fig. 3: Comparison of the experimental data for the magnetization curve of SrCu2(BO3)2 to
theoretical results obtained with different approaches (Fig. taken from [79]).

is either a singlet or a triplet, for the biquadratic term it can be a quintet state with Stotal = 2.
Going to an extended lattice, one can therefore expect that at zero and at finite B different
types of ground states will compete with each other, depending on the strength and the sign of
the respective bilinear or biquadratic term. As discussed in [80], the resulting phase diagram
of (11) is, indeed, rich. Interestingly, one of the phases realizes spin-nematic quasi long range
order (QLRO, see further below). The question arises, how to systematically characterize the
different types of order that can emerge in such systems.

2.1 Equilibrium: order parameters from symmetry considerations

Here we give a summary of important aspects concerning spontaneous symmetry breaking.
For further reading, I suggest, e.g., the excellent lecture notes ‘An introduction to spontaneous
symmetry breaking’ by A.J. Beekman et al. [81].
In Landau’s theory of phase transitions, spontaneous symmetry breaking (SSB) leads to a finite
local order parameter. In such a scenario, the state of the system7 is not symmetric under
a symmetry transform U, which leaves the Hamiltonian H invariant

(
i.e. [H, U ] = 0

)
; the

symmetry of the state is ‘lower’ than the symmetry of the Hamiltonian. Since symmetries are
mathematically described by groups, the state can then still be symmetric under a transform
corresponding to a subgroup H of the original symmetry group G of the Hamiltonian, if it
preserves any symmetry at all.

7Typically, we are interested in the ground state |ψ0〉 since many of the phenomena discussed here are realized
at low temperatures, but the considerations also hold for the thermal equilibrium state.
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Is such a symmetry broken state unique? To answer this, consider the following: [H, U ] = 0,
so we know that an eigenstate |ψ〉 of H and U |ψ〉 must have the same energies, since |ψ〉 is a
simultaneous eigenstate of H and U. However, |ψ〉 6= U |ψ〉 if the symmetry is spontaneously
broken, i.e., in the case of SSB, multiple related states exist, which all share the same energy.
Indeed, there exists a whole set of distinct symmetry-broken states with the same energy, which
can be obtained by performing all possible symmetry transforms U on the symmetry broken
state |ψ〉. These states are, hence, all related to each other by the symmetry G. This allows us
to define the order parameter O: it is the operator, whose eigenstates are the inequivalent states
in the set of symmetry related states, and whose eigenvalues are different and non-zero for each
of these states. O is constructed in such a way, that it has eigenvalue zero for states, which
are symmetric under the transform U. Note however, that due to the so-called orthogonality
catastrophe, for a finite system, 〈ψ |O|ψ〉 = 0 [81]. We will come back to this later, when we
ask how to investigate order parameters in practice.
How to think about order parameters? Can we find a way to construct them? This is not
straightforward to answer, and we have to dive a little deeper into the mathematics of symmetry
transformations. From group theory we learn that in the thermodynamic limit (we will come
back to this further below), one can classify the symmetry broken states by the cosets gH , which
are elements of the quotient set G/H , if G is the group of all symmetry transforms, H ⊂ G

is the subgroup of unbroken transformations, and g ∈ G. H is then also called the residual
symmetry group. For example, let us have a closer look at the SU(2) symmetry of the AFM
Heisenberg model. Consider a Néel state |↑↓↑↓ . . .〉, in which the symmetry is broken down
to rotations around a single axis, e.g., in z-direction. Hence, G = SU(2), while the residual
symmetry group is H = U(1). One finds for the quotient set G/H = SU(2)/U(1)' S2, which
gives all the points on the surface of a sphere. The direction of the sublattice magnetization
is then one of these points on the sphere; hence, without applying an external field, infinitely
many directions are possible, and the symmetry broken state will pick one of these.
For continuous symmetries, we consider the generatorsQ of the group, which can be introduced
by considering transformations U(dθ) by an infinitesimally small value of a parameter θ (e.g.,
for rotations θ is the rotation angle), so that one can write U(dθ) ≈ 1+i dθ Q. This allows one to
write for arbitrary angles U(θ) = eiθQ, which is obtained by subsequently applying transforms
U(dθ) until the desired value θ of the parameter is obtained [67]. Consider a broken-symmetry
state |ψ〉. Then, generatorsQ, of which |ψ〉 is an eigenstate, are called unbroken generators, and
conversely generators, which do not leave the state invariant, are called broken. The dimension
of the quotient set G/H is then said to equal the number of broken generators.
It would now be useful to identify an operator, whose expectation value can be used to dis-
tinguish between the symmetry broken states, and which has zero expectation value in the
symmetric state. For each of the sets of equivalent symmetry-broken states, it should have a
unique non-zero expectation value. This leads us to the question of how to identify suitable
order parameters.
Let U = eiαQ be a symmetry transform such that [H, U ] = 0. Since U |ψ〉 6= |ψ〉 for a symmetry
broken state, this also holds for the generator, Q |ψ〉 6= |ψ〉, so that we cannot simply consider
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the expectation value 〈ψ |Q|ψ〉. Instead, one proceeds as follows:
A state |ψ〉 breaks this symmetry, if there exists any operator Φ such that

〈ψ |[Q, Φ]|ψ〉 6= 0 . (12)

If no such operator exists, |ψ〉 is symmetric under U. Φ(x) is called interpolating field,8 and
allows us to introduce the order parameter operator O(x) and its expectation value, which then
is the local order parameter:

O(x) =
[
Q, Φ(x)

]
and O(x) = 〈ψ |O(x)|ψ〉 .

Due to Eq. (12), O(x) is automatically zero if |ψ〉 is a symmetric state, and finite otherwise,
so that it, indeed, distinguishes symmetric from symmetry-breaking states. Note that Φ(x)

and O(x) are not necessarily hermitian, but one can always construct an observable from this
operator, e.g., O+O† or OO†.
It is possible to always find an operator O such that O(x) will be different for distinct broken-
symmetry states and equal for states related by residual symmetry transforms, since Eq. (12)
does not uniquely determine O and Φ (e.g, construct an alternative interpolating field by multi-
plying Φ by a constant, then the equation can still be fulfilled). In almost all cases, the physics
of the symmetry-breaking system itself suggests a convenient choice for O, which maps onto
the quotient space G/H . Furthermore, it inherits the structure of the quotient space.
Let us consider a concrete example for quantum magnets and go back to the Heisenberg AFM.
The Hamiltonian has SU(2) symmetry, which is broken down in the AFM state to U(1). Inequiv-
alent broken-symmetry states correspond to AFM configurations with the sublattice magnetiza-
tion pointing in different directions – all possibilities together constitute the points on the sur-
face of a sphere, S2, as discussed above, and which coincides with the quotient SU(2)/U(1)' S2.
We now choose the pointer along the z-direction. Hence, the symmetry generators Sx and Sy

are broken, but not Sz. How to introduce an interpolating field? We expect for the AFM state
the spins to alternately point in the up- and down-direction, respectively, so that it is natural to
introduce the staggered magnetization Na

i = (±1)iSai , with i the position on the lattice, and
a = x, y, z. Can we use Na

i as interpolating field? Let us consider the breaking of rotations
generated by Sx. We see after a short calculation, that

∑
ij[S

x
i , N

y
j ] = i

∑
iN

z
i . Similarly,

choosing Sy and Nx
j also leads to

∑
ij[S

y
i , N

x
j ] = i

∑
iN

z
i . Hence, it seems plausible that the

choice O = N z =
∑

iN
z
i gives a suitable order parameter operator. Its expectation value then

is the expectation value for the staggered magnetization, which can be measured in experiments
(e.g. by measuring spin structure factors) – and which also would be the natural choice for an
AFM state, since there we expect the spins to alternate, as in the classical Néel state. Note, how-
ever, that the classical Néel state is not an eigenstate of the AFM Heisenberg model, but, in the
thermodynamic limit, if SSB takes place, the expectation value of the staggered magnetization
is finite, like in a Néel state. This brings us to the following considerations:
In general, [H, O] 6= 0, which would imply that the symmetry broken states are not eigenstates
ofH, contradicting our above statement. In particular, for numerical methods, which treat finite

8We work for the moment with continuous variables x and will go back to lattice positions later.
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system sizes, this implies that the expectation value 〈ψ0 |O|ψ0〉 = 0 for all system sizes, so the
question arises, how to investigate for the order characterized by O, a topic we will return to
later. The solution to this puzzle lies in the necessity of taking the thermodynamic limitN →∞
and V →∞, with N/V = const. It turns out that in this limit

〈
[H, O]

〉
=0, and the symmetry-

broken states become orthogonal to one another in this limit, as well as degenerate with the
symmetric exact eigenstates of H. If in this limit, the symmetry-broken states are eigenstates
of H. The thermodynamic limit is, hence, always different to any finite volume (irrespective
of its size), and makes it a singular limit. Care needs to be taken, when computing quantities
in this limit. Often, in order to have some finite expectation value, one applies a small field9

h, which induces the order one wants to investigate, but which one needs to ‘remove’ again.
Hence, when studying observables in the thermodynamic limit, two limits need to be taken, and
since the thermodynamic limit is singular, the order cannot be exchanged. Hence, the order
parameter can be obtained as

〈O〉 = lim
h→0

lim
N→∞

〈ψ0(h,N) |O|ψ0(h,N)〉 ,

with |ψ0(h,N)〉 being the ground state for a system with N spins and when applying a small
field h.
From these considerations, two questions are imminent: i) how to compute order parameters
numerically, if one treats finite systems? ii) which order parameters can we realize in a quantum
magnetic system?
We first turn to the latter. As we have seen above, this needs some careful thought. Since we are
dealing with systems on lattices, one can consider the breaking of the lattice symmetries, like
translational, rotational, or parity symmetry. Since this is not peculiar for spin systems (also
itinerant electrons on such lattices can undergo the corresponding SSB), we focus here on the
SSB associated to the spin degrees of freedom, and discuss the above mentioned example of
spin-nematic order as an unconventional way to realize SSB in quantum magnets.

2.1.1 Spin-nematic order

We start by describing an S = 1 object by the three Sz eigenstates |↓〉, |0〉, |↑〉. From these, we
can construct basis states (see also the Suppl. Material of [82] and the PhD thesis of T. Tóth
(EPF Lausanne, 2011) [83])

|x〉 =
i√
2

(
|↑〉 − |↓〉

)
, |y〉 =

1√
2

(
|↑〉+ |↓〉

)
and |z〉 = −i |0〉 .

We see that Sx |x〉=Sy |y〉=Sz |z〉=0, and that these basis states are invariant against time
reversal operation. The action of the spin operators in this basis can be written in a compact
form

Sα |β〉 = i
∑

γ=x,y,z

εαβγ |γ〉 .

9What exactly this field is depends on the situation.
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Now, every hermitian operator O can be written as

O =
3∑

α,β=1

Aα,β |α〉 〈β| ,

where |1〉, |2〉, |3〉 are basis states describing the S = 1 object (e.g., the ones defined above), and
A∗αβ = Aβα, and which by the above construction is a quadratic form in the spin operators Sα.
Such a self-adjoint 3×3 matrix is described by 9 real-valued parameters, from which we can
introduce eight non-trivial, independent operators (the trace is held fixed, so that it is one param-
eter less than the number of entries in the matrix). These entries can be interpreted as possible
on-site order parameters for systems, which are built up from S = 1 objects. More general, we
can introduce a rank-k tensor operator Tk, whose entries T kq satisfy the commutation relations[

Sz, T kq
]

= qT kq and
[
S±, T kq

]
=
√
k(k+1)− q(q±1)T kq±1 .

From this, the ‘highest’ entry is a product of k operators S+; for example, we obtain for k = 1

the components of T 1
q = (S+, Sz, S−), which, because S± = Sx ± iSy, are the three order

parameters for local magnetizations in the three spatial directions (dipolar order). For S = 1/2,
this exhausts all possibilities, since there we can apply the ladder operators S± maximally once,
before the result is zero, i.e., T2 = 0 for S = 1/2 systems. However, for S = 1 this is not true,
and for k = 2 we find

T 2
2 = S+S+ T 2

−2 = S−S−

T 2
1 = −

(
S+Sz+SzS+

)
T 2
−1 =

(
S−Sz+SzS−

)
T 2
0 =

√
2

3

(
3(Sz)2−S(S+1)

)
.

The elements T 2
q are not automatically hermitian. Since the order parameter is an observable

and hence hermitian, we can use the T 2
q to form suitable linear combinations, which then can

be interpreted as local order parameters. We thus obtain the 5-component order parameter for
spin-nematic or spin-quadrupolar order:

Q =


Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

 =


(Sx)2 − (Sy)2

1√
3

(
2(Sz)2−(Sx)2−(Sy)2

)
SxSy + SySx

SySz + SzSy

SzSx + SxSz

 .

The components of Q are called quadrupolar order parameters. Their expectation value can be
finite also for states, which are invariant under time-reversal symmetry, for which the dipolar
(magnetic) order parameters have zero expectation value. Hence, this construction lead us to
a new type of order parameter, which is beyond the ‘standard’ view onto magnetic systems, in
which only the dipolar (magnetic) order parameters are considered.
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An alternative way to obtain the quadrupolar order parameters is the following: The quadratic
form Aα,β = SαSβ is decomposed into a scalar S(S+1)δαβ/3 (trace – corresponding to the
length of the spin), a three-component vector (Sαβ−Sβα)/2 (antisymmetric representations:
dipolar operators, pointing to a certain direction and thus breaking time-reversal symmetry
– corresponding to the local magnetization), and a symmetric, traceless, tensor of rank two,
(Sαβ+Sβα)/2−S(S+1)δαβ/3, corresponding to the five quadrupolar operators. How many lo-
cal order parameters one can obtain in a quantum magnetic system then depends on the value of
the spin S and, in general, the underlying symmetry, which typically for spin systems describing
electronic systems is SU(2), but can be larger, SU(N>2), as described in the introduction.
Note that a similar construction can be done for bond-order [82]: when summing the spins
on neighboring bonds, then even for a S = 1/2 system we obtain SBond > 1/2, and a similar
construction for higher-order order parameters can be done. The local order parameters for
quadrupolar order then live on the bonds rather than on the sites, and hence this type of order is
also called ‘bond-nematic order’.
The number of possible order parameters is determined by the extent, to which one can apply
the ladder operators S± without getting zero. For the SU(2) case, we see that for S = 1,
similarly to the S = 1/2 case, we have T k>2

q = 0, so the local magnetization and the quadrupolar
order exhaust the possibilities to construct local order parameters related to the spin degrees of
freedom. However, for S > 1, again further order parameters can be realized, named multipolar
states of degree k ≤ 2S, and the order parameters are rank-k tensor operators.
Since the so-constructed local order parameters rely on symmetry considerations, one can ask
for possible relations between them. Indeed, one finds for the SU(2), S = 1 case〈

S
〉2

+
〈
Q
〉2

=
4

3
,

and that any state |S, Sz〉 is an eigenstate of Q2 for any spin S,

Q2 |S, Sz〉 =
4

3
S(S+1)

(
S(S+1)− 3

4

)
|S, Sz〉

and hence (
Q2 + S2

)
|S, Sz〉 =

4

3
S2(S+1)2 |S, Sz〉 .

2.1.2 How to identify long-range order

As mentioned before, the order parameter is finite only in the thermodynamic limit. The ques-
tion arises, how to compute it in practical calculations, which often imply finite size systems.
To do so, one can investigate the behavior of two-point correlation functions,

C(x, x′) =
〈
ψ
∣∣O†(x)O(x′)

∣∣ψ〉 .
Typically, one encounters the following behavior:

lim
|x−x′|→∞

C(x, x′) ∝
{
〈O†(x)〉〈O(x′)〉 = const. long-range ordered

e−|x−x
′|/l disordered,

(13)
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with l the correlation length. In the presence of long-range order (LRO), the spatial average of
the local order parameter will be finite: assuming locality,10 the correlation function in Eq. (13)
factorizes, and hence C(x, x′) approaches a constant, finite value when increasing the distance
|x−x′| → ∞. This corresponds to a divergent correlation length l, since the values of the order
parameter at two points in space are correlated to each other for arbitrary separations between
them. What is interesting is that, while the order parameterO(x) =

〈
O(x)

〉
for a finite system is

exactly zero, the two-point functions can show a finite value for finite, large enough separations!
This opens the door to investigate LRO by working on finite systems by making sure that one
treats systems large enough so that over a wide range of distances larger than a typical length
scale determined by the details of the system, |x−x′| > lc, the value of C(x, x′) is constant.
This is, in particular, important for numerical approaches, where often one works with a finite
lattice size.

Note that correlation functions can also decay to zero algebraically, C(x, x′) ∝ |x−x′|c, with
some exponent c. In this case, one speaks of algebraic or quasi long-range order, since the or-
der parameter will have zero expectation value also in the thermodynamic limit. This happens,
in particular, for low dimensional systems like spin-1 chains due to the Hohenberg-Mermin-
Wagner theorem, according to which systems with short-range interactions in low dimensions
cannot realize SSB of a continuous symmetry (essentially because fluctuations are too large).
Therefore, in this case, the phases are not characterized by a finite order parameter, but by
the dominant correlation function, i.e., the one, which decays slowest. An interesting scenario
is realized in quantum magnets in so-called Berezinskii-Kosterlitz-Thouless (BKT) phase tran-
sitions: here, on one side of the transition, C(x, x′) ∝ exp (−|x−x′|/l), while on the other
side of the transition C(x, x′) ∝ |x−x′|c. On both sides of the transition, the order parameter
is zero, but nevertheless the physics is different. Because one cannot analytically continue a
power law to an exponential function, one encounters a real, thermodynamic transition between
two states of matter, where C(x, x′) is nonanalytic at the critical point. This type of transi-
tion is not due to SSB, since the order parameter is zero on both sides. One example system
for such a BKT transition is the classical XY-model on a square lattice, where as a function
of temperature the binding or unbinding of topological defects causes this transition. Such an
effect can be expected in XY-type models or models with U(1) symmetry. For quantum mag-
nets, one often speaks of a BKT-type transition, if a gapless phase (with algebraically decaying
correlation functions) is connected to a gapped phase (with exponentially decaying correlation
functions), and at which the gap opens exponentially slowly: the transition is continuous, but in
this case there is no thermodynamic potential (e.g. the free energy, which at zero temperature
is the ground state energy), whose n-th derivative is nonanalytical, which is required by Ehren-
fest’s classification of a phase transition to be of n-th order. Therefore, one sometimes speaks
of ‘infinite-order transitions’.

10This is also referred to as the cluster decomposition theorem, according to which measurements of observables
‘distant enough’ from each other should be independent of each other.
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2.1.3 What can be learned from correlation matrices

Let us have a closer look at the correlation function introduced in Eq. (13) (see, e.g., [84]). Let
us switch from the continuous variable x to lattice positions i, j, so that we consider a correlation
function Ci,j =

〈
O†iOj

〉
. This is an hermitian matrix, and it is a valid question to ask, what we

may learn from its eigenvectors and eigenvalues. Indeed, they give a valuable tool to investigate
LRO in the following way: Let us consider the global order parameter O =

∑
j Oj . In the

presence of translational invariance, we can write Oj ≡ O/N = Ō. According to Eq. (13), we
can write

lim
|i−j|→∞

〈
O†iOj

〉
= O

2 6= 0. (14)

Let us consider a concrete example and choose Oj = S+
j = Sx+ iSy, which addresses the

question for finite in-plane magnetization. We see immediately, that (if Sztotal is a good quantum
number)

〈
ψ
∣∣S+

j

∣∣ψ〉 = 0 for any finite system. However, Cij =
〈
ψ
∣∣S+

i S
−
j

∣∣ψ〉 can take a
finite value even for small lattice sizes. Diagonalizing the hermitian matrix Cij for such a finite
system, we obtain real eigenvalues λν and eigenvectors vν , and we can rewrite

Cij =
∑
ν

vν

〈
ψ

∣∣∣∣∣
(∑

i

v∗ν,iS
+
i

)(∑
i

vν,jS
−
j

)∣∣∣∣∣ψ
〉

︸ ︷︷ ︸
λν

v†ν .

Introducing operators ην =
∑

i vν,iS
−
i , we obtain

v†νCijv =
〈
ψ
∣∣η†νην∣∣ψ〉 = λν ≥ 0 ,

the eigenvalues are therefore strictly positive. How does this relate to the order parameters? Let
us apply the cluster decomposition theorem, then

lim
|i−j|→∞

Cij = lim
|i−j|→∞

∑
ν

vν,i

〈
ψ

∣∣∣∣∣∑
k

v∗ν,kS
+
k

∣∣∣∣∣ψ
〉

︸ ︷︷ ︸
√
λν
∗

〈
ψ

∣∣∣∣∣∑
l

vν,lS
−
l

∣∣∣∣∣ψ
〉

︸ ︷︷ ︸
√
λν

v†ν,j = lim
|i−j|→∞

〈S+
i 〉〈S−j 〉.

However, the last equality can only be true if there is only one eigenvalue λν = λmax, which is
not vanishing. On the other hand, we see that 〈S+

j 〉 =
√
λmax. For finite systems, these relations

are not exact, but in the limit of infinite system size, there has to be asymptotically one dominant
eigenvalue λL, so that for large systems of size L one can approximate

lim
|i−j|→∞

Cij ≈ λLvL,iv
∗
L,j .

Since the eigenvectors vν are normalized, their coefficients scale ∼ 1/
√
L. Hence, in order to

have a finite value in the thermodynamic limit, the dominant eigenvalue has to scale λL ∼ L,
giving a condition on the largest eigenvalue of Cij , which can be tested numerically.
Fig. 4 shows an example for the kagome lattice in the presence of DM interactions and of a
non-magnetic impurity (see Fig. 2), for which this analysis was performed. For this system it
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Figure 5 shows the full eigenvalue spectrum of C for
clusters with N=14, 17, 20, 23, and 26. The results for B
=0 and B=J /20 are indistinguishable. An essential feature of
Fig. 5 is that, as D /J is increased in the region beyond 0.06,
the maximum eigenvalue on each of the clusters becomes
proportional to N, and thus very much larger than the re-
maining eigenvalues; we caution that the actual value of this
crossover cannot be inferred from the data of Fig. 5, where it
is evident that the curves are still some way from the ther-
modynamic limit, and address this point below. As described
in Appendix B, this means that the system has developed
long-ranged in-plane magnetic correlations in the regime of
large D /J. For small D /J, all the eigenvalues depend only
weakly on D /J and are closely spaced in magnitude, which
is a sign of short-range correlations dictated not by D but by
J.

The finite-size scaling of the dominant eigenvalue !m,
normalized by N, is given in Fig. 6. The extrapolated values
of this quantity represent the square of the average magnetic

moment in the thermodynamic limit, where the spins reach
approximately 80% of their full moment as D /J!".39 For
all values D /J#0.1, it is clear that the finite-size corrections
scale as 1 /!N, as expected for a state of broken U"1#
symmetry.40 This scaling procedure represents the appropri-
ate means of deducing the existence of long-ranged magnetic
order, by continuing the curves of Fig. 5 to the infinite-
system limit. However, this powerful method shows no indi-
cation of such order in the regime 0.06$D /J$0.1, specify-
ing that the transition to the semiclassical state should be
taken as D /J$0.1.

The magnetization profile corresponding to the dominant
eigenmode vm also contains important information, which is
shown in Fig. 7 for the four representative values of D /J and
represented by two-dimensional arrows whose components
are the real and imaginary parts of vm. At D /J$0.06, there
is no dominant mode as is the case at large D, but the stron-
gest mode shown in Fig. 7"a# corresponds nevertheless to the
pattern of strong spin correlations around the impurity %Fig.
2"a#&: the correlations in this mode are confined to the strong
bonds next to the impurity, where the spins are almost anti-
parallel. The strength of these local correlations is governed
by J, which is the reason why !m remains essentially D in-
dependent, for D /J$0.06 in Fig. 5. We emphasize again that
the profile shown in Fig. 7"a# does not represent the actual
magnetization response—this is shown in Fig. 2"a#—but
rather the dominant fluctuation mode.

The situation changes dramatically at D /J%0.1 %Figs.
7"c# and 7"d#&, where the system develops long-ranged order
with the majority of spins participating in the Q=0 semiclas-
sical 120° state. The data show clearly that the crossover
from the dimerlike regime at small D /J to the ordered phase
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FIG. 5. "Color online# Eigenvalues !i of the correlation matrix
"divided by N# as a function of D /J for N=14 "circles#, 17 "down
triangles#, 20 "squares#, 23 "up triangles#, and 26 "diamonds#. Here
B=J /20 and &=30°, but the results for B=0 are identical.
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FIG. 6. "Color online# Scaling with system size of the largest
eigenvalue !m "divided by N# of the correlation matrix. The solid
lines correspond to the expected 1 /!N scaling of the leading cor-
rections to the thermodynamic limit in the 120° ordered phase.
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FIG. 7. "Color online# Magnetization profile for the 26-site
kagome cluster in zero field, corresponding to the eigenvector vm of
C with the largest eigenvalue !m. The in-plane moments are given
by the real and imaginary parts of vm. Note that this mode is unique
up to a global U"1# rotation which is related to the arbitrary phase
of vm.
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Fig. 4: Correlation matrix analysis of the local magnetizations for the AFM Heisenberg model
on a kagome lattice with DM interactions. Left: scaling of the largest eigenvalue of Cij with
system size. Right: Magnetization profile obtained from the eigenvector of Cij belonging to
the largest eigenvalue for different values of the DM interaction. The red arrows indicate the
in-plane moments, given by the real and imaginary part of the entries of the eigenvector, re-
spectively; the blue lines are the local bond strengths, which are computed separately (Figures
taken from [74]).

is very difficult to treat large system sizes due to the lack of symmetries. Nevertheless, using
this analysis, it is possible to gain information on the possible LRO realized in the thermody-
namic limit, which illustrates that this approach to computing LRO is suitable also for difficult
situations.

2.2 Symmetry protected topological phases in quantum magnets:
the AKLT state

As we have seen, states of matter are usually characterized by the Landau paradigm, in which
a continuous phase transition and the associated phases are obtained by the SSB of one (or
more) symmetries of the Hamiltonian and the emergence of a local order parameter [85]. This
paradigm has been the framework for understanding phases of matter and phase transitions,
until in the 1980s experiments discovered the integer [86] and later the fractional quantum Hall
effect [87, 88]. These systems possess transitions between states with different conductivities,
which apparently are not associated to any SSB. Subsequently, and also motivated by the dis-
covery of high-temperature superconductivity [2], a new type of ’order’ was proposed whose
phenomenology is not due to the finiteness of some local order parameter, but in which the
phases are characterized by global characteristics, like the degeneracy of the ground state or en-
tanglement of the system. This type of order has been coined topological order [89,90,33] since
the behavior is captured by topological field theories [91]. The main characteristics of topologi-
cally ordered phases are the presence of degenerate ground states, of gapless edge states, and the
characterization in terms of topological invariants which are integer numbers capturing ’topo-
logical’ properties of the system and which vary in the different phases. One characteristic of
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topological phases is that they do not change under continuous deformations of the system (i.e.,
the topological invariant does not change unless one hits a critical point at which the system
experiences singular behavior) and are, hence, protected against local perturbations like, e.g.,
noise. This makes these states very interesting for quantum computation in which one of the
biggest challenges is to protect the entanglement between qubits from decoherence effects due
to local noise induced by the environment. This approach is coined topological quantum com-
putation and is described in the review article [33]. A lot of research is, therefore, devoted to
uncovering such topological phases in quantum magnets.
At the present, obtaining a complete characterization of topological phases (including interact-
ing systems) is an ongoing topic of research. However, one can use the following approach to
distinguish between different gapped phases [92, 93]: a gapped quantum phase is characterized
by ground states of Hamiltonians, which can be smoothly deformed into each other without
closing the gap. An illustrative example is the S = 1 BLBQ chain (11), which at zero magnetic
field displays a gapped phase for−π/4 < θ < π/4; even though at θ = 0 the Hamiltonian looks
much simpler, the system in this parameter range is in the same phase since the gap closes only
at the endpoints of this region. This property can be rephrased by saying that two ground states
belong to the same phase if they are related by a local unitary transformation. Since local uni-
tary transformations can only change local entanglement properties but not global ones, states
in the same topological phase are characterized by the same ’long-range entanglement’. Based
on these considerations, the following gapped phases can be identified:

1. Phases with ’short-range entanglement’:

(a) Topologically ’trivial’ product states.

(b) Symmetry protected topological phases (SPT). In these phases, local unitary trans-
formations exist which preserve the symmetry of the state. Short-range entangled
phases in which such a symmetry is broken are well described by Landau theory.
Note that phases without local order parameter can still belong to different SPT
phases if they are characterized by different symmetries, even though in Landau
classification they would belong to the same ’disordered’ phase.

2. ’True’ topological order with ’long-range’ entanglement, existing only in spatial dimen-
sions D ≥ 2 [92]. These phases are characterized by anyonic fractionalized excitations,
which obey a generalized quantum statistics and are neither fermions nor bosons [33].

It is possible to characterize topological order by considering entanglement properties [94, 95],
and tensor-network approaches have been introduced (see, e.g. [96] and the viewpoint [97]).
While it is possible to investigate for ’true’ topological order in 2D using the DMRG (for studies
on the kagome lattice see, e.g. [35,37,36]), often SPT phases are investigated, which, according
to the above said, are the only type of topological phases encountered in 1D. A prototypical
example for an SPT state in quantum magnets is the so-called AKLT state [98] (named after the
authors of the original publication, Affleck, Kennedy, Lieb, and Tasaki), which is depicted in
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Fig. 5: Sketch of the AKLT state (figure taken from Wikipedia).

Fig. 5. It is the ground state of the BLBQ model (11) forB = 0 and tan(θ) = 1/3. It has several
peculiar properties: the spin-1 degrees of freedom on the lattice sites are understood as being
composed of two spin-1/2 degrees of freedom, which between neighboring lattice sites form
singlets. At the edges, effective, free spin-1/2 degrees of freedom remain and form edge states –
the spin-1 degrees of freedom ‘fractionalize’ to the ‘smaller’ spin-1/2 degrees of freedom. Since
the presence of such edge states is typical for an SPT phase, one can use this to identify and
characterize such phases, as seen further below.
SPT phases can numerically be detected by identifying an excitation gap, zero local order pa-
rameters, and degeneracy of the entanglement spectrum [99]. As discussed in [100, 95], in
an SPT phase all states of the entanglement spectrum are non-trivially degenerate due to the
symmetry in the system. Other indications for topological properties can be obtained from
diagonalizing transfer matrices from which one can obtain directly the projective representa-
tions of the symmetry group [101], which can be used to further characterize SPT phases (see
also [102] for a nice discussion of this aspect). According to [102–104], it is possible to dis-
tinguish between different SPT phases by applying the corresponding active operators on the
edge states: if the correct active operator is coupled to the edge of the system, the ground state
degeneracy is lifted. This can indeed be used to distinguish the different SPT phases in quantum
magnetic systems obtained from the projective representations [105]. Numerically, it is easily
seen that applying the ’wrong’ active operator does not lift the ground state degeneracy, while
applying the correct one leads to different energies of the ground states with a difference far
greater than the numerical accuracy.

2.3 Dynamical properties:
inelastic neutron scattering, electron spin resonance

One way to characterize a state is to weakly perturb it and to monitor its response. In this way,
information beyond the LRO in the system can be obtained, and an insight about the elementary
excitations in the system can be obtained. This is the realm of linear response theory. To study
such a situation is interesting from many points of view. For example, the aforementioned spin
liquids do not show any sign of LRO. Any investigation based on this will, therefore, not find
any interesting properties and overlook that we are, indeed, facing a very rich quantum state
of matter. However, the response of such states to weak perturbations is determined by the
interactions in the system, hence these type of experiments are helpful for gaining insight into
the true nature of the system.
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(a) (b)

Fig. 6: (a) Crystal structure of Cu-PM (copper pyrimidine dinitrate), a S = 1/2 spin chain ma-
terial with DM interactions and alternating g-tensor. (b) Comparison of ESR spectra (symbols)
and DMRG results (solid line) (Figures taken from Ref. [106]).

From the experimental side, inelastic neutron scattering is one of the most important, direct
probes for dynamical properties of quantum magnets. Since the neutron is charge neutral, one
can perform the investigation such that only magnetic degrees of freedom are probed. The
coupling of the magnetic moment of the neutron to the magnetic moments in the material allows
one to measure the dynamical structure factor, which can be defined via

Sα,α(k, ω) =
1

N

N∑
j=1

e−ik(j−N/2)
∫ ∞
−∞

dt eiωt
〈
Sαj (t)SαN/2(0)

〉
.

Here, the system contains N spins, α = x, y, z, and we assume translational invariance. These
experiments can be performed also at high magnetic fields, so that the excitation spectrum of
quantum magnets for different phases can be investigated.
Another interesting type of experiments are electron spin resonance experiments (ESR), which
give access to the imaginary part of the dynamical structure factor in the long wavelength limit
k → 0. An example for the ESR spectrum of a spin-chain material with DM interactions is
shown in Fig. 6. As can be seen, different types of excitations (e.g. solitons, breathers) can be
identified by comparing to an effective field theory (in this case a sine-Gordon theory).

3 Nonequilibrium dynamics

So far we considered static properties of quantum magnets, which uncover a multitude of inter-
esting phenomena. It is only natural to ask what happens if one now excites such a system, e.g.,
with a laser pulse, so that its state evolves in time. The typical questions one can ask is how the
order parameters decay in time, and what nature the equilibrium state will be. Also, one can ask
the reverse question: is it possible to induce order (e.g. magnetization) by exciting the system?
These are recent topics of study and in this final section of this book chapter we give a short
glimpse on some of the ongoing developments.
In the mid 1990s, investigations were performed on thin magnetic films, which were excited
with an ultrashort laser pulse of duration 60 fs (see, e.g., [107] for a review). The magnetiza-
tion was measured using the magneto-optical Kerr effect (MOKE), and, since the signal was
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thought to be proportional to the magnetization, they were able to measure the time evolution
of the magnetization after such a short excitation. Interestingly, they found that the magne-
tization decreased very quickly (on a time scale < 1 ps), but then recovered again. Later, it
was argued that the MOKE signal is not necessarily proportional to the magnetization in such
a nonequilibrium situation, but these results were reproduced using other techniques. This be-
havior raises many questions. One main point is to understand where the angular momentum,
which is underlying to the magnetization, dissipates to, and how the light-matter interaction
triggers the dynamics. Typically, a three temperature model is introduced: the energy absorbed
from the laser flows to (i) the electrons, (ii) the lattice vibrations, i.e., creation of phonons, and
(iii) the spin degrees of freedom of the system, by creating magnons. Often, in the theoretical
studies, time-dependent density functional theory is applied. However, despite now about 30
years of research, no consensus has been reached on the mechanism of the demagnetization
dynamics [107]. One possibility would be to address many-body spin systems like the ones
described in this book chapter; however, since the electron and phonon degrees of freedom
also seem to play an important role in the magnetization dynamics, one would need to extend
the models correspondingly. Treating such complicated many-body models is a challenge for
ongoing and future research. However, it would be interesting to see if other types of order,
e.g., spin-quadrupolar order in spin-1 systems, could show similar time dependence, or if the
demagnetization dynamics only affects magnetic order.

In materials with two different types of magnetic ions (e.g. Heusler compounds), optical exci-
tation can lead to an effective transfer of spins from one atomic species to the other [108]. This
effect was coined ‘optically induced spin transfer’ (OISTR) [109, 110] and builds on the obser-
vation that, even in the presence of SOC (which, as discussed in Sec. 1.3, does not preserve Sz

as good quantum number) on very fast time scales . 11 fs no spin flips happen. Instead, the
spin is simply transferred to the neighboring ion, leading to a change in the magnetization pat-
tern, and the charge distribution on the lattice. At later times, SOC may come into play and may
cause demagnetization dynamics, but at least on the very short time scale the OISTR mechanism
leads to a metastable or transient state, which is different from the initial state. Such a situation
can also be studied in Hubbard-type models with an underlying magnetic microstructure, where
OISTR leads to the weakening of the original spin structure, but induces charge density wave
type structures, which prevail until further effects like SOC or phonons come into play [111].

Other interesting effects when going out-of-equilibrium are the possibility to realize (transient)
long-range order. A famous example is the description of transient superconductivity in pump-
probe experiments [112]. Also, the formation of magnetic LRO has been reported [113]. For
example, in the manganite material GdSrMnO3, a photo-induced transition to a ferromagnetic
metallic phase within 200 fs has been observed [114] and can be described by first-principles
approaches [115]. It will be interesting to further study the possibility to realize (transient)
LRO in quantum magnets, in particular regarding the realization of the unconventional states
discussed in this contribution. Maybe some of the LRO that is possible in interacting spin
systems, but hard to realize in ground states, can be found in such nonequilibrium setups in
future investigations.
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4 Conclusions and outlook

Quantum magnetism is a vast field of research, and in this contribution only some aspects
could be discussed. What remains appealing is the possibility to identify by mathematical
considerations further order parameters, which can help to identify novel types of LRO, for
which the spin-nematic order is one example. The newer developments for nonequilibrium
systems are a promising way to go, since there many basic questions on the nature of transient
order are still under investigation. It will be interesting to see whether in such situations novel
behavior can be identified, and if it will be long-lived, so that it does not vanish in less then a
blink of the eye, but can be enjoyed on a useful time scale.
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[6] K. Takatsu, W. Shiramura, and H. Tanaka, J. Phys. Soc. Jpn. 66, 1611 (1997)
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K. Habicht, and P. Vorderwisch, Nature 423, 62 (2003)

[8] H. Kageyama, K. Yoshimura, R. Stern, N.V. Mushnikov, K. Onizuka, M. Kato,
K. Kosuge, C.P. Slichter, T. Goto, and Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999)

[9] K. Kodama, M. Takigawa, M. Horvatic, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara,
F. Becca, and F. Mila, Science 298, 395 (2002)

[10] M.P. Shores, E.A. Nytko, B.M. Bartlett, and D.G. Nocera,
J. Am. Chem. Soc. 127, 13462 (2005)

[11] H.T. Diep (ed.): Frustrated Spin Systems (World Scientific, Singapore, 2004)
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1 Introduction

The single hydrogen atom has a special significance in quantum mechanics, as exact analyti-
cal solutions to the Schrödinger equation can be presented already in elementary introductory
courses. Small, but important deviations between theory and experiment have also played a cen-
tral role in the development of quantum field theory and quantum electrodynamics. However,
under normal conditions on earth, atomic hydrogen, H, is unstable forming molecules, H2. The
theoretical description of molecular hydrogen is immediately getting more challenging than
the atom, as the quantization of the nuclear motion must be taken into account. Separation
of electronic and nuclear degrees of freedom can be achieved within the adiabatic or Born-
Oppenheimer approximation [1], based on the high mass ratio mp/me ≈ 1836 between protons
and electrons of mass mp and me, respectively. Vibrational excitation energies of the isolated
H2 molecule are around ∼ 6000 K, whereas rotational energies are much smaller ∼ 200 K.
Since the nuclei of the molecule are identical, the nuclear spin has to be taken into account as
well, leading to two different molecular species. Para (ortho) H2 is characterized by even (odd)
rotational quantum numbers. A distinction between these molecular species becomes important
around and below room temperature, whereas nuclear quantum effects may extend up to several
thousands of Kelvin.
At zero pressure and low temperatures, hydrogen is in the solid state forming a molecular crystal
with almost freely rotating molecules, translationally localized around crystalline lattice sites
but with large zero point motion [2]. Up to at least six different solid phases are experimentally
known [3]. A sketch of the phase diagram for temperatures and pressures reached by static
diamond anvil cell (DAC) experiments is shown in Fig. 1. Most of the transition lines are
inferred from changes in infrared or Raman spectra whereas direct information on the crystal
structures is almost entirely missing. Only in phase I, measurements of the Bragg peaks by
X-ray spectroscopy have recently confirmed m-HCP at 300 K up to 250 GPa [4, 5].
Increasing pressure an insulator to metal (IM) transition is expected. Originally predicted
around 25 GPa [6], the search for metallic hydrogen has been one of the main driving forces
in high-pressure physics. Evidence for a semi-metallic state at 350 GPa below 200 K has been
reported [7], a discontinuous change of the direct gap observed near 425 GPa [8] indicates the
transition to a ”good” metal. Earlier reports of metallic hydrogen at 495 GPa [9] has received
strong criticism [10,11]. Whether the IM transition occurs within the molecular solid or whether
it coincides together with a molecular dissociation transition to atomic hydrogen remains still
an open question.
Disappearance of lattice modes of Raman spectroscopy signalling melting of the crystalline
state [12] with a maximum around 1000 K showing a reentrant behavior of the liquid phase at
higher pressure. This experimental line coincides astonishingly well with theoretical predic-
tions based on Born-Oppenheimer molecular dynamics (BOMD) calculations with DFT-PBE
electronic energies using classical nuclei [13]. However, more recent calculations for quantum
nuclei using Path-Integral molecular dynamics with a machine learned force-field trained on
QMC data indicate melting at considerable higher temperatures [14].
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Fig. 1: Phase diagram of solid hydrogen as inferred from static compression experiments (solid
and dashed black lines). The solid black line shows the melting of the crystal as identified by the
disappearance of Raman active lattice modes [12]. The blue area indicates a semimetallic state
[7], with the closure of the direct gap [8] signalling the transition to metallic solid hydrogen
(red area). A reflective sample has been reported at 495 GPa [9–11]. Green circles report
signatures of a liquid-liquid phase transition from diamond anvil cell (DAC) experiments [15],
blue circles are CEIMC predictions [18] from the molecular (insulating) to the atomic (metallic)
liquid (Figure courtesy of C. Pierleoni).

Above melting, the fluid may either be in the molecular or atomic state with a possible first
order phase transition and a critical point at higher temperatures. Static compression experi-
ments using DAC [15] and dynamic shock wave experiments [16, 17] report evidence for this
liquid-liquid phase transition, supported by Coupled-Electron-Ion Monte Carlo (CEIMC) cal-
culations [18–20] and molecular dynamics calculations based on electronic variational Monte
Carlo energies [21, 22].

A proper discussion of the phase diagram of hydrogen can be found in Refs [2,3,23] and refer-
ences therein. The above discussion mainly serves to illustrate some of the main difficulties and
challenges theoretical and computational physics has to face when studying hydrogen. In the
following, I will give an overview over various Monte Carlo methods and the approximations
underlying CEIMC calculations, before briefly discussing some of the results obtained with.
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2 Computational methods – overview

In the region of phase diagram discussed above, the properties of hydrogen are up to very high
accuracy described within the following non-relativistic Hamiltonian

H = T + V (1)

T = TN + Te with TN = − ~2

2mp

∑
I

∇2
I and Te = − ~2

2me

∑
i

∇2
i (2)

V (r,R) =
∑
i<j

e2

|ri−rj|
+
∑
I<J

e2

|RI−RJ |
−
∑
i,I

e2

|ri−RJ |
(3)

where r and R denotes the set of electronic and nuclear positions, ri (RI) labels the individual
coordinate of electron i (nucleon I) and summations over i (I) extend over all Ne electrons
(Nn nuclei). Electrons and nucleons interact via the Coulomb interactions between themselves
and each other, e is the electron charge. The physical problem is then set up by the Schrödinger
equation for the many-body wave function, imposing appropriate boundary conditions and sym-
metries due to particle statistics.
We are interested in the description of a macroscopic system characterized by the electronic
density n=Ne/V, equal to the atomic number density due to charge neutrality, and tempera-
ture T. Density is frequently parametrized by the Wigner-Seitz parameter rs = a/aB where
n = 3/(4πa3) and aB is the Bohr radius. At zero pressure and 4.2 K, the density corresponds to
rs ' 1.768 for p-H2. Periodic boundary conditions on the density distribution in the simulation
cell are used to eliminate surface effects, and the Coulomb 1/r interaction in Eq. (3) has to be
replaced by the appropriate expressions, e.g., using Ewald’s expressions [24–26].
Despite the simplicity of the Hamiltonian, Eq. (1), the extremely rich phase diagram indicates
to us that a quantitative description/prediction will be challenging. In fact, straightforward ap-
proaches to directly determine hydrogen properties in a large part of the phase diagram are
beyond our actual capacities, and we will introduce several approximations. These approx-
imations are in general uncontrolled, in the sense that we will not be able to improve them
systematically until a given precision is reached. However, our aim should be to estimate and
quantify the systematic uncertainty stemming from the various approximation, if necessary.
Experimental data should not be used to validate these approximations, rather, deviations with
experiment should trigger reexaminations, as well as questioning the underlying description and
modelling of experimental setups and their interpretation.

2.1 Path-integral Monte Carlo calculations

Path-Integral Monte Carlo (PIMC) methods give access to sample the elements of the thermal
density matrix

ρ
(
R′r′,Rr; β

)
=
〈
R′r′|e−βH |Rr

〉
(4)

from which we can calculate static expectation values of any operator at inverse temperature
β = 1/kBT.
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However, since functions of operators are in general defined via their spectral representation,
a direct evaluation of Eq. (4) requires knowledge of all energy eigenfunctions. Based on the
Trotter formula [27]

e−βH = lim
M→∞

(
e−τT e−τV

)M
, τ = β/M (5)

the path integral formulation [28] circumvents explicit diagonalizations and the density matrix
can be written as

ρ
(
R′r′,Rr; β

)
= lim
M→∞

∑
P

(±1)|P|
∫ P(R′r′)

Rr

DR[τ ]Dr[τ ]

( √
memp

2π~2β/M

)3M

e−S
p
M (R[τ ]r[τ ];β) (6)

with
∫
DR[τ ]Dr[τ ] =

∏M−1
m=1

∫
dRm

∫
drm and

SpM(R[τ ]r[τ ]; β) =
M−1∑
m=0

(
mp

(
Rm+1−Rm

)2
2~2(β/M)

+
me

(
rm+1−rm

)2
2~2(β/M)

+ (β/M)V (rm,Rm)

)
(7)

setting (R0, r0) = (R, r) and (RM , rM) = P(R′, r′) and the summation extends over all
possible permutations P for correct (anti-)symmetrization. Integrals involved in the discretized
path integral as well as the summation over permutations can then be sampled by Monte Carlo
methods [29, 30].
The negative sign occurring for odd permutations of fermions will strongly affect the signal
to noise ratio of direct Monte Carlo evaluations [23]. Such quantum statistical effects will
be important below the Fermi temperature. For an ideal gas of electrons, we have T eF '
581 454 r−2s Kelvin, such that T/T eF . 1% in the our region of interest, Fig. 1. The Fermi
temperature of free protons, T pF , is considerably lower, T pF = (me/mp)T

e
F ' T eF/1836, so that

inter-molecular exchange effects are expected to be negligible for establishing the phase dia-
gram in the central region of Fig. 1. However, proper intra-molecular exchanges for para and
ortho H2 may need to be taken into account, certainly at the lower temperatures around and
below the rotational energy excitations ∼ 200 K.

2.2 Adiabatic approximation

The path-integral expression above, Eq. (6) with Eq. (7), is based on the so-called primitive
approximation of the short time (or high temperature) density matrix

ρ
(
R′r′,Rr; τ

)
≈
〈
R′r′

∣∣e−τT e−τV ∣∣Rr
〉
∼ e−S

p
1 (R

′r′,Rr;τ) (8)

choosing τ sufficiently small, such that residual effects due to the commutator [T, V ] can be
neglected. Different short-time approximations can be chosen which may allow us to reach the
same precision within larger time steps, τ , so that less discretizations M of the path are needed
for our computations [29].
From physical considerations we expect that the Born-Oppenheimer approximation should pro-
vide an excellent description in our region of interest. We therefore choose a different short
time approximation, ρ(R′r′,Rr; τ) ≈ ρBO(R′r′,Rr; τ) with

ρBO
(
R′r′,Rr; τ

)
=
〈
R′r′

∣∣e−τTN e−τHe
∣∣Rr

〉
=
〈
R′r′

∣∣e−τTN ∣∣Rr′
〉〈
Rr′
∣∣e−τ(Te+V )

∣∣Rr
〉

(9)
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where matrix elements of e−τTN are independent of electronic degrees of freedom and those of
e−τ(Te+V ) are now diagonal in the nuclear coordinates. Denoting Ψn(r|R) the eigenfunctions
of energy En(R) of the Born-Oppenheimer Hamiltonian He = Te + V, the dependence on R

enters only parametrically, we get

ρBO
(
R′r′,Rr; τ

)
∼
(

mp

2π~2τ

)3/2∑
n

e−m(R−R′)2/2~2τ−τEn(R)Ψ ∗n(r′|R)Ψn(r|R). (10)

In the resulting discretized path integral, we can then integrate out the electronic degrees of
freedom (setting rM=r0 and integrating over r0)

ρ(R′,R; β) = lim
M→∞

∑
P

(±1)|P|
∫ P(R′)

R

DR[τ ]Dr[τ ]
∏
m

ρBO(Rmrm,Rm+1rm+1; τ)

= lim
M→∞

∑
P

(±1)|P|
∫ P(R′)

R

DR[τ ]

(
mp

2π~2β/M

)3M/2∑
n

e−S
BO
Mn(R[τ ];β) (11)

with

SBOMn(R[τ ]; β) =
M−1∑
m=0

(
i(Rm+1−Rm) ·An(Rm+1,Rm) +

mp(R
m+1−Rm)2

2~2(β/M)
+ (β/M)En(Rm)

)
(12)

where the (real-valued) vector potential An is defined by the electronic overlap integrals∫
dr Ψ ∗n(r|R′)Ψn(r|R) ' e−i(R

′−R)·An(R′,R) (13)

for R′ → R and we have neglected non-adiabatic transitions between different electronic states.
In general, we should have kept terms of order (R′−R)2 ∼ ~2β/Mmp to recover the exact
path-integral in the limit M → ∞. Neglecting these terms which are suppressed by 1/mp

corresponds to the Born-Oppenheimer approximation.
In the following, we will focus on the diagonal part of the density matrix, ρ(R,R; β) which
determines most of the basic thermodynamic observables. Further, we will assume sufficiently
high temperatures to neglect proton exchanges, and all proton paths are closed. Then, the
phase term in Eq. (12) only contributes when a Berry phase is acquired during the trajectory
in imaginary time. In general, this requires exceptionally high symmetry configurations, so
that this adiabatic phase is frequently dropped in the Born-Oppenheimer sampling of solids and
liquids.
For T � T eF , we may further neglect any contributions from electronic excitations, n > 0, and
restrict to configurations within the ground state Born-Oppenheimer surface E0(R). However,
we still have to resolve the electronic ground state problem to obtain E0(R) for given nuclear
positions.
Ab-initio or first-principles molecular dynamics methods [31] are frequently based on electronic
structure calculations using density functional theory (DFT). How to decide which DFT func-
tional should be used? Frequently, comparisons with experiments gauges the choice of DFT
functional. Since we want to avoid this criterium, we need some other strategies to calculate the
Born-Oppenheimer electronic energies.
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2.3 Quantum Monte Carlo calculations at zero temperature
2.3.1 Variational principle

Quantum Monte Carlo methods at zero temperature are based on the variational principle

E0 ≤ ET ≡
〈ΨT |He|ΨT 〉
〈ΨT |ΨT 〉

(14)

where ΨT is any trial wave function obeying the same boundary conditions as our true (Born-
Oppenheimer) ground state wave function Ψ0. Here, and in the following we suppress the
parametric dependence on the nuclear coordinates.
The simplest anti-symmetric trial wave function forN electrons is detn ϕn(ri), a Slater determi-
nant, for spin-polarized electrons, whereas it reduces to a product of two determinants, one for
each spin-component, for a gas of unpolarized electrons. Optimizing the variational energy ob-
tained by a Slater determinant with respect to the orbitals, ϕn(r) gives the Hartree-Fock energy.
To go beyond the Hartree-Fock approximation, we can add explicit pair correlations [32–35] to
our wave function

ΨSJ(r) = det
ni

ϕn(ri) e
−U(r). (15)

The frequently called Jastrow factor U(r) is symmetric under electron exchanges, e.g. U =∑
i<j uee(|ri−rj|) +

∑
iJ uep(|ri−RJ |) provides an explicit, size consistent and translational

invariant form containing electron-electron and electron-proton correlations. In addition to the
orbitals ϕn(r), the one dimensional functions uee(r) and uep(r) need also to be determined by
minimizing the resulting energy expectation value.
Backflow wave functions introduce an explicit dependence on all electron coordinates r into the
Slater determinant [36–38]

Ψbf(r) = det
ni

ϕn(qi(r)) e
−U(r) (16)

by the use of backflow coordinates qi(r) which need to be symmetric with respect to electron
exchange holding i fixed. A simple form for liquid and solid hydrogen [39] is

qi = ri +
∑
j 6=i

(ri−rj)bee
(
|ri−rj|

)
+
∑
J

(ri−RJ)bep
(
|ri−RJ |

)
with one dimensional functions bee(r) and bep(r), ultimately determined by energy minimiza-
tion. Systematic improvement for many-body correlations either explicitly [40] or implicitly
via an iterative (deep) structure [41–44] are possible, as well as combined with neural network
representations [45–50]. In addition to providing lower energy expectation values, better trial
wave functions also lower the variance of the energy,

σ2
T =
〈ΨT |H2|ΨT 〉
〈ΨT |ΨT 〉

−
(
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

)2

(17)

which vanishes in case ΨT coincides with an exact energy eigenstate. Calculations with different
classes of trial wave functions can be used for heuristic extrapolations of ET to zero variance,
thus providing an estimate for the residual energy error of the best trial wave function [41–43].
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2.3.2 Variational Monte Carlo calculations

All of the wave functions described before have in common that the evaluation for a given
configuration r is sufficiently fast for systems ranging from around ten to thousands of electrons.
However, we still have to calculate and optimize ET . Whereas the Hartree-Fock energy can still
be calculated by deterministic quadrature, the integrals involved in the calculations based on
correlated wave functions, e.g., the Slater-Jastrow and backflow forms, involve integrations
over 3N dimensions

ET =

∫
dr |ΨT (r)|2EL(r)∫
dr |ΨT (r)|2

(18)

where we have introduced the so-called local energy

EL(r) ≡ 〈r|H|ΨT 〉
〈r|ΨT 〉

=
HΨT (r)

ΨT (r)
(19)

in the position representation ΨT (r) ≡ 〈r|ΨT 〉.
In variational Monte Carlo (VMC) calculations [51–53], the standard Metropolis algorithm is
used to sample the 3N dimensional configuration space r according to a weight ∼ |ΨT (r)|2 via
Markov chains. An estimate of the trial energy is then obtained by averaging the local energy
over the sampled configurations

ET = Er∼Ψ2
T
[EL(r)]. (20)

This estimate is unbiased, but affected by a stochastic error of order∼
√
σ2
T/NMC, controlled by

the number of independent Monte Carlo samples, NMC. Better wave functions, not only lower
the energy expectation value, but also reduce the statistical error of the VMC calculations when
reducing the variance towards an exact eigenstate (zero variance principle).

2.3.3 Stochastic optimization

The variational principle is of fundamental importance, since it allows us to compare the ”qual-
ity” of different trial wave functions and select our ”best” one, based on an objective criterium,
without invoking comparison with experiment. Within VMC we can evaluate the energy of
broad classes of wave functions, those which we can evaluate efficiently on our computer.
Above, we have described generic forms of trial wave functions, all of them containing one
or several unspecified functions. Any of these (one dimensional) functions can be expanded in
a basis set providing a parametrization of the wave function.
Our trial wave function ΨT (r|α) thus contains potentially a very large number of parameters
α. The variational principle allows us to fix them by searching for the minimum of the energy
expectation value ET (α). This is almost a standard minimization problem, non-linear in α and
intrinsically affected by stochastic noise, since ET (α) is obtained via Monte Carlo integration.
Ignoring the problem of noise for the moment, one would expand ET (α+δα) up to second
order in small changes δα of our parameters and use some iterative method based on Newton’s
method

α← α−
(
∂2αET (α)

)−1
∂αET (α) (21)
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where ∂αET (α) denotes the gradient vector and ∂2αET (α) the second derivative (Hessian) ma-
trix, or some variant of it [54]. Apart that the Hessian might be quite costly to calculate for large
number of parameters, the inversion is likely to be corrupted by the stochastic noise. Instead of
trying to reduce the noise as much as possible by using long MC runs, a simple gradient descent

α← α− ε ∂αET (α) (22)

with learning rate ε can be more efficient [55].
For a real trial wave function, the gradient vector of the trial energy is written as

∂αET (α) = 2

∫
drΨT (r|α)H∂αΨT (r|α)∫

drΨ 2
T (r|α)

− 2

∫
drΨT (r|α)HΨT (r|α)∫

drΨ 2
T (r|α)

∫
drΨT (r|α)∂αΨT (r|α)∫

drΨ 2
T (r|α)

= 2Er∼Ψ2
T

[(
EL(r|α)−ET (α)

)
∂α log ΨT (r|α)

]
(23)

where we have used that the Hamiltonian is hermitian to obtain an unbiased estimator in the last
line. The resulting stochastic gradient descent based on the Monte Carlo estimation of ∂αET is
guaranteed to converge to the minimal energy [55], even in the case of large stochastic noise.
Strategies based on stochastic gradient descent, also known as stochastic reconfiguration [56],
have been successfully used for minimizing very large set of variational parameters, and have
been combined with machine learning approaches more recently [57–59].

2.3.4 Projector Monte Carlo methods

Propagating a wave function in imaginary time Ψt(r) ∼
〈
r
∣∣e−tH∣∣ΨT〉, the energy expectation

value Et = 〈Ψt|H|Ψt〉/〈Ψt|Ψt〉 approaches the ground state energy of the same symmetry sector
exponentially fast in t. Imaginary time projection can be performed stochastically based on
the path-integral representation of the propagator ρe(r′, r; t) =

〈
r′
∣∣e−tHe

∣∣r〉 along the lines
discussed above. In the primitive approximation for ρe(r′, r; t) we get the variational path-
integral expression (VPIMC or PIGS for path-integral ground state techniques)

Ψ 2
t (r) ∼

∫
dr0
∫
dr2M

∫ r2M

r0
Dr[τ ] π(r[τ ]) δ(r−rM)∫

dr0
∫
dr2M

∫ r2M

r0
Dr[τ ] π(r[τ ])

(24)

with
π(r[τ ]) = ΨT (r0) e−S

p
2M (r[τ ];2t) ΨT (r2M). (25)

In contrast to PIMC for the diagonal density matrix, Eqs (6) and (7), where the paths are periodic
in imaginary time (r0= rM ), in VPIMC, Eq. (24), the paths are open with their ends weighted
by the trial wave function, ΨT (r0) and ΨT (r2M), and the ground state distribution is represented
in the central slice rM of the path.
The primitive approximation is rarely used in this context. As ground state projector Monte
Carlo methods are build on top of an optimized trial wave function, one usually wants to take
advantage, using it as a guiding wave function for importance sampling. For this we introduce
a similarity transformation of our Hamiltonian in the position representation

H̃e = eUT (r)Hee
−UT (r) = Te +

~2

me

∑
i

[∇iUT (r)] · ∇i + EL(r) (26)
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where ΨT (r) = e−UT (r) is used as a guiding wave function.
The propagator corresponding to H̃ can then be written as

ρ̃T (r′, r; τ)=
∑
n

〈
r′
∣∣(−τH̃e)

n
∣∣r〉

n!
=
∑
n

eUT (r′)
〈
r′
∣∣(−τHe)

n
∣∣r〉e−UT (r)

n!
= eUT (r′)ρ(r′, r; τ)e−UT (r)

(27)
which shows that ρ̃T and ρ are also related by a similarity transformation.
Let us now apply Trotter’s approximation to ρ̃T for small τ

ρ̃T (r′, r; τ) ≈
〈
r′
∣∣e−τTee−iτ∑j(~/me)[∇jUT ]·p̂je−τEL

∣∣r〉
≈
〈
r′
∣∣e−τTe∣∣r−τ f〉e−τEL(r) ≈ e−τEL(r

′)
〈
r′+τ f ′

∣∣e−τTe∣∣r〉
∼ e−me(r−r′−τ f ′)2/2~2τe−τ [EL(r

′)+EL(r)]/2 ≡ ρ̃DT (r′→ r; τ)e−τ [EL(r
′)+EL(r)]/2 (28)

where fi = (~2/me)∇i log ΨT (r) and we have used that e−ipδ/~|x〉 = |x+δ〉. We have split the
propagator into a drifted random walk, ρ̃DT , and a weight according to the local energy of the
configurations. However, our approximate expression involving ρ̃DT violates the exact relation
ρ̃T (r′, r; τ)/ρ̃T (r, r′; τ) = Ψ 2

T (r)/Ψ 2
T (r′). It is important to restore this symmetry, e.g. using

ρ̃DMC
T (r′→ r; τ) = ρ̃DT (r′→ r; τ) min

[
1,

Ψ 2
T (r)

Ψ 2
T (r′)

ρ̃DT (r→ r′; τ)

ρ̃DT (r′→ r; τ)

]
(29)

which coincides with Eq. (28) up to higher order terms in τ . We can now replace the weight of
the path, Eq. (25), involved in the projection with

π(r[τ ]) ≈ ψ2
T (r0)

2M−1∏
m=0

ρ̃DMC
T (rm→ rm+1; τ) e−τ [EL(r

m)+EL(r
m+1)]/2 (30)

Reptation Monte Carlo (RMC) [60] adds moves where new configurations are proposed by a
global shift in imaginary time, rm+1← rm (and, with equal probability, rm−1← rm), dropping
the configuration rm with m > 2M (m < 0), and creating a new configuration for the freed
place r0 (r2M ). This proposition is then accepted or refused following Metropolis’ rule ac-
cording to the change of the weight π(r[τ ]). The autocorrelation can be further reduced with
minimal modifications implementing an algorithm similar to a directed loop algorithm [61].
PIMC and RMC methods store the (discretized) path r[τ ], ground state properties are directly
accessible in the middle of the path, r(t/2), Eq. (24), in the limit t→∞, τ = t/2M → 0. Both
limits must be numerically extrapolated.
Let us now regard the mixed distribution Ψt(r)ΨT (r) at the external ends of the path which we
write

ft(r) = Ψt(r)Ψ0(r) ∼
∫
dr0
∫
drM

∫ rM

r0
Dr[τ ] πM(r[τ ]) δ(r−rM)∫

dr0
∫
drM

∫ rM

r0
Dr[τ ] πM(r[τ ])

(31)

πM(r[τ ]) = ψ2
T (r0)

M−1∏
m=0

ρ̃DMC
T (rm→ rm+1; τ) eτ{ET−[EL(r

m)−EL(r
m+1)]/2} (32)
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where we have introduced the trial energy ET , a so-far arbitrary constant corresponding to a
global weight, for later use. By noting that

πM+1(r[τ ]) = πM(r[τ ]) ρ̃DMC
T (rM→ rM+1; τ) eτ{ET−[EL(r

M+1)+EL(r
M )]/2} (33)

we can grow the projection time t based on

ft+τ (r) ∼ Er′∼ft(r′)
[
ρ̃DMC
T (r′→ r; τ) eτ{ET−[EL(r)+EL(r

′]/2}]. (34)

Diffusion Monte Carlo (DMC) calculations directly sample the limiting distribution t → ∞,
iterating Eq. (34). Starting from an initial VMC distribution of Nw ”walkers” r′ ∼ f0(r

′) ≡
Ψ 2
T (r′), the walkers are displaced by a drifted random walk according to ρ̃DMC

T (r′→ r; τ) ac-
quiring a weight w(r, r′) = eτ{ET−[EL(r)+EL(r

′]/2}. A branching process is usually added to
take this weight into account by keeping on average w(r, r′) copies of a propagated walker.
The trial energy ET must be chosen (and eventually adapted) to keep the population of walkers
asymptotically stable. The grows process of Eq. (34) will reach a stationary non-vanishing dis-
tribution, f∞(r) ∼ ΨT (r)Ψ0(r) for a trial energy coinciding with the true ground state energy
E0 [62, 63, 56].
Since DMC can be implemented on top of VMC with very few modifications, it is by far the
most applied zero temperature projection method. However, the stationary distribution f∞(r)

does not correspond to the ground state density unless ΨT ∼ Ψ0. Thus, general ground state
observables are not directly accessed, apart from the energy where

E0 = lim
t→∞

〈Ψt/2|H|Ψt/2〉
〈Ψt/2|Ψt/2〉

= lim
t→∞

〈ΨT |H|Ψt〉
〈ΨT |Ψt〉

= Er∼f∞EL(r) (35)

provides an unbiased estimator of the true ground state energy.
DMC calculations need to be extrapolated to the limit of vanishing time step, τ → 0, and an
infinitely large population of walkers, Nw → ∞. In particular, the bias due to the finite size
of the population will eventually grow strongly with system size. Depending on the quality of
the trial wave function, the scalability of DMC to converge to the ground state energy of large
systems may be questionable [64].

2.3.5 Fixed-node approximation

Quite generally, the overall ground state of any (regular) Hamiltonian, is nodeless and sym-
metric with respect to particle exchange. Thus, all projection Monte Carlo methods described
above can be directly applied to obtain the ground state of a system containing N bosons. This
is not the case for Fermions, since the ground state wave function of a Fermi system must be
anti-symmetric,

ΨF (. . . , ri, . . . , rj, . . . ) = −ΨF (. . . , rj, . . . , ri, . . . ), for any i, j (36)

with nodes where Ψ(r) = 0, e.g., when ri= rj . Thus, in general, the ground state of fermions
is never the lowest eigenstate of the Hamiltonian of the system. Only in particular situations
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which we do not address here, e.g., for some particular Hamiltonian in one spatial dimension,
it can be degenerate with the bosonic ground state.
It is possible to extend the variational principle for the energy to some excited states, |Ψm〉
with Em > E0, imposing orthogonality of the trial wave function to all lower eigenfunctions,
〈ΨT |Ψn〉 = 0 for all n with En < Em. Since the fermionic ground state wave function is the
lowest eigenfunction in the space of anti-symmetric wave functions, orthogonality to states with
lower energy is guaranteed by symmetry. Since VMC based methods sample |ΨT (r)|2 ≥ 0, they
can be directly applied to Fermions by using anti-symmetric trial wave functions which obey
Eq. (36). All of the previously discussed trial wave functions are constructed manifestly anti-
symmetric based on determinants.
In contrast to VMC, Projection Monte Carlo methods stochastically sample Ψ0(r) which now
contains negative regions where the wave function cannot be interpreted as probability. Let us
try to represent a fermionic wave function, starting with

Ψ±T =
1

2

(
|ΨT |±ΨT

)
so that ΨT = Ψ+

T −Ψ
−
T , Ψ+

T ≥ 0, Ψ−T ≥ 0 (37)

and diffuse Ψ±T ≥ 0 separately. Using |ΨT | for importance sampling, e.g. in DMC, we obtain
the mixed distribution

f±t (r) =
∣∣ΨT (r)

∣∣Ψ±t (r). (38)

However, both Ψ±T do have some overlap with the bosonic ground state, ΨB, of energy EB,

Ψ±T =
1

2

(
cB e

−tEBΨB(r)± cF e−tEFΨF (r) + . . .
)

with cB/F =

∫
drΨB/F (r)|ΨT (r)|. (39)

We can now calculate the expectation value of some operator for the fermionic state as

〈O〉 =

∫
dr s(r)O(r)(f+

t −f−t )∫
dr s(r) (f+

t −f−t )
=

1

s̄

∫
dr s(r)O(r) (f+

t −f−t )∫
dr (f+

t +f−t )
(40)

where s(r) ≡ ΨT (r)/|ΨT (r)| = ±1 and

s̄ =

∫
dr s(r) (f+

t −f−t )∫
dr (f+

t +f−t )
=
c2F e

−tEF + . . .

c2B e
−tEB + . . .

. (41)

Therefore, we have
s̄ ∼ exp

(
−Nt∆E

)
(42)

where ∆E = (EF−EB)/N is independent of N for large systems. The mean sign s̄ in general
enters in the normalization of expectation values for physical observables. Assuming a finite
gap, E > 0, between the fermionic and bosonic ground state energy per particle, s vanishes
exponentially in Nt� 1. Since 〈s2〉 = 1, the variance approaches one in this limit

σ2
s = s2−s̄2 ≈ 1� s̄2 ∼ exp

(
−2Nt∆E

)
. (43)

In order to get the error bar of the sign ∼
√
σ2
s/NMC sufficiently small to resolve the value of

the average sign, we roughly need

NMC ∼
1

s̄2
∼ exp

(
2Nt∆E

)
(44)
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independent samples, increasing exponentially with N and t. This is the fermion sign problem.
Can we circumvent this exponential signal to noise ratio? Importance sampling DMC is based
on the overlap

f(r) = ΨT (r)Ψ0(r). (45)

Let us consider that we have found a trial wave function with exactly the same positive and
negative regions as the fermionic ground state we are looking for, so that f(r) ≥ 0 in the
full configuration space. In this case, if we impose f(r) ≥ 0 during the time evolution in
DMC, we expect that DMC converges to the exact fermionic ground state. What happens?
Looking at the drifted random walk created by the importance sampling, imposing f(r) ≥ 0

for all r, we reject any move r → r′ with ΨT (r)ΨT (r′) < 0. Our population of walkers can
be separated into two sets, positive walkers at r+ which satisfy ΨT (r+) ≥ 0, and negative
walkers at r− with ΨT (r−) < 0. Positive and negative walkers are separated by the nodal
surface s where ΨT (r=s) ≡ 0, and it is enough to know the exact nodal surface. Note that the
nodal surface r is a hypersphere in Nd−1 dimensions where d is the spatial dimension. For
any sufficiently regular anti-symmetric trial function, applying the permutation operator to any
positive configuration, we obtain a negative walker, and vice versa. It is therefore sufficient to
sample only the positive space as long as we are only interested in physical observables which
commute with the permutation operator.
Everything above is fine, but we still do not know the nodal surface for almost all fermion
problems we are interested in, so let us search for the best approximation we can do. In the
fixed-node approximation, we simply impose the nodes of a given trial wave function. Once
started with positive walkers, our fixed-node DMC algorithm will converge to an eigenfunction
of the Hamiltonian

HΨFN(r) = EFNΨFN(r) , for all r in r+, the positive region with ΨT (r) ≥ 0. (46)

On the nodes s of ΨT we also have ΨFN(s) = 0, and we can continue the wave function to the
negative regions, r− using permutations ΨFN(r) = (−1)|P | ΨFN(Pr), where the permutation P
can be determined from solving ΨT (r) = (−1)|P | ΨT (Pr) for P. As long as ΨT is a sufficiently
regular fermionic trial wave function, we can reach all configuration space by this procedure,
and the continued ΨFN is a continuous anti-symmetric wave function [65].
Unfortunately, the partial derivatives of the constructed FN wavefunction with respect to ri are
in general not continuous at the nodal surface. The variational principle does not directly apply,
since the FN wave function is outside the variational space of wave functions (continuous wave
functions with continuous first derivatives). However, we can smear out our wave function
at a distance ε close to the nodes to make them sufficiently smooth to apply the variational
theorem, so that the smoothed function provides an upper bound for the energy. This smoothing
will increase the absolute value of the curvature ∼ ε−1 close to the node and the Laplacian
of the kinetic energy will produce large absolute values, ∼ ε−1. However, since the wave
function vanishes as ε, the kinetic energy contribution of the smoothed wave function close
to the nodal region ∼

∫
ε
ψ∇2ψ ∼ ε vanishes. Therefore, the energy of our fixed-node wave
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function provides a true upper bound to the fermion ground state energy, EF , [66]

EF ≤ EFN =

∫
drΨFN(r)EL(r)ΨFN(r)∫
drΨFN(r)ΨFN(r)

. (47)

For many-body fermion problems, the fixed-node energies are the most accurate variational
values and routinely used in electronic structure DMC calculations [67].
As a generalization of the fixed-node approach, the fixed-phase approximation [68] is based on
a complex trial wave function

ΨT (r) = A(r)e−iϕ(r), with non negative amplitude A(r) ≥ 0 and real phase ϕ(r). (48)

For any given phase, we can then minimize the energy of the trial wave function for an explicitly
given phase, ϕ(r). However, since the phase is only well defined for non-vanishing amplitude,
we also have to fix the nodes of the amplitude and make the wave function single valued. An
argument similar to that above shows that the fixed-phase wave function provides also an upper
bound for the ground state energy in the same symmetry class as ΨT . Fixed-phase methods
are needed for treating twisted boundary conditions, see below, and for systems with broken
time-reversal invariance, e.g., including magnetic field effects.

2.4 Finite size effects

With the methods described above, we will be able to simulate systems containing N parti-
cles (electrons or protons), typically N . 103, and one might ask how such small systems
may faithfully reproduce material properties in the bulk. To eliminate surface effects, periodic
boundary conditions are in general used. Still, residual effects of the underlying finite simula-
tion cell remain and the extrapolation to the thermodynamic limit represents one of the major
sources of bias. Heuristically, for classical particles, interacting via short-range forces exponen-
tial convergence may be expected once the size of the simulation cell exceeds the correlation
length. Large systems are needed approaching phase transitions where the correlation length
diverges, and care is needed to correctly describe ordered phases which are in general sensitive
to boundary conditions. Methods to address finite size effects having their origin in structural
formation have been developed in the context of classical molecular dynamics or Monte Carlo
calculations [25, 26]. In the following we will focus on finite size effects of electronic origin.
As discussed previously, all temperatures shown in Fig. 1 are much lower than the Fermi tem-
perature of electrons, a typical situation in condensed matter physics and material science. In
contrast to the nuclei, electrons are in a strongly degenerate quantum state where the wave
character dominates and the sensitivity to boundary conditions is strongly enhanced.
To illustrate finite size effects, let us consider a non-interacting gas of electrons at density
N/L3 ∼ k3F ∼ r−3s where kF is the Fermi wave vector corresponding to the highest occu-
pied single particle state. From the ratio of the Fermi wave length λF = 2π/kF to the size of
the box, λF/L ' 2.03N−1/3, we already see that size effects will be far from negligible even
for large simulation cells containing thousands of electrons or more.
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These size effects are rather well understood. They correspond to shell effects which are already
present for an ideal gas with a Slater determinant composed of the first N plane wave orbitals
of wave vectors ki on a discrete grid of spacing 2π/L. The corresponding kinetic energy per
particle, T 0

N = T 0
N/N = N−1

∑N
i=1(~ki)2/2me, extrapolates irregularly to the thermodynamic

limit due to the sharp Fermi surface. Imposing twisted boundary conditions on the wave func-
tion [69], Ψ(. . . , ri+L, . . . ) = eiϑΨ(. . . , ri, . . . ), the wave vectors of the plane wave orbitals
are collectively deplaced, corresponding to a shifted grid k + ϑ. Averaging the twist angle ϑ
over Nϑ twists on a dense grid in the Brillouin zone of the simulation cell then mimics the
thermodynamic limit integration limNϑ→∞N

−1
ϑ

∑
ϑ

∑
k f(k+ϑ) = V/(2π)3

∫
d3q f(q) for any

function f. However, in a many-body calculation with fixed number of particles, twist averaged
boundary conditions (TABC) do not necessarily restore a sharp Fermi surface, since exactly N
orbitals of lowest single particle energies are occupied for each twist, ϑ. To reproduce the exact
single particle energy with a sharp Fermi surface, the number of particles must be allowed to
vary with ϑ. This is implemented in grand-canonical twist averaging (GC-TABC) [70, 71].
Further important size effects are due to the long range Coulomb interactions. Let us write
down the potential energy per particle, considering only electron-electron interactions,

VN ≡ VN/N =
1

2V

∑
k 6=0

vk
(
SN(k)−1

)
(49)

where vk ∼ k−2 is the Fourier transform of the Coulomb potential, SN(k) = 〈ρk ρ−k〉/N the
static structure factor, and ρk =

∑
j e

ik·rj the Fourier transform of the density operator.
Since SN(k) is a local operator, we may expect fast convergence to the thermodynamic limit,
SN(k) ' S∞(k), by analogy of

∫
drΨ 2

N(r) to the configuration integral of classical systems.
Then, the dominate size error is given by the replacement of the discrete summation in recipro-
cal space by an integration is

V∞ − VN =

(∫
dk

(2π)3
− 1

V

∑
k 6=0

)
vk
2

(
S∞(k)−1

)
. (50)

Nonanalytical behavior of the integrand will dominate the quadrature error. Since vk diverges
at the origin, leading order corrections can be determined by focusing on the integration around
k → 0. The dominating term is actually the Madelung constant, e.g., the contribution of the
interaction of one particle with all its periodic imagines,

vM = −
(∫

dk

(2π)3
− 1

V

∑
k 6=0

)
vk
2
∼
∑
n6=0

1

|n|L
∼ N−1/3 (51)

and Ewald’s method should be used for evaluation [24–26].
Since S(k) ∼ k2 for charged systems, with the prefactor fixed by sum rules, the next order
term corresponds to the missing term with k = 0 in the summation on the rhs of Eq. (50),
limk→0 vkS(k)/V ∼ N−1. Similar to the Madelung constant, this term depends only on the
shape of the simulation cell. Both terms are therefore easily corrected for [70].
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Seemingly innocent, the quadratic behavior of S(k) around the origin is due to charge density
fluctuations, the plasmons. The size correction of the potential energy ∼ N−1 corresponds to
including half of the zero point energy of the long wavelength plasmons which do not fit inside
the simulation cell. Kinetic energy corrections will add the missing other half of the plasmon
energies [70].
For neutral quantum particles, these size corrections decay slightly faster ∼ N−4/3, since the
energy of the long wave length phonon modes vanish linearly in |k|, and one can show that
S(k) ∼ k in this case.
Understanding size effects can be a powerful tool. Using all information of calculations at a
single system size, allows us to make reliable predictions of thermodynamic limit values. This
is particularly important for calculations on hydrogen discussed later, where several calculations
varying system sizes are hardly affordable.
We have outlined above, that finite size effects on the electronic ground state energy are in-
trinsically connected to non-analytical behavior of the wave function. Beyond shell effects, the
behavior of the structure factor S(k) ∼ kα for k → 0 determines the exponent of the lead-
ing order power law E∞−EN ∼ N−(α+1)/3 for the total energy per particle, EN ≡ E/N in
the case of Coulomb interactions. Although the exponent as well as the prefactor of S(k) can
be determined via general considerations, inaccuracies in the trial wave function, either due to
limitations of the functional form or due to insufficient optimization, might lead to deviations
which then propagate to size effects.
Of course, such predictions depend crucially on the underlying assumptions, as well as on the
actual values for the asymptotics, e.g., extrapolating limk→0 S(k)/k2 from our finite size data.
Estimating the error of such procedures is a difficult task. Whenever affordable, numerical
extrapolations of different system sizes provide important cross-checks.
Pure numerical extrapolation of size effects is delicate as our computations actually only guaran-
tee upper bounds to the exact ground state energies. As the computational cost for optimization
as well as for projection methods like DMC strongly increase with system size, deteriorations
of the energies for large system sizes as compared to those predicted based on finite size cor-
rections, may actually indicate convergence problems in the data.
Here, we have focused on the error of the ground state energy. Similar considerations apply
for other observables, in particular for the pressure. Using the virial estimator for Coulomb
systems, size effects on the pressure can be obtained from the separate information on kinetic
and potential energy corrections.

2.5 Monte Carlo calculations with noisy action

Above we have discussed the main systematic errors of QMC calculations together with some
strategies to estimate and reduce them. However, when using QMC energies in Born-Oppenheimer
calculations for the nuclei, we also have to address the stochastic error. To be concrete, let
us discuss Monte Carlo calculations for classical nuclei distributed by the Boltzmann weight
∼ e−βER according to the Born-Oppenheimer ground state energies ER ≡ E0(R).
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Using QMC methods to determine electronic energies we do not have access to ER with ar-
bitrary precision. Our QMC calculations output ε = ER+r where r is the error due to the
stochastic noise. Assuming the error is Gaussian distributed, g(ε|ERσ

2
R) ∼ e−(ε−E)2/2σ2 with

variance σ2
R, the configuration integral can be written

Z =

∫
dR e−βER =

∫
dε

∫
dR e−βε−β

2σ2
R/2g(ε|ERσ

2
R) (52)

where the last equality can be verified by explicit integration over ε. It is then straightforward to
perform Monte Carlo calculations using the noisy energies ε. However, we need to replace the
(unknown) exact values of the energies, ER, by ε+βσ2/2 in the Metropolis acceptance ratio,
where ε is our QMC estimate of known variance σ2 ≡ σ2

R. We are thus able to obtain unbiased
samples of R according to the Boltzmann weight of the energies ER without ever calculating
them exactly!
It is instructive to formulate such an algorithm in more detail. Our Monte Carlo state vector is
actually specified by (R, ε) with weight

Π(R, ε) = e−βε−β
2σ2

R/2g(ε|ERσ
2
R) (53)

and our transition probability of the Markov chain is given by

T (Rε→ R′ε′) = A(R→ R′) g(ε′|ER′σ2
R′) a(Rε→ R′ε′) (54)

where A(R→ R′) is the a-priori probability for the proposed move and the acceptance proba-
bility is given by the Metropolis-Hastings rule

a(Rε→ R′ε′) = min

[
1,
Π(R′, ε′)

Π(R, ε)

A(R′ → R)

A(R→ R′)

g(ε|ERσ
2
R)

g(ε′|ER′σ2
R′)

]
(55)

= min

[
1, e−(β(ε′−ε)+β2(σ2

R′−σ2
R)/2) A(R′ → R)

A(R→ R′)

]
(56)

satisfying detailed balance

Π(R, ε)T (Rε→ R′ε′) = Π(R′, ε′)T (R′ε′ → Rε). (57)

Therefore, Π(R, ε) will be a stationary distribution of our Markov chain, so that the correct
unbiased Boltzmann distribution results via integration over ε, yielding unbiased expectation
values of all observables involving R without explicit dependence on ER (or ε), e.g., nuclear
structural properties.
The electronic energies, ER, as well as general electronic properties can be calculated by inde-
pendent re-sampling of the Born-Oppenheimer wave function at the obtained nuclear configu-
rations. The mere average of ε of the weight Π(R, ε) will differ from ER by ∼ βσ2.
But why should we actually store the value of ε, and return to this value whenever our attempted
move to a new configuration (R′ε′) is rejected? After all ε is a gaussian variable which is
integrated over stochastically.
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We should rather try to construct a Markov chain where our uncertainty is only entering inside a
transition probability which depends on the energy difference∆ε = ER′−ER+r with gaussian
errors r

T (R→ R′) =

∫
d∆ε T̃ (R→ R′;∆ε) (58)

Let us plug Eq. (58) into the usual detailed balance condition

e−βER

∫
d∆ε T̃ (R→ R′, ∆ε) = e−βER′

∫
d∆ε T̃ (R′ → R;∆ε). (59)

As long as T̃ satisfies Eq. (59), our Markov chain based on the transition probability Eq. (58)
will converge to the correct equilibrium distribution. Replacing the deterministic integration in
the transition matrix, Eq. (58), with a stochastic evaluation of the integral over the noise cannot
affect the asymptotic, stationary distribution of the Markov chain, and we will still converge to
the correct, unbiased equilibrium distribution. Therefore, it is enough that our new transition
matrix T̃ is determined by Eq. (59) such that detailed balance for T̃ needs only to be satisfied
on average. In Ref. [72] it has been shown that

T̃ (R→ R′;∆ε) = g
(
∆ε|ER′−ER, σ

2
)

min
(

1, e−β∆ε−β
2σ2/2

)
(60)

satisfies detailed balance on average, Eq. (59). Since the variance of the energy difference
reduces the acceptance probability, the algorithm for the random walk with uncertain energies
has been called penalty method. Uncertainty in the variance can be similarly taken into account,
but modifies the acceptance ratio further [72].

3 Coupled electron-ion Monte Carlo calculations

Coupled Electron-Ion Monte Carlo (CEIMC) calculations [73, 74] sample the discretized path-
integral representation of nuclei in the Born-Oppenheimer approximation, Eqs (11,12), using
Monte Carlo methods, both for the nuclear degrees of freedom, and for the determination of the
adiabatic electronic ground state energies E0(R). So far, calculations have been performed for
discernible nuclei, neglecting ionic exchange effects as well as excitations to higher electronic
energy surfaces and effects of a possible Berry phase.
Electronic energies are calculated by ground state QMC methods as described above, the penalty
methods is used to provide unbiased sampling of the nuclear degrees of freedom despite the in-
trinsic stochastic error in the Born-Oppenheimer energy surface.
Accuracy of the electronic energies is of crucial importance to provide meaningful comparisons
and predictions for experiment. This requires robust high quality trial wave functions for the
electronic Born-Oppenheimer ground state, as well as elimination of dominating finite size
effects on the fly for each set of nuclear positions, R.
The trial wave functions are build out of orbitals obtained from a separate density-functional
(DFT) calculation at each nuclear configuration, many-body correlations are included via an-
alytical expressions for Jastrow, three-body, and backflow potentials with parametric depen-
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dence on the nuclear coordinates [39, 75] augmented by simple functional forms which are op-
timized over representative samples of nuclear positions. This provides an accurate and smooth
parametrization of the trial wave functions over all relevant nuclear configurations avoiding on-
the-fly optimizations. Although the orbitals have been determined by DFT, the dependence on
the underlying DFT functional is weakened by the presence of the explicit many-body correla-
tions in the wave function. Ultimately, the selection of the DFT flavor is based on the variational
principle, similar to the functional choice and parametrization of the Jastrow, three-body and
backflow functions.

Electronic energies are systematically averaged over twisted boundary conditions (TABC) for
each nuclear configuration to reduce the influence of the finite simulation cell. This is partic-
ularly important, because shell effects strongly bias nuclear configurations on an energy scale
easily exceeding the nuclear temperature. The use of TABC in CEIMC is almost for free, since
the averaging of independent calculations with different twists reduces the overall stochastic
error and can be implemented massively parallel.

More details concerning the methodology of CEIMC calculations can be found in Ref. [74].
Most of the CEIMC calculations so far have used VMC energies for the Born-Oppenheimer en-
ergy surface. Additional projection in imaginary time using RMC or DMC provides an overall
lowering of the energies, typically smooth and weakly depend on the nuclear constellation. Such
effects can be quantified a-posteriori by reweighting selected configurations of CEIMC trajecto-
ries based on VMC energies. Similarly, the influence of different DFT functionals used for the
orbitals in VMC, as well as optimization of more flexible functional forms for the many-body
correlations can be estimated and quantified, if necessary. Reweighting methods are expected
to work, as long as structural properties are not strongly modified, e.g., the energy landscape
for the nuclei is not significantly changed.

Since CEIMC calculations are computationally expensive, it is in general not possible to explore
a phase diagram like that of hydrogen in Fig. 1 fully from scratch. Rather, less expensive DFT
calculations are typically used for structural optimization at fixed pressure either at zero or
finite temperatures which provide the shape of the simulation cell used in fixed volume CEIMC
calculations. Analyzing the subsequent CEIMC results may then provide indications to either
confirm or question such a procedure.

Vice-versa, QMC energies of selected configurations can be used to benchmark DFT functionals
[76] or to train a machine-learned effective potential [14, 77, 22] such to fully explore phase
diagrams and afford molecular dynamics calculations on much bigger length and time scales.
The resulting candidate phases can then be explored more precisely within CEIMC.

One of the most appealing features of CEIMC calculations is the possibility to improve existing
results on a long term by separately addressing the various assumptions or simplifications used
in practice and outlined in the computational methods section above. The underlying varia-
tional principle provides an unambiguous criterium to improve and judge the quality of CEIMC
results. Use of Langevin dynamics based on QMC forces within the Born-Oppenheimer ap-
proximation has also been developed [78], providing comparable results to CEIMC [21, 22].
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4 Hydrogen under pressure: Some CEIMC results

Predicting and exploring phases of high pressure hydrogen and deuterium with particular focus
on solid phases and on the liquid-liquid phase transition has been one of the main motivations for
developing CEIMC. Further, since the major fraction of hydrogen in the universe is in the fluid
phase, establishing an accurate equation of state for hydrogen and hydrogen-helium mixtures,
pressure as a function of temperature, density, and composition, is relevant for planetary models.
Beyond pure structural properties, e.g., the crystal structure in the various solid phases, the exis-
tence and location of possible insulator to metal transitions, and their connection to a molecular
to atomic transition is one of the longest outstanding issues of high pressure research.
Since CEIMC calculations are based on the many-body density matrix, electronic properties
can be probed beyond the single particle approximation. In particular, off-diagonal matrix
elements of the reduced single particle density matrix can be calculated and used to determine
localized (insulating) or extended (metallic) behavior of the electrons. Furthermore, electronic
excitation gaps can be calculated within QMC accuracy as discussed below, providing more
direct information on the transition to metallic hydrogen.

4.1 Electronic band gaps

From a theoretical point of view, band insulators and semiconductors are characterized by a
nonvanishing value of the fundamental gap [63]

∆̃ = E0(Nn+1) + E0(Nn−1)− 2E0(Nn) (61)

where E0(Ne) denotes the electronic ground state energy of a system of Ne electrons where the
number Nn and positions of nuclei are kept fixed, and charge neutrality is assured by applying
a uniform background charge. Since Eq. (61) only involves electronic ground state energies,
ground state QMC methods can be applied straightforwardly to obtain upper bounds forE0(Nn)

as well as for E0(Nn±1). Although this does not guarantee us an upper bound for the gap, we
can still use the variational principle to judge the quality of all the quantities involved.
Above, we have discussed the importance of size effects on the electronic energies per particle,
E(Ne)/Ne. In Eq. (61) this extensive part of the ground state energies will drop out, since the
gap itself is an intensive quantity. Calculations of gaps may therefore require higher control of
size effects. A detailed discussion is given in Ref. [79] where it is shown that the fundamental
gap approaches slowly its value in the thermodynamic limit, inversely proportional to the linear
extension of the simulation cell, ∼ (εL)−1. Leading order finite size corrections are given in
terms of the dielectric constant, ε, and can be determined within calculations of the same system
size. Similar to ground state energy calculations, predictions for the thermodynamic limit value
of the gap can thus be made without the need to extrapolate numerically results for different
system sizes.
For hydrogen, the definition of the fundamental gap, Eq. (61), needs to be modified to take into
account nuclear quantum effects

∆ = F (Nn+1) + F (Nn−1)− 2F (Nn) (62)
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where F (Ne) = −T logZ(Ne) denotes the free energy of the system containing Ne electrons
and Nn nuclei at temperature T. Within the Born-Oppenheimer approximation, we have

Z(Nn±1) = Z(Nn)
〈
e−β[ER(Nn±1)−ER(Nn)]

〉
≥ e−β〈ER(Nn±1)−ER(Nn)〉 (63)

where 〈· · · 〉 ≡ ER∼π[· · · ] denotes the averaging over the probability distribution of the nuclei
according to the Born-Oppenheimer energies of Ne = Nn electrons.
Due to the homogeneous background charge added to the electron/hole-doped systems with
Ne = Nn±1, the density of the additional electron/hole is necessarily smeared out over the
whole simulation cell. Therefore, the modification of the Born-Oppenheimer energy surface of
the doped system uniformly approaches the one of the neutral system up to corrections of 1/Nn,
so that the equality in Eq. (63) applies in the thermodynamic limit. We thus have

∆ =
〈
ER(Nn+1) + ER(Nn−1)− 2ER(Nn)

〉
≡
〈
∆̃R

〉
(64)

and the fundamental gap is obtained by averaging the Born-Oppenheimer gap, ∆̃R, over the
distribution of the nuclei, baptized ”quantum average” [80].
Note, that the definition of the fundamental gap, Eq. (62), is given in terms of thermodynamic
quantities and does in general not coincide with the spectroscopic gap entering linear response
functions given by the minimal difference between two energy eigenstates of the full electron-
proton system. In particular, in the semi-classical region the spectroscopic gap is given by
the minimum of the Born-Oppenheimer gap, ∆̃R with respect to the nuclear configurations R.
Thus, the resulting semi-classical gap is in general smaller than the average value of the fun-
damental gap, Eq. (64). However, such a semi-classical description looses its meaning when
nuclear quantum effects become important. At zero temperature, averaging over nuclear config-
urations corresponds to taking the nuclear ground state expectation value, and the spectroscopic
gap for electron/hole excitations will coincide in that limit with the quantum averaged funda-
mental gap, Eq. (64).
The above discussion can be extended for neutral (optical) gaps of particle-hole excitations with
same number of electrons and nuclei, Ne = Nn [81, 82]. However, electron-hole excitations
eventually localize and bind together. Size effects on the neutral gap will eventually differ from
those of the fundamental gap when the simulation cell reaches the size of the localization length
and the electronic wave function can account for excitonic effects. Further, spatial localization
of excitons may then also affect the Born-Oppenheimer energy surface of the excitation, dif-
fering from the ground state energy surface in this localized region, an effect not necessarily
negligible in the thermodynamic limit. Such a modification is neglected when averaging the
neutral Born-Oppenheimer excitation energies over the nuclear configurations of the electronic
ground state energy surface, so that the resulting averaged gaps represent in general only upper
bounds. Approaching the metallic state, such localization effects will vanish and not affect the
determination of the insulator to metal transition.
In Fig. 2 are shown the results of a detailed study of the electronic excitation energies of phase
I hydrogen at room temperature [82]. The fundamental (or quasi-particle) gap, ∆qp, determined
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Fig. 2: Fundamental gap of quasi-particle (∆qp) and neutral (∆n) electronic excitations for
phase I hydrogen at room temperature from QMC calculations and many-body perturbation
theory (GW, BSE) [82]. Experimental values of the gap are determined from IXS spectra [83].

by Eq. (64), and the corresponding neutral gap ∆n of particle-hole excitations from QMC cal-
culations are compared with those obtained by many-body perturbation theory, charged excita-
tions from GW, and neutral ones from solutions of the Bethe-Salpeter equation (BSE). In the
pressure range between 5 and 90 GPa, the system changes from a wide-gap molecular insulator
to a semiconductor. Differences between ∆qp and ∆n are due to excitonic effects and decrease
with pressure, ∼ 2 eV at 5 GPa down to ∼ 0.5 eV at 90 GPa. Thermal and quantum nuclear
motion reduces the gap by ∼ 2 eV with respect to the ideal structure, roughly independent of
pressure. Experimental values have been obtained by inelastic X-ray scattering (IXS) from the
lower limit of the phonon energy-loss spectra [83].

4.2 Approaching metallic solid hydrogen

The metallization of crystalline hydrogen under pressure has been one of the driving forces
of high pressure physics. Below 200 K, in phase III, experiments indicate a transition to a
semimetallic state at 350 GPa [7], but synchrotron infrared spectroscopy measurements show
that the direct gap remains open up to 425 GPa with an abrupt collapse attributed to metal-
lization [8]. Structural information of phase III is indirect via vibrational spectroscopy. In
Ref. [80], we have studied two candidate structures, Cmca-12 and C2/c-24, in CEIMC calcu-
lations at 200 K including nuclear thermal and quantum effects. The fundamental electronic
gap has then been calculated for a subset of the sampled nuclear configurations using reptation
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Fig. 3: Electronic excess density ne−np as a function of the chemical potential for solid hy-
drogen in the C2/c-24 structure (candidate for phase III) at 200 K from QMC using GC-TABC
(points) compared to DFT-HSE (smooth lines) at various pressures [80]. The observed plateau
when the electronic density coincides with the protonic one, ne = np, at the lower pressures is
a signature of the (indirect) gap. It is closing around P ≈ 370−380 GPa.

Monte Carlo methods combined with grand-canonical twist averaging (GC-TABC) and leading
and next-to-leading order finite size corrections.
Figure 3 shows the electronic excess density as a function of the electronic chemical potential
in the C2/c-24 structure at 200 K. The incompressible behavior ∂µne = 0 is characteristic
for an insulator, the width of the plateau of the undoped system (ne = np) corresponds to the
fundamental gap.
Analysis of the electronic states at the edges of the gap shows that the corresponding funda-
mental gap is indirect [84]. The closure of the indirect gap occurs around 380 GPa for C2/c-24
(340 GPa for Cmca-12). Information on the direct gap can be obtained by unfolding the band-
structure of the simulation cell. The direct gap remains open until ∼ 450 GPa for C2/c-24
(500 GPa for Cmca-12). The calculations thus indicate a formation of a bad metal upon closure
of the indirect gap, but the solid remains black (absorbing) until closure of the direct gap, a
qualitative scenario supporting experimental observations.

4.3 Liquid-liquid phase transition

At higher temperatures, the solid melts to a molecular fluid at the low pressure side, whereas
monatomic fluid hydrogen is expected at high pressure. Born-Oppenheimer molecular dynam-
ics simulations using DFT and CEIMC calculations [85, 13, 86, 75] predict a first order liquid-
liquid phase transition from the molecular to the atomic fluid below a critical temperature some-
where between 2000 and 3000 K.
The structural transition from the molecular to the atomic liquid is expected to coincide with an
insulator to metal transition. Optical conductivity, reflectivity, and absorption can be computed
within DFT methods [19], but a dependence on the underlying DFT functional remains.
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Within CEIMC, the change of nature from the insulating to the metallic fluid can be detected
in the reduced single-body density matrix of the many-electron ground state. Whereas the off-
diagonal part, n(r), decays exponentially for large distances r in the insulator, an algebraic
decay ∼ r−3 indicates Fermi-liquid behavior of a metal with a sharp Fermi surface [18, 87].
Calculations of the fundamental electronic gap in the liquid [20] further confirm that molecular-
atomic and insulator-metal transition occur together [87, 88].

Experiments probing the liquid-liquid phase transition have been performed with diamond anvil
cells (DAC) [15] or by dynamic compression [16, 17], but temperature is not directly measured
in the shock wave experiments and the interpretation of the data is sensitive to the adopted
model. In Fig. 1, we show the transition from molecular to atomic hydrogen inferred from DAC
experiments [15] in comparison with the CEIMC predictions [18].

However, recent calculations of the melting of the solid with a machine learned potential based
on QMC Born-Oppenheimer energies [14] (not shown in Fig. 1) have questioned the experi-
mental melting line inferred from Raman spectroscopy [12], predicting melting at considerably
higher temperatures with the reentrant part getting very close to the liquid-liquid phase tran-
sition indicated by CEIMC. Further studies, theoretical and experimental, will be needed to
firmly establish the phase diagram in that region.

4.4 Hugoniot adiabatic

Dynamic compression techniques can be used to experimentally probe the equation of state up
to high pressures and temperatures [89]. Assuming that the shock is created by a planar surface,
hydrodynamics relates the discontinuity in the energy, pressure, and density occurring at the
shock by energy and momentum conservation by [90]

E(n, T )−E0 +
1

2

(
n−1−n−10

) (
P (n, T )+P0

)
= 0 (65)

where E0 and n−10 are the initial values of the energy per atom and volume per atom at the
equilibrium pressure P0 and temperature T0 before the shock. Only values of the equation of
state which satisfy Eq. (65), the so-called shock or Hugoniot adiabatic, can be reached on the
other side of the discontinuity surface with energy per particle E(n, T ) and pressure P (n, T ) at
the volume per particle n−1 and temperature T.

Given the initial conditions, E0, n0, and P0, and knowledge of the equation of state in the fluid,
E(n, T ) and P (n, T ), the Hugoniot adiabat then determines the line of P vs. n (or compression
n/n0) which can be compared to experimental measurements of P and n at the shock.

CEIMC calculations of the deuterium Hugoniot result in close agreement to measurements at
low pressures [91], but predict a larger compression than experiments at higher pressure [91,92].
The origin of the discrepancies remains still unclear as similar differences have been observed
by independent calculations of QMC quality [93, 22].
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1 Introduction

An important class of systems that give rise to new types of order are non-equilibrium systems.
An isolated quantum system that is brought far from equilibrium typically relaxes to a state
which is locally described by a thermal ensemble. Although the initial global purity persists,
the coupling between any subsystem and remainder of the system mimics the contact with a
bath, which drives local thermalization. Few exceptions to this paradigm are known. Disorder,
for example, can bring non-equilibrium systems into a many-body-localized (MBL) state where
thermalization is absent. In those systems, no local order parameter or symmetry breaking
is known, and the role of fluctuations at the transition between thermal and localized states
remains to be understood. The distinctive feature of the MBL phase, which may be associated
with the order in the system, is the evolution of the non-local entanglement, which leads to a
characteristic scaling of the entanglement entropy that is logarithmic in time.
In this lecture we will review experimental work on many-body localization, following the path
of three key publications. We first discuss the many-body localized state itself, realized as a
disordered, isolated quantum system of a controllable number of atoms in an optical lattice.
We will then discuss the critical behavior at intermediate disorder and explore the boundary
between the classical dynamics at weak disorder,and the quantum dynamics at strong disorder.
Finally, we will talk about the robustness of MBL against a thermal inclusion, and quantum
avalanches as a possible instability of MBL at long evolution times. The lecture notes have
been published as [1–3].

2 Many-body localization

An interacting quantum system that is subject to disorder may cease to thermalize due to lo-
calization of its constituents, thereby marking the breakdown of thermodynamics. The key to
our understanding of this phenomenon lies in the system’s entanglement, which is experimen-
tally challenging to measure. We realize such a many-body-localized system in a disordered
Bose-Hubbard chain and characterize its entanglement properties through particle fluctuations
and correlations. We observe that the particles become localized, suppressing transport and pre-
venting the thermalization of subsystems. Notably, we measure the development of non-local
correlations, whose evolution is consistent with a logarithmic growth of entanglement entropy,
the hallmark of many-body localization. Our work experimentally establishes many-body local-
ization as a qualitatively distinct phenomenon from localization in non-interacting, disordered
systems.

2.1 Entanglement and quantum thermalization

Isolated quantum many-body systems, undergoing unitary time evolution, maintain their initial
global purity. However, the presence of interactions drives local thermalization: the coupling
between any subsystem and its remainder mimics the contact with a bath. This causes the
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Fig. 1: Entanglement dynamics in non-equilibrium quantum systems. (A) Subsystems A
and B of an isolated system out of equilibrium entangle in two different ways: number entan-
glement stems from a superposition of states with different particle numbers in the subsystems
and is generated through particle motion across the boundary; configurational entanglement
stems from a superposition of states with different particle arrangement within the subsystems
and requires both particle motion and interactions. (B) In the absence of disorder, both types
of entanglement rapidly spreads across the entire system due to delocalization of particles (left
panel). The degree of entanglement and the timescales change drastically when applying dis-
order (central panel): particle localization spatially restricts number entanglement, yet inter-
actions allow configurational entanglement to form very slowly across the entire system. A
disordered system without interactions shows only local number entanglement while the slow
growth of configurational entanglement is completely absent (right panel).

subsystem’s degrees of freedom to be ultimately described by a thermal ensemble, even if the
full system is in a pure state [4–6]. A consequence of thermalization is that local information
about the initial state of the subsystem gets scrambled and transferred into non-local correlations
that are only accessible through global observables [7–9].
Disordered systems [10–21] can provide an exception to this paradigm of quantum thermaliza-
tion. In such systems, particles can localize and transport ceases, which prevents thermalization.
This phenomenon is called many-body localization (MBL) [9, 10, 22–26]. Experimental stud-
ies have identified MBL through the persistence of the initial density distribution [27–32] and
two-point correlation functions during transient dynamics [28]. However, while particle trans-
port is frozen, the presence of interactions gives rise to slow coherent many-body dynamics
that generate non-local correlations, which are inaccessible to local observables [33–35]. These
dynamics are considered to be the hallmark of MBL and distinguish it from its non-interacting
counterpart, called Anderson localization [10–14, 17, 18, 21]. Their observation, however, has
remained elusive, because it requires exquisite control over the system’s coherence.
We study these many-body dynamics by probing the entanglement properties of an MBL system
with fixed particle number [33–37]. We distinguish two types of entanglement that can exist
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between a subsystem and its complement (Fig. 1A): Number entanglement implies that the par-
ticle number in one subsystem is correlated with the particle number in the other. It is generated
through tunneling across the boundary between the subsystems. Configurational entanglement
implies that the configuration of the particles in one subsystem is correlated with the configura-
tion of the particles in the other. It arises from a combination of particle motion and interaction.
The formation of particle and configurational entanglement changes in the presence or absence
of interactions and disorder in the system (Fig. 1B). In thermal systems without disorder, inter-
acting particles delocalize and rapidly create both types of entanglement throughout the entire
system. Contrarily, for Anderson localization, number entanglement builds up only locally at
the boundary between the two subsystems. Here the lack of interactions prevents the substantial
formation of configurational entanglement. In MBL systems, number entanglement builds up
in a similarly local way as for Anderson localization. However, notably, the presence of inter-
actions additionally enables the slow formation of configurational entanglement throughout the
entire system.
In this work, we realize an MBL system and characterize these key properties: breakdown of
quantum thermalization, finite localization length of the particles, area-law scaling of the num-
ber entanglement, and slow growth of the configurational entanglement that ultimately results in
a volume-law scaling. Each property shows a contrasting behavior when the system is prepared
at weak disorder in a thermalizing state. While the former three properties are also present
for an Anderson localized state, the slowly growing configurational entanglement qualitatively
distinguishes our system from a non-interacting, localized state.

2.2 Experimental system

In our experiments, we study MBL in the interacting Aubry-André model for bosons in one
dimension [38, 39], which is described by the Hamiltonian

Ĥ = −J
∑
i

(
â†i âi+1 + h.c.

)
+
U

2

∑
i

n̂i (n̂i−1) +W
∑
i

hi n̂i , (1)

where â†i
(
âi
)

is the creation (annihilation) operator for a boson on site i, and n̂i = â†i âi is the
particle number operator on that site. The first term describes the tunneling between neigh-
boring lattice sites with the rate J/~, where ~ is the reduced Planck constant. The second
term represents the energy shift U when multiple particles occupy the same site. The last
term introduces a site-resolved potential offset, which is created with an incommensurate lat-
tice hi = cos (2πβi+ φ) of period β ≈ 1.618 lattice sites, phase φ, and amplitude W. In our
experiment, we achieve independent control over J , W, and φ (Fig. 2A).
Our experiments begin with a Mott-insulating state in the atomic limit with one 87Rb atom
on each site of a two-dimensional optical lattice (Fig. 2B). The system is placed in the focus
of a high-resolution imaging system through which we project site-resolved optical potentials
[40]. We first isolate a single, one-dimensional chain from the Mott insulator and then add the
site-resolved potential offsets Wi with the incommensurate lattice. At this point, the system
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Fig. 2: Site-resolved measurement of thermalization breakdown. (A) One dimensional
Aubry-André model with particle tunneling at rate J/~, on-site interaction energy U and quasi-
periodic potential with amplitude W. (B) We prepare the initial state of eight unentangled
atoms by projecting tailored optical potentials on a two-dimensional Mott insulator at 45Er

lattice depth, whereEr = h×1.24 kHz is the recoil energy. (C) We create a non-equilibrium sys-
tem by abruptly enabling tunneling dynamics. Following a variable evolution time, we project
the many-body state back onto the number basis by increasing the lattice depth, and obtain
the site-resolved atom number from a fluorescence image). (D) We compute the single-site von
Neumann entropy S(1)

vN from the site-resolved atom number statistics (inset) after different evo-
lution times (scaled with tunneling time τ = ~/J) in the presence of weak and strong disorder.
(E) Probability p1 to retrieve the initial state (inset) and S(1)

vN for different W, measured after
100τ evolution. The deviation from the thermal ensemble prediction for strong disorder signals
the breakdown of thermalization in the system. All lines in (C-D) show the prediction of exact
diagonalization calculations without any free parameters. Each data point is sampled from 197
disorder realizations).

remains in a product state of one atom per lattice site. We abruptly switch on the tunneling by
reducing the lattice depth within a fraction of the tunneling time (Fig. 2C). This quench brings
the system to a non-equilibrium state and initializes the unitary time dynamics corresponding to
the above Hamiltonian. The tunneling time τ = ~/J = 4.3(1) ms and the interaction strength
U = 2.87(3)J remain constant in all our experiments. Following a variable evolution time, we
abruptly increase the lattice depth and image the system in an atom-number-sensitive way with
single-site resolution). This projects the many-body state onto the number basis, which consists
of all possible distributions of the particles within the chain.
In some realizations, particle loss during the time evolution and imperfect readout reduce the
number of detected atoms compared to the initial state, thereby injecting classical entropy into
the system. We eliminate this entropy by post-selecting the data on the intended atom number,
thereby reaching a fidelity of 99.1(2)% unity filling in the initial state, which is limited by the
fraction of doublon-hole pairs in the Mott insulator. The result is a highly pure state, in which
all correlations are expected to stem from entanglement in the system.
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2.3 Breakdown of thermalization

We first investigate the breakdown of thermalization in a subsystem that consists of a single
lattice site. The conserved total atom number enforces a one-to-one correspondence between
the particle number outcome on a single site and the number in the remainder of the system—
entangling the two during tunneling dynamics. Ignoring information about the remaining sys-
tem puts the subsystem into a mixed state of different number states. The associated number
entropy is given by S(1)

n = −
∑

n pn log(pn), where pn is the probability of finding n atoms in
the subsystem. Since the atom number is the only degree of freedom of a single lattice site, S(1)

n

captures all of the entanglement between the subsystem and its complement, and is equivalent
to the single-site von Neumann entanglement entropy S(1)

vN .
Counting the atom number on an individual lattice site in different experimental realizations
allows us to obtain the probabilities pn and compute S(1)

vN . We perform such measurements for
various evolution times. At low disorder depth

(
W = 1.0(1)J

)
, the entropy grows over a few

tunneling times and then reaches a stationary value (Fig. 2D). The stationary value is reduced
for deep disorder

(
W = 8.9(1)J

)
and remains constant over two orders of magnitude, up to

several hundred tunneling times. The lack of entropy increase indicates the absence of heating
in the system. The excellent agreement of the measured entropy with ab initio calculations up
to the longest measured evolution times suggests a highly unitary evolution of the system.
We perform measurements of S(1)

vN at different disorder strengths following an evolution of one
hundred tunneling times (Fig. 2E). To evaluate the degree of local thermalization, we compare
the results with the prediction of a thermal ensemble for our system. For weak disorder, the
measured entropy agrees with the predicted value, whereas the entropy is significantly reduced
for strong disorder—signaling the absence of thermalization in the system. As a consequence,
the system retains some memory of its initial conditions for arbitrarily long evolution times.
We indeed find that the probability to retrieve the initial state of one atom per site increases for
strong disorder (inset Fig. 2E).

2.4 Spatial localization

The breakdown of thermalization is expected to be a consequence of the spatial localization of
the particles. Previous experiments have determined the decay length of an initially prepared
density step into empty space [30]. We measure the localization by directly probing density-
density correlations within the system. They are captured by G(2)(d) = 〈nini+d〉−〈ni〉〈ni+d〉,
where 〈· · ·〉 denotes averaging over different disorder realizations as well as all sites i of the
chain. The particle numbers on two sites at distance d > 0 are uncorrelated for G(2)(d) = 0. If
a particle moves a distance d, the sites become anti-correlated, and the correlator decreases to
G(2)(d) < 0.
We measure the density-density correlationsG2(d) for different disorder strengths in the station-
ary regime (Fig. 3A). For low disorder, we find the correlations to be independent of distance
and below zero. This indicates that the particles tunnel across the entire system and hence are
delocalized. On the other hand, at strong disorder, only nearby sites show significant correla-
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Fig. 3: Spatial localization of the particles. (A) The density-density correlations G(2)(d) as a
function of distance d at weak and strong disorder after an evolution time of 100τ . The alter-
nating nature of the density-density correlations is imprinted by the autocorrelation function of
the quasiperiodic potential. (B) Subtracting the influence of the quasiperiodic potential reveals
the exponential decay of the correlation function. (C) Particle motion is confined within the
correlation length ξ. We use a fit to extract ξ for different disorder strengths. The fit function
is a product of an exponential decay with the autocorrelation function of the quasiperiodic po-
tential. Each measurement is sampled from 197 disorder realizations. The solid lines show the
prediction of exact diagonalization—calculated without any free parameters. Error bars denote
the standard error of the mean in (A-B), and the fit error in (C).

tions, signaling the absence of particle motion across large distances. We thus conclude that the
particles are localized. We extract the correlation length by fitting an exponentially decaying
function to the data (Fig. 3B). For increasing disorder, the correlation length decreases from the
entire system size down to around one lattice site (Fig. 3C).
Our observation of localized particles is consistent with the description of MBL in terms of local
integrals of motion [33–35]. It describes the global eigenstates as product states of exponentially
localized orbitals. The correlation length extracted from our data is a measure of the size of
these orbitals. Since the latter form a complete set of locally conserved quantities, this picture
connects the breakdown of thermalization in MBL with non-thermalizing, integrable systems.

2.5 Dynamics and spreading of entanglement

We now turn to a characterization of the entanglement properties of larger subsystems, starting
with a subsystem covering half the system size. As for the case of a single lattice site, the par-
ticle number in the subsystem can become entangled with the number in the remaining system
through tunneling dynamics, resulting in the number entropy Sn = −

∑
n pn log (pn). How-

ever, subsystems which extend over several lattice sites, with a given particle number, offer the
particle configuration as an additional degree of freedom for the entanglement. Configurational
entanglement only builds up substantially in interacting systems, since configurational corre-
lations require several particles. The associated configurational entropy Sc, together with the
number entropy, forms the von Neumann entropy, SvN = Sn+Sc. An analogous relation exists
for spin systems with conserved total magnetization instead of the particle number.
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Fig. 4: Dynamics of number and configurational entanglement. (A) In the thermal regime,
both the number entropy Sn and the configurational correlator C quickly rise and reach a
stationary value after thermalization. (B) We observe different time scales in the MBL regime.
Sn increases for a longer time and reaches a stationary value that is suppressed compared
to the thermal one. C shows a persistent slow increase that is consistent with a logarithmic
growth, until the longest evolution times covered by our measurements. The solid lines show
the prediction of exact diagonalization calculations without any free parameters. The above
data was taken on a six-site system and averaged over four disorder realizations.

The dynamics of Sn and Sc in the MBL regime (Fig. 4A) can be understood in the picture of
localized orbitals. Since the localized orbitals restrict the particle motion, the number entropy
can only develop within the localization length and hence Sn saturates at a lower value than for
the thermal case. In the MBL regime, disorder suppresses the tunneling. Therefore, saturation
is reached at a later time. However, the dynamics of Sc are strikingly different. The bare on-site
interaction and particle tunneling combine into an effective interaction among localized orbitals,
which decays exponentially with the distance between them. As a consequence, entanglement
between distant orbitals forms slowly, causing a logarithmic growth of Sc, even after Sn has
saturated [33–37].

In our experiment, we can independently probe both types of entanglement. We obtain the
number entropy Sn through the probabilities pn by counting the atom number in the subsystem
in different experimental realizations. The configurational entropy Sc, in contrast, is challeng-
ing to measure in a many-body system since it requires experimental access to the coherences
between a large number of quantum states [41,42]. Here we choose a complementary approach
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to probe the configurational entanglement in the system. It exploits the configurational correla-
tions between the subsystems, quantified by the correlator

C =
N∑
n=0

pn
∑

{An},{Bn}

∣∣p(An⊗Bn)− p(An) p(Bn)
∣∣, (2)

where {An} (and {Bn}) is the set of all possible configurations of n particles in subsystem A
(andN−n in B), whereN is total number of particles in the system. All probability distributions
are normalized within the subspaces of n particles in A and the remaining N−n particles in B.
The configuration An ⊗Bn is separable if p(An⊗Bn) = p(An) p(Bn). The correlator therefore
probes the entanglement through the deviation from separability between A and B. In the
MBL regime, for sufficiently small amounts of entanglement, we numerically find C to be
proportional to Sc, and hence it inherits its scaling properties. This criterion is independent of
the system size. Our measurements lie within the numerically verified parameter regime.

We study the time dynamics of Sn and C with and without disorder (Fig. 4B, C). Without dis-
order, both Sn and C rapidly rise and reach a stationary value within a few tunneling times
(insets). In the presence of strong disorder, we find a qualitatively different behavior for the
two quantities: Sn reaches a stationary state within few tunneling times, although after longer
evolution time due to reduced effective tunneling. Additionally the stationary value is signifi-
cantly reduced, indicating suppressed particle transport through the system. The correlator C,
in contrast, shows a persistent slow growth up to the longest evolution times reached by our
measurements. The growth is consistent with logarithmic behavior over two decades of time
evolution. We conclude that we observe interaction-induced dynamics in the MBL regime,
which are consistent with the phenomenological model [33–35]. The agreement of the long-
term dynamics of Sp and C with the numerical calculations in the MBL regime confirms the
unitary evolution of the system over 100 τ . The system remains in the finite-time limit, not in
the finite-size limit, since the spread of entanglement has not yet stopped at the longest studied
evolution times.

Considering the entropy in subsystems of different size gives us insights into the spatial distri-
bution of entanglement in the system: in a one-dimensional system, locally generated entan-
glement results in a subsystem size independent entropy, whereas entanglement from non-local
correlations causes the entropy to increase in proportion to the size of the subsystem. In refer-
ence to the subsystem’s boundary and volume, these scalings are called area law and volume
law. We find almost no change in Sn for different subsystems of an MBL system (Fig. 5A),
indicating an area law scaling due to localized particles and confirming that particle transport is
suppressed. In contrast, the configurational correlations C increase until the subsystem reaches
half the system size (Fig. 5B). Such a volume-law scaling is also expected for the entanglement
entropy and demonstrates that the observed logarithmic growth indeed stems from non-local
correlations across the entire system.
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Fig. 5: Spatial distribution of the entanglement. Number entropy and configurational corre-
lator in the MBL regime (W = 8.9 J) after an evolution time of 100τ . (A) In an MBL system,
number fluctuations between two subsystems only stem from local orbitals near the boundary.
Consequentially, the number entropy Sn does not depend on the subsystem size, i.e., follows
an area law.. (B) After long evolution times, each local orbital is configurationally entangled
with every other. Hence, the configurational correlator C increases almost linearly with the
subsystem size, showing a volume-law behavior. The solid lines show the prediction of exact
diagonalization calculations without any free parameters. The above data was averaged over
four disorder realizations.

2.6 Conclusion

Investigating the growth of non-local quantum correlations has been a long-standing experi-
mental challenge for the study of MBL systems. In addition to achieving exceptional isolation
from the environment and local access to the system, such a measurement requires access to the
entanglement entropy [41]. Our work provides a novel method to characterize the entanglement
properties of MBL systems. Since it is based on measurements of the particle number fluctua-
tions and their configurations, the method is experimentally accessible and can be generalized
to higher dimensions and different experimental platforms, where a direct measurement of en-
tanglement entropy remains challenging, e.g., trapped ions, neutral atoms, and superconducting
circuits. The observation of slow coherent many-body dynamics along with the breakdown of
thermalization coincides with the expected behavior for larger systems, and allows us to unam-
biguously identify and characterize the MBL state in our system.

The eight-site system constrained to unity filling, which is studied in this work, spans a 6435-
dimensional Hilbert space—larger than for a system of 14 spin-1/2 particles constrained to zero
total magnetization. In the future, experiments at even larger system sizes will be of interest
to shed light on the critical properties of the thermal-to-MBL phase transition, which are the
subject of ongoing studies [43–46]. In our system, it is experimentally feasible to increase the
system size at unity filling to a numerically intractable regime. Additionally, we have full con-
trol over the disorder potential on every site, which opens the way to studying the role of rare
regions and Griffiths dynamics as well as the long-time behavior of an MBL state with a link
to a thermal bath [47–49]. Ultimately, these studies will further our understanding of quan-
tum thermodynamics and whether such systems are suitable for future applications as quantum
memories [9].
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3 Critical behavior

Phase transitions are driven by collective fluctuations of a system’s constituents that emerge at
a critical point [50]. This mechanism has been extensively explored for classical and quantum
systems in equilibrium, whose critical behavior is described by a general theory of phase transi-
tions. Recently, however, fundamentally distinct phase transitions have been discovered for out-
of-equilibrium quantum systems, which can exhibit critical behavior that defies this description
and is not well understood [50]. A paradigmatic example is the many-body-localization (MBL)
transition, which marks the breakdown of quantum thermalization [23,51,34,35,52,26–28,30,
53]. Characterizing quantum critical behavior in an MBL system requires probing its entangle-
ment properties over space and time [34, 35, 26], which has proven experimentally challenging
due to stringent requirements on quantum state preparation and system isolation. Here, we ob-
serve quantum critical behavior at the MBL transition in a disordered Bose-Hubbard system
and characterize its entanglement properties via its quantum correlations. We observe strong
correlations, whose emergence is accompanied by the onset of anomalous diffusive transport
throughout the system, and verify their critical nature by measuring their system-size depen-
dence. The correlations extend to high orders in the quantum critical regime and appear to form
via a sparse network of many-body resonances that spans the entire system [44,45]. Our results
connect the macroscopic phenomenology of the transition to the system’s microscopic structure
of quantum correlations, and they provide an essential step towards understanding criticality
and universality in non-equilibrium systems [50, 45, 26].

3.1 The many-body localization transition

The many-body-localization (MBL) transition describes the breakdown of thermalization in an
isolated quantum many-body system as disorder is increased beyond a critical value [27,28,30,
53]. It represents a novel type of quantum phase transition that fundamentally differs from both
its classical and quantum ground-state counterparts [23, 51, 26]. Instead of being characterized
by an instantaneous thermodynamic signature, it is identified by the system’s inherent dynamic
behavior. In particular, the MBL transition manifests itself through a change in entanglement
dynamics [26, 53]. Recent years have seen tremendous progress in our understanding of both
the thermal and the MBL phases within the frameworks of quantum thermalization [52, 7, 8]
and emergent integrability [34, 35, 27, 28, 30, 53], respectively.
The quantum critical behavior at this transition, however, has remained largely unresolved [26].
In particular, it is unclear whether the traditional association of collective fluctuations with
static and dynamic critical behavior can be applied to this transition. The high amount of
entanglement found at the MBL transition limits numerical studies due to the required com-
putational power [54, 55]. Several theoretical approaches, despite using disparate microscopic
structures, suggest anomalous transport as the macroscopic behavior at the quantum critical
point [43, 44, 56, 57]. Experimental studies indeed indicate a slowdown of the dynamics at
intermediate disorder [46, 58]. However, identifying anomalous transport as quantum criti-
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Fig. 6: Microscopy of the many-body localization transition. a: The quantum state at the crit-
ical point takes on a complex pattern of strong multi-particle correlations at all length scales,
visualized by shaded links between different lattice sites. In contrast, it simplifies in the thermal
and the MBL phases to maximal entanglement and predominantly local correlations, respec-
tively. A consequence is a change in the transport properties from diffusive to anomalous before
ceasing completely in MBL. b: We initialize the system as a pure product state of up to twelve
lattice sites at unity filling. The system becomes entangled under the unitary, non-equilibrium
dynamics of the bosonic, interacting Aubry-André model with on-site interaction energy U , par-
ticle tunneling at rate J/~ (with the reduced Planck constant ~), and quasi-periodic potential
with amplitude W . After a variable evolution time, we obtain the full atom-number distribution
from site-resolved fluorescence imaging after expansion.

cal dynamics is experimentally challenging, since similar behavior can also originate from
stochastic effects such as inhomogeneities in the initial state [59], or the coupling to a clas-
sical bath [60, 31]. Additionally, in the case of random disorder, the presence of rare-regions
admits several microscopic mechanisms that may govern this critical behavior and therefore
makes identifying this mechanism challenging [47–49]. Our experimental protocol overcomes
these challenges by using a quasi-periodic potential, which is rare-region free, as well as by
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evolving a pure, homogeneous initial state under unitary dynamics. Using this protocol, we ob-
serve quantum critical dynamics via anomalous transport, enhanced quantum fluctuations, and
system-size dependent thermalization. In addition, we microscopically resolve and characterize
the structure of the entanglement in the many-body states through their multi-particle quantum
correlations.
Our experiments start with a pure state of up to twelve unentangled lattice sites at unity filling.
We study its out-of-equilibrium evolution after a rapid increase of the tunneling in the bosonic,
interacting Aubry-Andre Hamiltonian

Ĥ = −J
∑
i

(
â†i âi+1 + h.c.

)
+
U

2

∑
i

n̂i (n̂i−1) +W
∑
i

hin̂i ,

where â†i
(
âi
)

is the creation (annihilation) operator for a boson on site i, and n̂i is the cor-
responding particle number operator. The tunneling time τ = ~/J = 4.3(1) ms (with the
reduced Planck constant ~) between neighboring sites and the pair-wise interaction energy U =

2.87(3)J remain constant for all experiments. The potential energy offset hi = cos (2πβi+ φ)

on site i follows a quasi-periodic distribution of amplitude W, period 1/β ≈ 1.618 lattice sites,
and phase φ. After a variable evolution time, we obtain full counting statistics of the quantum
state through a fluorescence imaging technique. The applied unitary evolution preserves the
initial purity of 99.1(2)% per site, such that all correlations are expected to stem from entangle-
ment in the system [8, 53].

3.2 Transport properties

We first characterize the system’s dynamical behavior by studying its transport properties for
different disorder strengths. Since the initial state has exactly one atom per site, the system
starts with zero density correlations at all length scales. However, during the Hamiltonian evo-
lution, tunneling dynamics build up anti-correlated density fluctuations between coupled sites
of increasing distance (Fig. 7a). Motivated by this picture, we quantify the particle dynamics by
defining the transport distance, ∆x ∝

∑
d d 〈G

(2)
c (i, i+d)〉i, as the first moment of the disorder-

averaged two-point density correlations, G(2)
c (i, i+d) = 〈n̂in̂i+d〉 − 〈n̂i〉〈n̂i+d〉 (Fig. 7a). At

low disorder, we observe these anti-correlations rapidly build up and saturate over a time scale
of t/τ ≈ L/2. With increasing disorder, we observe a slowdown of particle transport that is
consistent with a power-law growth∆x ∼ tα (Fig. 7b) [61]. We extract the anomalous diffusion
exponent α from a subset of the data points that exclude the initial transient dynamics in the
system (L/2 < t/τ ≤ 100) (Fig. 7b inset). The exponent α is reduced by successively higher
disorder, demonstrating the suppression of transport in the MBL regime.
In order to identify the anomalous diffusion as a signature of quantum critical dynamics, we
measure the system-size dependence of two observables in the long-time limit (t = 100τ): the
on-site number fluctuationsF ≡ G

(2)
c (d=0) as a probe of local thermalization, and the transport

distance ∆x as a localization measure (Fig. 7c). At low disorder, the fluctuations agree with
those predicted by a thermal ensemble and particles are completely delocalized for both system
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Fig. 7: Quantum critical dynamics at the MBL transition. a: The initially uncorrelated system
develops two-point density correlations under its transport dynamics. Short-range correlations
emerge within one tunneling time τ=~/J , whereas the diffusion exponent α determines the time
scale over which correlations form across the system size L. b: Particle transport slows down at
intermediate disorder, consistent with a power-law evolution with exponent α<0.5, demonstrat-
ing subdiffusive dynamics (inset). These data were taken on an eight-site system. c: The critical
nature of these dynamics is determined from the behavior of on-site density fluctuations F and
transport distance ∆x̃ (lower left inset) for both considered system sizes. The thermal regime
is determined by the agreement of the measured F with the prediction from a thermal ensem-
ble (dashed grey). The system-size dependence at intermediate disorder is consistent with the
reduced size of a quantum critical cone (upper right inset). These data were measured for both
an eight-site and twelve-site system. d: We obtain the genuine many-body processes of order
n from connected correlations G(n)

c by subtracting all lower order contributions G(n)
dis from the

total correlation function G(n)
tot . e: In the quantum critical regime, we find enhanced collective

fluctuations at all measured orders by computing the mean absolute value of G(n)
c for different

disorder strengths. These data were measured on a twelve-site system. The solid lines (b,c) and
bars (e) denote the prediction of exact numeric time calculations without any free parameters.
The errorbars are the standard error of the mean and are below the marker size in b.

sizes. This demonstrates that local quantum thermalization occurs independently of system size
at low disorder and establishes that this regime corresponds to the system being in the thermal
phase. At strong disorder, the physics is governed by the formation of an intrinsic length scale,
namely the localization length ξ ∼ ∆x̃ [30, 53]. We observe system-size independent, sub-
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thermal fluctuations and measure an intrinsic length scale ∆x̃. This indicates that the strong
disorder regime corresponds to the system being in the localized phase. However, at interme-
diate disorder, we find a system-size dependence for both observables. This demonstrates the
absence of an intrinsic length scale and the presence of finite-size-limited fluctuations, identify-
ing that the system is in a critically thermalizing regime. These measurements of system-size-
dependent thermalization can be visualized as two horizontal cuts in a finite-size phase diagram.
The observed finite-size dependence is consistent with the physics associated with a critically
thermalizing intermediate phase and a shrinking quantum critical cone (Fig. 7c inset) [50].

3.3 Multi-particle correlations

We then investigate the multi-particle correlations in the system to probe the presence of en-
hanced quantum fluctuations in the quantum critical regime (Fig. 7d). For this study, we employ
the n-point connected density-correlation functions [62–64],

G(n)
c (x) = G

(n)
tot (x)−G(n)

dis (x),

which act on lattice sites with positions x = (x1, . . . , xn). The disconnected part of this func-
tion, G(n)

dis , is fully determined by all lower-order correlation functions, and therefore does not
contain new information at order n. By removing it from the total measured correlation func-
tion, G(n)

tot (x) =
〈∏n

k=1 n̂ (xk)
〉
, we isolate all n-order correlations that are independent of

lower-order processes. This approach gives a direct handle on the level of complexity of the un-
derlying many-body wave function and characterizes its entanglement via its non-separability
into subsystems of size < n. We quantify the relevance of order n processes by computing
the mean absolute value of all correlations arising from both contiguous and non-contiguous n
sites in the system (Fig. 7e). We find that in the thermal and the many-body-localized regimes,
the system becomes successively less correlated at higher order. The behavior in the quantum
critical regime is strikingly different: we observe that the system is strongly correlated at all
measured orders.

3.4 Site-resolved correlations

In order to reveal the microscopic origin for the anomalous transport, we now investigate the
site-resolved structure of the many-body state (Fig. 8a). We first study how much each lattice
site contributes to the transport by considering the site-resolved two-point correlations in the
long-time limit (t = 100τ ). In the thermal regime, we find similar correlations between all
lattice sites, which correspond to uniformly delocalized atoms. In contrast, density correlations
are restricted to nearby sites in the MBL regime due to localization. Intriguingly, we observe a
sparse structure of correlations at intermediate disorder, which involves only specific distances
between lattice sites, yet spans the entire system size.
The sparse structure is expected to be linked to the applied quasi-periodic potential. The average
energy offsets of sites d apart in the system are correlated by this potential. This correlation is
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Fig. 8: Sparse network of resonances. a: The measured site-dependent two-point correla-
tions G(2)

c (i, j) are plotted for all inter-site combinations, whose amplitudes are represented by
the colored lines connecting the lattice sites-i,j. In the quantum critical regime, correlations
preferably form at specific distances, showing a network-like structure. This contrasts with ho-
mogeneous correlations in the thermal regime and nearest-neighbor correlations in the MBL
regime. b: The structure of the correlation network is revealed by the averaged correlation
function G(2)

c (d) =
〈
G

(2)
c (i, i+d)

〉
i
. Its similarity to the autocorrelation A(d) = 〈hihi+d〉i of

the quasi-periodic potential (solid grey) indicates interaction-induced tunneling processes that
are enhanced when the interaction energy compensates for the potential energy difference. c:
We quantify the similarity by the overlap B = ΣdG

(2)
c (d)A(d), which is maximal in the quantum

critical regime. The sign of the overlap would be opposite for non-interacting particles (dashed
line), which favors tunneling between sites with similar potential energies. The solid lines in
b,c and the dashed line in c denote the prediction of exact numeric time evolution calculations
without any free parameters.

then inherited by the system’s fluctuations when the interaction energy U compensates for these
correlated offsets. To investigate this structure, we compare the two-point density correlations
with the autocorrelation function, A(d) = 〈hihi+d〉i, of the quasi-periodic potential. Indeed,
we find that the site-averaged density correlations G(2)

c (d) = 〈G(2)(i, i+d)〉i inherit their spatial
structure fromA(d) (Fig. 8b). We find that this contribution is maximal in the critical regime but
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Fig. 9: Many-body correlations in the quantum critical regime. a: The connected correlation
function, G(3)

c (d1, d2), for three lattice sites spaced by distances d1 and d2 in the quantum crit-
ical regime (W = 4.8J), showing the strongly interacting nature of the state. We find that the
three-point correlations show a characteristic structure that is governed by the contribution of
the number states on the considered sites. The arrows indicate the cut in d1, d2 space plotted
below. b: To exemplify the relevant processes of order n = 3, we show the contributions of the
number states on lattice sites at distance d1 = 3, d2 = 1 (left) and d1 = 3, d2 = 2 (right).
While there is a wide distribution of contributing configurations, the relative dominance of a
particular process provides the overall structure in a. The illustration of atoms undergoing a
highly correlated hopping process in the lattice describe how such correlations can contribute
to either positive or negative correlations among the three considered sites. The theory plot in a
and bars in b are calculated from exact numeric time calculations without any free parameters.
The inverse marker size in the experimental plot in a, and the error bars in both a and b denote
the standard error of the mean.

is strongly reduced in the thermal and MBL regimes (Fig. 8c). These observations contrast with
the behavior of a non-interacting system, where the sign of the structure is opposite since reso-
nant tunneling is favored for zero potential energy difference (Fig. 8c). These results illustrate
microscopically how the interplay of strong interactions and disorder can lead to anomalous
diffusion. However, this picture of effective single-particle hopping that couples distant sites
neglects the many-body nature of these systems.
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3.5 Site-resolved detection of three-body processes

In order to investigate the system’s many-body structure, we examine the site-resolved con-
tributions of the three-point correlations. Since all non-zero contributions to the three-point
correlations involve correlated hopping of at least two particles, they are a signature for multi-
particle entanglement [63]. In the quantum critical regime, we find that these correlations span
the entire system and are highly structured, taking on both positive and negative values (Fig. 9a).
In contrast to the pattern in the second-order correlation function, this third-order structure is
not directly recognizable as the quasi-periodic-potential correlations. In order to gain further
insight into the structure, we analyze the contributions of all possible particle configurations
in Fig. 9b. In particular, for G(3)

c (d1=3, d2=1), which is positive, we see that the dominant
contribution comes from a particular process that favors multiple atoms hopping to the same
site. In contrast, G(3)

c (d1=3, d2=2), which is negative, has a dominant process that favors all
atoms leaving the three sites considered. While this provides some intuition for the emergent
many-body resonances, the three-point correlations are, in fact, the result of a superposition
of many correlated processes. These observations further demonstrate how the interactions be-
tween multiple atoms can compensate for the disorder via correlated tunneling of several atoms.
In this way, we can see the additional role interactions play in the disordered system: they sup-
ply higher-order many-body resonances that preserve transport where lower-order processes are
energetically suppressed.

3.6 Discussion and outlook

Our results demonstrate how a many-body, sparse resonant structure drives the quantum critical
behavior at the MBL transition. This observed microscopic description is consistent with the
theoretically suggested mechanisms of a sparse backbone of resonances that can act as a func-
tional bath for the system [65, 44, 45]. However, our results provide a new perspective on this
description by mapping out the prevalence of high-order processes in the system that facilitate
this critical thermalization.
In future experiments, the tunability of our system will allow us to address further open ques-
tions on the MBL transition, such as possible discontinuities of the entanglement entropy [45],
the potential emergence of new dynamic phases near the critical point, and the influence of
rare-regions in the disorder potential [48, 49]. Furthermore, the demonstrated techniques pave
the way to explore the role of universality in non-equilibrium systems. From a computational
perspective, our system’s Hilbert space dimension is comparable to the dimension of 22 spins
with zero total magnetization. A moderate increase of the system’s spatial dimension beyond
this experiment results in numerically intractable sizes.

4 Quantum avalanches

Strongly correlated systems can exhibit unexpected phenomena when brought in a state far
from equilibrium. An example is many-body localization, which prevents generic interacting
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systems from reaching thermal equilibrium even at long times [66, 67]. The stability of the
many-body localized phase has been predicted to be hindered by the presence of small ther-
mal inclusions that act as a bath, leading to the delocalization of the entire system through an
avalanche propagation mechanism [48, 49, 68–71]. Here we study the dynamics of a thermal
inclusion of variable size when it is coupled to a many-body localized system. We find evidence
for accelerated transport of the thermal inclusion into the localized region. We monitor how the
avalanche spreads through the localized system and thermalizes it site by site by measuring the
site-resolved entropy over time. Furthermore, we isolate the strongly correlated bath-induced
dynamics with multipoint correlations between the bath and the system. Our results have im-
plications on the robustness of many-body localized systems and their critical behavior.

4.1 Stability of many-body localized systems

One of the founding principles of statistical physics is that a generic macroscopic system can
equilibrate on its own. This means that local fluctuations of energy, magnetization, or particle
density can relax towards thermal equilibrium because interactions allow different parts of the
system to serve as reservoirs to each other. This universal picture has been challenged by the
idea of many-body localization (MBL), which suggests that systems with strong disorder can
evade thermalization even in the presence of interactions [66,67,72,73,27,30,46,1,2]. In one-
dimensional systems, a stable MBL phase can be argued for as follows: the matrix elements of
local operators decay exponentially with the separation between two points, whereas the density
of states increases exponentially with the system size. For strong disorder, matrix elements
can thus be argued to decay faster than the density of states increases, ultimately inhibiting
relaxation.
However, the existence of MBL remains a subject of debate, since it is unclear when those con-
ditions are fulfilled [74–82]. For instance, by introducing a small region with weak disorder,
part of the system may be delocalized and thus give rise to local operators with non-exponential
decay [54, 83–89, 43–45, 47]. Those local weakly disordered regions occur naturally in ran-
domly disordered systems, when potential offsets on consecutive lattice sites accidentally co-
incide [90, 91, 54, 85, 47]. The dynamics in MBL systems in the presence of a thermal region
have been predicted to occur in so-called quantum avalanches, which imply that these regions
grow by absorbing nearby disordered regions [48,49,68–70]. Under which conditions quantum
avalanches can arise, run out of steam, or propagate without halt determines the fate of MBL at
long evolution times. Their understanding is thus closely connected to discerning thermaliza-
tion in interacting many-body systems.

4.2 Quantum avalanches

Perturbative bath-induced relaxation can often be captured in the context of Fermi’s golden
rule (Fig. 10a, left). In this picture, the relaxation rate Γi = g2i ρbath at a distance of i sites
away from the bath is given by the product of the bath’s constant density of states ρbath and the
coupling rate gi ∝ Je−i/ξloc , where ξloc is the localization length of the MBL system, and J is the
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Fig. 10: Bath-induced quantum avalanches. a: Two scenarios at an interface of a thermal
bath (clean) and a localized (disordered) region: the bath penetrates logarithmically slow and
localization remains robust (left), or an avalanche from a strong bath thermalizes the disordered
region site by site (right). b: Fluorescence pictures of a two-dimensional Mott insulator at unity
filling, and of the initialized one-dimensional system of L sites. Projected optical potentials iso-
late the system and apply site-resolved offsets onto the disordered region (blue). c: The initial
state is brought far from equilibrium through a quantum quench by abruptly enabling tunneling
along all links, then evolved under the Hamiltonian, until we detect the site-resolved atom num-
ber with a fluorescence picture. d: The system’s dynamics are governed by the Bose-Hubbard
model with tunneling energy J and on-site interaction energy U, extended by a disorder poten-
tial with amplitude W in the disordered region.

tunneling rate between neighboring sites. Consequently, within a perturbative description MBL
remains robust against a local bath, with a bath penetration into the MBL region that increases
logarithmically in time.
Quantum avalanches, in contrast, are predicted to emerge from dynamics beyond this simple
picture (Fig. 10a, right). A more accurate description ought to take into account that the density
of states of the bath grows when the first disordered site thermalizes and hence merges with the
bath. This feedback effect enhances the relaxation rate Γi for the next localized sites, giving
rise to accelerated bath penetration into the disordered region faster than logarithmic in time.
Eventually, these non-perturbative relaxation processes may lead to a full delocalization of the
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system if the density of states grows faster than the decay in the coupling rates.
Studying quantum avalanches within disordered systems remains a challenge due to both the
statistical rareness of a sufficiently large thermal inclusion, and the large time scales over which
the inclusion spreads through the system. Consequently, theoretical approaches often consider
disordered systems that are locally coupled to a thermal bath that represents the rare region
[68]. Within this canonical setting, several signatures have been proposed to identify quantum
avalanches through their short-term dynamics, including a speedup compared to a logarithmic
spreading [70], and a backaction on the bath [49]. However, high demands in local control have
so far hindered their experimental observation.

4.3 Accelerating delocalization

In this work we explore the dynamics of an MBL system coupled to a thermal inclusion (Fig. 10)
and observe phenomena that suggest the presence of non-perturbative avalanche processes. Our
experimental protocol starts by preparing a Mott-insulating state with one 87Rb atom on each
site of a two-dimensional optical lattice (Fig. 10b). The system is placed in the focus of a
high-resolution imaging system through which we project site-resolved repulsive potentials on
individual lattice sites. We isolate a one-dimensional system of L lattice sites from the Mott
insulator and add potential offsets to the lattice sites. At this point, the system remains in a
product state of one atom per lattice site. We then perform a quantum quench by abruptly
reducing the lattice depth (Fig. 10c). The subsequent non-equilibrium dynamics are described
by the Bose-Hubbard Hamiltonian:

Ĥ = −J
∑
i

(
â†i âi+1 + h.c.

)
+
U

2

∑
i

n̂i (n̂i−1) +W
∑
i∈Ldis

hin̂i, (3)

where â†i
(
âi
)

is the creation (annihilation) operator for a boson on site i, and n̂i = â†i âi is
the particle number operator. The first term describes the tunneling between all neighboring
lattice sites, and the second term represents the on-site repulsive interactions. The last term
introduces a site-resolved energy offset. We set hi = 0 for all lattice sites in the clean region
of size Lclean, whereas the energy offsets in the disordered region of size Ldis follow a quasi-
periodic disorder distribution hi = cos(2πβi+φ) with 1/β ≈ 1.618, phase φ and amplitude W.
The quasi-periodic distribution avoids nearby lattice sites to coincidentally have similar energy
offsets, which inhibits the presence of secondary rare regions within the disordered region [55].
After a variable evolution time, we read out the site-resolved atom number by fluorescence
imaging. The applied unitary evolution preserves the initial purity of 99.1(2)% per site [8, 1].
All observables are averaged over 200 disorder realizations with different φ. The tunneling time
τ=~/J=4.3(1) ms (with the reduced Planck constant ~), the interaction strength U=2.87(3) J ,
and the number of disordered sites Ldis = 6 remain constant in all experiments.
We first use the full site-resolved readout of our microscope to investigate the local transport dy-
namics in the system. The connected density-density correlations 〈n̂in̂j〉c = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉
detect correlations between the particle numbers on site i and j [2]. Negative values of 〈n̂in̂j〉c
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Fig. 11: Accelerated transport across the clean-disorder interface. a: Density correlations for
all pairs of sites in a system consisting of Lclean = Ldis = 6 at disorder strength W = 9.1 J .
After a quantum quench, an uncorrelated initial state (left) develops separate dynamics within
each subsystem (center), followed by particle transport across the clean-disorder interface (grey
dashed lines) for evolution times � Lclean, Ldis (right). Cuts show the total density correla-
tions g(2)(i) of the clean region with site i (i.e. average of top six rows, excluding diagonal
entries), featuring homogeneous coupling among the clean sites, and exponentially decaying
anti-correlations with the distance of the disordered site from the interface. b: The decay length
ξd of the total density correlations increases first logarithmically in time and accelerates at long
evolution times. c: The decay length ξd after an evolution time of 100τ grows with Lclean, indi-
cating improved particle transport into the disordered region. The data point at Lclean = 0 and
the dashed line show the localization length of an isolated MBL system.

signal anti-correlated density fluctuations, and thus particle motion between the involved sites
(Fig. 11a). In the following, we consider a system with Lclean = 6 at disorder strength W =

9.1 J after different evolution times T after the quantum quench. At the beginning of the evolu-
tion (T = 0τ ), we do not detect any correlations, because the initial state is a product state. After
short evolution times (T . τL), we observe the buildup of spatially dependent anti-correlations
in the system. Within the clean region all lattice sites develop mutual anti-correlations, sig-
naling delocalized particles. In contrast, the anti-correlations in the disordered region remain
short-ranged, indicating localized particles. These properties overall persist up to long evolu-
tion times (T � τL). In order to quantify the emergence of a bath, we extract the mean and
the variation of the off-diagonal correlations in the clean region (Fig. 11b). We find that within
a few tunneling times the clean region reaches its steady state with similar correlations across
all pairs of sites, indicating that it starts to act as a thermal bath to the disordered region.

For long evolution times (T � τL) we additionally observe the buildup of anti-correlations
between lattice sites in the clean and the disordered region, evidence for transport dynamics
across the interface (right panel in Fig. 11a). Each of the disordered sites is similarly anti-
correlated to all clean sites, which confirms that the clean region acts as a heat bath for the
disordered region. Motivated by this picture, we extract the mean correlations of the clean
region g(2)(i) = 〈n̂in̂j〉c

∣∣
j∈Lclean

by averaging the correlations of each site i with all clean sites j
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Fig. 12: Site-resolved thermalization dynamics. a: The atom number probability distribution
for the edge sites in the clean region (left) and the disordered region (right), measured after
100τ in a system consisting of Lclean = Ldis = 6 at disorder strength W = 9.1 J . b: Local
entropy per particle si = −

∑
n pn log pn/〈n̂i〉 extracted from the atom number distribution on

site i. The entropy grows after a stationary evolution whose length depends on the distance
from the interface (indicated by the grey dashed line). Traces are vertically offset for better
readability. c: Local entropy si (offset by si(T = 1τ)) for all disordered sites. Solid lines (bars
in panel a) show the prediction from exact numerics without free parameters.

(Fig. 11a cuts). The results are consistent with an exponential decay with distance from the clean
region, in agreement with the Fermi golden rule picture of exponentially decaying couplings
between bath and MBL.
While a static bath spectrum causes bath correlations to penetrate MBL logarithmically in time,
a signature of the quantum avalanche is an accelerated increase, faster than logarithmically in
time. In order to test this picture, we quantify the correlation decay into the disordered region
by measuring the average distance ξd = −

∑
i∈Ldis

i g(2)(i) from the clean region over which
anti-correlations form (Fig. 11c). At short times the decay length ξd increases logarithmically
in time, but accelerates at long evolution times. We contrast this observation with a system with
Lclean = 2, where the we do not find any accelerating transport dynamics.

4.4 Site-resolved thermalization

We next examine the local thermalization dynamics across the system. The microscopic readout
enables us to measure the full atom number distribution on each site (Fig. 12a). Lattice sites in
the clean region show a distribution corresponding to a thermal ensemble, whereas lattice sites
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0 5 10
Disorder W (J)

0

0.01

0.02

 g
(3

)
Ba

th

0 5 10
Disorder W (J)

-0.1 0.1

-0.03

0.03

-0.03

0.03

a b

c

Experiment Theory

d

i
...... ...

j k i
...... ...

jk

Experiment Theory
Si

te
s 

j

Sites i Sites i
2 4 6 2 4 6 2 4 6 2 4 6

2
4

6

2
4

6

Fig. 13: Bath-induced many-body correlations. a: Three-point correlations 〈n̂in̂jn̂k〉c among
pairs of clean sites i, j and one disordered site k (summed over all disordered k) in a system
with Lclean = Ldis = 6 at disorder strength W = 9.1 J and evolution time T = 100(1). Cuts
across the site j = 6 (arrows) show nonzero entries for all sites, evidence for multi-particle
entanglement between all sites in the clean region with the disordered sites. The flat distribu-
tion visualizes the homogeneous coupling to the disordered region. b: Correlations 〈n̂in̂jn̂k〉c
among pairs of disordered sites i, j and one clean site k (summed over all clean k) vary strongly
with the chosen lattice sites, and decrease with the distance from the clean region. The presence
of multi-point correlations demonstrates non-perturbative dynamics: delocalization is driven
through many-body processes between the disordered region and the clean region. c: We aver-
age over all off-diagonal sites and find a maximum for intermediate disorder for the MBL-bath
entanglement. d: The total multi-point correlations among disordered sites with the bath show
a similar maximum at slightly lower intermediate disorder. Solid lines show the prediction from
exact numerics without free parameters.

in the disordered region show a distribution with enhanced probability for one particle, the initial
state of the system. We quantify the site-resolved thermalization dynamics with the entropy per
particle si = −

∑
ni
p(ni) log p(ni)/〈n̂i〉 on site i from the atom number distributions. We

observe reduced thermalization dynamics of the disordered sites with increasing distance from
the interface (Fig. 12b, c). Moreover, the data suggest that the dynamics are first stationary until
thermalization sets in with a delay that increases with the site’s distance from the interface. This
picture is confirmed by our exact numerical calculations.
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4.5 Many-body processes

The accelerated transport indicates the long-term dynamics are driven by processes that go
beyond a perturbative coupling to the bath. We investigate this effect through multipoint corre-
lations [92, 2]. The presence of non-zero three-point connected correlations 〈n̂in̂jn̂k〉c signals
the presence of entanglement among all involved lattice sites, which cannot be explained in
a perturbative, semiclassical description. We evaluate the connected correlations g(3)(i, j) =

〈n̂in̂jn̂k〉c
∣∣
k∈Lclean

among two disordered sites i, j and a clean site k, averaged over all possible k
(Fig. 13a). We find a strong dependence on the involved disordered sites: close to the inter-
face correlations are strong, whereas they become weaker for distant sites. We quantify this
behavior by considering the correlations as a function of the mean distance d̄ = (i+j)/2 of the
two disordered sites from the clean region (Fig. 13b). Indeed, the correlations decrease with in-
creasing distance from the clean region, comparable to the decay length ξd. This demonstrates
that the accelerated transport is driven by many-body processes, a key property for quantum
avalanches. We quantify the presence of many-body correlations at different disorder strengths
by taking their average g(3)(i, j)

∣∣
i,j∈Ldis

(Fig. 13c,d). The correlations are present throughout the
covered disorder range with a maximum at intermediate strengths, close to the estimated critical
point of the system [2].
In conclusion, we experimentally realized a clean-disordered interface and studied the emerging
thermalization dynamics. We observed an accelerated intrusion of the bath in the MBL system,
its evolution to thermal equilibrium site after site, and the many-body correlations between the
two subsystems, the hallmarks of quantum avalanches. In future, our experiments can be read-
ily extended in many ways. For example, by increasing both the system size of the disordered
region, one could explore the interplay at intermediate disorder strengths in a quantitative way
through its scaling behavior, i.e., by increasing the system size at constant ratio of Lclean and
Ldis, which may provide insight into the critical behavior of the transition. An interesting ex-
tension would also be the influence of the statistical distribution of the disorder on the critical
behavior of the system. Furthermore, engineering other heterostructures with quantum gas mi-
croscopes may provide an avenue to studying phenomena in the physics of interfaces, or to
building atomtronic devices.
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References

[1] A. Lukin, M. Rispoli, R. Schittko, M.E. Tai, A.M. Kaufman, S. Choi, V. Khemani,
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L. Sanchez-Palencia, A. Aspect, and P. Bouyer, Nat. Phys. 8, 398 (2012)

[19] C. D’Errico, E. Lucioni, L. Tanzi, L. Gori, G. Roux, I.P. McCulloch, T. Giamarchi,
M. Inguscio, and G. Modugno, Phys. Rev. Lett. 113, 1 (2014)

[20] S.S. Kondov, W.R. McGehee, W. Xu, and B. Demarco, Phys. Rev. Lett. 114, 1 (2015)



Many-Body Localization 15.27

[21] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli, A. Trenkwalder, M. Fattori,
M. Inguscio, and G. Modugno, Nat. Phys. 11, 554 (2015)

[22] I.V. Gornyi, A.D. Mirlin, and D.G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005)

[23] D.M. Basko, I.L. Aleiner, and B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

[24] V. Oganesyan and D.A. Huse, Phys Rev. B 75, 115111 (2007)

[25] E. Altman and R. Vosk, Annu. Rev. Condens. Matter Phys. 6, 383 (2015)

[26] D.A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91 (2019)

[27] M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman,
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[77] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Phys. Rev. E 102, 062144 (2020)
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transverse-field Ising model, 11.9
tunneling asymmetry, 7.17
twist averaged boundary conditions, 14.14
two-body operators, 2.10
two-point correlation function, 13.18

U
unconventional superconductivity, 7.4,

11.27
universal BKT jump, 10.19, 10.23
universal power law, 12.27
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V
vacuum state, 2.5
van Hove singularity, 3.8, 9.13, 9.23
variational Monte Carlo (VMC), 14.8
vector operator, 4.20
volume law, 15.9
von-Neumann entanglement entropy, 15.6
vortex-core energy, 10.12, 10.27
vortices, 10.7
vorticity, 1.21

W
wedge isomorphism, 1.16
Wigner’s Theorem, 1.4
Wilson ratio, 12.15

X
XY -model, 10.4

Y
Yukawa coupling, 11.24–11.26

Z
zero variance principle, 14.7
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