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4.2 Robert Eder

1 Introduction

Following the discovery of copper oxide superconductors with their spectacularly high super-
conducting transition temperatures by Bednorz and Müller [1], the problem of the doped Mott
insulator has become a central issue in solid state physics. Still, after more than 30 years of re-
search and thousands of papers devoted to this subject, there is no generally accepted theory for
this problem. So what exactly do we mean by ‘doped Mott insulator’ and why is this problem
so hard to solve?
Let us consider a two-dimensional square lattice with lattice constant a = 1, which consists of
N = L2 sites and impose periodic boundary conditions with period L along both the x- and
y-direction. We denote the number of electrons with spin σ byNσ, the total number of electrons
by Ne = N↑+N↓. Also, we denote densities per site by n, for example ne = Ne/N . To explain
the idea of a Mott-insulator it would be neither necessary that the system is two-dimensional,
nor that we have a square lattice, but this is the suitable geometry to describe the CuO2 planes in
copper oxide superconductors. We assume that there is one s-like atomic orbital |φi〉 centered
at each lattice site i. Orbitals on different sites are assumed to be orthogonal, 〈φi|φj〉 = δi,j ,
but there may be nonvanishing matrix elements of the Hamiltonian – that means the kinetic
and potential energy – between them, 〈φi|H|φj〉 = −ti,j . We assume that the orbital |φ〉 is the
same for each lattice site, whence the matrix element 〈φi|φj〉 depends only on the distance be-
tween i and j, ti,j = tRi−Rj

. We also assume that the atomic orbital |φi〉 decays exponentially,
〈r|φi〉 ∝ e−|r−Ri|/ζ , so we expect tR ∝ e−|R|/ζ and ti,j will differ appreciably from zero only
for close neighbors. Introducing operators c†i,σ which create an electron of z-spin σ in the orbital
|φi〉 the Hamiltonian therefore reads

H0 = −
∑
i,j

ti,j
∑
σ

c†i,σcj,σ =
∑
k

∑
σ

εk c
†
k,σck,σ.

The second expression for H0 is obtained by Fourier transformation

c†k,σ =
1√
N

∑
j

eik·Rj c†j,σ ⇒ εk = − 1

N

∑
i,j

ti,j e
ik·(Ri−Rj) = −

∑
R

tR eik·R. (1)

Here k =
(
2nπ/L, 2mπ/L

)
with integer m and n such that −L/2 < m,n ≤ L/2 is a wave

vector in the first Brillouin zone. Unless otherwise stated we will from now on assume that
ti,j is different from zero only for nearest neighbors i and j and denote its value by t, whence
εk = −2t

(
cos(kx) + cos(ky)

)
. The number of wave vectors k equals N and the ground state

for N electrons is obtained by ‘filling the band from below’, that means occupying those N/2
wave vectors k which minimize the sum

∑
k εk with two electrons of opposite spin. The band

therefore is half-filled, the Fermi surface covers precisely half of the Brillouin zone and we have
a metal.
In the discussion so far we have ignored the Coulomb interaction between the electrons. Recall-
ing that the atomic orbital 〈r|φi〉 ∝ e−|r−Ri|/ζ , we expect that if the orbital is occupied by two
electrons of opposite spin, the electrostatic energy is U ∝ e2/ζ , whereas it is V ∝ e2/a if the
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electrons are in orbitals on different sites. If we take the limit of a ‘small atomic orbital’, ζ → 0,
we find U/t→∞ and V/U → 0 whence we neglect the Coulomb repulsion between electrons
in different orbitals. Taking the extreme limit U →∞ while t being fixed, and returning to the
problem of finding the ground state with N electrons we find that there is precisely one electron
in each of the N orbitals (putting two electrons into the same orbital increases the energy by the
large amount U ). The electrons thus are ‘frozen in’ and cannot react to an applied electric field,
so that the system is an insulator. This is the prototype of a Mott insulator: a system which
would be a metal in the band picture, but is an insulator due to the strong Coulomb repulsion
between electrons in ‘small’ atomic orbitals. It should be noted that for noninteracting electrons
(U = 0) and t = 0 the electrons would be unable to move as well and the system would be an
insulator. However, any arbitrarily small value of twould immediately lead to the formation of a
band and a Fermi surface, whereas in the presence of a large U switching on t� U still would
not change the insulating nature of the ground state. Let us now try to put these qualitative
considerations into a more quantitative form – the famous Hubbard-I approximation.

2 The basic concept: Hubbard-I approximation

This is the ‘defining approximation’ of the Mott-insulator by which Hubbard for the first time
introduced central concepts of strongly correlated electron systems such as the two Hubbard
bands [2]. In the following we give a somewhat sloppy re-derivation of Hubbard’s theory which
is meant to clarify its the physical content.
We consider the of infinite U and N↑ = N↓ = N/2 so that Ne = N . The ground state has one
electron per lattice site and the energy is E = 0. The way in which the spins are distributed over
the sites is not determined, however, rather the number of ways to distribute the ↑-spins (which
automatically fixes the ↓-spins) is

nd =

(
N

N↑

)
≈
√

2

πN
2N , (2)

where the Stirling formula has been used. This shows the enormous degree of degeneracy. We
ignore this degeneracy, however, and assume that there is a unique state |Ψ0〉 which may be
thought of as a suitable superposition of all these nd degenerate states and which we assume to
be ‘disordered’ — it will become clear in a moment what this means.
Next we assume that U is gradually reduced from infinity. Then, a term in the kinetic energy
such as ti,j c

†
i,σcj,σ can transfer an electron of spin σ from site j to another site i resulting in

an empty site at j and a double occupancy at site i, whereby the double occupancy increases
the energy by U. The hopping process is possible only if the electron which was originally at
the site i has the spin −σ and since our initial state |Ψ0〉 is ‘disordered’ the probability for this
to be the case is 1/2 — which is our definition of ‘disordered’. We now interpret the original
state |Ψ0〉 as the vacuum state |0〉 of our theory and the state created by the hopping process as
containing a fermionic hole-like particle at j and a fermionic double-occupancy-like particle at
site i: d†i,σ h

†
j,−σ|0〉. The order of the fermionic operators in this state is due to the fact that in the
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original hopping term the annihilation operator cj,σ which creates the hole stands to the right of
the creation operator c†i,σ which creates the double occupancy. Moreover we assign the negative
spin to the operator which creates the hole because replacement of, e.g., an ↑-electron by a hole
decreases the z-spin by 1/2. We arrive at the following effective Hamiltonian to describe the
holes and double occupancies

Heff,1 =
1

2

∑
i,j

∑
σ

(
ti,j d

†
i,σh

†
j,−σ +H.c.

)
+ U

∑
i,σ

d†i,σdi,σ . (3)

Once a hole and a double occupancy have been created, each of these particles may be trans-
ported further by the hopping term. If we assume that the surplus or missing electron retains its
spin, which means that the double occupancies and holes propagate without ‘leaving a trace’ of
inverted spins, for example a surplus ↑-electron can hop from site i to site j only if the spin at
site j is ↓— again we assume that the probability for this is 1/2. We therefore can write down
the missing terms for the effective Hamiltonian

Heff,2 =
1

2

∑
i,j

∑
σ

ti,j

(
d†i,σdj,σ − h

†
i,−σhj,−σ

)
. (4)

The negative sign of the hopping term for holes is due to the fact that the original hopping term
has to be rewritten as −ti,jcj,σc

†
i,σ to describe the propagation of a hole. Addition of (3) and (4)

and Fourier transformation gives

Heff =
∑
k,σ

((εk
2
+U
)
d†k,σdk,σ −

εk
2
h†k,σhk,σ

)
+
∑
k,σ

εk
2

(
d†k,σh

†
−k,−σ +H.c.

)
, (5)

with εk given in Eq. (1). Note that this now is a quadratic form where the Coulomb interaction
is described by the extra energy of U for the double-occupancy-like fermion. We make the
ansatz

γ†k,+,σ = ukd
†
k,σ + vkh−k,−σ,

γ†k,−,σ = −vkd†k,σ + ukh−k,−σ, (6)

and demand that the Hamiltonian takes the form

Heff =
∑
k,σ

(
Ek,+γ

†
k,+,σγk,+,σ + Ek,−γ

†
k,−,σγk,−,σ

)
. (7)

We find
(
with Wk =

√
ε2
k+U

2
)

Ek,± =
1

2

(
εk + U ±Wk

)
, uk =

√
Wk + U

2Wk

, vk =
εk√

2Wk(Wk + U)
. (8)

In the limit U/t � 1 this simplifies to Ek,− = εk/2, Ek,+ = εk/2 + U so that the original
band with dispersion εk is split into two bands, separated by a gap of U and each having half of
the original width. To find out the occupation of the bands, and hence the nature of the Fermi
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Fig. 1: Band structures Ek for the noninteracting system (dashed line) and from the Hubbard-I
approximation (U/t = 8). The energies are plotted for k = (k, k), i.e., along the (1, 1)-
direction. For ne = 1 the half-filled noninteracting band is replaced by the two Hubbard bands,
the chemical potential µ is in the center of the gap between the two Hubbard bands so that the
lower one is completely filled, the upper empty.
For ne < 1 the noninteracting band becomes less than half-filled, the chemical potential cuts
into the top of the lower Hubbard band, forming a hole pocket around (π, π). Note the strong
discrepancy of the Fermi wave vectors kF .

surface, we need to count electrons. The vacuum state |Ψ0〉 has one electron per site, i.e., a
total of N electrons. Each double occupancy increases the electron number by one, each hole
decreases it by one so that the operator of electron number becomes

Ne = N +
∑
i,σ

(
d†i,σdi,σ − h

†
i,σhi,σ

)
=
∑
k,σ

(
d†k,σdk,σ + h−k,−σh

†
−k,−σ

)
−N.

On going over to the expression on the extreme right we have switched to Fourier transforms
and assumed fermion anticommutation relations to hold for the h†k,σ. We note that in the basis
(d†k,σ, h−k,−σ) the operator matrix for the expression in brackets is the unit matrix which is
invariant under unitary transformations whence Ne also can be written as

Ne =
∑
k,σ

(
γ†k,−,σγk,−,σ + γ†k,+,σγk,+,σ

)
−N. (9)

Demanding 〈Ne〉 = N the lower band Ek,− must be completely filled whereas the upper band
Ek,+ must be completely empty, i.e., the chemical potential must be in the center of the gap
between lower and upper band see Figure 1. Namely in this case the expectation value of the
term in brackets is 2N . Rather than being a metal, as expected for the situation of a half-filled
band, the presence of the Coulomb interaction turns the system into an insulator – and this is
precisely the definition of the Mott-insulator.
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Large U − insulator Smaller U − transition

Fig. 2: As the ratio U/t decreases more and more hole-double occupancy pairs are generated
and the extent of the pairs increases. At a certain ratio of U/t the pairs overlap significantly
and the phase transition to the metal occurs.

It follows that the ground state wave function |Φ0〉must obey γ†k,−,σ|Φ0〉 = γk,+,σ|Φ0〉 = 0. This
can be achieved by choosing

|Φ0〉 =
∏
k,σ

(
uk + vk h

†
−k,−σ d

†
k,σ

)
|Ψ0〉 ∝ e

∑
k,σ

vk
uk

h†−k,−σd
†
k,σ |Ψ0〉.

The similarity with the BCS wave function shows that |Φ0〉 may be viewed as the original
background |Ψ0〉, which has one electron per site and is spin-disordered, populated by electron-
hole pairs. The expression in the exponent is∑
k,σ

vk
uk
h†−k,−σd

†
k,σ =

∑
i,R

f(R)h†Ri,−σ d
†
Ri+R,σ with f(R) =

1

N

∑
k

vk
uk

eikR −→
U→∞

t

U
δ|R|,1.

This shows that for large U the density of pairs is ∝ (t/U)2 and the double-occupancy and the
hole are almost exclusively on nearest neighbors.
If in a gedankenexperiment one would reduce the value of U starting from U = ∞, one would
expect that, as U decreases, both the density of such pairs would increase and the diameter of
a pair would increase, see Figure 2. If U becomes sufficiently low the pairs start to overlap
and at that point the entire picture is likely to break down so we have the insulator-to-metal
transition. Viewed that way one might conjecture that the order parameter for the insulator-
to-metal transition is the double occupancy-hole pairing amplitude

〈
d†k,σ h

†
−k,−σ

〉
. Does the

Hubbard-I approximation describe such a transition to the metallic state? The simplest way to
answer this question is to consider the gap between the upper and lower Hubbard band in the
limit U/t→ 0. One finds

∆ = Ek=(0,0),+ − Ek=(π,π),− ∝
U2

4t
,

where the extreme right-hand-side holds for U → 0. This shows that there is a gap even
for arbitrarily small U, i.e., there is no insulator-to-metal transition with decreasing U in the
Hubbard-I approximation.
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Next, what would happen if we reduce the electron number Ne from N → (1−δ)N , i.e., we
‘dope the Mott insulator’? First, one would assume that all the factors of 1/2 in the above
derivation should be replaced by (1−δ)/2 because this is now the probability that on any given
site there is an electron with a given spin σ. This will lead to only a slight modification of the
quasiparticle dispersion. More importantly, however, the occupation of the lower Hubbard band
will be reduced. Inspection of (9) shows that now〈∑

k,σ

(
γ†k,−,σγk,−,σ + γ†k,+,σγk,+,σ

)〉
= (2−δ)N,

so that the occupied part of the lower Hubbard band must now contain NHubbard = (1−δ/2)N
momenta k. This means that Nδ/2 k-points must be unoccupied so that the Fermi surface is
a small hole-pocket around the top of the lower Hubbard band at k = (π, π), see Figure 1.
Compare this to the noninteracting case, U = 0 where the occupied part of the band contains
Nfree =

(
(1−δ)/2

)
N momenta, whence the difference NHubbard − Nfree = N/2. If we assume

that the Hubbard-I approximation is at least qualitatively correct for the lightly doped Mott-
insulator, i.e., small δ, this immediately leads to an interesting question: namely for low electron
density ne � 1 one recovers the noninteracting Fermi surface even for arbitrarily large U [3].
The reason is that for low electron density the probability for collisions between electrons is
small and the interaction becomes largely irrelevant. Accordingly, if one gradually reduces the
electron number starting from ne = 1 one would expect that one first has the Fermi surface with
a volume ∝ δ/2 as predicted by the Hubbard-I approximation but at a certain critical ne the
Fermi surface volume must change to the free-electron value of (1−δ)/2, i.e., a phase transition
between two phases with different Fermi surface volume with increasing doping. An obvious
candidate for this phase transition would be the enigmatic quantum critical point in cuprate
superconductors which gives rise to the superconducting dome in these compounds.

Finally let us address a subtle problem which actually is related to a very fundamental problem
in strongly correlated electrons. In the above discussion we have assigned a spin to the holes
and double occupancies: d†i,σ and h†j,σ. However, both an empty site and a doubly occupied
site are spinless objects! On the other hand, if the vacuum state |Ψ0〉 has a definite z-spin Sz,
the states ci,↑|Ψ0〉 and ci,↓|Ψ0〉 are orthogonal to each other because they have Sz ∓ 1/2. This
is despite the fact that the empty site at i is a spinless object. The information whether an ↑-
electron or a ↓-electron has been removed from site i therefore must be ‘stored’ somewhere else
in the resulting state. If one now were to remove an electron at site i and subsequently let the
resulting state evolve under the action of the Hamiltonian one can take two different points of
view: when the empty site propagates, the information about the spin of the removed electron
may ‘stay in the neighborhood’ of the spinless vacancy, so that effectively there is a spin-1/2

particle propagating. Obviously, in the Hubbard-I approximation one is implicitly assuming
just this. Alternatively one might assume that the spinless vacancy and the ‘spin information’
acquire an independent existence and separate from each other, a scenario often referred to as
spin-charge separation.
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i j

(a) (b) (c)

Fig. 3: An exchange process in a Mott insulator.

3 Antiferromagnets

3.1 Spin exchange

In the introduction we have already mentioned one of the reasons why the problem of the Mott-
insulator is so difficult. Whereas the ground state for Ne = N and U = 0 is unique and easy
to write down – the half-filled Fermi sea – a well-defined ground state for U/t = ∞ does
not even exist. Rather, the ground state is highly degenerate, see equation (2) above. In the
Hubbard-I approximation we have bypassed this problem by assuming that there is a unique
‘disordered’ ground state of N electrons on N sites, and that the only active degrees of freedom
are the double-occupancies and holes. This, however, ignores the possibility of spin exchange.
If we reduce U/t from infinity to a large but finite value, the spins on the individual sites start
to ‘communicate’ with each other via the process shown in Figure 3. An electron from site i
may hop to a neighbor j and form an intermediate state with an empty orbital at i and a doubly
occupied orbital at j, see Figure 3(b). Since the energy of this intermediate state is U, it will
be short lived and one of the two electrons in j will hop to the empty site i, resulting in one
of the two states in Figure 3(c). The upper state is identical to the initial state, Figure 3(a), but
there is a gain in kinetic energy of order t2/U due to the back-and-forth hopping of the electron.
Since this back-and-forth hopping is possible only if the spins at i and j are antiparallel to each
other, it is energetically favorable if spins on nearest neighbors are antiparallel. In the lower
of the two states in Figure 3(c) both spins have flipped their direction as compared to Figure
3(a), so that the spins in the Mott insulator are not static, but have a dynamics of their own. A
more quantitative treatment shows [4] that the ‘virtual’ hopping processes in Figure 3 can be
described by the Heisenberg antiferromagnet

HHAF = J
∑
〈i,j〉

Si · Sj = J
∑
〈i,j〉

(
Szi S

z
j +

1

2

(
S+
i S
−
j + S−i S

+
j

))
. (10)

Here J = 4t2/U while
∑
〈i,j〉 denotes a sum over all 2N nearest neighbor pairs, and Si is the

operator of electron spin at site i and the spin raising and lowering operators S± = Sx±iSy
have been introduced to rewrite the term Si,xSj,x + Si,ySj,y. We see that although the electrons
in a Mott insulator are localized, their spins acquire a ‘life of their own’, resulting in a magnetic
ground state and a spectrum of spin-excitations.
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i j

(c) (d)

i j i j

lk k l

i j

(a) (b)

Fig. 4: The Néel state (a) is not the ground state of the Heisenberg antiferromagnet. By acting,
e.g., with the term J

2
S−i S

+
j in (10) the state (b) is generated, which is orthogonal to the Néel

state. Acting further with J
2
S−k S

+
l produces (c) and then acting with J

2
S−j S

+
k gives (d).

3.2 Magnons in an antiferromagnet

We consider the undoped Mott insulator,Ne = N , and assume that the spins degrees of freedom
of the electrons are described by the Heisenberg antiferromagnet, Eq. (10). If only the terms
∝ Szi S

z
j were present, the ground state of (10) would be the Néel state, shown in Figure 4(a). In

this state, the square lattice is divided into two sublattices whereby all sites of the A-sublattice
are occupied by an ↑-electron, those of the B-sublattice by a ↓-electron (we assume that the
A-sublattice is the one containing the site (0, 0)). The energy of this state is 2N · (−J/4) =

−NJ/2. The Néel state, however, is not an eigenstate of the full Hamiltonian (10): acting, e.g.,
with one of the products J

2
S−i S

+
j contained in the second term in (10), the spins at the sites i

and j are inverted, resulting in the state shown in Figure 4(b) which is orthogonal to the Néel
state. Interestingly, the inverted spins have very much the character of particles in that they can
propagate: first, the term J

2
S−k S

+
l appends two additional inverted spins, see Figure 4(c), and

then the term J
2
S−j S+

k removes two inverted spins, to produce the state in Figure 4(d). The net
result of this two-step process is that one of the inverted spins seems to have moved from site
j to site l. The particle-like nature of the inverted spins has led to the name magnons for them.
One can then envisage how this will go on: magnons are created in pairs at various places in
the system, then separate and propagate independently by the append-and-remove process, but
when two magnons meet they can also ‘pair-annihilate’ each other by the inverse process Figure
4(b)→ (a). There are then two possible outcomes of this scenario: the density of magnons may
reach an equilibrium value, where pair-creation and pair annihilations balance each other, so
that the underlying antiferromagnetic order persists and we have a Néel state hosting a ‘gas of
magnons’, or the process may go on until the ordered state is wiped out and we get an entirely
new state without order. It turns out that in dimensions D ≥ 2 the first scenario is realized,
and the resulting gas of magnons in antiferromagnetic Mott insulators can be described very
well by linear spin wave theory. This is frequently derived by means of the Holstein-Primakoff
transformation [5] but for the extreme quantum limit of spin 1/2, which we are considering here,
a simpler and more transparent derivation is possible.
We interpret the Néel state in Figure 4(a) as the vacuum state |0〉 for magnons and model an
inverted spin at the site i of theA sublattice by the presence of a boson, created by a†i . Similarly,
an inverted spin on the site j of the B sublattice is modeled by the presence of a boson created
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by b†j . The state in Figure 4(b) thus would be represented as a†ib
†
j|0〉. We use bosons to represent

the magnons because spin-flip operators such as S+
i and S−j commute for different sites i and

j and these are the operators which create or annihilate the magnons. Since any given spin can
be inverted only once, a state like (a†i )

2|0〉 is meaningless. Accordingly, we have to impose the
constraint that at most one boson can occupy a given site. This is equivalent to an infinitely
strong on-site repulsion between the magnons and we call this the hard-core constraint. An
inverted spin on either sublattice is parallel to its z = 4 nearest neighbors and the energy
changes from −J/4 to +J/4 for each of these z bonds. Accordingly, we ascribe an energy of
formation of zJ/2 to each boson. The spin-flip part creates or annihilates pairs of magnons on
nearest neighbors, with the matrix element being J/2, so that the Hamiltonian for the magnons
becomes

HSW =
zJ

2

(∑
i∈A

a†iai +
∑
i∈B

b†ibi

)
+
J

2

∑
i∈A

∑
n

(
a†ib
†
i+n + bi+nai

)
. (11)

Here n are the z vectors which connect a given site with its z nearest neighbors. Note that when
two inverted spins reside on nearest neighbors, the number of frustrated bonds is 2(z−1) rather
than 2z. This could be incorporated into HSW as an attractive interaction between magnons on
nearest neighbors, but here we ignore this.
The Hamiltonian (11) is a quadratic form but we recall that the bosons are not free particles,
but have to obey the hard-core constraint. However, for the moment we ignore this and treat the
bosons as if they were noninteracting – we will return to this issue later on. Fourier transforma-
tion of (11) gives

HSW =
zJ

2

∑
k

(
a†kak + b†kbk + γk

(
a†kb
†
−k + b−kak

))
,

a†k =

√
2

N

∑
j∈A

eik·Rja†j,

γk =
1

z

∑
n

eik·n =
1

4

(
2 cos(kx) + 2 cos(ky)

)
, (12)

where k is a wave vector in the antiferromagnetic Brillouin zone (AFBZ), see Figure 5. We can
diagonalize (12) by a bosonic Bogoliubov transformation, i.e., we make the ansatz

α†k = uk a†k + vk b−k,

β†−k = uk b
†
−k + vk ak,

⇒ a†k = uk α
†
k − vk β−k,

b−k = −vk α†k + uk β−k.
(13)

Demanding that
[
αk, α

†
k

]
=
[
βk, β

†
k

]
= 1 gives the condition u2

k−v2
k = 1, which actually has

been used to revert the equations on the left hand side of (13) to obtain the right hand side. Next,
we demand that when expressed in terms of the α†k and β†k the Hamiltonian takes the form

H =
∑
k

ωk

(
α†kαk + β†kβk

)
+ const,

which implies that
[
H, α†k

]
= ωkα

†
k. We now insert the ansatz (13) into this equation, use the

bosonic commutation relations for a† and b†, and equate the coefficients of a†k and b−k on both
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(π,0)

(π,π)

(a) (b)

(0,0)

Fig. 5: (a) The ordered moments in the Néel state make the two sublattices inequivalent, so that
the new lattice vectors connect only the sites of one sublattice. The new unit cell is rotated by
45o and has twice the size of the original one. (b) Accordingly, the new Brillouin zone is rotated
by 45o as well and has half the size of the original one.

sides of the resulting equation. This leads to the following non-Hermitean eigenvalue problem:(
zJ/2 −γk
γ∗k −zJ/2

)(
uk
vk

)
= ωk

(
uk
vk

)
. (14)

The eigenvalues and eigenvectors of (14) are easily calculated and one finds

ωk =
zJ

2

√
1−γ2

k, uk =

√
1+νk
2νk

, and vk =

√
1−νk
2νk

, (15)

where νk =
√
1−γ2

k. In particular, for k → 0 we find γk → 1 − (k2
x + k2

y)/4 = 1−k2/4 so
that νk → |k|/

√
2 and ωk → J

√
2|k|. This shows that the spin waves reach zero frequency at

k = (0, 0) and have a cone-shaped dispersion in the neighborhood.
Linear spin wave theory is extremely successful in describing many properties of antiferromag-
netic Mott-insulators. An example for the experimental observation of magnons by inelastic
neutron scattering and the excellent agreement of the experimental results with linear spin wave
theory can be found in Ref. [6].
To conclude this section, we return to the issue of the hard-core constraint which the a† and b†

bosons had to obey and which we had simply ignored. To address this question, we calculate
the density of these bosons, i.e.

na =
2

N

∑
k

〈
a†kak

〉
=

2

N

∑
k

v2
k =

2

N

∑
k

1−νk
2νk

.

Numerical evaluation for a 2D square lattice gives na = 0.19. The probability that two of the
bosons occupy the same site and violate the constraint therefore is ≈ n2

a = 0.04 � 1 and our
assumption of relaxing the constraint is justified a posteriori.
Summarizing the discussion so far we have seen that in a Mott-insulator the sites carry a spin
of ±1/2. These spins can communicate with each other by means of virtual charge fluctuations
and this is described by the Heisenberg antiferromagnet. In dimensions D ≥ 2 this leads to
antiferromagnetic order in the ground state and a new type of excitations, magnons or spin
waves, which correspond to spins standing opposite to the antiferromagnetic order and these
inverted spins propagate through the lattice. In the next section we investigate how the doped
holes interact with these spin excitations.
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3.3 One hole in an antiferromagnet

We have seen that in a Mott insulator ‘virtual’ hopping processes lead to a coupling of spins
which results in antiferromagnetic order and spin excitations. In this section we study the first
step towards the ‘doped’ the Mott insulator and consider a single hole in an antiferromagnet.
A single hole will not destroy the magnetic order due to the Heisenberg exchange between
the remaining N−1 spins so we continue to assume antiferromagnetic order. The appropriate
model to describe such a system is the famous t-J model

Ht-J = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c.

)
+ J

∑
〈i,j〉

Si · Sj, (16)

where the Hubbard operator ĉ†i,σ = c†i,σ(1−ni,σ̄) creates an electron only on an empty site.
The t-J model was originally derived rigorously as the strong coupling version of the Hubbard
model by Chao, Spałek, and Oleś [4]. The model describes the lower Hubbard band — note
that the operator ĉi,σ corresponds precisely to the operator h†i,σ̄ we used in the Hubbard-I ap-
proximation — but augments this by the effect of the Heisenberg exchange. Later it was shown
by Zhang and Rice [7] that the t-J model is also the proper theoretical description of the CuO2

planes in cuprate superconductors. For application to the CuO2 planes, the appropriate parame-
ter values are t ≈ 350 meV and J ≈ 140 meV, so J/t = 0.4. The Hilbert space of the t-J model
consists of states where each site is occupied either by a vacancy or a spin. The first term ∝ −t
exchanges a vacancy and a spin on nearest neighbors, the second term ∝ J is the Heisenberg
exchange between spins. In order to study the motion of a single hole in an antiferromagnet we
decompose the t-J Hamiltonian Eq. (16) as H = Ht +HI +H⊥ whereby

Ht = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c

)
, HI = J

∑
〈i,j〉

Szi S
z
j , H⊥ =

J

2

∑
〈i,j〉

(
S+
i S
−
j +H.c.

)
,

and choose H0 = Ht +HI as our unperturbed Hamiltonian. As already stated, in the absence
of any hole the ground state of H0 is the Néel state with energy EN = −NJ/2. Next assume
that an electron is removed from site i belonging to the ↑-sublattice, see Figure 6(a). This
raises the exchange energy by zJ/4, because z bonds change their energy from −J/4 to 0. We
choose the exchange energy of the resulting state, EN + zJ/4, as the zero of energy. Then, the
hopping term in (16) can become active and the spin from a neighboring site i1 is transferred to
i, resulting in the state in Figure 6(b). Since the shifted spin has ‘switched sublattices’, however,
it now is opposite to the antiferromagnetic order. In fact, this inverted spin at site i is nothing
but a magnon as discussed in the preceding section, so that the hopping vacancy ‘radiates off’
magnons [8, 9]. Since the displaced spin at site i is parallel to z−1 neighbors, the exchange
energy increases by (z−1)J/2. And this continues as the vacancy moves through the Néel
state, see Figure 6(c): in each step another spin is shifted to the opposite sublattice, so that the
vacancy leaves behind a trace of misaligned spins and the exchange energy increases roughly
linearly with the distance travelled by the hole. We call a state which is created by the motion
of a vacancy in the Néel state a ‘string state’ and denote it by |i0, i1, . . . , iν〉. Here i0 is the site
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Fig. 6: A hole hopping in the Néel state creates a ‘string’ of misaligned spins.

where the hole was created, i1, i2, iν−1 are the sites visited by the hole, whereas iν is the site
where the vacancy is located. We call ν the length of the string, for example Figure 6(c) shows
a string of length 4. There are z different string states with ν = 1, whereas in any subsequent
hop starting from a string state of length ν, z−1 new string states of length ν+1 are generated.
The number of different strings of length ν therefore is nν = z(z−1)ν−1 for ν ≥ 1 whereas
n0 = 1. Since each displaced spin is parallel to z−2 neighbors, compare Figure 6, the magnetic
energy increases by J(z−2)/2 per displaced spin, except for the first hop away from i where it
increases by J(z−1)/2. Accordingly, the exchange energy for a string of length ν > 0 his

Iν =
(z−1)J

2
+ (ν−1) (z−2)J

2
=
J

2

(
(z−1) + (ν−1)(z−2)

)
, (17)

and I0 = 0. It may happen that the path which the hole has taken is folded or self-intersecting
in which case (17) clearly is not correct. However it will be correct for ‘most’ possible paths
of the hole, in particular it is correct for ν ≤ 2 so that we will use this expression. Neglecting
the possibility of self-intersection or folding of the string is an approximation known as Bethe-
lattice. Since the magnetic energy increases linearly with the number of hops the hole has taken
we conclude that under the action of H0 the hole is self-trapped. To describe the resulting
localized state we make the ansatz

|Φi〉 =
∞∑
ν=0

αν
∑

i1,i2,...,iν

|i, i1, i2, . . . , iν〉, (18)

where it is understood that the second sum runs only over those ν-tuples of sites which corre-
spond to a true string starting at i. Since we assume that the magnetic energy is the same for
all strings of length ν, the coefficient αν also depends only on the length of the string. The
coefficients αν in (18) are to be determined by minimizing the expectation value of H0. The
norm and magnetic energy are

〈Φi|Φi〉 =
∞∑
ν=0

nνα
2
ν =

∞∑
ν=0

β2
ν , (19)

〈Φi|HI |Φi〉 =
∞∑
ν=0

nνIνα
2
ν =

∞∑
ν=0

Iνβ
2
ν , (20)

where we have introduced βν = αν/
√
nν .
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Fig. 7: By acting with the term J
2
S+
i S
−
j the first two defects created by the hole can be ‘healed’

and the starting point of the string be shifted to a neighbor.

To obtain the expectation value of the kinetic energy we consider a string state of length ν ≥ 1

which has the coefficient αν . By acting with the hopping term we obtain z−1 strings of length
ν+1, with coefficient αν+1, and 1 string of length ν−1, with coefficient αν−1. For ν = 0 we
obtain z strings of length 1. In this way we find

〈Φi|Ht|Φi〉 = t
(
zα0α1+

∞∑
ν=1

nναν
(
αν−1+(z−1)αν+1

))
= 2t

∞∑
ν=0

nν+1αναν+1 = 2
∞∑
ν=0

t̃ν βνβν+1,

(21)
where t̃0 =

√
z t and t̃ν =

√
z−1 t for ν > 0. The prefactor on the right hand side is t instead

of −t as one might have expected from (16) because the hopping term has to be rearranged
as −t ĉ†i,σ ĉj,σ = t ĉj,σ ĉ

†
i,σ to describe the hopping of a hole. As already stated, the βν now

are determined from the requirement that the expectation value Eloc = 〈Φi|H0|Φi〉/〈Φi|Φi〉 be
stationary under variation of each βν

∂Eloc

∂βν
=

1

〈Φi|Φi〉2

[
∂〈Φi|H0|Φi〉

∂βν
〈Φi|Φi〉 − 〈Φi|H0|Φi〉

∂〈Φi|Φi〉
∂βν

]
=

1

〈Φi|Φi〉

[
∂〈Φi|H0|Φi〉

∂βν
− Eloc

∂〈Φi|Φi〉
∂βν

]
= 0.

Setting the square bracket equal to zero and using Eqs. (19), (20) and (21) we obtain [10](
t̃νβν+1 + t̃ν−1βν−1

)
+ Iνβν = Elocβν ,

with the boundary condition β−1 = 0. This results in a tridiagonal Hamilton matrix for the
βν and after cutting off at a sufficiently large ν, Eloc and the βs can be obtained by a simple
numerical matrix diagonalization.
So far it seems that the hole in the Néel state is localized. It is easy to see, however, that the
term H⊥ which we have neglected so far can assist the trapped hole in escaping from the string
potential, see Figure 7. Namely by acting on the first two sites of a string the spins which
were inverted by the hole are inverted a second time and thus fit with the Néel order again:
H⊥|i, i1, i2, i3, . . . , iν〉 = J/2 |i2, i3, . . . , iν〉. The initial site of the string thus is shifted to a
(2, 0)- or (1, 1)-like neighbor while simultaneously the length ν is decreased by two. The term
H⊥ may also append two new defects to a string, H⊥|i2, i3, . . . , iν〉 = J/2 |i, i1, i2, i3, . . . , iν〉
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Fig. 8: Left: Energy of the self-trapped state Eloc versus J/t. Center: Matrix element m due
to string truncation and renormalization factor α2

0 for the t′ and t′′ hopping terms versus J/t.
Right: Band structure Ek for J/t = 0.4.

thus increasing the length by 2 and again shifting the starting point to a (2, 0)- or (1, 1)-like
neighbor. Using again the Bethe lattice approximation we find the matrix element

〈Φi+2x̂|H⊥|Φi〉 = J
∞∑
ν=0

(z−1)ναναν+2 =
J

z

(√
z

z−1
β0β2 +

∞∑
ν=1

βνβν+2

)
= J ·m,

whereas 〈Φi+x̂+ŷ|H⊥|Φi〉 = 2J · m because a string to a (1, 1)-like neighbor can pass either
trough (1, 0) or (0, 1) and the contributions from these two different paths are additive.
When the full Hamiltonian H0 + H⊥ is taken into account the hole therefore can propagate
through the entire lattice and we describe this by the Bloch state

|Φk〉 =
√

2

N

∑
j∈A

e−ik·Rj |Φi〉. (22)

This is reminiscent of an LCAO wave function such as (1), but the role of the atomic orbital
|φi〉 here is played by the self-trapped function |Φi〉. Since the matrix element of H⊥ between
(1, 1)-like neighbors is twice that between (2, 0)-like neighbors we obtain the dispersion

Ek = Eloc + 2Jm · 4 cos(kx) cos(ky) + Jm · 2
(
cos(2kx) + cos(2ky)

)
= Eloc − 4Jm+ 4Jm

(
cos(kx) + cos(ky)

)2 (23)

This expression shows several remarkable features which reflect the unusual nature of hole
motion. First, there is the constant term Eloc ∝ t. As we have seen, in the absence of the spin-
flip termH⊥ the hole is self-trapped in a linearly ascending ‘effective potential’ due to magnetic
frustration. The hole executes a rapid zig-zag motion on a timescale τloc ∝ t−1, and Eloc is the
gain of kinetic energy due to this zig-zag motion. Figure 8 shows that Eloc ≈ −2.4 t at J/t =
0.4, which is an appreciable fraction of −4t, the lowest possible kinetic energy which a freely
propagating electron can have in an empty 2D lattice. On the longer time scale τdeloc ∝ J−1, the
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Fig. 9: Hopping processes involving a term ∝ t′ that connects (1, 1)-like neighbors.

spin-flip term shifts the center of the zig-zag motion to a 2nd or 3rd nearest neighbor, and the zig-
zag motion starts anew. It follows that the bandwidth for coherent motion is not proportional
to the hopping integral t, but to the smaller exchange constant J . The total bandwidth is 16Jm
and since m is around 0.14 for J/t = 0.4, see Figure 8, the bandwidth is roughly 2J . With
J = 140 meV as appropriate for cuprates we expect W ≈ 300 meV, almost a factor of 10

smaller than the width of the free tight-binding dispersion, which is 8t ≈ 2.8 eV. Ek has a
degenerate minimum along (π, 0) → (0, π) and symmetry equivalent lines, its maxima are at
(0, 0) and (π, π). It has ‘antiferromagnetic symmetry’, Ek+Q = Ek, which is to be expected
since we are considering hole motion in an antiferromagnetic background.
In order to compare our theory to experiment we need to take into account that in the actual
CuO2-planes there are appreciable additional hopping integrals t′ between (1, 1)-like and t′′

between (2, 0)-like neighbors. Since these terms connect pairs of neighbors which are on the
same sublattice, they do not create frustration and it might seem that they immediately dominate
the hole motion. However, this is not the case and the reason can be seen in Figure 9. Fig. 9(a)
shows a ‘string of length 0’, that means a hole at site i and the hopping term ∝ t′ can transport
the hole to the (1, 1)-like neighbor i2 without creating a magnon. On the other hand, 9(c) shows
a ‘string of length 1’, that means a hole which has executed one nearest neighbor hopping
process and is now at site i1, with a single magnon at site i. Again, the t′-term can transport
the hole to the (1, 1)-like neighbor i3, but it cannot transport the magnon along with the hole.
Therefore, the hopping terms ∝ t′, t′′ can transport only the ‘bare hole’, and since this has
the coefficient α0 in the self-trapped states |Φi〉, these terms are renormalized by a factor α2

0.
Accordingly, they give the following contribution to the hole dispersion relation

Elr(k) = 4t′α2
0 cos(kx) cos(ky) + 2t′′α2

0

(
cos(2kx) + cos(2ky)

)
which has to be added to (23). Note again the opposite sign of the hopping terms as compared to
the original Hamiltonian (16) because the fermion operators have to be exchanged to transport a
hole. Figure 10 shows a comparison of the modified hole dispersion and the experimental band
structure obtained by Angle Resolved Photoemission Spectroscopy (ARPES) on the insulating
CuO-compound Sr2CuO2Cl2 [11]. The band structure for a hole has to be turned upside down
to compare to ARPES because the minimum of the hole-bandstructure is the maximum of the
electron-band structure. The agreement is reasonable whereby it has to be kept in mind that in a
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Fig. 10: The band structure for the t-J model with additional hopping terms compared to
the experimental valence band structure for the antiferromagnetic insulator Sr2CuO2Cl2 [11].
Parameter values are t = 350 meV, J = 140 meV, t′ = −120 meV, t′′ = 60 meV.

wide area around (π, π) and also close to (0, 0) the band structure cannot be observed because
the band has vanishing spectral weight in ARPES. In any way, the drastic reduction of the
bandwidth can be seen clearly.
Looking back, the above discussion illustrates the general remarks in the introduction. In a
Mott insulator each site carries a spin and spins on neighboring sites i and j are coupled by the
exchange term JSi · Sj . This leads to a tendency for neighboring spins to be antiparallel and
the appearance of spin excitations, which in the antiferromagnetic phase discussed above take
the form of spin waves. Doped holes then have to move through this ‘spin background’ and
by their very motion constantly interact with the spin excitations. As we have seen this leads
to a drastic modification of the hole motion and band structure. And in fact, this also goes the
other way round: since the holes are constantly ‘stirring’ the spins, these react and change their
arrangement so as to make hole motion easier and allow for a gain of kinetic energy. In fact,
in cuprate superconductors the antiferromagnetic order which was the basis of the above theory
breaks down for hole concentrations of only a few per cent. Even in the resulting disordered
state, the spin exchange term in the t-J Hamiltonian still favors antiparallel orientation of spins
on nearest neighbors and in fact neutron scattering experiments show that there is still short
range antiferromagnetic order, i.e., the spin correlation function 〈Si · Si+R〉 ∝ eiQ·R e−|R|/ζ .
This is reminiscent of the density correction function in a molten crystal, where locally the
correlations between atoms resemble that of the original solid but there is no more long range
crystalline order. Accordingly, such a state is called a ‘spin liquid’ and the description of such a
spin liquid is the hardest part of the description of the doped Mott-insulator. The main difficulty
is that so far nobody has been able to give a wave function for a Heisenberg antiferromagnet that
has one electron/site and has no order of any kind. It will become clear in the next paragraph
that this requires very drastic and questionable approximations.
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4 Spin liquids

4.1 Dimer basis

As a prelude we follow Sachdev and Bhatt [12] as well as Gopalan, Rice, and Sigrist [13] and
consider a dimer of two sites, labeled 1 and 2, and assume that both of them are occupied by
one electron each, with their spins coupled by the exchange term H = J S1 · S2. According
to the rules for addition of angular momenta, the two spins of 1/2 can be coupled to the total
spin S = 1 (spin triplet) or S = 0 (spin singlet). The singlet and the three components of the
triplet are eigenstates of the square of the operator of total spin S = S1 + S2 with eigenvalue
S(S+1): S2 = S2

1 + 2S1 · S2 + S2
2 = S(S+1), and using that S2

1 = S2
2 = 1

2

(
1
2
+ 1
)
= 3

4
we

find S1 · S2 = 1
2

(
S(S+1) − 3

2

)
. Accordingly, S1 · S2 gives −3/4 when acting on the singlet

and 1/4 for a triplet. Due to the limited size of the Hilbert space of the dimer, constructing
states with definite total spin thus is equivalent to diagonalizing the exchange term, and we find
the eigenenergies −3J/4 for the singlet, and J/4 for the three components of the triplet. The
eigenstates themselves are given by [12, 13]

| s 〉 =
1√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉,

|tx〉 =
1√
2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉,

|ty〉 =
i√
2

(
c†1,↑c

†
2,↑ + c†1,↓c

†
2,↓

)
|0〉,

|tz〉 =
1√
2

(
c†1,↑c

†
2,↓ + c†1,↓c

†
2,↑

)
|0〉. (24)

with |s〉 the singlet and |tx〉, |ty〉 and |tz〉 the three components of the triplet. Note that the three
|tα〉 in (24) are not eigenstates of the total z-spin, rather they are linear combinations of the
states with fixed z-spin which obey Sα|tβ〉 = iεαβγ |tγ〉, for example

Sx|ty〉 =
1

2

2∑
i=1

(
S−i +S

+
i

) i√
2

(
c†1,↑c

†
2,↑ + c†1,↓c

†
2,↓

)
=

i

2
√
2

(
c†1,↓c

†
2,↑ + c†1,↑c

†
2,↓ + c†1,↑c

†
2,↓ + c†1,↓c

†
2,↑

)
= i|tz〉.

This means that the three states |tα〉 transform like a vector under spin rotations which will be
convenient later on. We also note that under the exchange of the two sites, 1 ↔ 2, we have
|s〉 → |s〉 but |tα〉 → −|tα〉.
We return to the undoped Heisenberg antiferromagnet on a 2D square lattice with N sites. A
state which on the one hand is disordered and on the other hand is an exact spin singlet can be
obtained in the following way: let the N sites be partitioned into N/2 dimers, whereby each
dimer comprises two nearest neighbor sites, see Figure 11(a), and assume moreover that the
two spins in each dimer are coupled to the singlet state. The resulting state of the plane is the
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Fig. 11: (a) A dimer covering of the plane: spins on sites covered by an ellipse are coupled
to a singlet. (b) By acting with the exchange along the bond connecting the dimers l and m
both dimers are excited into the triplet state. (c) By acting with the exchange along the bond
connecting the dimers m and n bond m is de-excited to the singlet whereas dimer n is excited
to the triplet — the triplet has propagated.

product

|Ψ0〉 =
∏

(i,j)∈D

1√
2

(
c†i,↑c

†
j,↓ − c

†
i,↓c
†
j,↑

)
|0〉

where D is the set of N/2 pairs (i, j) of nearest neighbor sites corresponding to the given dimer
covering. |Ψ0〉 is an eigenstate of the ‘depleted Hamiltonian’ Hd = J

∑
(i,j)∈D Si · Sj with

eigenvalue Ed,0 = (N/2) · (−3J/4). Since
〈
Si ·Sj

〉
= 0 if i and j belong to different dimers, as

will be shown in a moment, this is also the expectation value of the full Hamiltonian in the state
|Ψ0〉. Next, let us consider what happens if we act onto |Ψ0〉 with the exchange along a bond not
included in the set D, that means a bond which connects spins in different dimers, such as the
bond indicated in Figure 11(b). Due to the product nature of |Ψ0〉 it is sufficient to discuss what
happens when the spin operator acts on a singlet, e.g.

S1,x|s〉 =
1

2

(
S−1 + S+

1

) 1√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉 = 1

2
√
2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉. (25)

Comparing with (24), the expression on the right hand side is seen to be 1
2
|tx〉. Next, we

exchange 1 ↔ 2 on both sides of (25), whence S1,x → S2,x, |s〉 → |s〉, and |tx〉 → −|tx〉,
and obtain S2,x|s〉 = −1

2
|tx〉. Since the triplets where constructed to transform like a vector,

this holds true for the other Cartesian components as well: S1,α|s〉 = 1
2
|tα〉, S2,α|s〉 = 1

2
|tα〉

with α ∈ {x, y, z}. Acting with the term JSi · Sj along a bond which connects sites i and
j in different dimers therefore simultaneously excites both dimers to the triplet state, with a
prefactor of ±J/4 (the prefactor will be discussed more precisely below). The new state again
is an eigenstate of the ‘depleted Hamiltonian’ Hd, with eigenvalue Ed,0+2J and obviously is
orthogonal to |Ψ0〉, which also proves that the expectation value

〈
Si · Sj

〉
vanishes if the sites

i and j belong to different dimers. Next consider what happens when the exchange term acts
along the bond indicated in Figure 11(c). We already know that bond n will be excited to the
triplet state but we need to study what happens when the spin operator acts on the triplet in bond
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m:

S1,x|tx〉 =
1

2

(
S+

1 + S−1
) 1√

2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉 = 1

2
√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉, (26)

which is nothing but 1
2
|s〉. Therefore, acting with the exchange term along the bond indicated

in Figure 11(c), the dimer m is de-excited to the singlet state according to (26), whereas the
dimer n is excited to the triplet state according to (25) or, put another way, the ‘excited dimer’
jumps from dimer m to dimer n. Comparing now with Figure 4 we see a quite analogous
pattern arising: both, the Néel state and the dimer state |Ψ0〉 are the ground state of a part of the
Hamiltonian, namely the longitudinal part J

∑
〈i,j〉 Si,zSj,z in the case of the Néel state and the

depleted Hamiltonian Hd for the dimer state. Switching on the remainder of the Hamiltonian
then creates ‘fluctuations’: these were the inverted spins or magnons in the case of the Néel state,
and the excited dimers in the case of the singlet soup. The fluctuations increase the energy: by
zJ/2 for a magnon, and by J for a triplet. After having been created these fluctuations then
propagate through the lattice. This suggests that we proceed exactly as in the case of spin wave
theory and interpret the triplets as effective bosonic particles (we use bosons because a triplet is
composed of two electrons). To be more quantitative, we need to introduce some conventions:
We assume that the bonds are labeled by a number n ∈ {1, . . . , N/2}. Since the triplet has
negative parity under the exchange of sites, 1↔ 2, we need to specify which of the sites i and j
in a given dimer corresponds to the site 1 in Eq. (24) and which one to the site 2. We adopt the
convention that for a bond in x-direction (y-direction) the left (lower) site always corresponds
to the site 1. We call the site which corresponds to 1 the ‘1-site of the dimer’ and the site which
corresponds to 2 the ‘2-site of the dimer’. For each site i we define λi = 1 if it is the 1-site of its
respective dimer, and−1 if it is the 2-site. Then, if a given dimer m is occupied by a singlet, we
consider it as occupied by a bosonic particle, created by s†m, whereas if the dimer is in one of
the three triplet states we consider it as occupied by a boson, created by t†m,α with α ∈ {x, y, z}.
We have already seen that the three triplet states transform like a vector under spin rotations and
it follows that the corresponding creation operators form a vector operator

[
Sα, t

†
β

]
= iεαβγt

†
γ ,

and Hermitean conjugation shows that the annihilation operator tm is a vector operator as well.
Calculating the action of the spin operator on triplet states gives the representation of the spin
operator

Sj →
λj
2

(
s†t + t†s

)
− i

2
t†×t. (27)

The x-component of the correspondence Sj → λj
2

(
s†t + t†s

)
was demonstrated in (25) and

(26). We recall that we found S1,x|s〉 = 1
2
|tx〉 whereas S2,x|s〉 = −1

2
|tx〉 and the factor of λi

keeps track of this sign. From the discussion after (25) we see that such a sign, and hence a
factor of λi, will occur whenever the Hamiltonian induces a transition between states which
have opposite parity under 1 ↔ 2. Next, The overall form of the terms on the right hand side
follows from the fact that S is a Hermitean vector operator, so the right hand side has to be one
as well. Then, the vector product t†×t is the only way to contract two vector operators into a
single one, but since the vector product is anti-Hermitean it has to be multiplied by the factor of
i to make it Hermitean. Next, by forming the scalar product, we can write down the exchange
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term hm,n = J Si ·Sj along a bond connecting the sites i and j such that site i belongs to dimer
m, site j to dimer n with m 6= n:

hm,n =
Jλiλj
4

(
t†n· tm sns

†
m + t†m· tn sms†n + t†m· t†n snsm + tm· tn s†ms†n

)
−iJ

4

(
λi
(
s†mtm + t†msm

)
·
(
t†n×tn

)
+ λj

(
s†ntn + t†nsn

)
·
(
t†m × tm

))
−J
4

(
t†n×tn

)
·
(
t†m×tm

)
. (28)

As expected the right hand side comprises all possible ways to construct a spin scalar from the
vectors t and t† and only the numerical prefactors needed to be determined.

4.2 Spin excitations

While the representation of the Heisenberg antiferromagnet derived in the preceding section
is exact for any given dimer covering of the plane, we have not gained very much because
even writing down a dimer covering for a macroscopic system is not feasible, let alone solve
the corresponding Hamiltonian. One might consider choosing a particularly ‘simple’ dimer
covering such as columns of dimers in, say, x-direction. However, since one is forced to make
approximations, the special symmetry of the covering will make itself felt in the approximate
solutions as an artificial supercell structure, leading to a reduction of the Brillouin zone and an
unphysical backfolding of bands.
On the other hand, rewriting the Heisenberg Hamiltonian in terms of the singlet and triplet
bosons provides an exact representation of the Heisenberg model for any dimer covering of the
plane. This means that for example the result for the spin correlation function

〈
Sj(t)·Si

〉
cannot

depend on the specific dimer covering in which the calculation is carried out. Put another way,
the way in which a spin excitation propagates through the network of dimers from site i → j

during the time t does not depend at all on the geometry of the particular dimer covering.
This suggests to construct a translationally invariant approximate Hamiltonian by averaging the
dimer Hamiltonian over all possible coverings. We find

Hav = J
∑
m

t†m· tm +
∑
m,n

∑
i∈m
j∈n

ζm,nhm,n . (29)

Here we have chosen the energy of the state where all bonds are occupied by triplets as the zero
of energy, the first term then adds an energy of J for every bond occupied by a triplet. The sum∑

m,n runs over all pairs of bonds connected by an exchange term J Si · Sj with i ∈ m and
j ∈ n and hm,n is given in (28). The renormalization factor ζm,n is defined as

ζm,n =
Nm,n

Nd

, (30)

where Nm,n is the number of dimer coverings which contain the bonds n and m whereas Nd is
the total number of dimer coverings. The resulting Hamiltonian is translationally invariant and
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Fig. 12: Estimation of the renormalization factor ζ .

isotropic. We estimate ζ by a crude approximation: consider two adjacent bonds as in Figure 12.
By symmetry the bond m is covered by a dimer in exactly 1/4 of all dimer coverings and we
restrict ourselves to these. Assuming for simplicity that the number of coverings containing one
of the three possible orientations of the adjacent bond n are equal, we estimate ζ = 1/12.
Using the averaging procedure we have circumvented the problem of having to consider a fixed
dimer covering, but inspection of (28) shows that hm,n still is a sum of quartic terms and thus
impossible to solve. In the next step of approximation therefore assume that the singlet bosons
are condensed and replace the corresponding operators s†n and sn in (28) by the real conden-
sation amplitude s. This is equivalent to assuming that the singlets form an inert background
and the only active degrees of freedom are the triplets. Further inspection of (28) shows that
after singlet condensation it contains terms of second, third and fourth order in the triplet oper-
ators. As the final approximation we discard the terms of third and fourth order, which describe
scattering processes between the triplets, whence the Hamiltonian finally becomes

Hav = J̃
∑
m

t†m· tm +
ζs2

4

∑
m,n

∑
i∈m
j∈n

Ji,jλiλj
(
t†n· tm + t†m· tn + t†m· t†n + tn· tm

)
. (31)

The sums overm, n run over all 2N bonds of the plane, Ji,j = J if i and j are nearest neighbors
and zero otherwise.
From this point on we can proceed exactly in the same way as we did for the antiferromagnetic
magnons. Being a quadratic form (31) is readily diagonalized by Fourier transform, we only
need to specify a convention for the position of a bond: if bond m connects the sites i and j
we define Rm = (Ri+Rj)/2. Moreover we have two species of bonds: bonds in x-directions
and bonds in y-direction. We specify this by an additional subscript for the Fourier transformed
operators, e.g. t†k,µ with µ ∈ {x, y}. The products λiλj are given in Figure 13 from which we
readily can read off

H =
∑
k

∑
µ,µ′∈{x,y}

(
t†k,µ
(
J̃δµµ′ + εµ,µ′(k)

)
tk,µ′ +

1

2

(
t†k,µεµ,µ′(k) t

†
−k,µ′ +H.c.

))

ε x,x(k) = ζs2J
(
cos(ky)−

1

2
cos(2kx)− cos(kx) cos(ky)

)
,

ε x,y(k) = ζs2J
(
sin
(3kx

2

)
sin
(ky
2

)
+ sin

(kx
2

)
sin
(3ky

2

))
,
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Fig. 13: The factors of λiλj for all bonds connected to the bond m by a nearest neighbor
bond. In a) both bonds are along the x-direction so that these pairs contribute to εx,x whereas
in b) one bond is along the y-direction so that these pairs contribute to εx,y. In a) both bonds
connecting parallel bonds have λiλj = 1.

ε y,x = ε x,y, and ε y,y is obtained from ε x,x by kx ↔ ky. To diagonalize H we proceed as for
antiferromagnetic magnons and make the ansatz

(
with ν ∈ {1, 2}

)
τ †ν,k =

∑
µ∈{x,y}

(
uν,k,µ t

†
k,µ + vν,k,µ t−k,µ

)
,

τν,−k =
∑

µ∈{x,y}

(
v∗ν,k,µ t†k,µ + u∗ν,k,µ t−k,µ

)
. (32)

Demanding
[
H, τ †ν,k

]
= ων,kτ

†
ν,k gives the 4×4 eigenvalue problem(

J̃+εk −εk
ε∗−k −J̃−ε∗−k

)(
uν,k
vν,k

)
= ων,k

(
uν,k
vν,k

)
. (33)

For a matrix like the one on the left hand side it is easy to show that if (u, v) is an eigenvector
with eigenvalue ω, then (v∗, u∗) is an eigenvector with eigenvalue −ω so that the eigenvalues
come in pairs of±ω. We multiply (33) by ων,k and replace products such as ων,kuν,k or ων,kvν,k
on the left hand side of the resulting equations by the expressions given by the original version
of (33). Since the commutator

[
J̃+εk, εk

]
= 0 we obtain(

J̃2 + 2J̃εk
)
uν,k = ω2

ν,kuν,k,

and the same equation for vν,k. It follows that ων,k =
√
J̃2 + 2J̃λν,k, where λν,k are the

eigenvalues of the Hermitean 2×2 matrix εk, and both, uν,k and vν,k, must be the corresponding
eigenvector, albeit multiplied by different prefactors. The eigenvalues of εk are easily shown to
be λ1,k = −ζs2J/2 and λ2,k = ζs2J

(
3/2 + 2γk − 4γ2

k

)
, with γk given in (12).

In principle the singlet condensation amplitude s and the renormalized triplet energy J̃ should
now be calculated self-consistently, but for the sake of simplicity we here switch to a more
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Fig. 14: Left: Spin excitation dispersion relation ωk using the parameter values J̃ = 1.7 J
and different s2ζ . Right: ωk calculated for J̃ = 1.7 J , s2ζ = 0.16 and J = 140 meV com-
pared to the hourglass dispersion measured in La1.875Ba0.125CuO4 [14]. The data points labeled
‘Magnon’ correspond to the triplet dispersion, the points labeled ‘p.h.’ correspond to particle-
hole excitations which are absent in our theory.

phenomenological description and consider s2ζ and J̃ as adjustable parameters. Regarding s2ζ

we recall that ζ was determined somewhat vaguely anyway. Regarding J̃ we expect J̃ > J

because J̃ gives the cost in energy needed to create a triplet. This is of course J itself, but
should be augmented by a loss of kinetic energy that is incurred because a triplet on, say,
dimer m blocks pair creation and hopping processes on all dimers that share a site with m. Our
theory thus has two adjustable parameters, which we use to fix two physical quantities, the total
bandwidth of the spin excitations, and the spin gap (to be explained below). Lastly, we recall
that we have two eigenvalues λν,k for each wave vector k, whereby λ1,k has the peculiar feature
of being independent of k. A more detailed analysis shows [15], that the band derived from the
dispersionless eigenvalue also has zero spectral weight in the spin correlation function. This
suggests, that this band is an artifact of the enlargement of the basis by doubling the number of
bonds. We therefore drop this dispersionless band and retain only the band of spin excitations
resulting from λ2,k. Figure 14 shows the resulting triplet dispersion ωk. The parameter J̃ has
been adjusted to set the total bandwidth to 2J , the bandwidth for antiferromagnetic spin waves.
ωk has a minimum at (π, π) and the energy at this wave vector is frequently called the spin gap,
∆S . With increasing value of s2ζ , ∆S closes rapidly and one can envisage how for ∆S → 0 the
cone-shaped dispersion of antiferromagnetic spin waves at (π, π) is recovered. Experimentally,
inelastic neutron scattering on many cuprate compounds shows an ‘hourglass’ dispersion around
(π, π), an example is also shown in Figure 14. This is frequently interpreted [16] as a magnon-
like collective mode above the neck of the hour-glass co-existing with particle-hole excitations
of the Fermi gas of free carriers below the neck. The part above the neck of the hourglass thus
should correspond to our triplet band and the comparison in Figure 14 shows indeed reasonable
agreement.
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4.3 Doped holes

Next, we extend the theory for the spin liquid to include doped holes. As the first step we
introduce dimers which contain a single electron or no electron at all. We again consider a dimer
with sites 1 and 2, but now assume that the dimer contains one electron with spin σ. Instead of
the exchange term, it is now the hopping term which is active: Ht = −t

∑
σ

(
ĉ†1,σ ĉ2,σ + H.c.

)
and there are two eigenstates of Ht

|f±,σ〉 =
1√
2

(
ĉ†1,σ ± ĉ

†
2,σ

)
|0〉. (34)

These obey Ht|f±,σ〉 = ∓t|f±,σ〉. We introduce a new type of effective particle to represent
dimers occupied by one electron. If the dimer m is in one of the states |f±,σ〉 we consider
it as occupied by a fermion, created by f †m,±,σ. We choose a fermion, because the number
of electrons in such a dimer is one. We also introduce an additional boson, created by e†, to
represent an empty dimer. In order to include these particles we need to transcribe the electron
creation and annihilation operators ĉ†i,σ and ĉi,σ. The two spin components of a fermion creation
operator can be combined to a two-component vector, a covariant spinor [17], c† = (c†↑, c

†
↓)
T.

Similarly the spin components of the annihilation operator for a so-called contravariant spinor
c = (c↑, c↓)

T. Proceeding in an analogous way as in the derivation of (27) for the spin operator
we find

(
with j ∈ {1, 2}

)
cj → :

1

2

(
s iτy + λjt · τ iτy

)(
f †+−λjf

†
−
)
+

1√
2
e†
(
f++λjf−

)
: (35)

where : · · · : denotes normal ordering. The first term on the right hand side describes a singlet
or triplet state on a given bond being converted into a single-electron state, the second term
describes a single-hole state being converted into the empty bond. As was the case for the
triplets, the overall form of the terms on the right hand side can be guessed by making use of
the transformation properties under spin rotations. The so-called metric spinor iτy converts the
covariant spinors f †± into contravariant ones [17] and the ‘spinor product’ t · τc is the only way
to construct a contravariant spinor from the vector operator t and another contravariant spinor c.
The factors of λj again are associated with states of opposite parity under 1↔ 2. Using (35) we
can rewrite the hopping term, along a bond connecting the sites i and j such that site i belongs
to dimer m, site j to dimer n

−t
∑
σ

ĉ†i,σ ĉj,σ →
t

4

((
s†msn + λiλjt

†
m · tn

)(∑
σ

f †n,j,σfm,i,σ
)

(36)

−
(
λit
†
msn+λjs

†
mtn
)
·v(n,j),(m,i) − iλiλj

(
t†m×tn

)
·v(n,j),(m,i)

)
,

where the combination fm,i,σ = fm,+,σ − λi fm,−,σ and the vector

v(n,j),(m,i) =
∑
σ,σ′

f †n,j,σ τσ,σ′ fm,i,σ′

obeys
[
Sα, vβ

]
= iεαβγvγ . Again, the right hand side in (36) is a linear combination of all

possible ways to construct a spin scalar from two spinors and zero, one, or two vector operators.
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Next, we proceed as in the case of the triplet Hamiltonian. We again average the Hamiltonian
over dimer coverings, again introducing the factors of ζ , and replace the singlet operators s†m,
sm by the real singlet condensation amplitude s. Lastly we discard all terms which describe the
emission/absorption of a triplet by a fermion or the scattering of a fermion from a triplet. With
these simplifications we obtain the fermionic Hamiltonian

HF = −t
∑
m,σ

(
f †m,+,σfm,+,σ − f

†
m,−,σfm,−,σ

)
+
s2ζ

4

∑
m,n

∑
i∈m
j∈n

ti,j
∑
σ

f †n,j,σfm,i,σ, (37)

where the sum over m, n run over all 2N bonds in the system and ti,j = t if i and j are nearest
neighbors and zero otherwise.
Next, we switch to the question about how to count electrons. Obviously, each f †m,±,σ-fermion
contains one hole and has a z-spin of σ. Accordingly, in a given dimer covering the number of
fermions must be equal to the number of doped holes, which is N−Ne

N−Ne =
∑
m,σ

(
f †m,+,σfm,+,σ + f †m,−,σfm,−,σ

)
, (38)

where the sum over m runs over the N/2 dimers. We have obtained an approximate theory
by averaging over dimer coverings, so that each of the 2N bonds in the plane can be occupied
by a boson or fermion. The physically relevant quantity, however, is the density of holes per
site, whereas the number of dimers loses its significance due to the averaging approximation.
Accordingly, we retain the condition (38), but the sum over m now runes over all 2N bonds in
the system. This condition implies, that the bands obtained by diagonalizing (37) have to be
filled from below with N−Ne = Nδ holes, and since the f †m,±,σ-fermions have a spin of 1/2 the
Fermi surface covers a fraction of δ/2 of the Brillouin zone. We recall that this is precisely what
we found in the framework of the Hubbard-I approximation. This is no surprise if we recall our
discussion of spin-charge-separation in the context of the Hubbard-I approximation. There we
noted that while a vacancy is a spinless object, the Hubbard-I approximation implicitly assumes
that the information about the spin of the missing electron is ‘stored’ in the neighborhood of
the vacancy and moves along with the vacancy. This is precisely the case in the dimer theory,
where remaining electron in the dimer has opposite spin to the missing electron whence the
dimers containing holes in fact are spin-1/2 particles.
We continue with the discussion of the band structure. We are interested mainly in the lower-
most bands, these are the ones which will accommodate the doped holes, so for simplicity we
drop the f †m,−,σ-fermions, because their energy is 2t above that of the f †m,+,σ-fermions, whereas
the dispersive terms are ∝ s2ζt ≈ 0.2 t. With this last approximation Fourier transformation
gives HF =

∑
k,σ v

†
k,σH̃kvk,σ with the vector vk,σ = (fk,x,+,σ, fk,y,+,σ)

T . The k-dependence of
the 2×2 matrix H̃k can again be read off from Figure 13, but with all λ = 1. We obtain

H̃x,x = −t+ s2ζt
(
cos(ky) + cos(kx) cos(ky) +

1

2
cos(2kx)

)
H̃x,y = s2ζt

(
cos
(3kx

2

)
cos
(ky
2

)
+ cos

(kx
2

)
cos
(3ky

2

))
.
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Fig. 15: Left: Dispersion dispersion relation −ε2,k for s2ζ = 0.16. Holes would occupy the
maxima of this band as indicated in the Figure, so that the zero of energy corresponds roughly
to the Fermi energy for small doping. Right: Adding additional hopping terms between (1, 1)
and (2, 0)-like neighbors lifts the degeneracy of the band maximum (indicated in blue) and the
Fermi surface takes the form of a hole pocket (indicated in red) [15]. The values t′ = −0.2t,
t′′ = 0.1t and the hole concentration δ = 1−ne = 0.1.

H̃y,x = H̃x,y and H̃y,y is obtained from H̃x,x by kx ↔ ky. The eigenvalues of H̃k are ε1,k =

−t+ s2ζt/2 and ε2,k = −t+ s2ζt
(
−3/2+2γk+4γ2

k

)
. More detailed investigation again shows

[15] that the dispersionless band ε1,k has zero weight in the electron spectral function, so again
we interpret this as an artifact of the enlargement of the basis states and discard it. As we have
seen above the band structure resulting from (37) has to be filled with holes from below, that
means at T = 0 the condition for the Fermi energy EF is

δ =
2

N

∑
k

Θ(ε2,k−EF ).

Figure 15 shows −ε2,k, that means the band is again turned upside down as it would be seen
in ARPES. The maxima therefore correspond to the minima of ε2,k, and this is the location
in k-space where the doped holes would accumulate. ε2,k depends on k only via γk, so that
lines of constant γk automatically are lines of constant ε2,k, in particular the maximum of the
inverted dispersion is a roughly circular contour around (π, π). The Fermi surface therefore
would be a ring with a width ∝ δ, which does not agree with ARPES results. However, we
recall that in the actual CuO2 planes there are the additional hopping terms ∝ t′, t′′ discussed
above and inclusion of the terms indeed lifts the degeneracy and leads to a Fermi surface which
takes the form of a hole pocket centered along the (1, 1) direction, see Figure 15. Compared to
experiment, the pocket is shifted towards (π, π), but it should be noted that we have made many
simplifications and a qualitative agreement with experiment is already a reasonable result.
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5 Summary and Outlook

As explained in the introduction, the hallmark of a Mott insulator is the breakdown of the Fermi
surface due to the effectively enhanced Coulomb repulsion in ‘small’ atomic orbitals: if the
number of electrons is equal to the number of sites, N, the electrons are caught in a ‘traffic jam’
and form a spin system instead of a half-filled band with a Fermi surface. The spins interact via
virtual hopping processes of electrons as described by the Heisenberg exchange, which leads to
antiferromagnetic correlations and spin excitations.
In the description of the doped Mott insulator given in the preceding sections, the electrons
continue to form a mere spin system: the majority of electrons are coupled to inert (‘condensed’)
singlets, a few singlets are excited to the triplet state, so that most electrons still contribute only
their spin degrees of freedom. This is not surprising, because for a low density of vacancies,
most electrons still are completely surrounded by other electrons and thus ‘stuck’. Instead, the
true mobile fermions in the system are the f †-particles, which may be viewed as tightly bound
states of a spinless hole and one spin, and their number equals the doped holes. Since the
f †-particles have a spin of 1/2, their Fermi surface covers a fraction δ/2 of the Brillouin zone,
where δ = 1−ne is the concentration of holes. We recall that for free electrons the fraction of
the Brillouin zone covered by the Fermi surface is ne/2, which differs drastically from δ/2.
On the other hand, we expect that the state where the electrons are ‘jammed’ and form an inert
background can persist only over a limited range of the hole concentration δ. A crude estimate
for the range of stability of this phase can be obtained by noting that once δ reaches 1/z = 0.25,
on average each electron will find an empty site on one of its z neighbors to which it can hop
without creating a double occupancy. With increasing δ it therefore will become energetically
favorable for the electrons to form the all-electron Fermi surface of the free electron gas, al-
though the strong scattering will lead to correlation narrowing of the quasiparticle band and
strong incoherent weight in the single-particle spectral function. In fact, in the limit ne → 0 it
is known [3] that one recovers a Fermi surface with volume ne/2 but enhanced effective mass.
Accordingly, at some critical δc we expect a phase transition from the doped Mott-insulator
with a hole-like Fermi surface of fractional volume δ/2 described by the above theory, to a
renormalized all-electron Fermi liquid with an electron-like Fermi surface of fractional volume
ne/2. And in fact the experimental situation has pretty much converged to this scenario: a tran-
sition between two nonmagnetic Fermi liquids of spin-1/2 particles without any obvious order
but different Fermi surface volume, which occurs at a hole concentration nh,c ≈ 0.22. This is
discussed in detail in Ref. [15]. Assuming that this T = 0 phase transition ‘shrouds itself in
superconductivity’ as quantum phase transitions often do, one arrives at the well-known phase
diagram of cuprate superconductors. In fact, unlike many other quantum phase transitions, the
transition in the cuprates appears to be between two phases which are homogeneous, isotropic
and nonmagnetic and differ only in the Fermi surface volume, so that there is no obvious order
parameter. This would be consistent with the above scenario. The detailed description of this
transition and how it can give rise to the spectacularly high superconducting transition temper-
atures is probably the key problem in understanding cuprate superconductors.
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