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Forschungszentrum Jülich, 2024, ISBN 978-3-95806-751-6
http://www.cond-mat.de/events/correl24

http://www.cond-mat.de/events/correl24


6.2 Rolf Heid

1 Introduction

The electron-phonon interaction is, besides the Coulomb interaction, one of the fundamental
interactions of quasiparticles in solids. It plays an important role for a variety of physical
phenomena. In particular, in metals, low-energy electronic excitations are strongly modified
by the coupling to lattice vibrations, which influences, e.g., transport and thermodynamical
properties. Electron-phonon coupling (EPC) also provides in a fundamental way an attractive
electron-electron interaction, which is always present and, in many metals, is the origin of
electron pairing underlying the macroscopic quantum phenomenon of superconductivity.
This lecture addresses the consequences of electron-phonon coupling in both the normal and
superconducting state of metals. In Section 2, the basic Hamiltonian describing the coupled
electron-phonon system is introduced. In Section 3, a closer look onto normal state effects
in a metal is taken, focusing on the renormalization of quasiparticles, which allows to exper-
imentally quantify the strength of the interaction. Section 4 is devoted to phonon-mediated
superconductivity. First a derivation of the effective attractive interaction among electrons me-
diated by phonon exchange is given. Then we analyze the role of electron-phonon coupling
for superconductivity in the context of the strong-coupling Migdal-Eliashberg theory in some
detail. In Section 5, we introduce an approach based on density-functional theory to calcu-
late electron-phonon coupling quantities and present two examples to illustrate its predictive
power. Throughout this Chapter, only nonmagnetic states are considered and atomic units
~ = 2me = e2/2 = 1 as well as kB = 1 are used.

2 Electron-phonon Hamiltonian

2.1 Electron-phonon vertex

The lowest-order process involving the electron-phonon interaction is the scattering of a single
electron by a simultaneous creation or annihilation of a single phonon, as diagrammatically
shown in Fig. 1. The probability for the scattering process is called the electron-phonon vertex g.
We will briefly sketch its derivation starting from rather general grounds. For more details one
can refer to the book of Grimvall [1].
Due to the large ratio of the ionic and electronic mass, the dynamics of the ions and the electrons
can be systematically expanded in terms of the small parameter κ = (m/M)1/4, which results
in a partial decoupling [2, 3]. To lowest order in κ, called the adiabatic or Born-Oppenheimer
approximation, the total wavefunction of the coupled electron-ion system can be written as a
product Ψ(r,R) = χ(R)ψ(r;R), where r and R denote the sets of electron and ion coordinates,
respectively. The electronic wavefunction obeys the equation(

Te + Vee +He-i(R)
)
ψn(r;R) = En(R)ψn(r;R) , (1)

where Te and Vee denote the kinetic energy and Coulomb interaction of the electron system,
respectively. Eq. (1) depends parametrically on the ionic positions R via the electron-ion inter-
action He-i.
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Fig. 1: Diagrammatic representation of the basic electron-phonon scattering process. Black
lines represent electrons, the blue zigzag line a phonon, and the red circle the screened vertex.

The electron-phonon vertex appears in first order beyond the adiabatic approximation. One can
show that it induces off-diagonal matrix elements among the electronic eigenstates ψn and has
the form

〈n| δRV |n′〉. (2)

The operator δRV stands for the linear change of the potential felt by the electrons under a
displacement of an atom from its rest position: R = R0+u. If the potential V is the bare
electron-ion potential V 0, then δRV = u ·∇V 0

∣∣
R0

. Eq. (2) represents the bare vertex. However,
in solids, and in particular in metals, the bare electron-ion potential is screened by the other
electrons. Screening also alters the vertex significantly. Within linear response theory this
operator takes the form

δRV = u · ε−1∇V 0
∣∣
R0
, (3)

where ε−1 is the inverse dielectric matrix [4], which is a measure of the screening. Note that in
Eq. (3), the screening operator does not commute with the gradient operation, and thus can not
be written in terms of the gradient of a screened potential.

2.2 Fröhlich Hamiltonian

We now aim to develop a systematic perturbative treatment of the mutual influence of the elec-
tronic and phononic subsystems in a solid. Thereby the question arises, what are the proper
noninteracting quasiparticles to start with. The correct answer requires to know the solution to
some extent. As we will see, electronic states are significantly influenced by lattice vibrations
mostly in close vicinity of the Fermi energy. It is therefore appropriate to start with electrons
moving in a static potential of a rigid ion lattice, without any renormalization by the lattice vi-
brations. In contrast, the bare vibrations of the ion lattice would be a bad starting point, because
they are strongly altered by the screening of the electrons. This screening must be built into the
description of the harmonic lattice vibrations which defines the noninteracting phonons.
For the discussion of electron-phonon coupling effects in periodic solids, a good starting point
is the Fröhlich Hamiltonian, which reads in second quantization

H = He +Hph +He-ph (4)

Here the electron system is described by noninteracting quasi-particles with dispersion εk.
These quasiparticles are considered to be the stationary solutions of band electrons in a per-
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fect periodic lattice, and include already the renormalization from Coulomb interaction

He =
∑
kνσ

εkν c
†
kνσckνσ . (5)

Here ckνσ
(
c†kνσ

)
are the annihilation (creation) operators for an electronic state with momen-

tum k, band index ν, spin σ, and band energy εkν .
The lattice Hamiltonian is expressed in terms of quantized harmonic vibrations, and represents
noninteracting phonons

Hph =
∑
qj

ωqj

(
b†qjbqj +

1

2

)
, (6)

where bqj
(
b†qj
)

are the annihilation (creation) operators for a phonon with momentum q, branch
index j, and energy ωqj . Phonons are the quanta of the normal mode vibrations (for more details
see Appendix A). The operator of atom displacements is expressed in terms of the phonon
operators by

ulsα =
1√
Nq

∑
qj

eiqR
0
lsAqj

sα

(
bqj + b†−qj

)
with Aqj

sα =
ηsα(qj)√
2Msωqj

. (7)

Atoms are characterized by two indices denoting the unit cell (l) and the atoms inside a unit
cell (s), respectively, with Ms the corresponding atom mass. α denotes Cartesian indices,
and ηsα(qj) is the eigenvector of the normal mode qj. The number of points in the summation
over q is Nq.
The third term describes the lowest-order coupling between electrons and phonons derived from
Eq. (3). Using the relationship Eq. (7) it has the form

He-ph =
∑
kνν′σ

∑
qj

gqjk+qν′,kν c
†
k+qν′σckνσ

(
bqj + b†−qj

)
. (8)

gqjk+qν′,kν is the electron-phonon matrix element and describes the probability amplitude for
scattering an electron with momentum k from band ν to a state with momentum k+q in band ν ′

under the simultaneous absorption (emission) of a phonon with momentum q (−q) and branch
index j

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+qν ′σ

∣∣ δqsαV ∣∣kνσ〉. (9)

Here again the screened first-order change of the potential enters the matrix elements. They are
independent of spin for nonmagnetic ground states.
This general form of the Fröhlich Hamiltonian will be the starting point for the many-body
perturbation outlined in the next sections. To simplify the treatment, we will use a compact
notation combining momentum and band/branch index into a single symbol: k = (kν), k′ =
(k′ν ′), and q = (qj). The EPC matrix elements are then denoted as

gqk′,k = gqjk′ν′,kν δk′,k+q , (10)

which implicitly takes into account momentum conservation.
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3 Normal-state effects

3.1 Green functions and perturbation

In this section we will discuss the effects of electron-phonon interaction in the normal state
of a metal. This will be done using many-body perturbation techniques [5–7]. The focus will
be on the renormalization of electronic and phononic quasiparticles, which provides ways to
experimentally gain information about the coupling strength. This will set the stage for the
discussion of phonon-mediated superconductivity in the next section.
The following treatment is based on the Fröhlich Hamiltonian Eq. (4), where H0 = He + Hph

denotes the Hamiltonian of the unperturbed quasiparticles, and He-ph is a perturbation linear in
the electron-phonon coupling. We will work with the imaginary-time Green functions

G(k, τ) = −
〈
Tτckσ(τ)c

†
kσ(0)

〉
(11)

for the fermionic quasiparticles, where the field operators are given in a Heisenberg picture
using an imaginary time −iτ , ckσ(τ) = eHτckσe

−Hτ with −β < τ < β, β = 1/T. The Wick
operator Tτ reorders operators to increasing τ from right to left.
For the bosonic quasiparticles, the Green function of the displacement operators is defined as

Usα,s′α′(q, τ) = −
〈
Tτuqsα(τ)u−qs′α′(0)

〉
=
∑
j

Aqj
sαA

−qj
s′α′D(qj, τ) , (12)

where D denotes the phonon Green function
(
q = (qj)

)
D(q, τ) = −

〈
Tτ
(
bq(τ) + b†−q(τ)

)(
b−q(0) + b†q(0)

)〉
(13)

G(k, τ) and D(q, τ) can be defined as periodic functions in τ with the symmetry properties
G(k, τ+β) = −G(k, τ) and D(k, τ+β) = D(k, τ), respectively. Their Fourier transforms are
given by

G(k, iωn) =
1

2

∫ β

−β
dτeiωnτG(k, τ) (14)

D(q, iνm) =
1

2

∫ β

−β
dτeiνmτD(q, τ) , (15)

where ωn = (2n+1)πT and νm = 2mπT, with integer values n, m, denote fermionic and
bosonic Matsubara frequencies, respectively.
Two further simplifications have been assumed: (i) because we are dealing with nonmagnetic
states only, the spin index in the electronic Green function can be suppressed; (ii) the perturba-
tion He-ph does not mix different electronic bands or phononic modes, such that the interacting
Green functions can still be represented by a single band/mode index.
The bare Green functions of the unperturbed Hamiltonian H0 = He +Hph are

G0(k, iωn) =
1

iωn − εk
(16)

D0(q, iνm) =
1

iνm − ωq
− 1

iνm + ωq
. (17)
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Fig. 2: Diagrammatic representation of the lowest-order contribution to the electron self-energy
from the electron-phonon coupling. Blue zigzag and black lines represent phonon and electron
propagators, respectively.

Electronic energies are measured with respect to the chemical potential. By applying many-
body perturbation theory to the Fröhlich Hamiltonian, the interacting Green functions are ex-
pressed by an infinite series of Feynman diagrams containing the bare Green functions and an
increasing number of electron-phonon vertices.
Partial resummation leads to the Dyson equations

G(k, iωn)
−1 = G0(k, iωn)

−1 −Σ(k, iωn) (18)

D(q, iνm)
−1 = G0(q, iνm)

−1 −Π(q, iνm) , (19)

which connects bare and renormalized Green functions via the electron and phonon self-energy,
Σ and Π , respectively. The self-energies are defined as the sum of all one-particle irreducible
Feynman diagrams, i.e., as the sum of all Feynman diagrams, which cannot be separated into
two distinct graphs by cutting a single electron or phonon line.
In the following we will discuss the most important contributions to the self-energies in more
detail.

3.2 Electron self-energy

The lowest-order diagram of the electron self-energy represents a virtual exchange of a phonon
as shown in Fig. 2

Σep(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

gqk′,kG0(k
′, iωn′)(g

q
k′,k)

∗D0(q, iωn′−iωn) . (20)

With Eqs. (16) and (17), and after performing the Matsubara sum over ωn′ one obtains

Σep(k, iωn) =
1

Nq

∑
k′,q

|gqk′,k|
2

(
b(ωq) + f(εk′)

iωn + ωq − εk′
+
b(ωq) + 1−f(εk′)
iωn − ωq − εk′

)
. (21)

Σep depends on temperature T via the Fermi and Bose distribution functions, f(ε) =
(
eε/T+1

)−1

and b(ω) =
(
eω/T−1

)−1, respectively.
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To discuss the quasiparticle renormalization, we consider the retarded Green function, which
is obtained by analytic continuation to the real axis via iωn → ε+iδ with an infinitesimal
positive δ. It is connected to the analytic continuation of the self-energy via the Dyson equation

G(k, ε) =
(
ε− εk −Σ(k, ε)

)−1
. (22)

If the self-energy is small enough, the spectral function Ak(ε) = − ImG(k, ε+iδ) consists of a
well defined peak at a shifted quasiparticle energy determined by the real part of Σ

εk = εk +ReΣ(k, εk) . (23)

The quasiparticle acquires a finite lifetime leading to a linewidth (full width at half maximum)

Γk = −2 ImΣ(k, εk), (24)

which is determined by the imaginary part.
It is straightforward to perform the analytic continuation of Σep(k, iωn → ε+iδ) in the form
given in Eq. (21) and to derive the expression for the imaginary part

ImΣep(k, ε)=−
π

Nq

∑
k′,q

∣∣gqk′,k∣∣2[δ(ε−εk′+ωq)(b(ωqj)+f(εk′)
)
+δ(ε−εk′−ωq)

(
b(ωq)+1−f(εk′)

)]
.

(25)
This can be rewritten by introducing two spectral functions

α2F±k (ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2 δ(ε−εk′±ω) . (26)

They depend on the electronic state k via the EPC vertex. The imaginary part can then be cast
in the form

ImΣep(k, ε) = −π
∫ ∞

0

dω
(
α2F+

k (ε, ω)
[
b(ω)+f(ω+ε)

]
+α2F−k (ε, ω)

[
b(ω)+f(ω−ε)

])
. (27)

The physical interpretation of this expression is as follows. When a quasiparticle hole is created
at a state k (ε< εF ), electrons can scatter from states with higher or lower energies, respectively
(see Fig. 3). By conservation of energy, the first process involves a simultaneous emission of a
phonon, while the second one is related to the absorption of a phonon. The probability is de-
scribed by α2F−k and α2F+

k , respectively, weighted with the appropriate bosonic and fermionic
distribution functions. Both processes provide decay channels contributing additively to the
linewidth (inverse lifetime) of the quasiparticle. A similar description holds when a quasiparti-
cle (electron) is created at energies above the Fermi level.
Very often, a simplification is made which is called quasielastic approximation. Because the
electronic energy scale is typically much larger than the phonon energies, differences between
emission and absorption spectra are rather small, and it is well justified to ignore the phonon
energy ωq in the δ-function of (26), such that α2F±k ≈ α2Fk with

α2Fk(ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2 δ(ε−εk′) . (28)
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ε
F

Fig. 3: Illustration of the scattering processes contributing to the self-energy of a hole quasi-
particle with momentum k and band index ν. Electrons (red lines) can scatter virtually from
states with higher or lower energies under simultaneous emission or absorption of a phonon
(blue lines), respectively.

The self-energy then simplifies to

ImΣep(k, ε) = −π
∫ ∞

0

dω
(
α2Fk(ε, ω)

[
2b(ω) + f(ω+ε) + f(ω−ε)

])
. (29)

It is instructive to evaluate this expression for the simple Einstein model, where only a single
dispersionless phonon mode with energy Ω couples to the electrons. In the limit T → 0 one
finds

ImΣep(k, ε)→ −πA(ε)
(
2−Θ(Ω−ε)−Θ(Ω+ε)

)
, (30)

where Θ(x) denotes the Heaviside step function, and A(ε) = 1/Nk

∑
k′,q |g

q
k′,k|2 δ(ε−εk′) rep-

resents the density of states at energy ε weighted by scattering matrix elements. Typically A(ε)
is slowly varying on the scale of phonon energies. In contrast, Σep(ε) vanishes for energies
|ε| < Ω and shows a step at Ω, because of the presence of the step functions. This reflects the
fact that no phonon modes are available for decay when |ε| < Ω. ReΣep can be obtained via
the Kramers-Kronig relation

ReΣep(k, ε) =
1

π

∫
dε′

ImΣep(k, ε
′)

ε− ε′
. (31)

As shown in Fig. 4(a) it contains a maximum at ε = Ω and has a finite slope at ε → 0.
The resulting dispersion for the renormalized quasiparticle is sketched in Fig. 4(b). It shows
two characteristics: (i) the dispersion is strongly modified in the vicinity of εF in the range of
phonon energies, altering the Fermi velocity related to the slope of ReΣep(ε→ 0). (ii) A cusp
appears at ε = ±Ω.
For a more realistic phonon spectrum which covers continuously an energy range 0 ≤ ω ≤
ωmax, the step-like feature in ImΣep(ε) is washed out, but Σep(ε) still varies rapidly in the
energy range of the phonons. The cut in the renormalized dispersion is then replaced by a kink.
An example of an experimentally determined self-energy is given in Fig. 4(c) and (d).
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Fig. 4: Illustration of the renormalization of an electronic band coupling to an Einstein-type
phonon branch with energy Ω. (a) Real and imaginary part of the electron self-energy. (b)
Renormalized quasiparticle dispersion, showing a kink at the phonon frequency. (c) Real
and (d) imaginary part of the electron self-energy extracted from angle-resolved photoemis-
sion spectroscopy measurements taken for an electronic surface band of the Cu(110) surface.
After Jiang et al. [8]

The spectral function α2Fk contains the essential information related to the electron-phonon
coupling of the specific electronic state k = (kν). A convenient measure for the strength of the
EPC is the dimensionless coupling parameter

λk = 2

∫
dω

α2Fk(εk, ω)

ω
. (32)

It characterizes the strength of the coupling of a specific electronic state to the whole phonon
spectrum, and depends both on the momentum and band character of the electronic state.
There are two relations which connect this parameter to experimentally accessible quantities.
The first is related to the real part of the self-energy for an electronic band crossing the Fermi
level:

λk =
∂ ReΣep(k, ε)

∂ε

∣∣∣∣
ε=0,T=0

. (33)

Thus the coupling constant is given by the slope of ReΣep right at the Fermi energy in the
limit T → 0. λk is also called the mass-enhancement parameter, because the quasiparticle
velocity is changed to v∗F = vF/(1+λk) and can be interpreted as an enhanced effective mass
m∗k = mk(1+λk), where mk denotes the unrenormalized mass. Eq. (33) is often utilized in
ARPES measurements of bands crossing the Fermi level, which attempt to extract the energy
dependence of the real part of the self-energy.
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Fig. 5: (a) and (b) Diagrammatic representation of the two second-order contributions to the
electron self-energy. Blue zigzag lines represent phonons and black lines electron propagators.
(c) and (d) Schematic drawing of Fermi surface and states contributing to the graphs (a) and
(b), respectively.

A second route to determine the coupling constant of an electronic state is via the temperature
dependence of the linewidth

Γk(T ) = π

∫ ∞
0

dω
(
α2Fk(εk, ω)

(
2b(ω) + f(ω+εk) + f(ω−εk)

))
. (34)

In Eq. (34), the T -dependence it contained solely in the Bose and Fermi distribution functions.
For T → 0, it approaches a finite value given by

Γk(T )→ 2π

∫ ωmax

0

dω α2Fk(εk, ω) . (35)

With increasing T, the linewidth increases monotonously. For temperatures larger than the
maximum phonon frequencies, this T -dependence becomes almost linear, and its slope is de-
termined by the average coupling parameter defined above

Γk(T ) ≈ 2πλkT . (36)

This relationship has been widely used to extract λk from measurements of Γk(T ), in particular
for surface electronic states.

3.3 Migdal’s theorem

So far we have discussed the influence of phonons on the electronic properties in lowest order
of the electron-phonon coupling. What about higher-order corrections? A very important an-
swer is given by the Migdal’s theorem, which is relevant for both the normal-state properties
discussed here and the Eliashberg theory of superconductivity presented in the next section. We
give only a very brief qualitative discussion here, more details can be found in literature [9,10,7].
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Π(ω)Im = Im ω

Fig. 6: (a) Diagrammatic representation of the imaginary part of the phonon self-energy up to
second order in the electron-phonon vertex. Blue zigzag lines represent phonons, black lines
electron propagators.

Fig. 5 (a) and (b) show two next-order corrections to Σep. The first is a self-energy contribution
to an inner line and can be taken into account by using the full Green function G for the inter-
mediate state instead of G0. In contrast, the graph in Fig. 5(b) is a vertex correction. Migdal’s
theorem now states that vertex corrections are small and can be neglected. More precisely, this
is true for those parts of the renormalized Green function which are sensitive to the phonons.
Such contributions involve intermediate states whose energies are close to each other.
Fig. 5(c) and (d) show schematically the Fermi surfaces and states which make a contribution
to the graphs in Fig. 5 (a) and (b), respectively. The first case contains only small energy
differences ε12 = ε1−ε2 and ε13. In the second case, momentum conservation leads to a large
difference ε14. This unfavorable situation can only be avoided when one of the intermediate
phonon momenta becomes small. Migdal showed, that for normal metals the phase space for
such processes is very small, and the contribution from graph Fig. 5(d) is by a factor ωD/εF
smaller than that from graph (a), where ωD denotes the Debye frequency and εF the Fermi
energy. ωD/εF is of the order of 0.1 for typical phononic and electronic energy scales.
The phase space argument of Migdal’s theorem breaks down in two circumstances: (i) For a
significant part of processes both phonons have small q (both k2−k1 and k3−k2 are small). This
can happen in metals with very small Fermi surfaces, for example in low-doped semiconductors.
(ii) Metals with a one-dimensional Fermi surface topology (quasi-1D). In addition, Migdal’s
theorem becomes questionable in the case of metals with very small band widths, where the
ratio ωD/εF is not small any more.
According to Migdal’s theorem, Σep is well represented by the single graph shown in Fig. 2,
except that G0 is replaced by G, and other contributions can be neglected. According to ar-
guments given by Migdal and Holstein, this replacement again gives small corrections of the
order of ωD/εF . [9, 11]. Thus to a good approximation it is justified to use G0, so the previous
formulas still hold. This approximation does not work anymore for the superconducting state,
as discussed in the next section.
However, the analysis given above rests on a simplified solution of the Dyson equation which
can break down for larger coupling. Then the renormalization becomes much more involved
and requires the solution of the Dyson equation in the complex plane [12]. The spectral function
develops a complex structure, which indicates the break-down of the quasiparticle picture.

3.4 Phonon self-energy and linewidth

The EPC also renormalizes the phononic quasiparticles. The measurement of the phonon
linewidth actually provides another way to gain experimental information about the coupling
strength. We will briefly sketch this approach here.
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The finite linewidth or inverse lifetime of a phonon mode is connected to the imaginary part of
the phonon self-energy by γq = −2 ImΠq(ω). The lowest-order contribution to ImΠq(ω) is
derived from the diagram shown in Fig. 6

Πq(iνm) =
1

β

∑
n

1

Nk

∑
k,k′

∣∣gqk′,k∣∣2G0(k, iωn)G0(k
′ν ′, iωn+iνm) =

1

Nk

∑
k′,k

∣∣gqk′,k∣∣2f(εk)−f(εk′)iνm+εk−εk′
,

(37)
leading after analytic continuation to the following expression for the linewidth (half-width at
half maximum)

γq = −2 ImΠq(ωq) = 2π
1

Nk

∑
k′,k

∣∣gqk′,k∣∣2(f(εk)− f(εk′)) δ(ωq + (εk−εk′)
)
. (38)

This expression contains the T -dependence via the Fermi distribution function f . Because
phonon energies are typically small compared to electronic energies, the energy difference
εk−εk′ is also small, and one can approximate

f(εk)− f(εk′) ≈ f ′(εk)(εk−εk′)→ −f ′(εk)ωq (39)

with f ′ = df/dε. For T → 0, f ′(εk)→ −δ(εk), and by neglecting ωq inside the δ-function, the
expression further simplifies to

γq = 2πωq
1

Nk

∑
k′,k

∣∣gqk′,k∣∣2 δ(εk) δ(εk′) . (40)

This approximate expression for the linewidth, first derived by Allen [13], is widely used in
numerical calculations. As will be discussed in the next section, γq in the form of Eq. (40)
enters directly the expression for the coupling strength of a phonon mode relevant for super-
conductivity. Thus measurements of the phonon linewidths, for example by inelastic neutron
or X-ray scattering experiments, provide information about the importance of a phonon mode
for the pairing. One has to keep in mind, however, that γq only represents the contribution from
EPC, while the experimental linewidth also contains other contributions like those from anhar-
monic decay processes. Furthermore, approximation (40) does not hold in the limit q → 0 for
metals, because the phonon frequency in Eq. (38) cannot be neglected anymore for intraband
contributions, which involve arbitrarily small energy differences εk−εk′ .

4 Phonon-mediated superconductivity

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin lies
in an instability of the Fermi liquid state that leads to a new ground state of correlated paired
electrons (Cooper pairs). In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [14]
have shown that this state is stabilized, whenever there exists an attractive interaction among two
electrons. Such an attractive interaction is always provided by the electron-phonon coupling,
which thus represents a natural source for pairing in any metal. EPC is known to be the pairing
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mechanism in most superconductors, which are commonly termed classical superconductors
to distinguish them from more exotic materials where other types of pairing mechanism are
suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. A more complete theory has been soon after worked out applying many-body techniques
(for reviews see, e.g., Refs. [15–17, 10]). The resulting Eliashberg theory [18] extends the
framework of BCS into the strong coupling regime and allows a quantitative prediction of many
properties of the superconducting state. An important property of the superconducting state is
that the quasiparticle spectrum is gaped. The size of the gap plays the role of an order parameter.
In the following, we discuss the essential ingredients of the theory of strong-coupling phonon-
mediated superconductivity, also known as the Migdal-Eliashberg theory. First, we give a sim-
ple derivation of an effective electron-electron interaction mediated by phonons. Using many-
body techniques we then derive the superconducting gap equations and identify the important
quantities related to the electron-phonon coupling, which determine the superconducting prop-
erties.

4.1 Effective electron-electron interaction

The coupling of the electrons to the phonon system does introduce an effective electron-electron
interaction, which can act as a pairing interaction evoking the superconducting state. The gen-
eral approach using many-body techniques will be discussed below. Here a simple but instruc-
tive derivation of the effective interaction is given with the help of a properly chosen canonical
transformation. To simplify the discussion, we will consider the case of a single, spinless quasi-
particle band coupled to a single phonon (boson) mode. The Fröhlich Hamiltonian then reads
(gk,q ≡ gqk+q,k)

H =
∑
k

εk c
†
kck +

∑
q

ωq

(
b†qbq +

1

2

)
+
∑
kq

gk,q c
†
k+qck

(
bq + b†−q

)
. (41)

Let us consider the Hamiltonian
H = H0 + ηH1 , (42)

where H0 is the unperturbed Hamiltonian, H1 the perturbation, and η represents an expansion
coefficient, which is considered to be small. The idea is to perform a canonical transformation

H ′ = e−ηSHeηS (43)

and eliminate the first-order term in η by choosing the operator S appropriately. Expanding
Eq. (43) in a power series in η gives

H ′ = H + η[H, S] +
η2

2

[
[H, S], S

]
+O(η3) (44)

= H0 + η
(
H1 + [H0, S]

)
+ η2[H1, S] +

η2

2

[
[H0, S], S

]
+O(η3) . (45)
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To eliminate the term linear in η one has to find an S which fulfills the condition

H1 + [H0, S] = 0 . (46)

Then the transformed Hamiltonian can be written as

H ′ = H0 +Heff +O(η3) with Heff =
η2

2
[H1, S] . (47)

This general approach is now applied to the Fröhlich Hamiltonian (41) with H0 = He + Hph

and ηH1 = He-ph. For the canonical operator we make the ansatz

S =
∑
kq

gk,q c
†
k+qck

(
xk,qbq + yk,qb

†
−q

)
. (48)

The parameters xk,q and yk,q will be determined in order to fulfill Eq. (46). Evaluating the
commutators gives

[He, S] =
∑
kq

gk,q
(
εk+q−εk

)
c†k+qck

(
xk,qbq + yk,qb

†
−q

)
(49)

[Hph, S] =
∑
kq

gk,qc
†
k+qck

(
−xk,qωqbq + yk,qω−qb

†
−q

)
. (50)

Using the relation ωq = ω−q this combines to

H1 + [H0, S] =
∑
kq

gk,q c
†
k+qck

((
1+ (εk+q−εk−ωq)xk,q

)
bq+

(
1+ (εk+q−εk+ωq)yk,q

)
b†−q

)
.

(51)
This expression vanishes when

xk,q = (εk − εk+q + ωq)
−1 and yk,q = (εk − εk+q − ωq)

−1 . (52)

The last step is to evaluate the effective interaction Eq. (47). The commutator [H1, S] has the
form [Aa, Bb] with A,B ∝ c†c containing products of fermion operators, and a, b ∝ xb+yb†

containing sums of boson operators. From the general relationship [Aa, Bb] = AB[a, b] +

[A, B]ab − [A, B][a, b] it is easy to see that there are three types of contributions. Keeping in
mind that [A, B] is again a product of the form c†c and [a, b] a c-number, the last term represents
a one-body electron operator, which actually can be shown to vanish. The second term describes
an effective coupling of an electron to two phonons, also called a non-linear coupling term.
We are interested in the first term, which is proportional to the product of two fermionic cre-
ation and two annihilation operators, c†cc†c, and thus represents an effective electron-electron
interaction. Explicitly it has the form

Heff =
η2

2

∑
kk′q

gk,q gk′,−q
(
yk′,−q−xk′,−q

)
c†k+qckc

†
k′−qck′ (53)

= η2
∑
kk′q

Veff(k,k
′,q) c†k+qckc

†
k′−qck′ (54)
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kk’

q
k’−q k+q

Fig. 7: Diagrammatic representation of the effective electron-electron interaction mediated by
the exchange of a phonon (blue zigzag line). Black lines indicate electronic states.

with

Veff(k,k
′,q) = gk,qgk′,−q

ωq

(εk′−εk′−q)2 − ω2
q

. (55)

Heff describes the scattering of two electrons with momenta k and k′ into states with momenta
k+q and k′−q by the exchange of a virtual boson with momentum q. This process is sketched
in Fig. 7.
In the context of pairing in superconductors, the effective interaction between electrons with
momenta k and −k is of special importance. Using ε−k = εk and g−k,−q = g∗k,q one obtains

Veff(k,−k,q) = |gk,q|2
ωq

(εk−εk+q)2 − ω2
q

. (56)

This effective interaction is attractive (negative) for |εk−εk+q| < ωq and repulsive (positive)
for |εk−εk+q| > ωq. Eq. (56) shows that the electron-phonon coupling always introduces an
attractive interaction for electronic scattering processes involving small energies of the order of
phonon energies.

4.2 Strong-coupling theory

4.2.1 Nambu formalism

The superconducting state is a macroscopic quantum state, which is characterized by a coherent
occupation of Cooper pairs, i.e., states with (k ↑,−k ↓). In a many-body description, it is related
to the appearance of anomalous Green functions

F (k, τ) = −
〈
Tτck↑(τ)c−k↓(0)

〉
and F ∗(k, τ) = −

〈
Tτc

†
−k↓(τ)c

†
k↑(0)

〉
(57)

originally introduced by Gor’kov [19]. In the normal state these anomalous Green functions
vanish. Starting from the Fröhlich Hamiltonian, one can set up a systematic perturbation ex-
pansion of the normal and anomalous Green functions, with the goal to obtain a set of self-
consistent equations. A necessary step is a partial resummation of an infinite number of dia-
grams, because the superconducting state can not be reached in any finite order of the perturba-
tion.
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A very convenient way to organize this algebra of diagrams has been introduced by Nambu [20].
One starts by defining the two-component operators

Ψk =

(
ck↑
c†−k↓

)
Ψ †k =

(
c†k↑ , c−k↓

)
(58)

and a 2×2 Green function

G(k, τ) = −
〈
TτΨk(τ)Ψ

†
k(0)

〉
= −

( 〈
Tτck↑(τ)c

†
k↑(0)

〉 〈
Tτck↑(τ)c−k↓(0)

〉〈
Tτc

†
−k↓(τ)c

†
k↑(0)

〉 〈
Tτc

†
−k↓(τ)c−k↓(0)

〉 )

=

(
G(k, τ) F (k, τ)

F ∗(k, τ)−G(−k,−τ)

)
. (59)

In the following, underlined symbols indicate 2×2 matrices in spin space. Switching to the
Fourier transform gives

G(k, iωn) =
1

2

∫ β

−β
dτ eiωnτG(k, τ) =

(
G(k, iωn) F (k, iωn)

F ∗(k,−iωn)−G(−k,−iωn)

)
. (60)

The next step is to rewrite the Fröhlich Hamiltonian in terms of Ψ, Ψ †. This is most easily done
by using the Pauli matrices

τ 0 =

(
1 0

0 1

)
, τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
. (61)

The non-interacting electronic part is rewritten as

He =
∑
kσ

εk c
†
kσckσ →

∑
k

εk Ψ
†
kτ 3Ψk (62)

and the interaction part as

He-ph =
∑
kσ

∑
qj

gqk′k c
†
k′σckσ

(
bq + b†−q

)
→
∑
k

gqk′k Ψ
†
k′τ 3Ψk

(
bq + b†−q

)
. (63)

The bare Green function (related to He) takes the form

G0(k, iωn) =

(
G0(k, iωn) 0

0 −G0(−k,−iωn)

)
=

(
(iωn−εk)−1 0

0 (iωn+εk)
−1

)
=
(
iωnτ 0 − εkτ 3

)−1
.

(64)
One can show that the Dyson equation retains its usual form

G−1(k, iωn) = G−1
0 (k, iωn)−Σ(k, iωn) (65)

with the inversion performed in the 2-dimensional spin space, where the self-energy Σ is now
a 2×2 matrix.
The diagrammatic expansion of the self-energy contains the same diagrams as in the normal
state, with the difference that Green functions and vertices are now represented by 2×2 matrices.
In particular gqk′k is replaced by gqk′k τ 3.
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4.2.2 Eliashberg theory

The Eliashberg theory is in essence the extension of the normal-state Migdal theory to the
superconducting state. Using Migdal’s theorem, the only important self-energy diagram is again
given by Fig. 2. Within the Nambu formulation this gives

Σ(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

gqk′k τ 3G(k
′, iωn′) τ 3 g

−q
kk′ D(q, iωn′−iωn) . (66)

Using the Pauli matrices, Σ can be written in the general form

Σ(k, iωn) = iωn
(
1−Z(k, iωn)

)
τ 0 + χ(k, iωn)τ 3 + Φ(k, iωn)τ 1 + Φ(k, iωn)τ 2 (67)

with as yet unknown and independent real functions Z,χ,Φ, and Φ. From the Dyson equation
one finds

G−1(k, iωn) = iωnZ(k, iωn)τ 0 −
(
εk+χ(k, iωn)

)
τ 3 − Φ(k, iωn)τ 1 − Φ(k, iωn)τ 2 . (68)

The inverted Green function is then, using
(
a0τ 0 + ~a · ~τ

)(
a0τ 0 − ~a · ~τ

)
= (a2

0−~a2)τ 0

G(k, iωn) =
(
iωnZ(k, iωn)τ 0 +

(
εk+χ(k, iωn)

)
τ 3 + Φ(k, iωn)τ 1 + Φ(k, iωn)τ 2

)
/D (69)

with D := detG−1 = (iωnZ)
2 − (εk+χ)

2 − Φ2 − Φ2
. If one uses this expression for Eq. (66)

and separates it into the τ -components, one arrives at four self-consistent equations for the four
unknown functions Z, χ, Φ, and Φ

iωn
(
1−Z(k, iωn)

)
= − 1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
iωn′Z(k

′, iωn′)

D(k′, iωn′)

χ(k, iωn) = − 1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
εk′ + χ(k′, iωn′)

D(k′, iωn′)

Φ(k, iωn) =
1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
Φ(k′, iωn′)

D(k′, iωn′)

Φ(k, iωn) =
1

β

∑
n′

1

Nq

∑
k′,q

∣∣gqk′k∣∣2D(q, iωn′−iωn)
Φ(k′, iωn′)

D(k′, iωn′)
. (70)

We note that because momentum conservation determines the phonon momentum, q = k′−k,
the sum over q is actually only a sum over different phonon branches (j).
Quasiparticle properties are determined by the poles of the Green function after analytic con-
tinuation, i.e., from D(k, iωn → ε+iδ) = 0. This gives

Ek =

√
(εk + χ)2

Z2
+
Φ2 + Φ

2

Z2
. (71)

The normal state corresponds to a solution Φ = Φ = 0. Z is the quasiparticle renormalization
factor, and χ describes shifts in the electron energies. The superconducting state is characterized
by a non-zero Φ or Φ. From Eq. (71) one can see that the gap function is given by
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∆(k, iωn) =
Φ(k, iωn)− iΦ(k, iωn)

Z(k, iωn)
(72)

and describes the energy gap in the quasiparticle spectrum. Φ and Φ obey the same equations
and are expected to have the same functional form up to a common phase factor. This phase
factor becomes important in the description of Josephson junctions, but is irrelevant for the
thermodynamic properties of a homogeneous superconductor. In the following, we choose the
simple gauge Φ = 0.

4.2.3 Isotropic gap equations

The Eliashberg equations (70) represent a complicated non-linear set of equations which couple
all momenta k with each other. We will now simplify them and derive the so-called isotropic
equations where only the frequency dependence remains. A very detailed derivation was given
by Allen and Mitrović [10]. Here we only briefly sketch the main steps. (i) We ignore changes
of the phonon quasiparticles and replace D by the unrenormalized Green function

D(q, iνm)→ D0(q, iνm) =

∫
dω δ(ω−ωq)

2ω

(iνm)2 − ω2
. (73)

(ii) Similar to the normal state, the electron-phonon self-energy evokes a significant renormal-
ization of quasiparticles only in an energy range ±ωD around the Fermi energy. It is therefore
appropriate to consider the quantities Z and φ only at the Fermi energy. (iii) We consider only
Fermi-surface averages of these quantities. The justification comes from the observation that the
superconducting gaps are often very isotropic. Moreover, in real materials, defects are always
present which tend to average anisotropic gaps [21].
Under these conditions we can replace the quantities Z and φ by their Fermi surface averages,
e.g.,

Z(iωn) =
1

Nk

∑
k

wkZ(k, iωn) (74)

with weights wk = δ(εk)/N(0), where N(0) = 1
Nk

∑
k δ(εk) denotes the electronic density

of states per spin at the Fermi energy. To simplify the following discussion, we will drop the
equation for χ thus ignoring the related, often small, shift in the electronic energies. Indeed
χ = 0 holds exactly in the limit of infinite band width [17].
Finally, after performing the internal momentum summation in Eqs. (70) one obtains the isotropic
gap equations

ωn
(
1−Z(iωn)

)
= −π 1

β

∑
n′

Λ(ωn−ωn′)
ωn′√

ω2
n′ +∆(iωn′)2

∆(ωn)Z(iωn) = π
1

β

∑
n′

Λ(ωn−ωn′)
∆(iωn′)√

ω2
n′ +∆(iωn′)2

, (75)

where ∆(iωn) = Φ(iωn)/Z(iωn). The interaction kernel

Λ(νm) =

∫
dω

2ωα2F (ω)

(νm)2 + ω2
(76)
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contains the electron-phonon coupling via the isotropic Eliashberg function

α2F (ω) =
1

N(0)

1

N2
k

∑
kk′

|gqk′k|
2δ(εk) δ(εk′) δ(ω−ωq). (77)

The set of non-linear equations (75) must be solved self-consistently for a given temperature T
and pairing function α2F. The kernel entering both equations is an even function of νm. It takes
its largest value at νm = 0

λ = Λ(0) = 2

∫
dω

α2F (ω)

ω
. (78)

λ is called the (isotropic) coupling constant and is a dimensionless measure of the average
strength of the electron-phonon coupling. Depending on its value, materials are characterized
as strong (λ > 1) or weak coupling (λ < 1) . Due to the factor 1/ω in the integral, low-energy
modes contribute more to the coupling strength than high-energy modes.
The superconducting state is characterized by a solution with ∆(iωn) 6= 0. The largest T which
still allows such a solution defines the critical temperature Tc. Because α2F (ω) as defined in
Eq. (77) is a positive function, (75) always possess such a superconducting solution for low
enough temperatures, i.e., a finite Tc.
An important feature of the Eliashberg gap equations is that they only depend on normal-state
properties, which specify a particular material. These comprise the electronic band structure,
phonons, and the EPC vertex, quantities which are accessible to first principles techniques as
discussed in the next section.
At this stage it is useful to make the connection to some normal-state quantities introduced in
the previous section. The isotropic Eliashberg function is related to the state-dependent spectral
function (28) via appropriate momentum averages at the Fermi energy

α2F (ω) =
∑
k

wkα
2Fk(ε=0, ω) , (79)

while the isotropic coupling constant is given by

λ =
∑
k

wkλk . (80)

Similarly, α2F can be expressed in terms of the phonon linewidths derived in the limit T → 0,
Eq. (40), as

α2F (ω) =
1

2πN(0)

1

Nq

∑
q

γq
ωq
δ(ω−ωq) , (81)

which leads to the formula for the isotropic coupling constant

λ =
1

πN(0)

1

Nq

∑
q

γq
ω2
q

. (82)

The dimensionless prefactor γq/ωq in (81) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momentum.
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4.2.4 Coulomb effects

Our derivation up to now was based on the Fröhlich Hamiltonian, where the electronic sub-
system is approximated by bands of noninteracting quasiparticles ignoring any Coulomb inter-
action. The largest consequences of the Coulomb interaction are supposed to be build into the
quantities εk (and similarly into ωq). The residual Coulomb interaction among the quasiparticles
can, however, not be completely neglected in the discussion of phonon-mediated superconduc-
tivity. It has a repulsive character and tends to reduce or completely suppress the pairing. The
quantity analogous to the electron-phonon coupling constant λ is the Coulomb parameter

µ = N(0)
〈〈
VC(k, k

′)
〉〉
FS
, (83)

which is a Fermi surface average of the effective screened Coulomb interaction VC(k, k′). µ is
of the order of 1 and thus not a small parameter. But because the electronic timescale is usually
much smaller than the vibrational one, or equivalently electronic energies are much larger than
phononic ones, only a significantly reduced Coulomb parameter enters the Eliashberg equations.
It was shown by Morel and Anderson [22], that the Coulomb repulsion can be taken into account
by replacing the kernel in the equation for the gap function by

Λ(iωn−iωn′)→
(
Λ(iωn−iωn′)− µ∗(ωc)

)
Θ(ωc−|ωn′|) . (84)

A cutoff ωc is introduced which must be chosen to be much larger than phononic energies.
The effective Coulomb parameter or Morel-Anderson Coulomb pseudopotential obeys a scaling
relation

µ∗(ωc) =
µ

1 + µ ln(ε0/ωc)
. (85)

ε0 denotes a characteristic energy scale of the electronic system, where the average matrix el-
ements of the Coulomb interaction become small (ε0 ≈ few εF ). In practice, µ∗ is commonly
treated as a phenomenological parameter of the order of ≈ 0.1 for normal metals. A more sat-
isfactory approach, which actually allows to incorporate Coulomb effects from first principles,
is the density-functional theory of superconductors [23].

4.2.5 Transition temperature Tc

The transition temperature Tc is solely determined by the material-dependent quantities α2F (ω)

and µ∗. A thorough numerical analysis of the isotropic gap equations was carried out by Allen
and Dynes [24], who used a standard spectrum for α2F but varied λ and µ∗ over a large pa-
rameter range. Their study revealed two important aspects. Firstly, they found that in a reduced
parameter space (λ < 2 and µ∗ < 0.15) Tc can be well approximated by a Tc formula proposed
originally by McMillan [25], but with a modified prefactor

Tc =
ωlog

1.2
exp

[
− 1.04(1+λ)

λ− µ∗(1+0.62λ)

]
. (86)
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The prefactor contains a properly defined average frequency of the phonon spectrum weighted
with the coupling strength

ωlog = exp

[∫
dω log(ω)W (ω)

]
, (87)

with the normalized weight function

W (ω) =
2

λ

α2F (ω)

ω
. (88)

This Tc formula is a significant refinement of the BCS formula Tc = 1.13ωD exp(−1/λ) derived
for the weak-coupling limit. Secondly, while the Tc formula suggests that Tc approaches a finite
value in the limit λ → ∞, the isotropic gap equations do not possess an intrinsic upper bound
for Tc. Instead the asymptotic relationship

Tc ∝
√
λ〈ω2〉 (89)

holds, where 〈ω2〉 is the second moment of W (ω).

5 Density functional theory approach

In the previous sections we have outlined the basic theory for the effects of EPC in the normal
and superconducting state. Central quantities are the screened EPC matrix elements, which are
not directly accessible from experiment. Thus it is desirable to have a computational scheme
which allows materials-dependent predictions. The most common approach is based on density
functional theory, which is briefly described in the following.

5.1 Density functional perturbation theory

5.1.1 Basics of density functional theory

The foundations of density functional theory (DFT) have been laid down in the seminal works
by Hohenberg, Kohn, and Sham [26, 27] in the mid 60’s, and are outlined in numerous re-
views [28–30]. It provides a framework to map the complex many-body problem of interacting
electrons moving in an external potential vext(r) onto a fictitious system of noninteracting elec-
trons. Their wavefunctions obey a single-particle equation (Kohn-Sham equation) [27](

−∇2 + veff(r)
)
ψi(r) = εiψi(r) . (90)

Here, εi denotes the energy of the single-particle state ψi. The effective potential veff(r) is a
functional of the density given as the sum of the external potential and a screening potential

veff[n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (91)
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The Hartree and exchange-correlation potentials vH and vXC are functionals of the density
defined as the functional derivative of the Hartree and exchange-correlation energies, EH [n] =∫
d3r
∫
d3r′ n(r)n(r′)/|r−r′| and EXC . The density is determined by the wavefunctions via

n(r) =
∑
i

fi|ψi(r)|2 (92)

with fi the occupation number of the single-particle state ψi. Eqs. (90) and (92) have to be
solved self-consistently.

5.1.2 Linear response within the Kohn-Sham scheme

In the following we will sketch how one can calculate the linear response to an external pertur-
bation within the Kohn-Sham scheme. As the Kohn-Sham equations describe non-interacting
electrons, standard perturbation techniques can be applied. Let us now consider a small per-
turbation of the effective potential, δveff. This gives rise to a first-order variation of the single-
particle wave functions

δψi(r) =
∑
j(6=i)

〈j| δveff|i〉
εi − εj

ψj(r) . (93)

Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i

fi
(
ψ∗i (r)δψi(r) + δψ∗i (r)ψi(r)

)
=
∑
i6=j

fi − fj
εi − εj

〈j| δveff|i〉ψ∗i (r)ψj(r) . (94)

Keeping in mind, that the effective potential depends on the density, on obtains

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r−r′|
+

δ2EXC
δn(r) δn(r′)

. (95)

Eqs. (94) and (95) must be solved self-consistently to obtain the first-order variation of the
density. Direct evaluation of Eq. (94) is, however, numerically inefficient, because the sum i, j

runs over all occupied and unoccupied states and converges very slowly with the number of
unoccupied states included.

5.1.3 Modern formulation: Density functional perturbation theory

An important progress has been achieved by a new formulation of the linear-response approach,
which avoids some of the aforementioned problems. It is called density functional perturbation
theory (DFPT). We will give a brief outline for the case of a non-metallic system, while a
concise description can be found in [31].
In the expression (94) for the first-order density variation, the prefactor (fi−fj)/(εi−εj) re-
stricts the sum to combinations where one state comes from the valence space and the other
from the conduction space. Using time-reversal symmetry, this can be rewritten as

δn(r) = 2
∑
vc

1

εv − εc
〈c| δveff|v〉ψ∗v(r)ψc(r) . (96)
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Now one defines the quantity

|∆v〉 =
∑
c

1

εv − εc
|c〉〈c| δveff|v〉 , (97)

which collects the summation over the conduction bands. The linear response of the density is
rewritten as

δn(r) = 2
∑
v

ψ∗v(r)∆v(r) . (98)

To avoid an explicit evaluation of the sum in the definition of∆v, one makes use of the following
property

(HKS − εv)|∆v〉 = −
∑
c

|c〉〈c| δveff|v〉 = −Pc δveff|v〉 = (Pv−1) δveff|v〉 . (99)

Here, HKS = −∇2 + veff is the Kohn-Sham Hamiltonian. Pc =
∑

c |c〉〈c| denotes the projector
onto the conduction space, and Pv = 1−Pc the projector onto the valence space. Eq. (99)
represents a linear equation for ∆v, where only valence-state quantities enter. Solution of this
linear equation turns out to be numerically much more efficient than the expensive summation
over conduction states. In practice, Eqs. (98), (99) together with (95) define a set of self-
consistent equations which is typically solved in an iterative manner.
We now apply this scheme to the case of a solid, where ions in their rest positions are sitting on
a periodic lattice. Kohn-Sham eigenstates are Bloch states |kν〉 characterized by momentum k

and band index ν, respectively, and are solutions of HKS|kν〉 = εkν |kν〉. In a periodic crystal,
ions are characterized by two indices l and s, which denote the unit cell and the ions inside a
unit cell, respectively. We consider periodic displacements of the ions from their equilibrium
positions, Rls = R0

ls + uls, of the form

ulsα = dsαe
iqR0

ls + d∗sαe
−iqR0

ls , (100)

where α indicates Cartesian coordinates. The complex amplitudes dsα allow to vary the relative
phase of the displacement. It is convenient to denote the corresponding derivatives by δqsα ≡
∂

∂dsα
and δ−qsα ≡ ∂

∂d∗sα
.

It is instructive to look at the effect of such a perturbation on the external potential, which is
commonly expressed as a superposition of atomic potentials vs centered at the instantaneous
positions of the ions

vext(r) =
∑
ls

vs(r−Rls) . (101)

Then its first-order variation, evaluated at the equilibrium positions, is given by

δqsαvext(r) = −
∑
l

∇r
αvs(r−R0

ls)e
iqR0

ls = −eiqr
∑
l

eiq(R0
ls−r)∇r

αvs(r−R0
ls) . (102)

The quantity defined by the lattice sum has the periodicity of the original lattice. Thus the
derivative δqsα can be considered to carry a momentum q.
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When using a Bloch representation for the electronic eigenstates, the variation of the effective
potential, δqsαveff, connects states of momentum k with those of momentum k+q. The Fourier
transform of the first order density variation takes the form (see Eq. (98))

δqsαn(q+G) = − 4

V

∑
kv

〈
kv
∣∣e−i(q+G)r

∣∣∆q
sα(kv)

〉
, (103)

where V denotes the crystal volume. The quantity appearing on the right hand side is closely
related to the first-order variation of the valence state |kv〉 and is defined by (see Eq. (97))

|∆q
sα(kv)〉 =

∑
c

|k+qc〉〈k+qc| δqsαveff|kv〉
εk+qc − εkv

. (104)

It is obtained by solving the inhomogeneous linear equations (see Eq. (99))(
HKS − εkv

)
|∆q

sα(kv)〉 =
(
P k+q
v −1

)
δqsαveff|kv〉 . (105)

Eqs. (103) and (105) together with (95) constitute a set of equations, which is solved self-
consistently for a fixed q to obtain δqsαn. As a by-product, also δqsαveff is calculated.
An important application of the linear response scheme is the calculation of lattice dynamical
properties. The electronic contribution to the dynamical matrix (see Appendix A), which deter-
mines the normal modes or phonons, is proportional to a mixed second derivative of the total
energy

Dsαs′β(q) =
1√

MsMs′
δqsαδ

−q
s′βE

∣∣∣
u=0

, (106)

which can be expressed as

δqsαδ
−q
s′βE =

∑
G

(
δqsαn(G+q)δ−qs′βvext(G+q) + δqsαδ

−q
s′βvext(G)

)
. (107)

The fact that this second derivative of the energy only requires the knowledge of the first-order
derivative of the density is a specific case of the so-called (2n+1) theorem, which states that all
derivatives of the total energy up to (2n+1)-th order with respect to an adiabatic perturbation can
be calculated from the knowledge of all derivatives of the Kohn-Sham eigenstates and density
up to n-th order. The proof given by Gonze et al. [32, 33] essentially rests on the variational
property of the energy functional.

5.2 Electron-phonon vertex from DFPT

We have seen that the lowest-order electron-ion interaction describes scattering of electronic
states via the operator δRV which denotes the change of the potential felt by the electrons
due to an ionic displacement. If the potential V is the bare electron-ion potential V 0, then
δRV = ∇V 0

∣∣
R0
u. In the context of DFPT, Eq. (2) would then be identified with

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+qν ′

∣∣ δqsαvext
∣∣kν〉 with Aqj

sα =
ηsα(qj)√
2Msωqj

, (108)
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Fig. 8: Diagrammatic representation of the screened electron-phonon vertex within the DFT
framework. Blue zigzag lines represent phonons, black lines electron propagators, and the
dashed lines the effective electron-electron interaction.

where a transformation to the normal-mode coordinates is performed. Physically, g represents
the probability amplitude of scattering a single electron by a simultaneous creation or annihila-
tion of a single phonon. In the form given above is called the bare vertex.
However, in solids, and in particular in metals, the bare electron-ion potential is screened by
the other electrons. Screening also alters the vertex significantly. It is instructive to look at it
from a many-body perturbation perspective. Fig. 8 shows a diagrammatic representation of the
screened vertex. The bare vertex is given by the first graph on the right hand side, and is screened
by virtual electron-hole excitations coupled via an effective interaction. In the context of DFT,
the electron-hole bubble represents the charge susceptibility of the non-interaction Kohn-Sham
system. The effective interaction is given by the kernel I defined in Eq. (95) and incorporates
besides the Coulomb interaction also contributions from exchange and correlation.
In essence this leads to a replacement of the external potential by the screened or effective one

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+qν ′

∣∣ δqsαveff
∣∣kν〉. (109)

DFPT allows direct access to this screened electron-phonon vertex, because the effective poten-
tial δqsαveff is calculated within the self-consistent procedure outlined above, which automatically
takes into account the important screening effects. Evaluation of Eq. (109), which is a numer-
ically rather inexpensive task, provides the screened EPC matrix elements on a microscopic
level, including their full momentum dependence and resolving the contributions from different
electronic bands and phononic modes.
DFPT has been widely used to predict lattice dynamical and EPC properties from first principles
for a large variety of materials, and has proven to be quite accurate in predicting the pairing
strength in phonon-mediated superconductors. This is briefly demonstrated by two examples.
The first one is a combined study of EPC by DFPT and neutron-scattering experiments shown in
Fig. 9 for YNi2B2C [34,35]. This member of the nickelborocarbide family is a strong coupling
superconductor (TC = 15.2 K), and exhibits pronounced phonon anomalies related to large and
momentum dependent EPC. Good agreement for both renormalized phonon frequencies and
linewidths as a function of momentum indicates a good predictive power of DFPT for this
compound.
The second example, shown in Fig. 10, addresses the non-centrosymmetric, strong-coupling
superconductor SrPt3P (TC = 8.4 K). DFPT predicts that the pairing is driven mainly by a low-
frequency mode, which carries more than 80% of the coupling. The existence of the low-
frequency mode was subsequently confirmed by high-resolution inelastic X-ray experiments
[36].
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Fig. 9: Lattice dynamics of YNi2B2C. Left panel: theoretical phonon dispersion and linewidths
(vertical bars) from DFPT. Right panel: time-of-flight neutron scattering results for the disper-
sion (a) and linewidth (c) of a prominent phonon branch compared with predictions from DPFT
in (b) and (d), respectively. After [34, 35].

Fig. 10: DFPT results for the superconductor SrPt3P. Left: phonon dispersion and relative
linewidths (vertical red bars); middle: phonon density of states; right: calculated isotropic
α2F . DFPT predicts a soft, but strong-coupling phonon branch, which is the origin of the large
peak in α2F at low energies, and of a large coupling constant of λ ≈ 2. After [36].
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6 Summary

In this tutorial, an introduction to the theory of the electron-phonon interaction in metals was
given. Focus was put on the renormalization properties of electronic and vibronic quasiparticles
in the normal state, and on its role for the pairing interaction relevant for the superconducting
state. This strong-coupling or Eliashberg theory has been tremendously successful in predicting
material-dependent properties of various superconductors in great detail. Density functional
theory provides a rather accurate first principles computational scheme to calculate the relevant
electron-phonon vertex, which is one of the central quantities determining physical observables
like electron renormalization, phonon linewidth, or phonon-mediated pairing interaction. Yet
one has to keep in mind that the Eliashberg theory incorporates a variety of approximations. The
current theoretical challenge is to extend its framework to include usually neglected aspects of
anharmonicity [37], and to quantify electron-phonon coupling effects in materials which are
characterized by small electronic energy scales [38] and/or strong electron correlations [39].
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Appendix

A Phonon quantization

Within the adiabatic approximation, statics and dynamics of the ions are governed by an effec-
tive potential

Ω(R) = Vii(R) + E0(R) , (110)

where E0(R) denotes the electronic ground-state energy for a given ion configuration R. The
effective potential Ω builds the starting point of the microscopic theory of lattice dynamics,
which has been outlined in a number of review articles [40–42].
Dynamical properties are derived by a systematic expansion of Ω for atom displacements u

around a chosen reference configuration, Ri = R0
i+ui, leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + · · · (111)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term
of first order is the negative of the force acting on an atom in the reference configuration

Fiα = − ∂Ω

∂Riα

∣∣∣∣
0

= −Φα(i) . (112)

It vanishes if one chooses as reference the equilibrium configuration, which minimizes Ω. The
second-order coefficients are given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

. (113)

In periodic crystals, the atoms are characterized by two indices i = (ls), which denote the unit
cell (l) and the atoms inside a unit cell (s), respectively. For periodic boundary conditions, the
Fourier transform of the force constant matrix is related to the dynamical matrix

Dsαs′β(q) =
1√

MsMs′

∑
l

Φαβ(ls, 0s
′)e−iq(R0

ls−R
0
0s′ ) , (114)

which determines the equation for the normal modes or phonons,∑
s′β

Dsαs′β(q) ηs′β(qj) = ω2
qjηsα(qj) . (115)

ωqj and ηsα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and branch index j.
These quantities enter into the relationship between the atom displacements and the usual
phonon annihilation and creation operators, bqj and b†qj , describing quantized normal modes,
as given in Eq. (7).



Electron-Phonon Coupling 6.29

References

[1] G. Grimvall: The Electron–Phonon Interaction in Metals (Selected Topics in Solid State
Physics, edited by E. Wohlfarth, North-Holland, New York, 1981)

[2] M. Born and J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)

[3] G.V. Chester and A. Houghton, Proc. Phys. Soc. 73, 609 (1959)

[4] S.K. Sinha, Phys. Rev. 169, 477 (1968)

[5] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski: Methods of Quantum Field Theory
in Statistical Physics (Prentice-Hall, New Jersey, 1964)

[6] A.L. Fetter and J.D. Walecka: Quantum Theory of Many-Particle Systems
(McGraw-Hill, San Francisco, 1971)

[7] G.D. Mahan: Many-Particle Physics, (Plenum Press, New York, 1990)

[8] J. Jiang, S.S. Tsirkin, K. Shimada, H. Iwasawa, M. Arita, H. Anzai, H. Namatame,
M. Taniguchi, I.Yu. Sklyadneva, R. Heid, K.-P. Bohnen, P.M. Echenique, and
E.V. Chulkov, Phys. Rev. B 89, 085404 (2014)

[9] A.B. Migdal, Sov. Phys. JETP 34, 996 (1958)
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