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1 Introduction: Overview of superconductivity

That some metals, called “supraconductors” in the old days [1], make a transition to a state
with zero electrical resistance below a critical temperature Tc was discovered experimentally by
Kamerlingh Onnes in 1911 [2]. That if a magnetic field is present in the interior of a supercon-
ductor for T > Tc, it gets expelled when the temperature is lowered to T < Tc was discovered
experimentally by Meissner and Ochsenfeld in 1933 [3] and is called the Meissner effect. The
Meissner effect was a great surprise: before 1933 it was expected that superconductors would
exclude magnetic fields but not that they would expel magnetic fields. This follows from Fara-
day’s law, and was known as “Lippmann’s theorem” [4] back in the days [5]: if a magnetic field
is applied to a zero resistance material, the material will react by generating a surface current
that does not let the field penetrate, thus excluding the magnetic field from its interior. How-
ever, Faraday’s law / Lippmann’s theorem would predict that if a material with finite resistance
has a magnetic field in its interior, when it is cooled into the superconducting state with zero
resistance no current would flow and the magnetic field would remain in the interior, even if the
external source of magnetic field is removed. That is not what superconductors do: metals go-
ing superconducting spontaneously generate a surface current that expels magnetic fields from
their interior [3]. This appears to violate Faraday’s law.
The London equation proposed in 1935 by the London brothers [1, 6] provided a phenomeno-
logical description of the magnetic behavior of superconductors, but did not explain how su-
perconductors manage to violate Faraday’s law. Neither did the BCS theory, proposed in 1957
by Bardeen, Cooper and Schrieffer [7], based on the electron-phonon interaction. BCS theory
provided a microscopic description of superconductors that describes many of their properties
accurately, it is generally believed to apply to materials called “conventional superconductors”,
that include all superconducting elements and many compounds. There are around 30 different
classes of superconducting materials [8], only about a third of them are generally agreed to be
“conventional superconductors”. For the remaining two thirds, there is no generally accepted
theory. The field is wide open for further progress.

1.1 The known knowns: London equation, Cooper pairs, BCS theory

The known knowns are what we know we know about superconductivity.
It took 22 years, from the discovery of zero resistance by Kamerlingh Onnes in 1911, to experi-
mentally discover the Meissner effect in 1933. The London brothers embodied this experimen-
tal fact in the London equation [1, 6]

~∇× ~J = − ne
2

mec
~B (1)

where ~J is the current density, e and me are the electron’s charge and mass, n is the carrier
density and ~B is an applied magnetic field. Eq. (1), together with Ampere’s law

~∇× ~B =
4π

c
~J (2)
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lead to

∇2 ~B =
4πne2

mec2
~B ≡ 1

λ2L
~B (3)

which says that an external magnetic field decays exponentially to zero in going from the surface
to the interior of the superconductor, over a length given by the London penetration depth λL.
The London Eq. (1) was derived by the Londons for the situation where a magnetic field is
applied to a material that is already superconducting, i.e., describing exclusion of an applied
magnetic field. They postulated without derivation that it also applies to situations where a
normal metal with a magnetic field in its interior is cooled into the superconducting state. If
that postulate is valid, the material will expel the magnetic field to reach the state described by
Eq. (3), which is what is observed experimentally [3]. But no theoretical proof that this should
happen was provided by the London brothers nor anybody else.
In 1956, Leon Cooper pointed out [9] that if electrons in a Fermi gas interact through a small
net attractive interaction resulting from the electron-phonon interaction, they would form a
bound pair with binding energy ∆, and suggested that a system of such bound pairs may Bose-
condense into a superconducting state. In 1957 Bardeen, Cooper and Schrieffer formulated a
theory of superconductivity [7] describing the many-body state of such Cooper pairs. They
showed that the ground state wavefunction of the “reduced Hamiltonian”

Hred =
∑
kσ

(εk−µ) c†kσckσ +
∑
kk′

Vkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (4)

with µ the chemical potential (that determines the band filling) is of the form∣∣ΨBCS〉 =
∏
k

(
u2k + v2k c

†
k↑c
†
−k↓
)∣∣ 0〉. (5)

where c†kσ creates an electron of spin σ in the single particle state of crystal momentum k, and
uk and vk are complex amplitudes determined by minimization of the energy. BCS showed that
if the net interaction between electrons is attractive, the state Eq. (5) has a lower energy than
the normal metal Fermi sea. At finite temperatures, the system has quasiparticle excitations
with minimum energy ∆(T ), the superconducting energy gap, which is a decreasing function
of temperature. At a critical temperature Tc, ∆(T ) reaches zero and the system transitions into
the normal state. They furthermore showed that below Tc the system has many properties that
resemble what is experimentally found for superconductors.
BCS formulated their theory under the assumption that the attractive interaction between elec-
trons resulted from the electron-phonon interaction. Under that assumption, a simplified ex-
pression for the critical temperature is

Tc = ~ωDe−1/λ (6)

where λ is the dimensionless electron-phonon coupling and ωD is the Debye temperature, in-
versely proportional to the square root of the ionic mass M . Hence Eq. (6) predicts the isotope
effect, namely that

∂ lnTc
∂ lnM

= −α (7)
with α = 1/2.
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Finally, we should include among the “known knowns” the understanding intuited by London
[10], implicit in BCS theory, anticipated by Ginzburg and Landau [11], and demonstrated by the
physical effects predicted by Brian Josephson [12], that the superconducting condensate can be
represented by a macroscopic quantum wavefunction ψ(~r) =

∣∣ψ(~r)
∣∣eiθ(~r) with a unique phase

θ(~r) common to all electrons in the superfluid, and an amplitude
∣∣ψ(~r)

∣∣ whose square gives the
density of superfluid electrons.
All of the above, we all agree we know. Hence they are known knowns. Good references for
the above are the books by Tinkham [13] and by de Gennes [14].

1.2 The known unknowns:
Mechanisms of unconventional superconductivity

The known unknowns are what we know that we don’t know about superconductivity.

We know (meaning everybody agrees) that for materials that conduct electricity at ambient pres-
sure, hence can potentially be superconductors, the electron-phonon interaction is not strong
enough to overcome the Coulomb repulsion between electrons and give rise to superconductiv-
ity at temperatures above liquid nitrogen temperature, 77 K [15]. Some cuprate superconduc-
tors [16], a class of materials discovered in 1986, superconduct up to much higher temperatures,
up to 140 K. Therefore, we know that there has to be at least one other mechanism that gives
rise to superconductivity that is not the electron-phonon interaction. Superconducting materials
not driven by the electron-phonon interaction are called “unconventional superconductors”.
For a variety of reasons, many classes of materials, even if they have critical temperatures
much lower than 77 K, are believed to be “unconventional superconductors”, as surveyed in
Ref. [8]. There are a large number of unconventional theories of superconductivity proposed to
describe the cuprates and other unconventional superconductors (see introduction in Ref. [17]
for many references), but there is no general agreement on which (if any) of the theories is
correct for any materials. These theories are generally proposed to apply to one or more classes
of unconventional superconductors but not to all.
Since it is known that there are superconducting materials not described by BCS electron-
phonon theory, and there is no general agreement on which mechanisms give rise to super-
conductivity in the so-called unconventional superconductors, the mechanism(s) that give rise
to unconventional superconductivity are known unknowns.

1.3 The unknown unknowns:
Does BCS theory explain the Meissner effect?

The unknown unknowns are what we don’t know that we don’t know about superconductivity.

It is universally believed that BCS theory explains the Meissner effect. I disagree, I believe this
has not been carefully considered. BCS showed that the BCS state with magnetic field excluded
has lower free energy than the normal state with magnetic field in the interior. However, BCS
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theory has not explained the process by which a normal metal becoming superconducting ex-
pels the magnetic field to reach the BCS state. I have argued [18] that BCS superconductors
(meaning superconductors described by BCS theory) do not have the physical elements nec-
essary to give rise to a Meissner effect, and that as a consequence, if cooled from above Tc to
below Tc in the presence of a magnetic field, they would not make a transition to the supercon-
ducting state that excludes the magnetic field but would instead remain in a metastable normal
state with the magnetic field remaining in the interior, contrary to what is seen experimentally.
This implies, since real superconductors do exhibit a Meissner effect, that real superconductors
cannot be described by BCS theory. Since the Meissner effect is not generally considered to be
an unexplained phenomenon, I call this an unknown unknown.
Moreover, I believe there is a single theory to describe all superconductors, i.e., the so-called
conventional and unconventional superconductors, that also explains the Meissner effect. A
survey of the theory in its present state is given in my book [19]. A substantial part of the theory
was developed in collaboration with Frank Marsiglio, papers are listed in Ref. [20].

1.4 The unknown knowns:
Are there any electron-phonon superconductors?

An unknown known is something we think we know but in reality we don’t know.

There is essentially universal agreement that the electron-phonon interaction gives rise to super-
conductivity in conventional materials, including the hydrides under high pressure [21]. Hence,
that electron-phonon superconductors exist in nature. For the hydrides, transition temperatures
are claimed to approach room temperature, in drastic violation of what was expected [15]. This
is argued to come about due to the light mass of hydrogen and the strong electron-phonon
coupling in such materials [21], as originally predicted by Ashcroft [22].
There is however no rigorous proof that the electron-phonon interaction gives rise to super-
conductivity in any material. The direct Coulomb repulsion between electrons is a first order
effect, generally much stronger than the second-order frequency-dependent electron-electron
interaction mediated by phonons that can be attractive under certain conditions. In calculations
that claim to predict superconductivity driven by the electron-phonon interaction, the effect of
the Coulomb repulsion is generally lumped into a phenomenological parameter µ∗ [23], the
“Coulomb pseudopotential”, assumed to be of order 0.1, which allows for superconductivity
driven by the attractive electron-phonon interaction. However there is no reliable way to calcu-
late µ∗ [24]. At the time when no other mechanisms for attractive interactions were known, i.e.,
in the 1960’s, this might have been a tenable scenario, it was adopted then and is firmly believed
to be valid to this date. I believe this is wrong, that in fact the electron-phonon interaction is ir-
relevant to superconductivity in all materials. Since everybody believes the opposite, that there
are electron-phonon superconductors in nature, I say that this is an unknown known.
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2 Correlated electron models for superconductivity

So-called Hubbard models are widely used to describe correlated electrons in solids. Various
incarnations of these models have been used to describe essential aspects of superconductivity
within a variety of different theories.

2.1 Attractive and repulsive Hubbard models

The simplest Hubbard model is given by the tight binding Hamiltonian

H = −
∑
i,j,σ

tij
(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (8)

describing electrons in a single orbital at each site in a lattice ofN sites, with on-site interactions
only. In momentum space the Hamiltonian is

H =
∑
kσ

εk c
†
kσckσ +

U

N

∑
kk′q

c†k+q↑c
†
k′−q↓ck′↓ck↑ (9)

For an attractive interaction U < 0, the ground state of its “reduced Hamiltonian”, of the form
Eq. (4), is of the form Eq. (5). This follows from the fact that the BCS gap equation [13]

∆k = − 1

N

∑
k′

Vkk′∆k′
1− 2f(Ek′)

2Ek′
(10)

with f the Fermi distribution function, Vkk′ = U, ∆k = ∆, and

Ek =
√

(εk−µ)2 +∆2 (11)

has a solution ∆ 6= 0 at sufficiently low temperatures for any U < 0.
For a repulsive interaction U > 0, the gap equation (10) has no solution. However, it has been
argued [25] that more elaborate treatments of the repulsive Hubbard model Eq. (8) do give rise
to a superconducting state induced by spin fluctuations in that model as well as the related t-J
model [26], with the gap function having d-wave symmetry

∆k = ∆0

(
cos(kxa)− cos(kya)

)
. (12)

There is however no rigorous proof that I know of that the repulsive Hubbard model has a
superconducting ground state. The t-J model does have a superconducting ground state, and
it is argued that the model results from the repulsive Hubbard model in the limit of strong
coupling, U � t [26]. However I have shown [27] that to the same order in t/U the Hamiltonian
resulting from the Hubbard model has, in addition to the t-J terms, three-site terms that exactly
cancel the attractive interaction resulting from the two-site terms.
There are no good reasons why the attractive Hubbard model should describe the essential
physics of interacting electrons in real materials. And whether the repulsive Hubbard model
exhibits superconductivity for any value of U > 0 is certainly not established [28, 29]. Thus,
the question whether the Hubbard model Eq. (8) has any relevance to the superconductivity of
real materials is not a settled question, despite the enormous amounts of research efforts that
has been devoted to that hypothesis [30, 31] during the last 40 years [32].
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2.2 Electron-phonon attraction versus electron-electron attraction

The interaction between electrons and phonons (lattice vibrations) is typically described by the
Hamiltonian

He-ph =
1√
N

∑
k,q,σ

gkq
(
bq + b†−q

)
c†k+qσckσ (13)

where the operators bq and b†−q destroy and create phonons with wavevector q and −q respec-
tively, and frequency ωq = ω−q. Eliminating the phonons in second order perturbation theory
leads to the effective electron-electron interaction [33]

Hph
e-e =

1

N

∑
k,q,σσ′

|gkq|2
2~ωq

(εk+q−εk)2 − (~ωq)2
c†k+qσc

†
k′−qσ′ck′σ′ckσ (14)

which is attractive for |εk+q−εk| < ~ωq. It is argued that this frequency-dependent (“retarded”)
attractive interaction between electrons near the Fermi surface can overcome the much larger
instantaneous repulsive interaction between electrons, given in its simplest form by the Hubbard
repulsion Eq. (9), through what is called the “Coulomb pseudopotential” effect [23,24] that we
will not go into here.
The electron-electron attraction mediated by phonons Eq. (14), identified in the 1950’s [33],
arises from second-order processes. In the 1960’s, it was pointed out that another source of
electron-electron attraction could be second order ‘excitonic’ processes, where the excitations
are electronic rather than phononic giving rise to interactions of the form Eq. (14) where the
phonon energy ~ωq is replaced by an electronic excitation. However those proposals did not
gain much traction.
It turns out, however, that a first order attractive interaction between electrons exists, originat-
ing in the Coulomb interaction between electrons in the presence of the periodic ionic lattice
potential [34]. In a tight binding formulation, the Hamiltonian containing diagonal as well as
off-diagonal matrix elements resulting from the Coulomb interaction is a ‘generalized Hubbard
model’ [35, 36] given in real space by

Hgen = −
∑
i,j,σ

tij
(
c†iσcjσ + h.c.) +

∑
ijkl

(ij/kl)c†iσc
†
jσ′clσ′ckσ (15)

with

(ij/kl) =

∫
d3rd3r′ ϕ∗i (r)ϕ

∗
j(r
′)

e2

|r − r′|
ϕl(r

′)ϕk(r) (16)

where ϕi is the atomic orbital associated with site i, U = (ii/ii) > 0 is the on-site repulsion,
and the repulsion between electrons on different sites i and j is Vij = (ij/ij) > 0. Here we
want to focus on the two-center off-diagonal matrix element of the Coulomb interaction (ii/ij)

given by

(ii/ij) ≡ ∆tij =

∫
d3rd3r′ϕ∗i (r)ϕj(r)

e2

|r − r′|
|ϕ∗i (r′)|2. (17)

The sign of the interaction Eq. (17) depends on the orbitals involved, in particular it is positive
for s-orbitals and negative for p-orbitals oriented along the i-j direction. The important point
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however is that Eq. (17) is of the same sign as the single electron hopping matrix element tij
arising from the electron-ion interaction, given approximately by [37]

tij = −
∫
d3rϕ∗i (r)

(
− Ze2

|r −Ri|

)
ϕj(r) (18)

where Z|e| is the ionic charge, that we can rewrite as

tij = −
∫
d3rd3r′ ϕ∗i (r)ϕj(r)

(
− Ze2

|r − r′|

)∣∣χi(r′)∣∣2 (19)

with χi(r′) the ‘ionic wave function’ such that |χi(r′)|2 = δ(r′−Ri), to make its close relation-
ship with Eq. (17) apparent [34]. Thus, it is reasonable to assume that ∆tij = αtij with α a
positive constant. The Hamiltonian that results then including this interaction and the Hubbard
on-site repulsion U is

H = −
∑
i,j,σ

(
tij −∆tij(ni,−σ+nj,−σ)

)(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (20)

The interaction ∆tij is called “correlated hopping”. In momentum space the Hamiltonian is

H =
∑
kσ

εk c
†
kσckσ +

1

N

∑
kk′q

(
U − α(εk+εk+q+εk′+εk′−q)

)
c†k+q↑c

†
k′−q↓ck′↓ck↑ (21)

with εk =
∑

j t0je
ikRj , where

∑
k εk = 0 since we are defining tii = 0. It can be seen from

Eq. (21) that this interaction increases the Hubbard repulsion near the bottom of the band, where
εk < 0, and decreases it near the top of the band where εk > 0. It is the only interaction of the
form Eq. (16) involving two centers that breaks electron-hole symmetry.
The reduced Hamiltonian for Eq. (21) is

Hred =
∑
kσ

(εk−µ)c†kσckσ +
1

N

∑
kk′

Vkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (22a)

Vkk′ = U − 2α(εk+εk′) (22b)

with −D/2 ≤ εk ≤ D/2, where D is the bandwidth. For a system with only nearest neighbor
hopping with tij = t, ∆tij = ∆t, and z nearest neighbors to each atom, the bandwidth is
D = 2zt and

U−4z∆t < Vkk′ < U+4z∆t (23)

so the reduction of the on-site repulsion U increases with the coordination number of the lattice.
Even for parameter values such that Vkk′ is always repulsive, i.e., U > 4z∆t, the BCS gap
equation Eq. (10) will have solutions [38]. This happens because ∆k changes sign and becomes
negative far from the Fermi energy when the interaction is most repulsive. We have called this
a “spatial pseudopotential effect” [38], since it is analogous to what occurs for the electron-
phonon interaction due to its frequency dependence [23].
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We can also write the Hamiltonian Eq. (20), assuming we are dealing with a bipartite lattice, in
terms of hole operators, by performing the transformation

c†iσ → (−1)iciσ (24)

and it becomes

H = −
∑
i,j,σ

(
t̄ij +∆tij(ni,−σ+nj,−σ)

)(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (25)

with t̄ij = tij−2∆tij . It will be more useful in this form for further developments.
There is a caveat, however, associated with the derivation given here. In the computation of the
Coulomb matrix elements Eq. (16) we have assumed that the orbitals are atomic orbitals, which
are not orthogonal at neighboring sites. Instead, the Hamiltonian Eq. (15) implicitly assumes
that the fermion operators create electrons in orthogonal orbitals. If we use orthogonal orbitals
instead to compute the matrix elements of the Coulomb interaction, it is found that the off-
diagonal element given by Eq. (17) is nearly zero [39, 40]. However, we will show in the next
section that there are other physical reasons for why the Hamiltonian Eq. (20) with appreciable
values of ∆tij is relevant.
Thus, both the electron-phonon Hamiltonian Eq. (13) and the purely electronic Hamiltonian
without electron-phonon interaction Eq. (21) can give rise to superconductivity in model sys-
tems. Whether or not both or one of them or neither of them gives rise to superconductivity in
real materials is a question for which there is no universally agreed answer.

2.3 Electron-hole asymmetry, correlated hopping
and dynamic Hubbard models

After having been a devoted fan of the Hubbard model in the early stages of my physics career
[41], I came to the conclusion 35 years ago that the Hubbard model Eq. (8) has a fundamental
flaw: it is electron-hole symmetric. By that I mean, the properties of a system with n electrons
per site are identical to those of a system with n holes per site, or equivalently 2−n electrons
per site. Around the same time, I came to the conclusion that electron-hole asymmetry is the
key to superconductivity [42]. That moment marked my definitive divorce from the Hubbard
model Eq. (8). Years later I attempted reconciliation with electron-hole asymmetric versions of
the Hubbard model, namely dynamic Hubbard models [43], discussed later in this paper.
The fundamental electron-hole asymmetry of condensed matter systems follows from the basic
fact that the mass of the electron is 2000 smaller than the mass of the proton. It manifests itself
for example in the fact that the mean inner potential of solids is necessarily positive [44, 45]. It
renders the repulsive Hubbard model Eq. (8) irrelevant for the description of real systems [46].
Let us see why: Eq. (8) contains two energy scales, the hopping parameter t and the on-site
repulsion U. But it excludes a third energy scale ε that is always in-between t and U, namely
the spacing between atomic energy levels. When a second electron comes to occupy the orbital
already occupied by the first electron, the first electron does not sit idle to pay the very large
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Fig. 1: The top panel shows the atomic physics assumed in most models of interacting electrons
such as the Hubbard model: the atomic orbital does not change with electron occupancy. The
bottom panel shows the real physics: the atomic orbital expands when it is doubly occupied.

Coulomb repulsion that would result from the second electron invading its turf. Instead, it (as
well as the second electron) will expand their wavefunction, partially occupying higher energy
single-particle states, thus reducing their Coulomb repulsion. This is shown schematically in
Fig. 1. For electrons in the ground state of hydrogen-like ions of charge Z, the radius of the
expanded orbital, or equivalently the value of Z̄ is, within the Hartree approximation,

Z̄ = Z − 5/16. (26)

This reduces the Coulomb repulsion between electrons, from U = 17 eV × Z = (5/4)ε0Z,
with ε0 = 13.6 eV, to

Ū =
5

4
Z̄ = U − 25

64
ε0 = U − 5.31 eV (27)

and reduces the kinetic energy of each electron, because of the orbital expansion, from K =

ε0Z
2 to K = ε0Z̄

2, while it increases the potential energy of each electron, because they are
further away from the nucleus, from −2ε0Z

2 to −2ε0ZZ̄, for a net energy reduction of

E(Z̄)− E(Z) = − 25

128
ε0 = −2.66 eV (28)

so that the effective repulsion between electrons, defined as Ueff = E(2) + E(0)− 2E(1), with
E(n) the energy of the ion with n electrons, is [43]

Ueff = U − 25

128
ε0 = U − 2.66 eV. (29)

From experimental values of ionization energies of hydrogen-like ions we find that

Ueff ∼ U − 4.1 eV, (30)

the reduction is greater than Eq. (29) because of radial and angular correlations for electrons in
the doubly occupied orbital that we did not take into account.
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The Hubbard model ignores the fundamental fact that the orbitals are modified upon double
occupancy. In the Hubbard model, both the singly and the doubly occupied atomic orbitals are
assumed to be single Slater determinants with the same single particle wavefunctions

|↑〉 = c†↑|0〉 (31a)

|↑↓〉 = c†↑c
†
↓|0〉 (31b)

so that

〈0|c↑|↑〉 = 〈↓ |c↑|↑↓〉 = 1 (31c)

which embodies the fundamental electron-hole symmetry of the Hubbard Hamiltonian. How-
ever, this is qualitatively incorrect because the doubly occupied state is never a single Slater
determinant but rather a linear combination of Slater determinants involving higher single elec-
tron states

|↑↓〉 =
∑
m,n

Amn c
†
m↑c

†
n↓|0〉 (32a)

∑
m,n

|Amn|2 = 1 (32b)

where the sum runs over a complete set of atomic orbitals with the lowest single particle orbital
denoted by m = 0, i.e. c0σ = cσ, as well as over continuum states [47]. Eq. (32b) implies of
course that Amn < 1 for any m, n. Hence we have

c↑|↑↓〉 =
∑
n

A0n c
†
n↓|0〉 = A00|↓〉+

∑
n6=0

A0n c
†
n↓|0〉 (33)

and

1 = 〈0|c↑|↑〉 6= 〈↓ |c↑|↑↓〉 = A00 < 1. (34)

In other words, creating an electron into an empty orbital (or destroying an electron in the singly
occupied orbital) is qualitatively different from creating a hole in the doubly occupied orbital
(or creating an electron in the single occupied orbital).
For an electronic energy band that is close to empty, when electrons hop between sites tran-
sitions occur mostly between empty and singly occupied orbitals, so no other states are in-
volved and the spectral function A(k, ω) will be a δ-function with quasiparticle weight z = 1,
A(k, w) = δ(ω−εk). Instead, for a band that is close to full, when a hole hops from a site to
a neighboring site with no hole (i.e. doubly occupied), the final state can involve any of the
atomic excited states at the two sites. The spectral function will have a quasiparticle part with
quasiparticle weight z < 1, representing ground state to ground state transitions, and a broad
incoherent part, as shown schematically in Fig. 2. We can describe this physics by writing the
electron creation operator at site i as [48, 49]

c†iσ =
(
1 + (S−1)ñi,−σ

)
c̃†iσ (35)
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Electron-hole asymmetry in electronic energy bands

holes

electrons

z<1

A(k,ω)

A(k,ω)

z=
2

z=1

Fig. 2: Electronic energy band εk versus k. Near the top of the band, most orbitals are doubly
occupied and hence expanded. As the Fermi level moves up in the band, quasiparticles at
the Fermi energy become increasingly dressed by the atomic electron-electron interaction, and
increasingly heavier, and turn from electrons to holes. On the right we show schematically
the spectral function evolving from a δ-function near the bottom of the band with quasiparticle
weight z=1 to one with small quasiparticle weight z < 1 near the top of the band, with the rest
of the spectral weight spread out in incoherent processes. The thickness of the curve giving the
εk versus k relation indicates schematically the magnitude of the quasiparticle weight, which
can be vanishingly small near the top of the band when the effective ionic charge is small.

where c̃†iσ creates a quasielectron at site i, and S = 〈ϕ̄(r)|ϕ(r)〉 is the overlap matrix element
between expanded and unexpanded orbitals shown in Fig. 1. The quasiparticle spectral weight
as a function of band filling 0 < ne < 2 is

z(ne) =
(

1 + (S−1)
ne
2

)2
(36)

and goes from z = 1 for an almost empty band to z = S2 for an almost full band. Alternatively,
in terms of hole operators (denoted by the same symbols to avoid proliferation of symbols)

c†iσ =
(
S + (1−S)ñi,−σ

)
c̃†iσ (37)

and the quasiparticle weight as function of hole concentration nh = 2−ne is

z(nh) =
(
S + (1−S)

nh
2

)2
. (38)

The kinetic energy part of the Hamiltonian is

Hkin = −
∑
ij,σ

tσij
(
c†iσcjσ + h.c.

)
(39)

and replacing the electron operators by their expression in terms of quasiparticle operators
Eq. (35) we obtain

Hkin = −
∑
ij,σ

tσij
(
c̃†iσ c̃jσ + h.c.

)
(40)

with correlated hopping

tσij = tij
(
1 + (S−1)(ñi,−σ+ñj,−σ) + (S−1)2ñi,−σñj,−σ

)
. (41)
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εk 

holes	

electrons	

Fig. 3: Hopping amplitudes for electrons at the Fermi energy as function of band occupation.
As the number of electrons increases, hopping amplitudes are suppressed due to the modulation
of the hopping by the overlap matrix element S of expanded and unexpanded orbitals.

Alternatively, in terms of hole operators, we have the same Eq. (40), with the hopping ampli-
tudes given by

tσij = tijS
2
(

1 +
( 1

S
−1
)(
ñi,−σ+ñj,−σ

)
+
( 1

S
−1
)2
ñi,−σñj,−σ

)
. (42)

Fig. 3 shows the hopping amplitudes resulting from these equations.
The hopping amplitudes Eqs. (41) or (42) give rise to four-fermion and six-fermion terms in the
Hamiltonian. In the presence of on-site repulsion, the six-fermion term will be irrelevant for the
form Eq. (41) (Eq. (42)) when the Fermi level is close to the bottom (top) of the band. For the
latter case, the Hamiltonian for hole operators is then

H = −
∑
〈ij〉,σ

(
t̄ij +∆tij(ni,−σ+nj,−σ)

)(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (43)

of the same form as Eq. (25), with t̄ij = tijS
2 and ∆tij = tijS(1−S).

For small S, t̄ij will be very small, giving rise to a narrow energy band, of width D that grows
as the number of holes in the band increases. For a hypercubic lattice with nearest neighbor
hopping only t̄ij = t̄ the bandwidth is

D(nh) = 2zt̄
(
1 + nh∆t

)
(44)

with z the number of nearest neighbors to a site.
The physics discussed above is not present in the conventional Hubbard model. For those that
cannot renounce the credo that the Hubbard model describes the essential physics of electron
correlation in solids I offer “dynamic Hubbard models” [43] that embody the essential ubiq-
uitous presence of electron-hole asymmetry. The physics is schematically shown in Fig. 4.
We introduce a fictitious local boson displacement coordinate qi for atom i that modulates the
Hubbard U

U(qi) = U + αqi (45)

that will relax when double occupancy occurs. As the simplest model we describe the boson
dynamics by a harmonic oscillator of frequency ω0 =

√
K/M

Hi =
p2i

2M
+

1

2
Kq2i +

(
U+αqi

)
ni↑ni↓ . (46)
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States	of:	
electrons	

holes	

boson	degree	
of	freedom	

another	boson		
degree	of	freedom	

Fig. 4: Dynamic Hubbard models, or electron-hole asymmetric polarons: a boson degree of
freedom is associated with each site. The first electron at the site causes no change or a small
change in the ground state of this degree of freedom, and the second electron causes a large
change. For holes, the situation is reversed. Two examples of the boson degree of freedom are
shown, an oscillator and a spin 1/2.

The equilibrium position of the boson is qi = 0 for the site empty or singly occupied and
qi = −α/K for the site doubly occupied. This embodies the physics of orbital expansion of
the doubly occupied sites discussed above, and increasingly “dresses” the quasiparticles as the
Fermi level goes up in the band. In terms of boson creation and annihilation operators a†i , ai the
site Hamiltonian and the effective Coulomb repulsion between electrons are

Hi = ω0 a
†
iai +

(
U + gω0(a

†
i+ai)

)
ni↑ni↓ (47a)

Ueff = U − α2

2K
= U − ω0g

2 (47b)

with g = α/(2Kω0)
1/2. The boson degree of freedom describes the electronic excitation of an

electron when a second electron is added to the orbital. Hence the frequency ω0 is related to the
excitation energies of the atom, and we expect

ω0 = cZ2 (48)

where c is a constant of order eV, since the excitation energies in an atom scale with the square
of the nuclear charge. From Eqs. (29), (47b) and (48) we conclude that

g2 =
c′

Z2
. (49)

For a lattice system with hopping amplitude tij the Hamiltonian is then

H = −
∑
ij,σ

tij
(
c†iσcjσ + h.c.

)
+
∑
i

(
U + gω0(a

†
i+ai)

)
ni↑ni↓ +

∑
i

ω0a
†
iai (50)

Treating the four-fermion term in mean field, the electron-boson part of the Hamiltonian Eq. (50)
is

Hel-b = g(n)ω0

(
a†i+ai

)(
ni↑+ni↓

)
(51a)



Hole Superconductivity 7.15

with
g(n) =

n

2
g (51b)

that is, an ordinary electron-boson coupling with a coupling constant that increases with band
filling. Hence as in the usual electron-phonon interaction it will give rise to an effective mass
enhancement and a quasiparticle weight reduction which increases as the band filling increases.
Performing a generalized Lang-Firsov transformation on the fermion and boson operators [48]
we obtain

ciσ = eg(a
†
i−ai)ñi,−σ c̃iσ ≡ Xiσ c̃iσ (52a)

ai = ãi − gñi↑ñi↓ (52b)

and the Hamiltonian Eq. (50) becomes

H = −
∑
ij,σ

tij
(
X†iσXjσ c̃

†
iσ c̃jσ + h.c.

)
+
∑
i

Ueff ñi↑ñi↓ +
∑
i

ω0ã
†
i ãi (53)

with Ueff given by Eq. (47b). The ground state expectation value of the Xiσ operator is

〈Xiσ〉0 = e−(g
2/2)ñi,−σ = 1 + (S−1)ñi,−σ (54a)

S = e−g
2/2 (54b)

The part of the fermion operator Eq. (52a) associated with ground state to ground state transi-
tions of the boson field is the coherent part of the operator, the quasiparticle. We have then

ciσ = |0〉〈0|
(
1 + (S−1)ñi,−σ

)
c̃iσ + cincoh

iσ (55)

where the coherent part was given in Eq. (35). |0〉 denotes the ground state of the auxiliary
boson. The incoherent part of the operator

cincoh
iσ =

(
ñi,−σ

∑
(l,l′)6=(0,0)

|l〉〈l|eg(a
†
i−ai)|l′〉〈l′|+

∑
l 6=0

|l〉〈l|
)
c̃iσ (56)

describes processes where the boson field makes transitions to and from excited states |l〉, l 6= 0,
which only take place if ñi,−σ = 1, that is if the orbital is occupied by another electron of
opposite spin.
Replacing the ground state expectation values of the Xiσ operators in the Hamiltonian Eq. (53),
gives rise to the hopping amplitudes discussed earlier, Eq. (41). This will be accurate for ω �
tij . The quasiparticle weight in this model is, from Eq. (55)

z(n) =
(

1 +
n

2
(S−1)

)2
(57)

as was already given in Eq. (36), it decreases monotonically with electronic band filling ne,
0 ≤ ne ≤ 2, so that quasiparticles become increasingly dressed as the band filling increases.
The factor S is the overlap matrix element of the oscillator ground states with and without site
double occupancy [48], and S2 gives the quasiparticle weight for a hole in the filled band (n=2
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(a)	Electronic	DHM	

(b)	Spin	DHM	(b)	Spin	DHM	

Fig. 5: (a) Site states of an electronic dynamic Hubbard model (DHM) with two orbitals per
site. (b) Site states of a dynamic Hubbard model with an auxiliary spin degree of freedom
denoted by states |+〉, |−〉. For both cases, as indicated in the center panel, the left three states
are lowest in energy and are the quasiparticle states in the low energy effective Hamiltonian
with the correlated hopping term Eq. (43).

in Eq. (57)). According to Eqs. (49) and (54b), as the ionic charge Z decreases S decreases
rapidly, implying that hole quasiparticles become increasingly incoherent.
We can estimate S from first principles for a hydrogen-like ion. In the Hartree approximation,
S will be given by the overlap matrix element of the electron wave function in the presence and
in the absence of another electron in the orbital

S = |〈ϕ1s|ϕ̄1s〉| =
(1− 5

16Z
)3/2

(1− 5
32Z

)3
(58)

with ϕ̄1s the 1s orbital with Z replaced by Z̄ = Z − 5/16, as appropriate for the Hartree
wavefunction [43]. Better estimates can be obtained with other more accurate approximations
to the two-electron wavefunction [50].
Other forms of dynamic Hubbard models have also been proposed and studied, where the aux-
iliary boson degree of freedom is a spin 1/2 instead of an oscillator, as well as one with purely
electronic degrees of freedom involving two orbitals per site [50, 51]. The low and high en-
ergy states in these models are shown in Fig. 5. The essential physics is always the same and
leads to the correlated hopping Hamiltonian Eq. (43) in the limit where the boson excitation
energies are large. Dynamic Hubbard models have been studied numerically using exact diag-
onalization [51–53], quantum Monte Carlo [52, 54] and dynamical mean-field theory [55]. The
effect of finite boson frequency was studied analytically in Ref. [56] using Eliashberg theory.
Both from exact diagonalization for small clusters [52] and analytically [56] it was found that
finite frequencies enlarge the parameter regime that gives rise to pairing and superconductivity
relative to that in the antiadiabatic limit.
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2.4 Superconductivity in dynamic Hubbard models

The dynamic Hubbard models discussed in the previous section describe increased dressing of
the quasiparticles when the Fermi level goes up in the band. When the Fermi level is close to the
top of the band, and carriers pair, it means that locally the band filling decreases, hence carriers
partially undress. This provides a mechanism for superconductivity [57,58], driven by lowering
of kinetic energy [59]. The undressing gives rise to experimental signatures, in particular trans-
fer of spectral weight from high to low frequencies in both the single and two-particle spectral
function [49,53,60], that can be detected experimentally in photoemission [61] and optical [62]
experiments respectively. This physics leads to an apparent violation of the conductivity sum
rule, that was predicted theoretically in 1992 [63,60] and first observed experimentally 10 years
later [62]. The fact that the superconductivity mechanism is tied to electron-hole asymmetry
also gives rise to experimental signatures, in particular a tunneling asymmetry of universal sign,
predicted theoretically in 1989 [64] and first observed experimentally around 1995 and there-
after [65].
We focus on the low energy physics that results from the correlated hopping Hamiltonian
Eq. (21), with the addition of off-site Coulomb repulsion Vijninj . In momentum space the
Hamiltonian is, in hole representation

H =
∑
kσ

(
εk−µ

)
c†kσckσ +

1

N

∑
kk′q

(
V (q) + α(εk+εk+q+εk′+εk′−q)

)
c†k+q↑c

†
k′−q↓ck′↓ck↑ (59a)

V (q) =
∑
j

eiqRjV0j (59b)

with V00 = U, and α = ∆tij/t̄ij . Assuming only nearest neighbor hopping and only on-site
and nearest-neighbor repulsion, we write the pair interaction in the BCS reduced Hamiltonian
Eq. (4) as

Vkk′ = V (εk, εk′) = U +
K

D/2
(εk+εk′) +

W

D/2
εkεk′ (59c)

with the bandwidth D = 2zt̄, z the number of nearest neighbors to a site, K = 2z∆t and
W = zV. We have left out some terms in V (k−k′) that are odd under k → −k or k′ → −k′ that
drop out in the subsequent development. Note that everything depends on kinetic energy rather
than momentum, hence the resulting gap function will obey ∆k = ∆(εk), and in particular will
be constant over the Fermi surface. The usual BCS gap equation is

∆k = − 1

N

∑
k′

V (εk, εk′)∆k′
tanh(βEk′/2)

2Ek′
. (60)

with
Ek =

√
(εk−µ)2 +∆2

k. (61)

From the form of V (εk, εk′) it follows that ∆k = ∆(εk) is a linear function of εk, which we
parametrize as

∆(εk) = ∆m

(
− εk
D/2

+ c
)

(62)
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Fig. 6: The left panel shows the typical behavior of critical temperature versus hole concen-
tration in this model for one set of parameters appropriate for high Tc cuprates; the behavior
of the coherence length versus hole concentration in units of lattice spacing and of the ratio of
effective mass to band mass is shown on the right-hand scale

(
m∗/m = (t̄+2∆t)/(t̄+nh∆t)

)
.

The right panel shows the behavior of the parameter ∆t as function of interatomic distance and
various values of the effective ionic charge Z (Z = 0.75, 1, 1.25, 1.5, 2).

and replacement of Eq. (62) in Eq. (60) yields the following two equations [57, 58]

1 = K(I1+cI0)−W (I2+cI1) (63a)

c = K(I2+cI1)− U(I1+cI0) (63b)

with

I` =
1

N

∑
k

(
− εk
D/2

)` tanh(βEk′/2)

2Ek′
. (64)

These equations are solved numerically for ∆m and c as function of temperature and band
filling determined by µ. To obtain the critical temperature, a single equation needs to be solved,
obtained by combining Eqs. (63a) and (63b)

1 = 2KI1 −WI2 − UI0 +
(
K2−WU

)(
I0I2−I21

)
(65)

with Ek = |εk−µ| in the formulas for I`. Eq. (65) will have a solution, i.e. give rise to super-
conductivity, when the parameters in the Hamiltonian Eq. (59) satisfy the condition [36]

k >
√

(1+u)(1+w)− 1 (66)

with u = gU,w = gW, k = gK, and g the density of states at the Fermi energy.
Fig. 6(a) shows the typical behavior for critical temperature versus hole concentration resulting
from this model for a set of parameters appropriate to describe cuprate superconductors. In
Fig. 6(b) we show the results for the parameter∆t versus interatomic distance for various values
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Fig. 7: (a) shows the gap function and the quasiparticle energy as function of kinetic energy in
a hole representation. Note that the gap function changes sign as εk increases. The minimum in
the quasiparticle energy is shifted from the chemical potential µ by the asymmetry parameter ν.
(b) shows the temperature dependence of ν for two sets of parameter values. Lower curve:
U = 5 eV, K = 3.61 eV, W = 2.24 eV, Dh = 0.24 eV. Upper curve: U = 5 eV, K = 3.78 eV,
W = 2.60 eV, Dh=0. K=2z∆t, W=zV , and z=4, z the number of nearest neighbors to a site.

of the effective ionic charge Z, obtained from an approximate first-principles calculation for a
diatomic molecule [66]. It can be seen that ∆t is larger for negatively charged ions (Z < 2) in
close proximity.
The parameters for Fig. 6(a) are U = 5 eV, t̄ = 0.03 eV, ∆t = 0.1875 eV. The bare bandwidth
is 3.24 eV when the Fermi level is near the bottom of the band, but when it is near the top it is
narrowed to 0.24 eV since t̄ = t−2∆t. Superconductivity only occurs near the top of the band,
with the characteristic dome-type structure seen in the cuprates as well as in other materials like
in the transition metal series [67]. The figure also shows that the effective mass decreases as
the Fermi level moves down in the band, and the superconducting coherence length increases.
There is a cross-over between strong and weak coupling regimes as the hole concentration
increases, as seen in the cuprate superconductors.
From Eqs. (62) and (63), we find that the quasiparticle excitation energy in the superconducting
state is given by

Ek =
√
a2(εk−µ−ν)2 +∆2

0 (67a)

with

a =

√
1 +

( ∆m

D/2

)2
, ∆0 =

∆(µ)

a
and ν =

1

a

∆m

D/2
∆0 . (67b)

This is shown in Fig. 7(a). It can be seen that the minimum in the Ek versus εk relation is not at
the chemical potential, as in usual BCS, because of the energy dependence of the gap. Instead,
it is shifted to µ+ν. Thus, the quasiparticle excitations are not charge-neutral as in usual BCS,
they are positively charged. The behavior of the asymmetry parameter ν versus temperature is
shown in Fig. 7(b). Both the gap slope ∆m/(D/2) and the gap ∆0 vanish at Tc as the square
root of Tc−T , hence ν goes linearly to zero at Tc.
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The parameter ν gives rise to the asymmetry of universal sign in S-I-N tunneling mentioned
earlier. It also gives rise to positive thermoelectric power of tunnel junctions: under open-circuit
conditions, the thermoelectric voltage is predicted to be [68]

Vt =
ν

e

Ts − Tn
Tn

(68)

with Ts and Tn the temperatures in the normal and superconducting sides of the junction re-
spectively. Thus, this effect provides a direct measure of the fundamental asymmetry parameter
ν, or equivalently of the gap function slope ∆m/(D/2), given an independent estimate of the
gap ∆0. The parameter ν is expected to be of order meV for cuprate superconductors and µeV
for conventional superconductors. For quasiparticle tunneling between two superconductors A
and B the thermoelectric voltage under open-circuit conditions is

VAB =
νA + νB

e

TB − TA
(TA + TB)/2

(69)

neglecting a small correction of order νAνB/∆0A∆0B. These predictions have not been experi-
mentally tested.

3 Charge expulsion and alternative London electrodynamics

In the models discussed in the previous section, charge asymmetry plays an essential role. Su-
perconductivity only occurs when the band is almost full, i.e., a lot of negative electrons are
present. The essential physics at the atomic level is that the doubly occupied orbital expands,
hence negative charge moves outward, driven by both lowering of Coulomb repulsion and low-
ering of quantum kinetic energy. The pairing interaction ∆t is larger when the atoms involved
are negatively charged anions, i.e., the effective nuclear charge Z is small (Fig. 6b), in which
case the atomic orbital expansion is larger. Having fewer electrons in the vicinity of a given
electron allows it to hop with larger hopping amplitude, hence its kinetic energy decreases. All
of this suggests that systems governed by this physics will have a tendency to expel electrons
from their interior [69]. That is indeed what they do, and it has fundamental consequences.

3.1 Charge expulsion in dynamic Hubbard models

As was shown in Fig. 7(a), the quasiparticle excitation energy Ek is not symmetric around the
chemical potential due to the energy dependence of the gap. The BCS coherence factors are
given by the usual form

u2k =
1

2

(
1 +

εk−µ
Ek

)
=

1

2

(
1 +

εk−µ−ν
Ek

)
+

ν

2Ek
(70a)

v2k =
1

2

(
1− εk−µ

Ek

)
=

1

2

(
1− εk−µ−ν

Ek

)
− ν

2Ek
(70b)
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and as a consequence quasiparticles are positively charged on average. The net quasiparticle
charge per site is given by

Q∗ =
2

N

∑
k

(
u2k−v2k

)
f(Ek) = 2ν

1

N

∑
k

1

Ek
. (71)

As a consequence of quasiparticles being positively charged, the condensate will acquire an
extra negative charge.
Hence the superconductor is characterized by having two different ‘chemical potentials’. The
chemical potential µ corresponds to the condensate, and µ′ = µ+ν to the quasiparticle excita-
tions. In a hole representation, µ′ > µ, in an electron representation µ′ < µ. The negatively
charged condensate, by virtue of being a superfluid as well as because of the effective mass
reduction that occurs due to pairing and undressing, is highly mobile, in contrast to the quasi-
particles which experience normal scattering and have the higher effective mass characteristic
of the normal-state dressed carriers. As a consequence, one expects that the negative conden-
sate will have a tendency to move out of the bulk of the superconductor, so as to tend to equate
the chemical potentials µ and µ′ in the bulk. Because of overall charge neutrality, the negative
charge will accumulate near the surface of the superconductor.
An estimate of the maximum amount of charge that will be expelled from the bulk of the super-
conductor is given by the ratio of the difference in chemical potentials to the bandwidth D:

nmax =
2(µ′−µ)

D
=

2ν

D
(72)

carriers per site, so it is very small. However, the tendency to charge expulsion will be counter-
acted by Coulomb charging energy.
That this physics takes place is confirmed by numerical analysis of the underlying Hamiltonian
[70]. We consider the Hamiltonian in the hole representation

H = −
∑
ijσ

tσij
(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (73a)

tσij = th +∆t
(
ni,−σ+nj,−σ

)
+∆t2ni,−σnj,−σ (73b)

with th = tS2 ∆t = tS(1−S), ∆t2 = t(1−S)2 = (∆t)2/th. The fact that the hopping ampli-
tudes Eq. (73b) increase with hole occupation suggests that the system will have a tendency to
expel electrons from its interior to the surface, because the coordination of sites in the interior
is larger than of sites at the surface. This is indeed what we find numerically. We assume a
cylindrical geometry of radius R and infinite length in the z-direction, and decouple the inter-
action terms within a simple mean field approximation assuming 〈niσ〉 = ni/2 with ni the hole
occupation at site i, yielding the mean field Hamiltonian

Hmf = −
∑
〈ij〉,σ

(
th+∆tni+∆t2

n2
i

4

)(
c†iσcjσ +h.c.

)
+
U

4

∑
i

n2
i −
∑
〈ij〉

ni

(
∆t+

nj
2
∆t2

)∑
σ

〈c†iσcjσ〉

(74)
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Fig. 8: Left panel: hole site occupation per spin nσ for a cylinder of radius R=11 as a function
of r/R, with r the distance to the center, for a cubic lattice of side length 1. There are 377 sites
in a cross-sectional area (πR2 = 380.1). The average occupation for both spins is n = 0.126
holes per site. Parameters in the Hamiltonian are shown on the left panel. ∆t2 = 0. On the right
panel we show the results for two cases from the left panel, representing the hole occupation at
the site with circles of diameter proportional to it. Note that for finite ∆t the hole occupation
increases in the interior and is depleted near the surface, leading to charge inhomogeneity with
excess negative charge near the surface and excess positive charge in the interior, relative to a
neutralizing background of charge density n.

Note that the local average bond occupation modifies the local chemical potential. Assuming a
band filling of n holes per site, we diagonalize the Hamiltonian Eq. (74) on a finite lattice with
initial values ni = n and fill the lowest energy levels until the occupation n is achieved. From
the Slater determinant of that state we obtain new values of ni for each site and for the local bond
occupation, and iterate this procedure until self-consistently is achieved. We then examine the
resulting occupation of the sites as function of the distance r to the center of the cylinder. Fig. 8
shows a typical example of the behavior found. Here we assumed ∆t2 = 0, corresponding to
the simpler Hubbard model with correlated hopping and no six-fermion operator term. Even
for ∆t = 0 the hole occupation is somewhat larger in the interior than near the surface. When
the interaction ∆t is turned on, the hole occupation increases in the interior and decreases near
the surface. This indicates that the system expels electrons from the interior to the surface.
The effect becomes more pronounced when ∆t is increased or th is decreased. Finite ∆t2
enhances the effect. For larger values of the parameters the system develops a tendency to
phase separation, where holes condense in the interior and the outer region of the cylinder has
no holes. The instability condition for phase separation can be found analytically.

Of course in a real material this tendency to charge segregation will be countered by longer
range Coulomb repulsion. But it is clear that this physics will cause a tendency to develop local
charge inhomogeneity: because kinetic energy dominates the physics of the dynamic Hubbard
model, the system will develop charge inhomogeneity at a cost in potential energy if it can
thereby lower its kinetic energy more, unlike systems where the dominant physics is potential-
energy driven like the conventional Hubbard model. High Tc cuprates, for which ∆t should be
large, show a strong tendency to charge inhomogeneity.
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ground	state	
of	superconductor	

Fig. 9: The dynamic Hubbard model describes negative charge expulsion and kinetic energy
lowering at the atomic level, due to orbital expansion (left panel). In a lattice system it leads
to expulsion of negative charge from the interior to the surface. In the superconducting state, a
macroscopic charge inhomogeneity develops as shown on the right panel, with an electric field
~E(~r ) in the interior that points towards the surface.

3.2 Electric fields in superconductors and
alternative London charge electrodynamics

The physics discussed in the previous sections leads to the prediction that when a system goes
superconducting it will expel electrons from the interior to the surface, resulting in macroscopic
charge inhomogeneity, as shown on the right panel of Fig. 9. In the normal state this cannot
occur, the tendency to charge expulsion is countered by the Coulomb repulsion and no electric
field can exist in the interior of a normal metal. That minimizes the potential energy. How-
ever the superconducting state is a macroscopic quantum state, where the sum of potential and
quantum kinetic energy need to be minimized. Just like in the microscopic atom the charge
distribution is inhomogeneous, with the negative charge more “spread out” than the positive
charge to lower its quantum kinetic energy, the same will be true in the superconductor, which
is in some sense a “giant atom”. This is also suggested by the fact that the superfluid conden-
sate is described by a macroscopic quantum wavefunction ψ(~r)=|ψ(~r)|eiθ(~r) [11, 12], just like
the single electron in the hydrogen atom. This results in the existence of an electric field in the
interior of superconductors, just like in the hydrogen atom, as shown on the right panel of Fig. 9.

The conventional London equations do not allow for electric fields inside superconductors.
However a simple modification of them does [1, 71, 72]. The London equation is derived as:

∂ ~J

∂t
=
nse

2

me

~E → ~∇× ~J = −nse
2

mec
~B = − c

4πλ2L
~B,

1

λ2L
=

4πnse
2

mec2
→ ∇2 ~B =

1

λ2L
~B (75)

The equation on the left describes the collisionless response of a conducting fluid of density ns
to an applied electric field ~E, i.e., free acceleration of superfluid carriers of charge e and mass
me, giving rise to the supercurrent ~J = nse~v, with ~v the carrier velocity. Upon application of
the curl on both sides, using Faraday’s law and integrating over the time derivatives, the second
equation results, called the London equation. From applying the curl to both sides of Ampere’s
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law ~∇× ~B = (4π/c) ~J and replacing ~∇× ~J in Eq. (75), the right-hand side expression results,
that predicts that the magnetic field decays exponentially over a distance λL in going from the
surface towards the interior of the superconductor.
We note however that the London equation can be written as

~∇× ~J = − c

4πλ2L
~B → ~J = − c

4πλ2L
~A (76)

with ~A the magnetic vector potential, ~∇× ~A = ~B. Faraday’s law, upon integration, leads to

~∇× ~E = −1

c

∂ ~B

∂t
→ ~E = −~∇φ− 1

c

∂ ~A

∂t
(77)

where φ is the electric potential. Taking the time derivative of the right hand side of Eq. (76)
and using Eq. (77) leads to

∂ ~J

∂t
=
nse

2

me

(
~E+ ~∇φ

)
(78)

which, unlike the left-hand-side of Eq. (75), allows for the presence of an electric field that
derives from a potential that will not give rise to an infinite current. Note that the left-hand-
side of Eq. (75) is derived from Newton’s equation by replacing the total time derivative by the
partial time derivative, which is not correct.
Note that the right-hand-side of Eq. (76) relates the electric current density, a physical quantity,
to the magnetic vector potential, that is gauge-dependent. Assuming different gauges for ~A in
Eq. (76) leads to different physics. The London brothers assumed that ~∇· ~A = 0, the “London
gauge”, which has as a consequence that no electric fields can exist in the interior of supercon-
ductors. But that was just an unproven assumption. Instead, we will assume that ~A obeys the
Lorentz gauge, as was also done in the first London paper [1]

~∇· ~A = −1

c

∂φ

∂t
. (79)

Upon taking the divergence of both sides of the right-hand-side of Eq. (76), and using the
continuity equation ~∇· ~J = −∂ρ/∂t with ρ the charge density and the gauge condition Eq. (79)
we obtain

~J = − c

4πλ2L
~A→ ∂ρ

∂t
= − 1

4πλ2L

∂φ

∂t
(80)

and integrating with respect to time to

φ(~r, t)−φ0(~r) = −4πλ2L
(
ρ(~r, t)−ρ0(~r)

)
(81)

where φ0(~r) and ρ0(~r) are constants of integration. A possible choice would be φ0 = ρ0 = 0 [1].
Instead, motivated by the physics discussed in the previous sections, we choose ρ(~r) = ρ0 > 0,
that is, a uniform positive charge density in the interior of the superconductor. This then implies
that the electrostatic potential φ(~r, t) equals φ0(~r) when the charge density in the interior of the
superconductor is constant, uniform, and equal to ρ0. From Maxwell’s equations we deduce
that φ0(~r) is given by

φ0(~r) =

∫
V

d3r′
ρ0

|~r − ~r′|
(82)
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Fig. 10: Results from numerical solution of the electrostatic equations. Left panel: electric field
lines in the exterior of a sample of ellipsoidal shape, of dimensions a = 1, b = 1.5. London
penetration depth is λL = 0.5 and ρ0 = 0.1. Middle panel top: Charge density in the interior of
the superconductor along the horizontal axis plotted versus ρ/a (curve labeled ρ/a and along
the vertical axis plotted versus z/b (curve labeled z/b) and on the boundary plotted versus
θ/(π/2), with θ = tan−1(z/b)/(ρ/a); note that the negative charge density near the surface is
larger in magnitude along the z-direction. Middle panel bottom: Electric fields in the interior
along the ρ/a and z/b (dot-dashed) directions. Note that the electric field along the z-direction
changes sign near the surface, and that the electric fields are finite at the surface. Right panel:
Electric field lines in the exterior of a sample of egg-like shape

where the integral is over the volume of the superconducting body. ρ0 is a function of the
material, the temperature, and the volume and shape of the superconducting body. Before
discussing its value, we discuss some consequences of these equations.
In the absence of time dependence, the electrostatic equations can be solved analytically for
simple geometries (sphere, cylinder, plane) and numerically for other geometries. For example,
for a sphere of radius R we obtain for the charge density and electric field

ρ(r) = ρ0

(
1− 1

3

R3

λ2Lr

sinh(r/λL
f(R/λL)

)
; ~E(r) =

4

3
πρ0~r

(
1− R3

r3
f(r/λL)

f(R/λL)

)
(83)

with f(x) = x coshx− sinhx. Within a layer of thickness λL from the surface there is excess
negative charge density ρ− = −R/(3λL)ρ0. The electric field grows linearly with distance from
the center of the sphere, peaks at distance λL from the surface, with peak valueEm = −4πλLρ−,
decays to zero at r = R, and is of course zero for r > R. For a long cylinder of radius R,
the peak value of the electric field Em at distance λL from the surface is given by the same
expression in terms of ρ−, and ρ− = −R/(2λL)ρ0. The expressions for the charge density and
electric field as function of r involve Bessel functions of imaginary argument.
For more general geometries, the electric field will “leak out” from the interior and be non-zero
outside the superconducting sample. In particular, ellipsoidal samples give rise to quadrupolar
electric fields in the exterior [73, 74]. Figure 10 shows examples of field lines and position
dependence of charge density and electric field in the interior of an ellipsoidal sample. Note
that the electric field lines outside the samples go out from regions of lower surface curvature
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and go into regions of higher surface curvature. This is easy to understand qualitatively. As we
will discuss later, there are spin currents flowing near the surface of the superconducting body.
In the regions of high curvature (low curvature) electrons slow down (speed up), just like racing
cars would, so their kinetic energy decreases (increases) and consequently their potential energy
increases (decreases), to keep the total energy constant. Higher (lower) potential energy for the
electron means lower (higher) electric potential, and electric field lines go from high potential
to low potential.
From Eq. (81) and Maxwell’s equations, we deduce that electric and magnetic fields, charges
and currents in superconductors, obey the following equations:

∇2 ~B =
1

λ2L
~B +

1

c2
∂2 ~B

∂t2
(84a)

∇2
(
~E− ~E0

)
=

1

λ2L
( ~E− ~E0) +

1

c2
∂2( ~E− ~E0)

∂t2
(84b)

∇2 ~J =
1

λ2L
~J +

1

c2
∂2 ~J

∂t2
(84c)

∇2
(
ρ−ρ0

)
=

1

λ2L
(ρ−ρ0) +

1

c2
∂2(ρ−ρ0)

∂t2
(84d)

so that all quantities obey exactly the same equation.
The simplicity of eqs. (84) derives from the fact that the theory is relativistically covariant. We
define the current four-vector and the four-vector potential in the usual way

J =
(
~J(~r, t), icρ(~r, t)

)
and A =

(
~A(~r, t), iφ(~r, t)

)
. (85)

The continuity equation sets the four-dimensional divergence of the four-vector J equal to zero,
where the fourth derivative is ∂/∂(ict), and the Lorenz gauge condition sets the divergence of
the four-vector A to zero

Div J = 0 and DivA = 0. (86)

Furthermore we define the four-vectors associated with the positive uniform charge density ρ0
and its associated current ~J0, denoted by J0 , and the associated four-vector potential A0 . In
the frame of reference where the superconducting body is at rest the spatial part of these four-
vectors is zero, hence

J0 =
(
0, icρ0

)
and A0 =

(
0, iφ0(~r)

)
(87)

in that reference frame. In any inertial reference frame, A0 and J0 , as well the four-vectors J
and A obey

22A0 = −4π

c
J0 and 22A = −4π

c
J (88)

with the d’Alembertian operator

22 = ∇2 − 1

c2
∂2

∂t2
. (89)
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Our fundamental equation is then either of the following relations between four-vectors

22(A−A0 ) =
1

λ2L
(A−A0 ) and J−J0 = − c

4πλ2L
(A−A0 ) (90)

valid in any inertial reference frame. In the frame of reference at rest with respect to the super-
conducting body, J0 and A0 have only time-like components, in another reference frame they
will also have space-like components. Eq. (84) for the fields, current and charge density can be
written in covariant form as

22(J−J0 ) =
1

λ2L
(J−J0 ) and 22(F−F0 ) =

1

λ2L
(F−F0 ) (91)

where F is the usual electromagnetic field tensor and F0 is the field tensor with entries ~E0 and 0

for ~E and ~B respectively when expressed in the reference frame at rest with respect to the ions.
An important consequence of these equations is that they predict that externally applied elec-
trostatic fields should be screened over a distance λL, the London penetration depth [75, 76],
rather than over the much shorter Thomas-Fermi screening length, as the conventional theory
predicts. This should be so at zero temperature. At finite temperatures, the effective screen-
ing length decreases since excited quasiparticles screen with the much shorter Thomas Fermi
screening length.

3.3 Spin electrodynamics and the Spin-Meissner effect

The canonical momentum of an electron with superfluid velocity ~vs is ~p = me~vs + e
c
~A, with ~A

the magnetic vector potential. In the BCS ground state the expectation value
〈
~p
〉

= 0, hence
the superfluid velocity is given by ~vs = − e

mec
~A = − eλL

mec
~B×n̂. The second equality applies

to a cylindrical geometry, where n̂ is the outward pointing normal of the lateral surface of the
cylinder and ~B is the magnetic field along the axis of the cylinder.
Consider an electron that moves radially outward from the axis of a cylinder in the presence of
a magnetic field ~B parallel to the cylinder. The equation of motion is

me
d~v

dt
=
e

c
~v× ~B + ~Fr (92)

where the first term is the magnetic Lorentz force and the second term is a radial force arising
from “quantum pressure” that drives the electron outward. From it we infer

~r×d~v
dt

=
e

mec
~r×(~v× ~B) (93)

where ~r is in the plane perpendicular to the axis of the cylinder. Hence ~r· ~B = 0 and ~r×(~v× ~B) =

−(~r ·~v ) ~B, and
d

dt

(
~r×~v

)
= − e

mec

(
~r · ~v

)
~B = − e

2mec

(
d

dt
r2
)
~B (94)

so that ~r×~v=− e
2mec

r2 ~B, and the acquired azimuthal velocity in moving out a distance r is

vφ = − e

2mec
rB (95)
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Fig. 11: Left panel: when electrons forming a Cooper pair enlarge their orbits from a mi-
croscopic radius to radius 2λL, they acquire the azimuthal velocity required for the Meiss-
ner current. The interior currents cancel out, and a charge current circulating in the surface
layer of thickness λL results, the Meissner current. Right panel: electrons in expanding orbits
acquire also azimuthal velocity through the spin-orbit interaction of their magnetic moment
µz = −2µBSz, with µB the Bohr magneton, leading to a spin current circulating in the surface
layer of thickness λL, that adds to the charge current (if any), or is a pure spin current in the
absence of applied magnetic field.

Thus, to acquire the azimuthal speed needed for the Meissner current, vs = −eλL/(mec)B,
requires the action of the Lorentz force over a radially outgoing motion to radius r = 2λL.
This is shown schematically in Fig. 11 left panel.
Consider next a magnetic moment ~µ along the z direction that moves radially outward with
velocity ~v. It is equivalent to an electric dipole moment ~p = ~v

c
×~µ. The radial electric field

of the cylinder that results from the positive charge that compensates the superfluid negative
charge density ens is ~E = 2πρ~r = 2π|e|ns~r. The electric dipole experiences a torque

~τ = ~p× ~E =
(~v
c
×~µ
)
× ~E = −2π |e ns~r×

(~v
c
×~µ
)

(96)

which causes a change in its angular momentum

d~L

dt
= me

d

dt

(
~r×~v

)
= ~τ (97)

hence
~r×d~v

dt
=

2πens
me

~r×
(~v
c
× ~µ
)
. (98)

Eq. (98) is identical to Eq. (93) if we define the ’effective’ magnetic field

~Bσ = 2πns~µ (99)

and hence leads to the azimuthal velocity as derived earlier, vs = −eλL/(mec)B, with Bσ

replacing B and |~µ| = µB the intrinsic magnetic moment of the electron

vφ = −πens
mec

rµB and vφ =
πnse

2~r
2m2

ec
2

=
~r

8meλ2L
(100)
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Fig. 12: Illustration of the three key aspects of the physics of superconductors discussed here.
(a) : Superconductors expel negative charge from their interior to the region near the surface.
(b) : Carriers reside in mesoscopic overlapping orbits of radius 2λL. (c) : A spin current flows
near the surface of superconductors (the arrow perpendicular to the orbit denotes the direction
of the electron magnetic moment).

with µB = |e|~/2mec the Bohr magneton. The two electrons in a Cooper pair have opposite
spin and orbit in opposite directions. The orbital angular momentum of each electron is l =

mervφ = ~r2/(8λ2L).

Remarkably, for r = 2λL, the size of the orbit required to explain the Meissner effect, the
orbital angular momentum is l = ~/2 .

The azimuthal velocity has magnitude vφ ≡ v0σ = ~/(4meλL). In the interior, the azimuthal
velocities cancel out. Within a layer of thickness λL from the surface, they give rise to a spin
current, where electrons of opposite spin flow in opposite directions, as shown schematically in
Fig. 11 right panel [77, 78].
Figure 12 shows the three key aspects of the physics of superconductors within the theory
discussed here. (a) The charge distribution in the superconductor is macroscopically inhomo-
geneous, with excess negative charge near the surface and excess positive charge in the interior.
(b) Superfluid carriers reside in overlapping mesoscopic orbits of radius 2λL. (c) A macroscopic
spin current flows near the surface of superconductors in the absence of applied external fields.
Macroscopic phase coherence results from the fact that the 2λL orbits are strongly overlapping.

The fact that superfluid electrons reside in mesoscopic orbits of radius 2λL can be seen from
the equivalence of the following two expressions for the total angular momentum L of ns
electrons per unit volume flowing with velocity v along the lateral surface of a cylinder of
radius R and height h carrying the Meissner current within a distance λL from the surface:

L =
(
2πRλLhns

)(
mevR

)
=
(
πR2hns

)(
mev(2λL)

)
. (101)

When spin is taken into account, the four-vector current is J = J↑ + J↓ and the electrodynamic
equation (88) becomes [78]

Jσ−Jσ0 = − c

8πλ2L

(
Aσ−Aσ0

)
and Jσ =

(
~Jσ, icρσ

)
, Aσ =

(
~Aσ, iφσ

)
. (102)
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~Jσ = e(ns/2)~vσ is the component of the current of spin σ and ρσ is the charge density with
spin σ. The spin potentials are given by [78]

~Aσ = λL~σ× ~E(~r, t) + ~A(~r, t) and φσ(~r, t) = −λL~σ· ~B(~r, t) + φ(~r, t) (103)

Finally, the quantities with subindex 0 are

Jσ0 =
(
~Jσ0(~r), icρσ0

)
, ~Jσ0(~r) = −cρ0

2
~σ×r̂ , ρσ0 =

ρ0
2

(104)

and

Aσ0 =
(
~Aσ0(~r), iφσ0(~r)

)
, ~Aσ0(~r) = λL~σ× ~E0(~r) , φσ0(~r) = φ0(~r) . (105)

These equations predict the existence of a spontaneous spin current flowing within a London
penetration depth of the surface of the superconductor in the absence of applied fields, with
carrier densities (ns/2) and opposite spin electrons flowing in opposite direction with speed
v0σ = ~/(4meλL), and a spontaneous electric field throughout the interior of the superconductor.
Remarkably, the formalism uniquely determines the value of the expelled charge and maximum
electric field in the interior [78], as

Em = − ~c
4eλ2L

, ρ− = − Em
4πλL

, ρ− = ens
vσ0
c
, v0σ =

~
4meλL

. (106)

Note that Em is the same as the lower critical magnetic field of a BCS superconductor Hc1. In
the absence of an applied magnetic field, electrons near the surface move in opposite direction
with speed v0σ, as shown in Fig. 12. When a magnetic field is applied, electrons of one spin
speed up and those of opposite spin slow down, according to vσ = vs+σv

0
σ. The total excess

negative charge density ρ− = ρ↑+ρ↓ does not change, but it has different magnitudes for spin
up and down, according to

ρσ =
nse

2

(v0σ+σvs
c

)
, vs = − eλL

mec
B ;

1

λ2L
=

4πnse
2

mec2
. (107)

These equations imply that for applied magnetic field Hc1 = Em one of the components of the
spin current stops, at which point the magnetic field penetrates the sample [78].
The value of the interior positive charge density ρ0 is determined by charge neutrality. For a
cylinder and a sphere, it is ρ0 = −2λL/Rρ− and ρ0 = −3λL/Rρ− respectively.

4 How the Meissner effect works

We next will show that the physics discussed in the previous sections leads to a dynamical
explanation of the Meissner effect. Contrary to what is generally believed, BCS theory has not
provided a dynamical explanation of the Meissner effect. Why is it that it is generally believed
that BCS theory explains the Meissner effect?
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Fig. 13: The BCS explanation of the Meissner effect. The system (cylinder, top view) is initially
in the BCS state (left panel) with no magnetic field. Its linear response to the magnetic field
shown in the middle panel (dots) is computed to first order in the magnetic field. The result is
the state shown in the right panel, with a surface current J circulating.

4.1 BCS theory does not explain the Meissner effect

Within BCS theory, the Meissner effect is explained as follows [7]. One considers the linear
response of a system in the BCS state Eq. (5) to the perturbation created by a magnetic field,
as shown in Fig. 13. The perturbing Hamiltonian H1 is the linear term in the magnetic vector
potential ~A that results from the kinetic energy

(
~p − (e/c) ~A

)2
/2m, and it causes a change in

the BCS ground state |ΨBCS〉 to first order in ~A

H1 =
ie~
2mc

∑
i

(
~∇i·A+ ~A·~∇

)
, |Ψ〉 = |ΨBCS〉 −

∑
n

〈Ψn|H1|ΨBCS〉
En

|Ψn〉 (108)

where |Ψn〉 are states obtained from the BCS state |ΨBCS〉 by exciting 2 quasiparticles, and En is
the excitation energy. The expectation value of the current operator ~Jop with this wave function
gives the electric current ~J , and hence the “London Kernel” K [13]. In the long wavelength
limit this calculation yields

~J = 〈Ψ | ~Jop|Ψ〉 = − c

4π
K~A with K =

1

λ2L
(109)

where λL is the London penetration depth. Eq. (109) is the (second) London equation Eq. (76).
In combination with Ampere’s law, Eq. (109) predicts that the magnetic field does not penetrate
the superconductor beyond a distance λL from the surface, where the current ~J circulates, as
shown schematically in Fig. 13 right panel.
However, note that this calculation uses only the BCS wavefunction in and around the BCS
state, namely the ground state wavefunction |ΨBCS〉 and the wavefunctions |Ψn〉 that result from
breaking one Cooper pair at a time. The wavefunction of the normal metal never appears. This is
not explaining the Meissner effect. The Meissner effect is what is shown in Fig. 14: the process
by which a system starting in the normal metallic state expels a magnetic field in the process
of becoming a superconductor. It cannot be explained by starting from the assumption that the
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Fig. 14: What the Meissner effect really is: the process by which a normal metal becomes
superconducting in the presence of a magnetic field throughout its interior initially. The simplest
route in this process (not the only one) is depicted in the figure. The superconducting region
(white region) expands gradually from the center to fill the entire volume, expelling the magnetic
field in the process.

system is in the final BCS state and gets perturbed by H1. Explaining this process requires
explaining how the interface between normal and superconducting regions moves (center panel
in Fig. 14). Because calculations of the sort described in Eqs. (108) and (109) contain no
information about what is the nature of the initial state when the Meissner effect starts, namely
the normal metal, they cannot be a microscopic derivation of the Meissner effect.
During the process of field expulsion, as well as its reverse, the process where a superconductor
with a magnetic field excluded turns normal and the field penetrates, a Faraday electric field
is generated that opposes the process. This electric field drives current in direction opposite
to the current that develops. So it is necessary to explain: (i) How can a Meissner current
start to flow in direction opposite to the Faraday electric force resisting magnetic flux change
(Lenz’s law)? (ii) How is the angular momentum of the developing supercurrent compensated
so that momentum conservation is not violated? (iii) When a supercurrent stops, what happens
to the angular momentum that the supercurrent had? (iv) How can a supercurrent stop without
generation of Joule heat and associated with it an irreversible increase in the entropy of the
universe that is known not to occur? None of these questions are addressed in the BCS literature.

4.2 The Meissner effect necessitates charge expulsion

That the London derivation of the London equation does not account for the Meissner effect is
clear. To get from the first to the second equality in Eq. (75), a time integration was performed
after taking the curl and using Faraday’s law. More explicitly,

∂ ~J

∂t
=
nse

2

me

~E → ∂

∂t

(
~∇× ~J

)
= −nse

2

mec

∂ ~B

∂t
→ ~∇×

(
~J(~r, t)− ~J(~r, 0)

)
= −nse

2

mec

(
~B(~r, t)− ~B(~r, 0)

)
.

(110)
The last equality in Eq. (110) leads to the London equation Eq. (75) if ~B(~r, 0) = ~J(~r, 0) = 0.
However, under the initial conditions appropriate to the Meissner effect, namely ~B(~r, 0) = ~B0,
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Fig. 15: Schematic depiction of a perfectly conducting fluid (σ=∞) that flows radially outward
with radial velocity vr in a uniform magnetic field perpendicular to the plane of the paper. The
carriers at the boundary experience a Lorentz force FL. Assuming the sign of the charge q is
positive for definiteness the Lorentz force FL = (q/c)vrB points in the clockwise direction. The
resulting electric current I at the boundary flows clockwise (for negative charge carriers the
Lorentz force would be in the opposite direction, the current in the same direction), generating
a magnetic field opposite to the external field so that no magnetic field lines can penetrate the
fluid. During this process, a Faraday electric field E is generated that opposes the current flow.

~J(~r, 0) = 0 it leads instead to the solution ~B(~r, t) = ~B0, ~J(~r, t) = 0. No current is generated,
and the magnetic field is not expelled, contrary to what experiment tells us.
To understand what is needed to expel the magnetic field, let us consider more carefully the
equation of motion for an electron of charge e and mass me in the presence of electric and
magnetic fields

dv

dt
=

e

me

E +
e

mec
v×B . (111)

The left-hand side of Eq. (111) is the total (convective) time derivative, which is related to the
local (partial) time derivative by

dv

dt
=
∂v

∂t
+
(
v·∇

)
v =

∂v

∂t
+∇

(v2

2

)
− v×

(
∇×v

)
. (112)

Defining the ‘generalized vorticity’

w = ∇×v +
e

mec
B, (113)

taking the curl of Eq. (111) and using Eq. (112) and Faraday’s law∇×E = −(1/c)∂B/∂t leads
to the following equation of motion for w

∂w

∂t
= ∇×

(
v×w

)
. (114)

Note that w is essentially the curl of the canonical momentum p = mev + (e/c)A, with
A the magnetic vector potential. In the Meissner process we have at time t = 0: w(r, t=0) =
e

mec
B(t=0) ≡ w0 independent of position r. We set∇×v = 0 because in the normal state there

is no net macroscopic charge flow. Hence the canonical momentum p is nonzero throughout the
interior of the superconductor in the initial state. In the superconducting state, the superfluid ve-
locity v obeys the London equation ∇× v = − e

mec
B. Therefore, w(r, t=∞) = 0 everywhere
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(a)	back- 
flow 

(b)	

Fig. 16: Left panel: electrons becoming superconducting move out, and are deflected by the
Lorentz force in counterclockwise direction, generating the clockwise Meissner current IMeissner.
A backflow of normal electrons gets deflected clockwise and transmit their azimuthal momentum
to the ions, hence to the body as a whole. Right panel: explains how the backflowing electrons
transmit their azimuthal momentum to the ions without scattering processes, that would gener-
ate Joule heat in contradiction with the observation that the transition is reversible (see text).

in the superconducting body. Equivalently, the canonical momentum p = 0 throughout the in-
terior of the (simply connected) superconductor. In a cylindrical geometry, assuming azimuthal
symmetry as well as translational symmetry along the cylinder axis (z-direction, infinitely long
cylinder) w(r, t) = w(r, t)ẑ and Eq. (114) takes the form

∂w

∂t
= −1

r

∂

∂r

(
rwvr

)
(115)

with r the radius in cylindrical coordinates. Eq. (115) implies that w can only change if there a
is radial flow of charge (vr 6= 0). Moreover, for w to evolve towards its final value 0 requires
vr > 0, i.e., a radial outflow of electrons. This is a particular case of what is called Alfven’s
theorem [79], that says that in a perfectly conducting fluid magnetic field lines are frozen into
the fluid and move with the fluid. It predicts what is shown in Fig. 15: if a perfectly conducting
fluid expands from the center in the presence of magnetic field, it will push the magnetic field
lines out as it expands, since otherwise Alfven’s theorem would be violated.

4.3 Why holes are indispensable to understand the Meissner effect

The left panel of Fig. 16 shows qualitatively how the Meissner effect works [18]. Electrons
condensing into the superconducting state move radially outward, and in the presence of a mag-
netic field B acquire counterclockwise azimuthal velocity, giving rise to the Meissner current
IMeissner flowing near the surface that generates a magnetic field in opposite direction to the ap-
plied field and cancels it in the interior. There is also a backflow of normal electrons to preserve
near charge neutrality, that acquire through the Lorentz force an azimuthal velocity in opposite
direction. The backflowing electrons do not cancel the Meissner current because they transmit
their azimuthal momentum to the ions, i.e., to the body as a whole. The body rotates very slowly
in clockwise direction, compensating the counterclockwise motion of superfluid electrons in the
Meissner current, so that momentum conservation is maintained.
However, the question arises: how do the backflowing electrons transmit their azimuthal mo-
mentum to the body? It cannot happen through collisions with impurities or phonons, because
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Fig. 17: Transition from the normal into the superconducting state (left panel) and from the
superconducting into the normal state (right panel) in the presence of a magnetic field. The
processes are discussed in the text.

such collisions would generate Joule heat. However it is known that the transition is thermody-
namically reversible, this has been carefully tested experimentally [80] and is also implicit in
BCS theory, allowing the understanding of the transition as a thermodynamic phase transition,
of second order without a magnetic field and first order in the presence of a magnetic field.
The answer to this question requires holes, or equivalently antibonding electrons. The back-
flowing electrons need to have negative effective mass. If so, their motion is purely radial, as
Fig. 16(b) shows: they experience magnetic and electric forces in the same direction, clockwise,
and the lattice exerts a counterclockwise force Flatt that exactly cancels the electromagnetic
forces. By Newton’s third law, a force on the ions Fon-latt = −Flatt is exerted by the electrons,
transferring their azimuthal momentum to the body without any dissipation. If we prefer to
describe the backflowing normal electrons equivalently as outflowing normal holes we can also
do that. In that case, electric and magnetic forces are exactly cancelled, as Fig. 16(b) shows.
The electric force discussed above arises from the Faraday electric field that exists during the
process of flux expulsion. If the phase boundary is moving at speed vr, the Faraday electric field
at the boundary is EF = (vr/c)B, and the magnetic force on normal carriers moving radially
with the boundary, FB = e(vr/c)B, is of the same magnitude as the electric force exerted by the
Faraday field FE = eEF , in opposite direction for holes and in the same direction for electrons,
as shown in Fig. 16(b).
Fig. 17 illustrates the processes in more detail. Starting with the left panel, that describes the
Meissner effect, the phase boundary is moving outward with speed ṙ0. Normal electrons at
the boundary expand their orbits to radius 2λL, as discussed earlier, and this expansion imparts
them the azimuthal speed of carriers in the Meissner current, as was shown in Eqs. (92)–(93).
The resulting outward motion of negative charge gives rise to an inflow of normal electrons just
outside the boundary, moving inward with speed ṙ0. They experience a Lorentz force pointing
clockwise, and are also subject to the clockwise electric force resulting from Faraday’s electric
field pointing counterclockwise that originates in the outward motion of magnetic flux. The
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Fig. 18: Illustration of momentum transfer without energy dissipation in a Hall bar. The Ampere
force points to the right independently of whether the material has negative or positive Hall
coefficient. For the material with negative Hall coefficient (left panel) the Ampere force results
from the electric force resulting from the electric field created by the charge imbalance on the
positive ions (in red). For the material with positive Hall coefficient (middle and right panels)
the force from the electric field acting on positive ions is opposite to the Ampere force.

forces are balanced by a force exerted by the lattice on the backflowing electron that has neg-
ative effective mass, Flatt, as discussed earlier, pointing in counterclockwise direction, so that
the backflow is radial. In turn the backflowing electron exerts an equal and opposite force on
the lattice, Fon-latt, thus transmitting azimuthal momentum to the body without dissipation, com-
pensating for the counterclockwise momentum acquired by electrons expanding their orbits and
joining the Meissner current. Instead of backflowing electrons we can understand the process
with outward moving normal holes, as shown on the lower part of the left panel. As the phase
boundary moves further out, the superelectrons at its boundary that acquired azimuthal velocity
through orbit expansion get slowed down by the Faraday electric field and stop contributing to
the supercurrent when the phase boundary has moved beyond them a distance λL. All this is
discussed quantitatively in Refs. [81, 82]. The same momentum transfer without energy dissi-
pation explains the origin of the Ampere force on conductors with positive Hall coefficient, as
illustrated in Fig. 18.

Switching the sign of all the processes we can understand the right panel of Fig. 17, namely the
process by which a superconductor in a magnetic field carrying a Meissner current near its sur-
face, turns normal and the supercurrent stops [83]. As the phase boundary moves in, electrons
that are in the superconducting region at distance λL from it get accelerated by the Faraday
electric field in counterclockwise direction, reaching maximum velocity when the phase bound-
ary reaches them, at which point their orbits shrink and they are stopped by the action of the
Lorentz force on the shrinking orbit pushing in clockwise direction. This explains how the
supercurrent stops when the system becomes normal, without collisions and hence no dissipa-
tion. Momentum conservation results from the compensating backflow of normal electrons of
negative effective mass as discussed earlier.
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Finally, the same physics that explain how the Meissner effect works explains how magnetic
fields are generated in rotating superconductors [84], and how charge flows in a superconducting
wire connected to normal metal leads [85]. BCS theory does not have the physical elements
necessary to describe any of these processes.

5 Theory of hole superconductivity
versus the conventional theory

In the conventional understanding of superconductivity, there is a large set of materials con-
sidered to be “conventional superconductors”, for which the pairing mechanism is believed to
be the electron-phonon interaction. There is another large set of materials considered to be
“unconventional superconductors”, for which the pairing interaction is believed not to be the
electron-phonon interaction. There is no general agreement on how many other pairing mecha-
nisms exist, nor what is their nature, although most physicists believe that magnetic interactions
of some kind are responsible for pairing in various unconventional superconductors such as the
cuprates. A survey of 32 classes of superconducting materials is given in Ref. [8].
Instead, within the theory of hole superconductivity discussed here, there is a single mechanism
of superconductivity for all materials, that originates in the fundamental charge asymmetry
of matter, namely the fact that the proton is 2000 times heavier than the electron, leading to
electron-hole asymmetry in condensed matter, essential to understand both the pairing mecha-
nism of charge carriers near the top of electronic energy bands, as well as their ability to inter-
change momentum with the body as a whole without dissipation due to their negative effective
mass, which is necessary to understand how electric currents start and stop in superconductors
without dissipating Joule heat. Both points of view could be wrong, but not both can be right.
What do we learn from superconducting materials? We discuss this in the next section.

5.1 Superconducting materials:
judge and jury of theories of superconductivity

It is difficult to prove theories wrong in condensed matter physics, because they are based
on model Hamiltonians whose connection with real materials is difficult to ascertain. It is
especially difficult for the case of BCS theory, because it is generally assumed that if a material
does not conform to it this does not indicate that the theory is wrong but rather that the material
is “wrong”, i.e. non-conventional.
Here we have argued that Hamiltonians such as dynamic Hubbard models contain the essen-
tial physics necessary to describe superconductivity, and Hamiltonians describing the electron-
phonon interaction do not. How do we decide which is right and which is wrong? One way is
to consider what real material tell us [17].
The highest Tc unconventional superconductors are cuprates. The highest Tc proven conven-
tional superconductor is magnesium diboride (we exclude the hydrides for reasons discussed
later). What do MgB2 and cuprates have in common?
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According to the conventional view, nothing. MgB2 becomes superconducting because of
a strong electron-phonon interaction, and cuprates become superconducting because of mag-
netic fluctuations. MgB2 does not have magnetic fluctuations, and cuprates do not have strong
electron-phonon interaction.
Instead, according to the theory of hole superconductivity, what they have in common is that in
both materials holes conduct through negatively charged anions in close proximity: B− ions in
MgB2, O2− ions in cuprates. That is what makes them high temperature superconductors.
The conventional theory predicts that light atoms should give rise to high critical temperatures,
because the lattice vibration frequencies are high. But there is no evidence from materials for
that, as illustrated in Fig. 19. For example, Pb, a very heavy element, has the third highest Tc
among the elements. Li, a very light element, has the lowest Tc among the elements. On the
other hand, there is a very strong correlation between positive sign of the Hall coefficient and the
element being a superconductor, as the right panel of Fig. 19 shows, and as the theory of hole
superconductivity predicts. Correlations between superconductivity and a variety of normal
state properties of elements are analyzed in Ref. [86]. The same non-correlation with ionic
mass and strong correlation with sign of the Hall coefficient is seen in compounds [17, 67, 87].

5.2 Experimental tests and open questions

Of course the ultimate test of theories is experiments. It is generally believed that BCS the-
ory has been proven right by experiments. However, many of the predictions of BCS theory
are common to other theories including the theory of hole superconductivity. The role of the
electron-phonon interaction in causing superconductivity has not been proven experimentally.
The isotope effect is not a proof, since many materials considered to be conventional do not
obey the BCS prediction, including several elements and the compound PdH, where the mass
of H can be increased by a factor of 2 by substitution with the isotope deuterium, and Tc goes
up rather than down [88]. Small wiggles in tunneling characteristics [89], attributed to electron-
phonon coupling and generally believed to prove that superconductivity is caused by it [90],
may also result from modulation of the pairing interaction ∆t discussed here by phonons [91],
implying that pairing would persist even if the ionic mass is infinite, i.e., if the lattice does not
vibrate. It has been claimed that hydrogen-rich materials at high pressures superconduct at tem-
peratures close to room temperature, proving the importance of the electron phonon interaction,
that is predicted to give highest Tc for light ions such as hydrogen [92]. We have analyzed
multiple experiments reporting such claims and in every case concluded that the experimental
observations are incompatible with superconductivity [93].
There are several predictions of the theory of hole superconductivity that are specific to it, but
most have not been tested experimentally to date. Some of the predictions are: (i) tunneling
asymmetry of universal sign [64], (ii) positive thermoelectric power of superconductive tunnel
junctions [68], (iii) apparent violation of the conductivity sum rule [63], (iv) electric screen-
ing length in the superconducting state much larger than in the normal metallic state [75, 76],
(v) electric fields in the interior and in the vicinity of superconducting samples [73], (vi) in-



Hole Superconductivity 7.39

Fig. 19: Two images of superconductors in the periodic table. The left image highlights the
superconducting elements with highest Tc in green and those with lowest Tc in brown. The ionic
mass increases as we move down and to the right in the table, and Tc should decrease as the ionic
mass increases according to the conventional theory. It does not. The right image shows which
elements among superconducting and non-superconducting ones have positive and negative
Hall coefficients. It is clear that positive Hall coefficients are predominant in superconducting
elements, and negative Hall coefficients are predominant in non-superconducting elements.

crease in the mean inner potential in the superconducting state [45], (vii) charge imbalance in
the absence of applied fields [94], (viii) radial electric fields during the normal-superconductor
transition [95], (ix) Alfven-like waves along superconductor-normal phase boundaries [96],
(x) absence of superconductivity in any material that does not have hole carriers [67].
Why is it important and urgent to decide which theory of superconductivity describes real mate-
rials? One important reason is that it would allow to make real progress in the theoretical search
for new materials, to guide experimental search and discovery of superconductors that work at
room temperature. Room temperature superconductors will change the world. Imagine how
different our lives would be today if semiconductors only worked at temperatures below 150K.
The current theoretical guidance based on BCS theory, that focuses on light elements [97], has
not led to progress.
In conclusion, I would like to stress that the understanding of superconductivity based on the
principles discussed in this paper is far from complete. There are many opportunities for further
advances through theoretical and experimental research. Furthermore, a full understanding of
how quantum mechanics operates on a macroscopic scale in superconductors may well lead to
new insights on how it operates on the microscopic scale [98].

Acknowledgments

The author is grateful to Frank Marsiglio for collaboration in substantial parts of this work.



7.40 Jorge E. Hirsch

References

[1] F. London and H. London, Proc.Roy.Soc. A 149, 71 (1935)

[2] H. Kamerlingh Onnes, Comm. Leiden 1911, Nr I22b, I24C; 1913, Nr 133a, I33C.

[3] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933)

[4] G. Lippmann, Comptes Rendus de l’ Academie des Sciences, 168, 73 (1919)

[5] T. Sauer, Arch. Hist. Exact Sci. 61, 159 (2007)

[6] F. London and H. London, Physica 2, 341 (1935)

[7] J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

[8] Physica C 514, 1–444 (2015), Special Issue: Superconducting Materials: Conventional,
Unconventional and Undetermined. Dedicated to Theodore H. Geballe on the year of his
95th birthday, ed. by J.E. Hirsch, M.B. Maple, and F. Marsiglio,

[9] L.N. Cooper, Phys. Rev. 104, 1189 (1956)

[10] F. London: Superfluids, Vol. I (Dover, New York, 1961)

[11] V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)

[12] B.D. Josephson, Phys. Lett. 1, 251 (1962)

[13] M. Tinkham: Introduction to superconductivity, 2nd Ed. (McGraw Hill, New York, 1996)

[14] P.G. de Gennes: Superconductivity of Metals and Alloys (Benjamin, New York, 1966)

[15] M.L. Cohen and P.W. Anderson, AIP Conf. Proc. 4, 17 (1972)

[16] C.W. Chu, L.Z. Deng and B. Lv, Physica C 514, 290 (2015)

[17] J.E. Hirsch, Appl. Phys. Lett. 121, 080501 (2022)

[18] J.E. Hirsch, Phys. Scr. 91, 035801 (2016)

[19] J.E. Hirsch: Superconductivity begins with H (World Scientific, Singapore, 2020)

[20] See https://jorge.physics.ucsd.edu/hole.html for a list of references.

[21] W.E. Pickett, Rev. Mod. Phys. 95, 021001 (2023)

[22] N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)

[23] P. Morel and P.W. Anderson, Phys. Rev. 125, 1263 (1962)

[24] J.S. Bauer, J.E. Han and O. Gunnarsson, J. Phys.: Condens. Matter 24, 492202 (2012)

https://royalsocietypublishing.org/doi/10.1098/rspa.1935.0048
http://link.springer.com/article/10.1007%2FBF01504252
https://www.jstor.org/stable/41134244
https://www.sciencedirect.com/science/article/pii/S0031891435900970
https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.1175
https://www.sciencedirect.com/journal/physica-c-superconductivity-and-its-applications/vol/514/suppl/C
https://journals.aps.org/pr/abstract/10.1103/PhysRev.104.1189
https://www.sciencedirect.com/science/article/pii/0031916362913690
https://pubs.aip.org/aip/acp/article/4/1/17/682452/Comments-on-the-Maximum-Superconducting-Transition
https://www.sciencedirect.com/science/article/pii/S0921453415000878
https://aip.scitation.org/doi/10.1063/5.0104968
http://iopscience.iop.org/article/10.1088/0031-8949/91/3/035801
https://www.worldscientific.com/worldscibooks/10.1142/11734
https://jorge.physics.ucsd.edu/hole.html
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.95.021001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.187002
https://journals.aps.org/pr/abstract/10.1103/PhysRev.125.1263
https://iopscience.iop.org/article/10.1088/0953-8984/24/49/492202/meta


Hole Superconductivity 7.41

[25] D.J. Scalapino, J. Low Temp. Phys. 117, 179 (1999) and references therein.

[26] E. Dagotto and J. Riera, Phys. Rev. B 46, 12084(R) (1992)

[27] J.E. Hirsch, Phys. Lett. A 136, 163 (1989)

[28] J.E. Hirsch, E. Loh, D.J. Scalapino and S. Tang, Physica C 153–155, 549 (1988)

[29] M. Qin, Chia-Min Chung, H. Shi, E. Vitali, C. Hubig, U. Schollwöck, S.R. White, and
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