
2 Mean-Field Theory: Hartree-Fock and BCS

Erik Koch
Institute for Advanced Simulation
Forschungszentrum Jülich
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2.2 Erik Koch

1 Many-electron states

One of the great surprises of quantum mechanics is the existence of indistinguishable objects.
Classically this is not possible: objects can always be distinguished at least by their position
in space, meaning that indistinguishable objects must be identical. This is Leibniz’ Principle
of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty principle
makes the distinction of particles by their position impossible. This allows for the existence
of elementary particles. They form the basic units of all matter. So, quite remarkably, all the
different objects we know are made of indistinguishable building blocks.
In the formalism of quantum mechanics, indistinguishability means that no observable lets us
distinguish one of these particles from the other. This means that every observable for, e.g.,
electrons, must treat each electron in the same way. Thus, in principle, observables must act on
all electrons in the universe. In practice we can, of course, distinguish electrons localized on the
moon from those in our lab to an excellent approximation. Thus, for all practical purposes, we
can restrict our description to the electrons in the system under consideration, assuming that the
differential overlap with all other electrons vanishes. Any observable M(x1, . . . , xN) for the N
electrons in our system must then be symmetric under permutations of the variables xi.
The consequences are straightforward: An observable M(x) acting on a single-particle degree
of freedom x must act on all indistinguishable particles in the same way, i.e.,

∑
iM(xi). Like-

wise, a two-body observable M(x, x′) must act on all pairs in the same way,
∑

i,jM(xi, xj)

with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i 6=j

M (2)(xi, xj) +
1

3!

∑
i 6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, while for two or more identical coordinates the operator is really one of lower order:
M (2)(xi, xi), e.g., only acts on a single coordinate and should be included in M (1).
For the many-body wavefunctions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, the wavefunction should transform
as one-dimensional (irreducible) representations of the permutation group. Which irreducible
representation applies to a given type of elementary particle is determined by the spin-statistics
theorem [2,3]: The wavefunctions of particles with integer spin are symmetric, those of particles
with half-integer spin change sign when two arguments are exchanged. From an arbitrary N -
particle wavefunction we thus obtain a many-electron wavefunction by antisymmetrizing

AΨ(x1, . . . , xN) :=
1√
N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
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N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
. (4)

For N=1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) while for
N=2 we get the familiar expression Φα,α′(x, x′) =

(
ϕα(x)ϕα′(x

′)−ϕα′(x)ϕα(x′)
)
/
√

2 for the
two-electron Slater determinant.
Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∑

n

ϕn(x)ϕn(x′) = δ(x−x′) (complete)
∫
dxϕn(x)ϕm(x) = δn,m (orthonormal) . (5)

To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕn} as

a(x1, . . . , xN) =
∑
n1

an1(x2, . . . , xN)ϕn1(x1)

with expansion coefficients that depend on the remaining coordinates

an1(x2, . . . , xN) =

∫
dx1 ϕn1(x1) a(x1, x2, . . . , xN).

These, in turn, can be expanded as a functions of x2

an1(x2, . . . , xN) =
∑
n2

an1,n2(x3, . . . , xN)ϕn2(x2).

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

n1,...,nN

an1,...,nN ϕn1(x1) · · ·ϕnN (xN)

with
an1,...,nN =

∫
dx1 · · ·

∫
dxN ϕn1(x1) · · ·ϕnN (xN) a(x1, . . . , xN).

For an antisymmetric N -particle function Ψ the expansion coefficients are thus antisymmetric
under permutation of the indices: anp(1),...,np(N)

= (−1)Pan1,...,nN . Fixing some particular order
of the indices, e.g., n1 < n2 < . . . < nN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

n1<...<nN

an1,...,nN

√
N !Φn1,...,nN (x1, . . . , xN).

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φn1,...,nN (x1, . . . , xN)
∣∣∣ n1 < n2 < · · · < nN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)(xn)ϕαp′(n)(xn)

=

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determi-
nant Φα1,...,αN (x), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant. Thus, strictly, a Slater determinant is not
determined by the set of indices we usually give, but, up to a phase, by the N -dimensional sub-
space spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert space. The projector to
this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi 6=n(x2, . . . , xN) , (9)

where Φαi 6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals), with
eigenvalues (natural occupation numbers) either one or zero. Any many-electron wavefunction
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals the Slater determinant Φ(x) up to a
phase, i.e., |〈Ψ |Φ〉| = 1.
We can generalize this procedure and calculate higher order density matrices by introducing the
generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N−p indices
and the remaining p indices separately, summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wavefunctions. It
is called second quantization.
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2 Second quantization

Second quantization is the generalization of the Dirac notation to many-electron states [5, 6].
The idea is to separate the wavefunction into coordinate and state, ϕα(x) = 〈x|α〉, and absorb
the coordinate in the operators, so that expectation values are rewritten as∫

dxϕα(x)M(x)ϕβ(x′) = 〈α|
∫
dx |x〉M(x)〈x|β〉 =: 〈α|M̂ |β〉.

For many-electron systems the coordinates are represented by the field-operators Ψ̂(x). To
implement antisymmetry, they need to anticommute Ψ̂(x)Ψ̂(x′) = −Ψ̂(x′)Ψ̂(x). They can be
thought of as removing an electron with coordinates x=(r, σ) from the system. Applying them
on a state with no electrons thus gives zero. Their conjugate operators insert an electron to the
system. The entire formalism is defined by a compact set of properties of the vacuum state |0〉
and the anticommutation relations of the field operators:

Ψ̂(x)|0〉 = 0
{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
〈0|0〉 = 1

{
Ψ̂(x), Ψ̂ †(x′)

}
= δ(x−x′)

(11)

where the curly braces denote the anti-commutator {A, B} := AB+BA. As a direct conse-
quence we obtain the Pauli principle: Ψ̂ †(x)Ψ̂ †(x) = 0.

2.1 Creation and annihilation operators

For a single-electron state ϕα(x) we can define an operator

c†α :=

∫
dxϕα(x) Ψ̂ †(x), (12)

that inserts an electron at position xweighted with the amplitude ϕα(x) — hence called creation
operator for state |α〉. Note that the creation operators transform in the same way as the single-
electron states they represent, not like operators in first quantization,

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i |0〉 =
∑
µ

c†αµ|0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (13)

The anticommutator with the field annihilator just gives back the single-electron wavefunction

{
Ψ̂(x), c†α

}
=

∫
dx′ ϕα(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕα(x) . (14)

Thus, together with their adjoints, the annihilation operators,

cα :=

∫
dxϕα(x) Ψ̂(x), (15)
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they form the algebra

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(16)

The notation of second quantization has two principal advantages: (i) it is impossible to write
unphysical states which are not antisymmetric or operators which are not acting on all electrons
in the same way, and (ii) operators are independent of particle number, so that it becomes
straightforward to work in Fock space. This simplifies many-body calculations significantly.

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to give the
coordinates for the real-space representation:

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣0〉. (17)

Note how writing the Slater determinant as an expectation value of annihilation and creation
operators nicely separates the coordinates on the left from the orbitals on the right. This is just
the desired generalization of the Dirac notation ϕ(x) = 〈x|ϕ〉.
Not surprisingly, the proof of (17) is by induction. As a warm-up we consider the case of a
single-electron wavefunction (N = 1). Using the anticommutation relation (14), we see that〈

0
∣∣ Ψ̂(x1) c†α1

∣∣0〉 =
〈
0
∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣0〉 = ϕα1(x1). (18)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣0〉 =
〈
0
∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣0〉
=

〈
0
∣∣ Ψ̂(x1)c†α1

∣∣0〉ϕα2(x2)−
〈
0
∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2). (19)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wavefunction. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N−1 terms with alternating sign〈

0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

· · · c†α1

∣∣0〉 =

+
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN−1

· · · c†α1

∣∣0〉 ϕαN (xN)

−
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣0〉 ϕαN−1
(xN)

...
(−1)N−1

〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN · · · c

†
α2

∣∣0〉 ϕα1 (xN) .
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Using (17) for the N−1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (17) for N -electron states,

completing the proof by induction.
Given this representation of Slater determinants it is easy to eliminate the coordinates so we can
work with N -electron states rather than N -electron wavefunctions—just as in Dirac notation.
In particular we can rewrite the basis of Slater determinants (6) into a basis of product states{

c†nN · · · c
†
n1
|0〉
∣∣ n1 < · · · < nN

}
, (20)

which allows us to express any N -electron state as

|Ψ〉 =
∑

n1<···<nN

an1,...,nN c
†
nN
· · · c†n1

|0〉. (21)

2.3 Representation of n-body operators

To work with N -electron states rather than Slater determinants, we also have to rewrite the
N -electron operators M(x) appropriately. This is easily done by incorporating the coordinates
that we have separated from the Slater determinants into the operators such that the expectation
values remain unchanged. This is, again, analogous to the Dirac formalism:∫

dxϕn(x)M(x)ϕm(x) = 〈ϕn|
∫
dx |x〉M(x)〈x|︸ ︷︷ ︸

=:M̂

ϕm〉 = 〈ϕn|M̂ |ϕm〉. (22)

For N -electron Slater determinants it becomes∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN〈0|cβ1· · · cβN Ψ̂

†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c
†
α1
|0〉

=
〈
0
∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣0〉
with the representation of the n-body operator in terms of field operators

M̂ :=
1

N !

∫
dx1 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (23)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 1. Keeping this in mind, we can work entirely in terms of our algebra (11).
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To see what (23) means, we look, in turn, at the different n-body parts of M(x), (2):

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (24)

We start with the simplest case, the zero-body operator, which, just a number M (0). Operating
on an N -electron wavefunction, it gives

M̂ (0) =
M (0)

N !

∫
dx1dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
M (0)

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
M (0)

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
M (0)

N !
1 · 2 · · · N = M (0) , (25)

where we have used that the operator∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

counts the creation/annihilation operators: Applied to the vacuum state it gives N̂ |0〉 = 0, while
its commutator with any creation operator produces that operator

[N̂ , c†n] =

∫
dx [Ψ̂ †(x)Ψ̂(x), c†n] =

∫
dx Ψ̂ †(x) {Ψ̂(x), c†n} =

∫
dx Ψ̂ †(x)ϕn(x) = c†n. (26)

where we have used the simple relation [AB, C] = A{B, C}−{A, C}B. Commuting with an
annihilator we pick up a minus sign [N̂ , Ψ̂(x)] = −Ψ̂(x), i.e., N̂ Ψ̂(x) = Ψ̂(x)

(
N̂−1

)
. Thus,

commuting N̂ through a general product state, we obtain for each creation operator that we
encounter a copy of the state, while for each annihilator we obtain minus that state, giving in
total the original state times the difference in the number of creation and annihilation operators.
Remarkably, while we started from an operator acting on N -electron states, the resulting opera-
tor in second quantized form is independent of the number of electrons. We will see that this is
an important general feature of operators in second quantization which makes working in Fock
spaces amazingly simple.
We note that (25) just means that the overlap of two Slater determinants (7) is equal to that of
the corresponding product states∫

dx Φα1,...,αN (x)Φβ1,...,βN (x) =
〈
0
∣∣ cα1
· · · cαN c†βN · · · c

†
β1

∣∣0〉. (27)
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2.3.1 One-body operators

Next we consider one-body operators
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N−1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x) (28)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. In between these
field operators we are left with a zero-body operator for N−1 electrons, producing, when M̂ (1)

acts on an N -electron state, a factor of (N−1)!. Again we notice that we obtain an operator that
no longer depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (29)

The matrix elementsM (1)
nm = 〈ϕn|M (1)|ϕm〉 transform like a single-electron matrixM (1): From

(13) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (30)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.
We note that the expression (29) not only works for local operators but also for differential
operators like the momentum or kinetic energy: we have taken care not to exchange the order
of M (1) and one of its field operators. We can write truly non-local operators in a similar way.
As an example, the one-body density operator is given by

Γ̂ (1)(x;x′) = Ψ̂ †(x)Ψ̂(x′) (31)

so that one coordinate is not integrated over, rather setting it to x in the bra and x′ in the ket. In
an orthonormal basis it becomes

Γ̂ (1)(x;x′) =
∑
n,m

ϕn(x)ϕm(x′) c†ncm . (32)
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2.3.2 Two-body operators

For the two-body operators
∑

i<jM
(2)(xi, xj) we proceed in the familiar way, anti-commuting

first the operators with the coordinates involved in M (2) all the way to the left and right, respec-
tively. This time we are left with a zero-body operator for N−2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N−2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N−1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′|M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (33)

where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index
for the second, while taking the adjoint of the operators changes their order. Mnn′,mm′ =

〈ϕnϕn′|M (2)|ϕmϕm′〉 transforms like a fourth-order tensor: Transforming to a different basis
(13) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (34)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (33) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n, m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (35)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).
The procedure of rewriting operators in second quantization obviously generalizes to observ-
ables acting on more than two electrons in the natural way. We note that, while we started from
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a form of the operators (24) that was explicitly formulated in an N -electron Hilbert space, the
results (25), (29), and (33) are of the same form no matter what value N takes. Thus these op-
erators are valid not just on some N -electron Hilbert space, but on the entire Fock space. This
is a particular strength of the second-quantized formalism.

2.4 Transforming the orbital basis

We noted in (13) that the creators transform in the same way as the orbitals they represent

|βi〉 = U |αi〉 =
∑
j

|βj〉〈αj|αi〉 =
∑
µ

|αµ〉 〈αµ|U |αi〉︸ ︷︷ ︸
=:Uµi

; c†βi =
∑
µ

c†αµ Uµi , (36)

so the “operators” really transform like states. Writing the transformation matrix as U = eM ,
where M is anti-Hermitian, M † = −M when U is unitary, but can be any matrix when U is
merely invertible, we can write the basis transformation in a form appropriate for operators:

c†βi = ec
†Mc c†αµ e

−c†Mc . (37)

To see this, we use the Baker-Campbell-Hausdorff formula in the form

eλAB e−λA = B + λ [A, B] +
λ2

2!

[
A, [A, B]

]
+
λ3

3!

[
A,
[
A, [A, B]

]]
+ · · · , (38)

where the expansion coefficients follow by taking the derivatives of the left hand side at λ = 0,
together with the commutator

[c†αµcαν , c
†
ακ ] = c†αµ δν,κ (39)

from which we obtain for the repeated commutators[∑
µ,ν

Mµνc
†
αµcαν ,

∑
κ

c†ακ
(
Mn
)
κi

]
=
∑
µνκ

c†αµMµν δν,κ
(
Mn
)
κi

=
∑
µ

c†αµ
(
Mn+1

)
µi
. (40)

To keep the derivation simple, we have chosen to transform an operator from the orthonormal
basis that we also used to write the exponential operator. Being linear, the transform works, of
course, the same for an arbitrary creation operator.
Using this form of the basis transformation and noticing that e−c†Mc|0〉 = |0〉, we immediately
see that acting with the exponential of a one-body operator on a product state results in another
product state

ec
†Mc

∏
c†αn
∣∣0〉 =

∏
ec
†Mc c†αne

−c†Mc
∣∣0〉 =

∏
c†βn
∣∣0〉 . (41)

This is, e.g., used when working in the interaction picture. Anticommutators with transformed
operators, (36), are simply

{
cαj , e

c†Mc c†αi e
−c†Mc

}
= 〈αj|eM |αi〉.

Annihilation operators, being the adjoint of the creators, transform in just the expected way

cβi = e−c
†M†c cαµ e

c†M†c , (42)

which means that for unitary transformations, where M is anti-Hermitian, creators and anni-
hilators transform in the same way. Note that in the imaginary-time formalism the annihilators
are, via analytic continuation, chosen to transform in the same way as the creators, making them
different from the adjoint of the creators.
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3 Variational methods

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (43)

Its variation is

E[Ψ+δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (44)

The first-order term vanishes for H|Ψ〉 = E[Ψ ] |Ψ〉, which is the Schrödinger equation. Since
the eigenfunctions

H|Ψn〉 = En|Ψn〉 , (45)

can be chosen to form an orthonormal basis, we can expand any wavefunction as

|Ψ〉 =
∑
n

|Ψn〉 〈Ψn|Ψ〉 (46)

and determine, as long as 〈Ψ |Ψ〉 6= 0, its energy expectation value

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
m,n〈Ψ |Ψm〉〈Ψm|H|Ψn〉〈Ψn|Ψ〉∑
m,n〈Ψ |Ψm〉〈Ψm|Ψn〉〈Ψn|Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 . (47)

Since by definition no eigenenergy can be lower than the ground state energy E0, we immedi-
ately see that the energy expectation value can never drop below the ground state energy

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 ≥
∑

nE0

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 = E0 . (48)

We can use the same argument to generalize this variational principle: Assume we have ar-
ranged the eigenenergies in ascending order, E0 ≤ E1 ≤ · · · , then the energy expectation value
for a wavefunction that is orthogonal to the n lowest eigenstates, can not drop below En

〈Ψ⊥n|H|Ψ⊥n〉
〈Ψ⊥n|Ψ⊥n〉

≥ En if 〈Ψi|Ψ⊥n〉 = 0 for i = 0, . . . , n−1. (49)

This generalized variational principle is, of course, only of practical use if we know something
about the eigenstates, e.g., when we can use symmetries to ensure orthogonality.
For an ab-initio Hamiltonian of N electrons in the field of nuclei of charge Zα at positionRα,

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

, (50)

the Schrödinger equation is a partial differential equation. In second quantization it becomes
a linear-algebra problem: We introduce an orbital basis set {ϕk | k}, which for simplicity we
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assume here to be orthonormal, from which we construct an orthonormal basis of N -electron
product states, {Φk1,...,kN | k1< · · ·<kN}. To simplify the notation we sort the basis states, e.g.,
lexicographically in the orbital indices k = (k1, . . . , kN) and define the row vector of basis
states |Φ〉 :=

(
|Φ1〉, |Φ2〉, . . .

)
. The expansion of a state |Ψ〉 in this basis can then be written as

|Ψ〉 =
∑

k1<···<kN

ak1,...,kN |Φk1,...,kN 〉 =
∑
i

ai |Φi〉 = |Φ〉a , (51)

where a is the vector of expansion coefficients. Likewise we can write the Schrödinger equation
as a matrix eigenvalue problem

Ha = 〈Φ|Ĥ|Φ〉a =

〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · ·
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · ·

...
... . . .


a1

a2

...

 = E

a1

a2

...

 = Ea . (52)

From the eigenvectors of the matrixH we easily recover the eigenstates of the Hamiltonian

Han = Enan ; Ĥ|Ψn〉 = En|Ψn〉 with |Ψn〉 = |Φ〉an . (53)

Unfortunately, for an ab-initio Hamiltonian like (50) we need an infinite orbital basis set, so that
the Hamiltonian matrixH is infinite dimensional. A pragmatic approach to allow for computer
simulations is to simply restrict the calculation to a finite basis |Φ̃〉 :=

(
|Φ̃1〉, . . . , |Φ̃L̃〉

)
, i.e.,

work with a finite matrix H̃ := 〈Φ̃|Ĥ|Φ̃〉 of dimension L̃. The crucial question is then how the
eigenstates

H̃ãn = Ẽnãn ; |Ψ̃n〉 := |Φ̃〉 ãn (54)

are related to those of H . The answer is surprisingly simple [7]: The eigenvalues of H̃ , ordered
as Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼL̃−1, are variational with respect to those of H:

En ≤ Ẽn for n ∈ {0, . . . , L̃−1} . (55)

To show this, we construct a state in span
(
|Ψ̃0〉, . . . , |Ψ̃n〉

)
, which by construction has an energy

expectation value ≤ Ẽn, that is orthogonal to the exact eigenstates |Ψ0〉, . . . , |Ψn−1〉, so that by
the generalized variational principle its expectation value is ≥ En. Being the non-zero solution
of n−1 linear equations with n variables, such a state certainly exists, hence En ≤ Ẽn.
The convergence of the matrix eigenvalues with increasing basis size is surprisingly regular. Let
us extend our original basis of L̃ states by an additional L−L̃ states. Then, repeating the above
argument with the L-dimensional problem taking the role of Ĥ , we obtain (55) with En being
the eigenvalues of the L-dimensional Hamiltonian matrix H . Since H now is finite, we can
use the same argument for −H , obtaining

− EL−i ≤ −ẼL̃−i for i ∈ {1, . . . , L̃}. (56)

Taking the two inequalities together we obtain

En ≤ Ẽn ≤ En+(L−L̃) for n ∈ {0, . . . , L̃−1}. (57)
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For the special caseL = L̃+1 of adding a single basis state, this is the Hylleraas-Undheim/Mac-
Donald nesting property for eigenvalues in successive approximations

E1 ≤ Ẽ1 ≤ E2 ≤ Ẽ2 ≤ · · · ≤ ẼL ≤ EL+1 . (58)

For a finite basis sets of K single-electron functions the dimension of (52) for an N -electron
problem increase extremely rapidly: There are K · (K−1) · (K−2) · · · (K − (N−1)) ways of
picking N indices out of K. Since we only use one specific ordering of these indices, we still
have to divide by N ! to obtain the number of such determinants:

dimH(N)
K =

K!

N !(K−N)!
=

(
K

N

)
. (59)

For N = 25 electrons and K = 100 orbitals the dimension already exceeds 1023.
To get reliable results, we simply have to systematically increase the basis until the change in
the desired eigenvalues becomes smaller than the accuracy required by the physical problem.
The art is, of course, to devise clever basis sets such that this is achieved already for bases of
manageable dimensions.

3.1 Non-interacting electrons

Even when considering a system of N non-interacting electrons we have to solve the large
matrix eigenvalue problem (52). Writing the non-interacting Hamiltonian in the basis used for
the CI expansion (51) we obtain

Ĥ =
∑
n,m

Hnm c
†
ncm ,

which, in general, has non-vanishing matrix elements between Slater determinants that differ in
at most one operator. But we can simplify things drastically by realizing that we can choose any
single-electron basis for the CI expansion. If we choose the eigenstates of the single-electron
matrix Hnm as basis, the second-quantized Hamiltonian becomes

Ĥ =
∑
n,m

(
εn δn,m

)
c†ncm =

∑
n

εn c
†
ncn .

In this basis all off-diagonal matrix elements vanish and the CI Hamiltonian (52) is diagonal.
Thus all

(
K
N

)
eigenstates are Slater determinants

|Φn〉 = c†nN · · · c
†
n1
|0〉 with eigenenergy En =

∑
i

εni . (60)

This shows that choosing an appropriate basis for a CI expansion is crucial. A good general
strategy should thus be to solve the matrix problem (52) and at the same time look for the
basis set (of given size) that minimizes the variational energy. This is the idea of the multi-
configurational self-consistent field method (MCSCF) [8]. In the following we will restrict
ourselves to the simplest case where the many-body basis consists of a single Slater determinant.
This is the Hartree-Fock method.
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3.2 Hartree-Fock theory

The idea of the Hartree-Fock approach is to find an approximation to the ground-state of the
N -electron problem by minimizing the total-energy wave-function functional (43) allowing
only N -electron Slater determinants as variational functions. Since expectation values of Slater
determinants are determined by their one-body density matrix, this means that we want to find
the occupied subspace for which (43) is minimized.
To perform these variations we represent unitary transformations of the orbital basis as in
Sec. 2.4 (related to the Thouless representation of Slater determinants [9])

Û(λ) = eiλM̂ with M̂ =
∑
α,β

Mαβ c
†
αcβ hermitian . (61)

Using the Hausdorff expansion (38), the variation of the energy expectation value becomes

E(λ) = 〈Φ|eiλM̂ Ĥ e−iλM̂ |Φ〉

= 〈Φ|Ĥ|Φ〉+ iλ〈Φ|[Ĥ, M̂ ]|Φ〉+
(iλ)2

2
〈Φ|
[
[Ĥ, M̂ ], M̂

]
|Φ〉+ · · · (62)

The energy functional is stationary for ΦHF when

〈ΦHF|[Ĥ, M̂ ]|ΦHF〉 = 0 (63)

for every hermitian single-electron operator M̂ . This condition is most easily understood when
we work with orthonormal orbitals {|ϕ〉|n} from which the Slater determinant can be con-
structed: |ΦHF〉 = c†N · · · c

†
1|0〉. Then (63) is equivalent to

〈ΦHF|[Ĥ, c†ncm + c†mcn]|ΦHF〉 = 0 ∀ n, m

(in fact, n ≥ m suffices). Since

c†ncm|ΦHF〉 =

{
δn,m|ΦHF〉 if n, m ∈ {1, . . . , N}

0 if m /∈ {1, . . . , N}
,

i.e., (63) is automatically fulfilled if both n and m are either occupied or unoccupied (virtual).
This is not unexpected since transformations among the occupied or virtual orbitals, respec-
tively, do not change the Slater determinant. The condition thus reduces to

〈ΦHF|c†mcnĤ|ΦHF〉 = 0 ∀ m ∈ {1, . . . , N}, n /∈ {1, . . . , N} . (64)

In other words, for the Hamiltonian there are no matrix elements between the stationary Slater
determinant and determinants that differ from it in one orbital. This condition that for the
Hartree-Fock determinant the Hamiltonian does not produce single excitations is called the
Brillouin theorem.
Let us consider a Hamiltonian with one- and two-body terms

Ĥ =
∑
n,m

c†n Tnm cm +
∑

n>n′,m>m′

c†nc
†
n′

(
Unn′,mm′ − Unn′,m′m

)
cm′cm
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Then for each n > N ≥ m the singly-excited term(
Tnm +

∑
m′≤N

(
Unm′,mm′ − Unm′,m′m

))
c†ncm|ΦHF〉 = 0

must vanish. This is the same condition as for a non-interacting Hamiltonian with matrix ele-
ments

Fnm = Tnm +
∑
m′≤N

(Unm′,mm′ − Unm′,m′m) . (65)

F is called the Fock matrix. It depends, via the summation over occupied states, i.e., the
density matrix, on the Slater determinant it is acting on. So we cannot simply diagonalize the
single-electron matrix F since this will, in general, give a different determinant. Instead we
need to find a Slater determinant for which F is diagonal (in fact, it is sufficient if it is block-
diagonal in the occupied and virtual spaces). This is typically done by constructing a new Slater
determinant from the N lowest eigenstates of F and iterating. Alternatively, we can use, e.g.,
steepest descent methods to minimize the expectation value directly or optimizing the one-body
density matrix [10, 11]. At self-consistency the Fock matrix is diagonal with eigenvalues

εHF
m =

(
Tmm +

∑
m′≤N

(
Umm′,mm′ − Umm′,m′m

)︸ ︷︷ ︸
=:∆mm′

)
=

(
Tmm +

∑
m′≤N

∆mm′

)
(66)

and the Hartree-Fock energy is given by

〈ΦHF|Ĥ|ΦHF〉 =
∑
m≤N

(
Tmm +

∑
m′<m

∆mm′

)
=
∑
m≤N

(
Tmm +

1

2

∑
m′≤N

∆mm′

)
.

Removing an electron from the occupied orbital ϕa changes the energy expectation value by

〈ΦHF
a rem|Ĥ|ΦHF

a rem〉 − 〈ΦHF|Ĥ|ΦHF〉 = −
(
Taa +

1

2

∑
m′≤N

∆am′

)
− 1

2

∑
m 6=a≤N

∆ma = −εHF
a . (67)

When we assume that removing an electron does not change the orbitals, which should be a
good approximation in the limit of many electrons N � 1, this gives the ionization energy
(Koopmans’ theorem). Likewise, the energy expectation value of an excited Slater determinant
ΦHF
a→b with an electron moved from orbital a ≤ N to orbital b > N is

εHF
a→b = 〈ΦHF

a→b|Ĥ|ΦHF
a→b〉 − 〈ΦHF|Ĥ|ΦHF〉 = εHF

b − εHF
a −∆ab (68)

It can be interpreted as the energy of a state with an electron-hole excitation, again neglecting
relaxation effects. For the Coulomb interaction

∆ab =
1

2
(∆ab +∆ba) =

1

2

(〈
ϕaϕb

∣∣∣∣ 1

r − r′

∣∣∣∣ϕaϕb − ϕbϕa〉+

〈
ϕbϕa

∣∣∣∣ 1

r − r′

∣∣∣∣ϕbϕa − ϕaϕb〉)
=

1

2

〈
ϕaϕb − ϕbϕa

∣∣∣∣ 1

r − r′

∣∣∣∣ϕaϕb − ϕbϕa〉 > 0

so that the third term in (68) describes the attraction between the excited electron and the hole.
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3.2.1 Homogeneous electron gas

Since the homogeneous electron gas is translation invariant it is natural to write the Hamilto-
nian (for states with homogeneous charge density) in the basis of plane waves 〈r, σ|k, σ〉 =

(2π)−3/2 eik·r

Ĥ =
∑
σ

∫
dk
|k2|
2
c†k,σck,σ +

1

2(2π)3

∑
σ,σ′

∫
dk

∫
dk′
∫ ′
dq

4π

|q|2
c†k−q,σc

†
k′+q,σ′ck′,σ′ck,σ , (69)

where the prime on the q integral means that q = 0 is excluded since the homogeneous contri-
bution to the Coulomb repulsion of the electrons is cancelled by its attraction with the homo-
geneous neutralizing background charge density. It seems reasonable to consider as an ansatz a
Slater determinant |ΦkF 〉 of all plane-wave states with momentum below some Fermi momen-
tum, |k| < kF . The charge density for such a determinant follows, using the anticommutator of
the field operator

{Ψ̂ †σ(r), ck,σ} =

∫
dr′

e−ik·r

(2π)3/2
{Ψ̂ †σ(r), Ψ̂σ(r′)} =

e−ik·r

(2π)3/2
,

from the diagonal of the density matrix

nσ(r) = 〈ΦHF|Ψ̂ †σ(r)Ψ̂σ(r)|ΦHF〉 =

∫
|k|<kF

dk

∣∣∣∣ eik·r

(2π)3/2

∣∣∣∣2 =
k3
F

6π2
. (70)

It is independent of position, so |ΦkF 〉 looks like an appropriate ansatz for a homogeneous
system. Moreover, it fulfills the stationarity condition (64): To create just a single excitation one
of the creation operators in the Coulomb term of (69) must fill one of the annihilated states, i.e.,
q = 0 or q = k−k′. But this implies that the term is diagonal with q = 0 giving the direct and
q = k−k′ the exchange contribution. Since the q = 0 term is not present in the Hamiltonian,
the eigenenergies of the Fock matrix are just the sum of the kinetic and the exchange terms

εHF
k,σ =

|k|2

2
− 1

4π2

∫
|k′|<kF

dk′
1

|k − k′|2
=
k2

2
− kF

π

(
1 +

k2
F − k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣) (71)

It depends only on k = |k|. Interestingly the slope of εHF
k,σ becomes infinite for k → kF . Thus,

the density of states D(εk)dε = 4πk2 dk, given by

DHF
σ (ε) = 4πk2

(
dεHF

k,σ

dk

)−1

= 4πk2

(
k − kF

πk

(
1− k2

F + k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣))−1

(72)

vanishes at the Fermi level (see Fig. 1). This is not quite what we expect from a respectable
electron gas... It is clearly a defect of the Hartree-Fock approximation.
Instead of calculating the energy expectation value also directly in k-space, it is instructive to
look at the exchange term in real space. To evaluate the electron-electron repulsion we need the
diagonal of the 2-body density matrix, which is given in terms of the one-body density matrix

〈ΦkF |Ψ̂
†
σ′(r

′)Ψ̂ †σ(r)Ψ̂σ(r)Ψ̂σ′(r
′)|ΦkF 〉 = det

(
Γ

(1)
σσ (r, r) Γ

(1)
σσ′(r, r

′)

Γ
(1)
σ′σ(r′, r) Γ

(1)
σ′σ′(r

′, r′)

)
,
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Fig. 1: Hartree-Fock eigenvalues and density of states for the homogeneous solution |ΨkF 〉 of
the homogeneous electron gas compared to non-interacting values.

where the one-body density matrix vanishes unless σ′ = σ where it is evaluated as in (70)

Γσσ(r, r′) = 〈ΦkF |Ψ̂ †σ(r)Ψ̂σ(r′)|ΦkF 〉

=

∫
|k|<kF

dk
e−ik·(r−r

′)

(2π)3
=

1

4π2

∫ kF

0

dk k2

∫ 1

−1

d cos θ eik|r−r
′| cos θ

=
k3
F

2π2

sinx− x cosx

x3︸ ︷︷ ︸
x→0−→ 1/3

= 3nσ
sinx− x cosx

x3
(73)

with x = kF |r−r′|. Dividing the 2-body density matrix by n2
σ and subtracting the direct

term (which is canceled by the contribution of the background charge) we obtain the exchange
hole [11]

gx(r, 0)− 1 = −9

(
sin kF r − kF r cos kF r

(kF r)3

)2

. (74)

It is shown in Fig. 2. The exchange energy per spin is then the Coulomb interaction of the
charge density with its exchange hole

Ex =
1

2

∫
dr nσ

∫
dr′nσ

gx(r, r
′)− 1

|r − r′|
=

1

2

∫
dr nσ︸ ︷︷ ︸
=N

∫
dr̃ nσ

gx(r̃, 0)− 1

r̃
.

The exchange energy per electron of spin σ is thus

εσx =
4πnσ

2

∫ ∞
0

dr r2 g(r, 0)− 1

r
= −9 · 4πnσ

2k2
F

∫ ∞
0

dx
(sinx− x cosx)2

x5︸ ︷︷ ︸
=1/4

= −3kF
4π

. (75)
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Fig. 2: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kF rσ = (9π/2)1/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (75).

Together with the kinetic energy per electron of spin σ

εσkin = 4π

∫ kF

0

dk k2 k
2

2

/
4π

∫ kF

0

dk k2 =
3k2

F

10
(76)

we obtain the total energy per electron

εHF =
n↑
(
ε↑kin+ε↑x

)
+ n↓

(
ε↓kin+ε↓x

)
n↑ + n↓

=
3(6π2)2/3

10

n
5/3
↑ + n

5/3
↓

n
− 3

4

(
6

π

)1/3 n
4/3
↑ + n

4/3
↓

n
.

While the kinetic energy is lowest when n↑ = n↓, exchange favors spin polarization. For reason-
able electron densities the kinetic energy dominates, only at extremely low densities exchange
dominates and the solution would be ferromagnetic.
A ferromagnetic Slater determinant would, of course, have two different Fermi momenta, k↑F 6=
k↓F . It also would break the symmetry of the Hamiltonian under spin rotations. This is an
example of how we can lower the energy expectation value by allowing Slater determinants
that break a symmetry of the system. When we do not restrict the symmetry of the Slater
determinant, the approach is called unrestricted Hartree-Fock. For the electron gas this approach
actually gives Hartree-Fock states that even break translational symmetry, see, e.g., [12].

3.2.2 Hubbard model

As a simple example to illustrate the difference between restricted and unrestricted Hartree-
Fock we consider the Hubbard model with two sites, i = 1, 2, between which the electrons can
hop with matrix element −t and with an on-site Coulomb repulsion U

Ĥ = −t
∑
σ

(
c†2σc1σ + c†1σc2σ

)
+ U

∑
i∈{1,2}

ni↑ni↓ . (77)
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The number of electrons N and the total spin projection Sz are conserved, so the Fock space
Hamiltonian is block-diagonal in the Hilbert spaces with fixed number of up- and down-spin
electrons N↑ and N↓ with dimensions

N 0 1 2 3 4

N↑ 0 1 0 2 1 0 2 1 2

N↓ 0 0 1 0 1 2 1 2 2

dim 1 2 2 1 4 1 2 2 1 16

Exact solutions: The Hamiltonian for N = N↑ = 1 is easily constructed. By introducing the
basis states c†1↑|0〉 and c†2↑|0〉, we obtain the Hamiltonian matrix

〈
0
∣∣∣(c1↑

c2↑

)
Ĥ
(
c†1↑ c†2↑

) ∣∣∣0〉 =

(
0 −t 〈0|c1↑ c

†
1↑c2↑ c

†
2↑|0〉

−t 〈0|c2↑ c
†
2↑c1↑ c

†
1↑|0〉 0

)
=

(
0 −t
−t 0

)
.

This is easily diagonalized giving the familiar bonding and antibonding solution

|ϕ±〉 =
1√
2

(
c†1↑ ± c

†
2↑
)
|0〉 = c†±↑|0〉 . (78)

For N↑ = 1 = N↓, we obtain a non-trivial interacting system

〈
0
∣∣∣

c1↑c2↓

c2↑c1↓

c1↑c1↓

c2↑c2↓

 Ĥ
(
c†2↓c

†
1↑ c†1↓c

†
2↑ c†1↓c

†
1↑ c†2↓c

†
2↑

) ∣∣∣0〉 =


0 0 −t −t
0 0 −t −t
−t −t U 0

−t −t 0 U

 . (79)

To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic
states

|cov±〉 =
1√
2

(
c†2↓c

†
1↑ ± c

†
1↓c
†
2↑
)
|0〉 (80)

|ion±〉 =
1√
2

(
c†1↓c

†
1↑ ± c

†
2↓c
†
2↑
)
|0〉 (81)

It is then easy to verify that |cov−〉 is an eigenstate with eigenvalue εcov− = 0 and that |ion−〉
has eigenenergy εion− = U . The remaining two states mix(

〈cov+|
〈ion+|

)
Ĥ
(
|cov+〉 |ion+〉

)
=

1

2

(
U −

(
U 4t

4t −U

))
. (82)

Rewriting the matrix (
U 4t

4t −U

)
=
√
U2+16t2

(
cosΘ sinΘ

sinΘ − cosΘ

)
, (83)
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Fig. 3: Spectrum of the two-site Hubbard model as a function of U/t.

we find the ground state of the half-filled two-site Hubbard model

|gs〉 = cosΘ/2 |cov+〉+ sinΘ/2 |ion+〉 (84)

=
1√
2

(
cos Θ

2
c†2↓c

†
1↑ + cos Θ

2
c†1↓c

†
2↑ + sin Θ

2
c†1↓c

†
1↑ + sin Θ

2
c†2↓c

†
2↑

) ∣∣0〉 (85)

with an energy of εgs = (U −
√
U2+16t2)/2. Without correlations (U = 0 ; Θ = π/2), all

basis states have the same prefactor, so we can factorize the ground state, writing it as a product
c†+↓c

†
+↑|0〉 of the operators defined in (78). For finite U this is no longer possible. In the strongly

correlated limit U � t (Θ ↘ 0) the ground state becomes the maximally entangled state |cov+〉
and can not even approximately be expressed as a two-electron Slater determinant.

Hartree-Fock: We now want to see what Hartree-Fock can do in such a situation. Since the
Hamiltonian is so simple, we can directly minimize the energy expectation value. The most
general ansatz is a Slater determinant of an orbital ϕ(θ↑) = sin(θ↑)ϕ1 + cos(θ↑)ϕ2 for the
spin-up, and ϕ(θ↓) = sin(θ↓)ϕ1 + cos(θ↓)φ2 for the spin-down electron:

|Φ(θ↑, θ↓)〉 =
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

) ∣∣0〉 . (86)

The energy expectation value as a function of the parameters θσ is then

〈Φ(θ↑, θ↓)|Ĥ|Φ(θ↑, θ↓)〉 =− 2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)

+ U
(
sin2 θ↑ sin2 θ↓ + cos2 θ↑ cos2 θ↓

)
. (87)

If the Slater determinant respects the symmetry of the molecule under the exchange of sites
(mirror symmetry of the H2 molecule), it follows that the Hartree-Fock orbitals for both spins
are the bonding state ϕ+ (θ = π/4). This is the restricted Hartree-Fock solution. The corre-
sponding energy isE(π/4, π/4) = −2t+U/2. The unrelaxed excited determinants are obtained
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Fig. 4: Energy expectation value for a Slater determinant Φ(θ, π/2−θ) for U=0, t, 2t, . . . , 6t.
When U ≤ 2t the minimum is at θ = π/4. This is the Hartree-Fock solution with the bonding
orbitals ϕ+ occupied. For U ≥ 2t, θ = π/4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

by replacing occupied orbitals ϕ+ with ϕ−. Altogether we obtain the restricted Hartree-Fock
spectrum

E( π/4, π/4) = −2t+ U/2

E( π/4,−π/4) = U/2

E(−π/4, π/4) = U/2

E(−π/4,−π/4) = 2t+ U/2

(88)

Comparing to the energy for a state with both electrons of the same spin (E = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry [13]. The states (88) are
spin-contaminated [14]. Even worse, the Hartree-Fock ground state, and consequently all the
states, are independent of U . The weight of the ionic states is always 1/2, leading to an increase
of the energy with U/2.
To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. In an extended system this corresponds to an
antiferromagnetic spin-density wave. For U < 2t this does not lead to a state of lower energy.
For larger U , however, there is a symmetry-broken ground state

ΦUHF = Φ(θ, π/2−θ) with θ(U) =
π

4
± 1

2
arccos

(
2t

U

)
. (89)

Its energy is EUHF = −2t2/U . Still there is no triplet state (spin contamination) and, for
U →∞, the overlap with the true singlet ground state goes to

∣∣〈ΦUHF|Ψ−〉
∣∣2 = 1/2.

From Fig. 4 it might appear that there are just two degenerate unrestricted Hartree-Fock deter-
minants. But, remembering that we can chose the spin quantization axis at will, we see that by
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rotating the spins by an angle α about the axis n̂ (see App. A.2)

Rn̂(α) = e−in̂·~σ α/2 = cos(α/2)− i sin(α/2) n̂ · ~σ

we can produce a continuum of degenerate solutions R̂n̂(α)|ΦUHF〉. As an example we consider
the state we obtain when we rotate the spin quantization axis from the ẑ into the x̂ direction

Rŷ(−π/2) =
1√
2

(
1 1

−1 1

)
which transforms the creation operators according to (13) as(

c†i↑, c
†
i↓

)
Rŷ(−π/2) =

(
1√
2

(
c†i↑−c

†
i↓
)
,

1√
2

(
c†i↑+c

†
i↓
))

.

The determinant (86) thus transforms to

R̂ŷ(−π/2)|Φ(θ↑, θ↓)〉 =
1

2

(
s↓
(
c†1↑+c

†
1↓
)

+ c↓
(
c†2↑+c

†
2↓
))(

s↑
(
c†1↑−c

†
1↓
)

+ c↑
(
c†2↑−c

†
2↓
))
|0〉 (90)

where we introduced the abbreviations sσ = sin θσ and cσ = cos θσ. Since the Hamiltonian (77)
is invariant under spin rotations, R̂ŷ(−π/2) Ĥ R̂†ŷ(−π/2) = Ĥ , the energy expectation value of
the rotated state is still given by (87).

Attractive Hubbard model For negative U allowing the spin orbitals to differ, Φ(θ, π/2−θ),
does not lower the energy expectation value. The minimum is always obtained for the restricted
Hartree-Fock determinant Φ(π/4, π/4). In fact, for the attractive Hubbard model rather than
breaking spin symmetry, we should try to break the charge symmetry: For U < −2t the ansatz
Φ(θ, θ) minimizes the energy for the two states θ(U) = π/4 ± arccos(−2t/U) with energy
E(U) = 2t2/U + U . Thus, the unrestricted Hartree-Fock ground state breaks the charge sym-
metry, i.e., is a charge-density wave state. On the other hand, looking back to (90) we see
that Φ(θ, θ) is invariant under the spin rotation. This is actually true for any R̂n̂(α) so that
the unrestricted Hartree-Fock ground state of the attractive Hubbard model does not break spin
symmetry.
It seems strange that for the attractive model we only find two unrestricted Hartree-Fock states,
while for the repulsive model we have a continuum of states. To find the ’missing’ states we
consider a new kind of transformation that mixes creation and annihilation operators: When we
exchange the role of the creation and annihilation operators for the up spins only, i.e.,

c̃†i↑ = (−1)ici↑ and c̃†i↓ → c†i↓, (91)

the Hamiltonian (77) transforms into a two-site Hubbard model with the sign of U reversed

Ĥ = −t
∑
σ

(
c̃†2σ c̃1σ + c̃†1σ c̃2σ

)
− U

∑
i∈{1,2}

ñi↑ñi↓ + U(ñ1↓ + ñ2↓) . (92)

Let us see what happens to the Slater determinant (86) when we apply the same transformation.
In doing this, we have to remember that the vacuum state must vanish when acted on with an
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annihilator. For |0〉 this is no longer true for the transformed operators, but we can easily write
down a state

|0̃〉 = c†2↑c
†
1↑|0〉 (93)

that behaves as a suitable vacuum state: c̃iσ|0̃〉 = 0 and 〈0̃|0̃〉. We can then rewrite the trans-
formed Slater determinant (86) as

|Φ̃(θ↑, θ↓)〉 =
(

sin(θ↓) c̃
†
1↓ + cos(θ↓) c̃

†
2↓

)(
sin(θ↑) c̃

†
1↑ + cos(θ↑) c̃

†
2↑

)
|0̃〉

=
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
− sin(θ↑) c1↑ + cos(θ↑) c2↑

)
c†2↑c

†
1↑|0〉

=
(

sin(θ↓) c
†
1↓ + cos(θ↓) c

†
2↓

)(
+ sin(θ↑) c

†
2↑ + cos(θ↑) c

†
1↑

)
|0〉 .

Thus, the transformation takes the unrestricted state |Φ(θ, π/2 − θ)〉 for the repulsive Hubbard
model into the unrestricted state |Φ(θ, θ)〉 for the attractive Hubbard model. Transforming the
rotated state (90) in the same way, we find something remarkable:

1

2

(
s↓
(
c̃†1↑+c̃

†
1↓
)

+ c↓
(
c̃†2↑+c̃

†
2↓
))(

s↑
(
c̃†1↑−c̃

†
1↓
)

+ c↑
(
c̃†2↑−c̃

†
2↓
))
|0̃〉

=
1

2

(
s↓
(
−c1↑+c

†
1↓
)

+ c↓
(
c2↑+c

†
2↓
))(

s↑
(
−c1↑−c

†
1↓
)

+ c↑
(
c2↑−c

†
2↓
))
c†2↑c

†
1↑|0〉

=
1

2

(
(s↓c↑+c↓s↑)

(
c†1↓c

†
1↑+c

†
2↓c
†
2↑
)
|0〉+ 2

(
s↓s↑c

†
1↓c
†
2↑+c↓c↑c

†
2↓c
†
2↑
)
|0〉

+ (s↓c↑−c↓s↑)
(
c†2↓c

†
1↓c
†
2↑c
†
1↑−1

)
|0〉

)
.

The energy expectation value of this state is by construction the same as for the charge-density
state. For θ↓ = π/2−θ↑ the new state has a uniform density, but the wavefunction no longer has
a well-defined particle number, i.e., it breaks particle number conservation. It is still a product
state in the transformed operators and vacuum, but it is a state in Fock space. States of this type
are the key to describing superconductivity.

3.3 BCS theory

Next we consider the BCS Hamiltonian

ĤBCS =
∑
kσ

εk c
†
kσckσ −

∑
kk′

Gkk′ c
†
k↑c
†
−k↓c−k′↓ck′↑ (94)

with an attractive interaction between pairs of electrons of opposite spin and momentum (Cooper
pairs). We now want to see if we can use the idea of product states in Fock space that we encoun-
tered for the attractive Hubbard model. To start, let us consider the determinant of plane-wave
states that we used for the homogeneous electron gas |ΦkF 〉. Since all states with momentum
below kF are occupied, we have

c†kσ|ΦkF 〉 = 0 for |k| < kF and ckσ|ΦkF 〉 = 0 otherwise.
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Thus |ΦkF 〉 behaves like a vacuum state for the transformed operators

c̃kσ = Θ(kF−|k|) c†kσ +Θ(|k|−kF ) ckσ =

{
c†kσ for |k| < kF
ckσ for |k| > kF

Allowing the operators to mix, we can generalize this transformation to

bk↑ = ukck↑ − vkc
†
−k↓

bk↓ = ukck↓ + vkc
†
−k↑

Notice how states with (k, σ) and (−k,−σ) are mixed. The corresponding creation opera-
tors are the adjoints, b†kσ = ukc

†
kσ − 2σvkc−k,−σ, where σ=±1/2. These Bogoliubov-Valatin

operators fulfill the canonical anticommutation relations

{bkσ, bk′σ′} = 0 = {b†kσ, b
†
k′σ′} and {bkσ, b

†
k′σ′} = δ(k−k′) δσ,σ′

when (the non-trivial anticommutators are {bk↑, b−k↓} and {bkσ, b
†
kσ})

|uk|2 + |vk|2 = 1 . (95)

A vacuum state for the new operators can be constructed from the generalized product state∏
kσ bkσ|0〉. Expanding the operators

b−k↑bk↓bk↑b−k↓|0〉 = vk(uk + vk c
†
−k↑c

†
k↓) vk(uk + vk c

†
k↑c
†
−k↓) |0〉

and calculating the norm

〈0|(uk+vk c−k↓ck↑)(uk+vk ck↓c−k↑)(uk+vk c
†
−k↑c

†
k↓)(uk+vk c

†
k↑c
†
−k↓)|0〉 =

(
|uk|2 + |vk|2

)2

we see from (95) that the BCS wavefunction

|BCS〉 =
∏
k

(uk + vk c
†
k↑c
†
−k↓) |0〉 (96)

is the (normalized) vacuum for the Bogoliubov-Valatin operators.
To calculate physical expectation values we express the electron operators as

ck↑ = ukbk↑ + vkb
†
−k↓

ck↓ = ukbk↓ − vkb
†
−k↑

The expectation value for the occupation of a plane-wave state, e.g., is

〈BCS|n̂k↑|BCS〉 = 〈BCS|(ukb†k↑+vkb−k↓)(ukbk↑+vkb
†
−k↓)|BCS〉 = |vk|2 = 〈BCS|n̂−k↓|BCS〉.

Unlike the electron gas Slater determinant |ΦkF 〉, where nkσ is 1 below kF and vanishes above,
varying the parameter vk in the BCS wavefunction allows us to get arbitrary momentum dis-
tributions 〈nkσ〉. Since the BCS wavefunction has contributions in all particle sectors with an
even number of electrons, there are also less-conventional expectation values, e.g.,

〈BCS|c†k↑c
†
−k↓|BCS〉 = 〈BCS|(ukb†k↑ + vkb−k↓)(ukb

†
−k↓ − vkbk,↑)|BCS〉 = vkuk = 〈c−k↓ck↑〉.
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When minimizing the energy expectation value, we have to introduce a chemical potential µ
that is chosen to give the desired number of particles N =

∑
kσ |vk|2. We get

〈BCS|Ĥ−µN̂ |BCS〉 =
∑
kσ

(εk−µ) |vk|2 −
∑
k,k′

Gkk′ vkukvk′uk′ , (97)

where the last term is real since Gkk′ = Gk′k. Writing the Bogoliubov coefficients in polar
coordinates, uk = |uk|eiαk and vk = |vk|ei(αk+ϕk), we obtain

〈BCS|Ĥ−µN̂ |BCS〉 =
∑

(εk−µ) |vk|2 −
∑

Gkk′ |vk||uk||vk′ ||uk′| cos(ϕk′−ϕk), (98)

which is minimized when the relative phase ϕk is independent of k, i.e., all Cooper pairs in (96)
are phase coherent (while the αk merely contribute to the global phase)

|BCS(ϕ)〉 =
∏(
|uk|+ |vk|eiϕc†k↑c

†
−k↓
)
|0〉. (99)

Their overlap is 〈BCS(ϕ′)|BCS(ϕ)〉 =
∏

k

(
|uk|2 + |vk|2ei(ϕ

′−ϕ)
)

so that in the thermody-
namic limit they are orthogonal for ϕ 6= ϕ′. For a fixed phase ϕ the particle number fluctuates
〈N̂2〉−〈N̂〉2 = 4

∑
k |vk|2|uk|2 < 2〈N̂〉. Since the phase of a state with N/2 Cooper pairs is

eiϕN/2, we can project out states with fixed number of electrons by integrating over ϕ

|BCSN〉 =
1√
2π

∫ 2π

0

dϕ e−iϕN/2 |BCS(ϕ)〉.

It remains to minimize (97) with respect to the absolute values, written as |uk| = sinΘk and
|vk| = cosΘk with Θk ∈ [0, π/2). Setting the derivative of

〈BCS|Ĥ−µN̂ |BCS〉 =
∑
kσ

(εk−µ)
1+ cos 2Θk

2
−
∑
kk′

Gkk′
sin 2Θk

2

sin 2Θk′

2

with respect to Θk to zero we find the system of equations

tan 2Θk = −
∑

k′ Gkk′ sin(2Θk′)/2

εk−µ
= − ∆k

εk−µ
=

∆k

µ−εk
(100)

where we have introduced the gap function ∆k. Using (cosx)2 = 1/
(
1+(tanx)2

)
we obtain

the momentum distribution

〈nkσ〉 = |vk|2 =
1

2

(
1+ cos 2Θk

)
=

1

2

(
1− εk−µ√

(εk−µ)2 +∆2
k

)
. (101)

For ∆k ≡ 0 this is just the step function of a Fermi gas, for finite ∆ the transition is more
smooth. We still have to determine the parameters µ and ∆k. The chemical potential is fixed by

N =
∑
k

2|vk|2 =
∑
k

(
1− εk−µ√

(εk−µ)2 +∆2
k

)
(102)

while for ∆k we obtain from (100) and (101) the self-consistent gap equations

∆k =
∑
k′

Gkk′
sin 2Θk′

2
=

1

2

∑
k′

Gkk′ tan 2Θk′ cos 2Θk′ =
1

2

∑
k′

Gkk′∆k′√
(εk′−µ)2 +∆2

k′

. (103)
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Fig. 5: Quasi-electron energy and density of states for the BCS state with and without gap.

To see that ∆ is indeed a gap, consider the (unrelaxed) quasi-electron states (εk > µ)

|k ↑〉 =
1

uk
c†k↑|BCS〉 = b†k↑|BCS〉. (104)

Adding an electron of momentum k destroys its Cooper pair, changing 〈nk↑+nk↓〉 from 2|v2
k|

to 1 and removing the interaction of the pair with all others:

〈k ↑ |Ĥ−µN̂ |k ↑〉 − 〈BCS|Ĥ−µN̂ |BCS〉 = (εk−µ) (1−2|vk|2) + 2∆k|vk||uk|

= (εk−µ) (− cos 2Θk) +∆k sin 2Θk =
√

(εk−µ)2 +∆2.

For ∆k ≡ 0 we recover Koopmans’ Hartree-Fock result, while for ∆k > 0 a gap opens around
the Fermi level. Fig. 5 compares the quasi-electron dispersion and the corresponding density of
states for the two cases, assuming, for simplicity, a k-independent gap ∆k ≡ ∆.

4 Conclusion

We have seen that second quantization is a remarkably useful formalism. With just a few sim-
ple rules for the field operators and the corresponding vacuum, it converts dealing with many-
electron states to straightforward algebraic manipulations. Moreover it is naturally suited for
performing calculations in variational spaces spanned by a finite basis of orbitals. But its ad-
vantages go beyond a mere simplification. By abstracting from the coordinate representation, it
allows us to express many-body operators in a way that is independent of the number of elec-
trons. Because of this it becomes possible to consider Fock-space wavefunctions which do not
have a definite number of electrons. This allows us to consider unrestricted mean-field states
that not only break spatial or spin symmetries but also particle conservation. This additional
freedom allows us to extend the concept of a Slater determinant to product states in Fock space,
an example of which is the BCS wavefunction.
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A Appendix

A.1 Non-orthonormal basis

A general one-electron basis of functions |χn〉 will have an overlap matrix Snm = 〈χn|χm〉 that
is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑

k,l|χk〉(S
−1)kl〈χl| . (105)

With it we can easily write the Schrödinger equation Ĥ|v〉 = ε|v〉 in matrix form∑
k

〈χi|H|χk〉︸ ︷︷ ︸
=:Hik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=:vk

〈χi|Ĥ|v〉 = ε〈χi|v〉 = ε
∑
k

〈χi|χk〉︸ ︷︷ ︸
=Sik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=vk

.

(106)
Collecting all components, this becomes the generalized eigenvalue problemHv = εSv. From
the solution v we can easily construct |v〉 =

∑
vk|χk〉. It is, however, often more convenient

to have an orthonormal basis, so that we do not have to deal with the overlap matrices in the
definition of the second quantized operators or the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑

m|χm〉Tmn with 〈ϕn|ϕm〉 = δmn . (107)

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∥∥|ϕn〉 − |χn〉∥∥2
=
∑
n

∥∥∥∑
m

|χm〉(Tmn−δmn)
∥∥∥2

= Tr (T †−1)S (T−1) = Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) . (108)

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM ) withM a Hermitian matrix,
we obtain the variational condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M , (109)

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0 (110)

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [15]

TLöwdin = S−1/2 (111)

minimizes the modification of the basis vectors due to orthogonalization.
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A.2 Pauli matrices

The spin matrices were defined by Pauli [16] as

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
They are hermitian and unitary, so that σ2

j = σjσ
†
j = 1. Moreover, detσj = −1 and Tr σj = 0.

By explicit multiplication we find σxσy = iσz, from which we get the more symmetric equation
σxσyσz = i. These relations are cyclic, which is easily seen by repeatedly using σ2

j = 1

σxσy = iσz
·σz
; σxσyσz = i

σx·
; σyσz = iσx

·σx
; σyσzσx = i

σy ·
; σzσx = iσy

·σy
; σzσxσy = i .

Exchanging two adjacent indices changes the sign, e.g., multiplying σxσyσz = i from the left
with σyσx gives σyσx=−iσz, which is again cyclic in the indices. We note that the multiplication
table of the matrices −iσj is the same as the that of the basic quaternions. We can summarize
the products of the Pauli matrices in the form(

~a · ~σ
)(
~b · ~σ

)
=
∑

ajbk σjσk =
(
~a ·~b

)
1+ i

(
~a×~b

)
· ~σ . (112)

From the products follow the familiar commutation relations [σx, σy] = 2iσz (cyclic), while the
anticommutators are {σj, σk} = 2δj,k 1.

Together with the unit matrix, the Pauli matrices form a basis of the four-dimensional algebra
of complex 2×2 matrices and we can write(

m11 m12

m21 m22

)
= M = m01+ ~m · ~σ =

(
m0+mz mx−imy

mx+imy m0−mz

)
(113)

with 2m0 = m11+m22, 2mz = m11−m22, 2mx = m12+m21, and 2mx = i(m12−m21), which
can be written as 2mj = TrMσj , with σ0 := 1. When the m0 and ~m are real, M is hermitian.
Matrix products are easily evaluated using (112). As a simple example we find

(m01+ ~m · ~σ)(m01− ~m · ~σ) = m2
0 −m2

x −m2
y −m2

z = detM

(remember detα1N = αN ). Thus, when detM 6= 0, the inverse of M is

M = m01+ ~m · ~σ ; M−1=(m01− ~m · ~σ)/ detM. (114)

For a unitary matrix U=u0 +~u·~σ with detU = 1 we then see from U † = u∗0 +~u ∗ ·~σ !
= u0−~u·~σ

that u0 must be real and ~u = i~n imaginary, so that 1 = detU = u2
0 + ‖~n‖2, which allows us

to write u0 = cosα and ~n = sinα n̂ with unit vector n̂ := ~n/‖~n‖ and α ∈ [0, 2π). Thus any
special unitary 2×2 matrix U∈ SU(2) can be written, using (n̂ ·~σ)2=1 from (112) in the power
series,

Un̂,α = cosα1+ i sinα (n̂ · ~σ) = exp
(
iα n̂ · ~σ

)
. (115)

General unitary matrices with detU = eiα0 have the form U = eiα0/2Un̂,α.



2.30 Erik Koch

TheU are related to rotations of vectors~a ∈ R3 viaU(~a·~σ)U †. To see this we remember that~a·~σ
is a hermitian 2×2 matrix with zero trace. By the cyclic property of the trace TrU(~a · ~σ)U † =

Tr~a · ~σ, so that there exists a unique ~aU with U(~a · ~σ)U † = ~aU · ~σ. This mapping ~a → ~aU is
linear, U

(
(c~a+~b) · ~σ

)
U † = cU(~a · ~σ)U † + U(~b · ~σ)U †, and preserves the inner product

~a ·~b = 1
2

Tr(~a · ~σ)(~b · ~σ) = 1
2

TrU(~a · ~σ)U † U(~b · ~σ)U † = 1
2

Tr(~aU · ~σ)(~bU · ~σ) = ~aU ·~bU
so that it must be a proper rotation, ~aU = RU ~a with RU ∈ SO(3). To identify which rotation,
we consider the special case ~a‖ = can̂ for which, by (112), ~a‖ · ~σ commutes with n̂ · ~σ so that
U(~a‖ · ~σ)U † = ~a‖ · ~σ, i.e., n̂ is the axis of rotation. To find the rotation angle ϑ, we consider a
unit vector â⊥ perpendicular to n̂, for which, using (â⊥·~σ)(n̂ ·~σ) = i(â⊥× n̂) ·~σ and Tr~v ·~σ = 0,

cosϑ = â⊥ ·RU â⊥ = 1
2

Tr(â⊥ · ~σ)U(â⊥ · ~σ)U †

= 1
2

Tr(â⊥ · ~σ)(cosα + i sinα (n̂ · ~σ)) (â⊥ · ~σ)(cosα− i sinα (n̂ · ~σ))

= 1
2

Tr
(
cosα â⊥− sinα (â⊥×n̂)

)
· ~σ

(
cosα â⊥+ sinα (â⊥×n̂)

)
· ~σ

=
(
cosα â⊥−sinα (â⊥×n̂)

)
·
(
cosα â⊥+sinα (â⊥×n̂)

)
= (cosα)2− (sinα)2 = cos 2α

Hence, Un̂,α∈ SU(2) induces a rotation RU∈ SO(3) about the axis n̂ through the angle ϑ = 2α.
Therefore, matrices in SU(2) are commonly written using the angle of rotation ϑ ∈ [0, 4π)

instead of α ∈ [0, 2π) as U(n̂, ϑ) = exp(iϑ
2
n̂ · ~σ). We see, in particular, that the two matrices

U(n̂, ϑ) and U(n̂, ϑ+2π) = −U(n̂, ϑ) in SU(2) induce the same rotation R−U = RU ∈ SO(3).

Diagonalizing a hermitian 2×2 matrix M = m01+ ~m · ~σ is now simple: just rotate m̂→ ẑ

U
(
m01+ ‖~m‖ (m̂ · ~σ)

)
U † = m01+ ‖~m‖σz

from which we easily read off the eigenvalues

ε± = m0 ± ‖~m‖ =
m11+m22

2
±
√

(m11−m22)2

4
+|m12|2 = 1

2
TrM ±

√(
1
2

TrM
)2− detM,

while the eigenvalues are the columns vectors of U † =
(
v+, v−

)
m01+ ~m · ~σ = U †

(
m01+ ‖~m‖σz

)
U = m01+ ‖~m‖

(
v+,v−

)
σz

(
v†+
v†−

)
We still need to determine a U that rotates m̂ → ẑ. The rotation axis should be orthogonal
to both vectors, i.e., n̂ = ẑ×m̂/‖ẑ×m̂‖ = (mxŷ−myx̂)/

√
m2
x+m

2
y, so that the rotation angle

ϑ ∈ [0, π] is determined by cosϑ = m̂·ẑ = mz/‖~m‖. Using also the other spherical coordinates
mx = ‖~m‖ sinϑ cosϕ and my = ‖~m‖ sinϑ sinϕ, we get n̂ = cosϕ ŷ − sinϕ x̂ so that

U(n̂, ϑ) =

(
cos ϑ

2
+ inz sin ϑ

2
(ny+inx) sin ϑ

2

−(ny−inx) sin ϑ
2

cos ϑ
2
− inz sin ϑ

2

)
=

(
cos ϑ

2
+e−iϕ sin ϑ

2

−e+iϕ sin ϑ
2

cos ϑ
2

)
from which we read off the eigenvectors as the columns of U † (which you may want to check
for simple cases like M =σz, σx or σy)

v+ =

(
cos ϑ

2

+e+iϕ sin ϑ
2

)
and v− =

(
−e−iϕ sin ϑ

2

cos ϑ
2

)
with

ϕ = arg(m21)=− arg(m12)

ϑ = arccos
m11−m22

ε+−ε−

.

(116)
A more symmetric form of the eigenvectors may be obtained by writing e∓iϕ/2v±.
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A.3 Some useful commutation relations

Commuting an operator through a product of operators is straightforward

AB1 · · ·BN = [A, B1]B2 · · ·BN +B1AB2 · · ·BN

= [A, B1]B2 · · ·BN +B1[A, B2] · · ·BN +B1B2A · · ·BN

...

=
N∑
n=1

n−1∏
i=1

Bi [A, Bn]
N∏

i=n+1

Bi +B1 · · ·BNA

while, working analogously, anticommuting introduces alternating signs

AB1 · · ·BN = {A, B1}B2 · · ·BN −B1AB2 · · ·BN

= {A, B1}B2 · · ·BN −B1{A, B2} · · ·BN −B1B2A · · ·BN

...

=
N∑
n=1

(−1)n−1

n−1∏
i=1

Bi {A, Bn}
N∏

i=n+1

Bi + (−1)NB1 · · ·BNA

The following special cases are particularly useful

[A, BC] = [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are
[
c†icj, c

†
γ

]
= 〈j|γ〉 c†i and

[
c†icj, cγ

]
= −〈i |γ〉 cj .

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ
]

=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ
]

= 〈l|α〉 c†ic
†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl .
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