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13.2 Salvatore R. Manmana

1 Quantum magnetism and strongly correlated systems

An exceptional and widely known quantum state of matter is superconductivity. It is realized
by the spontaneous breaking of a (gauge) symmetry, in which (in the simplest theory) the inter-
action between the electrons and lattice degrees of freedom leads to this peculiar ‘macroscopic’
behavior of certain materials. Other systems, in which the interaction between the constituent
particles leads to a variety of interesting phenomena, are quantum magnets: these are quantum
many-body systems, in which the interplay between immobile spin degrees of freedom (typi-
cally the spins of the electrons in a material, or pseudo-spin degrees of freedom, e.g., in cold
gases experiments) leads to unconventional quantum phases. In this chapter, I will present var-
ious aspects of the phenomenology of quantum magnetism, the unconventional states of matter
that can be realized, and how to characterize them. The topic is too vast to cover all essential
aspects in a single book chapter. Therefore, most of the sections are summaries of (review)
articles, text books, or from the introduction of PhD theses on related topics, and are intended
as a starting point for further reading.
To start with, I will first put quantum magnetism in the context of strongly correlated quantum
many-body systems and discuss typical models and examples. In order to understand what kind
of states of matter can be obtained in such correlated systems, the basic notions of spontaneous
symmetry breaking, order parameters, long-range order and topological order are discussed.
Important experimental tools are spectroscopic measurements (e.g. inelastic neutron scattering),
which will lead us to the notion of dynamical structure factors. At the end, I will give a glimpse
onto recent developments, where the dynamical properties are further studied by going out
of equilibrium and directly measuring the time evolution of the observables – typically, the
demagnetization dynamics on very short time scales, or the time evolution of order parameters,
which show that one can realize (transient) magnetically ordered states when exciting certain
materials with a laser pulse.

1.1 Quantum many-body systems

Quantum many-body effects come into play in certain materials and in systems of ultracold
atomic and molecular gases on optical lattices [1]. Prominent examples for strongly correlated
materials are high-temperature superconductors [2, 3] and Mott insulators [4]. Using ultracold
atoms, a breakthrough experiment was the realization of a Mott-insulating state of ultracold
bosons in 2002 [5]. These systems are described by microscopic quantum mechanical models
of interacting particles on various lattice geometries. Interesting effects arise due to competing
interactions or geometrical frustration, which typically does not allow for the realization of a
simple ground state that satisfies all bonds equally well. Examples for such frustrated geome-
tries are shown in Fig. 1.
An interesting class of strongly correlated materials, in which such competing interactions lead
to novel and interesting states of matter, are (frustrated) quantum magnets [11–14]. These
systems can be described as networks of interacting quantum mechanical spins on a lattice, and
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Fig. 1: Examples of frustrated lattice geometries realized in quantum magnetic materials.
(a) Frustrated ladder, realized in various materials, e.g., TlCuCl3 [6,7]. (b) Shastry-Sutherland
lattice, a network of orthogonal dimers. This geometry is realized, e.g., in SrCu2(BO3)2 [8, 9].
(c) Kagome lattice of corner-sharing triangles. This system is realized, e.g., in Herbertsmithite(
ZnCu3(OH)6Cl2

)
[10].

the underlying microscopic model typically is a variant of the Heisenberg Hamiltonian,

HHeisenberg =
∑
〈i,j〉

Ji,j ~Si · ~Sj, (1)

where the operator ~Si ≡

SxiSyi
Szi

 describes a localized spin on the lattice site i, and Sx,y,zi are

the usual spin operators. In principle, any magnitude of S ≡
∣∣~S∣∣ can be considered, but the

most appealing effects due to the quantum nature of the spins are expected for small values
of S, e.g., S = 1/2 or S = 1. Many quantum magnetic materials can be described using the
Heisenberg model or one of its variants and a rich bouquet of interesting phenomena is found,
which are often revealed in the presence of an external magnetic field. For example, an a
priori not necessarily expected realization of an unconventional phase of matter in a magnetic
material is the Bose-Einstein-condensation (BEC) of triplet excitations (see, e.g. [7, 15–17]).
Since these excitations are of bosonic nature, at temperatures low enough, they can form a
BEC, so that quantum magnets can host this peculiar state of matter, which was first realized in
the lab in experiments with ultracold gases [1]. Other quantum states of matter realized in these
materials are Mott-insulators on magnetization plateaux [8, 9, 18, 19], and the proposed spin-
equivalent [20–25] of a supersolid phase [26, 27], which is characterized by the simultaneous
spontaneous breaking of the translational symmetry of the underlying lattice and of a U(1)
symmetry associated to the formation of a superfluid. These effects most prominently appear
at low temperatures, at which quantum fluctuations dominate over thermodynamic fluctuations,
and which drive quantum phase transitions [28, 29].
Quantum states of matter are either described by local order parameters, which are due to the
spontaneous breaking of a symmetry of the Hamiltonian, or by topological properties. The
Heisenberg model (1) contains a scalar product of two vectors ~S and is, hence, invariant against
rotation in spin-space, i.e., it possesses a SU(2) symmetry. An important question for quantum
magnets is, therefore, if and how this symmetry (and possibly other symmetries) of the system
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is broken spontaneously. The most prominent way of breaking the SU(2) symmetry is by real-
izing a finite magnetization, i.e., the expectation value of the spin in (at least) one direction in
space gets finite, e.g. 〈Szi 〉 6= 0. Since the magnetization is a vector and points in a specific di-
rection, a finite magnetization implies a broken time-reversal symmetry. The question arises, if
other (for quantum magnets less obvious) types of order can be realized. A prominent example
is realized for S > 1/2: In this case, the SU(2) symmetry of the Heisenberg Hamiltonian can
spontaneously be broken without resulting finite local magnetizations. This leads to a rather un-
conventional ordered phase which in an experimental investigation would appear disordered, if
only (local or total) magnetizations are measured. Indeed, the resulting type of order is reminis-
cent of liquid crystals, which realize nematic states with a broken spin-rotational symmetry but
unbroken time reversal symmetry [30,13]. Correspondingly, such states are called spin-nematic
states and have been explored in a large number of theoretical approaches (a nice summary is
sketched in the introduction of [31] and references therein). Recently, the observation of such a
spin-nematic state in an iridate material was reported [32].
One particular playground for quantum magnetic systems are phases in which, despite the pres-
ence of strong correlations in the system, no long-range order is induced at zero temperature.
These phases are called spin liquids and can be pictured as a superposition of many spins which
simultaneously point in different directions. They show exotic behavior and possess a number
of interesting properties such as excitations with fractional quantum numbers [33]. There exists
a vast literature on this topic, for an introduction see [34]. The search for realizations of this
type of unconventional states is motivating a lot of ongoing research. For example, numerical
methods based on tensor network states (TNS), in particular matrix product state (MPS) ap-
proaches, have provided evidence for the existence of such a spin liquid phase in the kagome
lattice [35–37]. This highly frustrated geometry is depicted in Fig. 1(c) and has been identified,
e.g., in the natural mineral Herbertsmithite [10, 38].
While the interacting spins in the Heisenberg model remain localized, in many materials the
electrons are itinerant. This is addressed, e.g., by the Hubbard model [39–42], which is one of
the simplest models taking into account the effects of spin and of electron motion. Both, the
fermionic version1

HFermions
Hubbard = −t

∑
〈i,j〉, σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓ (2)

as well as the bosonic variant [28, 43]

HBosons
Hubbard = −J

∑
〈i,j〉

(
b†ibj + h.c.

)
+
U

2

∑
i

ni (ni−1) (3)

are relevant for the description of strongly correlated materials or for systems of ultracold atoms
on optical lattices, respectively. Using degenerate perturbation theory, the Hamiltonian (2) in

1Standard notation for the operators is used, i.e., c(†)i,σ represents a fermionic annihilation (creation) operator,

b
(†)
i the corresponding bosonic one, and ni,σ = c†i,σci,σ or ni = b†i bi the densities in the fermionic or bosonic case,

respectively. In the case of the t-J-model, the operators f (†)i,σ are fermionic ones, but act on a restricted Hilbert
space in which double occupancies are forbidden.
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the strong coupling limit U/t� 1 can be mapped to the Heisenberg model (1) [44] with antifer-
romagnetic (AFM) interactions (J > 0 in the convention used in Eq. (1)). In this way, studying
Hubbard systems allows one to study quantum magnetism. Due to the difficulties to treat in
particular the fermionic variant of the Hubbard model beyond 1D using analytical or numerical
approaches, experiments on optical lattices have got the particular motivation to emulate the
behavior of this microscopic model [45], so that its phase diagram can be investigated in such
experiments. This is in the spirit of Feynman’s proposal from the early 1980s2 to use some well
controlled quantum systems to simulate other ones, eventually leading to the development of a
quantum computer [47–49]. In this way, for U/t � 1 quantum magnetism can be studied, and
the realization of a controlled quantum simulator for quantum magnetism in cold gases experi-
ments is a central topic of ongoing research. Interestingly, there are further proposals for how to
realize Heisenberg-type models in cold gases experiments based on ultracold polar molecules,
e.g., where internal degrees of freedom of the molecules can be used as pseudo-spin degrees of
freedom (see, e.g., [50, 51]).
One interesting hybrid of itinerant electrons and Heisenberg exchange is the so-called t-J model

HtJ = −t
∑
〈i,j〉, σ

(
f †i,σfj,σ + h.c.

)
+ J

∑
〈i,j〉

(
~Si · ~Sj −

1

4
ninj

)
, (4)

which, similarly to the Heisenberg model, can be obtained from the fermionic Hubbard model in
degenerate perturbation theory in the limit U/t→∞ [44] and by excluding double occupancies
on the lattice sites. One possible way to look at the t-J model is to imagine a lattice with
initially one spin per site, in which the spins interact via Heisenberg exchange, but then dope it
(i.e. remove more and more of the electrons). In this way, empty lattice sites are formed, and
the spins can ‘hop around’ in addition to experiencing the spin exchange interaction. Since in
cuprates high-temperature superconductivity is obtained by doping an AFM, there are proposals
to understand high-temperature superconductors based on spin fluctuations, and the t-J model
(which describes such a doped quantum magnet) is considered a minimal model [3, 52].
The fermionic and spin systems considered so far have a SU(2) symmetry and are invariant
under the corresponding transformations. From the theoretical side, it is tempting to enhance
this symmetry from SU(2) to SU(N ). This has attracted considerable theoretical attention.
There is a long history of studies of SU(N ) spin systems (see, e.g., [53–55]) since they become
analytically tractable in the large-N limit, and rich phase diagrams have been identified. In 1D,
the aforementioned spin-nematic phases have been predicted as well as generalizations of the
so-called AKLT state, which is an archetypical example for topological phases which are briefly
revisited in Sec. 2.2.
Since no exact SU(N ) models have been identified in nature, these efforts were broadly con-
sidered a theoretical playground. However, it has been proposed that systems with such a high
symmetry (up to N = 10) can be realized in quantum simulators with ultracold alkaline earth

2The possibility to exploit quantum speed up was actually first envisaged by Y.I. Manin [46] in a radio interview
with Radio Moscow in 1980; it is unclear to me whether Feynman was aware of this. In any case, he seems to be
the first one to promote these ideas in the public in the western hemisphere and pursue them.



13.6 Salvatore R. Manmana

atoms [56]. More specifically, these experiments can realize SU(N ) symmetric generalizations
of fermionic Hubbard models

HSU(N )
Hubbard = −t

∑
〈i,j〉

N∑
α=1

(
f †α,ifα,j + h.c.

)
+
U

2

∑
i,α 6=α′

f †α,if
†
α′,ifα′,ifα,i . (5)

Here, f (†)
α,i is a fermionic annihilation (creation) operator for a particle with flavor α on lattice

site i. Similarly to the SU(2) case, in the limit U/t → ∞ an effective SU(N ) symmetric
Heisenberg model can be derived

HSU(N )
Heisenberg =

2t2

U

∑
〈i,j〉

∑
α,β

Sβα(i)Sαβ (j) , (6)

with the spin operators Sβα(i) = f †α,ifβ,i. This opens the door to studying SU(N ) quantum
magnetism. Having this and the specific experimental implementation in mind, exotic new
phases have been predicted. An example, which has intrigued researchers, is the possibility
to realize chiral spin liquids [57, 58] in such systems [59]. These are spin liquids with certain
topological properties, which can be of relevance for the realization of topological quantum
computers [60, 33].

These findings underline the recent focus of research on the uncovering of new and unconven-
tional behavior in microscopic models and their possible experimental detection. Since most of
the models are non integrable,3 numerical methods play an important role in the investigation of
quantum magnetism. A very powerful approach is using quantum Monte Carlo techniques [61],
which, in principle, can be applied to arbitrary situations. However, fermionic and AFM frus-
trated spin systems are affected by what is known as ‘the sign problem’, which leads to neg-
ative probabilities in the course of the Monte Carlo sampling, and which makes it essentially
impossible to control the calculations for many interesting situations. Therefore, other, wave-
function based approaches have been developed. For quasi-1D systems (i.e., chains and ladder
geometries), efficient approaches are tensor network methods, in particular matrix product state
methods (MPS) and one of the realizations in terms of the density matrix renormalization group
method (DMRG) [62], which are explained in detail in various review articles (e.g. [63]). This
method has been applied very successfully for the investigation of phase diagrams and of quan-
tum critical behavior of a multitude of (quasi-)1D systems (see the website [64] for a collection
of the publications relying on this method). However, for 2D systems, the area law of entangle-
ment growth [65,66] is a major obstacle for an efficient treatment of the microscopic models of
interest. Since also other numerical methods are limited, it is an ongoing challenge to develop
numerical and analytical approaches for 2D quantum magnetic systems.

3An important exception is the Heisenberg model and its generalization to the XXZ-model by allowing the
spin-exchange in the z-direction to have a different strength than in the x-y-plane in 1D, which is integrable using
the Bethe ansatz [42].
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1.2 Basic properties of S = 1/2 quantum magnets, magnetization curves

In order to get a better intuition for the behavior of quantum magnets, it is useful to start with
a small number of quantum spins, which can serve as building blocks to understand the large
interacting networks of spins realized in quantum magnets. To do so, let us consider a S = 1/2

Heisenberg model with interactions between nearest neighboring spins in a magnetic field ~B,

H = J
∑
〈i,j〉

~Si · ~Sj − ~B
∑
j

~Sj . (7)

To simplify the discussion, we assume the magnetic field ~B to point in z-direction.
1. One single spin-1/2:

The Hamiltonian is simply H=−BSzi , i.e., in its ground state the spin can take one of
the two possible configurations |↑〉, |↓〉, depending on the direction the magnetic field is
pointing at.
Note: for B = 0, any superposition of both states is a possible ground state, |ψ〉 =

α |↑〉 + β |↓〉 with α2 + β2 = 1, and for α = β a so-called “cat state” is realized.4 This
can be relevant for quantum computation, where you can associate the two spin states to
the two possible internal states of a qubit (e.g., |↑〉 ≡ |1〉 , |↓〉 ≡ |0〉).

2. Two spin-1/2 objects interacting via Heisenberg exchange (spin-1/2 dimer):
The Hamiltonian now is

H = J ~S1 · ~S2 −B (Sz1+Sz2) = J
( 1

2

(
S+
1 S
−
2 +S−1 S

+
2

)
+ Sz1S

z
2

)
−B

(
Sz1+Sz2

)
, (8)

with ladder operators S± = Sx±iSy.
Let us first consider the case B = 0. In this case, the Hamiltonian has the full SU(2)
symmetry, and we can rewrite

~Stotal = ~S1+~S2 ⇒ ~S1 · ~S2 =
1

2

((
~Stotal

)2 − (~S1

)2 − (~S2

)2)
.

Realizing that ~S2 = S(S+1), we obtain for the Hamiltonian (8) for S = 1/2 at B = 0

H =
J

2

((
~Stotal

)2 − 3

2

)
.

Since for S = 1/2 the only possible values for ~Stotal are 0 or 1, respectively, we see
immediately that the Hamiltonian has only two eigenvalues

EStotal=0 = −3J/4 and EStotal=1 = J/4 .

Depending on the sign of J, either of the two values is the ground state. Due to the
degeneracy (see below) the state with Stotal=0 is called singlet state (it is not degenerate),
and the other one is threefold degenerate and accordingly the eigenstates are called triplet
states.

4Named after the famous gedankenexperiment with “Schrödinger’s cat”.
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We now turn to the Hamiltonian matrix, i.e., we need to introduce a suitable many-body
basis, which can be obtained by the tensor product of single-spin basis states, leading to
the basis states

{
|↓↓〉 , |↓↑〉 , |↑↓〉 , |↑↑〉

}
. Note that the number of basis states compared

to one spin-1/2 particle has doubled. This is at the heart of why it is so complicated to
numerically treat large quantum many-body systems: here, the dimension d of the basis
grows exponentially with the numberN of spins in the system, d = 2N , so that only small
systems can be treated exactly [61].
For the dimer, the Hamiltonian in this basis is represented by the matrix

H =


J
4
+B 0 0 0

0 −J
4

J
2

0

0 J
2
−J

4
0

0 0 0 J
4
−B

 . (9)

Note the block structure on the diagonal of the matrix. This is due to symmetries and con-
served quantities (here: conservation of the z-component of the total spin of the system)
and follows from Schur’s Lemma [67]. It can be exploited to speed up the diagonalization
of the matrix, since one needs to explicitly diagonalize only the smaller ‘blocks’ of the
matrix, i.e., for Hamiltonian (9) we need to diagonalize only a 2×2 matrix. This leads to
the following eigenstates and eigenvalues:

• Singlet-state |s〉 =
(
|↑↓〉− |↓↑〉

)
/
√

2, with energy Es = −3J/4. This is the state
with Stotal = 0, which we encountered above, and also the z-component Sztotal ≡〈
Sz1+Sz2

〉
= 0, so that the magnetic field B does not contribute to the energy.

Note: This state is a maximally entangled state and is antisymmetric when swapping
the position of the two spins. Indeed, it is one of the Bell states and can be useful
for quantum information aspects.

• Triplet-states:

|t1〉 = |↑↑〉 |t0〉 =
(
|↑↓〉+ |↓↑〉

)
/
√

2 |t−1〉 = |↓↓〉
Et1 = J/4−B Et0 = J/4 Et−1 = J/4+B

For all three states we have Stotal = 1, but Sztotal = +1, 0, or −1, respectively. We
see that at B = 0 the three states are degenerate, but that turning on a magnetic
field removes this degeneracy: depending on the sign of B, the energy of one of
the triplet states |t1〉 or |t−1〉 will grow linearly with B, the other one decreases
linearly with B; the energy of |t0〉 remains unchanged. Using this, we obtain our
first magnetization curve: for J > 0 (AFM) the singlet state is the lowest energy
state for |B| < J , but then one of the triplet states takes over, so that we have a jump
in the total magnetization from M = 0 to M = 1 at this ‘critical field strength’.

Note: The states |t1〉 and |t−1〉 are product states with zero entanglement, but |t0〉 is
maximally entangled, as is also the singlet state (it is another Bell state); however,
all three triplet states are symmetric when swapping the positions of the spins.
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The physics of such spin-1/2 dimers is the building block for various quantum magnets.
A prominent example is the Shastry-Sutherland lattice depicted in Fig. 1(b), and which
can be seen as a system of orthogonal dimers, where the coupling between the dimers
can vary. Other systems are, e.g., spin ladders (see Fig. 1(a)), in which the interaction on
the rungs is stronger than on the legs. For weak inter-dimer coupling, the physics of such
quantum magnetic systems is determined by the properties of the singlet and triplet states
discussed here. The inter-dimer coupling will lead to a ‘dressing’ of the triplet states
(resulting in so-called ‘triplons’), which then form the building block for the system’s
behavior. When such a system with AFM interactions on the dimers is put in a magnetic
field, the ground state at B = 0 is determined by the singlets, but the magnetization curve
will mainly be determined by the magnetization of the individual dimers: the dimers,
which at B = 0 are in a singlet state, are ‘populated’ by the triplets (or triplons) upon
increasing B, leading to particular behavior of the magnetization curve. For example,
one can derive effective models

(
e.g. using perturbative unitary transformations, PCUTs;

see, e.g., [68]
)
, in which the triplons interact via long-range interactions, and which can

form Wigner-type crystals. If this happens, a gap opens, and a magnetization plateau is
stabilized, which hosts a Mott insulator, which is formed by the crystal of triplons. Other
examples are the aforementioned possible Bose-Einstein condensation of these triplet or
triplon excitations at finite B.

3. Three spin-1/2 objects interacting via Heisenberg exchange:
As before, at B = 0, we can rewrite using ~Stotal and obtain

H =
J

2

((
~Stotal

)2 − 9

4

)
for S = 1/2 .

We realize that, as in the system with 2 spins, the ground state for the ferromagnetic (FM)
case J < 0 is obtained by maximizing ~Stotal, while for the AFM case J > 0, ~Stotal needs
to be minimized. For S = 1/2, the maximal value of |~Stotal| = 3/2, and all spins point in
the same direction. All the interactions on the bonds are satisfied. However, in the AFM
case, the ground state energy is minimal for the smallest possible value |~Stotal| = 1/2. We
realize the following two aspects:

i) There are in total 6 configurations, which all result in |~Stotal| = 1/2, i.e., the ground
state of the AFM case will be a superposition of the corresponding 6 states: it is
highly degenerate, since in total we have only 23 = 8 basis states, and hence the
largest part of the Hilbert space contributes to the ground state manifold!

ii) There is no way to simultaneously satisfy all the three interaction terms (i.e., mini-
mize the energy of each of the three bonds): the system is the simplest example for
a geometrically frustrated quantum magnet. One effect of such geometrical frustra-
tion is that the spins try to find a new configuration, in which none of the bonds is
fully satisfied, but which minimizes the total energy. As such, qualitatively new be-
havior can be realized when comparing to non-frustrated geometries. One example
is the classical Heisenberg model on a triangle, where the three spins align in the
plane and point outwards, forming a 120◦ angle between each other.
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There are many quantum magnetic materials with such AFM triangles as building blocks,
see Fig. 1 for example geometries. Particularly interesting situations are obtained when a
lattice consists of corner-sharing triangles, such as the kagome lattice depicted in Fig. 1(c).
Here, the degree of frustration in the extended lattice is very high and determines the
ground state physics. As we have seen for a single triangle, ground states of frustrated
AFM are typically very highly degenerate. Due to this degeneracy, the spins fluctuate
strongly, so that under circumstances they cannot realize long-range order. This leads
to a peculiar situation: the ground state and the excited states are governed by the in-
teractions between the spins, but, due to the strong fluctuations, any attempt to stabilize
long-range order is suppressed. Such a state is called a spin liquid. Such spin liquid states
can also host topological phases of matter (which do not rely on the existence of a finite
local order parameter, but are described by global quantities), and due to their rich and
unconventional behavior have been a focus of intense studies.

We could, of course, go on, and discuss larger and larger building blocks. Noteworthy are
lattices, in which the building blocks are tetrahedrons; for ferromagnetic Ising-type interactions
HIsing = J

∑
〈i,j〉 S

z
i S

z
j , again a highly frustrated geometry can be realized, e.g., on so-called

pyrochlore lattices. The spins align according to so-called ‘spin-ice rules’ (two spins point
into the tetraeder, two point outwards), and due to the high frustration, unconventional states
can be realized. Indeed, such systems can even host excitations, which can be described as
magnetic monopoles, which in vacuum cannot exist, but are realized and measured in these
systems [69, 70].
The generic question is how to deal with a large number of spins on an arbitrary graph. Since
in most cases there is no analytical solution, but we are dealing with finite-dimensional Hilbert
spaces, we can use the matrix representation of the Hamiltonian in an appropriately chosen
basis and diagonalize this on a computer. We refer the reader to, e.g., Refs. [61, 71].

1.2.1 Magnetization curves

An important quantity to study in quantum magnets is the dependence of the magnetization
on the applied magnetic field ~B, which typically is included in the Hamiltonian as a Zeeman-
type term (see Eq. (7)) and which, for the sake of simplicity, we will assume is pointing in
z-direction. In this case, the original SU(2) symmetry of the Heisenberg model is broken down
to U(1), which can be exploited for investigating the system. Note that, however, the most
general form of the Zeeman term is ∼ ~Bg~S, with the so-called ‘g-tensor’ g, which captures a
possibly anisotropic response of the material to the applied magnetic field. If a material has a
non-trivial g-tensor, also the remaining U(1) symmetry is broken, and the magnetization will not
point in parallel direction to ~B. This can lead to further interesting behavior as, e.g., a torque on
the sample. Here, however, for the sake of simplicity we assume a simple g-tensor and hence a
response only in parallel direction to ~B, so that the U(1) symmetry prevails. Then, it suffices to
treat the magnetizationM=

〈
Sztotal

〉
, which can have nontrivial behavior. For example, if there is

an excitation gap, then increasing the magnetic field will not change the value of M , leading to
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Fig. 2: (a) The natural mineral Herbertsmithite is a realization of a Heisenberg spin-1/2 system
on the kagome lattice [10]. However, the material contains ∼ 5% nonmagnetic impurities and
anisotropic DM interactions due to spin-orbit coupling. (b) The lattice with one impurity and
the orientation of the DM-vectors used in [74].

a magnetization plateau, as already illustrated further above in the context of the spin-1/2 dimer.
These plateaux can host interesting Mott phases (e.g., crystals of triplets). In the vicinity of
these magnetization plateaux, it is interesting to study how the plateau ‘melts’, and the resulting
phase can host unconventional states, like the BEC of triplets, or even supersolid phases.
For systems with U(1) symmetry in a magnetic field, the total value of Sztotal is conserved, so
that one does not need to compute explicitly M(B) via expectation values. Instead, at zero
temperature,5 one computes the ground state energies E0(S

z
total) in all possible sectors of Sztotal

and obtains the Magnetization via a Legendre-transform:

M(B) =
〈
Sztotal

〉∣∣∣
[E0(Sztotal,B=0)−B·Sztotal]=min

.

Therefore, it is important to have methods to efficiently compute the ground state energy for
systems as large as possible in order to be as close as possible to the thermodynamic limit. Two
such approaches are the aforementioned exact diagonalizations (ED) and tensor network states,
such as the MPS or the Projected Entangled Pair States (PEPS) [72]. Both methods also exist in
a version, which works directly in the thermodynamic limit as iMPS and iPEPS, respectively.
In particular the iPEPS has been successful in investigating magnetic properties of dimer-based
quantum magnets such as the Shastry-Sutherland lattice, see, e.g. [73].

1.3 Effect of spin-orbit coupling at high magnetic fields

The models mentioned so far are often minimal models. However, in real materials additional
effects like the anisotropic g-tensor mentioned above, or other anisotropies due to spin-orbit
coupling (SOC) are present. In a magnetic field, SOC can alter the physics of the system
significantly [75], but is often neglected, since its magnitude typically is only a few percent
of the magnitude of the Heisenberg exchange in the system. However, since its effect can be

5Remember that we are interested in low temperature properties, since here quantum fluctuations will have a
stronger effect than thermal ones.
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important, in order to obtain a more realistic description, it is necessary to consider SOC by
treating additional anisotropic interactions, e.g., of Dzyaloshinskii-Moriya (DM) type [76, 77],

HDM =
∑
〈i,j〉

~Di,j ·
(
~Si×~Sj

)
. (10)

This term arises in the strong coupling limit of the fermionic Hubbard model (2) when taking
into account spin orbit coupling ∼ ~L · ~S. Note that, in contrast to the Heisenberg term (1), the
DM interaction is antisymmetric upon exchange of the spins and breaks the SU(2) symmetry.
On dimers, this leads to a mixing of the singlet and the triplet sectors and can so lead to new
interesting effects. An example for DM interactions in a kagome system is depicted in Fig. 2.

2 Unconventional phases and quantum critical behavior

In the previous section, we have seen the most important microscopic models for quantum
magnetism (in particular the Heisenberg model (1)), and related models of itinerant fermions or
bosons. Most of these models are inspired by quantum magnetic materials. One such material,
which hosts unconventional behavior in magnetic fields, is SrCu2(BO3)2, which is a very good
realization of the AFM Heisenberg Hamiltonian on the Shastry-Sutherland lattice [78] depicted
in Fig. 1(b) [8, 9], with additional DM interactions. Using a combination of various numerical
methods, the magnetization curve up to 118 T has been compared to experimental data [79],
and interesting Mott insulators on magnetization plateaux have been found (see Fig. 3), e.g.,
one which is formed by bound states of triplons [73]. Another example for a quantum magnetic
material, which hosts an unconventional phase, is the ground state of the kagome lattice in
Hebertsmithite, which realizes the Heisenberg Hamiltonian with additional DM interactions on
this lattice. However, a large number of non-magnetic impurities is present in this material, so
that additional effects close to the impurity sites come into play (see Fig. 2).
Many studies are performed on a large variety of further quantum magnetic materials. However,
also beyond their possible realization in a material it is interesting per se to formulate models
with competing interactions based on mathematical insights and to investigate their properties.
An example we already encountered in Sec. 1.1 is to enhance the SU(2) symmetry to SU(N ).
Another model that can be introduced in this line of thinking is the S = 1 Heisenberg chain
with additional biquadratic interactions in a magnetic field,

H =
∑
i

(
cos(θ) ~Si · ~Si+1 + sin(θ)

(
~Si · ~Si+1

)2)−B∑
i

Szi , (11)

the so called bilinear biquadratic Hamiltonian (BLBQ). Here, at B = 0, the simple Heisenberg
model of Eq. (1) has been extended by a term in such a way that the resulting Hamiltonian
still possesses the SU(2) symmetry of the Heisenberg model,6 but the Hamiltonian now has
two competing interaction terms. That the two terms compete with each other can be seen by
considering a spin-1 dimer: while for the bilinear term (the Heisenberg term) the ground state

6The biquadratic term itself has, actually, SU(3) symmetry.
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(ii) the 2=5 plateau does not extend beyond J0=J ’ 0:625.
Since the present experimental data do not reveal any
evidence of a 2=5 plateau but show a rather broad 1=2
plateau, J0=J can neither be too large nor too small, and a
comparison of the critical fields of the 1=2 and 1=3 plateaus
with the experimental ones point to a ratio J0=J ’ 0:63.

A detailed comparison of the experimental magnetization
curve with the theoretical predictions of the various methods
at J0=J ’ 0:63 above the 1=4 plateau is shown in Fig. 4. First
of all, the critical fields Hc3 to Hc6 are accurately repro-
duced by iPEPS. The predictions of the other methods are
scattered around the iPEPS values, but altogether they
support the main features of the iPEPS results (for a detailed
comparison as a function of J0=J, see the Supplemental

Material [30]). Second, the magnetization jumps at Hc3

and Hc6, which point to first-order transitions, are well
accounted for by the theoretical results: at Hc3, there is a
first-order transition between the 1=4 and 1=3 plateau, while
at Hc6, there is one between the 1=2 plateau and the 1=3
supersolid. The smoother transitions at Hc4 and Hc5 also
correspond to much weaker anomalies in the theoretical
results. For the upper boundary of the 1=3 plateau, series
expansions point to a gap closing when increasing H and
hence to a second-order phase transition, around 65 T, sig-
nificantly below Hc4. This is not incompatible with the
broad onset of magnetization around Hc4, with a slope
that takes off around 65 T in shot A and 70 T in shot B.
Below the lower boundary of the 1=2 plateau atHc5, iPEPS
predicts a series of first-order phase transitions from a 1=3
supersolid to a 2=5 supersolid, then to a phase with domain
walls, and then finally to the 1=2 plateau. In the magneti-
zation curve, these transitions translate into small jumps.
This is presumably related to the peak observed in both shots
around 80 T, i.e., between the 1=3 and 1=2 plateaus, con-
sistent with the prediction that the intermediate-field range
between these plateaus is not a single phase.
Finally, let us comment on the experimental slope of the

1=2 plateau between Hc5 and Hc6, which is anomalously
large as compared, e.g., to that of the 1=3 plateau. This
slope is definitely too large to be due to Dzyaloshinskii-
Moriya interactions, but it might be simply explained as a
temperature effect. Indeed, the difference in energy per
spin between the 1=2 plateau and the competing 1=3 super-
solid state obtained with iPEPS is very small (< 0:004J),
whereas the competing phases are definitely higher in the
middle of the 1=3 plateau.
Conclusion.—To summarize, we have performed

ultrahigh-field measurements of the magnetization of
SrCu2ðBO3Þ2, revealing for the first time the extent of the
1=2 plateau. The length of the 1=2 plateau has been found
to be around 70% of that of the 1=3 plateau. We have not
found any indication of the 2=5 plateau that was previously
suggested on the basis of magnetostriction measurements.
As revealed by large-scale numerical simulations, these
results are consistent with the Shastry-Sutherland model,
provided the ratio of inter- to intradimer coupling is neither
too small, in agreement with recent NMR results on Zn
doped samples [31], nor too large, the best agreement
being reached for a ratio of about 0.63. These numerical
simulations further predict that the magnetization between
the 1=3 and 1=2 plateaus and above the 1=2 plateau is not
uniform but that the system is always in a phase that breaks
the translational symmetry, either to form a supersolid or
because of the spontaneous appearance of domain walls in
the 1=2 plateau phase. It would be very interesting to test
this prediction with measurements that can detect a change
of lattice symmetry such as x rays or neutrons or with a
local probe such as NMR. Given the field range of interest,
this is, however, a huge experimental challenge.
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FIG. 3 (color online). Phase diagram of the Shastry-Sutherland
model in a magnetic field obtained with iPEPS.
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Fig. 3: Comparison of the experimental data for the magnetization curve of SrCu2(BO3)2 to
theoretical results obtained with different approaches (Fig. taken from [79]).

is either a singlet or a triplet, for the biquadratic term it can be a quintet state with Stotal = 2.
Going to an extended lattice, one can therefore expect that at zero and at finite B different
types of ground states will compete with each other, depending on the strength and the sign of
the respective bilinear or biquadratic term. As discussed in [80], the resulting phase diagram
of (11) is, indeed, rich. Interestingly, one of the phases realizes spin-nematic quasi long range
order (QLRO, see further below). The question arises, how to systematically characterize the
different types of order that can emerge in such systems.

2.1 Equilibrium: order parameters from symmetry considerations

Here we give a summary of important aspects concerning spontaneous symmetry breaking.
For further reading, I suggest, e.g., the excellent lecture notes ‘An introduction to spontaneous
symmetry breaking’ by A.J. Beekman et al. [81].
In Landau’s theory of phase transitions, spontaneous symmetry breaking (SSB) leads to a finite
local order parameter. In such a scenario, the state of the system7 is not symmetric under
a symmetry transform U, which leaves the Hamiltonian H invariant

(
i.e. [H, U ] = 0

)
; the

symmetry of the state is ‘lower’ than the symmetry of the Hamiltonian. Since symmetries are
mathematically described by groups, the state can then still be symmetric under a transform
corresponding to a subgroup H of the original symmetry group G of the Hamiltonian, if it
preserves any symmetry at all.

7Typically, we are interested in the ground state |ψ0〉 since many of the phenomena discussed here are realized
at low temperatures, but the considerations also hold for the thermal equilibrium state.
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Is such a symmetry broken state unique? To answer this, consider the following: [H, U ] = 0,
so we know that an eigenstate |ψ〉 of H and U |ψ〉 must have the same energies, since |ψ〉 is a
simultaneous eigenstate of H and U. However, |ψ〉 6= U |ψ〉 if the symmetry is spontaneously
broken, i.e., in the case of SSB, multiple related states exist, which all share the same energy.
Indeed, there exists a whole set of distinct symmetry-broken states with the same energy, which
can be obtained by performing all possible symmetry transforms U on the symmetry broken
state |ψ〉. These states are, hence, all related to each other by the symmetry G. This allows us
to define the order parameter O: it is the operator, whose eigenstates are the inequivalent states
in the set of symmetry related states, and whose eigenvalues are different and non-zero for each
of these states. O is constructed in such a way, that it has eigenvalue zero for states, which
are symmetric under the transform U. Note however, that due to the so-called orthogonality
catastrophe, for a finite system, 〈ψ |O|ψ〉 = 0 [81]. We will come back to this later, when we
ask how to investigate order parameters in practice.
How to think about order parameters? Can we find a way to construct them? This is not
straightforward to answer, and we have to dive a little deeper into the mathematics of symmetry
transformations. From group theory we learn that in the thermodynamic limit (we will come
back to this further below), one can classify the symmetry broken states by the cosets gH , which
are elements of the quotient set G/H , if G is the group of all symmetry transforms, H ⊂ G

is the subgroup of unbroken transformations, and g ∈ G. H is then also called the residual
symmetry group. For example, let us have a closer look at the SU(2) symmetry of the AFM
Heisenberg model. Consider a Néel state |↑↓↑↓ . . .〉, in which the symmetry is broken down
to rotations around a single axis, e.g., in z-direction. Hence, G = SU(2), while the residual
symmetry group is H = U(1). One finds for the quotient set G/H = SU(2)/U(1)' S2, which
gives all the points on the surface of a sphere. The direction of the sublattice magnetization
is then one of these points on the sphere; hence, without applying an external field, infinitely
many directions are possible, and the symmetry broken state will pick one of these.
For continuous symmetries, we consider the generatorsQ of the group, which can be introduced
by considering transformations U(dθ) by an infinitesimally small value of a parameter θ (e.g.,
for rotations θ is the rotation angle), so that one can write U(dθ) ≈ 1+i dθ Q. This allows one to
write for arbitrary angles U(θ) = eiθQ, which is obtained by subsequently applying transforms
U(dθ) until the desired value θ of the parameter is obtained [67]. Consider a broken-symmetry
state |ψ〉. Then, generatorsQ, of which |ψ〉 is an eigenstate, are called unbroken generators, and
conversely generators, which do not leave the state invariant, are called broken. The dimension
of the quotient set G/H is then said to equal the number of broken generators.
It would now be useful to identify an operator, whose expectation value can be used to dis-
tinguish between the symmetry broken states, and which has zero expectation value in the
symmetric state. For each of the sets of equivalent symmetry-broken states, it should have a
unique non-zero expectation value. This leads us to the question of how to identify suitable
order parameters.
Let U = eiαQ be a symmetry transform such that [H, U ] = 0. Since U |ψ〉 6= |ψ〉 for a symmetry
broken state, this also holds for the generator, Q |ψ〉 6= |ψ〉, so that we cannot simply consider



Quantum Magnetism 13.15

the expectation value 〈ψ |Q|ψ〉. Instead, one proceeds as follows:
A state |ψ〉 breaks this symmetry, if there exists any operator Φ such that

〈ψ |[Q, Φ]|ψ〉 6= 0 . (12)

If no such operator exists, |ψ〉 is symmetric under U. Φ(x) is called interpolating field,8 and
allows us to introduce the order parameter operator O(x) and its expectation value, which then
is the local order parameter:

O(x) =
[
Q, Φ(x)

]
and O(x) = 〈ψ |O(x)|ψ〉 .

Due to Eq. (12), O(x) is automatically zero if |ψ〉 is a symmetric state, and finite otherwise,
so that it, indeed, distinguishes symmetric from symmetry-breaking states. Note that Φ(x)

and O(x) are not necessarily hermitian, but one can always construct an observable from this
operator, e.g., O+O† or OO†.
It is possible to always find an operator O such that O(x) will be different for distinct broken-
symmetry states and equal for states related by residual symmetry transforms, since Eq. (12)
does not uniquely determine O and Φ (e.g, construct an alternative interpolating field by multi-
plying Φ by a constant, then the equation can still be fulfilled). In almost all cases, the physics
of the symmetry-breaking system itself suggests a convenient choice for O, which maps onto
the quotient space G/H . Furthermore, it inherits the structure of the quotient space.
Let us consider a concrete example for quantum magnets and go back to the Heisenberg AFM.
The Hamiltonian has SU(2) symmetry, which is broken down in the AFM state to U(1). Inequiv-
alent broken-symmetry states correspond to AFM configurations with the sublattice magnetiza-
tion pointing in different directions – all possibilities together constitute the points on the sur-
face of a sphere, S2, as discussed above, and which coincides with the quotient SU(2)/U(1)' S2.
We now choose the pointer along the z-direction. Hence, the symmetry generators Sx and Sy

are broken, but not Sz. How to introduce an interpolating field? We expect for the AFM state
the spins to alternately point in the up- and down-direction, respectively, so that it is natural to
introduce the staggered magnetization Na

i = (±1)iSai , with i the position on the lattice, and
a = x, y, z. Can we use Na

i as interpolating field? Let us consider the breaking of rotations
generated by Sx. We see after a short calculation, that

∑
ij[S

x
i , N

y
j ] = i

∑
iN

z
i . Similarly,

choosing Sy and Nx
j also leads to

∑
ij[S

y
i , N

x
j ] = i

∑
iN

z
i . Hence, it seems plausible that the

choice O = N z =
∑

iN
z
i gives a suitable order parameter operator. Its expectation value then

is the expectation value for the staggered magnetization, which can be measured in experiments
(e.g. by measuring spin structure factors) – and which also would be the natural choice for an
AFM state, since there we expect the spins to alternate, as in the classical Néel state. Note, how-
ever, that the classical Néel state is not an eigenstate of the AFM Heisenberg model, but, in the
thermodynamic limit, if SSB takes place, the expectation value of the staggered magnetization
is finite, like in a Néel state. This brings us to the following considerations:
In general, [H, O] 6= 0, which would imply that the symmetry broken states are not eigenstates
ofH, contradicting our above statement. In particular, for numerical methods, which treat finite

8We work for the moment with continuous variables x and will go back to lattice positions later.
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system sizes, this implies that the expectation value 〈ψ0 |O|ψ0〉 = 0 for all system sizes, so the
question arises, how to investigate for the order characterized by O, a topic we will return to
later. The solution to this puzzle lies in the necessity of taking the thermodynamic limitN →∞
and V →∞, with N/V = const. It turns out that in this limit

〈
[H, O]

〉
=0, and the symmetry-

broken states become orthogonal to one another in this limit, as well as degenerate with the
symmetric exact eigenstates of H. If in this limit, the symmetry-broken states are eigenstates
of H. The thermodynamic limit is, hence, always different to any finite volume (irrespective
of its size), and makes it a singular limit. Care needs to be taken, when computing quantities
in this limit. Often, in order to have some finite expectation value, one applies a small field9

h, which induces the order one wants to investigate, but which one needs to ‘remove’ again.
Hence, when studying observables in the thermodynamic limit, two limits need to be taken, and
since the thermodynamic limit is singular, the order cannot be exchanged. Hence, the order
parameter can be obtained as

〈O〉 = lim
h→0

lim
N→∞

〈ψ0(h,N) |O|ψ0(h,N)〉 ,

with |ψ0(h,N)〉 being the ground state for a system with N spins and when applying a small
field h.
From these considerations, two questions are imminent: i) how to compute order parameters
numerically, if one treats finite systems? ii) which order parameters can we realize in a quantum
magnetic system?
We first turn to the latter. As we have seen above, this needs some careful thought. Since we are
dealing with systems on lattices, one can consider the breaking of the lattice symmetries, like
translational, rotational, or parity symmetry. Since this is not peculiar for spin systems (also
itinerant electrons on such lattices can undergo the corresponding SSB), we focus here on the
SSB associated to the spin degrees of freedom, and discuss the above mentioned example of
spin-nematic order as an unconventional way to realize SSB in quantum magnets.

2.1.1 Spin-nematic order

We start by describing an S = 1 object by the three Sz eigenstates |↓〉, |0〉, |↑〉. From these, we
can construct basis states (see also the Suppl. Material of [82] and the PhD thesis of T. Tóth
(EPF Lausanne, 2011) [83])

|x〉 =
i√
2

(
|↑〉 − |↓〉

)
, |y〉 =

1√
2

(
|↑〉+ |↓〉

)
and |z〉 = −i |0〉 .

We see that Sx |x〉=Sy |y〉=Sz |z〉=0, and that these basis states are invariant against time
reversal operation. The action of the spin operators in this basis can be written in a compact
form

Sα |β〉 = i
∑

γ=x,y,z

εαβγ |γ〉 .

9What exactly this field is depends on the situation.
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Now, every hermitian operator O can be written as

O =
3∑

α,β=1

Aα,β |α〉 〈β| ,

where |1〉, |2〉, |3〉 are basis states describing the S = 1 object (e.g., the ones defined above), and
A∗αβ = Aβα, and which by the above construction is a quadratic form in the spin operators Sα.
Such a self-adjoint 3×3 matrix is described by 9 real-valued parameters, from which we can
introduce eight non-trivial, independent operators (the trace is held fixed, so that it is one param-
eter less than the number of entries in the matrix). These entries can be interpreted as possible
on-site order parameters for systems, which are built up from S = 1 objects. More general, we
can introduce a rank-k tensor operator Tk, whose entries T kq satisfy the commutation relations[

Sz, T kq
]

= qT kq and
[
S±, T kq

]
=
√
k(k+1)− q(q±1)T kq±1 .

From this, the ‘highest’ entry is a product of k operators S+; for example, we obtain for k = 1

the components of T 1
q = (S+, Sz, S−), which, because S± = Sx ± iSy, are the three order

parameters for local magnetizations in the three spatial directions (dipolar order). For S = 1/2,
this exhausts all possibilities, since there we can apply the ladder operators S± maximally once,
before the result is zero, i.e., T2 = 0 for S = 1/2 systems. However, for S = 1 this is not true,
and for k = 2 we find

T 2
2 = S+S+ T 2

−2 = S−S−

T 2
1 = −

(
S+Sz+SzS+

)
T 2
−1 =

(
S−Sz+SzS−

)
T 2
0 =

√
2

3

(
3(Sz)2−S(S+1)

)
.

The elements T 2
q are not automatically hermitian. Since the order parameter is an observable

and hence hermitian, we can use the T 2
q to form suitable linear combinations, which then can

be interpreted as local order parameters. We thus obtain the 5-component order parameter for
spin-nematic or spin-quadrupolar order:

Q =


Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

 =


(Sx)2 − (Sy)2

1√
3

(
2(Sz)2−(Sx)2−(Sy)2

)
SxSy + SySx

SySz + SzSy

SzSx + SxSz

 .

The components of Q are called quadrupolar order parameters. Their expectation value can be
finite also for states, which are invariant under time-reversal symmetry, for which the dipolar
(magnetic) order parameters have zero expectation value. Hence, this construction lead us to
a new type of order parameter, which is beyond the ‘standard’ view onto magnetic systems, in
which only the dipolar (magnetic) order parameters are considered.
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An alternative way to obtain the quadrupolar order parameters is the following: The quadratic
form Aα,β = SαSβ is decomposed into a scalar S(S+1)δαβ/3 (trace – corresponding to the
length of the spin), a three-component vector (Sαβ−Sβα)/2 (antisymmetric representations:
dipolar operators, pointing to a certain direction and thus breaking time-reversal symmetry
– corresponding to the local magnetization), and a symmetric, traceless, tensor of rank two,
(Sαβ+Sβα)/2−S(S+1)δαβ/3, corresponding to the five quadrupolar operators. How many lo-
cal order parameters one can obtain in a quantum magnetic system then depends on the value of
the spin S and, in general, the underlying symmetry, which typically for spin systems describing
electronic systems is SU(2), but can be larger, SU(N>2), as described in the introduction.
Note that a similar construction can be done for bond-order [82]: when summing the spins
on neighboring bonds, then even for a S = 1/2 system we obtain SBond > 1/2, and a similar
construction for higher-order order parameters can be done. The local order parameters for
quadrupolar order then live on the bonds rather than on the sites, and hence this type of order is
also called ‘bond-nematic order’.
The number of possible order parameters is determined by the extent, to which one can apply
the ladder operators S± without getting zero. For the SU(2) case, we see that for S = 1,
similarly to the S = 1/2 case, we have T k>2

q = 0, so the local magnetization and the quadrupolar
order exhaust the possibilities to construct local order parameters related to the spin degrees of
freedom. However, for S > 1, again further order parameters can be realized, named multipolar
states of degree k ≤ 2S, and the order parameters are rank-k tensor operators.
Since the so-constructed local order parameters rely on symmetry considerations, one can ask
for possible relations between them. Indeed, one finds for the SU(2), S = 1 case〈

S
〉2

+
〈
Q
〉2

=
4

3
,

and that any state |S, Sz〉 is an eigenstate of Q2 for any spin S,

Q2 |S, Sz〉 =
4

3
S(S+1)

(
S(S+1)− 3

4

)
|S, Sz〉

and hence (
Q2 + S2

)
|S, Sz〉 =

4

3
S2(S+1)2 |S, Sz〉 .

2.1.2 How to identify long-range order

As mentioned before, the order parameter is finite only in the thermodynamic limit. The ques-
tion arises, how to compute it in practical calculations, which often imply finite size systems.
To do so, one can investigate the behavior of two-point correlation functions,

C(x, x′) =
〈
ψ
∣∣O†(x)O(x′)

∣∣ψ〉 .
Typically, one encounters the following behavior:

lim
|x−x′|→∞

C(x, x′) ∝
{
〈O†(x)〉〈O(x′)〉 = const. long-range ordered

e−|x−x
′|/l disordered,

(13)
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with l the correlation length. In the presence of long-range order (LRO), the spatial average of
the local order parameter will be finite: assuming locality,10 the correlation function in Eq. (13)
factorizes, and hence C(x, x′) approaches a constant, finite value when increasing the distance
|x−x′| → ∞. This corresponds to a divergent correlation length l, since the values of the order
parameter at two points in space are correlated to each other for arbitrary separations between
them. What is interesting is that, while the order parameterO(x) =

〈
O(x)

〉
for a finite system is

exactly zero, the two-point functions can show a finite value for finite, large enough separations!
This opens the door to investigate LRO by working on finite systems by making sure that one
treats systems large enough so that over a wide range of distances larger than a typical length
scale determined by the details of the system, |x−x′| > lc, the value of C(x, x′) is constant.
This is, in particular, important for numerical approaches, where often one works with a finite
lattice size.

Note that correlation functions can also decay to zero algebraically, C(x, x′) ∝ |x−x′|c, with
some exponent c. In this case, one speaks of algebraic or quasi long-range order, since the or-
der parameter will have zero expectation value also in the thermodynamic limit. This happens,
in particular, for low dimensional systems like spin-1 chains due to the Hohenberg-Mermin-
Wagner theorem, according to which systems with short-range interactions in low dimensions
cannot realize SSB of a continuous symmetry (essentially because fluctuations are too large).
Therefore, in this case, the phases are not characterized by a finite order parameter, but by
the dominant correlation function, i.e., the one, which decays slowest. An interesting scenario
is realized in quantum magnets in so-called Berezinskii-Kosterlitz-Thouless (BKT) phase tran-
sitions: here, on one side of the transition, C(x, x′) ∝ exp (−|x−x′|/l), while on the other
side of the transition C(x, x′) ∝ |x−x′|c. On both sides of the transition, the order parameter
is zero, but nevertheless the physics is different. Because one cannot analytically continue a
power law to an exponential function, one encounters a real, thermodynamic transition between
two states of matter, where C(x, x′) is nonanalytic at the critical point. This type of transi-
tion is not due to SSB, since the order parameter is zero on both sides. One example system
for such a BKT transition is the classical XY-model on a square lattice, where as a function
of temperature the binding or unbinding of topological defects causes this transition. Such an
effect can be expected in XY-type models or models with U(1) symmetry. For quantum mag-
nets, one often speaks of a BKT-type transition, if a gapless phase (with algebraically decaying
correlation functions) is connected to a gapped phase (with exponentially decaying correlation
functions), and at which the gap opens exponentially slowly: the transition is continuous, but in
this case there is no thermodynamic potential (e.g. the free energy, which at zero temperature
is the ground state energy), whose n-th derivative is nonanalytical, which is required by Ehren-
fest’s classification of a phase transition to be of n-th order. Therefore, one sometimes speaks
of ‘infinite-order transitions’.

10This is also referred to as the cluster decomposition theorem, according to which measurements of observables
‘distant enough’ from each other should be independent of each other.
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2.1.3 What can be learned from correlation matrices

Let us have a closer look at the correlation function introduced in Eq. (13) (see, e.g., [84]). Let
us switch from the continuous variable x to lattice positions i, j, so that we consider a correlation
function Ci,j =

〈
O†iOj

〉
. This is an hermitian matrix, and it is a valid question to ask, what we

may learn from its eigenvectors and eigenvalues. Indeed, they give a valuable tool to investigate
LRO in the following way: Let us consider the global order parameter O =

∑
j Oj . In the

presence of translational invariance, we can write Oj ≡ O/N = Ō. According to Eq. (13), we
can write

lim
|i−j|→∞

〈
O†iOj

〉
= O

2 6= 0. (14)

Let us consider a concrete example and choose Oj = S+
j = Sx+ iSy, which addresses the

question for finite in-plane magnetization. We see immediately, that (if Sztotal is a good quantum
number)

〈
ψ
∣∣S+

j

∣∣ψ〉 = 0 for any finite system. However, Cij =
〈
ψ
∣∣S+

i S
−
j

∣∣ψ〉 can take a
finite value even for small lattice sizes. Diagonalizing the hermitian matrix Cij for such a finite
system, we obtain real eigenvalues λν and eigenvectors vν , and we can rewrite

Cij =
∑
ν

vν

〈
ψ

∣∣∣∣∣
(∑

i

v∗ν,iS
+
i

)(∑
i

vν,jS
−
j

)∣∣∣∣∣ψ
〉

︸ ︷︷ ︸
λν

v†ν .

Introducing operators ην =
∑

i vν,iS
−
i , we obtain

v†νCijv =
〈
ψ
∣∣η†νην∣∣ψ〉 = λν ≥ 0 ,

the eigenvalues are therefore strictly positive. How does this relate to the order parameters? Let
us apply the cluster decomposition theorem, then

lim
|i−j|→∞

Cij = lim
|i−j|→∞

∑
ν

vν,i

〈
ψ

∣∣∣∣∣∑
k

v∗ν,kS
+
k

∣∣∣∣∣ψ
〉

︸ ︷︷ ︸
√
λν
∗

〈
ψ

∣∣∣∣∣∑
l

vν,lS
−
l

∣∣∣∣∣ψ
〉

︸ ︷︷ ︸
√
λν

v†ν,j = lim
|i−j|→∞

〈S+
i 〉〈S−j 〉.

However, the last equality can only be true if there is only one eigenvalue λν = λmax, which is
not vanishing. On the other hand, we see that 〈S+

j 〉 =
√
λmax. For finite systems, these relations

are not exact, but in the limit of infinite system size, there has to be asymptotically one dominant
eigenvalue λL, so that for large systems of size L one can approximate

lim
|i−j|→∞

Cij ≈ λLvL,iv
∗
L,j .

Since the eigenvectors vν are normalized, their coefficients scale ∼ 1/
√
L. Hence, in order to

have a finite value in the thermodynamic limit, the dominant eigenvalue has to scale λL ∼ L,
giving a condition on the largest eigenvalue of Cij , which can be tested numerically.
Fig. 4 shows an example for the kagome lattice in the presence of DM interactions and of a
non-magnetic impurity (see Fig. 2), for which this analysis was performed. For this system it
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Figure 5 shows the full eigenvalue spectrum of C for
clusters with N=14, 17, 20, 23, and 26. The results for B
=0 and B=J /20 are indistinguishable. An essential feature of
Fig. 5 is that, as D /J is increased in the region beyond 0.06,
the maximum eigenvalue on each of the clusters becomes
proportional to N, and thus very much larger than the re-
maining eigenvalues; we caution that the actual value of this
crossover cannot be inferred from the data of Fig. 5, where it
is evident that the curves are still some way from the ther-
modynamic limit, and address this point below. As described
in Appendix B, this means that the system has developed
long-ranged in-plane magnetic correlations in the regime of
large D /J. For small D /J, all the eigenvalues depend only
weakly on D /J and are closely spaced in magnitude, which
is a sign of short-range correlations dictated not by D but by
J.

The finite-size scaling of the dominant eigenvalue !m,
normalized by N, is given in Fig. 6. The extrapolated values
of this quantity represent the square of the average magnetic

moment in the thermodynamic limit, where the spins reach
approximately 80% of their full moment as D /J!".39 For
all values D /J#0.1, it is clear that the finite-size corrections
scale as 1 /!N, as expected for a state of broken U"1#
symmetry.40 This scaling procedure represents the appropri-
ate means of deducing the existence of long-ranged magnetic
order, by continuing the curves of Fig. 5 to the infinite-
system limit. However, this powerful method shows no indi-
cation of such order in the regime 0.06$D /J$0.1, specify-
ing that the transition to the semiclassical state should be
taken as D /J$0.1.

The magnetization profile corresponding to the dominant
eigenmode vm also contains important information, which is
shown in Fig. 7 for the four representative values of D /J and
represented by two-dimensional arrows whose components
are the real and imaginary parts of vm. At D /J$0.06, there
is no dominant mode as is the case at large D, but the stron-
gest mode shown in Fig. 7"a# corresponds nevertheless to the
pattern of strong spin correlations around the impurity %Fig.
2"a#&: the correlations in this mode are confined to the strong
bonds next to the impurity, where the spins are almost anti-
parallel. The strength of these local correlations is governed
by J, which is the reason why !m remains essentially D in-
dependent, for D /J$0.06 in Fig. 5. We emphasize again that
the profile shown in Fig. 7"a# does not represent the actual
magnetization response—this is shown in Fig. 2"a#—but
rather the dominant fluctuation mode.

The situation changes dramatically at D /J%0.1 %Figs.
7"c# and 7"d#&, where the system develops long-ranged order
with the majority of spins participating in the Q=0 semiclas-
sical 120° state. The data show clearly that the crossover
from the dimerlike regime at small D /J to the ordered phase
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FIG. 6. "Color online# Scaling with system size of the largest
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lines correspond to the expected 1 /!N scaling of the leading cor-
rections to the thermodynamic limit in the 120° ordered phase.
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FIG. 7. "Color online# Magnetization profile for the 26-site
kagome cluster in zero field, corresponding to the eigenvector vm of
C with the largest eigenvalue !m. The in-plane moments are given
by the real and imaginary parts of vm. Note that this mode is unique
up to a global U"1# rotation which is related to the arbitrary phase
of vm.
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Fig. 4: Correlation matrix analysis of the local magnetizations for the AFM Heisenberg model
on a kagome lattice with DM interactions. Left: scaling of the largest eigenvalue of Cij with
system size. Right: Magnetization profile obtained from the eigenvector of Cij belonging to
the largest eigenvalue for different values of the DM interaction. The red arrows indicate the
in-plane moments, given by the real and imaginary part of the entries of the eigenvector, re-
spectively; the blue lines are the local bond strengths, which are computed separately (Figures
taken from [74]).

is very difficult to treat large system sizes due to the lack of symmetries. Nevertheless, using
this analysis, it is possible to gain information on the possible LRO realized in the thermody-
namic limit, which illustrates that this approach to computing LRO is suitable also for difficult
situations.

2.2 Symmetry protected topological phases in quantum magnets:
the AKLT state

As we have seen, states of matter are usually characterized by the Landau paradigm, in which
a continuous phase transition and the associated phases are obtained by the SSB of one (or
more) symmetries of the Hamiltonian and the emergence of a local order parameter [85]. This
paradigm has been the framework for understanding phases of matter and phase transitions,
until in the 1980s experiments discovered the integer [86] and later the fractional quantum Hall
effect [87, 88]. These systems possess transitions between states with different conductivities,
which apparently are not associated to any SSB. Subsequently, and also motivated by the dis-
covery of high-temperature superconductivity [2], a new type of ’order’ was proposed whose
phenomenology is not due to the finiteness of some local order parameter, but in which the
phases are characterized by global characteristics, like the degeneracy of the ground state or en-
tanglement of the system. This type of order has been coined topological order [89,90,33] since
the behavior is captured by topological field theories [91]. The main characteristics of topologi-
cally ordered phases are the presence of degenerate ground states, of gapless edge states, and the
characterization in terms of topological invariants which are integer numbers capturing ’topo-
logical’ properties of the system and which vary in the different phases. One characteristic of
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topological phases is that they do not change under continuous deformations of the system (i.e.,
the topological invariant does not change unless one hits a critical point at which the system
experiences singular behavior) and are, hence, protected against local perturbations like, e.g.,
noise. This makes these states very interesting for quantum computation in which one of the
biggest challenges is to protect the entanglement between qubits from decoherence effects due
to local noise induced by the environment. This approach is coined topological quantum com-
putation and is described in the review article [33]. A lot of research is, therefore, devoted to
uncovering such topological phases in quantum magnets.
At the present, obtaining a complete characterization of topological phases (including interact-
ing systems) is an ongoing topic of research. However, one can use the following approach to
distinguish between different gapped phases [92, 93]: a gapped quantum phase is characterized
by ground states of Hamiltonians, which can be smoothly deformed into each other without
closing the gap. An illustrative example is the S = 1 BLBQ chain (11), which at zero magnetic
field displays a gapped phase for−π/4 < θ < π/4; even though at θ = 0 the Hamiltonian looks
much simpler, the system in this parameter range is in the same phase since the gap closes only
at the endpoints of this region. This property can be rephrased by saying that two ground states
belong to the same phase if they are related by a local unitary transformation. Since local uni-
tary transformations can only change local entanglement properties but not global ones, states
in the same topological phase are characterized by the same ’long-range entanglement’. Based
on these considerations, the following gapped phases can be identified:

1. Phases with ’short-range entanglement’:

(a) Topologically ’trivial’ product states.

(b) Symmetry protected topological phases (SPT). In these phases, local unitary trans-
formations exist which preserve the symmetry of the state. Short-range entangled
phases in which such a symmetry is broken are well described by Landau theory.
Note that phases without local order parameter can still belong to different SPT
phases if they are characterized by different symmetries, even though in Landau
classification they would belong to the same ’disordered’ phase.

2. ’True’ topological order with ’long-range’ entanglement, existing only in spatial dimen-
sions D ≥ 2 [92]. These phases are characterized by anyonic fractionalized excitations,
which obey a generalized quantum statistics and are neither fermions nor bosons [33].

It is possible to characterize topological order by considering entanglement properties [94, 95],
and tensor-network approaches have been introduced (see, e.g. [96] and the viewpoint [97]).
While it is possible to investigate for ’true’ topological order in 2D using the DMRG (for studies
on the kagome lattice see, e.g. [35,37,36]), often SPT phases are investigated, which, according
to the above said, are the only type of topological phases encountered in 1D. A prototypical
example for an SPT state in quantum magnets is the so-called AKLT state [98] (named after the
authors of the original publication, Affleck, Kennedy, Lieb, and Tasaki), which is depicted in
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Fig. 5: Sketch of the AKLT state (figure taken from Wikipedia).

Fig. 5. It is the ground state of the BLBQ model (11) forB = 0 and tan(θ) = 1/3. It has several
peculiar properties: the spin-1 degrees of freedom on the lattice sites are understood as being
composed of two spin-1/2 degrees of freedom, which between neighboring lattice sites form
singlets. At the edges, effective, free spin-1/2 degrees of freedom remain and form edge states –
the spin-1 degrees of freedom ‘fractionalize’ to the ‘smaller’ spin-1/2 degrees of freedom. Since
the presence of such edge states is typical for an SPT phase, one can use this to identify and
characterize such phases, as seen further below.
SPT phases can numerically be detected by identifying an excitation gap, zero local order pa-
rameters, and degeneracy of the entanglement spectrum [99]. As discussed in [100, 95], in
an SPT phase all states of the entanglement spectrum are non-trivially degenerate due to the
symmetry in the system. Other indications for topological properties can be obtained from
diagonalizing transfer matrices from which one can obtain directly the projective representa-
tions of the symmetry group [101], which can be used to further characterize SPT phases (see
also [102] for a nice discussion of this aspect). According to [102–104], it is possible to dis-
tinguish between different SPT phases by applying the corresponding active operators on the
edge states: if the correct active operator is coupled to the edge of the system, the ground state
degeneracy is lifted. This can indeed be used to distinguish the different SPT phases in quantum
magnetic systems obtained from the projective representations [105]. Numerically, it is easily
seen that applying the ’wrong’ active operator does not lift the ground state degeneracy, while
applying the correct one leads to different energies of the ground states with a difference far
greater than the numerical accuracy.

2.3 Dynamical properties:
inelastic neutron scattering, electron spin resonance

One way to characterize a state is to weakly perturb it and to monitor its response. In this way,
information beyond the LRO in the system can be obtained, and an insight about the elementary
excitations in the system can be obtained. This is the realm of linear response theory. To study
such a situation is interesting from many points of view. For example, the aforementioned spin
liquids do not show any sign of LRO. Any investigation based on this will, therefore, not find
any interesting properties and overlook that we are, indeed, facing a very rich quantum state
of matter. However, the response of such states to weak perturbations is determined by the
interactions in the system, hence these type of experiments are helpful for gaining insight into
the true nature of the system.
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(a) (b)

Fig. 6: (a) Crystal structure of Cu-PM (copper pyrimidine dinitrate), a S = 1/2 spin chain ma-
terial with DM interactions and alternating g-tensor. (b) Comparison of ESR spectra (symbols)
and DMRG results (solid line) (Figures taken from Ref. [106]).

From the experimental side, inelastic neutron scattering is one of the most important, direct
probes for dynamical properties of quantum magnets. Since the neutron is charge neutral, one
can perform the investigation such that only magnetic degrees of freedom are probed. The
coupling of the magnetic moment of the neutron to the magnetic moments in the material allows
one to measure the dynamical structure factor, which can be defined via

Sα,α(k, ω) =
1

N

N∑
j=1

e−ik(j−N/2)
∫ ∞
−∞

dt eiωt
〈
Sαj (t)SαN/2(0)

〉
.

Here, the system contains N spins, α = x, y, z, and we assume translational invariance. These
experiments can be performed also at high magnetic fields, so that the excitation spectrum of
quantum magnets for different phases can be investigated.
Another interesting type of experiments are electron spin resonance experiments (ESR), which
give access to the imaginary part of the dynamical structure factor in the long wavelength limit
k → 0. An example for the ESR spectrum of a spin-chain material with DM interactions is
shown in Fig. 6. As can be seen, different types of excitations (e.g. solitons, breathers) can be
identified by comparing to an effective field theory (in this case a sine-Gordon theory).

3 Nonequilibrium dynamics

So far we considered static properties of quantum magnets, which uncover a multitude of inter-
esting phenomena. It is only natural to ask what happens if one now excites such a system, e.g.,
with a laser pulse, so that its state evolves in time. The typical questions one can ask is how the
order parameters decay in time, and what nature the equilibrium state will be. Also, one can ask
the reverse question: is it possible to induce order (e.g. magnetization) by exciting the system?
These are recent topics of study and in this final section of this book chapter we give a short
glimpse on some of the ongoing developments.
In the mid 1990s, investigations were performed on thin magnetic films, which were excited
with an ultrashort laser pulse of duration 60 fs (see, e.g., [107] for a review). The magnetiza-
tion was measured using the magneto-optical Kerr effect (MOKE), and, since the signal was
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thought to be proportional to the magnetization, they were able to measure the time evolution
of the magnetization after such a short excitation. Interestingly, they found that the magne-
tization decreased very quickly (on a time scale < 1 ps), but then recovered again. Later, it
was argued that the MOKE signal is not necessarily proportional to the magnetization in such
a nonequilibrium situation, but these results were reproduced using other techniques. This be-
havior raises many questions. One main point is to understand where the angular momentum,
which is underlying to the magnetization, dissipates to, and how the light-matter interaction
triggers the dynamics. Typically, a three temperature model is introduced: the energy absorbed
from the laser flows to (i) the electrons, (ii) the lattice vibrations, i.e., creation of phonons, and
(iii) the spin degrees of freedom of the system, by creating magnons. Often, in the theoretical
studies, time-dependent density functional theory is applied. However, despite now about 30
years of research, no consensus has been reached on the mechanism of the demagnetization
dynamics [107]. One possibility would be to address many-body spin systems like the ones
described in this book chapter; however, since the electron and phonon degrees of freedom
also seem to play an important role in the magnetization dynamics, one would need to extend
the models correspondingly. Treating such complicated many-body models is a challenge for
ongoing and future research. However, it would be interesting to see if other types of order,
e.g., spin-quadrupolar order in spin-1 systems, could show similar time dependence, or if the
demagnetization dynamics only affects magnetic order.

In materials with two different types of magnetic ions (e.g. Heusler compounds), optical exci-
tation can lead to an effective transfer of spins from one atomic species to the other [108]. This
effect was coined ‘optically induced spin transfer’ (OISTR) [109, 110] and builds on the obser-
vation that, even in the presence of SOC (which, as discussed in Sec. 1.3, does not preserve Sz

as good quantum number) on very fast time scales . 11 fs no spin flips happen. Instead, the
spin is simply transferred to the neighboring ion, leading to a change in the magnetization pat-
tern, and the charge distribution on the lattice. At later times, SOC may come into play and may
cause demagnetization dynamics, but at least on the very short time scale the OISTR mechanism
leads to a metastable or transient state, which is different from the initial state. Such a situation
can also be studied in Hubbard-type models with an underlying magnetic microstructure, where
OISTR leads to the weakening of the original spin structure, but induces charge density wave
type structures, which prevail until further effects like SOC or phonons come into play [111].

Other interesting effects when going out-of-equilibrium are the possibility to realize (transient)
long-range order. A famous example is the description of transient superconductivity in pump-
probe experiments [112]. Also, the formation of magnetic LRO has been reported [113]. For
example, in the manganite material GdSrMnO3, a photo-induced transition to a ferromagnetic
metallic phase within 200 fs has been observed [114] and can be described by first-principles
approaches [115]. It will be interesting to further study the possibility to realize (transient)
LRO in quantum magnets, in particular regarding the realization of the unconventional states
discussed in this contribution. Maybe some of the LRO that is possible in interacting spin
systems, but hard to realize in ground states, can be found in such nonequilibrium setups in
future investigations.
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4 Conclusions and outlook

Quantum magnetism is a vast field of research, and in this contribution only some aspects
could be discussed. What remains appealing is the possibility to identify by mathematical
considerations further order parameters, which can help to identify novel types of LRO, for
which the spin-nematic order is one example. The newer developments for nonequilibrium
systems are a promising way to go, since there many basic questions on the nature of transient
order are still under investigation. It will be interesting to see whether in such situations novel
behavior can be identified, and if it will be long-lived, so that it does not vanish in less then a
blink of the eye, but can be enjoyed on a useful time scale.
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[111] T. Köhler, S. Paeckel, C. Meyer, and S.R. Manmana, Phys. Rev. B 102, 235166 (2020)

[112] D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C. Hoffmann, S. Pyon,
T. Takayama, H. Takagi, and A. Cavalleri, Science 331, 189 (2011)

[113] T. Jauk, H. Hampel, J. Walowski, K. Komatsu, J. Kredl, E.I. Harris-Lee, J.K. Dewhurst,
M. Münzenberg, S. Shallcross, S. Sharma, and M. Schultze, arXiv:2405.12690 (2024)

[114] M. Matsubara, Y. Okimoto, T. Ogasawara, Y. Tomioka, H. Okamoto, and Y. Tokura,
Phys. Rev. Lett. 99, 207401 (2007)

[115] S. Rajpurohit, C. Jooss, and P.E. Blöchl, Phys. Rev. B 102, 014302 (2020)
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